1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass tries to expand memcmp() calls into optimally-sized loads and 10 // compares for the target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/IRBuilder.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "expandmemcmp" 27 28 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 29 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 30 STATISTIC(NumMemCmpGreaterThanMax, 31 "Number of memcmp calls with size greater than max size"); 32 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 33 34 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 35 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 36 cl::desc("The number of loads per basic block for inline expansion of " 37 "memcmp that is only being compared against zero.")); 38 39 namespace { 40 41 42 // This class provides helper functions to expand a memcmp library call into an 43 // inline expansion. 44 class MemCmpExpansion { 45 struct ResultBlock { 46 BasicBlock *BB = nullptr; 47 PHINode *PhiSrc1 = nullptr; 48 PHINode *PhiSrc2 = nullptr; 49 50 ResultBlock() = default; 51 }; 52 53 CallInst *const CI; 54 ResultBlock ResBlock; 55 const uint64_t Size; 56 unsigned MaxLoadSize; 57 uint64_t NumLoadsNonOneByte; 58 const uint64_t NumLoadsPerBlockForZeroCmp; 59 std::vector<BasicBlock *> LoadCmpBlocks; 60 BasicBlock *EndBlock; 61 PHINode *PhiRes; 62 const bool IsUsedForZeroCmp; 63 const DataLayout &DL; 64 IRBuilder<> Builder; 65 // Represents the decomposition in blocks of the expansion. For example, 66 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 67 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}. 68 struct LoadEntry { 69 LoadEntry(unsigned LoadSize, uint64_t Offset) 70 : LoadSize(LoadSize), Offset(Offset) { 71 } 72 73 // The size of the load for this block, in bytes. 74 unsigned LoadSize; 75 // The offset of this load from the base pointer, in bytes. 76 uint64_t Offset; 77 }; 78 using LoadEntryVector = SmallVector<LoadEntry, 8>; 79 LoadEntryVector LoadSequence; 80 81 void createLoadCmpBlocks(); 82 void createResultBlock(); 83 void setupResultBlockPHINodes(); 84 void setupEndBlockPHINodes(); 85 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 86 void emitLoadCompareBlock(unsigned BlockIndex); 87 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 88 unsigned &LoadIndex); 89 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 90 void emitMemCmpResultBlock(); 91 Value *getMemCmpExpansionZeroCase(); 92 Value *getMemCmpEqZeroOneBlock(); 93 Value *getMemCmpOneBlock(); 94 Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType, 95 uint64_t OffsetBytes); 96 97 static LoadEntryVector 98 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 99 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 100 static LoadEntryVector 101 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 102 unsigned MaxNumLoads, 103 unsigned &NumLoadsNonOneByte); 104 105 public: 106 MemCmpExpansion(CallInst *CI, uint64_t Size, 107 const TargetTransformInfo::MemCmpExpansionOptions &Options, 108 unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 109 unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout); 110 111 unsigned getNumBlocks(); 112 uint64_t getNumLoads() const { return LoadSequence.size(); } 113 114 Value *getMemCmpExpansion(); 115 }; 116 117 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 118 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 119 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 120 NumLoadsNonOneByte = 0; 121 LoadEntryVector LoadSequence; 122 uint64_t Offset = 0; 123 while (Size && !LoadSizes.empty()) { 124 const unsigned LoadSize = LoadSizes.front(); 125 const uint64_t NumLoadsForThisSize = Size / LoadSize; 126 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 127 // Do not expand if the total number of loads is larger than what the 128 // target allows. Note that it's important that we exit before completing 129 // the expansion to avoid using a ton of memory to store the expansion for 130 // large sizes. 131 return {}; 132 } 133 if (NumLoadsForThisSize > 0) { 134 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 135 LoadSequence.push_back({LoadSize, Offset}); 136 Offset += LoadSize; 137 } 138 if (LoadSize > 1) 139 ++NumLoadsNonOneByte; 140 Size = Size % LoadSize; 141 } 142 LoadSizes = LoadSizes.drop_front(); 143 } 144 return LoadSequence; 145 } 146 147 MemCmpExpansion::LoadEntryVector 148 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 149 const unsigned MaxLoadSize, 150 const unsigned MaxNumLoads, 151 unsigned &NumLoadsNonOneByte) { 152 // These are already handled by the greedy approach. 