1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/IntrinsicsAArch64.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
93 #include "llvm/Transforms/Utils/SizeOpts.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <utility>
101 #include <vector>
102
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105
106 #define DEBUG_TYPE "codegenprepare"
107
108 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
112 "sunken Cmps");
113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
114 "of sunken Casts");
115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
116 "computations were sunk");
117 STATISTIC(NumMemoryInstsPhiCreated,
118 "Number of phis created when address "
119 "computations were sunk to memory instructions");
120 STATISTIC(NumMemoryInstsSelectCreated,
121 "Number of select created when address "
122 "computations were sunk to memory instructions");
123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
125 STATISTIC(NumAndsAdded,
126 "Number of and mask instructions added to form ext loads");
127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
128 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
132
133 static cl::opt<bool> DisableBranchOpts(
134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
135 cl::desc("Disable branch optimizations in CodeGenPrepare"));
136
137 static cl::opt<bool>
138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
139 cl::desc("Disable GC optimizations in CodeGenPrepare"));
140
141 static cl::opt<bool> DisableSelectToBranch(
142 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
143 cl::desc("Disable select to branch conversion."));
144
145 static cl::opt<bool> AddrSinkUsingGEPs(
146 "addr-sink-using-gep", cl::Hidden, cl::init(true),
147 cl::desc("Address sinking in CGP using GEPs."));
148
149 static cl::opt<bool> EnableAndCmpSinking(
150 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
151 cl::desc("Enable sinkinig and/cmp into branches."));
152
153 static cl::opt<bool> DisableStoreExtract(
154 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
156
157 static cl::opt<bool> StressStoreExtract(
158 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
160
161 static cl::opt<bool> DisableExtLdPromotion(
162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
164 "CodeGenPrepare"));
165
166 static cl::opt<bool> StressExtLdPromotion(
167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
169 "optimization in CodeGenPrepare"));
170
171 static cl::opt<bool> DisablePreheaderProtect(
172 "disable-preheader-prot", cl::Hidden, cl::init(false),
173 cl::desc("Disable protection against removing loop preheaders"));
174
175 static cl::opt<bool> ProfileGuidedSectionPrefix(
176 "profile-guided-section-prefix", cl::Hidden, cl::init(true),
177 cl::desc("Use profile info to add section prefix for hot/cold functions"));
178
179 static cl::opt<bool> ProfileUnknownInSpecialSection(
180 "profile-unknown-in-special-section", cl::Hidden,
181 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
182 "profile, we cannot tell the function is cold for sure because "
183 "it may be a function newly added without ever being sampled. "
184 "With the flag enabled, compiler can put such profile unknown "
185 "functions into a special section, so runtime system can choose "
186 "to handle it in a different way than .text section, to save "
187 "RAM for example. "));
188
189 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
190 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
191 cl::desc("Use the basic-block-sections profile to determine the text "
192 "section prefix for hot functions. Functions with "
193 "basic-block-sections profile will be placed in `.text.hot` "
194 "regardless of their FDO profile info. Other functions won't be "
195 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
196 "profiles."));
197
198 static cl::opt<unsigned> FreqRatioToSkipMerge(
199 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
200 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
201 "(frequency of destination block) is greater than this ratio"));
202
203 static cl::opt<bool> ForceSplitStore(
204 "force-split-store", cl::Hidden, cl::init(false),
205 cl::desc("Force store splitting no matter what the target query says."));
206
207 static cl::opt<bool>
208 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
209 cl::desc("Enable merging of redundant sexts when one is dominating"
210 " the other."), cl::init(true));
211
212 static cl::opt<bool> DisableComplexAddrModes(
213 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
214 cl::desc("Disables combining addressing modes with different parts "
215 "in optimizeMemoryInst."));
216
217 static cl::opt<bool>
218 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
219 cl::desc("Allow creation of Phis in Address sinking."));
220
221 static cl::opt<bool>
222 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
223 cl::desc("Allow creation of selects in Address sinking."));
224
225 static cl::opt<bool> AddrSinkCombineBaseReg(
226 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
227 cl::desc("Allow combining of BaseReg field in Address sinking."));
228
229 static cl::opt<bool> AddrSinkCombineBaseGV(
230 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
231 cl::desc("Allow combining of BaseGV field in Address sinking."));
232
233 static cl::opt<bool> AddrSinkCombineBaseOffs(
234 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
235 cl::desc("Allow combining of BaseOffs field in Address sinking."));
236
237 static cl::opt<bool> AddrSinkCombineScaledReg(
238 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
239 cl::desc("Allow combining of ScaledReg field in Address sinking."));
240
241 static cl::opt<bool>
242 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
243 cl::init(true),
244 cl::desc("Enable splitting large offset of GEP."));
245
246 static cl::opt<bool> EnableICMP_EQToICMP_ST(
247 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
248 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
249
250 static cl::opt<bool>
251 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
252 cl::desc("Enable BFI update verification for "
253 "CodeGenPrepare."));
254
255 static cl::opt<bool> OptimizePhiTypes(
256 "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
257 cl::desc("Enable converting phi types in CodeGenPrepare"));
258
259 namespace {
260
261 enum ExtType {
262 ZeroExtension, // Zero extension has been seen.
263 SignExtension, // Sign extension has been seen.
264 BothExtension // This extension type is used if we saw sext after
265 // ZeroExtension had been set, or if we saw zext after
266 // SignExtension had been set. It makes the type
267 // information of a promoted instruction invalid.
268 };
269
270 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
271 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
272 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
273 using SExts = SmallVector<Instruction *, 16>;
274 using ValueToSExts = DenseMap<Value *, SExts>;
275
276 class TypePromotionTransaction;
277
278 class CodeGenPrepare : public FunctionPass {
279 const TargetMachine *TM = nullptr;
280 const TargetSubtargetInfo *SubtargetInfo;
281 const TargetLowering *TLI = nullptr;
282 const TargetRegisterInfo *TRI;
283 const TargetTransformInfo *TTI = nullptr;
284 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
285 const TargetLibraryInfo *TLInfo;
286 const LoopInfo *LI;
287 std::unique_ptr<BlockFrequencyInfo> BFI;
288 std::unique_ptr<BranchProbabilityInfo> BPI;
289 ProfileSummaryInfo *PSI;
290
291 /// As we scan instructions optimizing them, this is the next instruction
292 /// to optimize. Transforms that can invalidate this should update it.
293 BasicBlock::iterator CurInstIterator;
294
295 /// Keeps track of non-local addresses that have been sunk into a block.
296 /// This allows us to avoid inserting duplicate code for blocks with
297 /// multiple load/stores of the same address. The usage of WeakTrackingVH
298 /// enables SunkAddrs to be treated as a cache whose entries can be
299 /// invalidated if a sunken address computation has been erased.
300 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
301
302 /// Keeps track of all instructions inserted for the current function.
303 SetOfInstrs InsertedInsts;
304
305 /// Keeps track of the type of the related instruction before their
306 /// promotion for the current function.
307 InstrToOrigTy PromotedInsts;
308
309 /// Keep track of instructions removed during promotion.
310 SetOfInstrs RemovedInsts;
311
312 /// Keep track of sext chains based on their initial value.
313 DenseMap<Value *, Instruction *> SeenChainsForSExt;
314
315 /// Keep track of GEPs accessing the same data structures such as structs or
316 /// arrays that are candidates to be split later because of their large
317 /// size.
318 MapVector<
319 AssertingVH<Value>,
320 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
321 LargeOffsetGEPMap;
322
323 /// Keep track of new GEP base after splitting the GEPs having large offset.
324 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
325
326 /// Map serial numbers to Large offset GEPs.
327 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
328
329 /// Keep track of SExt promoted.
330 ValueToSExts ValToSExtendedUses;
331
332 /// True if the function has the OptSize attribute.
333 bool OptSize;
334
335 /// DataLayout for the Function being processed.
336 const DataLayout *DL = nullptr;
337
338 /// Building the dominator tree can be expensive, so we only build it
339 /// lazily and update it when required.
340 std::unique_ptr<DominatorTree> DT;
341
342 public:
343 static char ID; // Pass identification, replacement for typeid
344
CodeGenPrepare()345 CodeGenPrepare() : FunctionPass(ID) {
346 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
347 }
348
349 bool runOnFunction(Function &F) override;
350
getPassName() const351 StringRef getPassName() const override { return "CodeGen Prepare"; }
352
getAnalysisUsage(AnalysisUsage & AU) const353 void getAnalysisUsage(AnalysisUsage &AU) const override {
354 // FIXME: When we can selectively preserve passes, preserve the domtree.
355 AU.addRequired<ProfileSummaryInfoWrapperPass>();
356 AU.addRequired<TargetLibraryInfoWrapperPass>();
357 AU.addRequired<TargetPassConfig>();
358 AU.addRequired<TargetTransformInfoWrapperPass>();
359 AU.addRequired<LoopInfoWrapperPass>();
360 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>();
361 }
362
363 private:
364 template <typename F>
resetIteratorIfInvalidatedWhileCalling(BasicBlock * BB,F f)365 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
366 // Substituting can cause recursive simplifications, which can invalidate
367 // our iterator. Use a WeakTrackingVH to hold onto it in case this
368 // happens.
369 Value *CurValue = &*CurInstIterator;
370 WeakTrackingVH IterHandle(CurValue);
371
372 f();
373
374 // If the iterator instruction was recursively deleted, start over at the
375 // start of the block.
376 if (IterHandle != CurValue) {
377 CurInstIterator = BB->begin();
378 SunkAddrs.clear();
379 }
380 }
381
382 // Get the DominatorTree, building if necessary.
getDT(Function & F)383 DominatorTree &getDT(Function &F) {
384 if (!DT)
385 DT = std::make_unique<DominatorTree>(F);
386 return *DT;
387 }
388
389 void removeAllAssertingVHReferences(Value *V);
390 bool eliminateAssumptions(Function &F);
391 bool eliminateFallThrough(Function &F);
392 bool eliminateMostlyEmptyBlocks(Function &F);
393 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
394 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
395 void eliminateMostlyEmptyBlock(BasicBlock *BB);
396 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
397 bool isPreheader);
398 bool makeBitReverse(Instruction &I);
399 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
400 bool optimizeInst(Instruction *I, bool &ModifiedDT);
401 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
402 Type *AccessTy, unsigned AddrSpace);
403 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
404 bool optimizeInlineAsmInst(CallInst *CS);
405 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
406 bool optimizeExt(Instruction *&I);
407 bool optimizeExtUses(Instruction *I);
408 bool optimizeLoadExt(LoadInst *Load);
409 bool optimizeShiftInst(BinaryOperator *BO);
410 bool optimizeFunnelShift(IntrinsicInst *Fsh);
411 bool optimizeSelectInst(SelectInst *SI);
412 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
413 bool optimizeSwitchType(SwitchInst *SI);
414 bool optimizeSwitchPhiConstants(SwitchInst *SI);
415 bool optimizeSwitchInst(SwitchInst *SI);
416 bool optimizeExtractElementInst(Instruction *Inst);
417 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
418 bool fixupDbgValue(Instruction *I);
419 bool placeDbgValues(Function &F);
420 bool placePseudoProbes(Function &F);
421 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
422 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
423 bool tryToPromoteExts(TypePromotionTransaction &TPT,
424 const SmallVectorImpl<Instruction *> &Exts,
425 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
426 unsigned CreatedInstsCost = 0);
427 bool mergeSExts(Function &F);
428 bool splitLargeGEPOffsets();
429 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
430 SmallPtrSetImpl<Instruction *> &DeletedInstrs);
431 bool optimizePhiTypes(Function &F);
432 bool performAddressTypePromotion(
433 Instruction *&Inst,
434 bool AllowPromotionWithoutCommonHeader,
435 bool HasPromoted, TypePromotionTransaction &TPT,
436 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
437 bool splitBranchCondition(Function &F, bool &ModifiedDT);
438 bool simplifyOffsetableRelocate(GCStatepointInst &I);
439
440 bool tryToSinkFreeOperands(Instruction *I);
441 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
442 Value *Arg1, CmpInst *Cmp,
443 Intrinsic::ID IID);
444 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
445 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
446 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
447 void verifyBFIUpdates(Function &F);
448 };
449
450 } // end anonymous namespace
451
452 char CodeGenPrepare::ID = 0;
453
454 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
455 "Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)456 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)
457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
458 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
459 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
460 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
461 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
462 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
463 "Optimize for code generation", false, false)
464
465 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
466
runOnFunction(Function & F)467 bool CodeGenPrepare::runOnFunction(Function &F) {
468 if (skipFunction(F))
469 return false;
470
471 DL = &F.getParent()->getDataLayout();
472
473 bool EverMadeChange = false;
474 // Clear per function information.
475 InsertedInsts.clear();
476 PromotedInsts.clear();
477
478 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
479 SubtargetInfo = TM->getSubtargetImpl(F);
480 TLI = SubtargetInfo->getTargetLowering();
481 TRI = SubtargetInfo->getRegisterInfo();
482 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
483 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
484 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
485 BPI.reset(new BranchProbabilityInfo(F, *LI));
486 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
487 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
488 BBSectionsProfileReader =
489 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>();
490 OptSize = F.hasOptSize();
491 // Use the basic-block-sections profile to promote hot functions to .text.hot if requested.
492 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
493 BBSectionsProfileReader->isFunctionHot(F.getName())) {
494 F.setSectionPrefix("hot");
495 } else if (ProfileGuidedSectionPrefix) {
496 // The hot attribute overwrites profile count based hotness while profile
497 // counts based hotness overwrite the cold attribute.
498 // This is a conservative behabvior.
499 if (F.hasFnAttribute(Attribute::Hot) ||
500 PSI->isFunctionHotInCallGraph(&F, *BFI))
501 F.setSectionPrefix("hot");
502 // If PSI shows this function is not hot, we will placed the function
503 // into unlikely section if (1) PSI shows this is a cold function, or
504 // (2) the function has a attribute of cold.
505 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
506 F.hasFnAttribute(Attribute::Cold))
507 F.setSectionPrefix("unlikely");
508 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
509 PSI->isFunctionHotnessUnknown(F))
510 F.setSectionPrefix("unknown");
511 }
512
513 /// This optimization identifies DIV instructions that can be
514 /// profitably bypassed and carried out with a shorter, faster divide.
515 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
516 const DenseMap<unsigned int, unsigned int> &BypassWidths =
517 TLI->getBypassSlowDivWidths();
518 BasicBlock* BB = &*F.begin();
519 while (BB != nullptr) {
520 // bypassSlowDivision may create new BBs, but we don't want to reapply the
521 // optimization to those blocks.
522 BasicBlock* Next = BB->getNextNode();
523 // F.hasOptSize is already checked in the outer if statement.
524 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
525 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
526 BB = Next;
527 }
528 }
529
530 // Get rid of @llvm.assume builtins before attempting to eliminate empty
531 // blocks, since there might be blocks that only contain @llvm.assume calls
532 // (plus arguments that we can get rid of).
533 EverMadeChange |= eliminateAssumptions(F);
534
535 // Eliminate blocks that contain only PHI nodes and an
536 // unconditional branch.
537 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
538
539 bool ModifiedDT = false;
540 if (!DisableBranchOpts)
541 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
542
543 // Split some critical edges where one of the sources is an indirect branch,
544 // to help generate sane code for PHIs involving such edges.
545 EverMadeChange |=
546 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
547
548 bool MadeChange = true;
549 while (MadeChange) {
550 MadeChange = false;
551 DT.reset();
552 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
553 bool ModifiedDTOnIteration = false;
554 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration);
555
556 // Restart BB iteration if the dominator tree of the Function was changed
557 if (ModifiedDTOnIteration)
558 break;
559 }
560 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
561 MadeChange |= mergeSExts(F);
562 if (!LargeOffsetGEPMap.empty())
563 MadeChange |= splitLargeGEPOffsets();
564 MadeChange |= optimizePhiTypes(F);
565
566 if (MadeChange)
567 eliminateFallThrough(F);
568
569 // Really free removed instructions during promotion.
570 for (Instruction *I : RemovedInsts)
571 I->deleteValue();
572
573 EverMadeChange |= MadeChange;
574 SeenChainsForSExt.clear();
575 ValToSExtendedUses.clear();
576 RemovedInsts.clear();
577 LargeOffsetGEPMap.clear();
578 LargeOffsetGEPID.clear();
579 }
580
581 NewGEPBases.clear();
582 SunkAddrs.clear();
583
584 if (!DisableBranchOpts) {
585 MadeChange = false;
586 // Use a set vector to get deterministic iteration order. The order the
587 // blocks are removed may affect whether or not PHI nodes in successors
588 // are removed.
589 SmallSetVector<BasicBlock*, 8> WorkList;
590 for (BasicBlock &BB : F) {
591 SmallVector<BasicBlock *, 2> Successors(successors(&BB));
592 MadeChange |= ConstantFoldTerminator(&BB, true);
593 if (!MadeChange) continue;
594
595 for (BasicBlock *Succ : Successors)
596 if (pred_empty(Succ))
597 WorkList.insert(Succ);
598 }
599
600 // Delete the dead blocks and any of their dead successors.
601 MadeChange |= !WorkList.empty();
602 while (!WorkList.empty()) {
603 BasicBlock *BB = WorkList.pop_back_val();
604 SmallVector<BasicBlock*, 2> Successors(successors(BB));
605
606 DeleteDeadBlock(BB);
607
608 for (BasicBlock *Succ : Successors)
609 if (pred_empty(Succ))
610 WorkList.insert(Succ);
611 }
612
613 // Merge pairs of basic blocks with unconditional branches, connected by
614 // a single edge.
615 if (EverMadeChange || MadeChange)
616 MadeChange |= eliminateFallThrough(F);
617
618 EverMadeChange |= MadeChange;
619 }
620
621 if (!DisableGCOpts) {
622 SmallVector<GCStatepointInst *, 2> Statepoints;
623 for (BasicBlock &BB : F)
624 for (Instruction &I : BB)
625 if (auto *SP = dyn_cast<GCStatepointInst>(&I))
626 Statepoints.push_back(SP);
627 for (auto &I : Statepoints)
628 EverMadeChange |= simplifyOffsetableRelocate(*I);
629 }
630
631 // Do this last to clean up use-before-def scenarios introduced by other
632 // preparatory transforms.
633 EverMadeChange |= placeDbgValues(F);
634 EverMadeChange |= placePseudoProbes(F);
635
636 #ifndef NDEBUG
637 if (VerifyBFIUpdates)
638 verifyBFIUpdates(F);
639 #endif
640
641 return EverMadeChange;
642 }
643
eliminateAssumptions(Function & F)644 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
645 bool MadeChange = false;
646 for (BasicBlock &BB : F) {
647 CurInstIterator = BB.begin();
648 while (CurInstIterator != BB.end()) {
649 Instruction *I = &*(CurInstIterator++);
650 if (auto *Assume = dyn_cast<AssumeInst>(I)) {
651 MadeChange = true;
652 Value *Operand = Assume->getOperand(0);
653 Assume->eraseFromParent();
654
655 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
656 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
657 });
658 }
659 }
660 }
661 return MadeChange;
662 }
663
664 /// An instruction is about to be deleted, so remove all references to it in our
665 /// GEP-tracking data strcutures.
removeAllAssertingVHReferences(Value * V)666 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
667 LargeOffsetGEPMap.erase(V);
668 NewGEPBases.erase(V);
669
670 auto GEP = dyn_cast<GetElementPtrInst>(V);
671 if (!GEP)
672 return;
673
674 LargeOffsetGEPID.erase(GEP);
675
676 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
677 if (VecI == LargeOffsetGEPMap.end())
678 return;
679
680 auto &GEPVector = VecI->second;
681 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
682
683 if (GEPVector.empty())
684 LargeOffsetGEPMap.erase(VecI);
685 }
686
687 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
verifyBFIUpdates(Function & F)688 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
689 DominatorTree NewDT(F);
690 LoopInfo NewLI(NewDT);
691 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
692 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
693 NewBFI.verifyMatch(*BFI);
694 }
695
696 /// Merge basic blocks which are connected by a single edge, where one of the
697 /// basic blocks has a single successor pointing to the other basic block,
698 /// which has a single predecessor.
eliminateFallThrough(Function & F)699 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
700 bool Changed = false;
701 // Scan all of the blocks in the function, except for the entry block.
702 // Use a temporary array to avoid iterator being invalidated when
703 // deleting blocks.
704 SmallVector<WeakTrackingVH, 16> Blocks;
705 for (auto &Block : llvm::drop_begin(F))
706 Blocks.push_back(&Block);
707
708 SmallSet<WeakTrackingVH, 16> Preds;
709 for (auto &Block : Blocks) {
710 auto *BB = cast_or_null<BasicBlock>(Block);
711 if (!BB)
712 continue;
713 // If the destination block has a single pred, then this is a trivial
714 // edge, just collapse it.
715 BasicBlock *SinglePred = BB->getSinglePredecessor();
716
717 // Don't merge if BB's address is taken.
718 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
719
720 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
721 if (Term && !Term->isConditional()) {
722 Changed = true;
723 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
724
725 // Merge BB into SinglePred and delete it.
726 MergeBlockIntoPredecessor(BB);
727 Preds.insert(SinglePred);
728 }
729 }
730
731 // (Repeatedly) merging blocks into their predecessors can create redundant
732 // debug intrinsics.
733 for (const auto &Pred : Preds)
734 if (auto *BB = cast_or_null<BasicBlock>(Pred))
735 RemoveRedundantDbgInstrs(BB);
736
737 return Changed;
738 }
739
740 /// Find a destination block from BB if BB is mergeable empty block.
findDestBlockOfMergeableEmptyBlock(BasicBlock * BB)741 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
742 // If this block doesn't end with an uncond branch, ignore it.
743 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
744 if (!BI || !BI->isUnconditional())
745 return nullptr;
746
747 // If the instruction before the branch (skipping debug info) isn't a phi
748 // node, then other stuff is happening here.
749 BasicBlock::iterator BBI = BI->getIterator();
750 if (BBI != BB->begin()) {
751 --BBI;
752 while (isa<DbgInfoIntrinsic>(BBI)) {
753 if (BBI == BB->begin())
754 break;
755 --BBI;
756 }
757 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
758 return nullptr;
759 }
760
761 // Do not break infinite loops.
762 BasicBlock *DestBB = BI->getSuccessor(0);
763 if (DestBB == BB)
764 return nullptr;
765
766 if (!canMergeBlocks(BB, DestBB))
767 DestBB = nullptr;
768
769 return DestBB;
770 }
771
772 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
773 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
774 /// edges in ways that are non-optimal for isel. Start by eliminating these
775 /// blocks so we can split them the way we want them.
eliminateMostlyEmptyBlocks(Function & F)776 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
777 SmallPtrSet<BasicBlock *, 16> Preheaders;
778 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
779 while (!LoopList.empty()) {
780 Loop *L = LoopList.pop_back_val();
781 llvm::append_range(LoopList, *L);
782 if (BasicBlock *Preheader = L->getLoopPreheader())
783 Preheaders.insert(Preheader);
784 }
785
786 bool MadeChange = false;
787 // Copy blocks into a temporary array to avoid iterator invalidation issues
788 // as we remove them.
789 // Note that this intentionally skips the entry block.
790 SmallVector<WeakTrackingVH, 16> Blocks;
791 for (auto &Block : llvm::drop_begin(F))
792 Blocks.push_back(&Block);
793
794 for (auto &Block : Blocks) {
795 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
796 if (!BB)
797 continue;
798 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
799 if (!DestBB ||
800 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
801 continue;
802
803 eliminateMostlyEmptyBlock(BB);
804 MadeChange = true;
805 }
806 return MadeChange;
807 }
808
isMergingEmptyBlockProfitable(BasicBlock * BB,BasicBlock * DestBB,bool isPreheader)809 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
810 BasicBlock *DestBB,
811 bool isPreheader) {
812 // Do not delete loop preheaders if doing so would create a critical edge.
813 // Loop preheaders can be good locations to spill registers. If the
814 // preheader is deleted and we create a critical edge, registers may be
815 // spilled in the loop body instead.
816 if (!DisablePreheaderProtect && isPreheader &&
817 !(BB->getSinglePredecessor() &&
818 BB->getSinglePredecessor()->getSingleSuccessor()))
819 return false;
820
821 // Skip merging if the block's successor is also a successor to any callbr
822 // that leads to this block.
823 // FIXME: Is this really needed? Is this a correctness issue?
