1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "expandmemcmp"
27 
28 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
29 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
30 STATISTIC(NumMemCmpGreaterThanMax,
31           "Number of memcmp calls with size greater than max size");
32 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
33 
34 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
35     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
36     cl::desc("The number of loads per basic block for inline expansion of "
37              "memcmp that is only being compared against zero."));
38 
39 namespace {
40 
41 
42 // This class provides helper functions to expand a memcmp library call into an
43 // inline expansion.
44 class MemCmpExpansion {
45   struct ResultBlock {
46     BasicBlock *BB = nullptr;
47     PHINode *PhiSrc1 = nullptr;
48     PHINode *PhiSrc2 = nullptr;
49 
50     ResultBlock() = default;
51   };
52 
53   CallInst *const CI;
54   ResultBlock ResBlock;
55   const uint64_t Size;
56   unsigned MaxLoadSize;
57   uint64_t NumLoadsNonOneByte;
58   const uint64_t NumLoadsPerBlockForZeroCmp;
59   std::vector<BasicBlock *> LoadCmpBlocks;
60   BasicBlock *EndBlock;
61   PHINode *PhiRes;
62   const bool IsUsedForZeroCmp;
63   const DataLayout &DL;
64   IRBuilder<> Builder;
65   // Represents the decomposition in blocks of the expansion. For example,
66   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
67   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
68   struct LoadEntry {
69     LoadEntry(unsigned LoadSize, uint64_t Offset)
70         : LoadSize(LoadSize), Offset(Offset) {
71     }
72 
73     // The size of the load for this block, in bytes.
74     unsigned LoadSize;
75     // The offset of this load from the base pointer, in bytes.
76     uint64_t Offset;
77   };
78   using LoadEntryVector = SmallVector<LoadEntry, 8>;
79   LoadEntryVector LoadSequence;
80 
81   void createLoadCmpBlocks();
82   void createResultBlock();
83   void setupResultBlockPHINodes();
84   void setupEndBlockPHINodes();
85   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
86   void emitLoadCompareBlock(unsigned BlockIndex);
87   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
88                                          unsigned &LoadIndex);
89   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
90   void emitMemCmpResultBlock();
91   Value *getMemCmpExpansionZeroCase();
92   Value *getMemCmpEqZeroOneBlock();
93   Value *getMemCmpOneBlock();
94   Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
95                                  uint64_t OffsetBytes);
96 
97   static LoadEntryVector
98   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
99                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
100   static LoadEntryVector
101   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
102                                  unsigned MaxNumLoads,
103                                  unsigned &NumLoadsNonOneByte);
104 
105 public:
106   MemCmpExpansion(CallInst *CI, uint64_t Size,
107                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
108                   unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
109                   unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout);
110 
111   unsigned getNumBlocks();
112   uint64_t getNumLoads() const { return LoadSequence.size(); }
113 
114   Value *getMemCmpExpansion();
115 };
116 
117 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
118     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
119     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
120   NumLoadsNonOneByte = 0;
121   LoadEntryVector LoadSequence;
122   uint64_t Offset = 0;
123   while (Size && !LoadSizes.empty()) {
124     const unsigned LoadSize = LoadSizes.front();
125     const uint64_t NumLoadsForThisSize = Size / LoadSize;
126     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
127       // Do not expand if the total number of loads is larger than what the
128       // target allows. Note that it's important that we exit before completing
129       // the expansion to avoid using a ton of memory to store the expansion for
130       // large sizes.
131       return {};
132     }
133     if (NumLoadsForThisSize > 0) {
134       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
135         LoadSequence.push_back({LoadSize, Offset});
136         Offset += LoadSize;
137       }
138       if (LoadSize > 1)
139         ++NumLoadsNonOneByte;
140       Size = Size % LoadSize;
141     }
142     LoadSizes = LoadSizes.drop_front();
143   }
144   return LoadSequence;
145 }
146 
147 MemCmpExpansion::LoadEntryVector
148 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
149                                                 const unsigned MaxLoadSize,
150                                                 const unsigned MaxNumLoads,
151                                                 unsigned &NumLoadsNonOneByte) {
152   // These are already handled by the greedy approach.