153 if (Size < 2 || MaxLoadSize < 2) 154 return {}; 155 156 // We try to do as many non-overlapping loads as possible starting from the 157 // beginning. 158 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 159 assert(NumNonOverlappingLoads && "there must be at least one load"); 160 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 161 // an overlapping load. 162 Size = Size - NumNonOverlappingLoads * MaxLoadSize; 163 // Bail if we do not need an overloapping store, this is already handled by 164 // the greedy approach. 165 if (Size == 0) 166 return {}; 167 // Bail if the number of loads (non-overlapping + potential overlapping one) 168 // is larger than the max allowed. 169 if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 170 return {}; 171 172 // Add non-overlapping loads. 173 LoadEntryVector LoadSequence; 174 uint64_t Offset = 0; 175 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 176 LoadSequence.push_back({MaxLoadSize, Offset}); 177 Offset += MaxLoadSize; 178 } 179 180 // Add the last overlapping load. 181 assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 182 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 183 NumLoadsNonOneByte = 1; 184 return LoadSequence; 185 } 186 187 // Initialize the basic block structure required for expansion of memcmp call 188 // with given maximum load size and memcmp size parameter. 189 // This structure includes: 190 // 1. A list of load compare blocks - LoadCmpBlocks. 191 // 2. An EndBlock, split from original instruction point, which is the block to 192 // return from. 193 // 3. ResultBlock, block to branch to for early exit when a 194 // LoadCmpBlock finds a difference. 195 MemCmpExpansion::MemCmpExpansion( 196 CallInst *const CI, uint64_t Size, 197 const TargetTransformInfo::MemCmpExpansionOptions &Options, 198 const unsigned MaxNumLoads, const bool IsUsedForZeroCmp, 199 const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout) 200 : CI(CI), 201 Size(Size), 202 MaxLoadSize(0), 203 NumLoadsNonOneByte(0), 204 NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp), 205 IsUsedForZeroCmp(IsUsedForZeroCmp), 206 DL(TheDataLayout), 207 Builder(CI) { 208 assert(Size > 0 && "zero blocks"); 209 // Scale the max size down if the target can load more bytes than we need. 210 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 211 while (!LoadSizes.empty() && LoadSizes.front() > Size) { 212 LoadSizes = LoadSizes.drop_front(); 213 } 214 assert(!LoadSizes.empty() && "cannot load Size bytes"); 215 MaxLoadSize = LoadSizes.front(); 216 // Compute the decomposition. 217 unsigned GreedyNumLoadsNonOneByte = 0; 218 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads, 219 GreedyNumLoadsNonOneByte); 220 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 221 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 222 // If we allow overlapping loads and the load sequence is not already optimal, 223 // use overlapping loads. 224 if (Options.AllowOverlappingLoads && 225 (LoadSequence.empty() || LoadSequence.size() > 2)) { 226 unsigned OverlappingNumLoadsNonOneByte = 0; 227 auto OverlappingLoads = computeOverlappingLoadSequence( 228 Size, MaxLoadSize, MaxNumLoads, OverlappingNumLoadsNonOneByte); 229 if (!OverlappingLoads.empty() && 230 (LoadSequence.empty() || 231 OverlappingLoads.size() < LoadSequence.size())) { 232 LoadSequence = OverlappingLoads; 233 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 234 } 235 } 236 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant"); 237 } 238 239 unsigned MemCmpExpansion::getNumBlocks() { 240 if (IsUsedForZeroCmp) 241 return getNumLoads() / NumLoadsPerBlockForZeroCmp + 242 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 243 return getNumLoads(); 244 } 245 246 void MemCmpExpansion::createLoadCmpBlocks() { 247 for (unsigned i = 0; i < getNumBlocks(); i++) { 248 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 249 EndBlock->getParent(), EndBlock); 250 LoadCmpBlocks.push_back(BB); 251 } 252 } 253 254 void MemCmpExpansion::createResultBlock() { 255 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 256 EndBlock->getParent(), EndBlock); 257 } 258 259 /// Return a pointer to an element of type `LoadSizeType` at offset 260 /// `OffsetBytes`. 