824 for (BasicBlock *Pred : predecessors(BB)) {
825 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
826 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
827 if (DestBB == CBI->getSuccessor(i))
828 return false;
829 }
830
831 // Try to skip merging if the unique predecessor of BB is terminated by a
832 // switch or indirect branch instruction, and BB is used as an incoming block
833 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
834 // add COPY instructions in the predecessor of BB instead of BB (if it is not
835 // merged). Note that the critical edge created by merging such blocks wont be
836 // split in MachineSink because the jump table is not analyzable. By keeping
837 // such empty block (BB), ISel will place COPY instructions in BB, not in the
838 // predecessor of BB.
839 BasicBlock *Pred = BB->getUniquePredecessor();
840 if (!Pred ||
841 !(isa<SwitchInst>(Pred->getTerminator()) ||
842 isa<IndirectBrInst>(Pred->getTerminator())))
843 return true;
844
845 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
846 return true;
847
848 // We use a simple cost heuristic which determine skipping merging is
849 // profitable if the cost of skipping merging is less than the cost of
850 // merging : Cost(skipping merging) < Cost(merging BB), where the
851 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
852 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
853 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
854 // Freq(Pred) / Freq(BB) > 2.
855 // Note that if there are multiple empty blocks sharing the same incoming
856 // value for the PHIs in the DestBB, we consider them together. In such
857 // case, Cost(merging BB) will be the sum of their frequencies.
858
859 if (!isa<PHINode>(DestBB->begin()))
860 return true;
861
862 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
863
864 // Find all other incoming blocks from which incoming values of all PHIs in
865 // DestBB are the same as the ones from BB.
866 for (BasicBlock *DestBBPred : predecessors(DestBB)) {
867 if (DestBBPred == BB)
868 continue;
869
870 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
871 return DestPN.getIncomingValueForBlock(BB) ==
872 DestPN.getIncomingValueForBlock(DestBBPred);
873 }))
874 SameIncomingValueBBs.insert(DestBBPred);
875 }
876
877 // See if all BB's incoming values are same as the value from Pred. In this
878 // case, no reason to skip merging because COPYs are expected to be place in
879 // Pred already.
880 if (SameIncomingValueBBs.count(Pred))
881 return true;
882
883 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
884 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
885
886 for (auto *SameValueBB : SameIncomingValueBBs)
887 if (SameValueBB->getUniquePredecessor() == Pred &&
888 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
889 BBFreq += BFI->getBlockFreq(SameValueBB);
890
891 return PredFreq.getFrequency() <=
892 BBFreq.getFrequency() * FreqRatioToSkipMerge;
893 }
894
895 /// Return true if we can merge BB into DestBB if there is a single
896 /// unconditional branch between them, and BB contains no other non-phi
897 /// instructions.
canMergeBlocks(const BasicBlock * BB,const BasicBlock * DestBB) const898 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
899 const BasicBlock *DestBB) const {
900 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
901 // the successor. If there are more complex condition (e.g. preheaders),
902 // don't mess around with them.
903 for (const PHINode &PN : BB->phis()) {
904 for (const User *U : PN.users()) {
905 const Instruction *UI = cast<Instruction>(U);
906 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
907 return false;
908 // If User is inside DestBB block and it is a PHINode then check
909 // incoming value. If incoming value is not from BB then this is
910 // a complex condition (e.g. preheaders) we want to avoid here.
911 if (UI->getParent() == DestBB) {
912 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
913 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
914 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
915 if (Insn && Insn->getParent() == BB &&
916 Insn->getParent() != UPN->getIncomingBlock(I))
917 return false;
918 }
919 }
920 }
921 }
922
923 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
924 // and DestBB may have conflicting incoming values for the block. If so, we
925 // can't merge the block.
926 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
927 if (!DestBBPN) return true; // no conflict.
928
929 // Collect the preds of BB.
930 SmallPtrSet<const BasicBlock*, 16> BBPreds;
931 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
932 // It is faster to get preds from a PHI than with pred_iterator.
933 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
934 BBPreds.insert(BBPN->getIncomingBlock(i));
935 } else {
936 BBPreds.insert(pred_begin(BB), pred_end(BB));
937 }
938
939 // Walk the preds of DestBB.
940 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
941 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
942 if (BBPreds.count(Pred)) { // Common predecessor?
943 for (const PHINode &PN : DestBB->phis()) {
944 const Value *V1 = PN.getIncomingValueForBlock(Pred);
945 const Value *V2 = PN.getIncomingValueForBlock(BB);
946
947 // If V2 is a phi node in BB, look up what the mapped value will be.
948 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
949 if (V2PN->getParent() == BB)
950 V2 = V2PN->getIncomingValueForBlock(Pred);
951
952 // If there is a conflict, bail out.
953 if (V1 != V2) return false;
954 }
955 }
956 }
957
958 return true;
959 }
960
961 /// Eliminate a basic block that has only phi's and an unconditional branch in
962 /// it.
eliminateMostlyEmptyBlock(BasicBlock * BB)963 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
964 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
965 BasicBlock *DestBB = BI->getSuccessor(0);
966
967 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
968 << *BB << *DestBB);
969
970 // If the destination block has a single pred, then this is a trivial edge,
971 // just collapse it.
972 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
973 if (SinglePred != DestBB) {
974 assert(SinglePred == BB &&
975 "Single predecessor not the same as predecessor");
976 // Merge DestBB into SinglePred/BB and delete it.
977 MergeBlockIntoPredecessor(DestBB);
978 // Note: BB(=SinglePred) will not be deleted on this path.
979 // DestBB(=its single successor) is the one that was deleted.
980 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
981 return;
982 }
983 }
984
985 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
986 // to handle the new incoming edges it is about to have.
987 for (PHINode &PN : DestBB->phis()) {
988 // Remove the incoming value for BB, and remember it.
989 Value *InVal = PN.removeIncomingValue(BB, false);
990
991 // Two options: either the InVal is a phi node defined in BB or it is some
992 // value that dominates BB.
993 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
994 if (InValPhi && InValPhi->getParent() == BB) {
995 // Add all of the input values of the input PHI as inputs of this phi.
996 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
997 PN.addIncoming(InValPhi->getIncomingValue(i),
998 InValPhi->getIncomingBlock(i));
999 } else {
1000 // Otherwise, add one instance of the dominating value for each edge that
1001 // we will be adding.
1002 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1003 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1004 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1005 } else {
1006 for (BasicBlock *Pred : predecessors(BB))
1007 PN.addIncoming(InVal, Pred);
1008 }
1009 }
1010 }
1011
1012 // The PHIs are now updated, change everything that refers to BB to use
1013 // DestBB and remove BB.
1014 BB->replaceAllUsesWith(DestBB);
1015 BB->eraseFromParent();
1016 ++NumBlocksElim;
1017
1018 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1019 }
1020
1021 // Computes a map of base pointer relocation instructions to corresponding
1022 // derived pointer relocation instructions given a vector of all relocate calls
computeBaseDerivedRelocateMap(const SmallVectorImpl<GCRelocateInst * > & AllRelocateCalls,DenseMap<GCRelocateInst *,SmallVector<GCRelocateInst *,2>> & RelocateInstMap)1023 static void computeBaseDerivedRelocateMap(
1024 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1025 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1026 &RelocateInstMap) {
1027 // Collect information in two maps: one primarily for locating the base object
1028 // while filling the second map; the second map is the final structure holding
1029 // a mapping between Base and corresponding Derived relocate calls
1030 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1031 for (auto *ThisRelocate : AllRelocateCalls) {
1032 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1033 ThisRelocate->getDerivedPtrIndex());
1034 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1035 }
1036 for (auto &Item : RelocateIdxMap) {
1037 std::pair<unsigned, unsigned> Key = Item.first;
1038 if (Key.first == Key.second)
1039 // Base relocation: nothing to insert
1040 continue;
1041
1042 GCRelocateInst *I = Item.second;
1043 auto BaseKey = std::make_pair(Key.first, Key.first);
1044
1045 // We're iterating over RelocateIdxMap so we cannot modify it.
1046 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1047 if (MaybeBase == RelocateIdxMap.end())
1048 // TODO: We might want to insert a new base object relocate and gep off
1049 // that, if there are enough derived object relocates.
1050 continue;
1051
1052 RelocateInstMap[MaybeBase->second].push_back(I);
1053 }
1054 }
1055
1056 // Accepts a GEP and extracts the operands into a vector provided they're all
1057 // small integer constants
getGEPSmallConstantIntOffsetV(GetElementPtrInst * GEP,SmallVectorImpl<Value * > & OffsetV)1058 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1059 SmallVectorImpl<Value *> &OffsetV) {
1060 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1061 // Only accept small constant integer operands
1062 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1063 if (!Op || Op->getZExtValue() > 20)
1064 return false;
1065 }
1066
1067 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1068 OffsetV.push_back(GEP->getOperand(i));
1069 return true;
1070 }
1071
1072 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1073 // replace, computes a replacement, and affects it.
1074 static bool
simplifyRelocatesOffABase(GCRelocateInst * RelocatedBase,const SmallVectorImpl<GCRelocateInst * > & Targets)1075 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1076 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1077 bool MadeChange = false;
1078 // We must ensure the relocation of derived pointer is defined after
1079 // relocation of base pointer. If we find a relocation corresponding to base
1080 // defined earlier than relocation of base then we move relocation of base
1081 // right before found relocation. We consider only relocation in the same
1082 // basic block as relocation of base. Relocations from other basic block will
1083 // be skipped by optimization and we do not care about them.
1084 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1085 &*R != RelocatedBase; ++R)
1086 if (auto *RI = dyn_cast<GCRelocateInst>(R))
1087 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1088 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1089 RelocatedBase->moveBefore(RI);
1090 break;
1091 }
1092
1093 for (GCRelocateInst *ToReplace : Targets) {
1094 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1095 "Not relocating a derived object of the original base object");
1096 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1097 // A duplicate relocate call. TODO: coalesce duplicates.
1098 continue;
1099 }
1100
1101 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1102 // Base and derived relocates are in different basic blocks.
1103 // In this case transform is only valid when base dominates derived
1104 // relocate. However it would be too expensive to check dominance
1105 // for each such relocate, so we skip the whole transformation.
1106 continue;
1107 }
1108
1109 Value *Base = ToReplace->getBasePtr();
1110 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1111 if (!Derived || Derived->getPointerOperand() != Base)
1112 continue;
1113
1114 SmallVector<Value *, 2> OffsetV;
1115 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1116 continue;
1117
1118 // Create a Builder and replace the target callsite with a gep
1119 assert(RelocatedBase->getNextNode() &&
1120 "Should always have one since it's not a terminator");
1121
1122 // Insert after RelocatedBase
1123 IRBuilder<> Builder(RelocatedBase->getNextNode());
1124 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1125
1126 // If gc_relocate does not match the actual type, cast it to the right type.
1127 // In theory, there must be a bitcast after gc_relocate if the type does not
1128 // match, and we should reuse it to get the derived pointer. But it could be
1129 // cases like this:
1130 // bb1:
1131 // ...
1132 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1133 // br label %merge
1134 //
1135 // bb2:
1136 // ...
1137 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1138 // br label %merge
1139 //
1140 // merge:
1141 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1142 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1143 //
1144 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1145 // no matter there is already one or not. In this way, we can handle all cases, and
1146 // the extra bitcast should be optimized away in later passes.
1147 Value *ActualRelocatedBase = RelocatedBase;
1148 if (RelocatedBase->getType() != Base->getType()) {
1149 ActualRelocatedBase =
1150 Builder.CreateBitCast(RelocatedBase, Base->getType());
1151 }
1152 Value *Replacement = Builder.CreateGEP(
1153 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1154 Replacement->takeName(ToReplace);
1155 // If the newly generated derived pointer's type does not match the original derived
1156 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1157 Value *ActualReplacement = Replacement;
1158 if (Replacement->getType() != ToReplace->getType()) {
1159 ActualReplacement =
1160 Builder.CreateBitCast(Replacement, ToReplace->getType());
1161 }
1162 ToReplace->replaceAllUsesWith(ActualReplacement);
1163 ToReplace->eraseFromParent();
1164
1165 MadeChange = true;
1166 }
1167 return MadeChange;
1168 }
1169
1170 // Turns this:
1171 //
1172 // %base = ...
1173 // %ptr = gep %base + 15
1174 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1175 // %base' = relocate(%tok, i32 4, i32 4)
1176 // %ptr' = relocate(%tok, i32 4, i32 5)
1177 // %val = load %ptr'
1178 //
1179 // into this:
1180 //
1181 // %base = ...
1182 // %ptr = gep %base + 15
1183 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1184 // %base' = gc.relocate(%tok, i32 4, i32 4)
1185 // %ptr' = gep %base' + 15
1186 // %val = load %ptr'
simplifyOffsetableRelocate(GCStatepointInst & I)1187 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1188 bool MadeChange = false;
1189 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1190 for (auto *U : I.users())
1191 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1192 // Collect all the relocate calls associated with a statepoint
1193 AllRelocateCalls.push_back(Relocate);
1194
1195 // We need at least one base pointer relocation + one derived pointer
1196 // relocation to mangle
1197 if (AllRelocateCalls.size() < 2)
1198 return false;
1199
1200 // RelocateInstMap is a mapping from the base relocate instruction to the
1201 // corresponding derived relocate instructions
1202 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1203 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1204 if (RelocateInstMap.empty())
1205 return false;
1206
1207 for (auto &Item : RelocateInstMap)
1208 // Item.first is the RelocatedBase to offset against
1209 // Item.second is the vector of Targets to replace
1210 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1211 return MadeChange;
1212 }
1213
1214 /// Sink the specified cast instruction into its user blocks.
SinkCast(CastInst * CI)1215 static bool SinkCast(CastInst *CI) {
1216 BasicBlock *DefBB = CI->getParent();
1217
1218 /// InsertedCasts - Only insert a cast in each block once.
1219 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1220
1221 bool MadeChange = false;
1222 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1223 UI != E; ) {
1224 Use &TheUse = UI.getUse();
1225 Instruction *User = cast<Instruction>(*UI);
1226
1227 // Figure out which BB this cast is used in. For PHI's this is the
1228 // appropriate predecessor block.
1229 BasicBlock *UserBB = User->getParent();
1230 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1231 UserBB = PN->getIncomingBlock(TheUse);
1232 }
1233
1234 // Preincrement use iterator so we don't invalidate it.
1235 ++UI;
1236
1237 // The first insertion point of a block containing an EH pad is after the
1238 // pad. If the pad is the user, we cannot sink the cast past the pad.
1239 if (User->isEHPad())
1240 continue;
1241
1242 // If the block selected to receive the cast is an EH pad that does not
1243 // allow non-PHI instructions before the terminator, we can't sink the
1244 // cast.
1245 if (UserBB->getTerminator()->isEHPad())
1246 continue;
1247
1248 // If this user is in the same block as the cast, don't change the cast.
1249 if (UserBB == DefBB) continue;
1250
1251 // If we have already inserted a cast into this block, use it.
1252 CastInst *&InsertedCast = InsertedCasts[UserBB];
1253
1254 if (!InsertedCast) {
1255 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1256 assert(InsertPt != UserBB->end());
1257 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1258 CI->getType(), "", &*InsertPt);
1259 InsertedCast->setDebugLoc(CI->getDebugLoc());
1260 }
1261
1262 // Replace a use of the cast with a use of the new cast.
1263 TheUse = InsertedCast;
1264 MadeChange = true;
1265 ++NumCastUses;
1266 }
1267
1268 // If we removed all uses, nuke the cast.
1269 if (CI->use_empty()) {
1270 salvageDebugInfo(*CI);
1271 CI->eraseFromParent();
1272 MadeChange = true;
1273 }
1274
1275 return MadeChange;
1276 }
1277
1278 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1279 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1280 /// reduce the number of virtual registers that must be created and coalesced.
1281 ///
1282 /// Return true if any changes are made.
OptimizeNoopCopyExpression(CastInst * CI,const TargetLowering & TLI,const DataLayout & DL)1283 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1284 const DataLayout &DL) {
1285 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1286 // than sinking only nop casts, but is helpful on some platforms.
1287 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1288 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1289 ASC->getDestAddressSpace()))
1290 return false;
1291 }
1292
1293 // If this is a noop copy,
1294 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1295 EVT DstVT = TLI.getValueType(DL, CI->getType());
1296
1297 // This is an fp<->int conversion?
1298 if (SrcVT.isInteger() != DstVT.isInteger())
1299 return false;
1300
1301 // If this is an extension, it will be a zero or sign extension, which
1302 // isn't a noop.
1303 if (SrcVT.bitsLT(DstVT)) return false;
1304
1305 // If these values will be promoted, find out what they will be promoted
1306 // to. This helps us consider truncates on PPC as noop copies when they
1307 // are.
1308 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1309 TargetLowering::TypePromoteInteger)
1310 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1311 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1312 TargetLowering::TypePromoteInteger)
1313 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1314
1315 // If, after promotion, these are the same types, this is a noop copy.
1316 if (SrcVT != DstVT)
1317 return false;
1318
1319 return SinkCast(CI);
1320 }
1321
1322 // Match a simple increment by constant operation. Note that if a sub is
1323 // matched, the step is negated (as if the step had been canonicalized to
1324 // an add, even though we leave the instruction alone.)
matchIncrement(const Instruction * IVInc,Instruction * & LHS,Constant * & Step)1325 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS,
1326 Constant *&Step) {
1327 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1328 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1329 m_Instruction(LHS), m_Constant(Step)))))
1330 return true;
1331 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1332 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1333 m_Instruction(LHS), m_Constant(Step))))) {
1334 Step = ConstantExpr::getNeg(Step);
1335 return true;
1336 }
1337 return false;
1338 }
1339
1340 /// If given \p PN is an inductive variable with value IVInc coming from the
1341 /// backedge, and on each iteration it gets increased by Step, return pair
1342 /// <IVInc, Step>. Otherwise, return None.
1343 static Optional<std::pair<Instruction *, Constant *> >
getIVIncrement(const PHINode * PN,const LoopInfo * LI)1344 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1345 const Loop *L = LI->getLoopFor(PN->getParent());
1346 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1347 return None;
1348 auto *IVInc =
1349 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1350 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1351 return None;
1352 Instruction *LHS = nullptr;
1353 Constant *Step = nullptr;
1354 if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1355 return std::make_pair(IVInc, Step);
1356 return None;
1357 }
1358
isIVIncrement(const Value * V,const LoopInfo * LI)1359 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1360 auto *I = dyn_cast<Instruction>(V);
1361 if (!I)
1362 return false;
1363 Instruction *LHS = nullptr;
1364 Constant *Step = nullptr;
1365 if (!matchIncrement(I, LHS, Step))
1366 return false;
1367 if (auto *PN = dyn_cast<PHINode>(LHS))
1368 if (auto IVInc = getIVIncrement(PN, LI))
1369 return IVInc->first == I;
1370 return false;
1371 }
1372
replaceMathCmpWithIntrinsic(BinaryOperator * BO,Value * Arg0,Value * Arg1,CmpInst * Cmp,Intrinsic::ID IID)1373 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1374 Value *Arg0, Value *Arg1,
1375 CmpInst *Cmp,
1376 Intrinsic::ID IID) {
1377 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1378 if (!isIVIncrement(BO, LI))
1379 return false;
1380 const Loop *L = LI->getLoopFor(BO->getParent());
1381 assert(L && "L should not be null after isIVIncrement()");
1382 // Do not risk on moving increment into a child loop.
1383 if (LI->getLoopFor(Cmp->getParent()) != L)
1384 return false;
1385
1386 // Finally, we need to ensure that the insert point will dominate all
1387 // existing uses of the increment.
1388
1389 auto &DT = getDT(*BO->getParent()->getParent());
1390 if (DT.dominates(Cmp->getParent(), BO->getParent()))
1391 // If we're moving up the dom tree, all uses are trivially dominated.
1392 // (This is the common case for code produced by LSR.)
1393 return true;
1394
1395 // Otherwise, special case the single use in the phi recurrence.
1396 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1397 };
1398 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1399 // We used to use a dominator tree here to allow multi-block optimization.
1400 // But that was problematic because:
1401 // 1. It could cause a perf regression by hoisting the math op into the
1402 // critical path.
1403 // 2. It could cause a perf regression by creating a value that was live
1404 // across multiple blocks and increasing register pressure.
1405 // 3. Use of a dominator tree could cause large compile-time regression.
1406 // This is because we recompute the DT on every change in the main CGP
1407 // run-loop. The recomputing is probably unnecessary in many cases, so if
1408 // that was fixed, using a DT here would be ok.
1409 //
1410 // There is one important particular case we still want to handle: if BO is
1411 // the IV increment. Important properties that make it profitable:
1412 // - We can speculate IV increment anywhere in the loop (as long as the
1413 // indvar Phi is its only user);
1414 // - Upon computing Cmp, we effectively compute something equivalent to the
1415 // IV increment (despite it loops differently in the IR). So moving it up
1416 // to the cmp point does not really increase register pressure.
1417 return false;
1418 }
1419
1420 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1421 if (BO->getOpcode() == Instruction::Add &&
1422 IID == Intrinsic::usub_with_overflow) {
1423 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1424 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1425 }
1426
1427 // Insert at the first instruction of the pair.
1428 Instruction *InsertPt = nullptr;
1429 for (Instruction &Iter : *Cmp->getParent()) {
1430 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1431 // the overflow intrinsic are defined.
1432 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1433 InsertPt = &Iter;
1434 break;
1435 }
1436 }
1437 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1438
1439 IRBuilder<> Builder(InsertPt);
1440 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1441 if (BO->getOpcode() != Instruction::Xor) {
1442 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1443 BO->replaceAllUsesWith(Math);
1444 } else
1445 assert(BO->hasOneUse() &&
1446 "Patterns with XOr should use the BO only in the compare");
1447 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1448 Cmp->replaceAllUsesWith(OV);
1449 Cmp->eraseFromParent();
1450 BO->eraseFromParent();
1451 return true;
1452 }
1453
1454 /// Match special-case patterns that check for unsigned add overflow.
matchUAddWithOverflowConstantEdgeCases(CmpInst * Cmp,BinaryOperator * & Add)1455 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1456 BinaryOperator *&Add) {
1457 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1458 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1459 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1460
1461 // We are not expecting non-canonical/degenerate code. Just bail out.
1462 if (isa<Constant>(A))
1463 return false;
1464
1465 ICmpInst::Predicate Pred = Cmp->getPredicate();
1466 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1467 B = ConstantInt::get(B->getType(), 1);
1468 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1469 B = ConstantInt::get(B->getType(), -1);
1470 else
1471 return false;
1472
1473 // Check the users of the variable operand of the compare looking for an add
1474 // with the adjusted constant.
1475 for (User *U : A->users()) {
1476 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1477 Add = cast<BinaryOperator>(U);
1478 return true;
1479 }
1480 }
1481 return false;
1482 }
1483
1484 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1485 /// intrinsic. Return true if any changes were made.
combineToUAddWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1486 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1487 bool &ModifiedDT) {
1488 Value *A, *B;
1489 BinaryOperator *Add;
1490 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1491 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1492 return false;
1493 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1494 A = Add->getOperand(0);
1495 B = Add->getOperand(1);
1496 }
1497
1498 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1499 TLI->getValueType(*DL, Add->getType()),
1500 Add->hasNUsesOrMore(2)))
1501 return false;
1502
1503 // We don't want to move around uses of condition values this late, so we
1504 // check if it is legal to create the call to the intrinsic in the basic
1505 // block containing the icmp.
1506 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1507 return false;
1508
1509 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1510 Intrinsic::uadd_with_overflow))
1511 return false;
1512
1513 // Reset callers - do not crash by iterating over a dead instruction.
1514 ModifiedDT = true;
1515 return true;
1516 }
1517
combineToUSubWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1518 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1519 bool &ModifiedDT) {
1520 // We are not expecting non-canonical/degenerate code. Just bail out.
1521 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1522 if (isa<Constant>(A) && isa<Constant>(B))
1523 return false;
1524
1525 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1526 ICmpInst::Predicate Pred = Cmp->getPredicate();
1527 if (Pred == ICmpInst::ICMP_UGT) {
1528 std::swap(A, B);
1529 Pred = ICmpInst::ICMP_ULT;
1530 }
1531 // Convert special-case: (A == 0) is the same as (A u< 1).
1532 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1533 B = ConstantInt::get(B->getType(), 1);
1534 Pred = ICmpInst::ICMP_ULT;
1535 }
1536 // Convert special-case: (A != 0) is the same as (0 u< A).
