1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass tries to expand memcmp() calls into optimally-sized loads and 11 // compares for the target. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/IRBuilder.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "expandmemcmp" 28 29 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 30 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 31 STATISTIC(NumMemCmpGreaterThanMax, 32 "Number of memcmp calls with size greater than max size"); 33 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 34 35 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 36 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 37 cl::desc("The number of loads per basic block for inline expansion of " 38 "memcmp that is only being compared against zero.")); 39 40 namespace { 41 42 43 // This class provides helper functions to expand a memcmp library call into an 44 // inline expansion. 45 class MemCmpExpansion { 46 struct ResultBlock { 47 BasicBlock *BB = nullptr; 48 PHINode *PhiSrc1 = nullptr; 49 PHINode *PhiSrc2 = nullptr; 50 51 ResultBlock() = default; 52 }; 53 54 CallInst *const CI; 55 ResultBlock ResBlock; 56 const uint64_t Size; 57 unsigned MaxLoadSize; 58 uint64_t NumLoadsNonOneByte; 59 const uint64_t NumLoadsPerBlockForZeroCmp; 60 std::vector<BasicBlock *> LoadCmpBlocks; 61 BasicBlock *EndBlock; 62 PHINode *PhiRes; 63 const bool IsUsedForZeroCmp; 64 const DataLayout &DL; 65 IRBuilder<> Builder; 66 // Represents the decomposition in blocks of the expansion. For example, 67 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 68 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}. 69 struct LoadEntry { 70 LoadEntry(unsigned LoadSize, uint64_t Offset) 71 : LoadSize(LoadSize), Offset(Offset) { 72 } 73 74 // The size of the load for this block, in bytes. 75 unsigned LoadSize; 76 // The offset of this load from the base pointer, in bytes. 77 uint64_t Offset; 78 }; 79 using LoadEntryVector = SmallVector<LoadEntry, 8>; 80 LoadEntryVector LoadSequence; 81 82 void createLoadCmpBlocks(); 83 void createResultBlock(); 84 void setupResultBlockPHINodes(); 85 void setupEndBlockPHINodes(); 86 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 87 void emitLoadCompareBlock(unsigned BlockIndex); 88 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 89 unsigned &LoadIndex); 90 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 91 void emitMemCmpResultBlock(); 92 Value *getMemCmpExpansionZeroCase(); 93 Value *getMemCmpEqZeroOneBlock(); 94 Value *getMemCmpOneBlock(); 95 Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType, 96 uint64_t OffsetBytes); 97 98 static LoadEntryVector 99 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 100 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 101 static LoadEntryVector 102 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 103 unsigned MaxNumLoads, 104 unsigned &NumLoadsNonOneByte); 105 106 public: 107 MemCmpExpansion(CallInst *CI, uint64_t Size, 108 const TargetTransformInfo::MemCmpExpansionOptions &Options, 109 unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 110 unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout); 111 112 unsigned getNumBlocks(); 113 uint64_t getNumLoads() const { return LoadSequence.size(); } 114 115 Value *getMemCmpExpansion(); 116 }; 117 118 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 119 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 120 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 121 NumLoadsNonOneByte = 0; 122 LoadEntryVector LoadSequence; 123 uint64_t Offset = 0; 124 while (Size && !LoadSizes.empty()) { 125 const unsigned LoadSize = LoadSizes.front(); 126 const uint64_t NumLoadsForThisSize = Size / LoadSize; 127 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 128 // Do not expand if the total number of loads is larger than what the 129 // target allows. Note that it's important that we exit before completing 130 // the expansion to avoid using a ton of memory to store the expansion for 131 // large sizes. 132 return {}; 133 } 134 if (NumLoadsForThisSize > 0) { 135 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 136 LoadSequence.push_back({LoadSize, Offset}); 137 Offset += LoadSize; 138 } 139 if (LoadSize > 1) 140 ++NumLoadsNonOneByte; 141 Size = Size % LoadSize; 142 } 143 LoadSizes = LoadSizes.drop_front(); 144 } 145 return LoadSequence; 146 } 147 148 MemCmpExpansion::LoadEntryVector 149 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 150 const unsigned MaxLoadSize, 151 const unsigned MaxNumLoads, 152 unsigned &NumLoadsNonOneByte) { 153 // These are already handled by the greedy approach. 