261 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source, 262 Type *LoadSizeType, 263 uint64_t OffsetBytes) { 264 if (OffsetBytes > 0) { 265 auto *ByteType = Type::getInt8Ty(CI->getContext()); 266 Source = Builder.CreateGEP( 267 ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()), 268 ConstantInt::get(ByteType, OffsetBytes)); 269 } 270 return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo()); 271 } 272 273 // This function creates the IR instructions for loading and comparing 1 byte. 274 // It loads 1 byte from each source of the memcmp parameters with the given 275 // GEPIndex. It then subtracts the two loaded values and adds this result to the 276 // final phi node for selecting the memcmp result. 277 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 278 unsigned OffsetBytes) { 279 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 280 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 281 Value *Source1 = 282 getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes); 283 Value *Source2 = 284 getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes); 285 286 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 287 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 288 289 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 290 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 291 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 292 293 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]); 294 295 if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 296 // Early exit branch if difference found to EndBlock. Otherwise, continue to 297 // next LoadCmpBlock, 298 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 299 ConstantInt::get(Diff->getType(), 0)); 300 BranchInst *CmpBr = 301 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 302 Builder.Insert(CmpBr); 303 } else { 304 // The last block has an unconditional branch to EndBlock. 305 BranchInst *CmpBr = BranchInst::Create(EndBlock); 306 Builder.Insert(CmpBr); 307 } 308 } 309 310 /// Generate an equality comparison for one or more pairs of loaded values. 311 /// This is used in the case where the memcmp() call is compared equal or not 312 /// equal to zero. 313 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 314 unsigned &LoadIndex) { 315 assert(LoadIndex < getNumLoads() && 316 "getCompareLoadPairs() called with no remaining loads"); 317 std::vector<Value *> XorList, OrList; 318 Value *Diff; 319 320 const unsigned NumLoads = 321 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 322 323 // For a single-block expansion, start inserting before the memcmp call. 324 if (LoadCmpBlocks.empty()) 325 Builder.SetInsertPoint(CI); 326 else 327 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 328 329 Value *Cmp = nullptr; 330 // If we have multiple loads per block, we need to generate a composite 331 // comparison using xor+or. The type for the combinations is the largest load 332 // type. 333 IntegerType *const MaxLoadType = 334 NumLoads == 1 ? nullptr 335 : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 336 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 337 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 338 339 IntegerType *LoadSizeType = 340 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 341 342 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 343 CurLoadEntry.Offset); 344 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 345 CurLoadEntry.Offset); 346 347 // Get a constant or load a value for each source address. 348 Value *LoadSrc1 = nullptr; 349 if (auto *Source1C = dyn_cast<Constant>(Source1)) 350 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 351 if (!LoadSrc1) 352 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 353 354 Value *LoadSrc2 = nullptr; 355 if (auto *Source2C = dyn_cast<Constant>(Source2)) 356 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 357 if (!LoadSrc2) 358 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 359 360 if (NumLoads != 1) { 361 if (LoadSizeType != MaxLoadType) { 362 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 363 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 364 } 365 // If we have multiple loads per block, we need to generate a composite 366 // comparison using xor+or. 367 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 368 Diff = Builder.CreateZExt(Diff, MaxLoadType); 369 XorList.push_back(Diff); 370 } else { 371 // If there's only one load per block, we just compare the loaded values. 