1537 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1538 std::swap(A, B);
1539 Pred = ICmpInst::ICMP_ULT;
1540 }
1541 if (Pred != ICmpInst::ICMP_ULT)
1542 return false;
1543
1544 // Walk the users of a variable operand of a compare looking for a subtract or
1545 // add with that same operand. Also match the 2nd operand of the compare to
1546 // the add/sub, but that may be a negated constant operand of an add.
1547 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1548 BinaryOperator *Sub = nullptr;
1549 for (User *U : CmpVariableOperand->users()) {
1550 // A - B, A u< B --> usubo(A, B)
1551 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1552 Sub = cast<BinaryOperator>(U);
1553 break;
1554 }
1555
1556 // A + (-C), A u< C (canonicalized form of (sub A, C))
1557 const APInt *CmpC, *AddC;
1558 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1559 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1560 Sub = cast<BinaryOperator>(U);
1561 break;
1562 }
1563 }
1564 if (!Sub)
1565 return false;
1566
1567 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1568 TLI->getValueType(*DL, Sub->getType()),
1569 Sub->hasNUsesOrMore(2)))
1570 return false;
1571
1572 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1573 Cmp, Intrinsic::usub_with_overflow))
1574 return false;
1575
1576 // Reset callers - do not crash by iterating over a dead instruction.
1577 ModifiedDT = true;
1578 return true;
1579 }
1580
1581 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1582 /// registers that must be created and coalesced. This is a clear win except on
1583 /// targets with multiple condition code registers (PowerPC), where it might
1584 /// lose; some adjustment may be wanted there.
1585 ///
1586 /// Return true if any changes are made.
sinkCmpExpression(CmpInst * Cmp,const TargetLowering & TLI)1587 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1588 if (TLI.hasMultipleConditionRegisters())
1589 return false;
1590
1591 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1592 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1593 return false;
1594
1595 // Only insert a cmp in each block once.
1596 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1597
1598 bool MadeChange = false;
1599 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1600 UI != E; ) {
1601 Use &TheUse = UI.getUse();
1602 Instruction *User = cast<Instruction>(*UI);
1603
1604 // Preincrement use iterator so we don't invalidate it.
1605 ++UI;
1606
1607 // Don't bother for PHI nodes.
1608 if (isa<PHINode>(User))
1609 continue;
1610
1611 // Figure out which BB this cmp is used in.
1612 BasicBlock *UserBB = User->getParent();
1613 BasicBlock *DefBB = Cmp->getParent();
1614
1615 // If this user is in the same block as the cmp, don't change the cmp.
1616 if (UserBB == DefBB) continue;
1617
1618 // If we have already inserted a cmp into this block, use it.
1619 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1620
1621 if (!InsertedCmp) {
1622 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1623 assert(InsertPt != UserBB->end());
1624 InsertedCmp =
1625 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1626 Cmp->getOperand(0), Cmp->getOperand(1), "",
1627 &*InsertPt);
1628 // Propagate the debug info.
1629 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1630 }
1631
1632 // Replace a use of the cmp with a use of the new cmp.
1633 TheUse = InsertedCmp;
1634 MadeChange = true;
1635 ++NumCmpUses;
1636 }
1637
1638 // If we removed all uses, nuke the cmp.
1639 if (Cmp->use_empty()) {
1640 Cmp->eraseFromParent();
1641 MadeChange = true;
1642 }
1643
1644 return MadeChange;
1645 }
1646
1647 /// For pattern like:
1648 ///
1649 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1650 /// ...
1651 /// DomBB:
1652 /// ...
1653 /// br DomCond, TrueBB, CmpBB
1654 /// CmpBB: (with DomBB being the single predecessor)
1655 /// ...
1656 /// Cmp = icmp eq CmpOp0, CmpOp1
1657 /// ...
1658 ///
1659 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1660 /// different from lowering of icmp eq (PowerPC). This function try to convert
1661 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1662 /// After that, DomCond and Cmp can use the same comparison so reduce one
1663 /// comparison.
1664 ///
1665 /// Return true if any changes are made.
foldICmpWithDominatingICmp(CmpInst * Cmp,const TargetLowering & TLI)1666 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1667 const TargetLowering &TLI) {
1668 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1669 return false;
1670
1671 ICmpInst::Predicate Pred = Cmp->getPredicate();
1672 if (Pred != ICmpInst::ICMP_EQ)
1673 return false;
1674
1675 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1676 // icmp slt/sgt would introduce more redundant LLVM IR.
1677 for (User *U : Cmp->users()) {
1678 if (isa<BranchInst>(U))
1679 continue;
1680 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1681 continue;
1682 return false;
1683 }
1684
1685 // This is a cheap/incomplete check for dominance - just match a single
1686 // predecessor with a conditional branch.
1687 BasicBlock *CmpBB = Cmp->getParent();
1688 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1689 if (!DomBB)
1690 return false;
1691
1692 // We want to ensure that the only way control gets to the comparison of
1693 // interest is that a less/greater than comparison on the same operands is
1694 // false.
1695 Value *DomCond;
1696 BasicBlock *TrueBB, *FalseBB;
1697 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1698 return false;
1699 if (CmpBB != FalseBB)
1700 return false;
1701
1702 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1703 ICmpInst::Predicate DomPred;
1704 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1705 return false;
1706 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1707 return false;
1708
1709 // Convert the equality comparison to the opposite of the dominating
1710 // comparison and swap the direction for all branch/select users.
1711 // We have conceptually converted:
1712 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1713 // to
1714 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1715 // And similarly for branches.
1716 for (User *U : Cmp->users()) {
1717 if (auto *BI = dyn_cast<BranchInst>(U)) {
1718 assert(BI->isConditional() && "Must be conditional");
1719 BI->swapSuccessors();
1720 continue;
1721 }
1722 if (auto *SI = dyn_cast<SelectInst>(U)) {
1723 // Swap operands
1724 SI->swapValues();
1725 SI->swapProfMetadata();
1726 continue;
1727 }
1728 llvm_unreachable("Must be a branch or a select");
1729 }
1730 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1731 return true;
1732 }
1733
optimizeCmp(CmpInst * Cmp,bool & ModifiedDT)1734 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1735 if (sinkCmpExpression(Cmp, *TLI))
1736 return true;
1737
1738 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1739 return true;
1740
1741 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1742 return true;
1743
1744 if (foldICmpWithDominatingICmp(Cmp, *TLI))
1745 return true;
1746
1747 return false;
1748 }
1749
1750 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1751 /// used in a compare to allow isel to generate better code for targets where
1752 /// this operation can be combined.
1753 ///
1754 /// Return true if any changes are made.
sinkAndCmp0Expression(Instruction * AndI,const TargetLowering & TLI,SetOfInstrs & InsertedInsts)1755 static bool sinkAndCmp0Expression(Instruction *AndI,
1756 const TargetLowering &TLI,
1757 SetOfInstrs &InsertedInsts) {
1758 // Double-check that we're not trying to optimize an instruction that was
1759 // already optimized by some other part of this pass.
1760 assert(!InsertedInsts.count(AndI) &&
1761 "Attempting to optimize already optimized and instruction");
1762 (void) InsertedInsts;
1763
1764 // Nothing to do for single use in same basic block.
1765 if (AndI->hasOneUse() &&
1766 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1767 return false;
1768
1769 // Try to avoid cases where sinking/duplicating is likely to increase register
1770 // pressure.
1771 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1772 !isa<ConstantInt>(AndI->getOperand(1)) &&
1773 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1774 return false;
1775
1776 for (auto *U : AndI->users()) {
1777 Instruction *User = cast<Instruction>(U);
1778
1779 // Only sink 'and' feeding icmp with 0.
1780 if (!isa<ICmpInst>(User))
1781 return false;
1782
1783 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1784 if (!CmpC || !CmpC->isZero())
1785 return false;
1786 }
1787
1788 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1789 return false;
1790
1791 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1792 LLVM_DEBUG(AndI->getParent()->dump());
1793
1794 // Push the 'and' into the same block as the icmp 0. There should only be
1795 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1796 // others, so we don't need to keep track of which BBs we insert into.
1797 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1798 UI != E; ) {
1799 Use &TheUse = UI.getUse();
1800 Instruction *User = cast<Instruction>(*UI);
1801
1802 // Preincrement use iterator so we don't invalidate it.
1803 ++UI;
1804
1805 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1806
1807 // Keep the 'and' in the same place if the use is already in the same block.
1808 Instruction *InsertPt =
1809 User->getParent() == AndI->getParent() ? AndI : User;
1810 Instruction *InsertedAnd =
1811 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1812 AndI->getOperand(1), "", InsertPt);
1813 // Propagate the debug info.
1814 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1815
1816 // Replace a use of the 'and' with a use of the new 'and'.
1817 TheUse = InsertedAnd;
1818 ++NumAndUses;
1819 LLVM_DEBUG(User->getParent()->dump());
1820 }
1821
1822 // We removed all uses, nuke the and.
1823 AndI->eraseFromParent();
1824 return true;
1825 }
1826
1827 /// Check if the candidates could be combined with a shift instruction, which
1828 /// includes:
1829 /// 1. Truncate instruction
1830 /// 2. And instruction and the imm is a mask of the low bits:
1831 /// imm & (imm+1) == 0
isExtractBitsCandidateUse(Instruction * User)1832 static bool isExtractBitsCandidateUse(Instruction *User) {
1833 if (!isa<TruncInst>(User)) {
1834 if (User->getOpcode() != Instruction::And ||
1835 !isa<ConstantInt>(User->getOperand(1)))
1836 return false;
1837
1838 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1839
1840 if ((Cimm & (Cimm + 1)).getBoolValue())
1841 return false;
1842 }
1843 return true;
1844 }
1845
1846 /// Sink both shift and truncate instruction to the use of truncate's BB.
1847 static bool
SinkShiftAndTruncate(BinaryOperator * ShiftI,Instruction * User,ConstantInt * CI,DenseMap<BasicBlock *,BinaryOperator * > & InsertedShifts,const TargetLowering & TLI,const DataLayout & DL)1848 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1849 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1850 const TargetLowering &TLI, const DataLayout &DL) {
1851 BasicBlock *UserBB = User->getParent();
1852 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1853 auto *TruncI = cast<TruncInst>(User);
1854 bool MadeChange = false;
1855
1856 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1857 TruncE = TruncI->user_end();
1858 TruncUI != TruncE;) {
1859
1860 Use &TruncTheUse = TruncUI.getUse();
1861 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1862 // Preincrement use iterator so we don't invalidate it.
1863
1864 ++TruncUI;
1865
1866 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1867 if (!ISDOpcode)
1868 continue;
1869
1870 // If the use is actually a legal node, there will not be an
1871 // implicit truncate.
1872 // FIXME: always querying the result type is just an
1873 // approximation; some nodes' legality is determined by the
1874 // operand or other means. There's no good way to find out though.
1875 if (TLI.isOperationLegalOrCustom(
1876 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1877 continue;
1878
1879 // Don't bother for PHI nodes.
1880 if (isa<PHINode>(TruncUser))
1881 continue;
1882
1883 BasicBlock *TruncUserBB = TruncUser->getParent();
1884
1885 if (UserBB == TruncUserBB)
1886 continue;
1887
1888 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1889 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1890
1891 if (!InsertedShift && !InsertedTrunc) {
1892 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1893 assert(InsertPt != TruncUserBB->end());
1894 // Sink the shift
1895 if (ShiftI->getOpcode() == Instruction::AShr)
1896 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1897 "", &*InsertPt);
1898 else
1899 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1900 "", &*InsertPt);
1901 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1902
1903 // Sink the trunc
1904 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1905 TruncInsertPt++;
1906 assert(TruncInsertPt != TruncUserBB->end());
1907
1908 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1909 TruncI->getType(), "", &*TruncInsertPt);
1910 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1911
1912 MadeChange = true;
1913
1914 TruncTheUse = InsertedTrunc;
1915 }
1916 }
1917 return MadeChange;
1918 }
1919
1920 /// Sink the shift *right* instruction into user blocks if the uses could
1921 /// potentially be combined with this shift instruction and generate BitExtract
1922 /// instruction. It will only be applied if the architecture supports BitExtract
1923 /// instruction. Here is an example:
1924 /// BB1:
1925 /// %x.extract.shift = lshr i64 %arg1, 32
1926 /// BB2:
1927 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1928 /// ==>
1929 ///
1930 /// BB2:
1931 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1932 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1933 ///
1934 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1935 /// instruction.
1936 /// Return true if any changes are made.
OptimizeExtractBits(BinaryOperator * ShiftI,ConstantInt * CI,const TargetLowering & TLI,const DataLayout & DL)1937 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1938 const TargetLowering &TLI,
1939 const DataLayout &DL) {
1940 BasicBlock *DefBB = ShiftI->getParent();
1941
1942 /// Only insert instructions in each block once.
1943 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1944
1945 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1946
1947 bool MadeChange = false;
1948 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1949 UI != E;) {
1950 Use &TheUse = UI.getUse();
1951 Instruction *User = cast<Instruction>(*UI);
1952 // Preincrement use iterator so we don't invalidate it.
1953 ++UI;
1954
1955 // Don't bother for PHI nodes.
1956 if (isa<PHINode>(User))
1957 continue;
1958
1959 if (!isExtractBitsCandidateUse(User))
1960 continue;
1961
1962 BasicBlock *UserBB = User->getParent();
1963
1964 if (UserBB == DefBB) {
1965 // If the shift and truncate instruction are in the same BB. The use of
1966 // the truncate(TruncUse) may still introduce another truncate if not
1967 // legal. In this case, we would like to sink both shift and truncate
1968 // instruction to the BB of TruncUse.
1969 // for example:
1970 // BB1:
1971 // i64 shift.result = lshr i64 opnd, imm
1972 // trunc.result = trunc shift.result to i16
1973 //
1974 // BB2:
1975 // ----> We will have an implicit truncate here if the architecture does
1976 // not have i16 compare.
1977 // cmp i16 trunc.result, opnd2
1978 //
1979 if (isa<TruncInst>(User) && shiftIsLegal
1980 // If the type of the truncate is legal, no truncate will be
1981 // introduced in other basic blocks.
1982 &&
1983 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1984 MadeChange =
1985 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1986
1987 continue;
1988 }
1989 // If we have already inserted a shift into this block, use it.
1990 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1991
1992 if (!InsertedShift) {
1993 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1994 assert(InsertPt != UserBB->end());
1995
1996 if (ShiftI->getOpcode() == Instruction::AShr)
1997 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1998 "", &*InsertPt);
1999 else
2000 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
2001 "", &*InsertPt);
2002 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2003
2004 MadeChange = true;
2005 }
2006
2007 // Replace a use of the shift with a use of the new shift.
2008 TheUse = InsertedShift;
2009 }
2010
2011 // If we removed all uses, or there are none, nuke the shift.
2012 if (ShiftI->use_empty()) {
2013 salvageDebugInfo(*ShiftI);
2014 ShiftI->eraseFromParent();
2015 MadeChange = true;
2016 }
2017
2018 return MadeChange;
2019 }
2020
2021 /// If counting leading or trailing zeros is an expensive operation and a zero
2022 /// input is defined, add a check for zero to avoid calling the intrinsic.
2023 ///
2024 /// We want to transform:
2025 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2026 ///
2027 /// into:
2028 /// entry:
2029 /// %cmpz = icmp eq i64 %A, 0
2030 /// br i1 %cmpz, label %cond.end, label %cond.false
2031 /// cond.false:
2032 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2033 /// br label %cond.end
2034 /// cond.end:
2035 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2036 ///
2037 /// If the transform is performed, return true and set ModifiedDT to true.
despeculateCountZeros(IntrinsicInst * CountZeros,const TargetLowering * TLI,const DataLayout * DL,bool & ModifiedDT)2038 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2039 const TargetLowering *TLI,
2040 const DataLayout *DL,
2041 bool &ModifiedDT) {
2042 // If a zero input is undefined, it doesn't make sense to despeculate that.
2043 if (match(CountZeros->getOperand(1), m_One()))
2044 return false;
2045
2046 // If it's cheap to speculate, there's nothing to do.
2047 auto IntrinsicID = CountZeros->getIntrinsicID();
2048 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2049 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2050 return false;
2051
2052 // Only handle legal scalar cases. Anything else requires too much work.
2053 Type *Ty = CountZeros->getType();
2054 unsigned SizeInBits = Ty->getScalarSizeInBits();
2055 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2056 return false;
2057
2058 // Bail if the value is never zero.
2059 Use &Op = CountZeros->getOperandUse(0);
2060 if (isKnownNonZero(Op, *DL))
2061 return false;
2062
2063 // The intrinsic will be sunk behind a compare against zero and branch.
2064 BasicBlock *StartBlock = CountZeros->getParent();
2065 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2066
2067 // Create another block after the count zero intrinsic. A PHI will be added
2068 // in this block to select the result of the intrinsic or the bit-width
2069 // constant if the input to the intrinsic is zero.
2070 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2071 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2072
2073 // Set up a builder to create a compare, conditional branch, and PHI.
2074 IRBuilder<> Builder(CountZeros->getContext());
2075 Builder.SetInsertPoint(StartBlock->getTerminator());
2076 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2077
2078 // Replace the unconditional branch that was created by the first split with
2079 // a compare against zero and a conditional branch.
2080 Value *Zero = Constant::getNullValue(Ty);
2081 // Avoid introducing branch on poison. This also replaces the ctz operand.
2082 if (!isGuaranteedNotToBeUndefOrPoison(Op))
2083 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2084 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2085 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2086 StartBlock->getTerminator()->eraseFromParent();
2087
2088 // Create a PHI in the end block to select either the output of the intrinsic
2089 // or the bit width of the operand.
2090 Builder.SetInsertPoint(&EndBlock->front());
2091 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2092 CountZeros->replaceAllUsesWith(PN);
2093 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2094 PN->addIncoming(BitWidth, StartBlock);
2095 PN->addIncoming(CountZeros, CallBlock);
2096
2097 // We are explicitly handling the zero case, so we can set the intrinsic's
2098 // undefined zero argument to 'true'. This will also prevent reprocessing the
2099 // intrinsic; we only despeculate when a zero input is defined.
2100 CountZeros->setArgOperand(1, Builder.getTrue());
2101 ModifiedDT = true;
2102 return true;
2103 }
2104
optimizeCallInst(CallInst * CI,bool & ModifiedDT)2105 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2106 BasicBlock *BB = CI->getParent();
2107
2108 // Lower inline assembly if we can.
2109 // If we found an inline asm expession, and if the target knows how to
2110 // lower it to normal LLVM code, do so now.
2111 if (CI->isInlineAsm()) {
2112 if (TLI->ExpandInlineAsm(CI)) {
2113 // Avoid invalidating the iterator.
2114 CurInstIterator = BB->begin();
2115 // Avoid processing instructions out of order, which could cause
2116 // reuse before a value is defined.
2117 SunkAddrs.clear();
2118 return true;
2119 }
2120 // Sink address computing for memory operands into the block.
2121 if (optimizeInlineAsmInst(CI))
2122 return true;
2123 }
2124
2125 // Align the pointer arguments to this call if the target thinks it's a good
2126 // idea
2127 unsigned MinSize;
2128 Align PrefAlign;
2129 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2130 for (auto &Arg : CI->args()) {
2131 // We want to align both objects whose address is used directly and
2132 // objects whose address is used in casts and GEPs, though it only makes
2133 // sense for GEPs if the offset is a multiple of the desired alignment and
2134 // if size - offset meets the size threshold.
2135 if (!Arg->getType()->isPointerTy())
2136 continue;
2137 APInt Offset(DL->getIndexSizeInBits(
2138 cast<PointerType>(Arg->getType())->getAddressSpace()),
2139 0);
2140 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2141 uint64_t Offset2 = Offset.getLimitedValue();
2142 if (!isAligned(PrefAlign, Offset2))
2143 continue;
2144 AllocaInst *AI;
2145 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2146 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2147 AI->setAlignment(PrefAlign);
2148 // Global variables can only be aligned if they are defined in this
2149 // object (i.e. they are uniquely initialized in this object), and
2150 // over-aligning global variables that have an explicit section is
2151 // forbidden.
2152 GlobalVariable *GV;
2153 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2154 GV->getPointerAlignment(*DL) < PrefAlign &&
2155 DL->getTypeAllocSize(GV->getValueType()) >=
2156 MinSize + Offset2)
2157 GV->setAlignment(PrefAlign);
2158 }
2159 // If this is a memcpy (or similar) then we may be able to improve the
2160 // alignment
2161 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2162 Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2163 MaybeAlign MIDestAlign = MI->getDestAlign();
2164 if (!MIDestAlign || DestAlign > *MIDestAlign)
2165 MI->setDestAlignment(DestAlign);
2166 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2167 MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2168 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2169 if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2170 MTI->setSourceAlignment(SrcAlign);
2171 }
2172 }
2173 }
2174
2175 // If we have a cold call site, try to sink addressing computation into the
2176 // cold block. This interacts with our handling for loads and stores to
2177 // ensure that we can fold all uses of a potential addressing computation
2178 // into their uses. TODO: generalize this to work over profiling data
2179 if (CI->hasFnAttr(Attribute::Cold) &&
2180 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2181 for (auto &Arg : CI->args()) {
2182 if (!Arg->getType()->isPointerTy())
2183 continue;
2184 unsigned AS = Arg->getType()->getPointerAddressSpace();
2185 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2186 }
2187
2188 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2189 if (II) {
2190 switch (II->getIntrinsicID()) {
2191 default: break;
2192 case Intrinsic::assume:
2193 llvm_unreachable("llvm.assume should have been removed already");
2194 case Intrinsic::experimental_widenable_condition: {
2195 // Give up on future widening oppurtunties so that we can fold away dead
2196 // paths and merge blocks before going into block-local instruction
2197 // selection.
2198 if (II->use_empty()) {
2199 II->eraseFromParent();
2200 return true;
2201 }
2202 Constant *RetVal = ConstantInt::getTrue(II->getContext());
2203 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2204 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2205 });
2206 return true;
2207 }
2208 case Intrinsic::objectsize:
2209 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2210 case Intrinsic::is_constant:
2211 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2212 case Intrinsic::aarch64_stlxr:
2213 case Intrinsic::aarch64_stxr: {
2214 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2215 if (!ExtVal || !ExtVal->hasOneUse() ||
2216 ExtVal->getParent() == CI->getParent())
2217 return false;
2218 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2219 ExtVal->moveBefore(CI);
2220 // Mark this instruction as "inserted by CGP", so that other
2221 // optimizations don't touch it.
2222 InsertedInsts.insert(ExtVal);
2223 return true;
2224 }
2225
2226 case Intrinsic::launder_invariant_group:
2227 case Intrinsic::strip_invariant_group: {
2228 Value *ArgVal = II->getArgOperand(0);
2229 auto it = LargeOffsetGEPMap.find(II);
2230 if (it != LargeOffsetGEPMap.end()) {
2231 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2232 // Make sure not to have to deal with iterator invalidation
2233 // after possibly adding ArgVal to LargeOffsetGEPMap.
2234 auto GEPs = std::move(it->second);
2235 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2236 LargeOffsetGEPMap.erase(II);
2237 }
2238
2239 II->replaceAllUsesWith(ArgVal);
2240 II->eraseFromParent();
2241 return true;
2242 }
2243 case Intrinsic::cttz:
2244 case Intrinsic::ctlz:
2245 // If counting zeros is expensive, try to avoid it.
2246 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2247 case Intrinsic::fshl:
2248 case Intrinsic::fshr:
2249 return optimizeFunnelShift(II);
2250 case Intrinsic::dbg_value:
2251 return fixupDbgValue(II);
2252 case Intrinsic::vscale: {
2253 // If datalayout has no special restrictions on vector data layout,
2254 // replace `llvm.vscale` by an equivalent constant expression
2255 // to benefit from cheap constant propagation.
2256 Type *ScalableVectorTy =
2257 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2258 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2259 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2260 auto *One = ConstantInt::getSigned(II->getType(), 1);
2261 auto *CGep =
2262 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2263 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2264 II->eraseFromParent();
2265 return true;
2266 }
2267 break;
2268 }
2269 case Intrinsic::masked_gather:
2270 return optimizeGatherScatterInst(II, II->getArgOperand(0));
2271 case Intrinsic::masked_scatter:
2272 return optimizeGatherScatterInst(II, II->getArgOperand(1));
2273 }
2274
2275 SmallVector<Value *, 2> PtrOps;
2276 Type *AccessTy;
2277 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2278 while (!PtrOps.empty()) {
2279 Value *PtrVal = PtrOps.pop_back_val();
2280 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2281 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2282 return true;
2283 }
2284 }
2285
2286 // From here on out we're working with named functions.