154 if (Size < 2 || MaxLoadSize < 2) 155 return {}; 156 157 // We try to do as many non-overlapping loads as possible starting from the 158 // beginning. 159 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 160 assert(NumNonOverlappingLoads && "there must be at least one load"); 161 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 162 // an overlapping load. 163 Size = Size - NumNonOverlappingLoads * MaxLoadSize; 164 // Bail if we do not need an overloapping store, this is already handled by 165 // the greedy approach. 166 if (Size == 0) 167 return {}; 168 // Bail if the number of loads (non-overlapping + potential overlapping one) 169 // is larger than the max allowed. 170 if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 171 return {}; 172 173 // Add non-overlapping loads. 174 LoadEntryVector LoadSequence; 175 uint64_t Offset = 0; 176 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 177 LoadSequence.push_back({MaxLoadSize, Offset}); 178 Offset += MaxLoadSize; 179 } 180 181 // Add the last overlapping load. 182 assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 183 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 184 NumLoadsNonOneByte = 1; 185 return LoadSequence; 186 } 187 188 // Initialize the basic block structure required for expansion of memcmp call 189 // with given maximum load size and memcmp size parameter. 190 // This structure includes: 191 // 1. A list of load compare blocks - LoadCmpBlocks. 192 // 2. An EndBlock, split from original instruction point, which is the block to 193 // return from. 194 // 3. ResultBlock, block to branch to for early exit when a 195 // LoadCmpBlock finds a difference. 196 MemCmpExpansion::MemCmpExpansion( 197 CallInst *const CI, uint64_t Size, 198 const TargetTransformInfo::MemCmpExpansionOptions &Options, 199 const unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 200 const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout) 201 : CI(CI), 202 Size(Size), 203 MaxLoadSize(0), 204 NumLoadsNonOneByte(0), 205 NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp), 206 IsUsedForZeroCmp(IsUsedForZeroCmp), 207 DL(TheDataLayout), 208 Builder(CI) { 209 assert(Size > 0 && "zero blocks"); 210 // Scale the max size down if the target can load more bytes than we need. 211 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 212 while (!LoadSizes.empty() && LoadSizes.front() > Size) { 213 LoadSizes = LoadSizes.drop_front(); 214 } 215 assert(!LoadSizes.empty() && "cannot load Size bytes"); 216 MaxLoadSize = LoadSizes.front(); 217 // Compute the decomposition. 218 unsigned GreedyNumLoadsNonOneByte = 0; 219 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads, 220 GreedyNumLoadsNonOneByte); 221 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 222 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 223 // If we allow overlapping loads and the load sequence is not already optimal, 224 // use overlapping loads. 225 if (Options.AllowOverlappingLoads && 226 (LoadSequence.empty() || LoadSequence.size() > 2)) { 227 unsigned OverlappingNumLoadsNonOneByte = 0; 228 auto OverlappingLoads = computeOverlappingLoadSequence( 229 Size, MaxLoadSize, MaxNumLoads, OverlappingNumLoadsNonOneByte); 230 if (!OverlappingLoads.empty() && 231 (LoadSequence.empty() || 232 OverlappingLoads.size() < LoadSequence.size())) { 233 LoadSequence = OverlappingLoads; 234 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 235 } 236 } 237 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 238 } 239 240 unsigned MemCmpExpansion::getNumBlocks() { 241 if (IsUsedForZeroCmp) 242 return getNumLoads() / NumLoadsPerBlockForZeroCmp + 243 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 244 return getNumLoads(); 245 } 246 247 void MemCmpExpansion::createLoadCmpBlocks() { 248 for (unsigned i = 0; i < getNumBlocks(); i++) { 249 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 250 EndBlock->getParent(), EndBlock); 251 LoadCmpBlocks.push_back(BB); 252 } 253 } 254 255 void MemCmpExpansion::createResultBlock() { 256 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 257 EndBlock->getParent(), EndBlock); 258 } 259 260 /// Return a pointer to an element of type `LoadSizeType` at offset 261 /// `OffsetBytes`. 