1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass tries to expand memcmp() calls into optimally-sized loads and 10 // compares for the target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/IRBuilder.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "expandmemcmp" 27 28 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 29 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 30 STATISTIC(NumMemCmpGreaterThanMax, 31 "Number of memcmp calls with size greater than max size"); 32 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 33 34 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 35 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 36 cl::desc("The number of loads per basic block for inline expansion of " 37 "memcmp that is only being compared against zero.")); 38 39 static cl::opt<unsigned> MaxLoadsPerMemcmp( 40 "max-loads-per-memcmp", cl::Hidden, 41 cl::desc("Set maximum number of loads used in expanded memcmp")); 42 43 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize( 44 "max-loads-per-memcmp-opt-size", cl::Hidden, 45 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz")); 46 47 namespace { 48 49 50 // This class provides helper functions to expand a memcmp library call into an 51 // inline expansion. 52 class MemCmpExpansion { 53 struct ResultBlock { 54 BasicBlock *BB = nullptr; 55 PHINode *PhiSrc1 = nullptr; 56 PHINode *PhiSrc2 = nullptr; 57 58 ResultBlock() = default; 59 }; 60 61 CallInst *const CI; 62 ResultBlock ResBlock; 63 const uint64_t Size; 64 unsigned MaxLoadSize; 65 uint64_t NumLoadsNonOneByte; 66 const uint64_t NumLoadsPerBlockForZeroCmp; 67 std::vector<BasicBlock *> LoadCmpBlocks; 68 BasicBlock *EndBlock; 69 PHINode *PhiRes; 70 const bool IsUsedForZeroCmp; 71 const DataLayout &DL; 72 IRBuilder<> Builder; 73 // Represents the decomposition in blocks of the expansion. For example, 74 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 75 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}. 76 struct LoadEntry { 77 LoadEntry(unsigned LoadSize, uint64_t Offset) 78 : LoadSize(LoadSize), Offset(Offset) { 79 } 80 81 // The size of the load for this block, in bytes. 82 unsigned LoadSize; 83 // The offset of this load from the base pointer, in bytes. 84 uint64_t Offset; 85 }; 86 using LoadEntryVector = SmallVector<LoadEntry, 8>; 87 LoadEntryVector LoadSequence; 88 89 void createLoadCmpBlocks(); 90 void createResultBlock(); 91 void setupResultBlockPHINodes(); 92 void setupEndBlockPHINodes(); 93 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 94 void emitLoadCompareBlock(unsigned BlockIndex); 95 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 96 unsigned &LoadIndex); 97 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 98 void emitMemCmpResultBlock(); 99 Value *getMemCmpExpansionZeroCase(); 100 Value *getMemCmpEqZeroOneBlock(); 101 Value *getMemCmpOneBlock(); 102 Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType, 103 uint64_t OffsetBytes); 104 105 static LoadEntryVector 106 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 107 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 108 static LoadEntryVector 109 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 110 unsigned MaxNumLoads, 111 unsigned &NumLoadsNonOneByte); 112 113 public: 114 MemCmpExpansion(CallInst *CI, uint64_t Size, 115 const TargetTransformInfo::MemCmpExpansionOptions &Options, 116 unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 117 unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout); 118 119 unsigned getNumBlocks(); 120 uint64_t getNumLoads() const { return LoadSequence.size(); } 121 122 Value *getMemCmpExpansion(); 123 }; 124 125 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 126 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 127 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 128 NumLoadsNonOneByte = 0; 129 LoadEntryVector LoadSequence; 130 uint64_t Offset = 0; 131 while (Size && !LoadSizes.empty()) { 132 const unsigned LoadSize = LoadSizes.front(); 133 const uint64_t NumLoadsForThisSize = Size / LoadSize; 134 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 135 // Do not expand if the total number of loads is larger than what the 136 // target allows. Note that it's important that we exit before completing 137 // the expansion to avoid using a ton of memory to store the expansion for 138 // large sizes. 