2287 if (!CI->getCalledFunction()) return false;
2288
2289 // Lower all default uses of _chk calls. This is very similar
2290 // to what InstCombineCalls does, but here we are only lowering calls
2291 // to fortified library functions (e.g. __memcpy_chk) that have the default
2292 // "don't know" as the objectsize. Anything else should be left alone.
2293 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2294 IRBuilder<> Builder(CI);
2295 if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2296 CI->replaceAllUsesWith(V);
2297 CI->eraseFromParent();
2298 return true;
2299 }
2300
2301 return false;
2302 }
2303
2304 /// Look for opportunities to duplicate return instructions to the predecessor
2305 /// to enable tail call optimizations. The case it is currently looking for is:
2306 /// @code
2307 /// bb0:
2308 /// %tmp0 = tail call i32 @f0()
2309 /// br label %return
2310 /// bb1:
2311 /// %tmp1 = tail call i32 @f1()
2312 /// br label %return
2313 /// bb2:
2314 /// %tmp2 = tail call i32 @f2()
2315 /// br label %return
2316 /// return:
2317 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2318 /// ret i32 %retval
2319 /// @endcode
2320 ///
2321 /// =>
2322 ///
2323 /// @code
2324 /// bb0:
2325 /// %tmp0 = tail call i32 @f0()
2326 /// ret i32 %tmp0
2327 /// bb1:
2328 /// %tmp1 = tail call i32 @f1()
2329 /// ret i32 %tmp1
2330 /// bb2:
2331 /// %tmp2 = tail call i32 @f2()
2332 /// ret i32 %tmp2
2333 /// @endcode
dupRetToEnableTailCallOpts(BasicBlock * BB,bool & ModifiedDT)2334 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2335 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2336 if (!RetI)
2337 return false;
2338
2339 PHINode *PN = nullptr;
2340 ExtractValueInst *EVI = nullptr;
2341 BitCastInst *BCI = nullptr;
2342 Value *V = RetI->getReturnValue();
2343 if (V) {
2344 BCI = dyn_cast<BitCastInst>(V);
2345 if (BCI)
2346 V = BCI->getOperand(0);
2347
2348 EVI = dyn_cast<ExtractValueInst>(V);
2349 if (EVI) {
2350 V = EVI->getOperand(0);
2351 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2352 return false;
2353 }
2354
2355 PN = dyn_cast<PHINode>(V);
2356 if (!PN)
2357 return false;
2358 }
2359
2360 if (PN && PN->getParent() != BB)
2361 return false;
2362
2363 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2364 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2365 if (BC && BC->hasOneUse())
2366 Inst = BC->user_back();
2367
2368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2369 return II->getIntrinsicID() == Intrinsic::lifetime_end;
2370 return false;
2371 };
2372
2373 // Make sure there are no instructions between the first instruction
2374 // and return.
2375 const Instruction *BI = BB->getFirstNonPHI();
2376 // Skip over debug and the bitcast.
2377 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2378 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2379 BI = BI->getNextNode();
2380 if (BI != RetI)
2381 return false;
2382
2383 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2384 /// call.
2385 const Function *F = BB->getParent();
2386 SmallVector<BasicBlock*, 4> TailCallBBs;
2387 if (PN) {
2388 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2389 // Look through bitcasts.
2390 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2391 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2392 BasicBlock *PredBB = PN->getIncomingBlock(I);
2393 // Make sure the phi value is indeed produced by the tail call.
2394 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2395 TLI->mayBeEmittedAsTailCall(CI) &&
2396 attributesPermitTailCall(F, CI, RetI, *TLI))
2397 TailCallBBs.push_back(PredBB);
2398 }
2399 } else {
2400 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2401 for (BasicBlock *Pred : predecessors(BB)) {
2402 if (!VisitedBBs.insert(Pred).second)
2403 continue;
2404 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2405 CallInst *CI = dyn_cast<CallInst>(I);
2406 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2407 attributesPermitTailCall(F, CI, RetI, *TLI))
2408 TailCallBBs.push_back(Pred);
2409 }
2410 }
2411 }
2412
2413 bool Changed = false;
2414 for (auto const &TailCallBB : TailCallBBs) {
2415 // Make sure the call instruction is followed by an unconditional branch to
2416 // the return block.
2417 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2418 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2419 continue;
2420
2421 // Duplicate the return into TailCallBB.
2422 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2423 assert(!VerifyBFIUpdates ||
2424 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2425 BFI->setBlockFreq(
2426 BB,
2427 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2428 ModifiedDT = Changed = true;
2429 ++NumRetsDup;
2430 }
2431
2432 // If we eliminated all predecessors of the block, delete the block now.
2433 if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2434 BB->eraseFromParent();
2435
2436 return Changed;
2437 }
2438
2439 //===----------------------------------------------------------------------===//
2440 // Memory Optimization
2441 //===----------------------------------------------------------------------===//
2442
2443 namespace {
2444
2445 /// This is an extended version of TargetLowering::AddrMode
2446 /// which holds actual Value*'s for register values.
2447 struct ExtAddrMode : public TargetLowering::AddrMode {
2448 Value *BaseReg = nullptr;
2449 Value *ScaledReg = nullptr;
2450 Value *OriginalValue = nullptr;
2451 bool InBounds = true;
2452
2453 enum FieldName {
2454 NoField = 0x00,
2455 BaseRegField = 0x01,
2456 BaseGVField = 0x02,
2457 BaseOffsField = 0x04,
2458 ScaledRegField = 0x08,
2459 ScaleField = 0x10,
2460 MultipleFields = 0xff
2461 };
2462
2463
2464 ExtAddrMode() = default;
2465
2466 void print(raw_ostream &OS) const;
2467 void dump() const;
2468
compare__anon78e22a880911::ExtAddrMode2469 FieldName compare(const ExtAddrMode &other) {
2470 // First check that the types are the same on each field, as differing types
2471 // is something we can't cope with later on.
2472 if (BaseReg && other.BaseReg &&
2473 BaseReg->getType() != other.BaseReg->getType())
2474 return MultipleFields;
2475 if (BaseGV && other.BaseGV &&
2476 BaseGV->getType() != other.BaseGV->getType())
2477 return MultipleFields;
2478 if (ScaledReg && other.ScaledReg &&
2479 ScaledReg->getType() != other.ScaledReg->getType())
2480 return MultipleFields;
2481
2482 // Conservatively reject 'inbounds' mismatches.
2483 if (InBounds != other.InBounds)
2484 return MultipleFields;
2485
2486 // Check each field to see if it differs.
2487 unsigned Result = NoField;
2488 if (BaseReg != other.BaseReg)
2489 Result |= BaseRegField;
2490 if (BaseGV != other.BaseGV)
2491 Result |= BaseGVField;
2492 if (BaseOffs != other.BaseOffs)
2493 Result |= BaseOffsField;
2494 if (ScaledReg != other.ScaledReg)
2495 Result |= ScaledRegField;
2496 // Don't count 0 as being a different scale, because that actually means
2497 // unscaled (which will already be counted by having no ScaledReg).
2498 if (Scale && other.Scale && Scale != other.Scale)
2499 Result |= ScaleField;
2500
2501 if (countPopulation(Result) > 1)
2502 return MultipleFields;
2503 else
2504 return static_cast<FieldName>(Result);
2505 }
2506
2507 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2508 // with no offset.
isTrivial__anon78e22a880911::ExtAddrMode2509 bool isTrivial() {
2510 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2511 // trivial if at most one of these terms is nonzero, except that BaseGV and
2512 // BaseReg both being zero actually means a null pointer value, which we
2513 // consider to be 'non-zero' here.
2514 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2515 }
2516
GetFieldAsValue__anon78e22a880911::ExtAddrMode2517 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2518 switch (Field) {
2519 default:
2520 return nullptr;
2521 case BaseRegField:
2522 return BaseReg;
2523 case BaseGVField:
2524 return BaseGV;
2525 case ScaledRegField:
2526 return ScaledReg;
2527 case BaseOffsField:
2528 return ConstantInt::get(IntPtrTy, BaseOffs);
2529 }
2530 }
2531
SetCombinedField__anon78e22a880911::ExtAddrMode2532 void SetCombinedField(FieldName Field, Value *V,
2533 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2534 switch (Field) {
2535 default:
2536 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2537 break;
2538 case ExtAddrMode::BaseRegField:
2539 BaseReg = V;
2540 break;
2541 case ExtAddrMode::BaseGVField:
2542 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2543 // in the BaseReg field.
2544 assert(BaseReg == nullptr);
2545 BaseReg = V;
2546 BaseGV = nullptr;
2547 break;
2548 case ExtAddrMode::ScaledRegField:
2549 ScaledReg = V;
2550 // If we have a mix of scaled and unscaled addrmodes then we want scale
2551 // to be the scale and not zero.
2552 if (!Scale)
2553 for (const ExtAddrMode &AM : AddrModes)
2554 if (AM.Scale) {
2555 Scale = AM.Scale;
2556 break;
2557 }
2558 break;
2559 case ExtAddrMode::BaseOffsField:
2560 // The offset is no longer a constant, so it goes in ScaledReg with a
2561 // scale of 1.
2562 assert(ScaledReg == nullptr);
2563 ScaledReg = V;
2564 Scale = 1;
2565 BaseOffs = 0;
2566 break;
2567 }
2568 }
2569 };
2570
2571 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ExtAddrMode & AM)2572 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2573 AM.print(OS);
2574 return OS;
2575 }
2576 #endif
2577
2578 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const2579 void ExtAddrMode::print(raw_ostream &OS) const {
2580 bool NeedPlus = false;
2581 OS << "[";
2582 if (InBounds)
2583 OS << "inbounds ";
2584 if (BaseGV) {
2585 OS << (NeedPlus ? " + " : "")
2586 << "GV:";
2587 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2588 NeedPlus = true;
2589 }
2590
2591 if (BaseOffs) {
2592 OS << (NeedPlus ? " + " : "")
2593 << BaseOffs;
2594 NeedPlus = true;
2595 }
2596
2597 if (BaseReg) {
2598 OS << (NeedPlus ? " + " : "")
2599 << "Base:";
2600 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2601 NeedPlus = true;
2602 }
2603 if (Scale) {
2604 OS << (NeedPlus ? " + " : "")
2605 << Scale << "*";
2606 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2607 }
2608
2609 OS << ']';
2610 }
2611
dump() const2612 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2613 print(dbgs());
2614 dbgs() << '\n';
2615 }
2616 #endif
2617
2618 } // end anonymous namespace
2619
2620 namespace {
2621
2622 /// This class provides transaction based operation on the IR.
2623 /// Every change made through this class is recorded in the internal state and
2624 /// can be undone (rollback) until commit is called.
2625 /// CGP does not check if instructions could be speculatively executed when
2626 /// moved. Preserving the original location would pessimize the debugging
2627 /// experience, as well as negatively impact the quality of sample PGO.
2628 class TypePromotionTransaction {
2629 /// This represents the common interface of the individual transaction.
2630 /// Each class implements the logic for doing one specific modification on
2631 /// the IR via the TypePromotionTransaction.
2632 class TypePromotionAction {
2633 protected:
2634 /// The Instruction modified.
2635 Instruction *Inst;
2636
2637 public:
2638 /// Constructor of the action.
2639 /// The constructor performs the related action on the IR.
TypePromotionAction(Instruction * Inst)2640 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2641
2642 virtual ~TypePromotionAction() = default;
2643
2644 /// Undo the modification done by this action.
2645 /// When this method is called, the IR must be in the same state as it was
2646 /// before this action was applied.
2647 /// \pre Undoing the action works if and only if the IR is in the exact same
2648 /// state as it was directly after this action was applied.
2649 virtual void undo() = 0;
2650
2651 /// Advocate every change made by this action.
2652 /// When the results on the IR of the action are to be kept, it is important
2653 /// to call this function, otherwise hidden information may be kept forever.
commit()2654 virtual void commit() {
2655 // Nothing to be done, this action is not doing anything.
2656 }
2657 };
2658
2659 /// Utility to remember the position of an instruction.
2660 class InsertionHandler {
2661 /// Position of an instruction.
2662 /// Either an instruction:
2663 /// - Is the first in a basic block: BB is used.
2664 /// - Has a previous instruction: PrevInst is used.
2665 union {
2666 Instruction *PrevInst;
2667 BasicBlock *BB;
2668 } Point;
2669
2670 /// Remember whether or not the instruction had a previous instruction.
2671 bool HasPrevInstruction;
2672
2673 public:
2674 /// Record the position of \p Inst.
InsertionHandler(Instruction * Inst)2675 InsertionHandler(Instruction *Inst) {
2676 BasicBlock::iterator It = Inst->getIterator();
2677 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2678 if (HasPrevInstruction)
2679 Point.PrevInst = &*--It;
2680 else
2681 Point.BB = Inst->getParent();
2682 }
2683
2684 /// Insert \p Inst at the recorded position.
insert(Instruction * Inst)2685 void insert(Instruction *Inst) {
2686 if (HasPrevInstruction) {
2687 if (Inst->getParent())
2688 Inst->removeFromParent();
2689 Inst->insertAfter(Point.PrevInst);
2690 } else {
2691 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2692 if (Inst->getParent())
2693 Inst->moveBefore(Position);
2694 else
2695 Inst->insertBefore(Position);
2696 }
2697 }
2698 };
2699
2700 /// Move an instruction before another.
2701 class InstructionMoveBefore : public TypePromotionAction {
2702 /// Original position of the instruction.
2703 InsertionHandler Position;
2704
2705 public:
2706 /// Move \p Inst before \p Before.
InstructionMoveBefore(Instruction * Inst,Instruction * Before)2707 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2708 : TypePromotionAction(Inst), Position(Inst) {
2709 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2710 << "\n");
2711 Inst->moveBefore(Before);
2712 }
2713
2714 /// Move the instruction back to its original position.
undo()2715 void undo() override {
2716 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2717 Position.insert(Inst);
2718 }
2719 };
2720
2721 /// Set the operand of an instruction with a new value.
2722 class OperandSetter : public TypePromotionAction {
2723 /// Original operand of the instruction.
2724 Value *Origin;
2725
2726 /// Index of the modified instruction.
2727 unsigned Idx;
2728
2729 public:
2730 /// Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction * Inst,unsigned Idx,Value * NewVal)2731 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2732 : TypePromotionAction(Inst), Idx(Idx) {
2733 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2734 << "for:" << *Inst << "\n"
2735 << "with:" << *NewVal << "\n");
2736 Origin = Inst->getOperand(Idx);
2737 Inst->setOperand(Idx, NewVal);
2738 }
2739
2740 /// Restore the original value of the instruction.
undo()2741 void undo() override {
2742 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2743 << "for: " << *Inst << "\n"
2744 << "with: " << *Origin << "\n");
2745 Inst->setOperand(Idx, Origin);
2746 }
2747 };
2748
2749 /// Hide the operands of an instruction.
2750 /// Do as if this instruction was not using any of its operands.
2751 class OperandsHider : public TypePromotionAction {
2752 /// The list of original operands.
2753 SmallVector<Value *, 4> OriginalValues;
2754
2755 public:
2756 /// Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction * Inst)2757 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2758 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2759 unsigned NumOpnds = Inst->getNumOperands();
2760 OriginalValues.reserve(NumOpnds);
2761 for (unsigned It = 0; It < NumOpnds; ++It) {
2762 // Save the current operand.
2763 Value *Val = Inst->getOperand(It);
2764 OriginalValues.push_back(Val);
2765 // Set a dummy one.
2766 // We could use OperandSetter here, but that would imply an overhead
2767 // that we are not willing to pay.
2768 Inst->setOperand(It, UndefValue::get(Val->getType()));
2769 }
2770 }
2771
2772 /// Restore the original list of uses.
undo()2773 void undo() override {
2774 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2775 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2776 Inst->setOperand(It, OriginalValues[It]);
2777 }
2778 };
2779
2780 /// Build a truncate instruction.
2781 class TruncBuilder : public TypePromotionAction {
2782 Value *Val;
2783
2784 public:
2785 /// Build a truncate instruction of \p Opnd producing a \p Ty
2786 /// result.
2787 /// trunc Opnd to Ty.
TruncBuilder(Instruction * Opnd,Type * Ty)2788 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2789 IRBuilder<> Builder(Opnd);
2790 Builder.SetCurrentDebugLocation(DebugLoc());
2791 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2792 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2793 }
2794
2795 /// Get the built value.
getBuiltValue()2796 Value *getBuiltValue() { return Val; }
2797
2798 /// Remove the built instruction.
undo()2799 void undo() override {
2800 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2801 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2802 IVal->eraseFromParent();
2803 }
2804 };
2805
2806 /// Build a sign extension instruction.
2807 class SExtBuilder : public TypePromotionAction {
2808 Value *Val;
2809
2810 public:
2811 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2812 /// result.
2813 /// sext Opnd to Ty.
SExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2814 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2815 : TypePromotionAction(InsertPt) {
2816 IRBuilder<> Builder(InsertPt);
2817 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2818 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2819 }
2820
2821 /// Get the built value.
getBuiltValue()2822 Value *getBuiltValue() { return Val; }
2823
2824 /// Remove the built instruction.
undo()2825 void undo() override {
2826 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2827 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2828 IVal->eraseFromParent();
2829 }
2830 };
2831
2832 /// Build a zero extension instruction.
2833 class ZExtBuilder : public TypePromotionAction {
2834 Value *Val;
2835
2836 public:
2837 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2838 /// result.
2839 /// zext Opnd to Ty.
ZExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2840 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2841 : TypePromotionAction(InsertPt) {
2842 IRBuilder<> Builder(InsertPt);
2843 Builder.SetCurrentDebugLocation(DebugLoc());
2844 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2845 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2846 }
2847
2848 /// Get the built value.
getBuiltValue()2849 Value *getBuiltValue() { return Val; }
2850
2851 /// Remove the built instruction.
undo()2852 void undo() override {
2853 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2854 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2855 IVal->eraseFromParent();
2856 }
2857 };
2858
2859 /// Mutate an instruction to another type.
2860 class TypeMutator : public TypePromotionAction {
2861 /// Record the original type.
2862 Type *OrigTy;
2863
2864 public:
2865 /// Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction * Inst,Type * NewTy)2866 TypeMutator(Instruction *Inst, Type *NewTy)
2867 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2868 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2869 << "\n");
2870 Inst->mutateType(NewTy);
2871 }
2872
2873 /// Mutate the instruction back to its original type.
undo()2874 void undo() override {
2875 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2876 << "\n");
2877 Inst->mutateType(OrigTy);
2878 }
2879 };
2880
2881 /// Replace the uses of an instruction by another instruction.
2882 class UsesReplacer : public TypePromotionAction {
2883 /// Helper structure to keep track of the replaced uses.
2884 struct InstructionAndIdx {
2885 /// The instruction using the instruction.
2886 Instruction *Inst;
2887
2888 /// The index where this instruction is used for Inst.
2889 unsigned Idx;
2890
InstructionAndIdx__anon78e22a880a11::TypePromotionTransaction::UsesReplacer::InstructionAndIdx2891 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2892 : Inst(Inst), Idx(Idx) {}
2893 };
2894
2895 /// Keep track of the original uses (pair Instruction, Index).
2896 SmallVector<InstructionAndIdx, 4> OriginalUses;
2897 /// Keep track of the debug users.
2898 SmallVector<DbgValueInst *, 1> DbgValues;
2899
2900 /// Keep track of the new value so that we can undo it by replacing
2901 /// instances of the new value with the original value.
2902 Value *New;
2903
2904 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2905
2906 public:
2907 /// Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction * Inst,Value * New)2908 UsesReplacer(Instruction *Inst, Value *New)
2909 : TypePromotionAction(Inst), New(New) {
2910 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2911 << "\n");
2912 // Record the original uses.
2913 for (Use &U : Inst->uses()) {
2914 Instruction *UserI = cast<Instruction>(U.getUser());
2915 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2916 }
2917 // Record the debug uses separately. They are not in the instruction's
2918 // use list, but they are replaced by RAUW.
2919 findDbgValues(DbgValues, Inst);
2920
2921 // Now, we can replace the uses.
2922 Inst->replaceAllUsesWith(New);
2923 }
2924
2925 /// Reassign the original uses of Inst to Inst.
undo()2926 void undo() override {
2927 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2928 for (InstructionAndIdx &Use : OriginalUses)
2929 Use.Inst->setOperand(Use.Idx, Inst);
2930 // RAUW has replaced all original uses with references to the new value,
2931 // including the debug uses. Since we are undoing the replacements,
2932 // the original debug uses must also be reinstated to maintain the
2933 // correctness and utility of debug value instructions.
2934 for (auto *DVI : DbgValues)
2935 DVI->replaceVariableLocationOp(New, Inst);
2936 }
2937 };
2938
2939 /// Remove an instruction from the IR.
2940 class InstructionRemover : public TypePromotionAction {
2941 /// Original position of the instruction.
2942 InsertionHandler Inserter;
2943
2944 /// Helper structure to hide all the link to the instruction. In other
2945 /// words, this helps to do as if the instruction was removed.
2946 OperandsHider Hider;
2947
2948 /// Keep track of the uses replaced, if any.
2949 UsesReplacer *Replacer = nullptr;
2950
2951 /// Keep track of instructions removed.
2952 SetOfInstrs &RemovedInsts;
2953
2954 public:
2955 /// Remove all reference of \p Inst and optionally replace all its
2956 /// uses with New.
2957 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2958 /// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction * Inst,SetOfInstrs & RemovedInsts,Value * New=nullptr)2959 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2960 Value *New = nullptr)
2961 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2962 RemovedInsts(RemovedInsts) {
2963 if (New)
2964 Replacer = new UsesReplacer(Inst, New);
2965 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2966 RemovedInsts.insert(Inst);
2967 /// The instructions removed here will be freed after completing
2968 /// optimizeBlock() for all blocks as we need to keep track of the
2969 /// removed instructions during promotion.
2970 Inst->removeFromParent();
2971 }
2972
~InstructionRemover()2973 ~InstructionRemover() override { delete Replacer; }
2974
2975 /// Resurrect the instruction and reassign it to the proper uses if
2976 /// new value was provided when build this action.
undo()2977 void undo() override {
2978 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2979 Inserter.insert(Inst);
2980 if (Replacer)
2981 Replacer->undo();
2982 Hider.undo();
2983 RemovedInsts.erase(Inst);
2984 }
2985 };
2986
2987 public:
2988 /// Restoration point.
2989 /// The restoration point is a pointer to an action instead of an iterator
2990 /// because the iterator may be invalidated but not the pointer.
2991 using ConstRestorationPt = const TypePromotionAction *;
2992
TypePromotionTransaction(SetOfInstrs & RemovedInsts)2993 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2994 : RemovedInsts(RemovedInsts) {}
2995
2996 /// Advocate every changes made in that transaction. Return true if any change
2997 /// happen.
2998 bool commit();
2999
3000 /// Undo all the changes made after the given point.
3001 void rollback(ConstRestorationPt Point);
3002
3003 /// Get the current restoration point.
3004 ConstRestorationPt getRestorationPoint() const;
3005
3006 /// \name API for IR modification with state keeping to support rollback.
3007 /// @{
3008 /// Same as Instruction::setOperand.
3009 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3010
3011 /// Same as Instruction::eraseFromParent.
3012 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3013
3014 /// Same as Value::replaceAllUsesWith.
3015 void replaceAllUsesWith(Instruction *Inst, Value *New);
3016
3017 /// Same as Value::mutateType.
3018 void mutateType(Instruction *Inst, Type *NewTy);
3019
3020 /// Same as IRBuilder::createTrunc.
3021 Value *createTrunc(Instruction *Opnd, Type *Ty);
3022
3023 /// Same as IRBuilder::createSExt.
3024 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3025
3026 /// Same as IRBuilder::createZExt.
3027 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3028
3029 /// Same as Instruction::moveBefore.
3030 void moveBefore(Instruction *Inst, Instruction *Before);
3031 /// @}
3032
3033 private:
3034 /// The ordered list of actions made so far.