372 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 373 } 374 } 375 376 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 377 std::vector<Value *> OutList; 378 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 379 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 380 OutList.push_back(Or); 381 } 382 if (InList.size() % 2 != 0) 383 OutList.push_back(InList.back()); 384 return OutList; 385 }; 386 387 if (!Cmp) { 388 // Pairwise OR the XOR results. 389 OrList = pairWiseOr(XorList); 390 391 // Pairwise OR the OR results until one result left. 392 while (OrList.size() != 1) { 393 OrList = pairWiseOr(OrList); 394 } 395 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 396 } 397 398 return Cmp; 399 } 400 401 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 402 unsigned &LoadIndex) { 403 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 404 405 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 406 ? EndBlock 407 : LoadCmpBlocks[BlockIndex + 1]; 408 // Early exit branch if difference found to ResultBlock. Otherwise, 409 // continue to next LoadCmpBlock or EndBlock. 410 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 411 Builder.Insert(CmpBr); 412 413 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 414 // since early exit to ResultBlock was not taken (no difference was found in 415 // any of the bytes). 416 if (BlockIndex == LoadCmpBlocks.size() - 1) { 417 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 418 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 419 } 420 } 421 422 // This function creates the IR intructions for loading and comparing using the 423 // given LoadSize. It loads the number of bytes specified by LoadSize from each 424 // source of the memcmp parameters. It then does a subtract to see if there was 425 // a difference in the loaded values. If a difference is found, it branches 426 // with an early exit to the ResultBlock for calculating which source was 427 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 428 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 429 // a special case through emitLoadCompareByteBlock. The special handling can 430 // simply subtract the loaded values and add it to the result phi node. 431 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 432 // There is one load per block in this case, BlockIndex == LoadIndex. 433 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 434 435 if (CurLoadEntry.LoadSize == 1) { 436 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 437 return; 438 } 439 440 Type *LoadSizeType = 441 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 442 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 443 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 444 445 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 446 447 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, 448 CurLoadEntry.Offset); 449 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, 450 CurLoadEntry.Offset); 451 452 // Load LoadSizeType from the base address. 453 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 454 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 455 456 if (DL.isLittleEndian()) { 457 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 458 Intrinsic::bswap, LoadSizeType); 459 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 460 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 461 } 462 463 if (LoadSizeType != MaxLoadType) { 464 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 465 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 466 } 467 468 // Add the loaded values to the phi nodes for calculating memcmp result only 469 // if result is not used in a zero equality. 470 if (!IsUsedForZeroCmp) { 471 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]); 472 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]); 473 } 474 475 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 476 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 477 ? EndBlock 478 : LoadCmpBlocks[BlockIndex + 1]; 479 // Early exit branch if difference found to ResultBlock. Otherwise, continue 480 // to next LoadCmpBlock or EndBlock. 481 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 482 Builder.Insert(CmpBr); 483 484 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 485 // since early exit to ResultBlock was not taken (no difference was found in 486 // any of the bytes). 487 if (BlockIndex == LoadCmpBlocks.size() - 1) { 488 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 489 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 490 } 491 } 492 493 // This function populates the ResultBlock with a sequence to calculate the 494 // memcmp result. It compares the two loaded source values and returns -1 if 495 // src1 < src2 and 1 if src1 > src2. 