139 return {}; 140 } 141 if (NumLoadsForThisSize > 0) { 142 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 143 LoadSequence.push_back({LoadSize, Offset}); 144 Offset += LoadSize; 145 } 146 if (LoadSize > 1) 147 ++NumLoadsNonOneByte; 148 Size = Size % LoadSize; 149 } 150 LoadSizes = LoadSizes.drop_front(); 151 } 152 return LoadSequence; 153 } 154 155 MemCmpExpansion::LoadEntryVector 156 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 157 const unsigned MaxLoadSize, 158 const unsigned MaxNumLoads, 159 unsigned &NumLoadsNonOneByte) { 160 // These are already handled by the greedy approach. 161 if (Size < 2 || MaxLoadSize < 2) 162 return {}; 163 164 // We try to do as many non-overlapping loads as possible starting from the 165 // beginning. 166 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 167 assert(NumNonOverlappingLoads && "there must be at least one load"); 168 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 169 // an overlapping load. 170 Size = Size - NumNonOverlappingLoads * MaxLoadSize; 171 // Bail if we do not need an overloapping store, this is already handled by 172 // the greedy approach. 173 if (Size == 0) 174 return {}; 175 // Bail if the number of loads (non-overlapping + potential overlapping one) 176 // is larger than the max allowed. 177 if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 178 return {}; 179 180 // Add non-overlapping loads. 181 LoadEntryVector LoadSequence; 182 uint64_t Offset = 0; 183 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 184 LoadSequence.push_back({MaxLoadSize, Offset}); 185 Offset += MaxLoadSize; 186 } 187 188 // Add the last overlapping load. 189 assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 190 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 191 NumLoadsNonOneByte = 1; 192 return LoadSequence; 193 } 194 195 // Initialize the basic block structure required for expansion of memcmp call 196 // with given maximum load size and memcmp size parameter. 197 // This structure includes: 198 // 1. A list of load compare blocks - LoadCmpBlocks. 199 // 2. An EndBlock, split from original instruction point, which is the block to 200 // return from. 201 // 3. ResultBlock, block to branch to for early exit when a 202 // LoadCmpBlock finds a difference. 203 MemCmpExpansion::MemCmpExpansion( 204 CallInst *const CI, uint64_t Size, 205 const TargetTransformInfo::MemCmpExpansionOptions &Options, 206 const unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 207 const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout) 208 : CI(CI), 209 Size(Size), 210 MaxLoadSize(0), 211 NumLoadsNonOneByte(0), 212 NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp), 213 IsUsedForZeroCmp(IsUsedForZeroCmp), 214 DL(TheDataLayout), 215 Builder(CI) { 216 assert(Size > 0 && "zero blocks"); 217 // Scale the max size down if the target can load more bytes than we need. 218 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 219 while (!LoadSizes.empty() && LoadSizes.front() > Size) { 220 LoadSizes = LoadSizes.drop_front(); 221 } 222 assert(!LoadSizes.empty() && "cannot load Size bytes"); 223 MaxLoadSize = LoadSizes.front(); 224 // Compute the decomposition. 225 unsigned GreedyNumLoadsNonOneByte = 0; 226 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads, 227 GreedyNumLoadsNonOneByte); 228 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 229 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 230 // If we allow overlapping loads and the load sequence is not already optimal, 231 // use overlapping loads. 232 if (Options.AllowOverlappingLoads && 233 (LoadSequence.empty() || LoadSequence.size() > 2)) { 234 unsigned OverlappingNumLoadsNonOneByte = 0; 235 auto OverlappingLoads = computeOverlappingLoadSequence( 236 Size, MaxLoadSize, MaxNumLoads, OverlappingNumLoadsNonOneByte); 237 if (!OverlappingLoads.empty() && 238 (LoadSequence.empty() || 239 OverlappingLoads.size() < LoadSequence.size())) { 240 LoadSequence = OverlappingLoads; 241 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 242 } 243 } 244 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 245 } 246 247 unsigned MemCmpExpansion::getNumBlocks() { 248 if (IsUsedForZeroCmp) 249 return getNumLoads() / NumLoadsPerBlockForZeroCmp + 250 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 251 return getNumLoads(); 252 } 253 254 void MemCmpExpansion::createLoadCmpBlocks() { 255 for (unsigned i = 0; i < getNumBlocks(); i++) { 256 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 257 EndBlock->getParent(), EndBlock); 258 LoadCmpBlocks.push_back(BB); 259 } 260 } 261 262 void MemCmpExpansion::createResultBlock() { 263 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 264 EndBlock->getParent(), EndBlock); 265 } 266 267 /// Return a pointer to an element of type `LoadSizeType` at offset 268 /// `OffsetBytes`. 