153   if (Size < 2 || MaxLoadSize < 2)
154     return {};
155 
156   // We try to do as many non-overlapping loads as possible starting from the
157   // beginning.
158   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
159   assert(NumNonOverlappingLoads && "there must be at least one load");
160   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
161   // an overlapping load.
162   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
163   // Bail if we do not need an overloapping store, this is already handled by
164   // the greedy approach.
165   if (Size == 0)
166     return {};
167   // Bail if the number of loads (non-overlapping + potential overlapping one)
168   // is larger than the max allowed.
169   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
170     return {};
171 
172   // Add non-overlapping loads.
173   LoadEntryVector LoadSequence;
174   uint64_t Offset = 0;
175   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
176     LoadSequence.push_back({MaxLoadSize, Offset});
177     Offset += MaxLoadSize;
178   }
179 
180   // Add the last overlapping load.
181   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
182   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
183   NumLoadsNonOneByte = 1;
184   return LoadSequence;
185 }
186 
187 // Initialize the basic block structure required for expansion of memcmp call
188 // with given maximum load size and memcmp size parameter.
189 // This structure includes:
190 // 1. A list of load compare blocks - LoadCmpBlocks.
191 // 2. An EndBlock, split from original instruction point, which is the block to
192 // return from.
193 // 3. ResultBlock, block to branch to for early exit when a
194 // LoadCmpBlock finds a difference.
195 MemCmpExpansion::MemCmpExpansion(
196     CallInst *const CI, uint64_t Size,
197     const TargetTransformInfo::MemCmpExpansionOptions &Options,
198     const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
199     const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout)
200     : CI(CI),
201       Size(Size),
202       MaxLoadSize(0),
203       NumLoadsNonOneByte(0),
204       NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp),
205       IsUsedForZeroCmp(IsUsedForZeroCmp),
206       DL(TheDataLayout),
207       Builder(CI) {
208   assert(Size > 0 && "zero blocks");
209   // Scale the max size down if the target can load more bytes than we need.
210   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
211   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
212     LoadSizes = LoadSizes.drop_front();
213   }
214   assert(!LoadSizes.empty() && "cannot load Size bytes");
215   MaxLoadSize = LoadSizes.front();
216   // Compute the decomposition.
217   unsigned GreedyNumLoadsNonOneByte = 0;
218   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads,
219                                            GreedyNumLoadsNonOneByte);
220   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
221   assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
222   // If we allow overlapping loads and the load sequence is not already optimal,
223   // use overlapping loads.
224   if (Options.AllowOverlappingLoads &&
225       (LoadSequence.empty() || LoadSequence.size() > 2)) {
226     unsigned OverlappingNumLoadsNonOneByte = 0;
227     auto OverlappingLoads = computeOverlappingLoadSequence(
228         Size, MaxLoadSize, MaxNumLoads, OverlappingNumLoadsNonOneByte);
229     if (!OverlappingLoads.empty() &&
230         (LoadSequence.empty() ||
231          OverlappingLoads.size() < LoadSequence.size())) {
232       LoadSequence = OverlappingLoads;
233       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
234     }
235   }
236   assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
237 }
238 
239 unsigned MemCmpExpansion::getNumBlocks() {
240   if (IsUsedForZeroCmp)
241     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
242            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
243   return getNumLoads();
244 }
245 
246 void MemCmpExpansion::createLoadCmpBlocks() {
247   for (unsigned i = 0; i < getNumBlocks(); i++) {
248     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
249                                         EndBlock->getParent(), EndBlock);
250     LoadCmpBlocks.push_back(BB);
251   }
252 }
253 
254 void MemCmpExpansion::createResultBlock() {
255   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
256                                    EndBlock->getParent(), EndBlock);
257 }
258 
259 /// Return a pointer to an element of type `LoadSizeType` at offset
260 /// `OffsetBytes`.
