1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/IR/ValueMap.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/BranchProbability.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/BuildLibCalls.h" 52 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 55 using namespace llvm; 56 using namespace llvm::PatternMatch; 57 58 #define DEBUG_TYPE "codegenprepare" 59 60 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 61 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 62 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 63 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 64 "sunken Cmps"); 65 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 66 "of sunken Casts"); 67 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 68 "computations were sunk"); 69 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 70 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 71 STATISTIC(NumAndsAdded, 72 "Number of and mask instructions added to form ext loads"); 73 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 74 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 75 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 76 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 77 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 78 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 79 80 static cl::opt<bool> DisableBranchOpts( 81 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 82 cl::desc("Disable branch optimizations in CodeGenPrepare")); 83 84 static cl::opt<bool> 85 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 86 cl::desc("Disable GC optimizations in CodeGenPrepare")); 87 88 static cl::opt<bool> DisableSelectToBranch( 89 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 90 cl::desc("Disable select to branch conversion.")); 91 92 static cl::opt<bool> AddrSinkUsingGEPs( 93 "addr-sink-using-gep", cl::Hidden, cl::init(false), 94 cl::desc("Address sinking in CGP using GEPs.")); 95 96 static cl::opt<bool> EnableAndCmpSinking( 97 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 98 cl::desc("Enable sinkinig and/cmp into branches.")); 99 100 static cl::opt<bool> DisableStoreExtract( 101 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 102 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 103 104 static cl::opt<bool> StressStoreExtract( 105 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 106 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 107 108 static cl::opt<bool> DisableExtLdPromotion( 109 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 110 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 111 "CodeGenPrepare")); 112 113 static cl::opt<bool> StressExtLdPromotion( 114 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 115 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 116 "optimization in CodeGenPrepare")); 117 118 static cl::opt<bool> DisablePreheaderProtect( 119 "disable-preheader-prot", cl::Hidden, cl::init(false), 120 cl::desc("Disable protection against removing loop preheaders")); 121 122 namespace { 123 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 124 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 125 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 126 class TypePromotionTransaction; 127 128 class CodeGenPrepare : public FunctionPass { 129 const TargetMachine *TM; 130 const TargetLowering *TLI; 131 const TargetTransformInfo *TTI; 132 const TargetLibraryInfo *TLInfo; 133 const LoopInfo *LI; 134 135 /// As we scan instructions optimizing them, this is the next instruction 136 /// to optimize. Transforms that can invalidate this should update it. 137 BasicBlock::iterator CurInstIterator; 138 139 /// Keeps track of non-local addresses that have been sunk into a block. 140 /// This allows us to avoid inserting duplicate code for blocks with 141 /// multiple load/stores of the same address. 142 ValueMap<Value*, Value*> SunkAddrs; 143 144 /// Keeps track of all instructions inserted for the current function. 145 SetOfInstrs InsertedInsts; 146 /// Keeps track of the type of the related instruction before their 147 /// promotion for the current function. 148 InstrToOrigTy PromotedInsts; 149 150 /// True if CFG is modified in any way. 151 bool ModifiedDT; 152 153 /// True if optimizing for size. 154 bool OptSize; 155 156 /// DataLayout for the Function being processed. 157 const DataLayout *DL; 158 159 public: 160 static char ID; // Pass identification, replacement for typeid 161 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 162 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 163 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 164 } 165 bool runOnFunction(Function &F) override; 166 167 const char *getPassName() const override { return "CodeGen Prepare"; } 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 // FIXME: When we can selectively preserve passes, preserve the domtree. 171 AU.addRequired<TargetLibraryInfoWrapperPass>(); 172 AU.addRequired<TargetTransformInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 } 175 176 private: 177 bool eliminateFallThrough(Function &F); 178 bool eliminateMostlyEmptyBlocks(Function &F); 179 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 180 void eliminateMostlyEmptyBlock(BasicBlock *BB); 181 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 182 bool optimizeInst(Instruction *I, bool& ModifiedDT); 183 bool optimizeMemoryInst(Instruction *I, Value *Addr, 184 Type *AccessTy, unsigned AS); 185 bool optimizeInlineAsmInst(CallInst *CS); 186 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 187 bool moveExtToFormExtLoad(Instruction *&I); 188 bool optimizeExtUses(Instruction *I); 189 bool optimizeLoadExt(LoadInst *I); 190 bool optimizeSelectInst(SelectInst *SI); 191 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 192 bool optimizeSwitchInst(SwitchInst *CI); 193 bool optimizeExtractElementInst(Instruction *Inst); 194 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 195 bool placeDbgValues(Function &F); 196 bool sinkAndCmp(Function &F); 197 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 198 Instruction *&Inst, 199 const SmallVectorImpl<Instruction *> &Exts, 200 unsigned CreatedInstCost); 201 bool splitBranchCondition(Function &F); 202 bool simplifyOffsetableRelocate(Instruction &I); 203 void stripInvariantGroupMetadata(Instruction &I); 204 }; 205 } 206 207 char CodeGenPrepare::ID = 0; 208 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 209 "Optimize for code generation", false, false) 210 211 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 212 return new CodeGenPrepare(TM); 213 } 214 215 bool CodeGenPrepare::runOnFunction(Function &F) { 216 if (skipFunction(F)) 217 return false; 218 219 DL = &F.getParent()->getDataLayout(); 220 221 bool EverMadeChange = false; 222 // Clear per function information. 223 InsertedInsts.clear(); 224 PromotedInsts.clear(); 225 226 ModifiedDT = false; 227 if (TM) 228 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 229 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 230 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 231 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 232 OptSize = F.optForSize(); 233 234 /// This optimization identifies DIV instructions that can be 235 /// profitably bypassed and carried out with a shorter, faster divide. 236 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 237 const DenseMap<unsigned int, unsigned int> &BypassWidths = 238 TLI->getBypassSlowDivWidths(); 239 BasicBlock* BB = &*F.begin(); 240 while (BB != nullptr) { 241 // bypassSlowDivision may create new BBs, but we don't want to reapply the 242 // optimization to those blocks. 243 BasicBlock* Next = BB->getNextNode(); 244 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 245 BB = Next; 246 } 247 } 248 249 // Eliminate blocks that contain only PHI nodes and an 250 // unconditional branch. 251 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 252 253 // llvm.dbg.value is far away from the value then iSel may not be able 254 // handle it properly. iSel will drop llvm.dbg.value if it can not 255 // find a node corresponding to the value. 256 EverMadeChange |= placeDbgValues(F); 257 258 // If there is a mask, compare against zero, and branch that can be combined 259 // into a single target instruction, push the mask and compare into branch 260 // users. Do this before OptimizeBlock -> OptimizeInst -> 261 // OptimizeCmpExpression, which perturbs the pattern being searched for. 262 if (!DisableBranchOpts) { 263 EverMadeChange |= sinkAndCmp(F); 264 EverMadeChange |= splitBranchCondition(F); 265 } 266 267 bool MadeChange = true; 268 while (MadeChange) { 269 MadeChange = false; 270 for (Function::iterator I = F.begin(); I != F.end(); ) { 271 BasicBlock *BB = &*I++; 272 bool ModifiedDTOnIteration = false; 273 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 274 275 // Restart BB iteration if the dominator tree of the Function was changed 276 if (ModifiedDTOnIteration) 277 break; 278 } 279 EverMadeChange |= MadeChange; 280 } 281 282 SunkAddrs.clear(); 283 284 if (!DisableBranchOpts) { 285 MadeChange = false; 286 SmallPtrSet<BasicBlock*, 8> WorkList; 287 for (BasicBlock &BB : F) { 288 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 289 MadeChange |= ConstantFoldTerminator(&BB, true); 290 if (!MadeChange) continue; 291 292 for (SmallVectorImpl<BasicBlock*>::iterator 293 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 294 if (pred_begin(*II) == pred_end(*II)) 295 WorkList.insert(*II); 296 } 297 298 // Delete the dead blocks and any of their dead successors. 299 MadeChange |= !WorkList.empty(); 300 while (!WorkList.empty()) { 301 BasicBlock *BB = *WorkList.begin(); 302 WorkList.erase(BB); 303 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 304 305 DeleteDeadBlock(BB); 306 307 for (SmallVectorImpl<BasicBlock*>::iterator 308 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 309 if (pred_begin(*II) == pred_end(*II)) 310 WorkList.insert(*II); 311 } 312 313 // Merge pairs of basic blocks with unconditional branches, connected by 314 // a single edge. 315 if (EverMadeChange || MadeChange) 316 MadeChange |= eliminateFallThrough(F); 317 318 EverMadeChange |= MadeChange; 319 } 320 321 if (!DisableGCOpts) { 322 SmallVector<Instruction *, 2> Statepoints; 323 for (BasicBlock &BB : F) 324 for (Instruction &I : BB) 325 if (isStatepoint(I)) 326 Statepoints.push_back(&I); 327 for (auto &I : Statepoints) 328 EverMadeChange |= simplifyOffsetableRelocate(*I); 329 } 330 331 return EverMadeChange; 332 } 333 334 /// Merge basic blocks which are connected by a single edge, where one of the 335 /// basic blocks has a single successor pointing to the other basic block, 336 /// which has a single predecessor. 337 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 338 bool Changed = false; 339 // Scan all of the blocks in the function, except for the entry block. 340 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 341 BasicBlock *BB = &*I++; 342 // If the destination block has a single pred, then this is a trivial 343 // edge, just collapse it. 344 BasicBlock *SinglePred = BB->getSinglePredecessor(); 345 346 // Don't merge if BB's address is taken. 347 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 348 349 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 350 if (Term && !Term->isConditional()) { 351 Changed = true; 352 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 353 // Remember if SinglePred was the entry block of the function. 354 // If so, we will need to move BB back to the entry position. 355 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 356 MergeBasicBlockIntoOnlyPred(BB, nullptr); 357 358 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 359 BB->moveBefore(&BB->getParent()->getEntryBlock()); 360 361 // We have erased a block. Update the iterator. 362 I = BB->getIterator(); 363 } 364 } 365 return Changed; 366 } 367 368 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 369 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 370 /// edges in ways that are non-optimal for isel. Start by eliminating these 371 /// blocks so we can split them the way we want them. 372 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 373 SmallPtrSet<BasicBlock *, 16> Preheaders; 374 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 375 while (!LoopList.empty()) { 376 Loop *L = LoopList.pop_back_val(); 377 LoopList.insert(LoopList.end(), L->begin(), L->end()); 378 if (BasicBlock *Preheader = L->getLoopPreheader()) 379 Preheaders.insert(Preheader); 380 } 381 382 bool MadeChange = false; 383 // Note that this intentionally skips the entry block. 384 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 385 BasicBlock *BB = &*I++; 386 387 // If this block doesn't end with an uncond branch, ignore it. 388 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 389 if (!BI || !BI->isUnconditional()) 390 continue; 391 392 // If the instruction before the branch (skipping debug info) isn't a phi 393 // node, then other stuff is happening here. 394 BasicBlock::iterator BBI = BI->getIterator(); 395 if (BBI != BB->begin()) { 396 --BBI; 397 while (isa<DbgInfoIntrinsic>(BBI)) { 398 if (BBI == BB->begin()) 399 break; 400 --BBI; 401 } 402 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 403 continue; 404 } 405 406 // Do not break infinite loops. 407 BasicBlock *DestBB = BI->getSuccessor(0); 408 if (DestBB == BB) 409 continue; 410 411 if (!canMergeBlocks(BB, DestBB)) 412 continue; 413 414 // Do not delete loop preheaders if doing so would create a critical edge. 415 // Loop preheaders can be good locations to spill registers. If the 416 // preheader is deleted and we create a critical edge, registers may be 417 // spilled in the loop body instead. 418 if (!DisablePreheaderProtect && Preheaders.count(BB) && 419 !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) 420 continue; 421 422 eliminateMostlyEmptyBlock(BB); 423 MadeChange = true; 424 } 425 return MadeChange; 426 } 427 428 /// Return true if we can merge BB into DestBB if there is a single 429 /// unconditional branch between them, and BB contains no other non-phi 430 /// instructions. 431 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 432 const BasicBlock *DestBB) const { 433 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 434 // the successor. If there are more complex condition (e.g. preheaders), 435 // don't mess around with them. 436 BasicBlock::const_iterator BBI = BB->begin(); 437 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 438 for (const User *U : PN->users()) { 439 const Instruction *UI = cast<Instruction>(U); 440 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 441 return false; 442 // If User is inside DestBB block and it is a PHINode then check 443 // incoming value. If incoming value is not from BB then this is 444 // a complex condition (e.g. preheaders) we want to avoid here. 445 if (UI->getParent() == DestBB) { 446 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 447 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 448 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 449 if (Insn && Insn->getParent() == BB && 450 Insn->getParent() != UPN->getIncomingBlock(I)) 451 return false; 452 } 453 } 454 } 455 } 456 457 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 458 // and DestBB may have conflicting incoming values for the block. If so, we 459 // can't merge the block. 460 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 461 if (!DestBBPN) return true; // no conflict. 462 463 // Collect the preds of BB. 464 SmallPtrSet<const BasicBlock*, 16> BBPreds; 465 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 466 // It is faster to get preds from a PHI than with pred_iterator. 467 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 468 BBPreds.insert(BBPN->getIncomingBlock(i)); 469 } else { 470 BBPreds.insert(pred_begin(BB), pred_end(BB)); 471 } 472 473 // Walk the preds of DestBB. 474 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 475 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 476 if (BBPreds.count(Pred)) { // Common predecessor? 477 BBI = DestBB->begin(); 478 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 479 const Value *V1 = PN->getIncomingValueForBlock(Pred); 480 const Value *V2 = PN->getIncomingValueForBlock(BB); 481 482 // If V2 is a phi node in BB, look up what the mapped value will be. 483 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 484 if (V2PN->getParent() == BB) 485 V2 = V2PN->getIncomingValueForBlock(Pred); 486 487 // If there is a conflict, bail out. 488 if (V1 != V2) return false; 489 } 490 } 491 } 492 493 return true; 494 } 495 496 497 /// Eliminate a basic block that has only phi's and an unconditional branch in 498 /// it. 499 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 500 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 501 BasicBlock *DestBB = BI->getSuccessor(0); 502 503 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 504 505 // If the destination block has a single pred, then this is a trivial edge, 506 // just collapse it. 507 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 508 if (SinglePred != DestBB) { 509 // Remember if SinglePred was the entry block of the function. If so, we 510 // will need to move BB back to the entry position. 511 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 512 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 513 514 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 515 BB->moveBefore(&BB->getParent()->getEntryBlock()); 516 517 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 518 return; 519 } 520 } 521 522 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 523 // to handle the new incoming edges it is about to have. 524 PHINode *PN; 525 for (BasicBlock::iterator BBI = DestBB->begin(); 526 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 527 // Remove the incoming value for BB, and remember it. 528 Value *InVal = PN->removeIncomingValue(BB, false); 529 530 // Two options: either the InVal is a phi node defined in BB or it is some 531 // value that dominates BB. 532 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 533 if (InValPhi && InValPhi->getParent() == BB) { 534 // Add all of the input values of the input PHI as inputs of this phi. 535 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 536 PN->addIncoming(InValPhi->getIncomingValue(i), 537 InValPhi->getIncomingBlock(i)); 538 } else { 539 // Otherwise, add one instance of the dominating value for each edge that 540 // we will be adding. 541 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 542 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 543 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 544 } else { 545 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 546 PN->addIncoming(InVal, *PI); 547 } 548 } 549 } 550 551 // The PHIs are now updated, change everything that refers to BB to use 552 // DestBB and remove BB. 553 BB->replaceAllUsesWith(DestBB); 554 BB->eraseFromParent(); 555 ++NumBlocksElim; 556 557 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 558 } 559 560 // Computes a map of base pointer relocation instructions to corresponding 561 // derived pointer relocation instructions given a vector of all relocate calls 562 static void computeBaseDerivedRelocateMap( 563 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 564 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 565 &RelocateInstMap) { 566 // Collect information in two maps: one primarily for locating the base object 567 // while filling the second map; the second map is the final structure holding 568 // a mapping between Base and corresponding Derived relocate calls 569 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 570 for (auto *ThisRelocate : AllRelocateCalls) { 571 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 572 ThisRelocate->getDerivedPtrIndex()); 573 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 574 } 575 for (auto &Item : RelocateIdxMap) { 576 std::pair<unsigned, unsigned> Key = Item.first; 577 if (Key.first == Key.second) 578 // Base relocation: nothing to insert 579 continue; 580 581 GCRelocateInst *I = Item.second; 582 auto BaseKey = std::make_pair(Key.first, Key.first); 583 584 // We're iterating over RelocateIdxMap so we cannot modify it. 585 auto MaybeBase = RelocateIdxMap.find(BaseKey); 586 if (MaybeBase == RelocateIdxMap.end()) 587 // TODO: We might want to insert a new base object relocate and gep off 588 // that, if there are enough derived object relocates. 589 continue; 590 591 RelocateInstMap[MaybeBase->second].push_back(I); 592 } 593 } 594 595 // Accepts a GEP and extracts the operands into a vector provided they're all 596 // small integer constants 597 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 598 SmallVectorImpl<Value *> &OffsetV) { 599 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 600 // Only accept small constant integer operands 601 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 602 if (!Op || Op->getZExtValue() > 20) 603 return false; 604 } 605 606 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 607 OffsetV.push_back(GEP->getOperand(i)); 608 return true; 609 } 610 611 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 612 // replace, computes a replacement, and affects it. 613 static bool 614 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 615 const SmallVectorImpl<GCRelocateInst *> &Targets) { 616 bool MadeChange = false; 617 for (GCRelocateInst *ToReplace : Targets) { 618 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 619 "Not relocating a derived object of the original base object"); 620 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 621 // A duplicate relocate call. TODO: coalesce duplicates. 622 continue; 623 } 624 625 if (RelocatedBase->getParent() != ToReplace->getParent()) { 626 // Base and derived relocates are in different basic blocks. 627 // In this case transform is only valid when base dominates derived 628 // relocate. However it would be too expensive to check dominance 629 // for each such relocate, so we skip the whole transformation. 630 continue; 631 } 632 633 Value *Base = ToReplace->getBasePtr(); 634 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 635 if (!Derived || Derived->getPointerOperand() != Base) 636 continue; 637 638 SmallVector<Value *, 2> OffsetV; 639 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 640 continue; 641 642 // Create a Builder and replace the target callsite with a gep 643 assert(RelocatedBase->getNextNode() && 644 "Should always have one since it's not a terminator"); 645 646 // Insert after RelocatedBase 647 IRBuilder<> Builder(RelocatedBase->getNextNode()); 648 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 649 650 // If gc_relocate does not match the actual type, cast it to the right type. 651 // In theory, there must be a bitcast after gc_relocate if the type does not 652 // match, and we should reuse it to get the derived pointer. But it could be 653 // cases like this: 654 // bb1: 655 // ... 656 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 657 // br label %merge 658 // 659 // bb2: 660 // ... 661 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 662 // br label %merge 663 // 664 // merge: 665 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 666 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 667 // 668 // In this case, we can not find the bitcast any more. So we insert a new bitcast 669 // no matter there is already one or not. In this way, we can handle all cases, and 670 // the extra bitcast should be optimized away in later passes. 671 Value *ActualRelocatedBase = RelocatedBase; 672 if (RelocatedBase->getType() != Base->getType()) { 673 ActualRelocatedBase = 674 Builder.CreateBitCast(RelocatedBase, Base->getType()); 675 } 676 Value *Replacement = Builder.CreateGEP( 677 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 678 Replacement->takeName(ToReplace); 679 // If the newly generated derived pointer's type does not match the original derived 680 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 681 Value *ActualReplacement = Replacement; 682 if (Replacement->getType() != ToReplace->getType()) { 683 ActualReplacement = 684 Builder.CreateBitCast(Replacement, ToReplace->getType()); 685 } 686 ToReplace->replaceAllUsesWith(ActualReplacement); 687 ToReplace->eraseFromParent(); 688 689 MadeChange = true; 690 } 691 return MadeChange; 692 } 693 694 // Turns this: 695 // 696 // %base = ... 697 // %ptr = gep %base + 15 698 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 699 // %base' = relocate(%tok, i32 4, i32 4) 700 // %ptr' = relocate(%tok, i32 4, i32 5) 701 // %val = load %ptr' 702 // 703 // into this: 704 // 705 // %base = ... 706 // %ptr = gep %base + 15 707 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 708 // %base' = gc.relocate(%tok, i32 4, i32 4) 709 // %ptr' = gep %base' + 15 710 // %val = load %ptr' 711 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 712 bool MadeChange = false; 713 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 714 715 for (auto *U : I.users()) 716 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 717 // Collect all the relocate calls associated with a statepoint 718 AllRelocateCalls.push_back(Relocate); 719 720 // We need atleast one base pointer relocation + one derived pointer 721 // relocation to mangle 722 if (AllRelocateCalls.size() < 2) 723 return false; 724 725 // RelocateInstMap is a mapping from the base relocate instruction to the 726 // corresponding derived relocate instructions 727 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 728 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 729 if (RelocateInstMap.empty()) 730 return false; 731 732 for (auto &Item : RelocateInstMap) 733 // Item.first is the RelocatedBase to offset against 734 // Item.second is the vector of Targets to replace 735 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 736 return MadeChange; 737 } 738 739 /// SinkCast - Sink the specified cast instruction into its user blocks 740 static bool SinkCast(CastInst *CI) { 741 BasicBlock *DefBB = CI->getParent(); 742 743 /// InsertedCasts - Only insert a cast in each block once. 744 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 745 746 bool MadeChange = false; 747 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 748 UI != E; ) { 749 Use &TheUse = UI.getUse(); 750 Instruction *User = cast<Instruction>(*UI); 751 752 // Figure out which BB this cast is used in. For PHI's this is the 753 // appropriate predecessor block. 