269 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source, 270 Type *LoadSizeType, 271 uint64_t OffsetBytes) { 272 if (OffsetBytes > 0) { 273 auto *ByteType = Type::getInt8Ty(CI->getContext()); 274 Source = Builder.CreateGEP( 275 ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()), 276 ConstantInt::get(ByteType, OffsetBytes)); 277 } 278 return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo()); 279 } 280 281 // This function creates the IR instructions for loading and comparing 1 byte. 282 // It loads 1 byte from each source of the memcmp parameters with the given 283 // GEPIndex. It then subtracts the two loaded values and adds this result to the 284 // final phi node for selecting the memcmp result. 285 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 286 unsigned OffsetBytes) { 287 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 288 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 289 Value *Source1 = 290 getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes); 291 Value *Source2 = 292 getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes); 293 294 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 295 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 296 297 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 298 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 299 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 300 301 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]); 302 303 if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 304 // Early exit branch if difference found to EndBlock. Otherwise, continue to 305 // next LoadCmpBlock, 306 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 307 ConstantInt::get(Diff->getType(), 0)); 308 BranchInst *CmpBr = 309 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 310 Builder.Insert(CmpBr); 311 } else { 312 // The last block has an unconditional branch to EndBlock. 313 BranchInst *CmpBr = BranchInst::Create(EndBlock); 314 Builder.Insert(CmpBr); 315 } 316 } 317 318 /// Generate an equality comparison for one or more pairs of loaded values. 319 /// This is used in the case where the memcmp() call is compared equal or not 320 /// equal to zero. 321 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 322 unsigned &LoadIndex) { 323 assert(LoadIndex < getNumLoads() && 324 "getCompareLoadPairs() called with no remaining loads"); 325 std::vector<Value *> XorList, OrList; 326 Value *Diff; 327 328 const unsigned NumLoads = 329 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 330 331 // For a single-block expansion, start inserting before the memcmp call. 332 if (LoadCmpBlocks.empty()) 333 Builder.SetInsertPoint(CI); 334 else 335 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 336 337 Value *Cmp = nullptr; 338 // If we have multiple loads per block, we need to generate a composite 339 // comparison using xor+or. The type for the combinations is the largest load 340 // type. 341 IntegerType *const MaxLoadType = 342 NumLoads == 1 ? nullptr 343 : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 344 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 345 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 346 347 IntegerType *LoadSizeType = 348 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 349 350 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 351 CurLoadEntry.Offset); 352 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 353 CurLoadEntry.Offset); 354 355 // Get a constant or load a value for each source address. 356 Value *LoadSrc1 = nullptr; 357 if (auto *Source1C = dyn_cast<Constant>(Source1)) 358 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 359 if (!LoadSrc1) 360 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 361 362 Value *LoadSrc2 = nullptr; 363 if (auto *Source2C = dyn_cast<Constant>(Source2)) 364 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 365 if (!LoadSrc2) 366 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 367 368 if (NumLoads != 1) { 369 if (LoadSizeType != MaxLoadType) { 370 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 371 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 372 } 373 // If we have multiple loads per block, we need to generate a composite 374 // comparison using xor+or. 375 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 376 Diff = Builder.CreateZExt(Diff, MaxLoadType); 377 XorList.push_back(Diff); 378 } else { 379 // If there's only one load per block, we just compare the loaded values. 