261 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
262                                                 Type *LoadSizeType,
263                                                 uint64_t OffsetBytes) {
264   if (OffsetBytes > 0) {
265     auto *ByteType = Type::getInt8Ty(CI->getContext());
266     Source = Builder.CreateGEP(
267         ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
268         ConstantInt::get(ByteType, OffsetBytes));
269   }
270   return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
271 }
272 
273 // This function creates the IR instructions for loading and comparing 1 byte.
274 // It loads 1 byte from each source of the memcmp parameters with the given
275 // GEPIndex. It then subtracts the two loaded values and adds this result to the
276 // final phi node for selecting the memcmp result.
277 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
278                                                unsigned OffsetBytes) {
279   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
280   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
281   Value *Source1 =
282       getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
283   Value *Source2 =
284       getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
285 
286   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
287   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
288 
289   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
290   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
291   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
292 
293   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
294 
295   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
296     // Early exit branch if difference found to EndBlock. Otherwise, continue to
297     // next LoadCmpBlock,
298     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
299                                     ConstantInt::get(Diff->getType(), 0));
300     BranchInst *CmpBr =
301         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
302     Builder.Insert(CmpBr);
303   } else {
304     // The last block has an unconditional branch to EndBlock.
305     BranchInst *CmpBr = BranchInst::Create(EndBlock);
306     Builder.Insert(CmpBr);
307   }
308 }
309 
310 /// Generate an equality comparison for one or more pairs of loaded values.
311 /// This is used in the case where the memcmp() call is compared equal or not
312 /// equal to zero.
313 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
314                                             unsigned &LoadIndex) {
315   assert(LoadIndex < getNumLoads() &&
316          "getCompareLoadPairs() called with no remaining loads");
317   std::vector<Value *> XorList, OrList;
318   Value *Diff;
319 
320   const unsigned NumLoads =
321       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
322 
323   // For a single-block expansion, start inserting before the memcmp call.
324   if (LoadCmpBlocks.empty())
325     Builder.SetInsertPoint(CI);
326   else
327     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
328 
329   Value *Cmp = nullptr;
330   // If we have multiple loads per block, we need to generate a composite
331   // comparison using xor+or. The type for the combinations is the largest load
332   // type.
333   IntegerType *const MaxLoadType =
334       NumLoads == 1 ? nullptr
335                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
336   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
337     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
338 
339     IntegerType *LoadSizeType =
340         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
341 
342     Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
343                                              CurLoadEntry.Offset);
344     Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
345                                              CurLoadEntry.Offset);
346 
347     // Get a constant or load a value for each source address.
348     Value *LoadSrc1 = nullptr;
349     if (auto *Source1C = dyn_cast<Constant>(Source1))
350       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
351     if (!LoadSrc1)
352       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
353 
354     Value *LoadSrc2 = nullptr;
355     if (auto *Source2C = dyn_cast<Constant>(Source2))
356       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
357     if (!LoadSrc2)
358       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
359 
360     if (NumLoads != 1) {
361       if (LoadSizeType != MaxLoadType) {
362         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
363         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
364       }
365       // If we have multiple loads per block, we need to generate a composite
366       // comparison using xor+or.
367       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
368       Diff = Builder.CreateZExt(Diff, MaxLoadType);
369       XorList.push_back(Diff);
370     } else {
371       // If there's only one load per block, we just compare the loaded values.
372       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
373     }
374   }
375 
376   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
377     std::vector<Value *> OutList;
378     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
379       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
380       OutList.push_back(Or);
381     }
382     if (InList.size() % 2 != 0)
383       OutList.push_back(InList.back());
384     return OutList;
385   };
386 
387   if (!Cmp) {
388     // Pairwise OR the XOR results.