754 BasicBlock *UserBB = User->getParent(); 755 if (PHINode *PN = dyn_cast<PHINode>(User)) { 756 UserBB = PN->getIncomingBlock(TheUse); 757 } 758 759 // Preincrement use iterator so we don't invalidate it. 760 ++UI; 761 762 // The first insertion point of a block containing an EH pad is after the 763 // pad. If the pad is the user, we cannot sink the cast past the pad. 764 if (User->isEHPad()) 765 continue; 766 767 // If the block selected to receive the cast is an EH pad that does not 768 // allow non-PHI instructions before the terminator, we can't sink the 769 // cast. 770 if (UserBB->getTerminator()->isEHPad()) 771 continue; 772 773 // If this user is in the same block as the cast, don't change the cast. 774 if (UserBB == DefBB) continue; 775 776 // If we have already inserted a cast into this block, use it. 777 CastInst *&InsertedCast = InsertedCasts[UserBB]; 778 779 if (!InsertedCast) { 780 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 781 assert(InsertPt != UserBB->end()); 782 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 783 CI->getType(), "", &*InsertPt); 784 } 785 786 // Replace a use of the cast with a use of the new cast. 787 TheUse = InsertedCast; 788 MadeChange = true; 789 ++NumCastUses; 790 } 791 792 // If we removed all uses, nuke the cast. 793 if (CI->use_empty()) { 794 CI->eraseFromParent(); 795 MadeChange = true; 796 } 797 798 return MadeChange; 799 } 800 801 /// If the specified cast instruction is a noop copy (e.g. it's casting from 802 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 803 /// reduce the number of virtual registers that must be created and coalesced. 804 /// 805 /// Return true if any changes are made. 806 /// 807 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 808 const DataLayout &DL) { 809 // If this is a noop copy, 810 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 811 EVT DstVT = TLI.getValueType(DL, CI->getType()); 812 813 // This is an fp<->int conversion? 814 if (SrcVT.isInteger() != DstVT.isInteger()) 815 return false; 816 817 // If this is an extension, it will be a zero or sign extension, which 818 // isn't a noop. 819 if (SrcVT.bitsLT(DstVT)) return false; 820 821 // If these values will be promoted, find out what they will be promoted 822 // to. This helps us consider truncates on PPC as noop copies when they 823 // are. 824 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 825 TargetLowering::TypePromoteInteger) 826 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 827 if (TLI.getTypeAction(CI->getContext(), DstVT) == 828 TargetLowering::TypePromoteInteger) 829 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 830 831 // If, after promotion, these are the same types, this is a noop copy. 832 if (SrcVT != DstVT) 833 return false; 834 835 return SinkCast(CI); 836 } 837 838 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 839 /// possible. 840 /// 841 /// Return true if any changes were made. 842 static bool CombineUAddWithOverflow(CmpInst *CI) { 843 Value *A, *B; 844 Instruction *AddI; 845 if (!match(CI, 846 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 847 return false; 848 849 Type *Ty = AddI->getType(); 850 if (!isa<IntegerType>(Ty)) 851 return false; 852 853 // We don't want to move around uses of condition values this late, so we we 854 // check if it is legal to create the call to the intrinsic in the basic 855 // block containing the icmp: 856 857 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 858 return false; 859 860 #ifndef NDEBUG 861 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 862 // for now: 863 if (AddI->hasOneUse()) 864 assert(*AddI->user_begin() == CI && "expected!"); 865 #endif 866 867 Module *M = CI->getModule(); 868 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 869 870 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 871 872 auto *UAddWithOverflow = 873 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 874 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 875 auto *Overflow = 876 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 877 878 CI->replaceAllUsesWith(Overflow); 879 AddI->replaceAllUsesWith(UAdd); 880 CI->eraseFromParent(); 881 AddI->eraseFromParent(); 882 return true; 883 } 884 885 /// Sink the given CmpInst into user blocks to reduce the number of virtual 886 /// registers that must be created and coalesced. This is a clear win except on 887 /// targets with multiple condition code registers (PowerPC), where it might 888 /// lose; some adjustment may be wanted there. 889 /// 890 /// Return true if any changes are made. 891 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 892 BasicBlock *DefBB = CI->getParent(); 893 894 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 895 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 896 return false; 897 898 // Only insert a cmp in each block once. 899 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 900 901 bool MadeChange = false; 902 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 903 UI != E; ) { 904 Use &TheUse = UI.getUse(); 905 Instruction *User = cast<Instruction>(*UI); 906 907 // Preincrement use iterator so we don't invalidate it. 908 ++UI; 909 910 // Don't bother for PHI nodes. 911 if (isa<PHINode>(User)) 912 continue; 913 914 // Figure out which BB this cmp is used in. 915 BasicBlock *UserBB = User->getParent(); 916 917 // If this user is in the same block as the cmp, don't change the cmp. 918 if (UserBB == DefBB) continue; 919 920 // If we have already inserted a cmp into this block, use it. 921 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 922 923 if (!InsertedCmp) { 924 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 925 assert(InsertPt != UserBB->end()); 926 InsertedCmp = 927 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 928 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 929 } 930 931 // Replace a use of the cmp with a use of the new cmp. 932 TheUse = InsertedCmp; 933 MadeChange = true; 934 ++NumCmpUses; 935 } 936 937 // If we removed all uses, nuke the cmp. 938 if (CI->use_empty()) { 939 CI->eraseFromParent(); 940 MadeChange = true; 941 } 942 943 return MadeChange; 944 } 945 946 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 947 if (SinkCmpExpression(CI, TLI)) 948 return true; 949 950 if (CombineUAddWithOverflow(CI)) 951 return true; 952 953 return false; 954 } 955 956 /// Check if the candidates could be combined with a shift instruction, which 957 /// includes: 958 /// 1. Truncate instruction 959 /// 2. And instruction and the imm is a mask of the low bits: 960 /// imm & (imm+1) == 0 961 static bool isExtractBitsCandidateUse(Instruction *User) { 962 if (!isa<TruncInst>(User)) { 963 if (User->getOpcode() != Instruction::And || 964 !isa<ConstantInt>(User->getOperand(1))) 965 return false; 966 967 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 968 969 if ((Cimm & (Cimm + 1)).getBoolValue()) 970 return false; 971 } 972 return true; 973 } 974 975 /// Sink both shift and truncate instruction to the use of truncate's BB. 976 static bool 977 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 978 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 979 const TargetLowering &TLI, const DataLayout &DL) { 980 BasicBlock *UserBB = User->getParent(); 981 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 982 TruncInst *TruncI = dyn_cast<TruncInst>(User); 983 bool MadeChange = false; 984 985 for (Value::user_iterator TruncUI = TruncI->user_begin(), 986 TruncE = TruncI->user_end(); 987 TruncUI != TruncE;) { 988 989 Use &TruncTheUse = TruncUI.getUse(); 990 Instruction *TruncUser = cast<Instruction>(*TruncUI); 991 // Preincrement use iterator so we don't invalidate it. 992 993 ++TruncUI; 994 995 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 996 if (!ISDOpcode) 997 continue; 998 999 // If the use is actually a legal node, there will not be an 1000 // implicit truncate. 1001 // FIXME: always querying the result type is just an 1002 // approximation; some nodes' legality is determined by the 1003 // operand or other means. There's no good way to find out though. 1004 if (TLI.isOperationLegalOrCustom( 1005 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1006 continue; 1007 1008 // Don't bother for PHI nodes. 1009 if (isa<PHINode>(TruncUser)) 1010 continue; 1011 1012 BasicBlock *TruncUserBB = TruncUser->getParent(); 1013 1014 if (UserBB == TruncUserBB) 1015 continue; 1016 1017 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1018 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1019 1020 if (!InsertedShift && !InsertedTrunc) { 1021 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1022 assert(InsertPt != TruncUserBB->end()); 1023 // Sink the shift 1024 if (ShiftI->getOpcode() == Instruction::AShr) 1025 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1026 "", &*InsertPt); 1027 else 1028 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1029 "", &*InsertPt); 1030 1031 // Sink the trunc 1032 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1033 TruncInsertPt++; 1034 assert(TruncInsertPt != TruncUserBB->end()); 1035 1036 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1037 TruncI->getType(), "", &*TruncInsertPt); 1038 1039 MadeChange = true; 1040 1041 TruncTheUse = InsertedTrunc; 1042 } 1043 } 1044 return MadeChange; 1045 } 1046 1047 /// Sink the shift *right* instruction into user blocks if the uses could 1048 /// potentially be combined with this shift instruction and generate BitExtract 1049 /// instruction. It will only be applied if the architecture supports BitExtract 1050 /// instruction. Here is an example: 1051 /// BB1: 1052 /// %x.extract.shift = lshr i64 %arg1, 32 1053 /// BB2: 1054 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1055 /// ==> 1056 /// 1057 /// BB2: 1058 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1059 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1060 /// 1061 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1062 /// instruction. 1063 /// Return true if any changes are made. 1064 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1065 const TargetLowering &TLI, 1066 const DataLayout &DL) { 1067 BasicBlock *DefBB = ShiftI->getParent(); 1068 1069 /// Only insert instructions in each block once. 1070 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1071 1072 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1073 1074 bool MadeChange = false; 1075 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1076 UI != E;) { 1077 Use &TheUse = UI.getUse(); 1078 Instruction *User = cast<Instruction>(*UI); 1079 // Preincrement use iterator so we don't invalidate it. 1080 ++UI; 1081 1082 // Don't bother for PHI nodes. 1083 if (isa<PHINode>(User)) 1084 continue; 1085 1086 if (!isExtractBitsCandidateUse(User)) 1087 continue; 1088 1089 BasicBlock *UserBB = User->getParent(); 1090 1091 if (UserBB == DefBB) { 1092 // If the shift and truncate instruction are in the same BB. The use of 1093 // the truncate(TruncUse) may still introduce another truncate if not 1094 // legal. In this case, we would like to sink both shift and truncate 1095 // instruction to the BB of TruncUse. 1096 // for example: 1097 // BB1: 1098 // i64 shift.result = lshr i64 opnd, imm 1099 // trunc.result = trunc shift.result to i16 1100 // 1101 // BB2: 1102 // ----> We will have an implicit truncate here if the architecture does 1103 // not have i16 compare. 1104 // cmp i16 trunc.result, opnd2 1105 // 1106 if (isa<TruncInst>(User) && shiftIsLegal 1107 // If the type of the truncate is legal, no trucate will be 1108 // introduced in other basic blocks. 1109 && 1110 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1111 MadeChange = 1112 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1113 1114 continue; 1115 } 1116 // If we have already inserted a shift into this block, use it. 1117 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1118 1119 if (!InsertedShift) { 1120 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1121 assert(InsertPt != UserBB->end()); 1122 1123 if (ShiftI->getOpcode() == Instruction::AShr) 1124 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1125 "", &*InsertPt); 1126 else 1127 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1128 "", &*InsertPt); 1129 1130 MadeChange = true; 1131 } 1132 1133 // Replace a use of the shift with a use of the new shift. 1134 TheUse = InsertedShift; 1135 } 1136 1137 // If we removed all uses, nuke the shift. 1138 if (ShiftI->use_empty()) 1139 ShiftI->eraseFromParent(); 1140 1141 return MadeChange; 1142 } 1143 1144 // Translate a masked load intrinsic like 1145 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1146 // <16 x i1> %mask, <16 x i32> %passthru) 1147 // to a chain of basic blocks, with loading element one-by-one if 1148 // the appropriate mask bit is set 1149 // 1150 // %1 = bitcast i8* %addr to i32* 1151 // %2 = extractelement <16 x i1> %mask, i32 0 1152 // %3 = icmp eq i1 %2, true 1153 // br i1 %3, label %cond.load, label %else 1154 // 1155 //cond.load: ; preds = %0 1156 // %4 = getelementptr i32* %1, i32 0 1157 // %5 = load i32* %4 1158 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1159 // br label %else 1160 // 1161 //else: ; preds = %0, %cond.load 1162 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1163 // %7 = extractelement <16 x i1> %mask, i32 1 1164 // %8 = icmp eq i1 %7, true 1165 // br i1 %8, label %cond.load1, label %else2 1166 // 1167 //cond.load1: ; preds = %else 1168 // %9 = getelementptr i32* %1, i32 1 1169 // %10 = load i32* %9 1170 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1171 // br label %else2 1172 // 1173 //else2: ; preds = %else, %cond.load1 1174 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1175 // %12 = extractelement <16 x i1> %mask, i32 2 1176 // %13 = icmp eq i1 %12, true 1177 // br i1 %13, label %cond.load4, label %else5 1178 // 1179 static void scalarizeMaskedLoad(CallInst *CI) { 1180 Value *Ptr = CI->getArgOperand(0); 1181 Value *Alignment = CI->getArgOperand(1); 1182 Value *Mask = CI->getArgOperand(2); 1183 Value *Src0 = CI->getArgOperand(3); 1184 1185 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1186 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1187 assert(VecType && "Unexpected return type of masked load intrinsic"); 1188 1189 Type *EltTy = CI->getType()->getVectorElementType(); 1190 1191 IRBuilder<> Builder(CI->getContext()); 1192 Instruction *InsertPt = CI; 1193 BasicBlock *IfBlock = CI->getParent(); 1194 BasicBlock *CondBlock = nullptr; 1195 BasicBlock *PrevIfBlock = CI->getParent(); 1196 1197 Builder.SetInsertPoint(InsertPt); 1198 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1199 1200 // Short-cut if the mask is all-true. 1201 bool IsAllOnesMask = isa<Constant>(Mask) && 1202 cast<Constant>(Mask)->isAllOnesValue(); 1203 1204 if (IsAllOnesMask) { 1205 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1206 CI->replaceAllUsesWith(NewI); 1207 CI->eraseFromParent(); 1208 return; 1209 } 1210 1211 // Adjust alignment for the scalar instruction. 1212 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1213 // Bitcast %addr fron i8* to EltTy* 1214 Type *NewPtrType = 1215 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1216 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1217 unsigned VectorWidth = VecType->getNumElements(); 1218 1219 Value *UndefVal = UndefValue::get(VecType); 1220 1221 // The result vector 1222 Value *VResult = UndefVal; 1223 1224 if (isa<ConstantVector>(Mask)) { 1225 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1226 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1227 continue; 1228 Value *Gep = 1229 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1230 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1231 VResult = Builder.CreateInsertElement(VResult, Load, 1232 Builder.getInt32(Idx)); 1233 } 1234 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1235 CI->replaceAllUsesWith(NewI); 1236 CI->eraseFromParent(); 1237 return; 1238 } 1239 1240 PHINode *Phi = nullptr; 1241 Value *PrevPhi = UndefVal; 1242 1243 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1244 1245 // Fill the "else" block, created in the previous iteration 1246 // 1247 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1248 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1249 // %to_load = icmp eq i1 %mask_1, true 1250 // br i1 %to_load, label %cond.load, label %else 1251 // 1252 if (Idx > 0) { 1253 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1254 Phi->addIncoming(VResult, CondBlock); 1255 Phi->addIncoming(PrevPhi, PrevIfBlock); 1256 PrevPhi = Phi; 1257 VResult = Phi; 1258 } 1259 1260 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1261 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1262 ConstantInt::get(Predicate->getType(), 1)); 1263 1264 // Create "cond" block 1265 // 1266 // %EltAddr = getelementptr i32* %1, i32 0 1267 // %Elt = load i32* %EltAddr 1268 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1269 // 1270 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1271 Builder.SetInsertPoint(InsertPt); 1272 1273 Value *Gep = 1274 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1275 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1276 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1277 1278 // Create "else" block, fill it in the next iteration 1279 BasicBlock *NewIfBlock = 1280 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1281 Builder.SetInsertPoint(InsertPt); 1282 Instruction *OldBr = IfBlock->getTerminator(); 1283 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1284 OldBr->eraseFromParent(); 1285 PrevIfBlock = IfBlock; 1286 IfBlock = NewIfBlock; 1287 } 1288 1289 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1290 Phi->addIncoming(VResult, CondBlock); 1291 Phi->addIncoming(PrevPhi, PrevIfBlock); 1292 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1293 CI->replaceAllUsesWith(NewI); 1294 CI->eraseFromParent(); 1295 } 1296 1297 // Translate a masked store intrinsic, like 1298 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1299 // <16 x i1> %mask) 1300 // to a chain of basic blocks, that stores element one-by-one if 1301 // the appropriate mask bit is set 1302 // 1303 // %1 = bitcast i8* %addr to i32* 1304 // %2 = extractelement <16 x i1> %mask, i32 0 1305 // %3 = icmp eq i1 %2, true 1306 // br i1 %3, label %cond.store, label %else 1307 // 1308 // cond.store: ; preds = %0 1309 // %4 = extractelement <16 x i32> %val, i32 0 1310 // %5 = getelementptr i32* %1, i32 0 1311 // store i32 %4, i32* %5 1312 // br label %else 1313 // 1314 // else: ; preds = %0, %cond.store 1315 // %6 = extractelement <16 x i1> %mask, i32 1 1316 // %7 = icmp eq i1 %6, true 1317 // br i1 %7, label %cond.store1, label %else2 1318 // 1319 // cond.store1: ; preds = %else 1320 // %8 = extractelement <16 x i32> %val, i32 1 1321 // %9 = getelementptr i32* %1, i32 1 1322 // store i32 %8, i32* %9 1323 // br label %else2 1324 // . . . 1325 static void scalarizeMaskedStore(CallInst *CI) { 1326 Value *Src = CI->getArgOperand(0); 1327 Value *Ptr = CI->getArgOperand(1); 1328 Value *Alignment = CI->getArgOperand(2); 1329 Value *Mask = CI->getArgOperand(3); 1330 1331 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1332 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1333 assert(VecType && "Unexpected data type in masked store intrinsic"); 1334 1335 Type *EltTy = VecType->getElementType(); 1336 1337 IRBuilder<> Builder(CI->getContext()); 1338 Instruction *InsertPt = CI; 1339 BasicBlock *IfBlock = CI->getParent(); 1340 Builder.SetInsertPoint(InsertPt); 1341 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1342 1343 // Short-cut if the mask is all-true. 1344 bool IsAllOnesMask = isa<Constant>(Mask) && 1345 cast<Constant>(Mask)->isAllOnesValue(); 1346 1347 if (IsAllOnesMask) { 1348 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1349 CI->eraseFromParent(); 1350 return; 1351 } 1352 1353 // Adjust alignment for the scalar instruction. 1354 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1355 // Bitcast %addr fron i8* to EltTy* 1356 Type *NewPtrType = 1357 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1358 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1359 unsigned VectorWidth = VecType->getNumElements(); 1360 1361 if (isa<ConstantVector>(Mask)) { 1362 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1363 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1364 continue; 1365 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1366 Value *Gep = 1367 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1368 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1369 } 1370 CI->eraseFromParent(); 1371 return; 1372 } 1373 1374 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1375 1376 // Fill the "else" block, created in the previous iteration 1377 // 1378 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1379 // %to_store = icmp eq i1 %mask_1, true 1380 // br i1 %to_store, label %cond.store, label %else 1381 // 1382 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1383 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1384 ConstantInt::get(Predicate->getType(), 1)); 1385 1386 // Create "cond" block 1387 // 1388 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1389 // %EltAddr = getelementptr i32* %1, i32 0 1390 // %store i32 %OneElt, i32* %EltAddr 1391 // 1392 BasicBlock *CondBlock = 1393 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1394 Builder.SetInsertPoint(InsertPt); 1395 1396 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1397 Value *Gep = 1398 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1399 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1400 1401 // Create "else" block, fill it in the next iteration 1402 BasicBlock *NewIfBlock = 1403 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1404 Builder.SetInsertPoint(InsertPt); 1405 Instruction *OldBr = IfBlock->getTerminator(); 1406 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1407 OldBr->eraseFromParent(); 1408 IfBlock = NewIfBlock; 1409 } 1410 CI->eraseFromParent(); 1411 } 1412 1413 // Translate a masked gather intrinsic like 1414 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1415 // <16 x i1> %Mask, <16 x i32> %Src) 1416 // to a chain of basic blocks, with loading element one-by-one if 1417 // the appropriate mask bit is set 1418 // 1419 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1420 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1421 // % ToLoad0 = icmp eq i1 % Mask0, true 1422 // br i1 % ToLoad0, label %cond.load, label %else 1423 // 1424 // cond.load: 1425 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1426 // % Load0 = load i32, i32* % Ptr0, align 4 1427 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1428 // br label %else 1429 // 1430 // else: 1431 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1432 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1433 // % ToLoad1 = icmp eq i1 % Mask1, true 1434 // br i1 % ToLoad1, label %cond.load1, label %else2 1435 // 1436 // cond.load1: 1437 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1438 // % Load1 = load i32, i32* % Ptr1, align 4 1439 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1440 // br label %else2 1441 // . . . 1442 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1443 // ret <16 x i32> %Result 1444 static void scalarizeMaskedGather(CallInst *CI) { 1445 Value *Ptrs = CI->getArgOperand(0); 1446 Value *Alignment = CI->getArgOperand(1); 1447 Value *Mask = CI->getArgOperand(2); 1448 Value *Src0 = CI->getArgOperand(3); 1449 1450 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1451 1452 assert(VecType && "Unexpected return type of masked load intrinsic"); 1453 1454 IRBuilder<> Builder(CI->getContext()); 1455 Instruction *InsertPt = CI; 1456 BasicBlock *IfBlock = CI->getParent(); 1457 BasicBlock *CondBlock = nullptr; 1458 BasicBlock *PrevIfBlock = CI->getParent(); 1459 Builder.SetInsertPoint(InsertPt); 1460 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1461 1462 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1463 1464 Value *UndefVal = UndefValue::get(VecType); 1465 1466 // The result vector 1467 Value *VResult = UndefVal; 1468 unsigned VectorWidth = VecType->getNumElements(); 1469 1470 // Shorten the way if the mask is a vector of constants. 