380 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 381 } 382 } 383 384 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 385 std::vector<Value *> OutList; 386 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 387 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 388 OutList.push_back(Or); 389 } 390 if (InList.size() % 2 != 0) 391 OutList.push_back(InList.back()); 392 return OutList; 393 }; 394 395 if (!Cmp) { 396 // Pairwise OR the XOR results. 397 OrList = pairWiseOr(XorList); 398 399 // Pairwise OR the OR results until one result left. 400 while (OrList.size() != 1) { 401 OrList = pairWiseOr(OrList); 402 } 403 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 404 } 405 406 return Cmp; 407 } 408 409 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 410 unsigned &LoadIndex) { 411 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 412 413 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 414 ? EndBlock 415 : LoadCmpBlocks[BlockIndex + 1]; 416 // Early exit branch if difference found to ResultBlock. Otherwise, 417 // continue to next LoadCmpBlock or EndBlock. 418 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 419 Builder.Insert(CmpBr); 420 421 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 422 // since early exit to ResultBlock was not taken (no difference was found in 423 // any of the bytes). 424 if (BlockIndex == LoadCmpBlocks.size() - 1) { 425 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 426 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 427 } 428 } 429 430 // This function creates the IR intructions for loading and comparing using the 431 // given LoadSize. It loads the number of bytes specified by LoadSize from each 432 // source of the memcmp parameters. It then does a subtract to see if there was 433 // a difference in the loaded values. If a difference is found, it branches 434 // with an early exit to the ResultBlock for calculating which source was 435 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 436 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 437 // a special case through emitLoadCompareByteBlock. The special handling can 438 // simply subtract the loaded values and add it to the result phi node. 439 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 440 // There is one load per block in this case, BlockIndex == LoadIndex. 441 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 442 443 if (CurLoadEntry.LoadSize == 1) { 444 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 445 return; 446 } 447 448 Type *LoadSizeType = 449 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 450 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 451 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 452 453 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 454 455 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 456 CurLoadEntry.Offset); 457 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 458 CurLoadEntry.Offset); 459 460 // Load LoadSizeType from the base address. 461 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 462 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 463 464 if (DL.isLittleEndian()) { 465 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 466 Intrinsic::bswap, LoadSizeType); 467 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 468 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 469 } 470 471 if (LoadSizeType != MaxLoadType) { 472 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 473 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 474 } 475 476 // Add the loaded values to the phi nodes for calculating memcmp result only 477 // if result is not used in a zero equality. 478 if (!IsUsedForZeroCmp) { 479 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]); 480 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]); 481 } 482 483 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 484 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 485 ? EndBlock 486 : LoadCmpBlocks[BlockIndex + 1]; 487 // Early exit branch if difference found to ResultBlock. Otherwise, continue 488 // to next LoadCmpBlock or EndBlock. 489 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 490 Builder.Insert(CmpBr); 491 492 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 493 // since early exit to ResultBlock was not taken (no difference was found in 494 // any of the bytes). 495 if (BlockIndex == LoadCmpBlocks.size() - 1) { 496 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 497 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 498 } 499 } 500 501 // This function populates the ResultBlock with a sequence to calculate the 502 // memcmp result. It compares the two loaded source values and returns -1 if 503 // src1 < src2 and 1 if src1 > src2. 