3035 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3036
3037 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3038
3039 SetOfInstrs &RemovedInsts;
3040 };
3041
3042 } // end anonymous namespace
3043
setOperand(Instruction * Inst,unsigned Idx,Value * NewVal)3044 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3045 Value *NewVal) {
3046 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3047 Inst, Idx, NewVal));
3048 }
3049
eraseInstruction(Instruction * Inst,Value * NewVal)3050 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3051 Value *NewVal) {
3052 Actions.push_back(
3053 std::make_unique<TypePromotionTransaction::InstructionRemover>(
3054 Inst, RemovedInsts, NewVal));
3055 }
3056
replaceAllUsesWith(Instruction * Inst,Value * New)3057 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3058 Value *New) {
3059 Actions.push_back(
3060 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3061 }
3062
mutateType(Instruction * Inst,Type * NewTy)3063 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3064 Actions.push_back(
3065 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3066 }
3067
createTrunc(Instruction * Opnd,Type * Ty)3068 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3069 Type *Ty) {
3070 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3071 Value *Val = Ptr->getBuiltValue();
3072 Actions.push_back(std::move(Ptr));
3073 return Val;
3074 }
3075
createSExt(Instruction * Inst,Value * Opnd,Type * Ty)3076 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3077 Value *Opnd, Type *Ty) {
3078 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3079 Value *Val = Ptr->getBuiltValue();
3080 Actions.push_back(std::move(Ptr));
3081 return Val;
3082 }
3083
createZExt(Instruction * Inst,Value * Opnd,Type * Ty)3084 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3085 Value *Opnd, Type *Ty) {
3086 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3087 Value *Val = Ptr->getBuiltValue();
3088 Actions.push_back(std::move(Ptr));
3089 return Val;
3090 }
3091
moveBefore(Instruction * Inst,Instruction * Before)3092 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3093 Instruction *Before) {
3094 Actions.push_back(
3095 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3096 Inst, Before));
3097 }
3098
3099 TypePromotionTransaction::ConstRestorationPt
getRestorationPoint() const3100 TypePromotionTransaction::getRestorationPoint() const {
3101 return !Actions.empty() ? Actions.back().get() : nullptr;
3102 }
3103
commit()3104 bool TypePromotionTransaction::commit() {
3105 for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3106 Action->commit();
3107 bool Modified = !Actions.empty();
3108 Actions.clear();
3109 return Modified;
3110 }
3111
rollback(TypePromotionTransaction::ConstRestorationPt Point)3112 void TypePromotionTransaction::rollback(
3113 TypePromotionTransaction::ConstRestorationPt Point) {
3114 while (!Actions.empty() && Point != Actions.back().get()) {
3115 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3116 Curr->undo();
3117 }
3118 }
3119
3120 namespace {
3121
3122 /// A helper class for matching addressing modes.
3123 ///
3124 /// This encapsulates the logic for matching the target-legal addressing modes.
3125 class AddressingModeMatcher {
3126 SmallVectorImpl<Instruction*> &AddrModeInsts;
3127 const TargetLowering &TLI;
3128 const TargetRegisterInfo &TRI;
3129 const DataLayout &DL;
3130 const LoopInfo &LI;
3131 const std::function<const DominatorTree &()> getDTFn;
3132
3133 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3134 /// the memory instruction that we're computing this address for.
3135 Type *AccessTy;
3136 unsigned AddrSpace;
3137 Instruction *MemoryInst;
3138
3139 /// This is the addressing mode that we're building up. This is
3140 /// part of the return value of this addressing mode matching stuff.
3141 ExtAddrMode &AddrMode;
3142
3143 /// The instructions inserted by other CodeGenPrepare optimizations.
3144 const SetOfInstrs &InsertedInsts;
3145
3146 /// A map from the instructions to their type before promotion.
3147 InstrToOrigTy &PromotedInsts;
3148
3149 /// The ongoing transaction where every action should be registered.
3150 TypePromotionTransaction &TPT;
3151
3152 // A GEP which has too large offset to be folded into the addressing mode.
3153 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3154
3155 /// This is set to true when we should not do profitability checks.
3156 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3157 bool IgnoreProfitability;
3158
3159 /// True if we are optimizing for size.
3160 bool OptSize;
3161
3162 ProfileSummaryInfo *PSI;
3163 BlockFrequencyInfo *BFI;
3164
AddressingModeMatcher(SmallVectorImpl<Instruction * > & AMI,const TargetLowering & TLI,const TargetRegisterInfo & TRI,const LoopInfo & LI,const std::function<const DominatorTree & ()> getDTFn,Type * AT,unsigned AS,Instruction * MI,ExtAddrMode & AM,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3165 AddressingModeMatcher(
3166 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3167 const TargetRegisterInfo &TRI, const LoopInfo &LI,
3168 const std::function<const DominatorTree &()> getDTFn,
3169 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM,
3170 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3171 TypePromotionTransaction &TPT,
3172 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3173 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3174 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3175 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3176 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3177 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3178 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3179 IgnoreProfitability = false;
3180 }
3181
3182 public:
3183 /// Find the maximal addressing mode that a load/store of V can fold,
3184 /// give an access type of AccessTy. This returns a list of involved
3185 /// instructions in AddrModeInsts.
3186 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3187 /// optimizations.
3188 /// \p PromotedInsts maps the instructions to their type before promotion.
3189 /// \p The ongoing transaction where every action should be registered.
3190 static ExtAddrMode
Match(Value * V,Type * AccessTy,unsigned AS,Instruction * MemoryInst,SmallVectorImpl<Instruction * > & AddrModeInsts,const TargetLowering & TLI,const LoopInfo & LI,const std::function<const DominatorTree & ()> getDTFn,const TargetRegisterInfo & TRI,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3191 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3192 SmallVectorImpl<Instruction *> &AddrModeInsts,
3193 const TargetLowering &TLI, const LoopInfo &LI,
3194 const std::function<const DominatorTree &()> getDTFn,
3195 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3196 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3197 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3198 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3199 ExtAddrMode Result;
3200
3201 bool Success = AddressingModeMatcher(
3202 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result,
3203 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
3204 BFI).matchAddr(V, 0);
3205 (void)Success; assert(Success && "Couldn't select *anything*?");
3206 return Result;
3207 }
3208
3209 private:
3210 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3211 bool matchAddr(Value *Addr, unsigned Depth);
3212 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3213 bool *MovedAway = nullptr);
3214 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3215 ExtAddrMode &AMBefore,
3216 ExtAddrMode &AMAfter);
3217 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3218 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3219 Value *PromotedOperand) const;
3220 };
3221
3222 class PhiNodeSet;
3223
3224 /// An iterator for PhiNodeSet.
3225 class PhiNodeSetIterator {
3226 PhiNodeSet * const Set;
3227 size_t CurrentIndex = 0;
3228
3229 public:
3230 /// The constructor. Start should point to either a valid element, or be equal
3231 /// to the size of the underlying SmallVector of the PhiNodeSet.
3232 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3233 PHINode * operator*() const;
3234 PhiNodeSetIterator& operator++();
3235 bool operator==(const PhiNodeSetIterator &RHS) const;
3236 bool operator!=(const PhiNodeSetIterator &RHS) const;
3237 };
3238
3239 /// Keeps a set of PHINodes.
3240 ///
3241 /// This is a minimal set implementation for a specific use case:
3242 /// It is very fast when there are very few elements, but also provides good
3243 /// performance when there are many. It is similar to SmallPtrSet, but also
3244 /// provides iteration by insertion order, which is deterministic and stable
3245 /// across runs. It is also similar to SmallSetVector, but provides removing
3246 /// elements in O(1) time. This is achieved by not actually removing the element
3247 /// from the underlying vector, so comes at the cost of using more memory, but
3248 /// that is fine, since PhiNodeSets are used as short lived objects.
3249 class PhiNodeSet {
3250 friend class PhiNodeSetIterator;
3251
3252 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3253 using iterator = PhiNodeSetIterator;
3254
3255 /// Keeps the elements in the order of their insertion in the underlying
3256 /// vector. To achieve constant time removal, it never deletes any element.
3257 SmallVector<PHINode *, 32> NodeList;
3258
3259 /// Keeps the elements in the underlying set implementation. This (and not the
3260 /// NodeList defined above) is the source of truth on whether an element
3261 /// is actually in the collection.
3262 MapType NodeMap;
3263
3264 /// Points to the first valid (not deleted) element when the set is not empty
3265 /// and the value is not zero. Equals to the size of the underlying vector
3266 /// when the set is empty. When the value is 0, as in the beginning, the
3267 /// first element may or may not be valid.
3268 size_t FirstValidElement = 0;
3269
3270 public:
3271 /// Inserts a new element to the collection.
3272 /// \returns true if the element is actually added, i.e. was not in the
3273 /// collection before the operation.
insert(PHINode * Ptr)3274 bool insert(PHINode *Ptr) {
3275 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3276 NodeList.push_back(Ptr);
3277 return true;
3278 }
3279 return false;
3280 }
3281
3282 /// Removes the element from the collection.
3283 /// \returns whether the element is actually removed, i.e. was in the
3284 /// collection before the operation.
erase(PHINode * Ptr)3285 bool erase(PHINode *Ptr) {
3286 if (NodeMap.erase(Ptr)) {
3287 SkipRemovedElements(FirstValidElement);
3288 return true;
3289 }
3290 return false;
3291 }
3292
3293 /// Removes all elements and clears the collection.
clear()3294 void clear() {
3295 NodeMap.clear();
3296 NodeList.clear();
3297 FirstValidElement = 0;
3298 }
3299
3300 /// \returns an iterator that will iterate the elements in the order of
3301 /// insertion.
begin()3302 iterator begin() {
3303 if (FirstValidElement == 0)
3304 SkipRemovedElements(FirstValidElement);
3305 return PhiNodeSetIterator(this, FirstValidElement);
3306 }
3307
3308 /// \returns an iterator that points to the end of the collection.
end()3309 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3310
3311 /// Returns the number of elements in the collection.
size() const3312 size_t size() const {
3313 return NodeMap.size();
3314 }
3315
3316 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
count(PHINode * Ptr) const3317 size_t count(PHINode *Ptr) const {
3318 return NodeMap.count(Ptr);
3319 }
3320
3321 private:
3322 /// Updates the CurrentIndex so that it will point to a valid element.
3323 ///
3324 /// If the element of NodeList at CurrentIndex is valid, it does not
3325 /// change it. If there are no more valid elements, it updates CurrentIndex
3326 /// to point to the end of the NodeList.
SkipRemovedElements(size_t & CurrentIndex)3327 void SkipRemovedElements(size_t &CurrentIndex) {
3328 while (CurrentIndex < NodeList.size()) {
3329 auto it = NodeMap.find(NodeList[CurrentIndex]);
3330 // If the element has been deleted and added again later, NodeMap will
3331 // point to a different index, so CurrentIndex will still be invalid.
3332 if (it != NodeMap.end() && it->second == CurrentIndex)
3333 break;
3334 ++CurrentIndex;
3335 }
3336 }
3337 };
3338
PhiNodeSetIterator(PhiNodeSet * const Set,size_t Start)3339 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3340 : Set(Set), CurrentIndex(Start) {}
3341
operator *() const3342 PHINode * PhiNodeSetIterator::operator*() const {
3343 assert(CurrentIndex < Set->NodeList.size() &&
3344 "PhiNodeSet access out of range");
3345 return Set->NodeList[CurrentIndex];
3346 }
3347
operator ++()3348 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3349 assert(CurrentIndex < Set->NodeList.size() &&
3350 "PhiNodeSet access out of range");
3351 ++CurrentIndex;
3352 Set->SkipRemovedElements(CurrentIndex);
3353 return *this;
3354 }
3355
operator ==(const PhiNodeSetIterator & RHS) const3356 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3357 return CurrentIndex == RHS.CurrentIndex;
3358 }
3359
operator !=(const PhiNodeSetIterator & RHS) const3360 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3361 return !((*this) == RHS);
3362 }
3363
3364 /// Keep track of simplification of Phi nodes.
3365 /// Accept the set of all phi nodes and erase phi node from this set
3366 /// if it is simplified.
3367 class SimplificationTracker {
3368 DenseMap<Value *, Value *> Storage;
3369 const SimplifyQuery &SQ;
3370 // Tracks newly created Phi nodes. The elements are iterated by insertion
3371 // order.
3372 PhiNodeSet AllPhiNodes;
3373 // Tracks newly created Select nodes.
3374 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3375
3376 public:
SimplificationTracker(const SimplifyQuery & sq)3377 SimplificationTracker(const SimplifyQuery &sq)
3378 : SQ(sq) {}
3379
Get(Value * V)3380 Value *Get(Value *V) {
3381 do {
3382 auto SV = Storage.find(V);
3383 if (SV == Storage.end())
3384 return V;
3385 V = SV->second;
3386 } while (true);
3387 }
3388
Simplify(Value * Val)3389 Value *Simplify(Value *Val) {
3390 SmallVector<Value *, 32> WorkList;
3391 SmallPtrSet<Value *, 32> Visited;
3392 WorkList.push_back(Val);
3393 while (!WorkList.empty()) {
3394 auto *P = WorkList.pop_back_val();
3395 if (!Visited.insert(P).second)
3396 continue;
3397 if (auto *PI = dyn_cast<Instruction>(P))
3398 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3399 for (auto *U : PI->users())
3400 WorkList.push_back(cast<Value>(U));
3401 Put(PI, V);
3402 PI->replaceAllUsesWith(V);
3403 if (auto *PHI = dyn_cast<PHINode>(PI))
3404 AllPhiNodes.erase(PHI);
3405 if (auto *Select = dyn_cast<SelectInst>(PI))
3406 AllSelectNodes.erase(Select);
3407 PI->eraseFromParent();
3408 }
3409 }
3410 return Get(Val);
3411 }
3412
Put(Value * From,Value * To)3413 void Put(Value *From, Value *To) {
3414 Storage.insert({ From, To });
3415 }
3416
ReplacePhi(PHINode * From,PHINode * To)3417 void ReplacePhi(PHINode *From, PHINode *To) {
3418 Value* OldReplacement = Get(From);
3419 while (OldReplacement != From) {
3420 From = To;
3421 To = dyn_cast<PHINode>(OldReplacement);
3422 OldReplacement = Get(From);
3423 }
3424 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3425 Put(From, To);
3426 From->replaceAllUsesWith(To);
3427 AllPhiNodes.erase(From);
3428 From->eraseFromParent();
3429 }
3430
newPhiNodes()3431 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3432
insertNewPhi(PHINode * PN)3433 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3434
insertNewSelect(SelectInst * SI)3435 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3436
countNewPhiNodes() const3437 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3438
countNewSelectNodes() const3439 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3440
destroyNewNodes(Type * CommonType)3441 void destroyNewNodes(Type *CommonType) {
3442 // For safe erasing, replace the uses with dummy value first.
3443 auto *Dummy = PoisonValue::get(CommonType);
3444 for (auto *I : AllPhiNodes) {
3445 I->replaceAllUsesWith(Dummy);
3446 I->eraseFromParent();
3447 }
3448 AllPhiNodes.clear();
3449 for (auto *I : AllSelectNodes) {
3450 I->replaceAllUsesWith(Dummy);
3451 I->eraseFromParent();
3452 }
3453 AllSelectNodes.clear();
3454 }
3455 };
3456
3457 /// A helper class for combining addressing modes.
3458 class AddressingModeCombiner {
3459 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3460 typedef std::pair<PHINode *, PHINode *> PHIPair;
3461
3462 private:
3463 /// The addressing modes we've collected.
3464 SmallVector<ExtAddrMode, 16> AddrModes;
3465
3466 /// The field in which the AddrModes differ, when we have more than one.
3467 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3468
3469 /// Are the AddrModes that we have all just equal to their original values?
3470 bool AllAddrModesTrivial = true;
3471
3472 /// Common Type for all different fields in addressing modes.
3473 Type *CommonType = nullptr;
3474
3475 /// SimplifyQuery for simplifyInstruction utility.
3476 const SimplifyQuery &SQ;
3477
3478 /// Original Address.
3479 Value *Original;
3480
3481 public:
AddressingModeCombiner(const SimplifyQuery & _SQ,Value * OriginalValue)3482 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3483 : SQ(_SQ), Original(OriginalValue) {}
3484
3485 /// Get the combined AddrMode
getAddrMode() const3486 const ExtAddrMode &getAddrMode() const {
3487 return AddrModes[0];
3488 }
3489
3490 /// Add a new AddrMode if it's compatible with the AddrModes we already
3491 /// have.
3492 /// \return True iff we succeeded in doing so.
addNewAddrMode(ExtAddrMode & NewAddrMode)3493 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3494 // Take note of if we have any non-trivial AddrModes, as we need to detect
3495 // when all AddrModes are trivial as then we would introduce a phi or select
3496 // which just duplicates what's already there.
3497 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3498
3499 // If this is the first addrmode then everything is fine.
3500 if (AddrModes.empty()) {
3501 AddrModes.emplace_back(NewAddrMode);
3502 return true;
3503 }
3504
3505 // Figure out how different this is from the other address modes, which we
3506 // can do just by comparing against the first one given that we only care
3507 // about the cumulative difference.
3508 ExtAddrMode::FieldName ThisDifferentField =
3509 AddrModes[0].compare(NewAddrMode);
3510 if (DifferentField == ExtAddrMode::NoField)
3511 DifferentField = ThisDifferentField;
3512 else if (DifferentField != ThisDifferentField)
3513 DifferentField = ExtAddrMode::MultipleFields;
3514
3515 // If NewAddrMode differs in more than one dimension we cannot handle it.
3516 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3517
3518 // If Scale Field is different then we reject.
3519 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3520
3521 // We also must reject the case when base offset is different and
3522 // scale reg is not null, we cannot handle this case due to merge of
3523 // different offsets will be used as ScaleReg.
3524 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3525 !NewAddrMode.ScaledReg);
3526
3527 // We also must reject the case when GV is different and BaseReg installed
3528 // due to we want to use base reg as a merge of GV values.
3529 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3530 !NewAddrMode.HasBaseReg);
3531
3532 // Even if NewAddMode is the same we still need to collect it due to
3533 // original value is different. And later we will need all original values
3534 // as anchors during finding the common Phi node.
3535 if (CanHandle)
3536 AddrModes.emplace_back(NewAddrMode);
3537 else
3538 AddrModes.clear();
3539
3540 return CanHandle;
3541 }
3542
3543 /// Combine the addressing modes we've collected into a single
3544 /// addressing mode.
3545 /// \return True iff we successfully combined them or we only had one so
3546 /// didn't need to combine them anyway.
combineAddrModes()3547 bool combineAddrModes() {
3548 // If we have no AddrModes then they can't be combined.
3549 if (AddrModes.size() == 0)
3550 return false;
3551
3552 // A single AddrMode can trivially be combined.
3553 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3554 return true;
3555
3556 // If the AddrModes we collected are all just equal to the value they are
3557 // derived from then combining them wouldn't do anything useful.
3558 if (AllAddrModesTrivial)
3559 return false;
3560
3561 if (!addrModeCombiningAllowed())
3562 return false;
3563
3564 // Build a map between <original value, basic block where we saw it> to
3565 // value of base register.
3566 // Bail out if there is no common type.
3567 FoldAddrToValueMapping Map;
3568 if (!initializeMap(Map))
3569 return false;
3570
3571 Value *CommonValue = findCommon(Map);
3572 if (CommonValue)
3573 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3574 return CommonValue != nullptr;
3575 }
3576
3577 private:
3578 /// Initialize Map with anchor values. For address seen
3579 /// we set the value of different field saw in this address.
3580 /// At the same time we find a common type for different field we will
3581 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3582 /// Return false if there is no common type found.
initializeMap(FoldAddrToValueMapping & Map)3583 bool initializeMap(FoldAddrToValueMapping &Map) {
3584 // Keep track of keys where the value is null. We will need to replace it
3585 // with constant null when we know the common type.
3586 SmallVector<Value *, 2> NullValue;
3587 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3588 for (auto &AM : AddrModes) {
3589 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3590 if (DV) {
3591 auto *Type = DV->getType();
3592 if (CommonType && CommonType != Type)
3593 return false;
3594 CommonType = Type;
3595 Map[AM.OriginalValue] = DV;
3596 } else {
3597 NullValue.push_back(AM.OriginalValue);
3598 }
3599 }
3600 assert(CommonType && "At least one non-null value must be!");
3601 for (auto *V : NullValue)
3602 Map[V] = Constant::getNullValue(CommonType);
3603 return true;
3604 }
3605
3606 /// We have mapping between value A and other value B where B was a field in
3607 /// addressing mode represented by A. Also we have an original value C
3608 /// representing an address we start with. Traversing from C through phi and
3609 /// selects we ended up with A's in a map. This utility function tries to find
3610 /// a value V which is a field in addressing mode C and traversing through phi
3611 /// nodes and selects we will end up in corresponded values B in a map.
3612 /// The utility will create a new Phi/Selects if needed.
3613 // The simple example looks as follows:
3614 // BB1:
3615 // p1 = b1 + 40
3616 // br cond BB2, BB3
3617 // BB2:
3618 // p2 = b2 + 40
3619 // br BB3
3620 // BB3:
3621 // p = phi [p1, BB1], [p2, BB2]
3622 // v = load p
3623 // Map is
3624 // p1 -> b1
3625 // p2 -> b2
3626 // Request is
3627 // p -> ?
3628 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
findCommon(FoldAddrToValueMapping & Map)3629 Value *findCommon(FoldAddrToValueMapping &Map) {
3630 // Tracks the simplification of newly created phi nodes. The reason we use
3631 // this mapping is because we will add new created Phi nodes in AddrToBase.
3632 // Simplification of Phi nodes is recursive, so some Phi node may
3633 // be simplified after we added it to AddrToBase. In reality this
3634 // simplification is possible only if original phi/selects were not
3635 // simplified yet.
3636 // Using this mapping we can find the current value in AddrToBase.
3637 SimplificationTracker ST(SQ);
3638
3639 // First step, DFS to create PHI nodes for all intermediate blocks.
3640 // Also fill traverse order for the second step.
3641 SmallVector<Value *, 32> TraverseOrder;
3642 InsertPlaceholders(Map, TraverseOrder, ST);
3643
3644 // Second Step, fill new nodes by merged values and simplify if possible.
3645 FillPlaceholders(Map, TraverseOrder, ST);
3646
3647 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3648 ST.destroyNewNodes(CommonType);
3649 return nullptr;
3650 }
3651
3652 // Now we'd like to match New Phi nodes to existed ones.
3653 unsigned PhiNotMatchedCount = 0;
3654 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3655 ST.destroyNewNodes(CommonType);
3656 return nullptr;
3657 }
3658
3659 auto *Result = ST.Get(Map.find(Original)->second);
3660 if (Result) {
3661 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3662 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3663 }
3664 return Result;
3665 }
3666
3667 /// Try to match PHI node to Candidate.
3668 /// Matcher tracks the matched Phi nodes.
MatchPhiNode(PHINode * PHI,PHINode * Candidate,SmallSetVector<PHIPair,8> & Matcher,PhiNodeSet & PhiNodesToMatch)3669 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3670 SmallSetVector<PHIPair, 8> &Matcher,
3671 PhiNodeSet &PhiNodesToMatch) {
3672 SmallVector<PHIPair, 8> WorkList;
3673 Matcher.insert({ PHI, Candidate });
3674 SmallSet<PHINode *, 8> MatchedPHIs;
3675 MatchedPHIs.insert(PHI);
3676 WorkList.push_back({ PHI, Candidate });
3677 SmallSet<PHIPair, 8> Visited;
3678 while (!WorkList.empty()) {
3679 auto Item = WorkList.pop_back_val();
3680 if (!Visited.insert(Item).second)
3681 continue;
3682 // We iterate over all incoming values to Phi to compare them.
3683 // If values are different and both of them Phi and the first one is a
3684 // Phi we added (subject to match) and both of them is in the same basic
3685 // block then we can match our pair if values match. So we state that
3686 // these values match and add it to work list to verify that.
3687 for (auto *B : Item.first->blocks()) {
3688 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3689 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3690 if (FirstValue == SecondValue)
3691 continue;
3692
3693 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3694 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3695
3696 // One of them is not Phi or
3697 // The first one is not Phi node from the set we'd like to match or
3698 // Phi nodes from different basic blocks then
3699 // we will not be able to match.
3700 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3701 FirstPhi->getParent() != SecondPhi->getParent())
3702 return false;
3703
3704 // If we already matched them then continue.
3705 if (Matcher.count({ FirstPhi, SecondPhi }))
3706 continue;
3707 // So the values are different and does not match. So we need them to
3708 // match. (But we register no more than one match per PHI node, so that
3709 // we won't later try to replace them twice.)