1471 bool IsConstMask = isa<ConstantVector>(Mask); 1472 1473 if (IsConstMask) { 1474 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1475 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1476 continue; 1477 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1478 "Ptr" + Twine(Idx)); 1479 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1480 "Load" + Twine(Idx)); 1481 VResult = Builder.CreateInsertElement(VResult, Load, 1482 Builder.getInt32(Idx), 1483 "Res" + Twine(Idx)); 1484 } 1485 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1486 CI->replaceAllUsesWith(NewI); 1487 CI->eraseFromParent(); 1488 return; 1489 } 1490 1491 PHINode *Phi = nullptr; 1492 Value *PrevPhi = UndefVal; 1493 1494 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1495 1496 // Fill the "else" block, created in the previous iteration 1497 // 1498 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1499 // %ToLoad1 = icmp eq i1 %Mask1, true 1500 // br i1 %ToLoad1, label %cond.load, label %else 1501 // 1502 if (Idx > 0) { 1503 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1504 Phi->addIncoming(VResult, CondBlock); 1505 Phi->addIncoming(PrevPhi, PrevIfBlock); 1506 PrevPhi = Phi; 1507 VResult = Phi; 1508 } 1509 1510 Value *Predicate = Builder.CreateExtractElement(Mask, 1511 Builder.getInt32(Idx), 1512 "Mask" + Twine(Idx)); 1513 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1514 ConstantInt::get(Predicate->getType(), 1), 1515 "ToLoad" + Twine(Idx)); 1516 1517 // Create "cond" block 1518 // 1519 // %EltAddr = getelementptr i32* %1, i32 0 1520 // %Elt = load i32* %EltAddr 1521 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1522 // 1523 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1524 Builder.SetInsertPoint(InsertPt); 1525 1526 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1527 "Ptr" + Twine(Idx)); 1528 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1529 "Load" + Twine(Idx)); 1530 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1531 "Res" + Twine(Idx)); 1532 1533 // Create "else" block, fill it in the next iteration 1534 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1535 Builder.SetInsertPoint(InsertPt); 1536 Instruction *OldBr = IfBlock->getTerminator(); 1537 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1538 OldBr->eraseFromParent(); 1539 PrevIfBlock = IfBlock; 1540 IfBlock = NewIfBlock; 1541 } 1542 1543 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1544 Phi->addIncoming(VResult, CondBlock); 1545 Phi->addIncoming(PrevPhi, PrevIfBlock); 1546 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1547 CI->replaceAllUsesWith(NewI); 1548 CI->eraseFromParent(); 1549 } 1550 1551 // Translate a masked scatter intrinsic, like 1552 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1553 // <16 x i1> %Mask) 1554 // to a chain of basic blocks, that stores element one-by-one if 1555 // the appropriate mask bit is set. 1556 // 1557 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1558 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1559 // % ToStore0 = icmp eq i1 % Mask0, true 1560 // br i1 %ToStore0, label %cond.store, label %else 1561 // 1562 // cond.store: 1563 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1564 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1565 // store i32 %Elt0, i32* % Ptr0, align 4 1566 // br label %else 1567 // 1568 // else: 1569 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1570 // % ToStore1 = icmp eq i1 % Mask1, true 1571 // br i1 % ToStore1, label %cond.store1, label %else2 1572 // 1573 // cond.store1: 1574 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1575 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1576 // store i32 % Elt1, i32* % Ptr1, align 4 1577 // br label %else2 1578 // . . . 1579 static void scalarizeMaskedScatter(CallInst *CI) { 1580 Value *Src = CI->getArgOperand(0); 1581 Value *Ptrs = CI->getArgOperand(1); 1582 Value *Alignment = CI->getArgOperand(2); 1583 Value *Mask = CI->getArgOperand(3); 1584 1585 assert(isa<VectorType>(Src->getType()) && 1586 "Unexpected data type in masked scatter intrinsic"); 1587 assert(isa<VectorType>(Ptrs->getType()) && 1588 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1589 "Vector of pointers is expected in masked scatter intrinsic"); 1590 1591 IRBuilder<> Builder(CI->getContext()); 1592 Instruction *InsertPt = CI; 1593 BasicBlock *IfBlock = CI->getParent(); 1594 Builder.SetInsertPoint(InsertPt); 1595 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1596 1597 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1598 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1599 1600 // Shorten the way if the mask is a vector of constants. 1601 bool IsConstMask = isa<ConstantVector>(Mask); 1602 1603 if (IsConstMask) { 1604 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1605 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1606 continue; 1607 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1608 "Elt" + Twine(Idx)); 1609 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1610 "Ptr" + Twine(Idx)); 1611 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1612 } 1613 CI->eraseFromParent(); 1614 return; 1615 } 1616 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1617 // Fill the "else" block, created in the previous iteration 1618 // 1619 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1620 // % ToStore = icmp eq i1 % Mask1, true 1621 // br i1 % ToStore, label %cond.store, label %else 1622 // 1623 Value *Predicate = Builder.CreateExtractElement(Mask, 1624 Builder.getInt32(Idx), 1625 "Mask" + Twine(Idx)); 1626 Value *Cmp = 1627 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1628 ConstantInt::get(Predicate->getType(), 1), 1629 "ToStore" + Twine(Idx)); 1630 1631 // Create "cond" block 1632 // 1633 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1634 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1635 // %store i32 % Elt1, i32* % Ptr1 1636 // 1637 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1638 Builder.SetInsertPoint(InsertPt); 1639 1640 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1641 "Elt" + Twine(Idx)); 1642 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1643 "Ptr" + Twine(Idx)); 1644 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1645 1646 // Create "else" block, fill it in the next iteration 1647 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1648 Builder.SetInsertPoint(InsertPt); 1649 Instruction *OldBr = IfBlock->getTerminator(); 1650 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1651 OldBr->eraseFromParent(); 1652 IfBlock = NewIfBlock; 1653 } 1654 CI->eraseFromParent(); 1655 } 1656 1657 /// If counting leading or trailing zeros is an expensive operation and a zero 1658 /// input is defined, add a check for zero to avoid calling the intrinsic. 1659 /// 1660 /// We want to transform: 1661 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1662 /// 1663 /// into: 1664 /// entry: 1665 /// %cmpz = icmp eq i64 %A, 0 1666 /// br i1 %cmpz, label %cond.end, label %cond.false 1667 /// cond.false: 1668 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1669 /// br label %cond.end 1670 /// cond.end: 1671 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1672 /// 1673 /// If the transform is performed, return true and set ModifiedDT to true. 1674 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1675 const TargetLowering *TLI, 1676 const DataLayout *DL, 1677 bool &ModifiedDT) { 1678 if (!TLI || !DL) 1679 return false; 1680 1681 // If a zero input is undefined, it doesn't make sense to despeculate that. 1682 if (match(CountZeros->getOperand(1), m_One())) 1683 return false; 1684 1685 // If it's cheap to speculate, there's nothing to do. 1686 auto IntrinsicID = CountZeros->getIntrinsicID(); 1687 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1688 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1689 return false; 1690 1691 // Only handle legal scalar cases. Anything else requires too much work. 1692 Type *Ty = CountZeros->getType(); 1693 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1694 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1695 return false; 1696 1697 // The intrinsic will be sunk behind a compare against zero and branch. 1698 BasicBlock *StartBlock = CountZeros->getParent(); 1699 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1700 1701 // Create another block after the count zero intrinsic. A PHI will be added 1702 // in this block to select the result of the intrinsic or the bit-width 1703 // constant if the input to the intrinsic is zero. 1704 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1705 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1706 1707 // Set up a builder to create a compare, conditional branch, and PHI. 1708 IRBuilder<> Builder(CountZeros->getContext()); 1709 Builder.SetInsertPoint(StartBlock->getTerminator()); 1710 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1711 1712 // Replace the unconditional branch that was created by the first split with 1713 // a compare against zero and a conditional branch. 1714 Value *Zero = Constant::getNullValue(Ty); 1715 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1716 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1717 StartBlock->getTerminator()->eraseFromParent(); 1718 1719 // Create a PHI in the end block to select either the output of the intrinsic 1720 // or the bit width of the operand. 1721 Builder.SetInsertPoint(&EndBlock->front()); 1722 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1723 CountZeros->replaceAllUsesWith(PN); 1724 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1725 PN->addIncoming(BitWidth, StartBlock); 1726 PN->addIncoming(CountZeros, CallBlock); 1727 1728 // We are explicitly handling the zero case, so we can set the intrinsic's 1729 // undefined zero argument to 'true'. This will also prevent reprocessing the 1730 // intrinsic; we only despeculate when a zero input is defined. 1731 CountZeros->setArgOperand(1, Builder.getTrue()); 1732 ModifiedDT = true; 1733 return true; 1734 } 1735 1736 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1737 BasicBlock *BB = CI->getParent(); 1738 1739 // Lower inline assembly if we can. 1740 // If we found an inline asm expession, and if the target knows how to 1741 // lower it to normal LLVM code, do so now. 1742 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1743 if (TLI->ExpandInlineAsm(CI)) { 1744 // Avoid invalidating the iterator. 1745 CurInstIterator = BB->begin(); 1746 // Avoid processing instructions out of order, which could cause 1747 // reuse before a value is defined. 1748 SunkAddrs.clear(); 1749 return true; 1750 } 1751 // Sink address computing for memory operands into the block. 1752 if (optimizeInlineAsmInst(CI)) 1753 return true; 1754 } 1755 1756 // Align the pointer arguments to this call if the target thinks it's a good 1757 // idea 1758 unsigned MinSize, PrefAlign; 1759 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1760 for (auto &Arg : CI->arg_operands()) { 1761 // We want to align both objects whose address is used directly and 1762 // objects whose address is used in casts and GEPs, though it only makes 1763 // sense for GEPs if the offset is a multiple of the desired alignment and 1764 // if size - offset meets the size threshold. 1765 if (!Arg->getType()->isPointerTy()) 1766 continue; 1767 APInt Offset(DL->getPointerSizeInBits( 1768 cast<PointerType>(Arg->getType())->getAddressSpace()), 1769 0); 1770 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1771 uint64_t Offset2 = Offset.getLimitedValue(); 1772 if ((Offset2 & (PrefAlign-1)) != 0) 1773 continue; 1774 AllocaInst *AI; 1775 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1776 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1777 AI->setAlignment(PrefAlign); 1778 // Global variables can only be aligned if they are defined in this 1779 // object (i.e. they are uniquely initialized in this object), and 1780 // over-aligning global variables that have an explicit section is 1781 // forbidden. 1782 GlobalVariable *GV; 1783 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1784 GV->getPointerAlignment(*DL) < PrefAlign && 1785 DL->getTypeAllocSize(GV->getValueType()) >= 1786 MinSize + Offset2) 1787 GV->setAlignment(PrefAlign); 1788 } 1789 // If this is a memcpy (or similar) then we may be able to improve the 1790 // alignment 1791 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1792 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1793 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1794 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1795 if (Align > MI->getAlignment()) 1796 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1797 } 1798 } 1799 1800 // If we have a cold call site, try to sink addressing computation into the 1801 // cold block. This interacts with our handling for loads and stores to 1802 // ensure that we can fold all uses of a potential addressing computation 1803 // into their uses. TODO: generalize this to work over profiling data 1804 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1805 for (auto &Arg : CI->arg_operands()) { 1806 if (!Arg->getType()->isPointerTy()) 1807 continue; 1808 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1809 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1810 } 1811 1812 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1813 if (II) { 1814 switch (II->getIntrinsicID()) { 1815 default: break; 1816 case Intrinsic::objectsize: { 1817 // Lower all uses of llvm.objectsize.* 1818 uint64_t Size; 1819 Type *ReturnTy = CI->getType(); 1820 Constant *RetVal = nullptr; 1821 ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1)); 1822 ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min; 1823 if (getObjectSize(II->getArgOperand(0), 1824 Size, *DL, TLInfo, false, Mode)) { 1825 RetVal = ConstantInt::get(ReturnTy, Size); 1826 } else { 1827 RetVal = ConstantInt::get(ReturnTy, 1828 Mode == ObjSizeMode::Min ? 0 : -1ULL); 1829 } 1830 // Substituting this can cause recursive simplifications, which can 1831 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1832 // happens. 1833 Value *CurValue = &*CurInstIterator; 1834 WeakVH IterHandle(CurValue); 1835 1836 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1837 1838 // If the iterator instruction was recursively deleted, start over at the 1839 // start of the block. 1840 if (IterHandle != CurValue) { 1841 CurInstIterator = BB->begin(); 1842 SunkAddrs.clear(); 1843 } 1844 return true; 1845 } 1846 case Intrinsic::masked_load: { 1847 // Scalarize unsupported vector masked load 1848 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1849 scalarizeMaskedLoad(CI); 1850 ModifiedDT = true; 1851 return true; 1852 } 1853 return false; 1854 } 1855 case Intrinsic::masked_store: { 1856 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1857 scalarizeMaskedStore(CI); 1858 ModifiedDT = true; 1859 return true; 1860 } 1861 return false; 1862 } 1863 case Intrinsic::masked_gather: { 1864 if (!TTI->isLegalMaskedGather(CI->getType())) { 1865 scalarizeMaskedGather(CI); 1866 ModifiedDT = true; 1867 return true; 1868 } 1869 return false; 1870 } 1871 case Intrinsic::masked_scatter: { 1872 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1873 scalarizeMaskedScatter(CI); 1874 ModifiedDT = true; 1875 return true; 1876 } 1877 return false; 1878 } 1879 case Intrinsic::aarch64_stlxr: 1880 case Intrinsic::aarch64_stxr: { 1881 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1882 if (!ExtVal || !ExtVal->hasOneUse() || 1883 ExtVal->getParent() == CI->getParent()) 1884 return false; 1885 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1886 ExtVal->moveBefore(CI); 1887 // Mark this instruction as "inserted by CGP", so that other 1888 // optimizations don't touch it. 1889 InsertedInsts.insert(ExtVal); 1890 return true; 1891 } 1892 case Intrinsic::invariant_group_barrier: 1893 II->replaceAllUsesWith(II->getArgOperand(0)); 1894 II->eraseFromParent(); 1895 return true; 1896 1897 case Intrinsic::cttz: 1898 case Intrinsic::ctlz: 1899 // If counting zeros is expensive, try to avoid it. 1900 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1901 } 1902 1903 if (TLI) { 1904 // Unknown address space. 1905 // TODO: Target hook to pick which address space the intrinsic cares 1906 // about? 1907 unsigned AddrSpace = ~0u; 1908 SmallVector<Value*, 2> PtrOps; 1909 Type *AccessTy; 1910 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1911 while (!PtrOps.empty()) 1912 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1913 return true; 1914 } 1915 } 1916 1917 // From here on out we're working with named functions. 1918 if (!CI->getCalledFunction()) return false; 1919 1920 // Lower all default uses of _chk calls. This is very similar 1921 // to what InstCombineCalls does, but here we are only lowering calls 1922 // to fortified library functions (e.g. __memcpy_chk) that have the default 1923 // "don't know" as the objectsize. Anything else should be left alone. 1924 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1925 if (Value *V = Simplifier.optimizeCall(CI)) { 1926 CI->replaceAllUsesWith(V); 1927 CI->eraseFromParent(); 1928 return true; 1929 } 1930 return false; 1931 } 1932 1933 /// Look for opportunities to duplicate return instructions to the predecessor 1934 /// to enable tail call optimizations. The case it is currently looking for is: 1935 /// @code 1936 /// bb0: 1937 /// %tmp0 = tail call i32 @f0() 1938 /// br label %return 1939 /// bb1: 1940 /// %tmp1 = tail call i32 @f1() 1941 /// br label %return 1942 /// bb2: 1943 /// %tmp2 = tail call i32 @f2() 1944 /// br label %return 1945 /// return: 1946 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1947 /// ret i32 %retval 1948 /// @endcode 1949 /// 1950 /// => 1951 /// 1952 /// @code 1953 /// bb0: 1954 /// %tmp0 = tail call i32 @f0() 1955 /// ret i32 %tmp0 1956 /// bb1: 1957 /// %tmp1 = tail call i32 @f1() 1958 /// ret i32 %tmp1 1959 /// bb2: 1960 /// %tmp2 = tail call i32 @f2() 1961 /// ret i32 %tmp2 1962 /// @endcode 1963 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1964 if (!TLI) 1965 return false; 1966 1967 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1968 if (!RetI) 1969 return false; 1970 1971 PHINode *PN = nullptr; 1972 BitCastInst *BCI = nullptr; 1973 Value *V = RetI->getReturnValue(); 1974 if (V) { 1975 BCI = dyn_cast<BitCastInst>(V); 1976 if (BCI) 1977 V = BCI->getOperand(0); 1978 1979 PN = dyn_cast<PHINode>(V); 1980 if (!PN) 1981 return false; 1982 } 1983 1984 if (PN && PN->getParent() != BB) 1985 return false; 1986 1987 // Make sure there are no instructions between the PHI and return, or that the 1988 // return is the first instruction in the block. 1989 if (PN) { 1990 BasicBlock::iterator BI = BB->begin(); 1991 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1992 if (&*BI == BCI) 1993 // Also skip over the bitcast. 1994 ++BI; 1995 if (&*BI != RetI) 1996 return false; 1997 } else { 1998 BasicBlock::iterator BI = BB->begin(); 1999 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2000 if (&*BI != RetI) 2001 return false; 2002 } 2003 2004 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2005 /// call. 2006 const Function *F = BB->getParent(); 2007 SmallVector<CallInst*, 4> TailCalls; 2008 if (PN) { 2009 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2010 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2011 // Make sure the phi value is indeed produced by the tail call. 2012 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2013 TLI->mayBeEmittedAsTailCall(CI) && 2014 attributesPermitTailCall(F, CI, RetI, *TLI)) 2015 TailCalls.push_back(CI); 2016 } 2017 } else { 2018 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2019 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2020 if (!VisitedBBs.insert(*PI).second) 2021 continue; 2022 2023 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2024 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2025 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2026 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2027 if (RI == RE) 2028 continue; 2029 2030 CallInst *CI = dyn_cast<CallInst>(&*RI); 2031 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2032 attributesPermitTailCall(F, CI, RetI, *TLI)) 2033 TailCalls.push_back(CI); 2034 } 2035 } 2036 2037 bool Changed = false; 2038 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2039 CallInst *CI = TailCalls[i]; 2040 CallSite CS(CI); 2041 2042 // Conservatively require the attributes of the call to match those of the 2043 // return. Ignore noalias because it doesn't affect the call sequence. 2044 AttributeSet CalleeAttrs = CS.getAttributes(); 2045 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2046 removeAttribute(Attribute::NoAlias) != 2047 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2048 removeAttribute(Attribute::NoAlias)) 2049 continue; 2050 2051 // Make sure the call instruction is followed by an unconditional branch to 2052 // the return block. 2053 BasicBlock *CallBB = CI->getParent(); 2054 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2055 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2056 continue; 2057 2058 // Duplicate the return into CallBB. 2059 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2060 ModifiedDT = Changed = true; 2061 ++NumRetsDup; 2062 } 2063 2064 // If we eliminated all predecessors of the block, delete the block now. 2065 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2066 BB->eraseFromParent(); 2067 2068 return Changed; 2069 } 2070 2071 //===----------------------------------------------------------------------===// 2072 // Memory Optimization 2073 //===----------------------------------------------------------------------===// 2074 2075 namespace { 2076 2077 /// This is an extended version of TargetLowering::AddrMode 2078 /// which holds actual Value*'s for register values. 2079 struct ExtAddrMode : public TargetLowering::AddrMode { 2080 Value *BaseReg; 2081 Value *ScaledReg; 2082 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2083 void print(raw_ostream &OS) const; 2084 void dump() const; 2085 2086 bool operator==(const ExtAddrMode& O) const { 2087 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2088 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2089 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2090 } 2091 }; 2092 2093 #ifndef NDEBUG 2094 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2095 AM.print(OS); 2096 return OS; 2097 } 2098 #endif 2099 2100 void ExtAddrMode::print(raw_ostream &OS) const { 2101 bool NeedPlus = false; 2102 OS << "["; 2103 if (BaseGV) { 2104 OS << (NeedPlus ? " + " : "") 2105 << "GV:"; 2106 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2107 NeedPlus = true; 2108 } 2109 2110 if (BaseOffs) { 2111 OS << (NeedPlus ? " + " : "") 2112 << BaseOffs; 2113 NeedPlus = true; 2114 } 2115 2116 if (BaseReg) { 2117 OS << (NeedPlus ? " + " : "") 2118 << "Base:"; 2119 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2120 NeedPlus = true; 2121 } 2122 if (Scale) { 2123 OS << (NeedPlus ? " + " : "") 2124 << Scale << "*"; 2125 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2126 } 2127 2128 OS << ']'; 2129 } 2130 2131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2132 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2133 print(dbgs()); 2134 dbgs() << '\n'; 2135 } 2136 #endif 2137 2138 /// \brief This class provides transaction based operation on the IR. 2139 /// Every change made through this class is recorded in the internal state and 2140 /// can be undone (rollback) until commit is called. 2141 class TypePromotionTransaction { 2142 2143 /// \brief This represents the common interface of the individual transaction. 2144 /// Each class implements the logic for doing one specific modification on 2145 /// the IR via the TypePromotionTransaction. 2146 class TypePromotionAction { 2147 protected: 2148 /// The Instruction modified. 2149 Instruction *Inst; 2150 2151 public: 2152 /// \brief Constructor of the action. 2153 /// The constructor performs the related action on the IR. 2154 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2155 2156 virtual ~TypePromotionAction() {} 2157 2158 /// \brief Undo the modification done by this action. 2159 /// When this method is called, the IR must be in the same state as it was 2160 /// before this action was applied. 2161 /// \pre Undoing the action works if and only if the IR is in the exact same 2162 /// state as it was directly after this action was applied. 2163 virtual void undo() = 0; 2164 2165 /// \brief Advocate every change made by this action. 2166 /// When the results on the IR of the action are to be kept, it is important 2167 /// to call this function, otherwise hidden information may be kept forever. 2168 virtual void commit() { 2169 // Nothing to be done, this action is not doing anything. 2170 } 2171 }; 2172 2173 /// \brief Utility to remember the position of an instruction. 2174 class InsertionHandler { 2175 /// Position of an instruction. 2176 /// Either an instruction: 2177 /// - Is the first in a basic block: BB is used. 2178 /// - Has a previous instructon: PrevInst is used. 2179 union { 2180 Instruction *PrevInst; 2181 BasicBlock *BB; 2182 } Point; 2183 /// Remember whether or not the instruction had a previous instruction. 2184 bool HasPrevInstruction; 2185 2186 public: 2187 /// \brief Record the position of \p Inst. 2188 InsertionHandler(Instruction *Inst) { 2189 BasicBlock::iterator It = Inst->getIterator(); 2190 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2191 if (HasPrevInstruction) 2192 Point.PrevInst = &*--It; 2193 else 2194 Point.BB = Inst->getParent(); 2195 } 2196 2197 /// \brief Insert \p Inst at the recorded position. 2198 void insert(Instruction *Inst) { 2199 if (HasPrevInstruction) { 2200 if (Inst->getParent()) 2201 Inst->removeFromParent(); 2202 Inst->insertAfter(Point.PrevInst); 2203 } else { 2204 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2205 if (Inst->getParent()) 2206 Inst->moveBefore(Position); 2207 else 2208 Inst->insertBefore(Position); 2209 } 2210 } 2211 }; 2212 2213 /// \brief Move an instruction before another. 2214 class InstructionMoveBefore : public TypePromotionAction { 2215 /// Original position of the instruction. 