262 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source, 263 Type *LoadSizeType, 264 uint64_t OffsetBytes) { 265 if (OffsetBytes > 0) { 266 auto *ByteType = Type::getInt8Ty(CI->getContext()); 267 Source = Builder.CreateGEP( 268 ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()), 269 ConstantInt::get(ByteType, OffsetBytes)); 270 } 271 return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo()); 272 } 273 274 // This function creates the IR instructions for loading and comparing 1 byte. 275 // It loads 1 byte from each source of the memcmp parameters with the given 276 // GEPIndex. It then subtracts the two loaded values and adds this result to the 277 // final phi node for selecting the memcmp result. 278 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 279 unsigned OffsetBytes) { 280 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 281 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 282 Value *Source1 = 283 getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes); 284 Value *Source2 = 285 getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes); 286 287 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 288 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 289 290 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 291 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 292 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 293 294 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]); 295 296 if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 297 // Early exit branch if difference found to EndBlock. Otherwise, continue to 298 // next LoadCmpBlock, 299 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 300 ConstantInt::get(Diff->getType(), 0)); 301 BranchInst *CmpBr = 302 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 303 Builder.Insert(CmpBr); 304 } else { 305 // The last block has an unconditional branch to EndBlock. 306 BranchInst *CmpBr = BranchInst::Create(EndBlock); 307 Builder.Insert(CmpBr); 308 } 309 } 310 311 /// Generate an equality comparison for one or more pairs of loaded values. 312 /// This is used in the case where the memcmp() call is compared equal or not 313 /// equal to zero. 314 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 315 unsigned &LoadIndex) { 316 assert(LoadIndex < getNumLoads() && 317 "getCompareLoadPairs() called with no remaining loads"); 318 std::vector<Value *> XorList, OrList; 319 Value *Diff; 320 321 const unsigned NumLoads = 322 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 323 324 // For a single-block expansion, start inserting before the memcmp call. 325 if (LoadCmpBlocks.empty()) 326 Builder.SetInsertPoint(CI); 327 else 328 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 329 330 Value *Cmp = nullptr; 331 // If we have multiple loads per block, we need to generate a composite 332 // comparison using xor+or. The type for the combinations is the largest load 333 // type. 334 IntegerType *const MaxLoadType = 335 NumLoads == 1 ? nullptr 336 : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 337 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 338 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 339 340 IntegerType *LoadSizeType = 341 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 342 343 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 344 CurLoadEntry.Offset); 345 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 346 CurLoadEntry.Offset); 347 348 // Get a constant or load a value for each source address. 349 Value *LoadSrc1 = nullptr; 350 if (auto *Source1C = dyn_cast<Constant>(Source1)) 351 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 352 if (!LoadSrc1) 353 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 354 355 Value *LoadSrc2 = nullptr; 356 if (auto *Source2C = dyn_cast<Constant>(Source2)) 357 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 358 if (!LoadSrc2) 359 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 360 361 if (NumLoads != 1) { 362 if (LoadSizeType != MaxLoadType) { 363 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 364 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 365 } 366 // If we have multiple loads per block, we need to generate a composite 367 // comparison using xor+or. 368 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 369 Diff = Builder.CreateZExt(Diff, MaxLoadType); 370 XorList.push_back(Diff); 371 } else { 372 // If there's only one load per block, we just compare the loaded values. 