496 void MemCmpExpansion::emitMemCmpResultBlock() { 497 // Special case: if memcmp result is used in a zero equality, result does not 498 // need to be calculated and can simply return 1. 499 if (IsUsedForZeroCmp) { 500 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 501 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 502 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 503 PhiRes->addIncoming(Res, ResBlock.BB); 504 BranchInst *NewBr = BranchInst::Create(EndBlock); 505 Builder.Insert(NewBr); 506 return; 507 } 508 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 509 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 510 511 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 512 ResBlock.PhiSrc2); 513 514 Value *Res = 515 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 516 ConstantInt::get(Builder.getInt32Ty(), 1)); 517 518 BranchInst *NewBr = BranchInst::Create(EndBlock); 519 Builder.Insert(NewBr); 520 PhiRes->addIncoming(Res, ResBlock.BB); 521 } 522 523 void MemCmpExpansion::setupResultBlockPHINodes() { 524 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 525 Builder.SetInsertPoint(ResBlock.BB); 526 // Note: this assumes one load per block. 527 ResBlock.PhiSrc1 = 528 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 529 ResBlock.PhiSrc2 = 530 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 531 } 532 533 void MemCmpExpansion::setupEndBlockPHINodes() { 534 Builder.SetInsertPoint(&EndBlock->front()); 535 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 536 } 537 538 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 539 unsigned LoadIndex = 0; 540 // This loop populates each of the LoadCmpBlocks with the IR sequence to 541 // handle multiple loads per block. 542 for (unsigned I = 0; I < getNumBlocks(); ++I) { 543 emitLoadCompareBlockMultipleLoads(I, LoadIndex); 544 } 545 546 emitMemCmpResultBlock(); 547 return PhiRes; 548 } 549 550 /// A memcmp expansion that compares equality with 0 and only has one block of 551 /// load and compare can bypass the compare, branch, and phi IR that is required 552 /// in the general case. 553 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 554 unsigned LoadIndex = 0; 555 Value *Cmp = getCompareLoadPairs(0, LoadIndex); 556 assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 557 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 558 } 559 560 /// A memcmp expansion that only has one block of load and compare can bypass 561 /// the compare, branch, and phi IR that is required in the general case. 562 Value *MemCmpExpansion::getMemCmpOneBlock() { 563 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 564 Value *Source1 = CI->getArgOperand(0); 565 Value *Source2 = CI->getArgOperand(1); 566 567 // Cast source to LoadSizeType*. 568 if (Source1->getType() != LoadSizeType) 569 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 570 if (Source2->getType() != LoadSizeType) 571 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 572 573 // Load LoadSizeType from the base address. 574 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 575 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 576 577 if (DL.isLittleEndian() && Size != 1) { 578 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 579 Intrinsic::bswap, LoadSizeType); 580 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 581 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 582 } 583 584 if (Size < 4) { 585 // The i8 and i16 cases don't need compares. We zext the loaded values and 586 // subtract them to get the suitable negative, zero, or positive i32 result. 587 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty()); 588 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty()); 589 return Builder.CreateSub(LoadSrc1, LoadSrc2); 590 } 591 592 // The result of memcmp is negative, zero, or positive, so produce that by 593 // subtracting 2 extended compare bits: sub (ugt, ult). 594 // If a target prefers to use selects to get -1/0/1, they should be able 595 // to transform this later. The inverse transform (going from selects to math) 596 // may not be possible in the DAG because the selects got converted into 597 // branches before we got there. 598 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2); 599 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 600 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 601 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 602 return Builder.CreateSub(ZextUGT, ZextULT); 603 } 604 605 // This function expands the memcmp call into an inline expansion and returns 606 // the memcmp result. 