389     OrList = pairWiseOr(XorList);
390 
391     // Pairwise OR the OR results until one result left.
392     while (OrList.size() != 1) {
393       OrList = pairWiseOr(OrList);
394     }
395     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
396   }
397 
398   return Cmp;
399 }
400 
401 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
402                                                         unsigned &LoadIndex) {
403   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
404 
405   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
406                            ? EndBlock
407                            : LoadCmpBlocks[BlockIndex + 1];
408   // Early exit branch if difference found to ResultBlock. Otherwise,
409   // continue to next LoadCmpBlock or EndBlock.
410   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
411   Builder.Insert(CmpBr);
412 
413   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
414   // since early exit to ResultBlock was not taken (no difference was found in
415   // any of the bytes).
416   if (BlockIndex == LoadCmpBlocks.size() - 1) {
417     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
418     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
419   }
420 }
421 
422 // This function creates the IR intructions for loading and comparing using the
423 // given LoadSize. It loads the number of bytes specified by LoadSize from each
424 // source of the memcmp parameters. It then does a subtract to see if there was
425 // a difference in the loaded values. If a difference is found, it branches
426 // with an early exit to the ResultBlock for calculating which source was
427 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
428 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
429 // a special case through emitLoadCompareByteBlock. The special handling can
430 // simply subtract the loaded values and add it to the result phi node.
431 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
432   // There is one load per block in this case, BlockIndex == LoadIndex.
433   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
434 
435   if (CurLoadEntry.LoadSize == 1) {
436     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
437     return;
438   }
439 
440   Type *LoadSizeType =
441       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
442   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
443   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
444 
445   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
446 
447   Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
448                                            CurLoadEntry.Offset);
449   Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
450                                            CurLoadEntry.Offset);
451 
452   // Load LoadSizeType from the base address.
453   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
454   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
455 
456   if (DL.isLittleEndian()) {
457     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
458                                                 Intrinsic::bswap, LoadSizeType);
459     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
460     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
461   }
462 
463   if (LoadSizeType != MaxLoadType) {
464     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
465     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
466   }
467 
468   // Add the loaded values to the phi nodes for calculating memcmp result only
469   // if result is not used in a zero equality.
470   if (!IsUsedForZeroCmp) {
471     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
472     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
473   }
474 
475   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
476   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
477                            ? EndBlock
478                            : LoadCmpBlocks[BlockIndex + 1];
479   // Early exit branch if difference found to ResultBlock. Otherwise, continue
480   // to next LoadCmpBlock or EndBlock.
481   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
482   Builder.Insert(CmpBr);
483 
484   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
485   // since early exit to ResultBlock was not taken (no difference was found in
486   // any of the bytes).
487   if (BlockIndex == LoadCmpBlocks.size() - 1) {
488     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
489     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
490   }
491 }
492 
493 // This function populates the ResultBlock with a sequence to calculate the
494 // memcmp result. It compares the two loaded source values and returns -1 if
495 // src1 < src2 and 1 if src1 > src2.
496 void MemCmpExpansion::emitMemCmpResultBlock() {
497   // Special case: if memcmp result is used in a zero equality, result does not
498   // need to be calculated and can simply return 1.
499   if (IsUsedForZeroCmp) {
500     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
501     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
502     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
503     PhiRes->addIncoming(Res, ResBlock.BB);
504     BranchInst *NewBr = BranchInst::Create(EndBlock);
505     Builder.Insert(NewBr);
506     return;
507   }
508   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
509   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
510 
511   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
512                                   ResBlock.PhiSrc2);
513 
514   Value *Res =
515       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
516                            ConstantInt::get(Builder.getInt32Ty(), 1));
517 
518   BranchInst *NewBr = BranchInst::Create(EndBlock);
519   Builder.Insert(NewBr);
520   PhiRes->addIncoming(Res, ResBlock.BB);
521 }
522 
523 void MemCmpExpansion::setupResultBlockPHINodes() {
524   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
525   Builder.SetInsertPoint(ResBlock.BB);
526   // Note: this assumes one load per block.