373 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 374 } 375 } 376 377 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 378 std::vector<Value *> OutList; 379 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 380 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 381 OutList.push_back(Or); 382 } 383 if (InList.size() % 2 != 0) 384 OutList.push_back(InList.back()); 385 return OutList; 386 }; 387 388 if (!Cmp) { 389 // Pairwise OR the XOR results. 390 OrList = pairWiseOr(XorList); 391 392 // Pairwise OR the OR results until one result left. 393 while (OrList.size() != 1) { 394 OrList = pairWiseOr(OrList); 395 } 396 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 397 } 398 399 return Cmp; 400 } 401 402 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 403 unsigned &LoadIndex) { 404 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 405 406 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 407 ? EndBlock 408 : LoadCmpBlocks[BlockIndex + 1]; 409 // Early exit branch if difference found to ResultBlock. Otherwise, 410 // continue to next LoadCmpBlock or EndBlock. 411 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 412 Builder.Insert(CmpBr); 413 414 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 415 // since early exit to ResultBlock was not taken (no difference was found in 416 // any of the bytes). 417 if (BlockIndex == LoadCmpBlocks.size() - 1) { 418 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 419 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 420 } 421 } 422 423 // This function creates the IR intructions for loading and comparing using the 424 // given LoadSize. It loads the number of bytes specified by LoadSize from each 425 // source of the memcmp parameters. It then does a subtract to see if there was 426 // a difference in the loaded values. If a difference is found, it branches 427 // with an early exit to the ResultBlock for calculating which source was 428 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 429 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 430 // a special case through emitLoadCompareByteBlock. The special handling can 431 // simply subtract the loaded values and add it to the result phi node. 432 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 433 // There is one load per block in this case, BlockIndex == LoadIndex. 434 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 435 436 if (CurLoadEntry.LoadSize == 1) { 437 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 438 return; 439 } 440 441 Type *LoadSizeType = 442 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 443 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 444 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 445 446 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 447 448 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 449 CurLoadEntry.Offset); 450 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 451 CurLoadEntry.Offset); 452 453 // Load LoadSizeType from the base address. 454 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 455 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 456 457 if (DL.isLittleEndian()) { 458 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 459 Intrinsic::bswap, LoadSizeType); 460 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 461 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 462 } 463 464 if (LoadSizeType != MaxLoadType) { 465 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 466 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 467 } 468 469 // Add the loaded values to the phi nodes for calculating memcmp result only 470 // if result is not used in a zero equality. 471 if (!IsUsedForZeroCmp) { 472 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]); 473 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]); 474 } 475 476 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 477 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 478 ? EndBlock 479 : LoadCmpBlocks[BlockIndex + 1]; 480 // Early exit branch if difference found to ResultBlock. Otherwise, continue 481 // to next LoadCmpBlock or EndBlock. 482 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 483 Builder.Insert(CmpBr); 484 485 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 486 // since early exit to ResultBlock was not taken (no difference was found in 487 // any of the bytes). 488 if (BlockIndex == LoadCmpBlocks.size() - 1) { 489 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 490 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 491 } 492 } 493 494 // This function populates the ResultBlock with a sequence to calculate the 495 // memcmp result. It compares the two loaded source values and returns -1 if 496 // src1 < src2 and 1 if src1 > src2. 