504 void MemCmpExpansion::emitMemCmpResultBlock() { 505 // Special case: if memcmp result is used in a zero equality, result does not 506 // need to be calculated and can simply return 1. 507 if (IsUsedForZeroCmp) { 508 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 509 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 510 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 511 PhiRes->addIncoming(Res, ResBlock.BB); 512 BranchInst *NewBr = BranchInst::Create(EndBlock); 513 Builder.Insert(NewBr); 514 return; 515 } 516 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 517 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 518 519 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 520 ResBlock.PhiSrc2); 521 522 Value *Res = 523 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 524 ConstantInt::get(Builder.getInt32Ty(), 1)); 525 526 BranchInst *NewBr = BranchInst::Create(EndBlock); 527 Builder.Insert(NewBr); 528 PhiRes->addIncoming(Res, ResBlock.BB); 529 } 530 531 void MemCmpExpansion::setupResultBlockPHINodes() { 532 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 533 Builder.SetInsertPoint(ResBlock.BB); 534 // Note: this assumes one load per block. 535 ResBlock.PhiSrc1 = 536 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 537 ResBlock.PhiSrc2 = 538 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 539 } 540 541 void MemCmpExpansion::setupEndBlockPHINodes() { 542 Builder.SetInsertPoint(&EndBlock->front()); 543 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 544 } 545 546 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 547 unsigned LoadIndex = 0; 548 // This loop populates each of the LoadCmpBlocks with the IR sequence to 549 // handle multiple loads per block. 550 for (unsigned I = 0; I < getNumBlocks(); ++I) { 551 emitLoadCompareBlockMultipleLoads(I, LoadIndex); 552 } 553 554 emitMemCmpResultBlock(); 555 return PhiRes; 556 } 557 558 /// A memcmp expansion that compares equality with 0 and only has one block of 559 /// load and compare can bypass the compare, branch, and phi IR that is required 560 /// in the general case. 561 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 562 unsigned LoadIndex = 0; 563 Value *Cmp = getCompareLoadPairs(0, LoadIndex); 564 assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 565 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 566 } 567 568 /// A memcmp expansion that only has one block of load and compare can bypass 569 /// the compare, branch, and phi IR that is required in the general case. 570 Value *MemCmpExpansion::getMemCmpOneBlock() { 571 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 572 Value *Source1 = CI->getArgOperand(0); 573 Value *Source2 = CI->getArgOperand(1); 574 575 // Cast source to LoadSizeType*. 576 if (Source1->getType() != LoadSizeType) 577 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 578 if (Source2->getType() != LoadSizeType) 579 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 580 581 // Load LoadSizeType from the base address. 582 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 583 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 584 585 if (DL.isLittleEndian() && Size != 1) { 586 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 587 Intrinsic::bswap, LoadSizeType); 588 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 589 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 590 } 591 592 if (Size < 4) { 593 // The i8 and i16 cases don't need compares. We zext the loaded values and 594 // subtract them to get the suitable negative, zero, or positive i32 result. 595 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty()); 596 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty()); 597 return Builder.CreateSub(LoadSrc1, LoadSrc2); 598 } 599 600 // The result of memcmp is negative, zero, or positive, so produce that by 601 // subtracting 2 extended compare bits: sub (ugt, ult). 602 // If a target prefers to use selects to get -1/0/1, they should be able 603 // to transform this later. The inverse transform (going from selects to math) 604 // may not be possible in the DAG because the selects got converted into 605 // branches before we got there. 606 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2); 607 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 608 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 609 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 610 return Builder.CreateSub(ZextUGT, ZextULT); 611 } 612 613 // This function expands the memcmp call into an inline expansion and returns 614 // the memcmp result. 