3710 if (MatchedPHIs.insert(FirstPhi).second)
3711 Matcher.insert({ FirstPhi, SecondPhi });
3712 // But me must check it.
3713 WorkList.push_back({ FirstPhi, SecondPhi });
3714 }
3715 }
3716 return true;
3717 }
3718
3719 /// For the given set of PHI nodes (in the SimplificationTracker) try
3720 /// to find their equivalents.
3721 /// Returns false if this matching fails and creation of new Phi is disabled.
MatchPhiSet(SimplificationTracker & ST,bool AllowNewPhiNodes,unsigned & PhiNotMatchedCount)3722 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3723 unsigned &PhiNotMatchedCount) {
3724 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3725 // order, so the replacements (ReplacePhi) are also done in a deterministic
3726 // order.
3727 SmallSetVector<PHIPair, 8> Matched;
3728 SmallPtrSet<PHINode *, 8> WillNotMatch;
3729 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3730 while (PhiNodesToMatch.size()) {
3731 PHINode *PHI = *PhiNodesToMatch.begin();
3732
3733 // Add us, if no Phi nodes in the basic block we do not match.
3734 WillNotMatch.clear();
3735 WillNotMatch.insert(PHI);
3736
3737 // Traverse all Phis until we found equivalent or fail to do that.
3738 bool IsMatched = false;
3739 for (auto &P : PHI->getParent()->phis()) {
3740 // Skip new Phi nodes.
3741 if (PhiNodesToMatch.count(&P))
3742 continue;
3743 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3744 break;
3745 // If it does not match, collect all Phi nodes from matcher.
3746 // if we end up with no match, them all these Phi nodes will not match
3747 // later.
3748 for (auto M : Matched)
3749 WillNotMatch.insert(M.first);
3750 Matched.clear();
3751 }
3752 if (IsMatched) {
3753 // Replace all matched values and erase them.
3754 for (auto MV : Matched)
3755 ST.ReplacePhi(MV.first, MV.second);
3756 Matched.clear();
3757 continue;
3758 }
3759 // If we are not allowed to create new nodes then bail out.
3760 if (!AllowNewPhiNodes)
3761 return false;
3762 // Just remove all seen values in matcher. They will not match anything.
3763 PhiNotMatchedCount += WillNotMatch.size();
3764 for (auto *P : WillNotMatch)
3765 PhiNodesToMatch.erase(P);
3766 }
3767 return true;
3768 }
3769 /// Fill the placeholders with values from predecessors and simplify them.
FillPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3770 void FillPlaceholders(FoldAddrToValueMapping &Map,
3771 SmallVectorImpl<Value *> &TraverseOrder,
3772 SimplificationTracker &ST) {
3773 while (!TraverseOrder.empty()) {
3774 Value *Current = TraverseOrder.pop_back_val();
3775 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3776 Value *V = Map[Current];
3777
3778 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3779 // CurrentValue also must be Select.
3780 auto *CurrentSelect = cast<SelectInst>(Current);
3781 auto *TrueValue = CurrentSelect->getTrueValue();
3782 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3783 Select->setTrueValue(ST.Get(Map[TrueValue]));
3784 auto *FalseValue = CurrentSelect->getFalseValue();
3785 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3786 Select->setFalseValue(ST.Get(Map[FalseValue]));
3787 } else {
3788 // Must be a Phi node then.
3789 auto *PHI = cast<PHINode>(V);
3790 // Fill the Phi node with values from predecessors.
3791 for (auto *B : predecessors(PHI->getParent())) {
3792 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3793 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3794 PHI->addIncoming(ST.Get(Map[PV]), B);
3795 }
3796 }
3797 Map[Current] = ST.Simplify(V);
3798 }
3799 }
3800
3801 /// Starting from original value recursively iterates over def-use chain up to
3802 /// known ending values represented in a map. For each traversed phi/select
3803 /// inserts a placeholder Phi or Select.
3804 /// Reports all new created Phi/Select nodes by adding them to set.
3805 /// Also reports and order in what values have been traversed.
InsertPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3806 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3807 SmallVectorImpl<Value *> &TraverseOrder,
3808 SimplificationTracker &ST) {
3809 SmallVector<Value *, 32> Worklist;
3810 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3811 "Address must be a Phi or Select node");
3812 auto *Dummy = PoisonValue::get(CommonType);
3813 Worklist.push_back(Original);
3814 while (!Worklist.empty()) {
3815 Value *Current = Worklist.pop_back_val();
3816 // if it is already visited or it is an ending value then skip it.
3817 if (Map.find(Current) != Map.end())
3818 continue;
3819 TraverseOrder.push_back(Current);
3820
3821 // CurrentValue must be a Phi node or select. All others must be covered
3822 // by anchors.
3823 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3824 // Is it OK to get metadata from OrigSelect?!
3825 // Create a Select placeholder with dummy value.
3826 SelectInst *Select = SelectInst::Create(
3827 CurrentSelect->getCondition(), Dummy, Dummy,
3828 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3829 Map[Current] = Select;
3830 ST.insertNewSelect(Select);
3831 // We are interested in True and False values.
3832 Worklist.push_back(CurrentSelect->getTrueValue());
3833 Worklist.push_back(CurrentSelect->getFalseValue());
3834 } else {
3835 // It must be a Phi node then.
3836 PHINode *CurrentPhi = cast<PHINode>(Current);
3837 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3838 PHINode *PHI =
3839 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3840 Map[Current] = PHI;
3841 ST.insertNewPhi(PHI);
3842 append_range(Worklist, CurrentPhi->incoming_values());
3843 }
3844 }
3845 }
3846
addrModeCombiningAllowed()3847 bool addrModeCombiningAllowed() {
3848 if (DisableComplexAddrModes)
3849 return false;
3850 switch (DifferentField) {
3851 default:
3852 return false;
3853 case ExtAddrMode::BaseRegField:
3854 return AddrSinkCombineBaseReg;
3855 case ExtAddrMode::BaseGVField:
3856 return AddrSinkCombineBaseGV;
3857 case ExtAddrMode::BaseOffsField:
3858 return AddrSinkCombineBaseOffs;
3859 case ExtAddrMode::ScaledRegField:
3860 return AddrSinkCombineScaledReg;
3861 }
3862 }
3863 };
3864 } // end anonymous namespace
3865
3866 /// Try adding ScaleReg*Scale to the current addressing mode.
3867 /// Return true and update AddrMode if this addr mode is legal for the target,
3868 /// false if not.
matchScaledValue(Value * ScaleReg,int64_t Scale,unsigned Depth)3869 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3870 unsigned Depth) {
3871 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3872 // mode. Just process that directly.
3873 if (Scale == 1)
3874 return matchAddr(ScaleReg, Depth);
3875
3876 // If the scale is 0, it takes nothing to add this.
3877 if (Scale == 0)
3878 return true;
3879
3880 // If we already have a scale of this value, we can add to it, otherwise, we
3881 // need an available scale field.
3882 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3883 return false;
3884
3885 ExtAddrMode TestAddrMode = AddrMode;
3886
3887 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3888 // [A+B + A*7] -> [B+A*8].
3889 TestAddrMode.Scale += Scale;
3890 TestAddrMode.ScaledReg = ScaleReg;
3891
3892 // If the new address isn't legal, bail out.
3893 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3894 return false;
3895
3896 // It was legal, so commit it.
3897 AddrMode = TestAddrMode;
3898
3899 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3900 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3901 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3902 // go any further: we can reuse it and cannot eliminate it.
3903 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3904 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3905 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3906 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
3907 TestAddrMode.InBounds = false;
3908 TestAddrMode.ScaledReg = AddLHS;
3909 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3910
3911 // If this addressing mode is legal, commit it and remember that we folded
3912 // this instruction.
3913 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3914 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3915 AddrMode = TestAddrMode;
3916 return true;
3917 }
3918 // Restore status quo.
3919 TestAddrMode = AddrMode;
3920 }
3921
3922 // If this is an add recurrence with a constant step, return the increment
3923 // instruction and the canonicalized step.
3924 auto GetConstantStep = [this](const Value * V)
3925 ->Optional<std::pair<Instruction *, APInt> > {
3926 auto *PN = dyn_cast<PHINode>(V);
3927 if (!PN)
3928 return None;
3929 auto IVInc = getIVIncrement(PN, &LI);
3930 if (!IVInc)
3931 return None;
3932 // TODO: The result of the intrinsics above is two-compliment. However when
3933 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3934 // If it has nuw or nsw flags, we need to make sure that these flags are
3935 // inferrable at the point of memory instruction. Otherwise we are replacing
3936 // well-defined two-compliment computation with poison. Currently, to avoid
3937 // potentially complex analysis needed to prove this, we reject such cases.
3938 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
3939 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
3940 return None;
3941 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
3942 return std::make_pair(IVInc->first, ConstantStep->getValue());
3943 return None;
3944 };
3945
3946 // Try to account for the following special case:
3947 // 1. ScaleReg is an inductive variable;
3948 // 2. We use it with non-zero offset;
3949 // 3. IV's increment is available at the point of memory instruction.
3950 //
3951 // In this case, we may reuse the IV increment instead of the IV Phi to
3952 // achieve the following advantages:
3953 // 1. If IV step matches the offset, we will have no need in the offset;
3954 // 2. Even if they don't match, we will reduce the overlap of living IV
3955 // and IV increment, that will potentially lead to better register
3956 // assignment.
3957 if (AddrMode.BaseOffs) {
3958 if (auto IVStep = GetConstantStep(ScaleReg)) {
3959 Instruction *IVInc = IVStep->first;
3960 // The following assert is important to ensure a lack of infinite loops.
3961 // This transforms is (intentionally) the inverse of the one just above.
3962 // If they don't agree on the definition of an increment, we'd alternate
3963 // back and forth indefinitely.
3964 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
3965 APInt Step = IVStep->second;
3966 APInt Offset = Step * AddrMode.Scale;
3967 if (Offset.isSignedIntN(64)) {
3968 TestAddrMode.InBounds = false;
3969 TestAddrMode.ScaledReg = IVInc;
3970 TestAddrMode.BaseOffs -= Offset.getLimitedValue();
3971 // If this addressing mode is legal, commit it..
3972 // (Note that we defer the (expensive) domtree base legality check
3973 // to the very last possible point.)
3974 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
3975 getDTFn().dominates(IVInc, MemoryInst)) {
3976 AddrModeInsts.push_back(cast<Instruction>(IVInc));
3977 AddrMode = TestAddrMode;
3978 return true;
3979 }
3980 // Restore status quo.
3981 TestAddrMode = AddrMode;
3982 }
3983 }
3984 }
3985
3986 // Otherwise, just return what we have.
3987 return true;
3988 }
3989
3990 /// This is a little filter, which returns true if an addressing computation
3991 /// involving I might be folded into a load/store accessing it.
3992 /// This doesn't need to be perfect, but needs to accept at least
3993 /// the set of instructions that MatchOperationAddr can.
MightBeFoldableInst(Instruction * I)3994 static bool MightBeFoldableInst(Instruction *I) {
3995 switch (I->getOpcode()) {
3996 case Instruction::BitCast:
3997 case Instruction::AddrSpaceCast:
3998 // Don't touch identity bitcasts.
3999 if (I->getType() == I->getOperand(0)->getType())
4000 return false;
4001 return I->getType()->isIntOrPtrTy();
4002 case Instruction::PtrToInt:
4003 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4004 return true;
4005 case Instruction::IntToPtr:
4006 // We know the input is intptr_t, so this is foldable.
4007 return true;
4008 case Instruction::Add:
4009 return true;
4010 case Instruction::Mul:
4011 case Instruction::Shl:
4012 // Can only handle X*C and X << C.
4013 return isa<ConstantInt>(I->getOperand(1));
4014 case Instruction::GetElementPtr:
4015 return true;
4016 default:
4017 return false;
4018 }
4019 }
4020
4021 /// Check whether or not \p Val is a legal instruction for \p TLI.
4022 /// \note \p Val is assumed to be the product of some type promotion.
4023 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4024 /// to be legal, as the non-promoted value would have had the same state.
isPromotedInstructionLegal(const TargetLowering & TLI,const DataLayout & DL,Value * Val)4025 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4026 const DataLayout &DL, Value *Val) {
4027 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4028 if (!PromotedInst)
4029 return false;
4030 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4031 // If the ISDOpcode is undefined, it was undefined before the promotion.
4032 if (!ISDOpcode)
4033 return true;
4034 // Otherwise, check if the promoted instruction is legal or not.
4035 return TLI.isOperationLegalOrCustom(
4036 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4037 }
4038
4039 namespace {
4040
4041 /// Hepler class to perform type promotion.
4042 class TypePromotionHelper {
4043 /// Utility function to add a promoted instruction \p ExtOpnd to
4044 /// \p PromotedInsts and record the type of extension we have seen.
addPromotedInst(InstrToOrigTy & PromotedInsts,Instruction * ExtOpnd,bool IsSExt)4045 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4046 Instruction *ExtOpnd,
4047 bool IsSExt) {
4048 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4049 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4050 if (It != PromotedInsts.end()) {
4051 // If the new extension is same as original, the information in
4052 // PromotedInsts[ExtOpnd] is still correct.
4053 if (It->second.getInt() == ExtTy)
4054 return;
4055
4056 // Now the new extension is different from old extension, we make
4057 // the type information invalid by setting extension type to
4058 // BothExtension.
4059 ExtTy = BothExtension;
4060 }
4061 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4062 }
4063
4064 /// Utility function to query the original type of instruction \p Opnd
4065 /// with a matched extension type. If the extension doesn't match, we
4066 /// cannot use the information we had on the original type.
4067 /// BothExtension doesn't match any extension type.
getOrigType(const InstrToOrigTy & PromotedInsts,Instruction * Opnd,bool IsSExt)4068 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4069 Instruction *Opnd,
4070 bool IsSExt) {
4071 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4072 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4073 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4074 return It->second.getPointer();
4075 return nullptr;
4076 }
4077
4078 /// Utility function to check whether or not a sign or zero extension
4079 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4080 /// either using the operands of \p Inst or promoting \p Inst.
4081 /// The type of the extension is defined by \p IsSExt.
4082 /// In other words, check if:
4083 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4084 /// #1 Promotion applies:
4085 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4086 /// #2 Operand reuses:
4087 /// ext opnd1 to ConsideredExtType.
4088 /// \p PromotedInsts maps the instructions to their type before promotion.
4089 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4090 const InstrToOrigTy &PromotedInsts, bool IsSExt);
4091
4092 /// Utility function to determine if \p OpIdx should be promoted when
4093 /// promoting \p Inst.
shouldExtOperand(const Instruction * Inst,int OpIdx)4094 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4095 return !(isa<SelectInst>(Inst) && OpIdx == 0);
4096 }
4097
4098 /// Utility function to promote the operand of \p Ext when this
4099 /// operand is a promotable trunc or sext or zext.
4100 /// \p PromotedInsts maps the instructions to their type before promotion.
4101 /// \p CreatedInstsCost[out] contains the cost of all instructions
4102 /// created to promote the operand of Ext.
4103 /// Newly added extensions are inserted in \p Exts.
4104 /// Newly added truncates are inserted in \p Truncs.
4105 /// Should never be called directly.
4106 /// \return The promoted value which is used instead of Ext.
4107 static Value *promoteOperandForTruncAndAnyExt(
4108 Instruction *Ext, TypePromotionTransaction &TPT,
4109 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4110 SmallVectorImpl<Instruction *> *Exts,
4111 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4112
4113 /// Utility function to promote the operand of \p Ext when this
4114 /// operand is promotable and is not a supported trunc or sext.
4115 /// \p PromotedInsts maps the instructions to their type before promotion.
4116 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4117 /// created to promote the operand of Ext.
4118 /// Newly added extensions are inserted in \p Exts.
4119 /// Newly added truncates are inserted in \p Truncs.
4120 /// Should never be called directly.
4121 /// \return The promoted value which is used instead of Ext.
4122 static Value *promoteOperandForOther(Instruction *Ext,
4123 TypePromotionTransaction &TPT,
4124 InstrToOrigTy &PromotedInsts,
4125 unsigned &CreatedInstsCost,
4126 SmallVectorImpl<Instruction *> *Exts,
4127 SmallVectorImpl<Instruction *> *Truncs,
4128 const TargetLowering &TLI, bool IsSExt);
4129
4130 /// \see promoteOperandForOther.
signExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4131 static Value *signExtendOperandForOther(
4132 Instruction *Ext, TypePromotionTransaction &TPT,
4133 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4134 SmallVectorImpl<Instruction *> *Exts,
4135 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4136 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4137 Exts, Truncs, TLI, true);
4138 }
4139
4140 /// \see promoteOperandForOther.
zeroExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4141 static Value *zeroExtendOperandForOther(
4142 Instruction *Ext, TypePromotionTransaction &TPT,
4143 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4144 SmallVectorImpl<Instruction *> *Exts,
4145 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4146 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4147 Exts, Truncs, TLI, false);
4148 }
4149
4150 public:
4151 /// Type for the utility function that promotes the operand of Ext.
4152 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4153 InstrToOrigTy &PromotedInsts,
4154 unsigned &CreatedInstsCost,
4155 SmallVectorImpl<Instruction *> *Exts,
4156 SmallVectorImpl<Instruction *> *Truncs,
4157 const TargetLowering &TLI);
4158
4159 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4160 /// action to promote the operand of \p Ext instead of using Ext.
4161 /// \return NULL if no promotable action is possible with the current
4162 /// sign extension.
4163 /// \p InsertedInsts keeps track of all the instructions inserted by the
4164 /// other CodeGenPrepare optimizations. This information is important
4165 /// because we do not want to promote these instructions as CodeGenPrepare
4166 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4167 /// \p PromotedInsts maps the instructions to their type before promotion.
4168 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4169 const TargetLowering &TLI,
4170 const InstrToOrigTy &PromotedInsts);
4171 };
4172
4173 } // end anonymous namespace
4174
canGetThrough(const Instruction * Inst,Type * ConsideredExtType,const InstrToOrigTy & PromotedInsts,bool IsSExt)4175 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4176 Type *ConsideredExtType,
4177 const InstrToOrigTy &PromotedInsts,
4178 bool IsSExt) {
4179 // The promotion helper does not know how to deal with vector types yet.
4180 // To be able to fix that, we would need to fix the places where we
4181 // statically extend, e.g., constants and such.
4182 if (Inst->getType()->isVectorTy())
4183 return false;
4184
4185 // We can always get through zext.
4186 if (isa<ZExtInst>(Inst))
4187 return true;
4188
4189 // sext(sext) is ok too.
4190 if (IsSExt && isa<SExtInst>(Inst))
4191 return true;
4192
4193 // We can get through binary operator, if it is legal. In other words, the
4194 // binary operator must have a nuw or nsw flag.
4195 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4196 if (isa<OverflowingBinaryOperator>(BinOp) &&
4197 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4198 (IsSExt && BinOp->hasNoSignedWrap())))
4199 return true;
4200
4201 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4202 if ((Inst->getOpcode() == Instruction::And ||
4203 Inst->getOpcode() == Instruction::Or))
4204 return true;
4205
4206 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4207 if (Inst->getOpcode() == Instruction::Xor) {
4208 // Make sure it is not a NOT.
4209 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4210 if (!Cst->getValue().isAllOnes())
4211 return true;
4212 }
4213
4214 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4215 // It may change a poisoned value into a regular value, like
4216 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4217 // poisoned value regular value
4218 // It should be OK since undef covers valid value.
4219 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4220 return true;
4221
4222 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4223 // It may change a poisoned value into a regular value, like
4224 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4225 // poisoned value regular value
4226 // It should be OK since undef covers valid value.
4227 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4228 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4229 if (ExtInst->hasOneUse()) {
4230 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4231 if (AndInst && AndInst->getOpcode() == Instruction::And) {
4232 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4233 if (Cst &&
4234 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4235 return true;
4236 }
4237 }
4238 }
4239
4240 // Check if we can do the following simplification.
4241 // ext(trunc(opnd)) --> ext(opnd)
4242 if (!isa<TruncInst>(Inst))
4243 return false;
4244
4245 Value *OpndVal = Inst->getOperand(0);
4246 // Check if we can use this operand in the extension.
4247 // If the type is larger than the result type of the extension, we cannot.
4248 if (!OpndVal->getType()->isIntegerTy() ||
4249 OpndVal->getType()->getIntegerBitWidth() >
4250 ConsideredExtType->getIntegerBitWidth())
4251 return false;
4252
4253 // If the operand of the truncate is not an instruction, we will not have
4254 // any information on the dropped bits.
4255 // (Actually we could for constant but it is not worth the extra logic).
4256 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4257 if (!Opnd)
4258 return false;
4259
4260 // Check if the source of the type is narrow enough.
4261 // I.e., check that trunc just drops extended bits of the same kind of
4262 // the extension.
4263 // #1 get the type of the operand and check the kind of the extended bits.
4264 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4265 if (OpndType)
4266 ;
4267 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4268 OpndType = Opnd->getOperand(0)->getType();
4269 else
4270 return false;
4271
4272 // #2 check that the truncate just drops extended bits.
4273 return Inst->getType()->getIntegerBitWidth() >=
4274 OpndType->getIntegerBitWidth();
4275 }
4276
getAction(Instruction * Ext,const SetOfInstrs & InsertedInsts,const TargetLowering & TLI,const InstrToOrigTy & PromotedInsts)4277 TypePromotionHelper::Action TypePromotionHelper::getAction(
4278 Instruction *Ext, const SetOfInstrs &InsertedInsts,
4279 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4280 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4281 "Unexpected instruction type");
4282 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4283 Type *ExtTy = Ext->getType();
4284 bool IsSExt = isa<SExtInst>(Ext);
4285 // If the operand of the extension is not an instruction, we cannot
4286 // get through.
4287 // If it, check we can get through.
4288 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4289 return nullptr;
4290
4291 // Do not promote if the operand has been added by codegenprepare.
4292 // Otherwise, it means we are undoing an optimization that is likely to be
4293 // redone, thus causing potential infinite loop.
4294 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4295 return nullptr;
4296
4297 // SExt or Trunc instructions.
4298 // Return the related handler.
4299 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4300 isa<ZExtInst>(ExtOpnd))
4301 return promoteOperandForTruncAndAnyExt;
4302
4303 // Regular instruction.
4304 // Abort early if we will have to insert non-free instructions.
4305 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4306 return nullptr;
4307 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4308 }
4309
promoteOperandForTruncAndAnyExt(Instruction * SExt,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4310 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4311 Instruction *SExt, TypePromotionTransaction &TPT,
4312 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4313 SmallVectorImpl<Instruction *> *Exts,
4314 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4315 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4316 // get through it and this method should not be called.
4317 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4318 Value *ExtVal = SExt;
4319 bool HasMergedNonFreeExt = false;
4320 if (isa<ZExtInst>(SExtOpnd)) {
4321 // Replace s|zext(zext(opnd))
4322 // => zext(opnd).
4323 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4324 Value *ZExt =
4325 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4326 TPT.replaceAllUsesWith(SExt, ZExt);
4327 TPT.eraseInstruction(SExt);
4328 ExtVal = ZExt;
4329 } else {
4330 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4331 // => z|sext(opnd).
4332 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4333 }
4334 CreatedInstsCost = 0;
4335
4336 // Remove dead code.
4337 if (SExtOpnd->use_empty())
4338 TPT.eraseInstruction(SExtOpnd);
4339
4340 // Check if the extension is still needed.
4341 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4342 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4343 if (ExtInst) {
4344 if (Exts)
4345 Exts->push_back(ExtInst);
4346 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4347 }
4348 return ExtVal;
4349 }
4350
4351 // At this point we have: ext ty opnd to ty.
4352 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4353 Value *NextVal = ExtInst->getOperand(0);
4354 TPT.eraseInstruction(ExtInst, NextVal);
4355 return NextVal;
4356 }
4357
promoteOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI,bool IsSExt)4358 Value *TypePromotionHelper::promoteOperandForOther(
4359 Instruction *Ext, TypePromotionTransaction &TPT,
4360 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4361 SmallVectorImpl<Instruction *> *Exts,
4362 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4363 bool IsSExt) {
4364 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4365 // get through it and this method should not be called.
4366 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4367 CreatedInstsCost = 0;
4368 if (!ExtOpnd->hasOneUse()) {
4369 // ExtOpnd will be promoted.
4370 // All its uses, but Ext, will need to use a truncated value of the
4371 // promoted version.
4372 // Create the truncate now.
4373 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4374 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4375 // Insert it just after the definition.