607 Value *MemCmpExpansion::getMemCmpExpansion() { 608 // Create the basic block framework for a multi-block expansion. 609 if (getNumBlocks() != 1) { 610 BasicBlock *StartBlock = CI->getParent(); 611 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 612 setupEndBlockPHINodes(); 613 createResultBlock(); 614 615 // If return value of memcmp is not used in a zero equality, we need to 616 // calculate which source was larger. The calculation requires the 617 // two loaded source values of each load compare block. 618 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 619 if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 620 621 // Create the number of required load compare basic blocks. 622 createLoadCmpBlocks(); 623 624 // Update the terminator added by splitBasicBlock to branch to the first 625 // LoadCmpBlock. 626 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 627 } 628 629 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 630 631 if (IsUsedForZeroCmp) 632 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 633 : getMemCmpExpansionZeroCase(); 634 635 if (getNumBlocks() == 1) 636 return getMemCmpOneBlock(); 637 638 for (unsigned I = 0; I < getNumBlocks(); ++I) { 639 emitLoadCompareBlock(I); 640 } 641 642 emitMemCmpResultBlock(); 643 return PhiRes; 644 } 645 646 // This function checks to see if an expansion of memcmp can be generated. 647 // It checks for constant compare size that is less than the max inline size. 648 // If an expansion cannot occur, returns false to leave as a library call. 649 // Otherwise, the library call is replaced with a new IR instruction sequence. 650 /// We want to transform: 651 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 652 /// To: 653 /// loadbb: 654 /// %0 = bitcast i32* %buffer2 to i8* 655 /// %1 = bitcast i32* %buffer1 to i8* 656 /// %2 = bitcast i8* %1 to i64* 657 /// %3 = bitcast i8* %0 to i64* 658 /// %4 = load i64, i64* %2 659 /// %5 = load i64, i64* %3 660 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 661 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 662 /// %8 = sub i64 %6, %7 663 /// %9 = icmp ne i64 %8, 0 664 /// br i1 %9, label %res_block, label %loadbb1 665 /// res_block: ; preds = %loadbb2, 666 /// %loadbb1, %loadbb 667 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 668 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 669 /// %10 = icmp ult i64 %phi.src1, %phi.src2 670 /// %11 = select i1 %10, i32 -1, i32 1 671 /// br label %endblock 672 /// loadbb1: ; preds = %loadbb 673 /// %12 = bitcast i32* %buffer2 to i8* 674 /// %13 = bitcast i32* %buffer1 to i8* 675 /// %14 = bitcast i8* %13 to i32* 676 /// %15 = bitcast i8* %12 to i32* 677 /// %16 = getelementptr i32, i32* %14, i32 2 678 /// %17 = getelementptr i32, i32* %15, i32 2 679 /// %18 = load i32, i32* %16 680 /// %19 = load i32, i32* %17 681 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 682 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 683 /// %22 = zext i32 %20 to i64 684 /// %23 = zext i32 %21 to i64 685 /// %24 = sub i64 %22, %23 686 /// %25 = icmp ne i64 %24, 0 687 /// br i1 %25, label %res_block, label %loadbb2 688 /// loadbb2: ; preds = %loadbb1 689 /// %26 = bitcast i32* %buffer2 to i8* 690 /// %27 = bitcast i32* %buffer1 to i8* 691 /// %28 = bitcast i8* %27 to i16* 692 /// %29 = bitcast i8* %26 to i16* 693 /// %30 = getelementptr i16, i16* %28, i16 6 694 /// %31 = getelementptr i16, i16* %29, i16 6 695 /// %32 = load i16, i16* %30 696 /// %33 = load i16, i16* %31 697 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 698 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 699 /// %36 = zext i16 %34 to i64 700 /// %37 = zext i16 %35 to i64 701 /// %38 = sub i64 %36, %37 702 /// %39 = icmp ne i64 %38, 0 703 /// br i1 %39, label %res_block, label %loadbb3 704 /// loadbb3: ; preds = %loadbb2 705 /// %40 = bitcast i32* %buffer2 to i8* 706 /// %41 = bitcast i32* %buffer1 to i8* 707 /// %42 = getelementptr i8, i8* %41, i8 14 708 /// %43 = getelementptr i8, i8* %40, i8 14 709 /// %44 = load i8, i8* %42 710 /// %45 = load i8, i8* %43 711 /// %46 = zext i8 %44 to i32 712 /// %47 = zext i8 %45 to i32 713 /// %48 = sub i32 %46, %47 714 /// br label %endblock 715 /// endblock: ; preds = %res_block, 716 /// %loadbb3 717 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 718 /// ret i32 %phi.res 719 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 720 const TargetLowering *TLI, const DataLayout *DL) { 721 NumMemCmpCalls++; 722 723 // Early exit from expansion if -Oz. 724 if (CI->getFunction()->optForMinSize()) 725 return false; 726 727 // Early exit from expansion if size is not a constant. 