2216 InsertionHandler Position; 2217 2218 public: 2219 /// \brief Move \p Inst before \p Before. 2220 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2221 : TypePromotionAction(Inst), Position(Inst) { 2222 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2223 Inst->moveBefore(Before); 2224 } 2225 2226 /// \brief Move the instruction back to its original position. 2227 void undo() override { 2228 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2229 Position.insert(Inst); 2230 } 2231 }; 2232 2233 /// \brief Set the operand of an instruction with a new value. 2234 class OperandSetter : public TypePromotionAction { 2235 /// Original operand of the instruction. 2236 Value *Origin; 2237 /// Index of the modified instruction. 2238 unsigned Idx; 2239 2240 public: 2241 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2242 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2243 : TypePromotionAction(Inst), Idx(Idx) { 2244 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2245 << "for:" << *Inst << "\n" 2246 << "with:" << *NewVal << "\n"); 2247 Origin = Inst->getOperand(Idx); 2248 Inst->setOperand(Idx, NewVal); 2249 } 2250 2251 /// \brief Restore the original value of the instruction. 2252 void undo() override { 2253 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2254 << "for: " << *Inst << "\n" 2255 << "with: " << *Origin << "\n"); 2256 Inst->setOperand(Idx, Origin); 2257 } 2258 }; 2259 2260 /// \brief Hide the operands of an instruction. 2261 /// Do as if this instruction was not using any of its operands. 2262 class OperandsHider : public TypePromotionAction { 2263 /// The list of original operands. 2264 SmallVector<Value *, 4> OriginalValues; 2265 2266 public: 2267 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2268 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2269 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2270 unsigned NumOpnds = Inst->getNumOperands(); 2271 OriginalValues.reserve(NumOpnds); 2272 for (unsigned It = 0; It < NumOpnds; ++It) { 2273 // Save the current operand. 2274 Value *Val = Inst->getOperand(It); 2275 OriginalValues.push_back(Val); 2276 // Set a dummy one. 2277 // We could use OperandSetter here, but that would imply an overhead 2278 // that we are not willing to pay. 2279 Inst->setOperand(It, UndefValue::get(Val->getType())); 2280 } 2281 } 2282 2283 /// \brief Restore the original list of uses. 2284 void undo() override { 2285 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2286 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2287 Inst->setOperand(It, OriginalValues[It]); 2288 } 2289 }; 2290 2291 /// \brief Build a truncate instruction. 2292 class TruncBuilder : public TypePromotionAction { 2293 Value *Val; 2294 public: 2295 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2296 /// result. 2297 /// trunc Opnd to Ty. 2298 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2299 IRBuilder<> Builder(Opnd); 2300 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2301 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2302 } 2303 2304 /// \brief Get the built value. 2305 Value *getBuiltValue() { return Val; } 2306 2307 /// \brief Remove the built instruction. 2308 void undo() override { 2309 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2310 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2311 IVal->eraseFromParent(); 2312 } 2313 }; 2314 2315 /// \brief Build a sign extension instruction. 2316 class SExtBuilder : public TypePromotionAction { 2317 Value *Val; 2318 public: 2319 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2320 /// result. 2321 /// sext Opnd to Ty. 2322 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2323 : TypePromotionAction(InsertPt) { 2324 IRBuilder<> Builder(InsertPt); 2325 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2326 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2327 } 2328 2329 /// \brief Get the built value. 2330 Value *getBuiltValue() { return Val; } 2331 2332 /// \brief Remove the built instruction. 2333 void undo() override { 2334 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2335 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2336 IVal->eraseFromParent(); 2337 } 2338 }; 2339 2340 /// \brief Build a zero extension instruction. 2341 class ZExtBuilder : public TypePromotionAction { 2342 Value *Val; 2343 public: 2344 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2345 /// result. 2346 /// zext Opnd to Ty. 2347 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2348 : TypePromotionAction(InsertPt) { 2349 IRBuilder<> Builder(InsertPt); 2350 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2351 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2352 } 2353 2354 /// \brief Get the built value. 2355 Value *getBuiltValue() { return Val; } 2356 2357 /// \brief Remove the built instruction. 2358 void undo() override { 2359 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2360 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2361 IVal->eraseFromParent(); 2362 } 2363 }; 2364 2365 /// \brief Mutate an instruction to another type. 2366 class TypeMutator : public TypePromotionAction { 2367 /// Record the original type. 2368 Type *OrigTy; 2369 2370 public: 2371 /// \brief Mutate the type of \p Inst into \p NewTy. 2372 TypeMutator(Instruction *Inst, Type *NewTy) 2373 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2374 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2375 << "\n"); 2376 Inst->mutateType(NewTy); 2377 } 2378 2379 /// \brief Mutate the instruction back to its original type. 2380 void undo() override { 2381 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2382 << "\n"); 2383 Inst->mutateType(OrigTy); 2384 } 2385 }; 2386 2387 /// \brief Replace the uses of an instruction by another instruction. 2388 class UsesReplacer : public TypePromotionAction { 2389 /// Helper structure to keep track of the replaced uses. 2390 struct InstructionAndIdx { 2391 /// The instruction using the instruction. 2392 Instruction *Inst; 2393 /// The index where this instruction is used for Inst. 2394 unsigned Idx; 2395 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2396 : Inst(Inst), Idx(Idx) {} 2397 }; 2398 2399 /// Keep track of the original uses (pair Instruction, Index). 2400 SmallVector<InstructionAndIdx, 4> OriginalUses; 2401 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2402 2403 public: 2404 /// \brief Replace all the use of \p Inst by \p New. 2405 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2406 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2407 << "\n"); 2408 // Record the original uses. 2409 for (Use &U : Inst->uses()) { 2410 Instruction *UserI = cast<Instruction>(U.getUser()); 2411 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2412 } 2413 // Now, we can replace the uses. 2414 Inst->replaceAllUsesWith(New); 2415 } 2416 2417 /// \brief Reassign the original uses of Inst to Inst. 2418 void undo() override { 2419 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2420 for (use_iterator UseIt = OriginalUses.begin(), 2421 EndIt = OriginalUses.end(); 2422 UseIt != EndIt; ++UseIt) { 2423 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2424 } 2425 } 2426 }; 2427 2428 /// \brief Remove an instruction from the IR. 2429 class InstructionRemover : public TypePromotionAction { 2430 /// Original position of the instruction. 2431 InsertionHandler Inserter; 2432 /// Helper structure to hide all the link to the instruction. In other 2433 /// words, this helps to do as if the instruction was removed. 2434 OperandsHider Hider; 2435 /// Keep track of the uses replaced, if any. 2436 UsesReplacer *Replacer; 2437 2438 public: 2439 /// \brief Remove all reference of \p Inst and optinally replace all its 2440 /// uses with New. 2441 /// \pre If !Inst->use_empty(), then New != nullptr 2442 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2443 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2444 Replacer(nullptr) { 2445 if (New) 2446 Replacer = new UsesReplacer(Inst, New); 2447 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2448 Inst->removeFromParent(); 2449 } 2450 2451 ~InstructionRemover() override { delete Replacer; } 2452 2453 /// \brief Really remove the instruction. 2454 void commit() override { delete Inst; } 2455 2456 /// \brief Resurrect the instruction and reassign it to the proper uses if 2457 /// new value was provided when build this action. 2458 void undo() override { 2459 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2460 Inserter.insert(Inst); 2461 if (Replacer) 2462 Replacer->undo(); 2463 Hider.undo(); 2464 } 2465 }; 2466 2467 public: 2468 /// Restoration point. 2469 /// The restoration point is a pointer to an action instead of an iterator 2470 /// because the iterator may be invalidated but not the pointer. 2471 typedef const TypePromotionAction *ConstRestorationPt; 2472 /// Advocate every changes made in that transaction. 2473 void commit(); 2474 /// Undo all the changes made after the given point. 2475 void rollback(ConstRestorationPt Point); 2476 /// Get the current restoration point. 2477 ConstRestorationPt getRestorationPoint() const; 2478 2479 /// \name API for IR modification with state keeping to support rollback. 2480 /// @{ 2481 /// Same as Instruction::setOperand. 2482 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2483 /// Same as Instruction::eraseFromParent. 2484 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2485 /// Same as Value::replaceAllUsesWith. 2486 void replaceAllUsesWith(Instruction *Inst, Value *New); 2487 /// Same as Value::mutateType. 2488 void mutateType(Instruction *Inst, Type *NewTy); 2489 /// Same as IRBuilder::createTrunc. 2490 Value *createTrunc(Instruction *Opnd, Type *Ty); 2491 /// Same as IRBuilder::createSExt. 2492 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2493 /// Same as IRBuilder::createZExt. 2494 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2495 /// Same as Instruction::moveBefore. 2496 void moveBefore(Instruction *Inst, Instruction *Before); 2497 /// @} 2498 2499 private: 2500 /// The ordered list of actions made so far. 2501 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2502 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2503 }; 2504 2505 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2506 Value *NewVal) { 2507 Actions.push_back( 2508 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2509 } 2510 2511 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2512 Value *NewVal) { 2513 Actions.push_back( 2514 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2515 } 2516 2517 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2518 Value *New) { 2519 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2520 } 2521 2522 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2523 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2524 } 2525 2526 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2527 Type *Ty) { 2528 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2529 Value *Val = Ptr->getBuiltValue(); 2530 Actions.push_back(std::move(Ptr)); 2531 return Val; 2532 } 2533 2534 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2535 Value *Opnd, Type *Ty) { 2536 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2537 Value *Val = Ptr->getBuiltValue(); 2538 Actions.push_back(std::move(Ptr)); 2539 return Val; 2540 } 2541 2542 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2543 Value *Opnd, Type *Ty) { 2544 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2545 Value *Val = Ptr->getBuiltValue(); 2546 Actions.push_back(std::move(Ptr)); 2547 return Val; 2548 } 2549 2550 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2551 Instruction *Before) { 2552 Actions.push_back( 2553 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2554 } 2555 2556 TypePromotionTransaction::ConstRestorationPt 2557 TypePromotionTransaction::getRestorationPoint() const { 2558 return !Actions.empty() ? Actions.back().get() : nullptr; 2559 } 2560 2561 void TypePromotionTransaction::commit() { 2562 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2563 ++It) 2564 (*It)->commit(); 2565 Actions.clear(); 2566 } 2567 2568 void TypePromotionTransaction::rollback( 2569 TypePromotionTransaction::ConstRestorationPt Point) { 2570 while (!Actions.empty() && Point != Actions.back().get()) { 2571 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2572 Curr->undo(); 2573 } 2574 } 2575 2576 /// \brief A helper class for matching addressing modes. 2577 /// 2578 /// This encapsulates the logic for matching the target-legal addressing modes. 2579 class AddressingModeMatcher { 2580 SmallVectorImpl<Instruction*> &AddrModeInsts; 2581 const TargetMachine &TM; 2582 const TargetLowering &TLI; 2583 const DataLayout &DL; 2584 2585 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2586 /// the memory instruction that we're computing this address for. 2587 Type *AccessTy; 2588 unsigned AddrSpace; 2589 Instruction *MemoryInst; 2590 2591 /// This is the addressing mode that we're building up. This is 2592 /// part of the return value of this addressing mode matching stuff. 2593 ExtAddrMode &AddrMode; 2594 2595 /// The instructions inserted by other CodeGenPrepare optimizations. 2596 const SetOfInstrs &InsertedInsts; 2597 /// A map from the instructions to their type before promotion. 2598 InstrToOrigTy &PromotedInsts; 2599 /// The ongoing transaction where every action should be registered. 2600 TypePromotionTransaction &TPT; 2601 2602 /// This is set to true when we should not do profitability checks. 2603 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2604 bool IgnoreProfitability; 2605 2606 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2607 const TargetMachine &TM, Type *AT, unsigned AS, 2608 Instruction *MI, ExtAddrMode &AM, 2609 const SetOfInstrs &InsertedInsts, 2610 InstrToOrigTy &PromotedInsts, 2611 TypePromotionTransaction &TPT) 2612 : AddrModeInsts(AMI), TM(TM), 2613 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2614 ->getTargetLowering()), 2615 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2616 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2617 PromotedInsts(PromotedInsts), TPT(TPT) { 2618 IgnoreProfitability = false; 2619 } 2620 public: 2621 2622 /// Find the maximal addressing mode that a load/store of V can fold, 2623 /// give an access type of AccessTy. This returns a list of involved 2624 /// instructions in AddrModeInsts. 2625 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2626 /// optimizations. 2627 /// \p PromotedInsts maps the instructions to their type before promotion. 2628 /// \p The ongoing transaction where every action should be registered. 2629 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2630 Instruction *MemoryInst, 2631 SmallVectorImpl<Instruction*> &AddrModeInsts, 2632 const TargetMachine &TM, 2633 const SetOfInstrs &InsertedInsts, 2634 InstrToOrigTy &PromotedInsts, 2635 TypePromotionTransaction &TPT) { 2636 ExtAddrMode Result; 2637 2638 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2639 MemoryInst, Result, InsertedInsts, 2640 PromotedInsts, TPT).matchAddr(V, 0); 2641 (void)Success; assert(Success && "Couldn't select *anything*?"); 2642 return Result; 2643 } 2644 private: 2645 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2646 bool matchAddr(Value *V, unsigned Depth); 2647 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2648 bool *MovedAway = nullptr); 2649 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2650 ExtAddrMode &AMBefore, 2651 ExtAddrMode &AMAfter); 2652 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2653 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2654 Value *PromotedOperand) const; 2655 }; 2656 2657 /// Try adding ScaleReg*Scale to the current addressing mode. 2658 /// Return true and update AddrMode if this addr mode is legal for the target, 2659 /// false if not. 2660 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2661 unsigned Depth) { 2662 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2663 // mode. Just process that directly. 2664 if (Scale == 1) 2665 return matchAddr(ScaleReg, Depth); 2666 2667 // If the scale is 0, it takes nothing to add this. 2668 if (Scale == 0) 2669 return true; 2670 2671 // If we already have a scale of this value, we can add to it, otherwise, we 2672 // need an available scale field. 2673 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2674 return false; 2675 2676 ExtAddrMode TestAddrMode = AddrMode; 2677 2678 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2679 // [A+B + A*7] -> [B+A*8]. 2680 TestAddrMode.Scale += Scale; 2681 TestAddrMode.ScaledReg = ScaleReg; 2682 2683 // If the new address isn't legal, bail out. 2684 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2685 return false; 2686 2687 // It was legal, so commit it. 2688 AddrMode = TestAddrMode; 2689 2690 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2691 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2692 // X*Scale + C*Scale to addr mode. 2693 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2694 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2695 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2696 TestAddrMode.ScaledReg = AddLHS; 2697 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2698 2699 // If this addressing mode is legal, commit it and remember that we folded 2700 // this instruction. 2701 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2702 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2703 AddrMode = TestAddrMode; 2704 return true; 2705 } 2706 } 2707 2708 // Otherwise, not (x+c)*scale, just return what we have. 2709 return true; 2710 } 2711 2712 /// This is a little filter, which returns true if an addressing computation 2713 /// involving I might be folded into a load/store accessing it. 2714 /// This doesn't need to be perfect, but needs to accept at least 2715 /// the set of instructions that MatchOperationAddr can. 2716 static bool MightBeFoldableInst(Instruction *I) { 2717 switch (I->getOpcode()) { 2718 case Instruction::BitCast: 2719 case Instruction::AddrSpaceCast: 2720 // Don't touch identity bitcasts. 2721 if (I->getType() == I->getOperand(0)->getType()) 2722 return false; 2723 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2724 case Instruction::PtrToInt: 2725 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2726 return true; 2727 case Instruction::IntToPtr: 2728 // We know the input is intptr_t, so this is foldable. 2729 return true; 2730 case Instruction::Add: 2731 return true; 2732 case Instruction::Mul: 2733 case Instruction::Shl: 2734 // Can only handle X*C and X << C. 2735 return isa<ConstantInt>(I->getOperand(1)); 2736 case Instruction::GetElementPtr: 2737 return true; 2738 default: 2739 return false; 2740 } 2741 } 2742 2743 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2744 /// \note \p Val is assumed to be the product of some type promotion. 2745 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2746 /// to be legal, as the non-promoted value would have had the same state. 2747 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2748 const DataLayout &DL, Value *Val) { 2749 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2750 if (!PromotedInst) 2751 return false; 2752 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2753 // If the ISDOpcode is undefined, it was undefined before the promotion. 2754 if (!ISDOpcode) 2755 return true; 2756 // Otherwise, check if the promoted instruction is legal or not. 2757 return TLI.isOperationLegalOrCustom( 2758 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2759 } 2760 2761 /// \brief Hepler class to perform type promotion. 2762 class TypePromotionHelper { 2763 /// \brief Utility function to check whether or not a sign or zero extension 2764 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2765 /// either using the operands of \p Inst or promoting \p Inst. 2766 /// The type of the extension is defined by \p IsSExt. 2767 /// In other words, check if: 2768 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2769 /// #1 Promotion applies: 2770 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2771 /// #2 Operand reuses: 2772 /// ext opnd1 to ConsideredExtType. 2773 /// \p PromotedInsts maps the instructions to their type before promotion. 2774 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2775 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2776 2777 /// \brief Utility function to determine if \p OpIdx should be promoted when 2778 /// promoting \p Inst. 2779 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2780 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2781 } 2782 2783 /// \brief Utility function to promote the operand of \p Ext when this 2784 /// operand is a promotable trunc or sext or zext. 2785 /// \p PromotedInsts maps the instructions to their type before promotion. 2786 /// \p CreatedInstsCost[out] contains the cost of all instructions 2787 /// created to promote the operand of Ext. 2788 /// Newly added extensions are inserted in \p Exts. 2789 /// Newly added truncates are inserted in \p Truncs. 2790 /// Should never be called directly. 2791 /// \return The promoted value which is used instead of Ext. 2792 static Value *promoteOperandForTruncAndAnyExt( 2793 Instruction *Ext, TypePromotionTransaction &TPT, 2794 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2795 SmallVectorImpl<Instruction *> *Exts, 2796 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2797 2798 /// \brief Utility function to promote the operand of \p Ext when this 2799 /// operand is promotable and is not a supported trunc or sext. 2800 /// \p PromotedInsts maps the instructions to their type before promotion. 2801 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2802 /// created to promote the operand of Ext. 2803 /// Newly added extensions are inserted in \p Exts. 2804 /// Newly added truncates are inserted in \p Truncs. 2805 /// Should never be called directly. 2806 /// \return The promoted value which is used instead of Ext. 2807 static Value *promoteOperandForOther(Instruction *Ext, 2808 TypePromotionTransaction &TPT, 2809 InstrToOrigTy &PromotedInsts, 2810 unsigned &CreatedInstsCost, 2811 SmallVectorImpl<Instruction *> *Exts, 2812 SmallVectorImpl<Instruction *> *Truncs, 2813 const TargetLowering &TLI, bool IsSExt); 2814 2815 /// \see promoteOperandForOther. 2816 static Value *signExtendOperandForOther( 2817 Instruction *Ext, TypePromotionTransaction &TPT, 2818 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2819 SmallVectorImpl<Instruction *> *Exts, 2820 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2821 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2822 Exts, Truncs, TLI, true); 2823 } 2824 2825 /// \see promoteOperandForOther. 2826 static Value *zeroExtendOperandForOther( 2827 Instruction *Ext, TypePromotionTransaction &TPT, 2828 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2829 SmallVectorImpl<Instruction *> *Exts, 2830 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2831 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2832 Exts, Truncs, TLI, false); 2833 } 2834 2835 public: 2836 /// Type for the utility function that promotes the operand of Ext. 2837 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2838 InstrToOrigTy &PromotedInsts, 2839 unsigned &CreatedInstsCost, 2840 SmallVectorImpl<Instruction *> *Exts, 2841 SmallVectorImpl<Instruction *> *Truncs, 2842 const TargetLowering &TLI); 2843 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2844 /// action to promote the operand of \p Ext instead of using Ext. 2845 /// \return NULL if no promotable action is possible with the current 2846 /// sign extension. 2847 /// \p InsertedInsts keeps track of all the instructions inserted by the 2848 /// other CodeGenPrepare optimizations. This information is important 2849 /// because we do not want to promote these instructions as CodeGenPrepare 2850 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2851 /// \p PromotedInsts maps the instructions to their type before promotion. 2852 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2853 const TargetLowering &TLI, 2854 const InstrToOrigTy &PromotedInsts); 2855 }; 2856 2857 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2858 Type *ConsideredExtType, 2859 const InstrToOrigTy &PromotedInsts, 2860 bool IsSExt) { 2861 // The promotion helper does not know how to deal with vector types yet. 2862 // To be able to fix that, we would need to fix the places where we 2863 // statically extend, e.g., constants and such. 2864 if (Inst->getType()->isVectorTy()) 2865 return false; 2866 2867 // We can always get through zext. 2868 if (isa<ZExtInst>(Inst)) 2869 return true; 2870 2871 // sext(sext) is ok too. 2872 if (IsSExt && isa<SExtInst>(Inst)) 2873 return true; 2874 2875 // We can get through binary operator, if it is legal. In other words, the 2876 // binary operator must have a nuw or nsw flag. 2877 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2878 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2879 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2880 (IsSExt && BinOp->hasNoSignedWrap()))) 2881 return true; 2882 2883 // Check if we can do the following simplification. 2884 // ext(trunc(opnd)) --> ext(opnd) 2885 if (!isa<TruncInst>(Inst)) 2886 return false; 2887 2888 Value *OpndVal = Inst->getOperand(0); 2889 // Check if we can use this operand in the extension. 2890 // If the type is larger than the result type of the extension, we cannot. 