615 Value *MemCmpExpansion::getMemCmpExpansion() { 616 // Create the basic block framework for a multi-block expansion. 617 if (getNumBlocks() != 1) { 618 BasicBlock *StartBlock = CI->getParent(); 619 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 620 setupEndBlockPHINodes(); 621 createResultBlock(); 622 623 // If return value of memcmp is not used in a zero equality, we need to 624 // calculate which source was larger. The calculation requires the 625 // two loaded source values of each load compare block. 626 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 627 if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 628 629 // Create the number of required load compare basic blocks. 630 createLoadCmpBlocks(); 631 632 // Update the terminator added by splitBasicBlock to branch to the first 633 // LoadCmpBlock. 634 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 635 } 636 637 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 638 639 if (IsUsedForZeroCmp) 640 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 641 : getMemCmpExpansionZeroCase(); 642 643 if (getNumBlocks() == 1) 644 return getMemCmpOneBlock(); 645 646 for (unsigned I = 0; I < getNumBlocks(); ++I) { 647 emitLoadCompareBlock(I); 648 } 649 650 emitMemCmpResultBlock(); 651 return PhiRes; 652 } 653 654 // This function checks to see if an expansion of memcmp can be generated. 655 // It checks for constant compare size that is less than the max inline size. 656 // If an expansion cannot occur, returns false to leave as a library call. 657 // Otherwise, the library call is replaced with a new IR instruction sequence. 658 /// We want to transform: 659 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 660 /// To: 661 /// loadbb: 662 /// %0 = bitcast i32* %buffer2 to i8* 663 /// %1 = bitcast i32* %buffer1 to i8* 664 /// %2 = bitcast i8* %1 to i64* 665 /// %3 = bitcast i8* %0 to i64* 666 /// %4 = load i64, i64* %2 667 /// %5 = load i64, i64* %3 668 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 669 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 670 /// %8 = sub i64 %6, %7 671 /// %9 = icmp ne i64 %8, 0 672 /// br i1 %9, label %res_block, label %loadbb1 673 /// res_block: ; preds = %loadbb2, 674 /// %loadbb1, %loadbb 675 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 676 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 677 /// %10 = icmp ult i64 %phi.src1, %phi.src2 678 /// %11 = select i1 %10, i32 -1, i32 1 679 /// br label %endblock 680 /// loadbb1: ; preds = %loadbb 681 /// %12 = bitcast i32* %buffer2 to i8* 682 /// %13 = bitcast i32* %buffer1 to i8* 683 /// %14 = bitcast i8* %13 to i32* 684 /// %15 = bitcast i8* %12 to i32* 685 /// %16 = getelementptr i32, i32* %14, i32 2 686 /// %17 = getelementptr i32, i32* %15, i32 2 687 /// %18 = load i32, i32* %16 688 /// %19 = load i32, i32* %17 689 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 690 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 691 /// %22 = zext i32 %20 to i64 692 /// %23 = zext i32 %21 to i64 693 /// %24 = sub i64 %22, %23 694 /// %25 = icmp ne i64 %24, 0 695 /// br i1 %25, label %res_block, label %loadbb2 696 /// loadbb2: ; preds = %loadbb1 697 /// %26 = bitcast i32* %buffer2 to i8* 698 /// %27 = bitcast i32* %buffer1 to i8* 699 /// %28 = bitcast i8* %27 to i16* 700 /// %29 = bitcast i8* %26 to i16* 701 /// %30 = getelementptr i16, i16* %28, i16 6 702 /// %31 = getelementptr i16, i16* %29, i16 6 703 /// %32 = load i16, i16* %30 704 /// %33 = load i16, i16* %31 705 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 706 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 707 /// %36 = zext i16 %34 to i64 708 /// %37 = zext i16 %35 to i64 709 /// %38 = sub i64 %36, %37 710 /// %39 = icmp ne i64 %38, 0 711 /// br i1 %39, label %res_block, label %loadbb3 712 /// loadbb3: ; preds = %loadbb2 713 /// %40 = bitcast i32* %buffer2 to i8* 714 /// %41 = bitcast i32* %buffer1 to i8* 715 /// %42 = getelementptr i8, i8* %41, i8 14 716 /// %43 = getelementptr i8, i8* %40, i8 14 717 /// %44 = load i8, i8* %42 718 /// %45 = load i8, i8* %43 719 /// %46 = zext i8 %44 to i32 720 /// %47 = zext i8 %45 to i32 721 /// %48 = sub i32 %46, %47 722 /// br label %endblock 723 /// endblock: ; preds = %res_block, 724 /// %loadbb3 725 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 726 /// ret i32 %phi.res 727 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 728 const TargetLowering *TLI, const DataLayout *DL) { 729 NumMemCmpCalls++; 730 731 // Early exit from expansion if -Oz. 732 if (CI->getFunction()->hasMinSize()) 733 return false; 734 735 // Early exit from expansion if size is not a constant. 