728 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 729 if (!SizeCast) { 730 NumMemCmpNotConstant++; 731 return false; 732 } 733 const uint64_t SizeVal = SizeCast->getZExtValue(); 734 735 if (SizeVal == 0) { 736 return false; 737 } 738 // TTI call to check if target would like to expand memcmp. Also, get the 739 // available load sizes. 740 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 741 const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp); 742 if (!Options) return false; 743 744 const unsigned MaxNumLoads = 745 TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize()); 746 747 unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences() 748 ? MemCmpEqZeroNumLoadsPerBlock 749 : TLI->getMemcmpEqZeroLoadsPerBlock(); 750 751 MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads, 752 IsUsedForZeroCmp, NumLoadsPerBlock, *DL); 753 754 // Don't expand if this will require more loads than desired by the target. 755 if (Expansion.getNumLoads() == 0) { 756 NumMemCmpGreaterThanMax++; 757 return false; 758 } 759 760 NumMemCmpInlined++; 761 762 Value *Res = Expansion.getMemCmpExpansion(); 763 764 // Replace call with result of expansion and erase call. 765 CI->replaceAllUsesWith(Res); 766 CI->eraseFromParent(); 767 768 return true; 769 } 770 771 772 773 class ExpandMemCmpPass : public FunctionPass { 774 public: 775 static char ID; 776 777 ExpandMemCmpPass() : FunctionPass(ID) { 778 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry()); 779 } 780 781 bool runOnFunction(Function &F) override { 782 if (skipFunction(F)) return false; 783 784 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 785 if (!TPC) { 786 return false; 787 } 788 const TargetLowering* TL = 789 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 790 791 const TargetLibraryInfo *TLI = 792 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 793 const TargetTransformInfo *TTI = 794 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 795 auto PA = runImpl(F, TLI, TTI, TL); 796 return !PA.areAllPreserved(); 797 } 798 799 private: 800 void getAnalysisUsage(AnalysisUsage &AU) const override { 801 AU.addRequired<TargetLibraryInfoWrapperPass>(); 802 AU.addRequired<TargetTransformInfoWrapperPass>(); 803 FunctionPass::getAnalysisUsage(AU); 804 } 805 806 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 807 const TargetTransformInfo *TTI, 808 const TargetLowering* TL); 809 // Returns true if a change was made. 810 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 811 const TargetTransformInfo *TTI, const TargetLowering* TL, 812 const DataLayout& DL); 813 }; 814 815 bool ExpandMemCmpPass::runOnBlock( 816 BasicBlock &BB, const TargetLibraryInfo *TLI, 817 const TargetTransformInfo *TTI, const TargetLowering* TL, 818 const DataLayout& DL) { 819 for (Instruction& I : BB) { 820 CallInst *CI = dyn_cast<CallInst>(&I); 821 if (!CI) { 822 continue; 823 } 824 LibFunc Func; 825 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) && 826 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) { 827 return true; 828 } 829 } 830 return false; 831 } 832 833 834 PreservedAnalyses ExpandMemCmpPass::runImpl( 835 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, 836 const TargetLowering* TL) { 837 const DataLayout& DL = F.getParent()->getDataLayout(); 838 bool MadeChanges = false; 839 for (auto BBIt = F.begin(); BBIt != F.end();) { 840 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) { 841 MadeChanges = true; 842 // If changes were made, restart the function from the beginning, since 843 // the structure of the function was changed. 844 BBIt = F.begin(); 845 } else { 846 ++BBIt; 847 } 848 } 849 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all(); 850 } 851 852 } // namespace 853 854 char ExpandMemCmpPass::ID = 0; 855 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp", 856 "Expand memcmp() to load/stores", false, false) 857 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 858 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 859 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp", 860 "Expand memcmp() to load/stores", false, false) 861 862 FunctionPass *llvm::createExpandMemCmpPass() { 863 return new ExpandMemCmpPass(); 864 } 865