2891 if (!OpndVal->getType()->isIntegerTy() || 2892 OpndVal->getType()->getIntegerBitWidth() > 2893 ConsideredExtType->getIntegerBitWidth()) 2894 return false; 2895 2896 // If the operand of the truncate is not an instruction, we will not have 2897 // any information on the dropped bits. 2898 // (Actually we could for constant but it is not worth the extra logic). 2899 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2900 if (!Opnd) 2901 return false; 2902 2903 // Check if the source of the type is narrow enough. 2904 // I.e., check that trunc just drops extended bits of the same kind of 2905 // the extension. 2906 // #1 get the type of the operand and check the kind of the extended bits. 2907 const Type *OpndType; 2908 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2909 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2910 OpndType = It->second.getPointer(); 2911 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2912 OpndType = Opnd->getOperand(0)->getType(); 2913 else 2914 return false; 2915 2916 // #2 check that the truncate just drops extended bits. 2917 return Inst->getType()->getIntegerBitWidth() >= 2918 OpndType->getIntegerBitWidth(); 2919 } 2920 2921 TypePromotionHelper::Action TypePromotionHelper::getAction( 2922 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2923 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2924 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2925 "Unexpected instruction type"); 2926 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2927 Type *ExtTy = Ext->getType(); 2928 bool IsSExt = isa<SExtInst>(Ext); 2929 // If the operand of the extension is not an instruction, we cannot 2930 // get through. 2931 // If it, check we can get through. 2932 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2933 return nullptr; 2934 2935 // Do not promote if the operand has been added by codegenprepare. 2936 // Otherwise, it means we are undoing an optimization that is likely to be 2937 // redone, thus causing potential infinite loop. 2938 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2939 return nullptr; 2940 2941 // SExt or Trunc instructions. 2942 // Return the related handler. 2943 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2944 isa<ZExtInst>(ExtOpnd)) 2945 return promoteOperandForTruncAndAnyExt; 2946 2947 // Regular instruction. 2948 // Abort early if we will have to insert non-free instructions. 2949 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2950 return nullptr; 2951 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2952 } 2953 2954 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2955 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2956 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2957 SmallVectorImpl<Instruction *> *Exts, 2958 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2959 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2960 // get through it and this method should not be called. 2961 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2962 Value *ExtVal = SExt; 2963 bool HasMergedNonFreeExt = false; 2964 if (isa<ZExtInst>(SExtOpnd)) { 2965 // Replace s|zext(zext(opnd)) 2966 // => zext(opnd). 2967 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2968 Value *ZExt = 2969 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2970 TPT.replaceAllUsesWith(SExt, ZExt); 2971 TPT.eraseInstruction(SExt); 2972 ExtVal = ZExt; 2973 } else { 2974 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2975 // => z|sext(opnd). 2976 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2977 } 2978 CreatedInstsCost = 0; 2979 2980 // Remove dead code. 2981 if (SExtOpnd->use_empty()) 2982 TPT.eraseInstruction(SExtOpnd); 2983 2984 // Check if the extension is still needed. 2985 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2986 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2987 if (ExtInst) { 2988 if (Exts) 2989 Exts->push_back(ExtInst); 2990 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2991 } 2992 return ExtVal; 2993 } 2994 2995 // At this point we have: ext ty opnd to ty. 2996 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2997 Value *NextVal = ExtInst->getOperand(0); 2998 TPT.eraseInstruction(ExtInst, NextVal); 2999 return NextVal; 3000 } 3001 3002 Value *TypePromotionHelper::promoteOperandForOther( 3003 Instruction *Ext, TypePromotionTransaction &TPT, 3004 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3005 SmallVectorImpl<Instruction *> *Exts, 3006 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3007 bool IsSExt) { 3008 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3009 // get through it and this method should not be called. 3010 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3011 CreatedInstsCost = 0; 3012 if (!ExtOpnd->hasOneUse()) { 3013 // ExtOpnd will be promoted. 3014 // All its uses, but Ext, will need to use a truncated value of the 3015 // promoted version. 3016 // Create the truncate now. 3017 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3018 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3019 ITrunc->removeFromParent(); 3020 // Insert it just after the definition. 3021 ITrunc->insertAfter(ExtOpnd); 3022 if (Truncs) 3023 Truncs->push_back(ITrunc); 3024 } 3025 3026 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3027 // Restore the operand of Ext (which has been replaced by the previous call 3028 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3029 TPT.setOperand(Ext, 0, ExtOpnd); 3030 } 3031 3032 // Get through the Instruction: 3033 // 1. Update its type. 3034 // 2. Replace the uses of Ext by Inst. 3035 // 3. Extend each operand that needs to be extended. 3036 3037 // Remember the original type of the instruction before promotion. 3038 // This is useful to know that the high bits are sign extended bits. 3039 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3040 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3041 // Step #1. 3042 TPT.mutateType(ExtOpnd, Ext->getType()); 3043 // Step #2. 3044 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3045 // Step #3. 3046 Instruction *ExtForOpnd = Ext; 3047 3048 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3049 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3050 ++OpIdx) { 3051 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3052 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3053 !shouldExtOperand(ExtOpnd, OpIdx)) { 3054 DEBUG(dbgs() << "No need to propagate\n"); 3055 continue; 3056 } 3057 // Check if we can statically extend the operand. 3058 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3059 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3060 DEBUG(dbgs() << "Statically extend\n"); 3061 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3062 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3063 : Cst->getValue().zext(BitWidth); 3064 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3065 continue; 3066 } 3067 // UndefValue are typed, so we have to statically sign extend them. 3068 if (isa<UndefValue>(Opnd)) { 3069 DEBUG(dbgs() << "Statically extend\n"); 3070 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3071 continue; 3072 } 3073 3074 // Otherwise we have to explicity sign extend the operand. 3075 // Check if Ext was reused to extend an operand. 3076 if (!ExtForOpnd) { 3077 // If yes, create a new one. 3078 DEBUG(dbgs() << "More operands to ext\n"); 3079 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3080 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3081 if (!isa<Instruction>(ValForExtOpnd)) { 3082 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3083 continue; 3084 } 3085 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3086 } 3087 if (Exts) 3088 Exts->push_back(ExtForOpnd); 3089 TPT.setOperand(ExtForOpnd, 0, Opnd); 3090 3091 // Move the sign extension before the insertion point. 3092 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3093 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3094 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3095 // If more sext are required, new instructions will have to be created. 3096 ExtForOpnd = nullptr; 3097 } 3098 if (ExtForOpnd == Ext) { 3099 DEBUG(dbgs() << "Extension is useless now\n"); 3100 TPT.eraseInstruction(Ext); 3101 } 3102 return ExtOpnd; 3103 } 3104 3105 /// Check whether or not promoting an instruction to a wider type is profitable. 3106 /// \p NewCost gives the cost of extension instructions created by the 3107 /// promotion. 3108 /// \p OldCost gives the cost of extension instructions before the promotion 3109 /// plus the number of instructions that have been 3110 /// matched in the addressing mode the promotion. 3111 /// \p PromotedOperand is the value that has been promoted. 3112 /// \return True if the promotion is profitable, false otherwise. 3113 bool AddressingModeMatcher::isPromotionProfitable( 3114 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3115 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3116 // The cost of the new extensions is greater than the cost of the 3117 // old extension plus what we folded. 3118 // This is not profitable. 3119 if (NewCost > OldCost) 3120 return false; 3121 if (NewCost < OldCost) 3122 return true; 3123 // The promotion is neutral but it may help folding the sign extension in 3124 // loads for instance. 3125 // Check that we did not create an illegal instruction. 3126 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3127 } 3128 3129 /// Given an instruction or constant expr, see if we can fold the operation 3130 /// into the addressing mode. If so, update the addressing mode and return 3131 /// true, otherwise return false without modifying AddrMode. 3132 /// If \p MovedAway is not NULL, it contains the information of whether or 3133 /// not AddrInst has to be folded into the addressing mode on success. 3134 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3135 /// because it has been moved away. 3136 /// Thus AddrInst must not be added in the matched instructions. 3137 /// This state can happen when AddrInst is a sext, since it may be moved away. 3138 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3139 /// not be referenced anymore. 3140 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3141 unsigned Depth, 3142 bool *MovedAway) { 3143 // Avoid exponential behavior on extremely deep expression trees. 3144 if (Depth >= 5) return false; 3145 3146 // By default, all matched instructions stay in place. 3147 if (MovedAway) 3148 *MovedAway = false; 3149 3150 switch (Opcode) { 3151 case Instruction::PtrToInt: 3152 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3153 return matchAddr(AddrInst->getOperand(0), Depth); 3154 case Instruction::IntToPtr: { 3155 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3156 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3157 // This inttoptr is a no-op if the integer type is pointer sized. 3158 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3159 return matchAddr(AddrInst->getOperand(0), Depth); 3160 return false; 3161 } 3162 case Instruction::BitCast: 3163 // BitCast is always a noop, and we can handle it as long as it is 3164 // int->int or pointer->pointer (we don't want int<->fp or something). 3165 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3166 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3167 // Don't touch identity bitcasts. These were probably put here by LSR, 3168 // and we don't want to mess around with them. Assume it knows what it 3169 // is doing. 3170 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3171 return matchAddr(AddrInst->getOperand(0), Depth); 3172 return false; 3173 case Instruction::AddrSpaceCast: { 3174 unsigned SrcAS 3175 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3176 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3177 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3178 return matchAddr(AddrInst->getOperand(0), Depth); 3179 return false; 3180 } 3181 case Instruction::Add: { 3182 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3183 ExtAddrMode BackupAddrMode = AddrMode; 3184 unsigned OldSize = AddrModeInsts.size(); 3185 // Start a transaction at this point. 3186 // The LHS may match but not the RHS. 3187 // Therefore, we need a higher level restoration point to undo partially 3188 // matched operation. 3189 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3190 TPT.getRestorationPoint(); 3191 3192 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3193 matchAddr(AddrInst->getOperand(0), Depth+1)) 3194 return true; 3195 3196 // Restore the old addr mode info. 3197 AddrMode = BackupAddrMode; 3198 AddrModeInsts.resize(OldSize); 3199 TPT.rollback(LastKnownGood); 3200 3201 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3202 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3203 matchAddr(AddrInst->getOperand(1), Depth+1)) 3204 return true; 3205 3206 // Otherwise we definitely can't merge the ADD in. 3207 AddrMode = BackupAddrMode; 3208 AddrModeInsts.resize(OldSize); 3209 TPT.rollback(LastKnownGood); 3210 break; 3211 } 3212 //case Instruction::Or: 3213 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3214 //break; 3215 case Instruction::Mul: 3216 case Instruction::Shl: { 3217 // Can only handle X*C and X << C. 3218 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3219 if (!RHS) 3220 return false; 3221 int64_t Scale = RHS->getSExtValue(); 3222 if (Opcode == Instruction::Shl) 3223 Scale = 1LL << Scale; 3224 3225 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3226 } 3227 case Instruction::GetElementPtr: { 3228 // Scan the GEP. We check it if it contains constant offsets and at most 3229 // one variable offset. 3230 int VariableOperand = -1; 3231 unsigned VariableScale = 0; 3232 3233 int64_t ConstantOffset = 0; 3234 gep_type_iterator GTI = gep_type_begin(AddrInst); 3235 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3236 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3237 const StructLayout *SL = DL.getStructLayout(STy); 3238 unsigned Idx = 3239 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3240 ConstantOffset += SL->getElementOffset(Idx); 3241 } else { 3242 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3243 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3244 ConstantOffset += CI->getSExtValue()*TypeSize; 3245 } else if (TypeSize) { // Scales of zero don't do anything. 3246 // We only allow one variable index at the moment. 3247 if (VariableOperand != -1) 3248 return false; 3249 3250 // Remember the variable index. 3251 VariableOperand = i; 3252 VariableScale = TypeSize; 3253 } 3254 } 3255 } 3256 3257 // A common case is for the GEP to only do a constant offset. In this case, 3258 // just add it to the disp field and check validity. 3259 if (VariableOperand == -1) { 3260 AddrMode.BaseOffs += ConstantOffset; 3261 if (ConstantOffset == 0 || 3262 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3263 // Check to see if we can fold the base pointer in too. 3264 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3265 return true; 3266 } 3267 AddrMode.BaseOffs -= ConstantOffset; 3268 return false; 3269 } 3270 3271 // Save the valid addressing mode in case we can't match. 3272 ExtAddrMode BackupAddrMode = AddrMode; 3273 unsigned OldSize = AddrModeInsts.size(); 3274 3275 // See if the scale and offset amount is valid for this target. 3276 AddrMode.BaseOffs += ConstantOffset; 3277 3278 // Match the base operand of the GEP. 3279 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3280 // If it couldn't be matched, just stuff the value in a register. 3281 if (AddrMode.HasBaseReg) { 3282 AddrMode = BackupAddrMode; 3283 AddrModeInsts.resize(OldSize); 3284 return false; 3285 } 3286 AddrMode.HasBaseReg = true; 3287 AddrMode.BaseReg = AddrInst->getOperand(0); 3288 } 3289 3290 // Match the remaining variable portion of the GEP. 3291 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3292 Depth)) { 3293 // If it couldn't be matched, try stuffing the base into a register 3294 // instead of matching it, and retrying the match of the scale. 3295 AddrMode = BackupAddrMode; 3296 AddrModeInsts.resize(OldSize); 3297 if (AddrMode.HasBaseReg) 3298 return false; 3299 AddrMode.HasBaseReg = true; 3300 AddrMode.BaseReg = AddrInst->getOperand(0); 3301 AddrMode.BaseOffs += ConstantOffset; 3302 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3303 VariableScale, Depth)) { 3304 // If even that didn't work, bail. 3305 AddrMode = BackupAddrMode; 3306 AddrModeInsts.resize(OldSize); 3307 return false; 3308 } 3309 } 3310 3311 return true; 3312 } 3313 case Instruction::SExt: 3314 case Instruction::ZExt: { 3315 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3316 if (!Ext) 3317 return false; 3318 3319 // Try to move this ext out of the way of the addressing mode. 3320 // Ask for a method for doing so. 3321 TypePromotionHelper::Action TPH = 3322 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3323 if (!TPH) 3324 return false; 3325 3326 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3327 TPT.getRestorationPoint(); 3328 unsigned CreatedInstsCost = 0; 3329 unsigned ExtCost = !TLI.isExtFree(Ext); 3330 Value *PromotedOperand = 3331 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3332 // SExt has been moved away. 3333 // Thus either it will be rematched later in the recursive calls or it is 3334 // gone. Anyway, we must not fold it into the addressing mode at this point. 3335 // E.g., 3336 // op = add opnd, 1 3337 // idx = ext op 3338 // addr = gep base, idx 3339 // is now: 3340 // promotedOpnd = ext opnd <- no match here 3341 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3342 // addr = gep base, op <- match 3343 if (MovedAway) 3344 *MovedAway = true; 3345 3346 assert(PromotedOperand && 3347 "TypePromotionHelper should have filtered out those cases"); 3348 3349 ExtAddrMode BackupAddrMode = AddrMode; 3350 unsigned OldSize = AddrModeInsts.size(); 3351 3352 if (!matchAddr(PromotedOperand, Depth) || 3353 // The total of the new cost is equal to the cost of the created 3354 // instructions. 3355 // The total of the old cost is equal to the cost of the extension plus 3356 // what we have saved in the addressing mode. 3357 !isPromotionProfitable(CreatedInstsCost, 3358 ExtCost + (AddrModeInsts.size() - OldSize), 3359 PromotedOperand)) { 3360 AddrMode = BackupAddrMode; 3361 AddrModeInsts.resize(OldSize); 3362 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3363 TPT.rollback(LastKnownGood); 3364 return false; 3365 } 3366 return true; 3367 } 3368 } 3369 return false; 3370 } 3371 3372 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3373 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3374 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3375 /// for the target. 3376 /// 3377 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3378 // Start a transaction at this point that we will rollback if the matching 3379 // fails. 3380 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3381 TPT.getRestorationPoint(); 3382 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3383 // Fold in immediates if legal for the target. 3384 AddrMode.BaseOffs += CI->getSExtValue(); 3385 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3386 return true; 3387 AddrMode.BaseOffs -= CI->getSExtValue(); 3388 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3389 // If this is a global variable, try to fold it into the addressing mode. 3390 if (!AddrMode.BaseGV) { 3391 AddrMode.BaseGV = GV; 3392 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3393 return true; 3394 AddrMode.BaseGV = nullptr; 3395 } 3396 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3397 ExtAddrMode BackupAddrMode = AddrMode; 3398 unsigned OldSize = AddrModeInsts.size(); 3399 3400 // Check to see if it is possible to fold this operation. 3401 bool MovedAway = false; 3402 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3403 // This instruction may have been moved away. If so, there is nothing 3404 // to check here. 3405 if (MovedAway) 3406 return true; 3407 // Okay, it's possible to fold this. Check to see if it is actually 3408 // *profitable* to do so. We use a simple cost model to avoid increasing 3409 // register pressure too much. 3410 if (I->hasOneUse() || 3411 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3412 AddrModeInsts.push_back(I); 3413 return true; 3414 } 3415 3416 // It isn't profitable to do this, roll back. 3417 //cerr << "NOT FOLDING: " << *I; 3418 AddrMode = BackupAddrMode; 3419 AddrModeInsts.resize(OldSize); 3420 TPT.rollback(LastKnownGood); 3421 } 3422 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3423 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3424 return true; 3425 TPT.rollback(LastKnownGood); 3426 } else if (isa<ConstantPointerNull>(Addr)) { 3427 // Null pointer gets folded without affecting the addressing mode. 3428 return true; 3429 } 3430 3431 // Worse case, the target should support [reg] addressing modes. :) 3432 if (!AddrMode.HasBaseReg) { 3433 AddrMode.HasBaseReg = true; 3434 AddrMode.BaseReg = Addr; 3435 // Still check for legality in case the target supports [imm] but not [i+r]. 3436 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3437 return true; 3438 AddrMode.HasBaseReg = false; 3439 AddrMode.BaseReg = nullptr; 3440 } 3441 3442 // If the base register is already taken, see if we can do [r+r]. 3443 if (AddrMode.Scale == 0) { 3444 AddrMode.Scale = 1; 3445 AddrMode.ScaledReg = Addr; 3446 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3447 return true; 3448 AddrMode.Scale = 0; 3449 AddrMode.ScaledReg = nullptr; 3450 } 3451 // Couldn't match. 3452 TPT.rollback(LastKnownGood); 3453 return false; 3454 } 3455 3456 /// Check to see if all uses of OpVal by the specified inline asm call are due 3457 /// to memory operands. If so, return true, otherwise return false. 3458 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3459 const TargetMachine &TM) { 3460 const Function *F = CI->getParent()->getParent(); 3461 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3462 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3463 TargetLowering::AsmOperandInfoVector TargetConstraints = 3464 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3465 ImmutableCallSite(CI)); 3466 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3467 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3468 3469 // Compute the constraint code and ConstraintType to use. 3470 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3471 3472 // If this asm operand is our Value*, and if it isn't an indirect memory 3473 // operand, we can't fold it! 3474 if (OpInfo.CallOperandVal == OpVal && 3475 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3476 !OpInfo.isIndirect)) 3477 return false; 3478 } 3479 3480 return true; 3481 } 3482 3483 /// Recursively walk all the uses of I until we find a memory use. 3484 /// If we find an obviously non-foldable instruction, return true. 3485 /// Add the ultimately found memory instructions to MemoryUses. 3486 static bool FindAllMemoryUses( 3487 Instruction *I, 3488 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3489 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3490 // If we already considered this instruction, we're done. 3491 if (!ConsideredInsts.insert(I).second) 3492 return false; 3493 3494 // If this is an obviously unfoldable instruction, bail out. 3495 if (!MightBeFoldableInst(I)) 3496 return true; 3497 3498 const bool OptSize = I->getFunction()->optForSize(); 3499 3500 // Loop over all the uses, recursively processing them. 3501 for (Use &U : I->uses()) { 3502 Instruction *UserI = cast<Instruction>(U.getUser()); 3503 3504 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3505 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3506 continue; 3507 } 3508 3509 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3510 unsigned opNo = U.getOperandNo(); 3511 if (opNo == 0) return true; // Storing addr, not into addr. 3512 MemoryUses.push_back(std::make_pair(SI, opNo)); 3513 continue; 3514 } 3515 3516 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3517 // If this is a cold call, we can sink the addressing calculation into 3518 // the cold path. See optimizeCallInst 3519 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3520 continue; 3521 3522 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3523 if (!IA) return true; 3524 3525 // If this is a memory operand, we're cool, otherwise bail out. 3526 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3527 return true; 3528 continue; 3529 } 3530 3531 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3532 return true; 3533 } 3534 3535 return false; 3536 } 3537 3538 /// Return true if Val is already known to be live at the use site that we're 3539 /// folding it into. If so, there is no cost to include it in the addressing 3540 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3541 /// instruction already. 3542 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3543 Value *KnownLive2) { 3544 // If Val is either of the known-live values, we know it is live! 3545 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3546 return true; 3547 3548 // All values other than instructions and arguments (e.g. constants) are live. 3549 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3550 3551 // If Val is a constant sized alloca in the entry block, it is live, this is 3552 // true because it is just a reference to the stack/frame pointer, which is 3553 // live for the whole function. 3554 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3555 if (AI->isStaticAlloca()) 3556 return true; 3557 3558 // Check to see if this value is already used in the memory instruction's 3559 // block. If so, it's already live into the block at the very least, so we 3560 // can reasonably fold it. 3561 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3562 } 3563 3564 /// It is possible for the addressing mode of the machine to fold the specified 3565 /// instruction into a load or store that ultimately uses it. 3566 /// However, the specified instruction has multiple uses. 3567 /// Given this, it may actually increase register pressure to fold it 3568 /// into the load. For example, consider this code: 3569 /// 3570 /// X = ... 