497 void MemCmpExpansion::emitMemCmpResultBlock() { 498 // Special case: if memcmp result is used in a zero equality, result does not 499 // need to be calculated and can simply return 1. 500 if (IsUsedForZeroCmp) { 501 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 502 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 503 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 504 PhiRes->addIncoming(Res, ResBlock.BB); 505 BranchInst *NewBr = BranchInst::Create(EndBlock); 506 Builder.Insert(NewBr); 507 return; 508 } 509 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 510 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 511 512 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 513 ResBlock.PhiSrc2); 514 515 Value *Res = 516 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 517 ConstantInt::get(Builder.getInt32Ty(), 1)); 518 519 BranchInst *NewBr = BranchInst::Create(EndBlock); 520 Builder.Insert(NewBr); 521 PhiRes->addIncoming(Res, ResBlock.BB); 522 } 523 524 void MemCmpExpansion::setupResultBlockPHINodes() { 525 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 526 Builder.SetInsertPoint(ResBlock.BB); 527 // Note: this assumes one load per block. 528 ResBlock.PhiSrc1 = 529 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 530 ResBlock.PhiSrc2 = 531 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 532 } 533 534 void MemCmpExpansion::setupEndBlockPHINodes() { 535 Builder.SetInsertPoint(&EndBlock->front()); 536 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 537 } 538 539 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 540 unsigned LoadIndex = 0; 541 // This loop populates each of the LoadCmpBlocks with the IR sequence to 542 // handle multiple loads per block. 543 for (unsigned I = 0; I < getNumBlocks(); ++I) { 544 emitLoadCompareBlockMultipleLoads(I, LoadIndex); 545 } 546 547 emitMemCmpResultBlock(); 548 return PhiRes; 549 } 550 551 /// A memcmp expansion that compares equality with 0 and only has one block of 552 /// load and compare can bypass the compare, branch, and phi IR that is required 553 /// in the general case. 554 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 555 unsigned LoadIndex = 0; 556 Value *Cmp = getCompareLoadPairs(0, LoadIndex); 557 assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 558 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 559 } 560 561 /// A memcmp expansion that only has one block of load and compare can bypass 562 /// the compare, branch, and phi IR that is required in the general case. 563 Value *MemCmpExpansion::getMemCmpOneBlock() { 564 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 565 Value *Source1 = CI->getArgOperand(0); 566 Value *Source2 = CI->getArgOperand(1); 567 568 // Cast source to LoadSizeType*. 569 if (Source1->getType() != LoadSizeType) 570 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 571 if (Source2->getType() != LoadSizeType) 572 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 573 574 // Load LoadSizeType from the base address. 575 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 576 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 577 578 if (DL.isLittleEndian() && Size != 1) { 579 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 580 Intrinsic::bswap, LoadSizeType); 581 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 582 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 583 } 584 585 if (Size < 4) { 586 // The i8 and i16 cases don't need compares. We zext the loaded values and 587 // subtract them to get the suitable negative, zero, or positive i32 result. 588 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty()); 589 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty()); 590 return Builder.CreateSub(LoadSrc1, LoadSrc2); 591 } 592 593 // The result of memcmp is negative, zero, or positive, so produce that by 594 // subtracting 2 extended compare bits: sub (ugt, ult). 595 // If a target prefers to use selects to get -1/0/1, they should be able 596 // to transform this later. The inverse transform (going from selects to math) 597 // may not be possible in the DAG because the selects got converted into 598 // branches before we got there. 599 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2); 600 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 601 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 602 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 603 return Builder.CreateSub(ZextUGT, ZextULT); 604 } 605 606 // This function expands the memcmp call into an inline expansion and returns 607 // the memcmp result. 