527   ResBlock.PhiSrc1 =
528       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
529   ResBlock.PhiSrc2 =
530       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
531 }
532 
533 void MemCmpExpansion::setupEndBlockPHINodes() {
534   Builder.SetInsertPoint(&EndBlock->front());
535   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
536 }
537 
538 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
539   unsigned LoadIndex = 0;
540   // This loop populates each of the LoadCmpBlocks with the IR sequence to
541   // handle multiple loads per block.
542   for (unsigned I = 0; I < getNumBlocks(); ++I) {
543     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
544   }
545 
546   emitMemCmpResultBlock();
547   return PhiRes;
548 }
549 
550 /// A memcmp expansion that compares equality with 0 and only has one block of
551 /// load and compare can bypass the compare, branch, and phi IR that is required
552 /// in the general case.
553 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
554   unsigned LoadIndex = 0;
555   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
556   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
557   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
558 }
559 
560 /// A memcmp expansion that only has one block of load and compare can bypass
561 /// the compare, branch, and phi IR that is required in the general case.
562 Value *MemCmpExpansion::getMemCmpOneBlock() {
563   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
564   Value *Source1 = CI->getArgOperand(0);
565   Value *Source2 = CI->getArgOperand(1);
566 
567   // Cast source to LoadSizeType*.
568   if (Source1->getType() != LoadSizeType)
569     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
570   if (Source2->getType() != LoadSizeType)
571     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
572 
573   // Load LoadSizeType from the base address.
574   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
575   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
576 
577   if (DL.isLittleEndian() && Size != 1) {
578     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
579                                                 Intrinsic::bswap, LoadSizeType);
580     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
581     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
582   }
583 
584   if (Size < 4) {
585     // The i8 and i16 cases don't need compares. We zext the loaded values and
586     // subtract them to get the suitable negative, zero, or positive i32 result.
587     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
588     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
589     return Builder.CreateSub(LoadSrc1, LoadSrc2);
590   }
591 
592   // The result of memcmp is negative, zero, or positive, so produce that by
593   // subtracting 2 extended compare bits: sub (ugt, ult).
594   // If a target prefers to use selects to get -1/0/1, they should be able
595   // to transform this later. The inverse transform (going from selects to math)
596   // may not be possible in the DAG because the selects got converted into
597   // branches before we got there.
598   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
599   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
600   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
601   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
602   return Builder.CreateSub(ZextUGT, ZextULT);
603 }
604 
605 // This function expands the memcmp call into an inline expansion and returns
606 // the memcmp result.
607 Value *MemCmpExpansion::getMemCmpExpansion() {
608   // Create the basic block framework for a multi-block expansion.
609   if (getNumBlocks() != 1) {
610     BasicBlock *StartBlock = CI->getParent();
611     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
612     setupEndBlockPHINodes();
613     createResultBlock();
614 
615     // If return value of memcmp is not used in a zero equality, we need to
616     // calculate which source was larger. The calculation requires the
617     // two loaded source values of each load compare block.
618     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
619     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
620 
621     // Create the number of required load compare basic blocks.
622     createLoadCmpBlocks();
623 
624     // Update the terminator added by splitBasicBlock to branch to the first
625     // LoadCmpBlock.
626     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
627   }
628 
629   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
630 
631   if (IsUsedForZeroCmp)
632     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
633                                : getMemCmpExpansionZeroCase();
634 
635   if (getNumBlocks() == 1)
636     return getMemCmpOneBlock();
637 
638   for (unsigned I = 0; I < getNumBlocks(); ++I) {
639     emitLoadCompareBlock(I);
640   }
641 
642   emitMemCmpResultBlock();
643   return PhiRes;
644 }
645 
646 // This function checks to see if an expansion of memcmp can be generated.