4376 ITrunc->moveAfter(ExtOpnd);
4377 if (Truncs)
4378 Truncs->push_back(ITrunc);
4379 }
4380
4381 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4382 // Restore the operand of Ext (which has been replaced by the previous call
4383 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4384 TPT.setOperand(Ext, 0, ExtOpnd);
4385 }
4386
4387 // Get through the Instruction:
4388 // 1. Update its type.
4389 // 2. Replace the uses of Ext by Inst.
4390 // 3. Extend each operand that needs to be extended.
4391
4392 // Remember the original type of the instruction before promotion.
4393 // This is useful to know that the high bits are sign extended bits.
4394 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4395 // Step #1.
4396 TPT.mutateType(ExtOpnd, Ext->getType());
4397 // Step #2.
4398 TPT.replaceAllUsesWith(Ext, ExtOpnd);
4399 // Step #3.
4400 Instruction *ExtForOpnd = Ext;
4401
4402 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4403 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4404 ++OpIdx) {
4405 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4406 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4407 !shouldExtOperand(ExtOpnd, OpIdx)) {
4408 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4409 continue;
4410 }
4411 // Check if we can statically extend the operand.
4412 Value *Opnd = ExtOpnd->getOperand(OpIdx);
4413 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4414 LLVM_DEBUG(dbgs() << "Statically extend\n");
4415 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4416 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4417 : Cst->getValue().zext(BitWidth);
4418 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4419 continue;
4420 }
4421 // UndefValue are typed, so we have to statically sign extend them.
4422 if (isa<UndefValue>(Opnd)) {
4423 LLVM_DEBUG(dbgs() << "Statically extend\n");
4424 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4425 continue;
4426 }
4427
4428 // Otherwise we have to explicitly sign extend the operand.
4429 // Check if Ext was reused to extend an operand.
4430 if (!ExtForOpnd) {
4431 // If yes, create a new one.
4432 LLVM_DEBUG(dbgs() << "More operands to ext\n");
4433 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4434 : TPT.createZExt(Ext, Opnd, Ext->getType());
4435 if (!isa<Instruction>(ValForExtOpnd)) {
4436 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4437 continue;
4438 }
4439 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4440 }
4441 if (Exts)
4442 Exts->push_back(ExtForOpnd);
4443 TPT.setOperand(ExtForOpnd, 0, Opnd);
4444
4445 // Move the sign extension before the insertion point.
4446 TPT.moveBefore(ExtForOpnd, ExtOpnd);
4447 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4448 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4449 // If more sext are required, new instructions will have to be created.
4450 ExtForOpnd = nullptr;
4451 }
4452 if (ExtForOpnd == Ext) {
4453 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4454 TPT.eraseInstruction(Ext);
4455 }
4456 return ExtOpnd;
4457 }
4458
4459 /// Check whether or not promoting an instruction to a wider type is profitable.
4460 /// \p NewCost gives the cost of extension instructions created by the
4461 /// promotion.
4462 /// \p OldCost gives the cost of extension instructions before the promotion
4463 /// plus the number of instructions that have been
4464 /// matched in the addressing mode the promotion.
4465 /// \p PromotedOperand is the value that has been promoted.
4466 /// \return True if the promotion is profitable, false otherwise.
isPromotionProfitable(unsigned NewCost,unsigned OldCost,Value * PromotedOperand) const4467 bool AddressingModeMatcher::isPromotionProfitable(
4468 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4469 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4470 << '\n');
4471 // The cost of the new extensions is greater than the cost of the
4472 // old extension plus what we folded.
4473 // This is not profitable.
4474 if (NewCost > OldCost)
4475 return false;
4476 if (NewCost < OldCost)
4477 return true;
4478 // The promotion is neutral but it may help folding the sign extension in
4479 // loads for instance.
4480 // Check that we did not create an illegal instruction.
4481 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4482 }
4483
4484 /// Given an instruction or constant expr, see if we can fold the operation
4485 /// into the addressing mode. If so, update the addressing mode and return
4486 /// true, otherwise return false without modifying AddrMode.
4487 /// If \p MovedAway is not NULL, it contains the information of whether or
4488 /// not AddrInst has to be folded into the addressing mode on success.
4489 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4490 /// because it has been moved away.
4491 /// Thus AddrInst must not be added in the matched instructions.
4492 /// This state can happen when AddrInst is a sext, since it may be moved away.
4493 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4494 /// not be referenced anymore.
matchOperationAddr(User * AddrInst,unsigned Opcode,unsigned Depth,bool * MovedAway)4495 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4496 unsigned Depth,
4497 bool *MovedAway) {
4498 // Avoid exponential behavior on extremely deep expression trees.
4499 if (Depth >= 5) return false;
4500
4501 // By default, all matched instructions stay in place.
4502 if (MovedAway)
4503 *MovedAway = false;
4504
4505 switch (Opcode) {
4506 case Instruction::PtrToInt:
4507 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4508 return matchAddr(AddrInst->getOperand(0), Depth);
4509 case Instruction::IntToPtr: {
4510 auto AS = AddrInst->getType()->getPointerAddressSpace();
4511 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4512 // This inttoptr is a no-op if the integer type is pointer sized.
4513 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4514 return matchAddr(AddrInst->getOperand(0), Depth);
4515 return false;
4516 }
4517 case Instruction::BitCast:
4518 // BitCast is always a noop, and we can handle it as long as it is
4519 // int->int or pointer->pointer (we don't want int<->fp or something).
4520 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4521 // Don't touch identity bitcasts. These were probably put here by LSR,
4522 // and we don't want to mess around with them. Assume it knows what it
4523 // is doing.
4524 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4525 return matchAddr(AddrInst->getOperand(0), Depth);
4526 return false;
4527 case Instruction::AddrSpaceCast: {
4528 unsigned SrcAS
4529 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4530 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4531 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4532 return matchAddr(AddrInst->getOperand(0), Depth);
4533 return false;
4534 }
4535 case Instruction::Add: {
4536 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4537 ExtAddrMode BackupAddrMode = AddrMode;
4538 unsigned OldSize = AddrModeInsts.size();
4539 // Start a transaction at this point.
4540 // The LHS may match but not the RHS.
4541 // Therefore, we need a higher level restoration point to undo partially
4542 // matched operation.
4543 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4544 TPT.getRestorationPoint();
4545
4546 AddrMode.InBounds = false;
4547 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4548 matchAddr(AddrInst->getOperand(0), Depth+1))
4549 return true;
4550
4551 // Restore the old addr mode info.
4552 AddrMode = BackupAddrMode;
4553 AddrModeInsts.resize(OldSize);
4554 TPT.rollback(LastKnownGood);
4555
4556 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4557 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4558 matchAddr(AddrInst->getOperand(1), Depth+1))
4559 return true;
4560
4561 // Otherwise we definitely can't merge the ADD in.
4562 AddrMode = BackupAddrMode;
4563 AddrModeInsts.resize(OldSize);
4564 TPT.rollback(LastKnownGood);
4565 break;
4566 }
4567 //case Instruction::Or:
4568 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4569 //break;
4570 case Instruction::Mul:
4571 case Instruction::Shl: {
4572 // Can only handle X*C and X << C.
4573 AddrMode.InBounds = false;
4574 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4575 if (!RHS || RHS->getBitWidth() > 64)
4576 return false;
4577 int64_t Scale = Opcode == Instruction::Shl
4578 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4579 : RHS->getSExtValue();
4580
4581 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4582 }
4583 case Instruction::GetElementPtr: {
4584 // Scan the GEP. We check it if it contains constant offsets and at most
4585 // one variable offset.
4586 int VariableOperand = -1;
4587 unsigned VariableScale = 0;
4588
4589 int64_t ConstantOffset = 0;
4590 gep_type_iterator GTI = gep_type_begin(AddrInst);
4591 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4592 if (StructType *STy = GTI.getStructTypeOrNull()) {
4593 const StructLayout *SL = DL.getStructLayout(STy);
4594 unsigned Idx =
4595 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4596 ConstantOffset += SL->getElementOffset(Idx);
4597 } else {
4598 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4599 if (TS.isNonZero()) {
4600 // The optimisations below currently only work for fixed offsets.
4601 if (TS.isScalable())
4602 return false;
4603 int64_t TypeSize = TS.getFixedSize();
4604 if (ConstantInt *CI =
4605 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4606 const APInt &CVal = CI->getValue();
4607 if (CVal.getMinSignedBits() <= 64) {
4608 ConstantOffset += CVal.getSExtValue() * TypeSize;
4609 continue;
4610 }
4611 }
4612 // We only allow one variable index at the moment.
4613 if (VariableOperand != -1)
4614 return false;
4615
4616 // Remember the variable index.
4617 VariableOperand = i;
4618 VariableScale = TypeSize;
4619 }
4620 }
4621 }
4622
4623 // A common case is for the GEP to only do a constant offset. In this case,
4624 // just add it to the disp field and check validity.
4625 if (VariableOperand == -1) {
4626 AddrMode.BaseOffs += ConstantOffset;
4627 if (ConstantOffset == 0 ||
4628 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4629 // Check to see if we can fold the base pointer in too.
4630 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4631 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4632 AddrMode.InBounds = false;
4633 return true;
4634 }
4635 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4636 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4637 ConstantOffset > 0) {
4638 // Record GEPs with non-zero offsets as candidates for splitting in the
4639 // event that the offset cannot fit into the r+i addressing mode.
4640 // Simple and common case that only one GEP is used in calculating the
4641 // address for the memory access.
4642 Value *Base = AddrInst->getOperand(0);
4643 auto *BaseI = dyn_cast<Instruction>(Base);
4644 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4645 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4646 (BaseI && !isa<CastInst>(BaseI) &&
4647 !isa<GetElementPtrInst>(BaseI))) {
4648 // Make sure the parent block allows inserting non-PHI instructions
4649 // before the terminator.
4650 BasicBlock *Parent =
4651 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4652 if (!Parent->getTerminator()->isEHPad())
4653 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4654 }
4655 }
4656 AddrMode.BaseOffs -= ConstantOffset;
4657 return false;
4658 }
4659
4660 // Save the valid addressing mode in case we can't match.
4661 ExtAddrMode BackupAddrMode = AddrMode;
4662 unsigned OldSize = AddrModeInsts.size();
4663
4664 // See if the scale and offset amount is valid for this target.
4665 AddrMode.BaseOffs += ConstantOffset;
4666 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4667 AddrMode.InBounds = false;
4668
4669 // Match the base operand of the GEP.
4670 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4671 // If it couldn't be matched, just stuff the value in a register.
4672 if (AddrMode.HasBaseReg) {
4673 AddrMode = BackupAddrMode;
4674 AddrModeInsts.resize(OldSize);
4675 return false;
4676 }
4677 AddrMode.HasBaseReg = true;
4678 AddrMode.BaseReg = AddrInst->getOperand(0);
4679 }
4680
4681 // Match the remaining variable portion of the GEP.
4682 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4683 Depth)) {
4684 // If it couldn't be matched, try stuffing the base into a register
4685 // instead of matching it, and retrying the match of the scale.
4686 AddrMode = BackupAddrMode;
4687 AddrModeInsts.resize(OldSize);
4688 if (AddrMode.HasBaseReg)
4689 return false;
4690 AddrMode.HasBaseReg = true;
4691 AddrMode.BaseReg = AddrInst->getOperand(0);
4692 AddrMode.BaseOffs += ConstantOffset;
4693 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4694 VariableScale, Depth)) {
4695 // If even that didn't work, bail.
4696 AddrMode = BackupAddrMode;
4697 AddrModeInsts.resize(OldSize);
4698 return false;
4699 }
4700 }
4701
4702 return true;
4703 }
4704 case Instruction::SExt:
4705 case Instruction::ZExt: {
4706 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4707 if (!Ext)
4708 return false;
4709
4710 // Try to move this ext out of the way of the addressing mode.
4711 // Ask for a method for doing so.
4712 TypePromotionHelper::Action TPH =
4713 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4714 if (!TPH)
4715 return false;
4716
4717 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4718 TPT.getRestorationPoint();
4719 unsigned CreatedInstsCost = 0;
4720 unsigned ExtCost = !TLI.isExtFree(Ext);
4721 Value *PromotedOperand =
4722 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4723 // SExt has been moved away.
4724 // Thus either it will be rematched later in the recursive calls or it is
4725 // gone. Anyway, we must not fold it into the addressing mode at this point.
4726 // E.g.,
4727 // op = add opnd, 1
4728 // idx = ext op
4729 // addr = gep base, idx
4730 // is now:
4731 // promotedOpnd = ext opnd <- no match here
4732 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4733 // addr = gep base, op <- match
4734 if (MovedAway)
4735 *MovedAway = true;
4736
4737 assert(PromotedOperand &&
4738 "TypePromotionHelper should have filtered out those cases");
4739
4740 ExtAddrMode BackupAddrMode = AddrMode;
4741 unsigned OldSize = AddrModeInsts.size();
4742
4743 if (!matchAddr(PromotedOperand, Depth) ||
4744 // The total of the new cost is equal to the cost of the created
4745 // instructions.
4746 // The total of the old cost is equal to the cost of the extension plus
4747 // what we have saved in the addressing mode.
4748 !isPromotionProfitable(CreatedInstsCost,
4749 ExtCost + (AddrModeInsts.size() - OldSize),
4750 PromotedOperand)) {
4751 AddrMode = BackupAddrMode;
4752 AddrModeInsts.resize(OldSize);
4753 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4754 TPT.rollback(LastKnownGood);
4755 return false;
4756 }
4757 return true;
4758 }
4759 }
4760 return false;
4761 }
4762
4763 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4764 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4765 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4766 /// for the target.
4767 ///
matchAddr(Value * Addr,unsigned Depth)4768 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4769 // Start a transaction at this point that we will rollback if the matching
4770 // fails.
4771 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4772 TPT.getRestorationPoint();
4773 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4774 if (CI->getValue().isSignedIntN(64)) {
4775 // Fold in immediates if legal for the target.
4776 AddrMode.BaseOffs += CI->getSExtValue();
4777 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4778 return true;
4779 AddrMode.BaseOffs -= CI->getSExtValue();
4780 }
4781 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4782 // If this is a global variable, try to fold it into the addressing mode.
4783 if (!AddrMode.BaseGV) {
4784 AddrMode.BaseGV = GV;
4785 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4786 return true;
4787 AddrMode.BaseGV = nullptr;
4788 }
4789 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4790 ExtAddrMode BackupAddrMode = AddrMode;
4791 unsigned OldSize = AddrModeInsts.size();
4792
4793 // Check to see if it is possible to fold this operation.
4794 bool MovedAway = false;
4795 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4796 // This instruction may have been moved away. If so, there is nothing
4797 // to check here.
4798 if (MovedAway)
4799 return true;
4800 // Okay, it's possible to fold this. Check to see if it is actually
4801 // *profitable* to do so. We use a simple cost model to avoid increasing
4802 // register pressure too much.
4803 if (I->hasOneUse() ||
4804 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4805 AddrModeInsts.push_back(I);
4806 return true;
4807 }
4808
4809 // It isn't profitable to do this, roll back.
4810 AddrMode = BackupAddrMode;
4811 AddrModeInsts.resize(OldSize);
4812 TPT.rollback(LastKnownGood);
4813 }
4814 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4815 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4816 return true;
4817 TPT.rollback(LastKnownGood);
4818 } else if (isa<ConstantPointerNull>(Addr)) {
4819 // Null pointer gets folded without affecting the addressing mode.
4820 return true;
4821 }
4822
4823 // Worse case, the target should support [reg] addressing modes. :)
4824 if (!AddrMode.HasBaseReg) {
4825 AddrMode.HasBaseReg = true;
4826 AddrMode.BaseReg = Addr;
4827 // Still check for legality in case the target supports [imm] but not [i+r].
4828 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4829 return true;
4830 AddrMode.HasBaseReg = false;
4831 AddrMode.BaseReg = nullptr;
4832 }
4833
4834 // If the base register is already taken, see if we can do [r+r].
4835 if (AddrMode.Scale == 0) {
4836 AddrMode.Scale = 1;
4837 AddrMode.ScaledReg = Addr;
4838 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4839 return true;
4840 AddrMode.Scale = 0;
4841 AddrMode.ScaledReg = nullptr;
4842 }
4843 // Couldn't match.
4844 TPT.rollback(LastKnownGood);
4845 return false;
4846 }
4847
4848 /// Check to see if all uses of OpVal by the specified inline asm call are due
4849 /// to memory operands. If so, return true, otherwise return false.
IsOperandAMemoryOperand(CallInst * CI,InlineAsm * IA,Value * OpVal,const TargetLowering & TLI,const TargetRegisterInfo & TRI)4850 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4851 const TargetLowering &TLI,
4852 const TargetRegisterInfo &TRI) {
4853 const Function *F = CI->getFunction();
4854 TargetLowering::AsmOperandInfoVector TargetConstraints =
4855 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4856
4857 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
4858 // Compute the constraint code and ConstraintType to use.
4859 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4860
4861 // If this asm operand is our Value*, and if it isn't an indirect memory
4862 // operand, we can't fold it! TODO: Also handle C_Address?
4863 if (OpInfo.CallOperandVal == OpVal &&
4864 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4865 !OpInfo.isIndirect))
4866 return false;
4867 }
4868
4869 return true;
4870 }
4871
4872 // Max number of memory uses to look at before aborting the search to conserve
4873 // compile time.
4874 static constexpr int MaxMemoryUsesToScan = 20;
4875
4876 /// Recursively walk all the uses of I until we find a memory use.
4877 /// If we find an obviously non-foldable instruction, return true.
4878 /// Add accessed addresses and types to MemoryUses.
FindAllMemoryUses(Instruction * I,SmallVectorImpl<std::pair<Value *,Type * >> & MemoryUses,SmallPtrSetImpl<Instruction * > & ConsideredInsts,const TargetLowering & TLI,const TargetRegisterInfo & TRI,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,int SeenInsts=0)4879 static bool FindAllMemoryUses(
4880 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses,
4881 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4882 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4883 BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4884 // If we already considered this instruction, we're done.
4885 if (!ConsideredInsts.insert(I).second)
4886 return false;
4887
4888 // If this is an obviously unfoldable instruction, bail out.
4889 if (!MightBeFoldableInst(I))
4890 return true;
4891
4892 // Loop over all the uses, recursively processing them.
4893 for (Use &U : I->uses()) {
4894 // Conservatively return true if we're seeing a large number or a deep chain
4895 // of users. This avoids excessive compilation times in pathological cases.
4896 if (SeenInsts++ >= MaxMemoryUsesToScan)
4897 return true;
4898
4899 Instruction *UserI = cast<Instruction>(U.getUser());
4900 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4901 MemoryUses.push_back({U.get(), LI->getType()});
4902 continue;
4903 }
4904
4905 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4906 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
4907 return true; // Storing addr, not into addr.
4908 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()});
4909 continue;
4910 }
4911
4912 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4913 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
4914 return true; // Storing addr, not into addr.
4915 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()});
4916 continue;
4917 }
4918
4919 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4920 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
4921 return true; // Storing addr, not into addr.
4922 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()});
4923 continue;
4924 }
4925
4926 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4927 if (CI->hasFnAttr(Attribute::Cold)) {
4928 // If this is a cold call, we can sink the addressing calculation into
4929 // the cold path. See optimizeCallInst
4930 bool OptForSize = OptSize ||
4931 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4932 if (!OptForSize)
4933 continue;
4934 }
4935
4936 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4937 if (!IA) return true;
4938
4939 // If this is a memory operand, we're cool, otherwise bail out.
4940 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4941 return true;
4942 continue;
4943 }
4944
4945 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4946 PSI, BFI, SeenInsts))
4947 return true;
4948 }
4949
4950 return false;
4951 }
4952
4953 /// Return true if Val is already known to be live at the use site that we're
4954 /// folding it into. If so, there is no cost to include it in the addressing
4955 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4956 /// instruction already.
valueAlreadyLiveAtInst(Value * Val,Value * KnownLive1,Value * KnownLive2)4957 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4958 Value *KnownLive2) {
4959 // If Val is either of the known-live values, we know it is live!
4960 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4961 return true;
4962
4963 // All values other than instructions and arguments (e.g. constants) are live.
4964 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4965
4966 // If Val is a constant sized alloca in the entry block, it is live, this is
4967 // true because it is just a reference to the stack/frame pointer, which is
4968 // live for the whole function.
4969 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4970 if (AI->isStaticAlloca())
4971 return true;
4972
4973 // Check to see if this value is already used in the memory instruction's
4974 // block. If so, it's already live into the block at the very least, so we
4975 // can reasonably fold it.
4976 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4977 }
4978
4979 /// It is possible for the addressing mode of the machine to fold the specified
4980 /// instruction into a load or store that ultimately uses it.
4981 /// However, the specified instruction has multiple uses.
4982 /// Given this, it may actually increase register pressure to fold it
4983 /// into the load. For example, consider this code:
4984 ///
4985 /// X = ...
4986 /// Y = X+1
4987 /// use(Y) -> nonload/store
4988 /// Z = Y+1
4989 /// load Z
4990 ///
4991 /// In this case, Y has multiple uses, and can be folded into the load of Z
4992 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4993 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4994 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4995 /// number of computations either.
4996 ///
4997 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4998 /// X was live across 'load Z' for other reasons, we actually *would* want to
4999 /// fold the addressing mode in the Z case. This would make Y die earlier.
5000 bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction * I,ExtAddrMode & AMBefore,ExtAddrMode & AMAfter)5001 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
5002 ExtAddrMode &AMAfter) {
5003 if (IgnoreProfitability) return true;
5004
5005 // AMBefore is the addressing mode before this instruction was folded into it,
5006 // and AMAfter is the addressing mode after the instruction was folded. Get
5007 // the set of registers referenced by AMAfter and subtract out those
5008 // referenced by AMBefore: this is the set of values which folding in this
5009 // address extends the lifetime of.
5010 //
5011 // Note that there are only two potential values being referenced here,
5012 // BaseReg and ScaleReg (global addresses are always available, as are any
5013 // folded immediates).
5014 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5015
5016 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5017 // lifetime wasn't extended by adding this instruction.
5018 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5019 BaseReg = nullptr;
5020 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5021 ScaledReg = nullptr;
5022
5023 // If folding this instruction (and it's subexprs) didn't extend any live
5024 // ranges, we're ok with it.
5025 if (!BaseReg && !ScaledReg)
5026 return true;
5027
5028 // If all uses of this instruction can have the address mode sunk into them,
5029 // we can remove the addressing mode and effectively trade one live register
5030 // for another (at worst.) In this context, folding an addressing mode into
5031 // the use is just a particularly nice way of sinking it.
5032 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses;
5033 SmallPtrSet<Instruction*, 16> ConsideredInsts;
5034 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5035 PSI, BFI))
5036 return false; // Has a non-memory, non-foldable use!
5037
5038 // Now that we know that all uses of this instruction are part of a chain of
5039 // computation involving only operations that could theoretically be folded
5040 // into a memory use, loop over each of these memory operation uses and see
5041 // if they could *actually* fold the instruction. The assumption is that
5042 // addressing modes are cheap and that duplicating the computation involved
5043 // many times is worthwhile, even on a fastpath. For sinking candidates
5044 // (i.e. cold call sites), this serves as a way to prevent excessive code
5045 // growth since most architectures have some reasonable small and fast way to
5046 // compute an effective address. (i.e LEA on x86)
5047 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
5048 for (const std::pair<Value *, Type *> &Pair : MemoryUses) {
5049 Value *Address = Pair.first;
5050 Type *AddressAccessTy = Pair.second;
5051 unsigned AS = Address->getType()->getPointerAddressSpace();
5052
5053 // Do a match against the root of this address, ignoring profitability. This
5054 // will tell us if the addressing mode for the memory operation will
5055 // *actually* cover the shared instruction.
5056 ExtAddrMode Result;
5057 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5058 0);
5059 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5060 TPT.getRestorationPoint();
5061 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5062 AddressAccessTy, AS, MemoryInst, Result,
5063 InsertedInsts, PromotedInsts, TPT,
5064 LargeOffsetGEP, OptSize, PSI, BFI);
5065 Matcher.IgnoreProfitability = true;
5066 bool Success = Matcher.matchAddr(Address, 0);
5067 (void)Success; assert(Success && "Couldn't select *anything*?");
5068
5069 // The match was to check the profitability, the changes made are not
5070 // part of the original matcher. Therefore, they should be dropped
5071 // otherwise the original matcher will not present the right state.