3571 /// Y = X+1 3572 /// use(Y) -> nonload/store 3573 /// Z = Y+1 3574 /// load Z 3575 /// 3576 /// In this case, Y has multiple uses, and can be folded into the load of Z 3577 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3578 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3579 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3580 /// number of computations either. 3581 /// 3582 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3583 /// X was live across 'load Z' for other reasons, we actually *would* want to 3584 /// fold the addressing mode in the Z case. This would make Y die earlier. 3585 bool AddressingModeMatcher:: 3586 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3587 ExtAddrMode &AMAfter) { 3588 if (IgnoreProfitability) return true; 3589 3590 // AMBefore is the addressing mode before this instruction was folded into it, 3591 // and AMAfter is the addressing mode after the instruction was folded. Get 3592 // the set of registers referenced by AMAfter and subtract out those 3593 // referenced by AMBefore: this is the set of values which folding in this 3594 // address extends the lifetime of. 3595 // 3596 // Note that there are only two potential values being referenced here, 3597 // BaseReg and ScaleReg (global addresses are always available, as are any 3598 // folded immediates). 3599 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3600 3601 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3602 // lifetime wasn't extended by adding this instruction. 3603 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3604 BaseReg = nullptr; 3605 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3606 ScaledReg = nullptr; 3607 3608 // If folding this instruction (and it's subexprs) didn't extend any live 3609 // ranges, we're ok with it. 3610 if (!BaseReg && !ScaledReg) 3611 return true; 3612 3613 // If all uses of this instruction can have the address mode sunk into them, 3614 // we can remove the addressing mode and effectively trade one live register 3615 // for another (at worst.) In this context, folding an addressing mode into 3616 // the use is just a particularly nice way of sinking it. 3617 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3618 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3619 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3620 return false; // Has a non-memory, non-foldable use! 3621 3622 // Now that we know that all uses of this instruction are part of a chain of 3623 // computation involving only operations that could theoretically be folded 3624 // into a memory use, loop over each of these memory operation uses and see 3625 // if they could *actually* fold the instruction. The assumption is that 3626 // addressing modes are cheap and that duplicating the computation involved 3627 // many times is worthwhile, even on a fastpath. For sinking candidates 3628 // (i.e. cold call sites), this serves as a way to prevent excessive code 3629 // growth since most architectures have some reasonable small and fast way to 3630 // compute an effective address. (i.e LEA on x86) 3631 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3632 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3633 Instruction *User = MemoryUses[i].first; 3634 unsigned OpNo = MemoryUses[i].second; 3635 3636 // Get the access type of this use. If the use isn't a pointer, we don't 3637 // know what it accesses. 3638 Value *Address = User->getOperand(OpNo); 3639 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3640 if (!AddrTy) 3641 return false; 3642 Type *AddressAccessTy = AddrTy->getElementType(); 3643 unsigned AS = AddrTy->getAddressSpace(); 3644 3645 // Do a match against the root of this address, ignoring profitability. This 3646 // will tell us if the addressing mode for the memory operation will 3647 // *actually* cover the shared instruction. 3648 ExtAddrMode Result; 3649 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3650 TPT.getRestorationPoint(); 3651 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3652 MemoryInst, Result, InsertedInsts, 3653 PromotedInsts, TPT); 3654 Matcher.IgnoreProfitability = true; 3655 bool Success = Matcher.matchAddr(Address, 0); 3656 (void)Success; assert(Success && "Couldn't select *anything*?"); 3657 3658 // The match was to check the profitability, the changes made are not 3659 // part of the original matcher. Therefore, they should be dropped 3660 // otherwise the original matcher will not present the right state. 3661 TPT.rollback(LastKnownGood); 3662 3663 // If the match didn't cover I, then it won't be shared by it. 3664 if (!is_contained(MatchedAddrModeInsts, I)) 3665 return false; 3666 3667 MatchedAddrModeInsts.clear(); 3668 } 3669 3670 return true; 3671 } 3672 3673 } // end anonymous namespace 3674 3675 /// Return true if the specified values are defined in a 3676 /// different basic block than BB. 3677 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3678 if (Instruction *I = dyn_cast<Instruction>(V)) 3679 return I->getParent() != BB; 3680 return false; 3681 } 3682 3683 /// Sink addressing mode computation immediate before MemoryInst if doing so 3684 /// can be done without increasing register pressure. The need for the 3685 /// register pressure constraint means this can end up being an all or nothing 3686 /// decision for all uses of the same addressing computation. 3687 /// 3688 /// Load and Store Instructions often have addressing modes that can do 3689 /// significant amounts of computation. As such, instruction selection will try 3690 /// to get the load or store to do as much computation as possible for the 3691 /// program. The problem is that isel can only see within a single block. As 3692 /// such, we sink as much legal addressing mode work into the block as possible. 3693 /// 3694 /// This method is used to optimize both load/store and inline asms with memory 3695 /// operands. It's also used to sink addressing computations feeding into cold 3696 /// call sites into their (cold) basic block. 3697 /// 3698 /// The motivation for handling sinking into cold blocks is that doing so can 3699 /// both enable other address mode sinking (by satisfying the register pressure 3700 /// constraint above), and reduce register pressure globally (by removing the 3701 /// addressing mode computation from the fast path entirely.). 3702 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3703 Type *AccessTy, unsigned AddrSpace) { 3704 Value *Repl = Addr; 3705 3706 // Try to collapse single-value PHI nodes. This is necessary to undo 3707 // unprofitable PRE transformations. 3708 SmallVector<Value*, 8> worklist; 3709 SmallPtrSet<Value*, 16> Visited; 3710 worklist.push_back(Addr); 3711 3712 // Use a worklist to iteratively look through PHI nodes, and ensure that 3713 // the addressing mode obtained from the non-PHI roots of the graph 3714 // are equivalent. 3715 Value *Consensus = nullptr; 3716 unsigned NumUsesConsensus = 0; 3717 bool IsNumUsesConsensusValid = false; 3718 SmallVector<Instruction*, 16> AddrModeInsts; 3719 ExtAddrMode AddrMode; 3720 TypePromotionTransaction TPT; 3721 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3722 TPT.getRestorationPoint(); 3723 while (!worklist.empty()) { 3724 Value *V = worklist.back(); 3725 worklist.pop_back(); 3726 3727 // Break use-def graph loops. 3728 if (!Visited.insert(V).second) { 3729 Consensus = nullptr; 3730 break; 3731 } 3732 3733 // For a PHI node, push all of its incoming values. 3734 if (PHINode *P = dyn_cast<PHINode>(V)) { 3735 for (Value *IncValue : P->incoming_values()) 3736 worklist.push_back(IncValue); 3737 continue; 3738 } 3739 3740 // For non-PHIs, determine the addressing mode being computed. Note that 3741 // the result may differ depending on what other uses our candidate 3742 // addressing instructions might have. 3743 SmallVector<Instruction*, 16> NewAddrModeInsts; 3744 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3745 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3746 InsertedInsts, PromotedInsts, TPT); 3747 3748 // This check is broken into two cases with very similar code to avoid using 3749 // getNumUses() as much as possible. Some values have a lot of uses, so 3750 // calling getNumUses() unconditionally caused a significant compile-time 3751 // regression. 3752 if (!Consensus) { 3753 Consensus = V; 3754 AddrMode = NewAddrMode; 3755 AddrModeInsts = NewAddrModeInsts; 3756 continue; 3757 } else if (NewAddrMode == AddrMode) { 3758 if (!IsNumUsesConsensusValid) { 3759 NumUsesConsensus = Consensus->getNumUses(); 3760 IsNumUsesConsensusValid = true; 3761 } 3762 3763 // Ensure that the obtained addressing mode is equivalent to that obtained 3764 // for all other roots of the PHI traversal. Also, when choosing one 3765 // such root as representative, select the one with the most uses in order 3766 // to keep the cost modeling heuristics in AddressingModeMatcher 3767 // applicable. 3768 unsigned NumUses = V->getNumUses(); 3769 if (NumUses > NumUsesConsensus) { 3770 Consensus = V; 3771 NumUsesConsensus = NumUses; 3772 AddrModeInsts = NewAddrModeInsts; 3773 } 3774 continue; 3775 } 3776 3777 Consensus = nullptr; 3778 break; 3779 } 3780 3781 // If the addressing mode couldn't be determined, or if multiple different 3782 // ones were determined, bail out now. 3783 if (!Consensus) { 3784 TPT.rollback(LastKnownGood); 3785 return false; 3786 } 3787 TPT.commit(); 3788 3789 // Check to see if any of the instructions supersumed by this addr mode are 3790 // non-local to I's BB. 3791 bool AnyNonLocal = false; 3792 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3793 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3794 AnyNonLocal = true; 3795 break; 3796 } 3797 } 3798 3799 // If all the instructions matched are already in this BB, don't do anything. 3800 if (!AnyNonLocal) { 3801 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3802 return false; 3803 } 3804 3805 // Insert this computation right after this user. Since our caller is 3806 // scanning from the top of the BB to the bottom, reuse of the expr are 3807 // guaranteed to happen later. 3808 IRBuilder<> Builder(MemoryInst); 3809 3810 // Now that we determined the addressing expression we want to use and know 3811 // that we have to sink it into this block. Check to see if we have already 3812 // done this for some other load/store instr in this block. If so, reuse the 3813 // computation. 3814 Value *&SunkAddr = SunkAddrs[Addr]; 3815 if (SunkAddr) { 3816 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3817 << *MemoryInst << "\n"); 3818 if (SunkAddr->getType() != Addr->getType()) 3819 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3820 } else if (AddrSinkUsingGEPs || 3821 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3822 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3823 ->useAA())) { 3824 // By default, we use the GEP-based method when AA is used later. This 3825 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3826 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3827 << *MemoryInst << "\n"); 3828 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3829 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3830 3831 // First, find the pointer. 3832 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3833 ResultPtr = AddrMode.BaseReg; 3834 AddrMode.BaseReg = nullptr; 3835 } 3836 3837 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3838 // We can't add more than one pointer together, nor can we scale a 3839 // pointer (both of which seem meaningless). 3840 if (ResultPtr || AddrMode.Scale != 1) 3841 return false; 3842 3843 ResultPtr = AddrMode.ScaledReg; 3844 AddrMode.Scale = 0; 3845 } 3846 3847 if (AddrMode.BaseGV) { 3848 if (ResultPtr) 3849 return false; 3850 3851 ResultPtr = AddrMode.BaseGV; 3852 } 3853 3854 // If the real base value actually came from an inttoptr, then the matcher 3855 // will look through it and provide only the integer value. In that case, 3856 // use it here. 3857 if (!ResultPtr && AddrMode.BaseReg) { 3858 ResultPtr = 3859 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3860 AddrMode.BaseReg = nullptr; 3861 } else if (!ResultPtr && AddrMode.Scale == 1) { 3862 ResultPtr = 3863 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3864 AddrMode.Scale = 0; 3865 } 3866 3867 if (!ResultPtr && 3868 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3869 SunkAddr = Constant::getNullValue(Addr->getType()); 3870 } else if (!ResultPtr) { 3871 return false; 3872 } else { 3873 Type *I8PtrTy = 3874 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3875 Type *I8Ty = Builder.getInt8Ty(); 3876 3877 // Start with the base register. Do this first so that subsequent address 3878 // matching finds it last, which will prevent it from trying to match it 3879 // as the scaled value in case it happens to be a mul. That would be 3880 // problematic if we've sunk a different mul for the scale, because then 3881 // we'd end up sinking both muls. 3882 if (AddrMode.BaseReg) { 3883 Value *V = AddrMode.BaseReg; 3884 if (V->getType() != IntPtrTy) 3885 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3886 3887 ResultIndex = V; 3888 } 3889 3890 // Add the scale value. 3891 if (AddrMode.Scale) { 3892 Value *V = AddrMode.ScaledReg; 3893 if (V->getType() == IntPtrTy) { 3894 // done. 3895 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3896 cast<IntegerType>(V->getType())->getBitWidth()) { 3897 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3898 } else { 3899 // It is only safe to sign extend the BaseReg if we know that the math 3900 // required to create it did not overflow before we extend it. Since 3901 // the original IR value was tossed in favor of a constant back when 3902 // the AddrMode was created we need to bail out gracefully if widths 3903 // do not match instead of extending it. 3904 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3905 if (I && (ResultIndex != AddrMode.BaseReg)) 3906 I->eraseFromParent(); 3907 return false; 3908 } 3909 3910 if (AddrMode.Scale != 1) 3911 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3912 "sunkaddr"); 3913 if (ResultIndex) 3914 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3915 else 3916 ResultIndex = V; 3917 } 3918 3919 // Add in the Base Offset if present. 3920 if (AddrMode.BaseOffs) { 3921 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3922 if (ResultIndex) { 3923 // We need to add this separately from the scale above to help with 3924 // SDAG consecutive load/store merging. 3925 if (ResultPtr->getType() != I8PtrTy) 3926 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3927 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3928 } 3929 3930 ResultIndex = V; 3931 } 3932 3933 if (!ResultIndex) { 3934 SunkAddr = ResultPtr; 3935 } else { 3936 if (ResultPtr->getType() != I8PtrTy) 3937 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3938 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3939 } 3940 3941 if (SunkAddr->getType() != Addr->getType()) 3942 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3943 } 3944 } else { 3945 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3946 << *MemoryInst << "\n"); 3947 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3948 Value *Result = nullptr; 3949 3950 // Start with the base register. Do this first so that subsequent address 3951 // matching finds it last, which will prevent it from trying to match it 3952 // as the scaled value in case it happens to be a mul. That would be 3953 // problematic if we've sunk a different mul for the scale, because then 3954 // we'd end up sinking both muls. 3955 if (AddrMode.BaseReg) { 3956 Value *V = AddrMode.BaseReg; 3957 if (V->getType()->isPointerTy()) 3958 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3959 if (V->getType() != IntPtrTy) 3960 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3961 Result = V; 3962 } 3963 3964 // Add the scale value. 3965 if (AddrMode.Scale) { 3966 Value *V = AddrMode.ScaledReg; 3967 if (V->getType() == IntPtrTy) { 3968 // done. 3969 } else if (V->getType()->isPointerTy()) { 3970 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3971 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3972 cast<IntegerType>(V->getType())->getBitWidth()) { 3973 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3974 } else { 3975 // It is only safe to sign extend the BaseReg if we know that the math 3976 // required to create it did not overflow before we extend it. Since 3977 // the original IR value was tossed in favor of a constant back when 3978 // the AddrMode was created we need to bail out gracefully if widths 3979 // do not match instead of extending it. 3980 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3981 if (I && (Result != AddrMode.BaseReg)) 3982 I->eraseFromParent(); 3983 return false; 3984 } 3985 if (AddrMode.Scale != 1) 3986 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3987 "sunkaddr"); 3988 if (Result) 3989 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3990 else 3991 Result = V; 3992 } 3993 3994 // Add in the BaseGV if present. 3995 if (AddrMode.BaseGV) { 3996 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3997 if (Result) 3998 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3999 else 4000 Result = V; 4001 } 4002 4003 // Add in the Base Offset if present. 4004 if (AddrMode.BaseOffs) { 4005 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4006 if (Result) 4007 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4008 else 4009 Result = V; 4010 } 4011 4012 if (!Result) 4013 SunkAddr = Constant::getNullValue(Addr->getType()); 4014 else 4015 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4016 } 4017 4018 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4019 4020 // If we have no uses, recursively delete the value and all dead instructions 4021 // using it. 4022 if (Repl->use_empty()) { 4023 // This can cause recursive deletion, which can invalidate our iterator. 4024 // Use a WeakVH to hold onto it in case this happens. 4025 Value *CurValue = &*CurInstIterator; 4026 WeakVH IterHandle(CurValue); 4027 BasicBlock *BB = CurInstIterator->getParent(); 4028 4029 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4030 4031 if (IterHandle != CurValue) { 4032 // If the iterator instruction was recursively deleted, start over at the 4033 // start of the block. 4034 CurInstIterator = BB->begin(); 4035 SunkAddrs.clear(); 4036 } 4037 } 4038 ++NumMemoryInsts; 4039 return true; 4040 } 4041 4042 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4043 /// address computing into the block when possible / profitable. 4044 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4045 bool MadeChange = false; 4046 4047 const TargetRegisterInfo *TRI = 4048 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4049 TargetLowering::AsmOperandInfoVector TargetConstraints = 4050 TLI->ParseConstraints(*DL, TRI, CS); 4051 unsigned ArgNo = 0; 4052 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4053 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4054 4055 // Compute the constraint code and ConstraintType to use. 4056 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4057 4058 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4059 OpInfo.isIndirect) { 4060 Value *OpVal = CS->getArgOperand(ArgNo++); 4061 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4062 } else if (OpInfo.Type == InlineAsm::isInput) 4063 ArgNo++; 4064 } 4065 4066 return MadeChange; 4067 } 4068 4069 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4070 /// sign extensions. 4071 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4072 assert(!Inst->use_empty() && "Input must have at least one use"); 4073 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4074 bool IsSExt = isa<SExtInst>(FirstUser); 4075 Type *ExtTy = FirstUser->getType(); 4076 for (const User *U : Inst->users()) { 4077 const Instruction *UI = cast<Instruction>(U); 4078 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4079 return false; 4080 Type *CurTy = UI->getType(); 4081 // Same input and output types: Same instruction after CSE. 4082 if (CurTy == ExtTy) 4083 continue; 4084 4085 // If IsSExt is true, we are in this situation: 4086 // a = Inst 4087 // b = sext ty1 a to ty2 4088 // c = sext ty1 a to ty3 4089 // Assuming ty2 is shorter than ty3, this could be turned into: 4090 // a = Inst 4091 // b = sext ty1 a to ty2 4092 // c = sext ty2 b to ty3 4093 // However, the last sext is not free. 4094 if (IsSExt) 4095 return false; 4096 4097 // This is a ZExt, maybe this is free to extend from one type to another. 4098 // In that case, we would not account for a different use. 4099 Type *NarrowTy; 4100 Type *LargeTy; 4101 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4102 CurTy->getScalarType()->getIntegerBitWidth()) { 4103 NarrowTy = CurTy; 4104 LargeTy = ExtTy; 4105 } else { 4106 NarrowTy = ExtTy; 4107 LargeTy = CurTy; 4108 } 4109 4110 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4111 return false; 4112 } 4113 // All uses are the same or can be derived from one another for free. 4114 return true; 4115 } 4116 4117 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4118 /// load instruction. 4119 /// If an ext(load) can be formed, it is returned via \p LI for the load 4120 /// and \p Inst for the extension. 4121 /// Otherwise LI == nullptr and Inst == nullptr. 4122 /// When some promotion happened, \p TPT contains the proper state to 4123 /// revert them. 4124 /// 4125 /// \return true when promoting was necessary to expose the ext(load) 4126 /// opportunity, false otherwise. 4127 /// 4128 /// Example: 4129 /// \code 4130 /// %ld = load i32* %addr 4131 /// %add = add nuw i32 %ld, 4 4132 /// %zext = zext i32 %add to i64 4133 /// \endcode 4134 /// => 4135 /// \code 4136 /// %ld = load i32* %addr 4137 /// %zext = zext i32 %ld to i64 4138 /// %add = add nuw i64 %zext, 4 4139 /// \encode 4140 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4141 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4142 LoadInst *&LI, Instruction *&Inst, 4143 const SmallVectorImpl<Instruction *> &Exts, 4144 unsigned CreatedInstsCost = 0) { 4145 // Iterate over all the extensions to see if one form an ext(load). 4146 for (auto I : Exts) { 4147 // Check if we directly have ext(load). 4148 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4149 Inst = I; 4150 // No promotion happened here. 4151 return false; 4152 } 4153 // Check whether or not we want to do any promotion. 4154 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4155 continue; 4156 // Get the action to perform the promotion. 4157 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4158 I, InsertedInsts, *TLI, PromotedInsts); 4159 // Check if we can promote. 4160 if (!TPH) 4161 continue; 4162 // Save the current state. 4163 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4164 TPT.getRestorationPoint(); 4165 SmallVector<Instruction *, 4> NewExts; 4166 unsigned NewCreatedInstsCost = 0; 4167 unsigned ExtCost = !TLI->isExtFree(I); 4168 // Promote. 4169 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4170 &NewExts, nullptr, *TLI); 4171 assert(PromotedVal && 4172 "TypePromotionHelper should have filtered out those cases"); 4173 4174 // We would be able to merge only one extension in a load. 4175 // Therefore, if we have more than 1 new extension we heuristically 4176 // cut this search path, because it means we degrade the code quality. 4177 // With exactly 2, the transformation is neutral, because we will merge 4178 // one extension but leave one. However, we optimistically keep going, 4179 // because the new extension may be removed too. 4180 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4181 TotalCreatedInstsCost -= ExtCost; 4182 if (!StressExtLdPromotion && 4183 (TotalCreatedInstsCost > 1 || 4184 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4185 // The promotion is not profitable, rollback to the previous state. 4186 TPT.rollback(LastKnownGood); 4187 continue; 4188 } 4189 // The promotion is profitable. 4190 // Check if it exposes an ext(load). 4191 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4192 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4193 // If we have created a new extension, i.e., now we have two 4194 // extensions. We must make sure one of them is merged with 4195 // the load, otherwise we may degrade the code quality. 4196 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4197 // Promotion happened. 4198 return true; 4199 // If this does not help to expose an ext(load) then, rollback. 4200 TPT.rollback(LastKnownGood); 4201 } 4202 // None of the extension can form an ext(load). 4203 LI = nullptr; 4204 Inst = nullptr; 4205 return false; 4206 } 4207 4208 /// Move a zext or sext fed by a load into the same basic block as the load, 4209 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4210 /// extend into the load. 4211 /// \p I[in/out] the extension may be modified during the process if some 4212 /// promotions apply. 4213 /// 4214 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4215 // Try to promote a chain of computation if it allows to form 4216 // an extended load. 4217 TypePromotionTransaction TPT; 4218 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4219 TPT.getRestorationPoint(); 4220 SmallVector<Instruction *, 1> Exts; 4221 Exts.push_back(I); 4222 // Look for a load being extended. 