736 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 737 if (!SizeCast) { 738 NumMemCmpNotConstant++; 739 return false; 740 } 741 const uint64_t SizeVal = SizeCast->getZExtValue(); 742 743 if (SizeVal == 0) { 744 return false; 745 } 746 // TTI call to check if target would like to expand memcmp. Also, get the 747 // available load sizes. 748 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 749 const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp); 750 if (!Options) return false; 751 752 const unsigned MaxNumLoads = CI->getFunction()->hasOptSize() 753 ? (MaxLoadsPerMemcmpOptSize.getNumOccurrences() 754 ? MaxLoadsPerMemcmpOptSize 755 : TLI->getMaxExpandSizeMemcmp(true)) 756 : (MaxLoadsPerMemcmp.getNumOccurrences() 757 ? MaxLoadsPerMemcmp 758 : TLI->getMaxExpandSizeMemcmp(false)); 759 760 unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences() 761 ? MemCmpEqZeroNumLoadsPerBlock 762 : TLI->getMemcmpEqZeroLoadsPerBlock(); 763 764 MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads, 765 IsUsedForZeroCmp, NumLoadsPerBlock, *DL); 766 767 // Don't expand if this will require more loads than desired by the target. 768 if (Expansion.getNumLoads() == 0) { 769 NumMemCmpGreaterThanMax++; 770 return false; 771 } 772 773 NumMemCmpInlined++; 774 775 Value *Res = Expansion.getMemCmpExpansion(); 776 777 // Replace call with result of expansion and erase call. 778 CI->replaceAllUsesWith(Res); 779 CI->eraseFromParent(); 780 781 return true; 782 } 783 784 785 786 class ExpandMemCmpPass : public FunctionPass { 787 public: 788 static char ID; 789 790 ExpandMemCmpPass() : FunctionPass(ID) { 791 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry()); 792 } 793 794 bool runOnFunction(Function &F) override { 795 if (skipFunction(F)) return false; 796 797 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 798 if (!TPC) { 799 return false; 800 } 801 const TargetLowering* TL = 802 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 803 804 const TargetLibraryInfo *TLI = 805 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 806 const TargetTransformInfo *TTI = 807 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 808 auto PA = runImpl(F, TLI, TTI, TL); 809 return !PA.areAllPreserved(); 810 } 811 812 private: 813 void getAnalysisUsage(AnalysisUsage &AU) const override { 814 AU.addRequired<TargetLibraryInfoWrapperPass>(); 815 AU.addRequired<TargetTransformInfoWrapperPass>(); 816 FunctionPass::getAnalysisUsage(AU); 817 } 818 819 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 820 const TargetTransformInfo *TTI, 821 const TargetLowering* TL); 822 // Returns true if a change was made. 823 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 824 const TargetTransformInfo *TTI, const TargetLowering* TL, 825 const DataLayout& DL); 826 }; 827 828 bool ExpandMemCmpPass::runOnBlock( 829 BasicBlock &BB, const TargetLibraryInfo *TLI, 830 const TargetTransformInfo *TTI, const TargetLowering* TL, 831 const DataLayout& DL) { 832 for (Instruction& I : BB) { 833 CallInst *CI = dyn_cast<CallInst>(&I); 834 if (!CI) { 835 continue; 836 } 837 LibFunc Func; 838 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) && 839 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && 840 expandMemCmp(CI, TTI, TL, &DL)) { 841 return true; 842 } 843 } 844 return false; 845 } 846 847 848 PreservedAnalyses ExpandMemCmpPass::runImpl( 849 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, 850 const TargetLowering* TL) { 851 const DataLayout& DL = F.getParent()->getDataLayout(); 852 bool MadeChanges = false; 853 for (auto BBIt = F.begin(); BBIt != F.end();) { 854 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) { 855 MadeChanges = true; 856 // If changes were made, restart the function from the beginning, since 857 // the structure of the function was changed. 858 BBIt = F.begin(); 859 } else { 860 ++BBIt; 861 } 862 } 863 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all(); 864 } 865 866 } // namespace 867 868 char ExpandMemCmpPass::ID = 0; 869 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp", 870 "Expand memcmp() to load/stores", false, false) 871 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 872 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 873 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp", 874 "Expand memcmp() to load/stores", false, false) 875 876 FunctionPass *llvm::createExpandMemCmpPass() { 877 return new ExpandMemCmpPass(); 878 } 879