647 // It checks for constant compare size that is less than the max inline size.
648 // If an expansion cannot occur, returns false to leave as a library call.
649 // Otherwise, the library call is replaced with a new IR instruction sequence.
650 /// We want to transform:
651 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
652 /// To:
653 /// loadbb:
654 ///  %0 = bitcast i32* %buffer2 to i8*
655 ///  %1 = bitcast i32* %buffer1 to i8*
656 ///  %2 = bitcast i8* %1 to i64*
657 ///  %3 = bitcast i8* %0 to i64*
658 ///  %4 = load i64, i64* %2
659 ///  %5 = load i64, i64* %3
660 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
661 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
662 ///  %8 = sub i64 %6, %7
663 ///  %9 = icmp ne i64 %8, 0
664 ///  br i1 %9, label %res_block, label %loadbb1
665 /// res_block:                                        ; preds = %loadbb2,
666 /// %loadbb1, %loadbb
667 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
668 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
669 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
670 ///  %11 = select i1 %10, i32 -1, i32 1
671 ///  br label %endblock
672 /// loadbb1:                                          ; preds = %loadbb
673 ///  %12 = bitcast i32* %buffer2 to i8*
674 ///  %13 = bitcast i32* %buffer1 to i8*
675 ///  %14 = bitcast i8* %13 to i32*
676 ///  %15 = bitcast i8* %12 to i32*
677 ///  %16 = getelementptr i32, i32* %14, i32 2
678 ///  %17 = getelementptr i32, i32* %15, i32 2
679 ///  %18 = load i32, i32* %16
680 ///  %19 = load i32, i32* %17
681 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
682 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
683 ///  %22 = zext i32 %20 to i64
684 ///  %23 = zext i32 %21 to i64
685 ///  %24 = sub i64 %22, %23
686 ///  %25 = icmp ne i64 %24, 0
687 ///  br i1 %25, label %res_block, label %loadbb2
688 /// loadbb2:                                          ; preds = %loadbb1
689 ///  %26 = bitcast i32* %buffer2 to i8*
690 ///  %27 = bitcast i32* %buffer1 to i8*
691 ///  %28 = bitcast i8* %27 to i16*
692 ///  %29 = bitcast i8* %26 to i16*
693 ///  %30 = getelementptr i16, i16* %28, i16 6
694 ///  %31 = getelementptr i16, i16* %29, i16 6
695 ///  %32 = load i16, i16* %30
696 ///  %33 = load i16, i16* %31
697 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
698 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
699 ///  %36 = zext i16 %34 to i64
700 ///  %37 = zext i16 %35 to i64
701 ///  %38 = sub i64 %36, %37
702 ///  %39 = icmp ne i64 %38, 0
703 ///  br i1 %39, label %res_block, label %loadbb3
704 /// loadbb3:                                          ; preds = %loadbb2
705 ///  %40 = bitcast i32* %buffer2 to i8*
706 ///  %41 = bitcast i32* %buffer1 to i8*
707 ///  %42 = getelementptr i8, i8* %41, i8 14
708 ///  %43 = getelementptr i8, i8* %40, i8 14
709 ///  %44 = load i8, i8* %42
710 ///  %45 = load i8, i8* %43
711 ///  %46 = zext i8 %44 to i32
712 ///  %47 = zext i8 %45 to i32
713 ///  %48 = sub i32 %46, %47
714 ///  br label %endblock
715 /// endblock:                                         ; preds = %res_block,
716 /// %loadbb3
717 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
718 ///  ret i32 %phi.res
719 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
720                          const TargetLowering *TLI, const DataLayout *DL) {
721   NumMemCmpCalls++;
722 
723   // Early exit from expansion if -Oz.
724   if (CI->getFunction()->optForMinSize())
725     return false;
726 
727   // Early exit from expansion if size is not a constant.