4223 LoadInst *LI = nullptr; 4224 Instruction *OldExt = I; 4225 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4226 if (!LI || !I) { 4227 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4228 "the code must remain the same"); 4229 I = OldExt; 4230 return false; 4231 } 4232 4233 // If they're already in the same block, there's nothing to do. 4234 // Make the cheap checks first if we did not promote. 4235 // If we promoted, we need to check if it is indeed profitable. 4236 if (!HasPromoted && LI->getParent() == I->getParent()) 4237 return false; 4238 4239 EVT VT = TLI->getValueType(*DL, I->getType()); 4240 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4241 4242 // If the load has other users and the truncate is not free, this probably 4243 // isn't worthwhile. 4244 if (!LI->hasOneUse() && TLI && 4245 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4246 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4247 I = OldExt; 4248 TPT.rollback(LastKnownGood); 4249 return false; 4250 } 4251 4252 // Check whether the target supports casts folded into loads. 4253 unsigned LType; 4254 if (isa<ZExtInst>(I)) 4255 LType = ISD::ZEXTLOAD; 4256 else { 4257 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4258 LType = ISD::SEXTLOAD; 4259 } 4260 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4261 I = OldExt; 4262 TPT.rollback(LastKnownGood); 4263 return false; 4264 } 4265 4266 // Move the extend into the same block as the load, so that SelectionDAG 4267 // can fold it. 4268 TPT.commit(); 4269 I->removeFromParent(); 4270 I->insertAfter(LI); 4271 ++NumExtsMoved; 4272 return true; 4273 } 4274 4275 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4276 BasicBlock *DefBB = I->getParent(); 4277 4278 // If the result of a {s|z}ext and its source are both live out, rewrite all 4279 // other uses of the source with result of extension. 4280 Value *Src = I->getOperand(0); 4281 if (Src->hasOneUse()) 4282 return false; 4283 4284 // Only do this xform if truncating is free. 4285 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4286 return false; 4287 4288 // Only safe to perform the optimization if the source is also defined in 4289 // this block. 4290 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4291 return false; 4292 4293 bool DefIsLiveOut = false; 4294 for (User *U : I->users()) { 4295 Instruction *UI = cast<Instruction>(U); 4296 4297 // Figure out which BB this ext is used in. 4298 BasicBlock *UserBB = UI->getParent(); 4299 if (UserBB == DefBB) continue; 4300 DefIsLiveOut = true; 4301 break; 4302 } 4303 if (!DefIsLiveOut) 4304 return false; 4305 4306 // Make sure none of the uses are PHI nodes. 4307 for (User *U : Src->users()) { 4308 Instruction *UI = cast<Instruction>(U); 4309 BasicBlock *UserBB = UI->getParent(); 4310 if (UserBB == DefBB) continue; 4311 // Be conservative. We don't want this xform to end up introducing 4312 // reloads just before load / store instructions. 4313 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4314 return false; 4315 } 4316 4317 // InsertedTruncs - Only insert one trunc in each block once. 4318 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4319 4320 bool MadeChange = false; 4321 for (Use &U : Src->uses()) { 4322 Instruction *User = cast<Instruction>(U.getUser()); 4323 4324 // Figure out which BB this ext is used in. 4325 BasicBlock *UserBB = User->getParent(); 4326 if (UserBB == DefBB) continue; 4327 4328 // Both src and def are live in this block. Rewrite the use. 4329 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4330 4331 if (!InsertedTrunc) { 4332 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4333 assert(InsertPt != UserBB->end()); 4334 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4335 InsertedInsts.insert(InsertedTrunc); 4336 } 4337 4338 // Replace a use of the {s|z}ext source with a use of the result. 4339 U = InsertedTrunc; 4340 ++NumExtUses; 4341 MadeChange = true; 4342 } 4343 4344 return MadeChange; 4345 } 4346 4347 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4348 // just after the load if the target can fold this into one extload instruction, 4349 // with the hope of eliminating some of the other later "and" instructions using 4350 // the loaded value. "and"s that are made trivially redundant by the insertion 4351 // of the new "and" are removed by this function, while others (e.g. those whose 4352 // path from the load goes through a phi) are left for isel to potentially 4353 // remove. 4354 // 4355 // For example: 4356 // 4357 // b0: 4358 // x = load i32 4359 // ... 4360 // b1: 4361 // y = and x, 0xff 4362 // z = use y 4363 // 4364 // becomes: 4365 // 4366 // b0: 4367 // x = load i32 4368 // x' = and x, 0xff 4369 // ... 4370 // b1: 4371 // z = use x' 4372 // 4373 // whereas: 4374 // 4375 // b0: 4376 // x1 = load i32 4377 // ... 4378 // b1: 4379 // x2 = load i32 4380 // ... 4381 // b2: 4382 // x = phi x1, x2 4383 // y = and x, 0xff 4384 // 4385 // becomes (after a call to optimizeLoadExt for each load): 4386 // 4387 // b0: 4388 // x1 = load i32 4389 // x1' = and x1, 0xff 4390 // ... 4391 // b1: 4392 // x2 = load i32 4393 // x2' = and x2, 0xff 4394 // ... 4395 // b2: 4396 // x = phi x1', x2' 4397 // y = and x, 0xff 4398 // 4399 4400 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4401 4402 if (!Load->isSimple() || 4403 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4404 return false; 4405 4406 // Skip loads we've already transformed or have no reason to transform. 4407 if (Load->hasOneUse()) { 4408 User *LoadUser = *Load->user_begin(); 4409 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4410 !dyn_cast<PHINode>(LoadUser)) 4411 return false; 4412 } 4413 4414 // Look at all uses of Load, looking through phis, to determine how many bits 4415 // of the loaded value are needed. 4416 SmallVector<Instruction *, 8> WorkList; 4417 SmallPtrSet<Instruction *, 16> Visited; 4418 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4419 for (auto *U : Load->users()) 4420 WorkList.push_back(cast<Instruction>(U)); 4421 4422 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4423 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4424 APInt DemandBits(BitWidth, 0); 4425 APInt WidestAndBits(BitWidth, 0); 4426 4427 while (!WorkList.empty()) { 4428 Instruction *I = WorkList.back(); 4429 WorkList.pop_back(); 4430 4431 // Break use-def graph loops. 4432 if (!Visited.insert(I).second) 4433 continue; 4434 4435 // For a PHI node, push all of its users. 4436 if (auto *Phi = dyn_cast<PHINode>(I)) { 4437 for (auto *U : Phi->users()) 4438 WorkList.push_back(cast<Instruction>(U)); 4439 continue; 4440 } 4441 4442 switch (I->getOpcode()) { 4443 case llvm::Instruction::And: { 4444 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4445 if (!AndC) 4446 return false; 4447 APInt AndBits = AndC->getValue(); 4448 DemandBits |= AndBits; 4449 // Keep track of the widest and mask we see. 4450 if (AndBits.ugt(WidestAndBits)) 4451 WidestAndBits = AndBits; 4452 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4453 AndsToMaybeRemove.push_back(I); 4454 break; 4455 } 4456 4457 case llvm::Instruction::Shl: { 4458 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4459 if (!ShlC) 4460 return false; 4461 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4462 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4463 DemandBits |= ShlDemandBits; 4464 break; 4465 } 4466 4467 case llvm::Instruction::Trunc: { 4468 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4469 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4470 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4471 DemandBits |= TruncBits; 4472 break; 4473 } 4474 4475 default: 4476 return false; 4477 } 4478 } 4479 4480 uint32_t ActiveBits = DemandBits.getActiveBits(); 4481 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4482 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4483 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4484 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4485 // followed by an AND. 4486 // TODO: Look into removing this restriction by fixing backends to either 4487 // return false for isLoadExtLegal for i1 or have them select this pattern to 4488 // a single instruction. 4489 // 4490 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4491 // mask, since these are the only ands that will be removed by isel. 4492 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4493 WidestAndBits != DemandBits) 4494 return false; 4495 4496 LLVMContext &Ctx = Load->getType()->getContext(); 4497 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4498 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4499 4500 // Reject cases that won't be matched as extloads. 4501 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4502 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4503 return false; 4504 4505 IRBuilder<> Builder(Load->getNextNode()); 4506 auto *NewAnd = dyn_cast<Instruction>( 4507 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4508 4509 // Replace all uses of load with new and (except for the use of load in the 4510 // new and itself). 4511 Load->replaceAllUsesWith(NewAnd); 4512 NewAnd->setOperand(0, Load); 4513 4514 // Remove any and instructions that are now redundant. 4515 for (auto *And : AndsToMaybeRemove) 4516 // Check that the and mask is the same as the one we decided to put on the 4517 // new and. 4518 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4519 And->replaceAllUsesWith(NewAnd); 4520 if (&*CurInstIterator == And) 4521 CurInstIterator = std::next(And->getIterator()); 4522 And->eraseFromParent(); 4523 ++NumAndUses; 4524 } 4525 4526 ++NumAndsAdded; 4527 return true; 4528 } 4529 4530 /// Check if V (an operand of a select instruction) is an expensive instruction 4531 /// that is only used once. 4532 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4533 auto *I = dyn_cast<Instruction>(V); 4534 // If it's safe to speculatively execute, then it should not have side 4535 // effects; therefore, it's safe to sink and possibly *not* execute. 4536 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4537 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4538 } 4539 4540 /// Returns true if a SelectInst should be turned into an explicit branch. 4541 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4542 const TargetLowering *TLI, 4543 SelectInst *SI) { 4544 // If even a predictable select is cheap, then a branch can't be cheaper. 4545 if (!TLI->isPredictableSelectExpensive()) 4546 return false; 4547 4548 // FIXME: This should use the same heuristics as IfConversion to determine 4549 // whether a select is better represented as a branch. 4550 4551 // If metadata tells us that the select condition is obviously predictable, 4552 // then we want to replace the select with a branch. 4553 uint64_t TrueWeight, FalseWeight; 4554 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4555 uint64_t Max = std::max(TrueWeight, FalseWeight); 4556 uint64_t Sum = TrueWeight + FalseWeight; 4557 if (Sum != 0) { 4558 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4559 if (Probability > TLI->getPredictableBranchThreshold()) 4560 return true; 4561 } 4562 } 4563 4564 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4565 4566 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4567 // comparison condition. If the compare has more than one use, there's 4568 // probably another cmov or setcc around, so it's not worth emitting a branch. 4569 if (!Cmp || !Cmp->hasOneUse()) 4570 return false; 4571 4572 // If either operand of the select is expensive and only needed on one side 4573 // of the select, we should form a branch. 4574 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4575 sinkSelectOperand(TTI, SI->getFalseValue())) 4576 return true; 4577 4578 return false; 4579 } 4580 4581 4582 /// If we have a SelectInst that will likely profit from branch prediction, 4583 /// turn it into a branch. 4584 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4585 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4586 4587 // Can we convert the 'select' to CF ? 4588 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4589 SI->getMetadata(LLVMContext::MD_unpredictable)) 4590 return false; 4591 4592 TargetLowering::SelectSupportKind SelectKind; 4593 if (VectorCond) 4594 SelectKind = TargetLowering::VectorMaskSelect; 4595 else if (SI->getType()->isVectorTy()) 4596 SelectKind = TargetLowering::ScalarCondVectorVal; 4597 else 4598 SelectKind = TargetLowering::ScalarValSelect; 4599 4600 if (TLI->isSelectSupported(SelectKind) && 4601 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4602 return false; 4603 4604 ModifiedDT = true; 4605 4606 // Transform a sequence like this: 4607 // start: 4608 // %cmp = cmp uge i32 %a, %b 4609 // %sel = select i1 %cmp, i32 %c, i32 %d 4610 // 4611 // Into: 4612 // start: 4613 // %cmp = cmp uge i32 %a, %b 4614 // br i1 %cmp, label %select.true, label %select.false 4615 // select.true: 4616 // br label %select.end 4617 // select.false: 4618 // br label %select.end 4619 // select.end: 4620 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4621 // 4622 // In addition, we may sink instructions that produce %c or %d from 4623 // the entry block into the destination(s) of the new branch. 4624 // If the true or false blocks do not contain a sunken instruction, that 4625 // block and its branch may be optimized away. In that case, one side of the 4626 // first branch will point directly to select.end, and the corresponding PHI 4627 // predecessor block will be the start block. 4628 4629 // First, we split the block containing the select into 2 blocks. 4630 BasicBlock *StartBlock = SI->getParent(); 4631 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4632 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4633 4634 // Delete the unconditional branch that was just created by the split. 4635 StartBlock->getTerminator()->eraseFromParent(); 4636 4637 // These are the new basic blocks for the conditional branch. 4638 // At least one will become an actual new basic block. 4639 BasicBlock *TrueBlock = nullptr; 4640 BasicBlock *FalseBlock = nullptr; 4641 4642 // Sink expensive instructions into the conditional blocks to avoid executing 4643 // them speculatively. 4644 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4645 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4646 EndBlock->getParent(), EndBlock); 4647 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4648 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4649 TrueInst->moveBefore(TrueBranch); 4650 } 4651 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4652 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4653 EndBlock->getParent(), EndBlock); 4654 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4655 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4656 FalseInst->moveBefore(FalseBranch); 4657 } 4658 4659 // If there was nothing to sink, then arbitrarily choose the 'false' side 4660 // for a new input value to the PHI. 4661 if (TrueBlock == FalseBlock) { 4662 assert(TrueBlock == nullptr && 4663 "Unexpected basic block transform while optimizing select"); 4664 4665 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4666 EndBlock->getParent(), EndBlock); 4667 BranchInst::Create(EndBlock, FalseBlock); 4668 } 4669 4670 // Insert the real conditional branch based on the original condition. 4671 // If we did not create a new block for one of the 'true' or 'false' paths 4672 // of the condition, it means that side of the branch goes to the end block 4673 // directly and the path originates from the start block from the point of 4674 // view of the new PHI. 4675 BasicBlock *TT, *FT; 4676 if (TrueBlock == nullptr) { 4677 TT = EndBlock; 4678 FT = FalseBlock; 4679 TrueBlock = StartBlock; 4680 } else if (FalseBlock == nullptr) { 4681 TT = TrueBlock; 4682 FT = EndBlock; 4683 FalseBlock = StartBlock; 4684 } else { 4685 TT = TrueBlock; 4686 FT = FalseBlock; 4687 } 4688 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4689 4690 // The select itself is replaced with a PHI Node. 4691 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4692 PN->takeName(SI); 4693 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4694 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4695 4696 SI->replaceAllUsesWith(PN); 4697 SI->eraseFromParent(); 4698 4699 // Instruct OptimizeBlock to skip to the next block. 4700 CurInstIterator = StartBlock->end(); 4701 ++NumSelectsExpanded; 4702 return true; 4703 } 4704 4705 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4706 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4707 int SplatElem = -1; 4708 for (unsigned i = 0; i < Mask.size(); ++i) { 4709 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4710 return false; 4711 SplatElem = Mask[i]; 4712 } 4713 4714 return true; 4715 } 4716 4717 /// Some targets have expensive vector shifts if the lanes aren't all the same 4718 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4719 /// it's often worth sinking a shufflevector splat down to its use so that 4720 /// codegen can spot all lanes are identical. 4721 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4722 BasicBlock *DefBB = SVI->getParent(); 4723 4724 // Only do this xform if variable vector shifts are particularly expensive. 4725 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4726 return false; 4727 4728 // We only expect better codegen by sinking a shuffle if we can recognise a 4729 // constant splat. 4730 if (!isBroadcastShuffle(SVI)) 4731 return false; 4732 4733 // InsertedShuffles - Only insert a shuffle in each block once. 4734 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4735 4736 bool MadeChange = false; 4737 for (User *U : SVI->users()) { 4738 Instruction *UI = cast<Instruction>(U); 4739 4740 // Figure out which BB this ext is used in. 4741 BasicBlock *UserBB = UI->getParent(); 4742 if (UserBB == DefBB) continue; 4743 4744 // For now only apply this when the splat is used by a shift instruction. 4745 if (!UI->isShift()) continue; 4746 4747 // Everything checks out, sink the shuffle if the user's block doesn't 4748 // already have a copy. 4749 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4750 4751 if (!InsertedShuffle) { 4752 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4753 assert(InsertPt != UserBB->end()); 4754 InsertedShuffle = 4755 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4756 SVI->getOperand(2), "", &*InsertPt); 4757 } 4758 4759 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4760 MadeChange = true; 4761 } 4762 4763 // If we removed all uses, nuke the shuffle. 4764 if (SVI->use_empty()) { 4765 SVI->eraseFromParent(); 4766 MadeChange = true; 4767 } 4768 4769 return MadeChange; 4770 } 4771 4772 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4773 if (!TLI || !DL) 4774 return false; 4775 4776 Value *Cond = SI->getCondition(); 4777 Type *OldType = Cond->getType(); 4778 LLVMContext &Context = Cond->getContext(); 4779 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4780 unsigned RegWidth = RegType.getSizeInBits(); 4781 4782 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4783 return false; 4784 4785 // If the register width is greater than the type width, expand the condition 4786 // of the switch instruction and each case constant to the width of the 4787 // register. By widening the type of the switch condition, subsequent 4788 // comparisons (for case comparisons) will not need to be extended to the 4789 // preferred register width, so we will potentially eliminate N-1 extends, 4790 // where N is the number of cases in the switch. 4791 auto *NewType = Type::getIntNTy(Context, RegWidth); 4792 4793 // Zero-extend the switch condition and case constants unless the switch 4794 // condition is a function argument that is already being sign-extended. 4795 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4796 // everything instead. 4797 Instruction::CastOps ExtType = Instruction::ZExt; 4798 if (auto *Arg = dyn_cast<Argument>(Cond)) 4799 if (Arg->hasSExtAttr()) 4800 ExtType = Instruction::SExt; 4801 4802 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4803 ExtInst->insertBefore(SI); 4804 SI->setCondition(ExtInst); 4805 for (SwitchInst::CaseIt Case : SI->cases()) { 4806 APInt NarrowConst = Case.getCaseValue()->getValue(); 4807 APInt WideConst = (ExtType == Instruction::ZExt) ? 4808 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4809 Case.setValue(ConstantInt::get(Context, WideConst)); 4810 } 4811 4812 return true; 4813 } 4814 4815 namespace { 4816 /// \brief Helper class to promote a scalar operation to a vector one. 4817 /// This class is used to move downward extractelement transition. 4818 /// E.g., 4819 /// a = vector_op <2 x i32> 4820 /// b = extractelement <2 x i32> a, i32 0 4821 /// c = scalar_op b 4822 /// store c 4823 /// 4824 /// => 4825 /// a = vector_op <2 x i32> 4826 /// c = vector_op a (equivalent to scalar_op on the related lane) 4827 /// * d = extractelement <2 x i32> c, i32 0 4828 /// * store d 4829 /// Assuming both extractelement and store can be combine, we get rid of the 4830 /// transition. 4831 class VectorPromoteHelper { 4832 /// DataLayout associated with the current module. 4833 const DataLayout &DL; 4834 4835 /// Used to perform some checks on the legality of vector operations. 4836 const TargetLowering &TLI; 4837 4838 /// Used to estimated the cost of the promoted chain. 4839 const TargetTransformInfo &TTI; 4840 4841 /// The transition being moved downwards. 4842 Instruction *Transition; 4843 /// The sequence of instructions to be promoted. 4844 SmallVector<Instruction *, 4> InstsToBePromoted; 4845 /// Cost of combining a store and an extract. 4846 unsigned StoreExtractCombineCost; 4847 /// Instruction that will be combined with the transition. 4848 Instruction *CombineInst; 4849 4850 /// \brief The instruction that represents the current end of the transition. 4851 /// Since we are faking the promotion until we reach the end of the chain 4852 /// of computation, we need a way to get the current end of the transition. 4853 Instruction *getEndOfTransition() const { 4854 if (InstsToBePromoted.empty()) 4855 return Transition; 4856 return InstsToBePromoted.back(); 4857 } 4858 4859 /// \brief Return the index of the original value in the transition. 4860 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4861 /// c, is at index 0. 4862 unsigned getTransitionOriginalValueIdx() const { 4863 assert(isa<ExtractElementInst>(Transition) && 4864 "Other kind of transitions are not supported yet"); 4865 return 0; 4866 } 4867 4868 /// \brief Return the index of the index in the transition. 4869 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4870 /// is at index 1. 4871 unsigned getTransitionIdx() const { 4872 assert(isa<ExtractElementInst>(Transition) && 4873 "Other kind of transitions are not supported yet"); 4874 return 1; 4875 } 4876 4877 /// \brief Get the type of the transition. 4878 /// This is the type of the original value. 4879 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4880 /// transition is <2 x i32>. 4881 Type *getTransitionType() const { 4882 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4883 } 4884 4885 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4886 /// I.e., we have the following sequence: 4887 /// Def = Transition <ty1> a to <ty2> 4888 /// b = ToBePromoted <ty2> Def, ... 4889 /// => 4890 /// b = ToBePromoted <ty1> a, ... 4891 /// Def = Transition <ty1> ToBePromoted to <ty2> 4892 void promoteImpl(Instruction *ToBePromoted); 4893 4894 /// \brief Check whether or not it is profitable to promote all the 4895 /// instructions enqueued to be promoted. 4896 bool isProfitableToPromote() { 4897 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4898 unsigned Index = isa<ConstantInt>(ValIdx) 4899 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4900 : -1; 4901 Type *PromotedType = getTransitionType(); 4902 4903 StoreInst *ST = cast<StoreInst>(CombineInst); 4904 unsigned AS = ST->getPointerAddressSpace(); 4905 unsigned Align = ST->getAlignment(); 4906 // Check if this store is supported. 4907 if (!TLI.allowsMisalignedMemoryAccesses( 4908 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4909 Align)) { 4910 // If this is not supported, there is no way we can combine 4911 // the extract with the store. 4912 return false; 4913 } 4914 4915 // The scalar chain of computation has to pay for the transition 4916 // scalar to vector. 4917 // The vector chain has to account for the combining cost. 4918 uint64_t ScalarCost = 4919 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4920 uint64_t VectorCost = StoreExtractCombineCost; 4921 for (const auto &Inst : InstsToBePromoted) { 4922 // Compute the cost. 4923 // By construction, all instructions being promoted are arithmetic ones. 4924 // Moreover, one argument is a constant that can be viewed as a splat 4925 // constant. 4926 Value *Arg0 = Inst->getOperand(0); 4927 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4928 isa<ConstantFP>(Arg0); 4929 TargetTransformInfo::OperandValueKind Arg0OVK = 4930 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4931 : TargetTransformInfo::OK_AnyValue; 4932 TargetTransformInfo::OperandValueKind Arg1OVK = 4933 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4934 : TargetTransformInfo::OK_AnyValue; 4935 ScalarCost += TTI.getArithmeticInstrCost( 4936 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4937 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4938 Arg0OVK, Arg1OVK); 4939 } 4940 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4941 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4942 return ScalarCost > VectorCost; 4943 } 4944 4945 /// \brief Generate a constant vector with \p Val with the same 4946 /// number of elements as the transition. 