608 Value *MemCmpExpansion::getMemCmpExpansion() { 609 // Create the basic block framework for a multi-block expansion. 610 if (getNumBlocks() != 1) { 611 BasicBlock *StartBlock = CI->getParent(); 612 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 613 setupEndBlockPHINodes(); 614 createResultBlock(); 615 616 // If return value of memcmp is not used in a zero equality, we need to 617 // calculate which source was larger. The calculation requires the 618 // two loaded source values of each load compare block. 619 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 620 if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 621 622 // Create the number of required load compare basic blocks. 623 createLoadCmpBlocks(); 624 625 // Update the terminator added by splitBasicBlock to branch to the first 626 // LoadCmpBlock. 627 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 628 } 629 630 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 631 632 if (IsUsedForZeroCmp) 633 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 634 : getMemCmpExpansionZeroCase(); 635 636 if (getNumBlocks() == 1) 637 return getMemCmpOneBlock(); 638 639 for (unsigned I = 0; I < getNumBlocks(); ++I) { 640 emitLoadCompareBlock(I); 641 } 642 643 emitMemCmpResultBlock(); 644 return PhiRes; 645 } 646 647 // This function checks to see if an expansion of memcmp can be generated. 648 // It checks for constant compare size that is less than the max inline size. 649 // If an expansion cannot occur, returns false to leave as a library call. 650 // Otherwise, the library call is replaced with a new IR instruction sequence. 651 /// We want to transform: 652 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 653 /// To: 654 /// loadbb: 655 /// %0 = bitcast i32* %buffer2 to i8* 656 /// %1 = bitcast i32* %buffer1 to i8* 657 /// %2 = bitcast i8* %1 to i64* 658 /// %3 = bitcast i8* %0 to i64* 659 /// %4 = load i64, i64* %2 660 /// %5 = load i64, i64* %3 661 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 662 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 663 /// %8 = sub i64 %6, %7 664 /// %9 = icmp ne i64 %8, 0 665 /// br i1 %9, label %res_block, label %loadbb1 666 /// res_block: ; preds = %loadbb2, 667 /// %loadbb1, %loadbb 668 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 669 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 670 /// %10 = icmp ult i64 %phi.src1, %phi.src2 671 /// %11 = select i1 %10, i32 -1, i32 1 672 /// br label %endblock 673 /// loadbb1: ; preds = %loadbb 674 /// %12 = bitcast i32* %buffer2 to i8* 675 /// %13 = bitcast i32* %buffer1 to i8* 676 /// %14 = bitcast i8* %13 to i32* 677 /// %15 = bitcast i8* %12 to i32* 678 /// %16 = getelementptr i32, i32* %14, i32 2 679 /// %17 = getelementptr i32, i32* %15, i32 2 680 /// %18 = load i32, i32* %16 681 /// %19 = load i32, i32* %17 682 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 683 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 684 /// %22 = zext i32 %20 to i64 685 /// %23 = zext i32 %21 to i64 686 /// %24 = sub i64 %22, %23 687 /// %25 = icmp ne i64 %24, 0 688 /// br i1 %25, label %res_block, label %loadbb2 689 /// loadbb2: ; preds = %loadbb1 690 /// %26 = bitcast i32* %buffer2 to i8* 691 /// %27 = bitcast i32* %buffer1 to i8* 692 /// %28 = bitcast i8* %27 to i16* 693 /// %29 = bitcast i8* %26 to i16* 694 /// %30 = getelementptr i16, i16* %28, i16 6 695 /// %31 = getelementptr i16, i16* %29, i16 6 696 /// %32 = load i16, i16* %30 697 /// %33 = load i16, i16* %31 698 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 699 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 700 /// %36 = zext i16 %34 to i64 701 /// %37 = zext i16 %35 to i64 702 /// %38 = sub i64 %36, %37 703 /// %39 = icmp ne i64 %38, 0 704 /// br i1 %39, label %res_block, label %loadbb3 705 /// loadbb3: ; preds = %loadbb2 706 /// %40 = bitcast i32* %buffer2 to i8* 707 /// %41 = bitcast i32* %buffer1 to i8* 708 /// %42 = getelementptr i8, i8* %41, i8 14 709 /// %43 = getelementptr i8, i8* %40, i8 14 710 /// %44 = load i8, i8* %42 711 /// %45 = load i8, i8* %43 712 /// %46 = zext i8 %44 to i32 713 /// %47 = zext i8 %45 to i32 714 /// %48 = sub i32 %46, %47 715 /// br label %endblock 716 /// endblock: ; preds = %res_block, 717 /// %loadbb3 718 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 719 /// ret i32 %phi.res 720 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 721 const TargetLowering *TLI, const DataLayout *DL) { 722 NumMemCmpCalls++; 723 724 // Early exit from expansion if -Oz. 725 if (CI->getFunction()->optForMinSize()) 726 return false; 727 728 // Early exit from expansion if size is not a constant. 