728   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
729   if (!SizeCast) {
730     NumMemCmpNotConstant++;
731     return false;
732   }
733   const uint64_t SizeVal = SizeCast->getZExtValue();
734 
735   if (SizeVal == 0) {
736     return false;
737   }
738   // TTI call to check if target would like to expand memcmp. Also, get the
739   // available load sizes.
740   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
741   const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
742   if (!Options) return false;
743 
744   const unsigned MaxNumLoads =
745       TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
746 
747   unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()
748                                   ? MemCmpEqZeroNumLoadsPerBlock
749                                   : TLI->getMemcmpEqZeroLoadsPerBlock();
750 
751   MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
752                             IsUsedForZeroCmp, NumLoadsPerBlock, *DL);
753 
754   // Don't expand if this will require more loads than desired by the target.
755   if (Expansion.getNumLoads() == 0) {
756     NumMemCmpGreaterThanMax++;
757     return false;
758   }
759 
760   NumMemCmpInlined++;
761 
762   Value *Res = Expansion.getMemCmpExpansion();
763 
764   // Replace call with result of expansion and erase call.
765   CI->replaceAllUsesWith(Res);
766   CI->eraseFromParent();
767 
768   return true;
769 }
770 
771 
772 
773 class ExpandMemCmpPass : public FunctionPass {
774 public:
775   static char ID;
776 
777   ExpandMemCmpPass() : FunctionPass(ID) {
778     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
779   }
780 
781   bool runOnFunction(Function &F) override {
782     if (skipFunction(F)) return false;
783 
784     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
785     if (!TPC) {
786       return false;
787     }
788     const TargetLowering* TL =
789         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
790 
791     const TargetLibraryInfo *TLI =
792         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
793     const TargetTransformInfo *TTI =
794         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
795     auto PA = runImpl(F, TLI, TTI, TL);
796     return !PA.areAllPreserved();
797   }
798 
799 private:
800   void getAnalysisUsage(AnalysisUsage &AU) const override {
801     AU.addRequired<TargetLibraryInfoWrapperPass>();
802     AU.addRequired<TargetTransformInfoWrapperPass>();
803     FunctionPass::getAnalysisUsage(AU);
804   }
805 
806   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
807                             const TargetTransformInfo *TTI,
808                             const TargetLowering* TL);
809   // Returns true if a change was made.
810   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
811                   const TargetTransformInfo *TTI, const TargetLowering* TL,
812                   const DataLayout& DL);
813 };
814 
815 bool ExpandMemCmpPass::runOnBlock(
816     BasicBlock &BB, const TargetLibraryInfo *TLI,
817     const TargetTransformInfo *TTI, const TargetLowering* TL,
818     const DataLayout& DL) {
819   for (Instruction& I : BB) {
820     CallInst *CI = dyn_cast<CallInst>(&I);
821     if (!CI) {
822       continue;
823     }
824     LibFunc Func;
825     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
826         Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) {
827       return true;
828     }
829   }
830   return false;
831 }
832 
833 
834 PreservedAnalyses ExpandMemCmpPass::runImpl(
835     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
836     const TargetLowering* TL) {
837   const DataLayout& DL = F.getParent()->getDataLayout();
838   bool MadeChanges = false;
839   for (auto BBIt = F.begin(); BBIt != F.end();) {
840     if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
841       MadeChanges = true;
842       // If changes were made, restart the function from the beginning, since
843       // the structure of the function was changed.
844       BBIt = F.begin();
845     } else {
846       ++BBIt;
847     }
848   }
849   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
850 }
851 
852 } // namespace
853 
854 char ExpandMemCmpPass::ID = 0;
855 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
856                       "Expand memcmp() to load/stores", false, false)
857 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
858 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
859 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
860                     "Expand memcmp() to load/stores", false, false)
861 
862 FunctionPass *llvm::createExpandMemCmpPass() {
863   return new ExpandMemCmpPass();
864 }
865