4947 /// \p UseSplat defines whether or not \p Val should be replicated 4948 /// across the whole vector. 4949 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4950 /// otherwise we generate a vector with as many undef as possible: 4951 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4952 /// used at the index of the extract. 4953 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4954 unsigned ExtractIdx = UINT_MAX; 4955 if (!UseSplat) { 4956 // If we cannot determine where the constant must be, we have to 4957 // use a splat constant. 4958 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4959 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4960 ExtractIdx = CstVal->getSExtValue(); 4961 else 4962 UseSplat = true; 4963 } 4964 4965 unsigned End = getTransitionType()->getVectorNumElements(); 4966 if (UseSplat) 4967 return ConstantVector::getSplat(End, Val); 4968 4969 SmallVector<Constant *, 4> ConstVec; 4970 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4971 for (unsigned Idx = 0; Idx != End; ++Idx) { 4972 if (Idx == ExtractIdx) 4973 ConstVec.push_back(Val); 4974 else 4975 ConstVec.push_back(UndefVal); 4976 } 4977 return ConstantVector::get(ConstVec); 4978 } 4979 4980 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4981 /// in \p Use can trigger undefined behavior. 4982 static bool canCauseUndefinedBehavior(const Instruction *Use, 4983 unsigned OperandIdx) { 4984 // This is not safe to introduce undef when the operand is on 4985 // the right hand side of a division-like instruction. 4986 if (OperandIdx != 1) 4987 return false; 4988 switch (Use->getOpcode()) { 4989 default: 4990 return false; 4991 case Instruction::SDiv: 4992 case Instruction::UDiv: 4993 case Instruction::SRem: 4994 case Instruction::URem: 4995 return true; 4996 case Instruction::FDiv: 4997 case Instruction::FRem: 4998 return !Use->hasNoNaNs(); 4999 } 5000 llvm_unreachable(nullptr); 5001 } 5002 5003 public: 5004 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5005 const TargetTransformInfo &TTI, Instruction *Transition, 5006 unsigned CombineCost) 5007 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5008 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5009 assert(Transition && "Do not know how to promote null"); 5010 } 5011 5012 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5013 bool canPromote(const Instruction *ToBePromoted) const { 5014 // We could support CastInst too. 5015 return isa<BinaryOperator>(ToBePromoted); 5016 } 5017 5018 /// \brief Check if it is profitable to promote \p ToBePromoted 5019 /// by moving downward the transition through. 5020 bool shouldPromote(const Instruction *ToBePromoted) const { 5021 // Promote only if all the operands can be statically expanded. 5022 // Indeed, we do not want to introduce any new kind of transitions. 5023 for (const Use &U : ToBePromoted->operands()) { 5024 const Value *Val = U.get(); 5025 if (Val == getEndOfTransition()) { 5026 // If the use is a division and the transition is on the rhs, 5027 // we cannot promote the operation, otherwise we may create a 5028 // division by zero. 5029 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5030 return false; 5031 continue; 5032 } 5033 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5034 !isa<ConstantFP>(Val)) 5035 return false; 5036 } 5037 // Check that the resulting operation is legal. 5038 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5039 if (!ISDOpcode) 5040 return false; 5041 return StressStoreExtract || 5042 TLI.isOperationLegalOrCustom( 5043 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5044 } 5045 5046 /// \brief Check whether or not \p Use can be combined 5047 /// with the transition. 5048 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5049 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5050 5051 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5052 void enqueueForPromotion(Instruction *ToBePromoted) { 5053 InstsToBePromoted.push_back(ToBePromoted); 5054 } 5055 5056 /// \brief Set the instruction that will be combined with the transition. 5057 void recordCombineInstruction(Instruction *ToBeCombined) { 5058 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5059 CombineInst = ToBeCombined; 5060 } 5061 5062 /// \brief Promote all the instructions enqueued for promotion if it is 5063 /// is profitable. 5064 /// \return True if the promotion happened, false otherwise. 5065 bool promote() { 5066 // Check if there is something to promote. 5067 // Right now, if we do not have anything to combine with, 5068 // we assume the promotion is not profitable. 5069 if (InstsToBePromoted.empty() || !CombineInst) 5070 return false; 5071 5072 // Check cost. 5073 if (!StressStoreExtract && !isProfitableToPromote()) 5074 return false; 5075 5076 // Promote. 5077 for (auto &ToBePromoted : InstsToBePromoted) 5078 promoteImpl(ToBePromoted); 5079 InstsToBePromoted.clear(); 5080 return true; 5081 } 5082 }; 5083 } // End of anonymous namespace. 5084 5085 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5086 // At this point, we know that all the operands of ToBePromoted but Def 5087 // can be statically promoted. 5088 // For Def, we need to use its parameter in ToBePromoted: 5089 // b = ToBePromoted ty1 a 5090 // Def = Transition ty1 b to ty2 5091 // Move the transition down. 5092 // 1. Replace all uses of the promoted operation by the transition. 5093 // = ... b => = ... Def. 5094 assert(ToBePromoted->getType() == Transition->getType() && 5095 "The type of the result of the transition does not match " 5096 "the final type"); 5097 ToBePromoted->replaceAllUsesWith(Transition); 5098 // 2. Update the type of the uses. 5099 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5100 Type *TransitionTy = getTransitionType(); 5101 ToBePromoted->mutateType(TransitionTy); 5102 // 3. Update all the operands of the promoted operation with promoted 5103 // operands. 5104 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5105 for (Use &U : ToBePromoted->operands()) { 5106 Value *Val = U.get(); 5107 Value *NewVal = nullptr; 5108 if (Val == Transition) 5109 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5110 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5111 isa<ConstantFP>(Val)) { 5112 // Use a splat constant if it is not safe to use undef. 5113 NewVal = getConstantVector( 5114 cast<Constant>(Val), 5115 isa<UndefValue>(Val) || 5116 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5117 } else 5118 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5119 "this?"); 5120 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5121 } 5122 Transition->removeFromParent(); 5123 Transition->insertAfter(ToBePromoted); 5124 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5125 } 5126 5127 /// Some targets can do store(extractelement) with one instruction. 5128 /// Try to push the extractelement towards the stores when the target 5129 /// has this feature and this is profitable. 5130 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5131 unsigned CombineCost = UINT_MAX; 5132 if (DisableStoreExtract || !TLI || 5133 (!StressStoreExtract && 5134 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5135 Inst->getOperand(1), CombineCost))) 5136 return false; 5137 5138 // At this point we know that Inst is a vector to scalar transition. 5139 // Try to move it down the def-use chain, until: 5140 // - We can combine the transition with its single use 5141 // => we got rid of the transition. 5142 // - We escape the current basic block 5143 // => we would need to check that we are moving it at a cheaper place and 5144 // we do not do that for now. 5145 BasicBlock *Parent = Inst->getParent(); 5146 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5147 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5148 // If the transition has more than one use, assume this is not going to be 5149 // beneficial. 5150 while (Inst->hasOneUse()) { 5151 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5152 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5153 5154 if (ToBePromoted->getParent() != Parent) { 5155 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5156 << ToBePromoted->getParent()->getName() 5157 << ") than the transition (" << Parent->getName() << ").\n"); 5158 return false; 5159 } 5160 5161 if (VPH.canCombine(ToBePromoted)) { 5162 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5163 << "will be combined with: " << *ToBePromoted << '\n'); 5164 VPH.recordCombineInstruction(ToBePromoted); 5165 bool Changed = VPH.promote(); 5166 NumStoreExtractExposed += Changed; 5167 return Changed; 5168 } 5169 5170 DEBUG(dbgs() << "Try promoting.\n"); 5171 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5172 return false; 5173 5174 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5175 5176 VPH.enqueueForPromotion(ToBePromoted); 5177 Inst = ToBePromoted; 5178 } 5179 return false; 5180 } 5181 5182 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5183 // Bail out if we inserted the instruction to prevent optimizations from 5184 // stepping on each other's toes. 5185 if (InsertedInsts.count(I)) 5186 return false; 5187 5188 if (PHINode *P = dyn_cast<PHINode>(I)) { 5189 // It is possible for very late stage optimizations (such as SimplifyCFG) 5190 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5191 // trivial PHI, go ahead and zap it here. 5192 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5193 P->replaceAllUsesWith(V); 5194 P->eraseFromParent(); 5195 ++NumPHIsElim; 5196 return true; 5197 } 5198 return false; 5199 } 5200 5201 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5202 // If the source of the cast is a constant, then this should have 5203 // already been constant folded. The only reason NOT to constant fold 5204 // it is if something (e.g. LSR) was careful to place the constant 5205 // evaluation in a block other than then one that uses it (e.g. to hoist 5206 // the address of globals out of a loop). If this is the case, we don't 5207 // want to forward-subst the cast. 5208 if (isa<Constant>(CI->getOperand(0))) 5209 return false; 5210 5211 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5212 return true; 5213 5214 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5215 /// Sink a zext or sext into its user blocks if the target type doesn't 5216 /// fit in one register 5217 if (TLI && 5218 TLI->getTypeAction(CI->getContext(), 5219 TLI->getValueType(*DL, CI->getType())) == 5220 TargetLowering::TypeExpandInteger) { 5221 return SinkCast(CI); 5222 } else { 5223 bool MadeChange = moveExtToFormExtLoad(I); 5224 return MadeChange | optimizeExtUses(I); 5225 } 5226 } 5227 return false; 5228 } 5229 5230 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5231 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5232 return OptimizeCmpExpression(CI, TLI); 5233 5234 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5235 stripInvariantGroupMetadata(*LI); 5236 if (TLI) { 5237 bool Modified = optimizeLoadExt(LI); 5238 unsigned AS = LI->getPointerAddressSpace(); 5239 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5240 return Modified; 5241 } 5242 return false; 5243 } 5244 5245 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5246 stripInvariantGroupMetadata(*SI); 5247 if (TLI) { 5248 unsigned AS = SI->getPointerAddressSpace(); 5249 return optimizeMemoryInst(I, SI->getOperand(1), 5250 SI->getOperand(0)->getType(), AS); 5251 } 5252 return false; 5253 } 5254 5255 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5256 5257 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5258 BinOp->getOpcode() == Instruction::LShr)) { 5259 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5260 if (TLI && CI && TLI->hasExtractBitsInsn()) 5261 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5262 5263 return false; 5264 } 5265 5266 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5267 if (GEPI->hasAllZeroIndices()) { 5268 /// The GEP operand must be a pointer, so must its result -> BitCast 5269 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5270 GEPI->getName(), GEPI); 5271 GEPI->replaceAllUsesWith(NC); 5272 GEPI->eraseFromParent(); 5273 ++NumGEPsElim; 5274 optimizeInst(NC, ModifiedDT); 5275 return true; 5276 } 5277 return false; 5278 } 5279 5280 if (CallInst *CI = dyn_cast<CallInst>(I)) 5281 return optimizeCallInst(CI, ModifiedDT); 5282 5283 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5284 return optimizeSelectInst(SI); 5285 5286 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5287 return optimizeShuffleVectorInst(SVI); 5288 5289 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5290 return optimizeSwitchInst(Switch); 5291 5292 if (isa<ExtractElementInst>(I)) 5293 return optimizeExtractElementInst(I); 5294 5295 return false; 5296 } 5297 5298 /// Given an OR instruction, check to see if this is a bitreverse 5299 /// idiom. If so, insert the new intrinsic and return true. 5300 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5301 const TargetLowering &TLI) { 5302 if (!I.getType()->isIntegerTy() || 5303 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5304 TLI.getValueType(DL, I.getType(), true))) 5305 return false; 5306 5307 SmallVector<Instruction*, 4> Insts; 5308 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5309 return false; 5310 Instruction *LastInst = Insts.back(); 5311 I.replaceAllUsesWith(LastInst); 5312 RecursivelyDeleteTriviallyDeadInstructions(&I); 5313 return true; 5314 } 5315 5316 // In this pass we look for GEP and cast instructions that are used 5317 // across basic blocks and rewrite them to improve basic-block-at-a-time 5318 // selection. 5319 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5320 SunkAddrs.clear(); 5321 bool MadeChange = false; 5322 5323 CurInstIterator = BB.begin(); 5324 while (CurInstIterator != BB.end()) { 5325 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5326 if (ModifiedDT) 5327 return true; 5328 } 5329 5330 bool MadeBitReverse = true; 5331 while (TLI && MadeBitReverse) { 5332 MadeBitReverse = false; 5333 for (auto &I : reverse(BB)) { 5334 if (makeBitReverse(I, *DL, *TLI)) { 5335 MadeBitReverse = MadeChange = true; 5336 ModifiedDT = true; 5337 break; 5338 } 5339 } 5340 } 5341 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5342 5343 return MadeChange; 5344 } 5345 5346 // llvm.dbg.value is far away from the value then iSel may not be able 5347 // handle it properly. iSel will drop llvm.dbg.value if it can not 5348 // find a node corresponding to the value. 5349 bool CodeGenPrepare::placeDbgValues(Function &F) { 5350 bool MadeChange = false; 5351 for (BasicBlock &BB : F) { 5352 Instruction *PrevNonDbgInst = nullptr; 5353 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5354 Instruction *Insn = &*BI++; 5355 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5356 // Leave dbg.values that refer to an alloca alone. These 5357 // instrinsics describe the address of a variable (= the alloca) 5358 // being taken. They should not be moved next to the alloca 5359 // (and to the beginning of the scope), but rather stay close to 5360 // where said address is used. 5361 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5362 PrevNonDbgInst = Insn; 5363 continue; 5364 } 5365 5366 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5367 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5368 // If VI is a phi in a block with an EHPad terminator, we can't insert 5369 // after it. 5370 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5371 continue; 5372 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5373 DVI->removeFromParent(); 5374 if (isa<PHINode>(VI)) 5375 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5376 else 5377 DVI->insertAfter(VI); 5378 MadeChange = true; 5379 ++NumDbgValueMoved; 5380 } 5381 } 5382 } 5383 return MadeChange; 5384 } 5385 5386 // If there is a sequence that branches based on comparing a single bit 5387 // against zero that can be combined into a single instruction, and the 5388 // target supports folding these into a single instruction, sink the 5389 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5390 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5391 // searched for. 5392 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5393 if (!EnableAndCmpSinking) 5394 return false; 5395 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5396 return false; 5397 bool MadeChange = false; 5398 for (BasicBlock &BB : F) { 5399 // Does this BB end with the following? 5400 // %andVal = and %val, #single-bit-set 5401 // %icmpVal = icmp %andResult, 0 5402 // br i1 %cmpVal label %dest1, label %dest2" 5403 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5404 if (!Brcc || !Brcc->isConditional()) 5405 continue; 5406 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5407 if (!Cmp || Cmp->getParent() != &BB) 5408 continue; 5409 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5410 if (!Zero || !Zero->isZero()) 5411 continue; 5412 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5413 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5414 continue; 5415 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5416 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5417 continue; 5418 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5419 5420 // Push the "and; icmp" for any users that are conditional branches. 5421 // Since there can only be one branch use per BB, we don't need to keep 5422 // track of which BBs we insert into. 5423 for (Use &TheUse : Cmp->uses()) { 5424 // Find brcc use. 5425 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5426 if (!BrccUser || !BrccUser->isConditional()) 5427 continue; 5428 BasicBlock *UserBB = BrccUser->getParent(); 5429 if (UserBB == &BB) continue; 5430 DEBUG(dbgs() << "found Brcc use\n"); 5431 5432 // Sink the "and; icmp" to use. 5433 MadeChange = true; 5434 BinaryOperator *NewAnd = 5435 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5436 BrccUser); 5437 CmpInst *NewCmp = 5438 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5439 "", BrccUser); 5440 TheUse = NewCmp; 5441 ++NumAndCmpsMoved; 5442 DEBUG(BrccUser->getParent()->dump()); 5443 } 5444 } 5445 return MadeChange; 5446 } 5447 5448 /// \brief Scale down both weights to fit into uint32_t. 5449 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5450 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5451 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5452 NewTrue = NewTrue / Scale; 5453 NewFalse = NewFalse / Scale; 5454 } 5455 5456 /// \brief Some targets prefer to split a conditional branch like: 5457 /// \code 5458 /// %0 = icmp ne i32 %a, 0 5459 /// %1 = icmp ne i32 %b, 0 5460 /// %or.cond = or i1 %0, %1 5461 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5462 /// \endcode 5463 /// into multiple branch instructions like: 5464 /// \code 5465 /// bb1: 5466 /// %0 = icmp ne i32 %a, 0 5467 /// br i1 %0, label %TrueBB, label %bb2 5468 /// bb2: 5469 /// %1 = icmp ne i32 %b, 0 5470 /// br i1 %1, label %TrueBB, label %FalseBB 5471 /// \endcode 5472 /// This usually allows instruction selection to do even further optimizations 5473 /// and combine the compare with the branch instruction. Currently this is 5474 /// applied for targets which have "cheap" jump instructions. 5475 /// 5476 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5477 /// 5478 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5479 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5480 return false; 5481 5482 bool MadeChange = false; 5483 for (auto &BB : F) { 5484 // Does this BB end with the following? 5485 // %cond1 = icmp|fcmp|binary instruction ... 5486 // %cond2 = icmp|fcmp|binary instruction ... 5487 // %cond.or = or|and i1 %cond1, cond2 5488 // br i1 %cond.or label %dest1, label %dest2" 5489 BinaryOperator *LogicOp; 5490 BasicBlock *TBB, *FBB; 5491 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5492 continue; 5493 5494 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5495 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5496 continue; 5497 5498 unsigned Opc; 5499 Value *Cond1, *Cond2; 5500 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5501 m_OneUse(m_Value(Cond2))))) 5502 Opc = Instruction::And; 5503 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5504 m_OneUse(m_Value(Cond2))))) 5505 Opc = Instruction::Or; 5506 else 5507 continue; 5508 5509 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5510 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5511 continue; 5512 5513 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5514 5515 // Create a new BB. 5516 auto TmpBB = 5517 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5518 BB.getParent(), BB.getNextNode()); 5519 5520 // Update original basic block by using the first condition directly by the 5521 // branch instruction and removing the no longer needed and/or instruction. 5522 Br1->setCondition(Cond1); 5523 LogicOp->eraseFromParent(); 5524 5525 // Depending on the conditon we have to either replace the true or the false 5526 // successor of the original branch instruction. 5527 if (Opc == Instruction::And) 5528 Br1->setSuccessor(0, TmpBB); 5529 else 5530 Br1->setSuccessor(1, TmpBB); 5531 5532 // Fill in the new basic block. 5533 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5534 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5535 I->removeFromParent(); 5536 I->insertBefore(Br2); 5537 } 5538 5539 // Update PHI nodes in both successors. The original BB needs to be 5540 // replaced in one succesor's PHI nodes, because the branch comes now from 5541 // the newly generated BB (NewBB). In the other successor we need to add one 5542 // incoming edge to the PHI nodes, because both branch instructions target 5543 // now the same successor. Depending on the original branch condition 5544 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5545 // we perfrom the correct update for the PHI nodes. 5546 // This doesn't change the successor order of the just created branch 5547 // instruction (or any other instruction). 5548 if (Opc == Instruction::Or) 5549 std::swap(TBB, FBB); 5550 5551 // Replace the old BB with the new BB. 5552 for (auto &I : *TBB) { 5553 PHINode *PN = dyn_cast<PHINode>(&I); 5554 if (!PN) 5555 break; 5556 int i; 5557 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5558 PN->setIncomingBlock(i, TmpBB); 5559 } 5560 5561 // Add another incoming edge form the new BB. 5562 for (auto &I : *FBB) { 5563 PHINode *PN = dyn_cast<PHINode>(&I); 5564 if (!PN) 5565 break; 5566 auto *Val = PN->getIncomingValueForBlock(&BB); 5567 PN->addIncoming(Val, TmpBB); 5568 } 5569 5570 // Update the branch weights (from SelectionDAGBuilder:: 5571 // FindMergedConditions). 5572 if (Opc == Instruction::Or) { 5573 // Codegen X | Y as: 5574 // BB1: 5575 // jmp_if_X TBB 5576 // jmp TmpBB 5577 // TmpBB: 5578 // jmp_if_Y TBB 5579 // jmp FBB 5580 // 5581 5582 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5583 // The requirement is that 5584 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5585 // = TrueProb for orignal BB. 5586 // Assuming the orignal weights are A and B, one choice is to set BB1's 5587 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5588 // assumes that 5589 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5590 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5591 // TmpBB, but the math is more complicated. 5592 uint64_t TrueWeight, FalseWeight; 5593 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5594 uint64_t NewTrueWeight = TrueWeight; 5595 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5596 scaleWeights(NewTrueWeight, NewFalseWeight); 5597 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5598 .createBranchWeights(TrueWeight, FalseWeight)); 5599 5600 NewTrueWeight = TrueWeight; 5601 NewFalseWeight = 2 * FalseWeight; 5602 scaleWeights(NewTrueWeight, NewFalseWeight); 5603 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5604 .createBranchWeights(TrueWeight, FalseWeight)); 5605 } 5606 } else { 5607 // Codegen X & Y as: 5608 // BB1: 5609 // jmp_if_X TmpBB 5610 // jmp FBB 5611 // TmpBB: 5612 // jmp_if_Y TBB 5613 // jmp FBB 5614 // 5615 // This requires creation of TmpBB after CurBB. 5616 5617 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5618 // The requirement is that 5619 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5620 // = FalseProb for orignal BB. 5621 // Assuming the orignal weights are A and B, one choice is to set BB1's 5622 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5623 // assumes that 5624 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5625 uint64_t TrueWeight, FalseWeight; 5626 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5627 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5628 uint64_t NewFalseWeight = FalseWeight; 5629 scaleWeights(NewTrueWeight, NewFalseWeight); 5630 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5631 .createBranchWeights(TrueWeight, FalseWeight)); 5632 5633 NewTrueWeight = 2 * TrueWeight; 5634 NewFalseWeight = FalseWeight; 5635 scaleWeights(NewTrueWeight, NewFalseWeight); 5636 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5637 .createBranchWeights(TrueWeight, FalseWeight)); 5638 } 5639 } 5640 5641 // Note: No point in getting fancy here, since the DT info is never 5642 // available to CodeGenPrepare. 5643 ModifiedDT = true; 5644 5645 MadeChange = true; 5646 5647 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5648 TmpBB->dump()); 5649 } 5650 return MadeChange; 5651 } 5652 5653 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5654 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5655 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5656 } 5657