729 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 730 if (!SizeCast) { 731 NumMemCmpNotConstant++; 732 return false; 733 } 734 const uint64_t SizeVal = SizeCast->getZExtValue(); 735 736 if (SizeVal == 0) { 737 return false; 738 } 739 // TTI call to check if target would like to expand memcmp. Also, get the 740 // available load sizes. 741 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 742 const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp); 743 if (!Options) return false; 744 745 const unsigned MaxNumLoads = 746 TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize()); 747 748 unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences() 749 ? MemCmpEqZeroNumLoadsPerBlock 750 : TLI->getMemcmpEqZeroLoadsPerBlock(); 751 752 MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads, 753 IsUsedForZeroCmp, NumLoadsPerBlock, *DL); 754 755 // Don't expand if this will require more loads than desired by the target. 756 if (Expansion.getNumLoads() == 0) { 757 NumMemCmpGreaterThanMax++; 758 return false; 759 } 760 761 NumMemCmpInlined++; 762 763 Value *Res = Expansion.getMemCmpExpansion(); 764 765 // Replace call with result of expansion and erase call. 766 CI->replaceAllUsesWith(Res); 767 CI->eraseFromParent(); 768 769 return true; 770 } 771 772 773 774 class ExpandMemCmpPass : public FunctionPass { 775 public: 776 static char ID; 777 778 ExpandMemCmpPass() : FunctionPass(ID) { 779 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry()); 780 } 781 782 bool runOnFunction(Function &F) override { 783 if (skipFunction(F)) return false; 784 785 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 786 if (!TPC) { 787 return false; 788 } 789 const TargetLowering* TL = 790 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 791 792 const TargetLibraryInfo *TLI = 793 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 794 const TargetTransformInfo *TTI = 795 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 796 auto PA = runImpl(F, TLI, TTI, TL); 797 return !PA.areAllPreserved(); 798 } 799 800 private: 801 void getAnalysisUsage(AnalysisUsage &AU) const override { 802 AU.addRequired<TargetLibraryInfoWrapperPass>(); 803 AU.addRequired<TargetTransformInfoWrapperPass>(); 804 FunctionPass::getAnalysisUsage(AU); 805 } 806 807 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 808 const TargetTransformInfo *TTI, 809 const TargetLowering* TL); 810 // Returns true if a change was made. 811 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 812 const TargetTransformInfo *TTI, const TargetLowering* TL, 813 const DataLayout& DL); 814 }; 815 816 bool ExpandMemCmpPass::runOnBlock( 817 BasicBlock &BB, const TargetLibraryInfo *TLI, 818 const TargetTransformInfo *TTI, const TargetLowering* TL, 819 const DataLayout& DL) { 820 for (Instruction& I : BB) { 821 CallInst *CI = dyn_cast<CallInst>(&I); 822 if (!CI) { 823 continue; 824 } 825 LibFunc Func; 826 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) && 827 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) { 828 return true; 829 } 830 } 831 return false; 832 } 833 834 835 PreservedAnalyses ExpandMemCmpPass::runImpl( 836 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, 837 const TargetLowering* TL) { 838 const DataLayout& DL = F.getParent()->getDataLayout(); 839 bool MadeChanges = false; 840 for (auto BBIt = F.begin(); BBIt != F.end();) { 841 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) { 842 MadeChanges = true; 843 // If changes were made, restart the function from the beginning, since 844 // the structure of the function was changed. 845 BBIt = F.begin(); 846 } else { 847 ++BBIt; 848 } 849 } 850 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all(); 851 } 852 853 } // namespace 854 855 char ExpandMemCmpPass::ID = 0; 856 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp", 857 "Expand memcmp() to load/stores", false, false) 858 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 859 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 860 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp", 861 "Expand memcmp() to load/stores", false, false) 862 863 FunctionPass *llvm::createExpandMemCmpPass() { 864 return new ExpandMemCmpPass(); 865 } 866