5072 TPT.rollback(LastKnownGood);
5073
5074 // If the match didn't cover I, then it won't be shared by it.
5075 if (!is_contained(MatchedAddrModeInsts, I))
5076 return false;
5077
5078 MatchedAddrModeInsts.clear();
5079 }
5080
5081 return true;
5082 }
5083
5084 /// Return true if the specified values are defined in a
5085 /// different basic block than BB.
IsNonLocalValue(Value * V,BasicBlock * BB)5086 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5087 if (Instruction *I = dyn_cast<Instruction>(V))
5088 return I->getParent() != BB;
5089 return false;
5090 }
5091
5092 /// Sink addressing mode computation immediate before MemoryInst if doing so
5093 /// can be done without increasing register pressure. The need for the
5094 /// register pressure constraint means this can end up being an all or nothing
5095 /// decision for all uses of the same addressing computation.
5096 ///
5097 /// Load and Store Instructions often have addressing modes that can do
5098 /// significant amounts of computation. As such, instruction selection will try
5099 /// to get the load or store to do as much computation as possible for the
5100 /// program. The problem is that isel can only see within a single block. As
5101 /// such, we sink as much legal addressing mode work into the block as possible.
5102 ///
5103 /// This method is used to optimize both load/store and inline asms with memory
5104 /// operands. It's also used to sink addressing computations feeding into cold
5105 /// call sites into their (cold) basic block.
5106 ///
5107 /// The motivation for handling sinking into cold blocks is that doing so can
5108 /// both enable other address mode sinking (by satisfying the register pressure
5109 /// constraint above), and reduce register pressure globally (by removing the
5110 /// addressing mode computation from the fast path entirely.).
optimizeMemoryInst(Instruction * MemoryInst,Value * Addr,Type * AccessTy,unsigned AddrSpace)5111 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5112 Type *AccessTy, unsigned AddrSpace) {
5113 Value *Repl = Addr;
5114
5115 // Try to collapse single-value PHI nodes. This is necessary to undo
5116 // unprofitable PRE transformations.
5117 SmallVector<Value*, 8> worklist;
5118 SmallPtrSet<Value*, 16> Visited;
5119 worklist.push_back(Addr);
5120
5121 // Use a worklist to iteratively look through PHI and select nodes, and
5122 // ensure that the addressing mode obtained from the non-PHI/select roots of
5123 // the graph are compatible.
5124 bool PhiOrSelectSeen = false;
5125 SmallVector<Instruction*, 16> AddrModeInsts;
5126 const SimplifyQuery SQ(*DL, TLInfo);
5127 AddressingModeCombiner AddrModes(SQ, Addr);
5128 TypePromotionTransaction TPT(RemovedInsts);
5129 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5130 TPT.getRestorationPoint();
5131 while (!worklist.empty()) {
5132 Value *V = worklist.pop_back_val();
5133
5134 // We allow traversing cyclic Phi nodes.
5135 // In case of success after this loop we ensure that traversing through
5136 // Phi nodes ends up with all cases to compute address of the form
5137 // BaseGV + Base + Scale * Index + Offset
5138 // where Scale and Offset are constans and BaseGV, Base and Index
5139 // are exactly the same Values in all cases.
5140 // It means that BaseGV, Scale and Offset dominate our memory instruction
5141 // and have the same value as they had in address computation represented
5142 // as Phi. So we can safely sink address computation to memory instruction.
5143 if (!Visited.insert(V).second)
5144 continue;
5145
5146 // For a PHI node, push all of its incoming values.
5147 if (PHINode *P = dyn_cast<PHINode>(V)) {
5148 append_range(worklist, P->incoming_values());
5149 PhiOrSelectSeen = true;
5150 continue;
5151 }
5152 // Similar for select.
5153 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5154 worklist.push_back(SI->getFalseValue());
5155 worklist.push_back(SI->getTrueValue());
5156 PhiOrSelectSeen = true;
5157 continue;
5158 }
5159
5160 // For non-PHIs, determine the addressing mode being computed. Note that
5161 // the result may differ depending on what other uses our candidate
5162 // addressing instructions might have.
5163 AddrModeInsts.clear();
5164 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5165 0);
5166 // Defer the query (and possible computation of) the dom tree to point of
5167 // actual use. It's expected that most address matches don't actually need
5168 // the domtree.
5169 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5170 Function *F = MemoryInst->getParent()->getParent();
5171 return this->getDT(*F);
5172 };
5173 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5174 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5175 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5176 BFI.get());
5177
5178 GetElementPtrInst *GEP = LargeOffsetGEP.first;
5179 if (GEP && !NewGEPBases.count(GEP)) {
5180 // If splitting the underlying data structure can reduce the offset of a
5181 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5182 // previously split data structures.
5183 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5184 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5185 }
5186
5187 NewAddrMode.OriginalValue = V;
5188 if (!AddrModes.addNewAddrMode(NewAddrMode))
5189 break;
5190 }
5191
5192 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5193 // or we have multiple but either couldn't combine them or combining them
5194 // wouldn't do anything useful, bail out now.
5195 if (!AddrModes.combineAddrModes()) {
5196 TPT.rollback(LastKnownGood);
5197 return false;
5198 }
5199 bool Modified = TPT.commit();
5200
5201 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5202 ExtAddrMode AddrMode = AddrModes.getAddrMode();
5203
5204 // If all the instructions matched are already in this BB, don't do anything.
5205 // If we saw a Phi node then it is not local definitely, and if we saw a select
5206 // then we want to push the address calculation past it even if it's already
5207 // in this BB.
5208 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5209 return IsNonLocalValue(V, MemoryInst->getParent());
5210 })) {
5211 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5212 << "\n");
5213 return Modified;
5214 }
5215
5216 // Insert this computation right after this user. Since our caller is
5217 // scanning from the top of the BB to the bottom, reuse of the expr are
5218 // guaranteed to happen later.
5219 IRBuilder<> Builder(MemoryInst);
5220
5221 // Now that we determined the addressing expression we want to use and know
5222 // that we have to sink it into this block. Check to see if we have already
5223 // done this for some other load/store instr in this block. If so, reuse
5224 // the computation. Before attempting reuse, check if the address is valid
5225 // as it may have been erased.
5226
5227 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5228
5229 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5230 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5231 if (SunkAddr) {
5232 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5233 << " for " << *MemoryInst << "\n");
5234 if (SunkAddr->getType() != Addr->getType()) {
5235 if (SunkAddr->getType()->getPointerAddressSpace() !=
5236 Addr->getType()->getPointerAddressSpace() &&
5237 !DL->isNonIntegralPointerType(Addr->getType())) {
5238 // There are two reasons the address spaces might not match: a no-op
5239 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5240 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5241 // TODO: allow bitcast between different address space pointers with the
5242 // same size.
5243 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5244 SunkAddr =
5245 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5246 } else
5247 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5248 }
5249 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5250 SubtargetInfo->addrSinkUsingGEPs())) {
5251 // By default, we use the GEP-based method when AA is used later. This
5252 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5253 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5254 << " for " << *MemoryInst << "\n");
5255 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5256
5257 // First, find the pointer.
5258 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5259 ResultPtr = AddrMode.BaseReg;
5260 AddrMode.BaseReg = nullptr;
5261 }
5262
5263 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5264 // We can't add more than one pointer together, nor can we scale a
5265 // pointer (both of which seem meaningless).
5266 if (ResultPtr || AddrMode.Scale != 1)
5267 return Modified;
5268
5269 ResultPtr = AddrMode.ScaledReg;
5270 AddrMode.Scale = 0;
5271 }
5272
5273 // It is only safe to sign extend the BaseReg if we know that the math
5274 // required to create it did not overflow before we extend it. Since
5275 // the original IR value was tossed in favor of a constant back when
5276 // the AddrMode was created we need to bail out gracefully if widths
5277 // do not match instead of extending it.
5278 //
5279 // (See below for code to add the scale.)
5280 if (AddrMode.Scale) {
5281 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5282 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5283 cast<IntegerType>(ScaledRegTy)->getBitWidth())
5284 return Modified;
5285 }
5286
5287 if (AddrMode.BaseGV) {
5288 if (ResultPtr)
5289 return Modified;
5290
5291 ResultPtr = AddrMode.BaseGV;
5292 }
5293
5294 // If the real base value actually came from an inttoptr, then the matcher
5295 // will look through it and provide only the integer value. In that case,
5296 // use it here.
5297 if (!DL->isNonIntegralPointerType(Addr->getType())) {
5298 if (!ResultPtr && AddrMode.BaseReg) {
5299 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5300 "sunkaddr");
5301 AddrMode.BaseReg = nullptr;
5302 } else if (!ResultPtr && AddrMode.Scale == 1) {
5303 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5304 "sunkaddr");
5305 AddrMode.Scale = 0;
5306 }
5307 }
5308
5309 if (!ResultPtr &&
5310 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5311 SunkAddr = Constant::getNullValue(Addr->getType());
5312 } else if (!ResultPtr) {
5313 return Modified;
5314 } else {
5315 Type *I8PtrTy =
5316 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5317 Type *I8Ty = Builder.getInt8Ty();
5318
5319 // Start with the base register. Do this first so that subsequent address
5320 // matching finds it last, which will prevent it from trying to match it
5321 // as the scaled value in case it happens to be a mul. That would be
5322 // problematic if we've sunk a different mul for the scale, because then
5323 // we'd end up sinking both muls.
5324 if (AddrMode.BaseReg) {
5325 Value *V = AddrMode.BaseReg;
5326 if (V->getType() != IntPtrTy)
5327 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5328
5329 ResultIndex = V;
5330 }
5331
5332 // Add the scale value.
5333 if (AddrMode.Scale) {
5334 Value *V = AddrMode.ScaledReg;
5335 if (V->getType() == IntPtrTy) {
5336 // done.
5337 } else {
5338 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5339 cast<IntegerType>(V->getType())->getBitWidth() &&
5340 "We can't transform if ScaledReg is too narrow");
5341 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5342 }
5343
5344 if (AddrMode.Scale != 1)
5345 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5346 "sunkaddr");
5347 if (ResultIndex)
5348 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5349 else
5350 ResultIndex = V;
5351 }
5352
5353 // Add in the Base Offset if present.
5354 if (AddrMode.BaseOffs) {
5355 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5356 if (ResultIndex) {
5357 // We need to add this separately from the scale above to help with
5358 // SDAG consecutive load/store merging.
5359 if (ResultPtr->getType() != I8PtrTy)
5360 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5361 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex,
5362 "sunkaddr", AddrMode.InBounds);
5363 }
5364
5365 ResultIndex = V;
5366 }
5367
5368 if (!ResultIndex) {
5369 SunkAddr = ResultPtr;
5370 } else {
5371 if (ResultPtr->getType() != I8PtrTy)
5372 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5373 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr",
5374 AddrMode.InBounds);
5375 }
5376
5377 if (SunkAddr->getType() != Addr->getType()) {
5378 if (SunkAddr->getType()->getPointerAddressSpace() !=
5379 Addr->getType()->getPointerAddressSpace() &&
5380 !DL->isNonIntegralPointerType(Addr->getType())) {
5381 // There are two reasons the address spaces might not match: a no-op
5382 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5383 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5384 // TODO: allow bitcast between different address space pointers with
5385 // the same size.
5386 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5387 SunkAddr =
5388 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5389 } else
5390 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5391 }
5392 }
5393 } else {
5394 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5395 // non-integral pointers, so in that case bail out now.
5396 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5397 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5398 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5399 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5400 if (DL->isNonIntegralPointerType(Addr->getType()) ||
5401 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5402 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5403 (AddrMode.BaseGV &&
5404 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5405 return Modified;
5406
5407 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5408 << " for " << *MemoryInst << "\n");
5409 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5410 Value *Result = nullptr;
5411
5412 // Start with the base register. Do this first so that subsequent address
5413 // matching finds it last, which will prevent it from trying to match it
5414 // as the scaled value in case it happens to be a mul. That would be
5415 // problematic if we've sunk a different mul for the scale, because then
5416 // we'd end up sinking both muls.
5417 if (AddrMode.BaseReg) {
5418 Value *V = AddrMode.BaseReg;
5419 if (V->getType()->isPointerTy())
5420 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5421 if (V->getType() != IntPtrTy)
5422 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5423 Result = V;
5424 }
5425
5426 // Add the scale value.
5427 if (AddrMode.Scale) {
5428 Value *V = AddrMode.ScaledReg;
5429 if (V->getType() == IntPtrTy) {
5430 // done.
5431 } else if (V->getType()->isPointerTy()) {
5432 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5433 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5434 cast<IntegerType>(V->getType())->getBitWidth()) {
5435 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5436 } else {
5437 // It is only safe to sign extend the BaseReg if we know that the math
5438 // required to create it did not overflow before we extend it. Since
5439 // the original IR value was tossed in favor of a constant back when
5440 // the AddrMode was created we need to bail out gracefully if widths
5441 // do not match instead of extending it.
5442 Instruction *I = dyn_cast_or_null<Instruction>(Result);
5443 if (I && (Result != AddrMode.BaseReg))
5444 I->eraseFromParent();
5445 return Modified;
5446 }
5447 if (AddrMode.Scale != 1)
5448 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5449 "sunkaddr");
5450 if (Result)
5451 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5452 else
5453 Result = V;
5454 }
5455
5456 // Add in the BaseGV if present.
5457 if (AddrMode.BaseGV) {
5458 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5459 if (Result)
5460 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5461 else
5462 Result = V;
5463 }
5464
5465 // Add in the Base Offset if present.
5466 if (AddrMode.BaseOffs) {
5467 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5468 if (Result)
5469 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5470 else
5471 Result = V;
5472 }
5473
5474 if (!Result)
5475 SunkAddr = Constant::getNullValue(Addr->getType());
5476 else
5477 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5478 }
5479
5480 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5481 // Store the newly computed address into the cache. In the case we reused a
5482 // value, this should be idempotent.
5483 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5484
5485 // If we have no uses, recursively delete the value and all dead instructions
5486 // using it.
5487 if (Repl->use_empty()) {
5488 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5489 RecursivelyDeleteTriviallyDeadInstructions(
5490 Repl, TLInfo, nullptr,
5491 [&](Value *V) { removeAllAssertingVHReferences(V); });
5492 });
5493 }
5494 ++NumMemoryInsts;
5495 return true;
5496 }
5497
5498 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5499 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5500 /// only handle a 2 operand GEP in the same basic block or a splat constant
5501 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5502 /// index.
5503 ///
5504 /// If the existing GEP has a vector base pointer that is splat, we can look
5505 /// through the splat to find the scalar pointer. If we can't find a scalar
5506 /// pointer there's nothing we can do.
5507 ///
5508 /// If we have a GEP with more than 2 indices where the middle indices are all
5509 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5510 ///
5511 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5512 /// followed by a GEP with an all zeroes vector index. This will enable
5513 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5514 /// zero index.
optimizeGatherScatterInst(Instruction * MemoryInst,Value * Ptr)5515 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5516 Value *Ptr) {
5517 Value *NewAddr;
5518
5519 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5520 // Don't optimize GEPs that don't have indices.
5521 if (!GEP->hasIndices())
5522 return false;
5523
5524 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5525 // FIXME: We should support this by sinking the GEP.
5526 if (MemoryInst->getParent() != GEP->getParent())
5527 return false;
5528
5529 SmallVector<Value *, 2> Ops(GEP->operands());
5530
5531 bool RewriteGEP = false;
5532
5533 if (Ops[0]->getType()->isVectorTy()) {
5534 Ops[0] = getSplatValue(Ops[0]);
5535 if (!Ops[0])
5536 return false;
5537 RewriteGEP = true;
5538 }
5539
5540 unsigned FinalIndex = Ops.size() - 1;
5541
5542 // Ensure all but the last index is 0.
5543 // FIXME: This isn't strictly required. All that's required is that they are
5544 // all scalars or splats.
5545 for (unsigned i = 1; i < FinalIndex; ++i) {
5546 auto *C = dyn_cast<Constant>(Ops[i]);
5547 if (!C)
5548 return false;
5549 if (isa<VectorType>(C->getType()))
5550 C = C->getSplatValue();
5551 auto *CI = dyn_cast_or_null<ConstantInt>(C);
5552 if (!CI || !CI->isZero())
5553 return false;
5554 // Scalarize the index if needed.
5555 Ops[i] = CI;
5556 }
5557
5558 // Try to scalarize the final index.
5559 if (Ops[FinalIndex]->getType()->isVectorTy()) {
5560 if (Value *V = getSplatValue(Ops[FinalIndex])) {
5561 auto *C = dyn_cast<ConstantInt>(V);
5562 // Don't scalarize all zeros vector.
5563 if (!C || !C->isZero()) {
5564 Ops[FinalIndex] = V;
5565 RewriteGEP = true;
5566 }
5567 }
5568 }
5569
5570 // If we made any changes or the we have extra operands, we need to generate
5571 // new instructions.
5572 if (!RewriteGEP && Ops.size() == 2)
5573 return false;
5574
5575 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5576
5577 IRBuilder<> Builder(MemoryInst);
5578
5579 Type *SourceTy = GEP->getSourceElementType();
5580 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5581
5582 // If the final index isn't a vector, emit a scalar GEP containing all ops
5583 // and a vector GEP with all zeroes final index.
5584 if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5585 NewAddr = Builder.CreateGEP(SourceTy, Ops[0],
5586 makeArrayRef(Ops).drop_front());
5587 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5588 auto *SecondTy = GetElementPtrInst::getIndexedType(
5589 SourceTy, makeArrayRef(Ops).drop_front());
5590 NewAddr =
5591 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5592 } else {
5593 Value *Base = Ops[0];
5594 Value *Index = Ops[FinalIndex];
5595
5596 // Create a scalar GEP if there are more than 2 operands.
5597 if (Ops.size() != 2) {
5598 // Replace the last index with 0.
5599 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5600 Base = Builder.CreateGEP(SourceTy, Base,
5601 makeArrayRef(Ops).drop_front());
5602 SourceTy = GetElementPtrInst::getIndexedType(
5603 SourceTy, makeArrayRef(Ops).drop_front());
5604 }
5605
5606 // Now create the GEP with scalar pointer and vector index.
5607 NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5608 }
5609 } else if (!isa<Constant>(Ptr)) {
5610 // Not a GEP, maybe its a splat and we can create a GEP to enable
5611 // SelectionDAGBuilder to use it as a uniform base.
5612 Value *V = getSplatValue(Ptr);
5613 if (!V)
5614 return false;
5615
5616 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5617
5618 IRBuilder<> Builder(MemoryInst);
5619
5620 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5621 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5622 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5623 Type *ScalarTy;
5624 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5625 Intrinsic::masked_gather) {
5626 ScalarTy = MemoryInst->getType()->getScalarType();
5627 } else {
5628 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5629 Intrinsic::masked_scatter);
5630 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5631 }
5632 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5633 } else {
5634 // Constant, SelectionDAGBuilder knows to check if its a splat.
5635 return false;
5636 }
5637
5638 MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5639
5640 // If we have no uses, recursively delete the value and all dead instructions
5641 // using it.
5642 if (Ptr->use_empty())
5643 RecursivelyDeleteTriviallyDeadInstructions(
5644 Ptr, TLInfo, nullptr,
5645 [&](Value *V) { removeAllAssertingVHReferences(V); });
5646
5647 return true;
5648 }
5649
5650 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5651 /// address computing into the block when possible / profitable.
optimizeInlineAsmInst(CallInst * CS)5652 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5653 bool MadeChange = false;
5654
5655 const TargetRegisterInfo *TRI =
5656 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5657 TargetLowering::AsmOperandInfoVector TargetConstraints =
5658 TLI->ParseConstraints(*DL, TRI, *CS);
5659 unsigned ArgNo = 0;
5660 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5661 // Compute the constraint code and ConstraintType to use.
5662 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5663
5664 // TODO: Also handle C_Address?
5665 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5666 OpInfo.isIndirect) {
5667 Value *OpVal = CS->getArgOperand(ArgNo++);
5668 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5669 } else if (OpInfo.Type == InlineAsm::isInput)
5670 ArgNo++;
5671 }
5672
5673 return MadeChange;
5674 }
5675
5676 /// Check if all the uses of \p Val are equivalent (or free) zero or
5677 /// sign extensions.
hasSameExtUse(Value * Val,const TargetLowering & TLI)5678 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5679 assert(!Val->use_empty() && "Input must have at least one use");
5680 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5681 bool IsSExt = isa<SExtInst>(FirstUser);
5682 Type *ExtTy = FirstUser->getType();
5683 for (const User *U : Val->users()) {
5684 const Instruction *UI = cast<Instruction>(U);
5685 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5686 return false;
5687 Type *CurTy = UI->getType();
5688 // Same input and output types: Same instruction after CSE.
5689 if (CurTy == ExtTy)
5690 continue;
5691
5692 // If IsSExt is true, we are in this situation:
5693 // a = Val
5694 // b = sext ty1 a to ty2
5695 // c = sext ty1 a to ty3
5696 // Assuming ty2 is shorter than ty3, this could be turned into:
5697 // a = Val
5698 // b = sext ty1 a to ty2
5699 // c = sext ty2 b to ty3
5700 // However, the last sext is not free.
5701 if (IsSExt)
5702 return false;
5703
5704 // This is a ZExt, maybe this is free to extend from one type to another.
5705 // In that case, we would not account for a different use.
5706 Type *NarrowTy;
5707 Type *LargeTy;
5708 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5709 CurTy->getScalarType()->getIntegerBitWidth()) {
5710 NarrowTy = CurTy;
5711 LargeTy = ExtTy;
5712 } else {
5713 NarrowTy = ExtTy;
5714 LargeTy = CurTy;
5715 }
5716
5717 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5718 return false;
5719 }
5720 // All uses are the same or can be derived from one another for free.
5721 return true;
5722 }
5723
5724 /// Try to speculatively promote extensions in \p Exts and continue
5725 /// promoting through newly promoted operands recursively as far as doing so is
5726 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5727 /// When some promotion happened, \p TPT contains the proper state to revert
5728 /// them.
5729 ///
5730 /// \return true if some promotion happened, false otherwise.
tryToPromoteExts(TypePromotionTransaction & TPT,const SmallVectorImpl<Instruction * > & Exts,SmallVectorImpl<Instruction * > & ProfitablyMovedExts,unsigned CreatedInstsCost)5731 bool CodeGenPrepare::tryToPromoteExts(
5732 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5733 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5734 unsigned CreatedInstsCost) {
5735 bool Promoted = false;
5736
5737 // Iterate over all the extensions to try to promote them.
5738 for (auto *I : Exts) {
5739 // Early check if we directly have ext(load).
5740 if (isa<LoadInst>(I->getOperand(0))) {
5741 ProfitablyMovedExts.push_back(I);
5742 continue;
5743 }
5744
5745 // Check whether or not we want to do any promotion. The reason we have
5746 // this check inside the for loop is to catch the case where an extension
5747 // is directly fed by a load because in such case the extension can be moved
5748 // up without any promotion on its operands.
5749 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5750 return false;
5751
5752 // Get the action to perform the promotion.
5753 TypePromotionHelper::Action TPH =
5754 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5755 // Check if we can promote.
5756 if (!TPH) {
5757 // Save the current extension as we cannot move up through its operand.
5758 ProfitablyMovedExts.push_back(I);
5759 continue;
5760 }
5761
5762 // Save the current state.
5763 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5764 TPT.getRestorationPoint();
5765 SmallVector<Instruction *, 4> NewExts;
5766 unsigned NewCreatedInstsCost = 0;
5767 unsigned ExtCost = !TLI->isExtFree(I);
5768 // Promote.
5769 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5770 &NewExts, nullptr, *TLI);
5771 assert(PromotedVal &&
5772 "TypePromotionHelper should have filtered out those cases");
5773
5774 // We would be able to merge only one extension in a load.
5775 // Therefore, if we have more than 1 new extension we heuristically
5776 // cut this search path, because it means we degrade the code quality.
5777 // With exactly 2, the transformation is neutral, because we will merge
5778 // one extension but leave one. However, we optimistically keep going,
5779 // because the new extension may be removed too.
5780 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5781 // FIXME: It would be possible to propagate a negative value instead of
5782 // conservatively ceiling it to 0.
5783 TotalCreatedInstsCost =
5784 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5785 if (!StressExtLdPromotion &&
5786 (TotalCreatedInstsCost > 1 ||
5787 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5788 // This promotion is not profitable, rollback to the previous state, and
5789 // save the current extension in ProfitablyMovedExts as the latest
5790 // speculative promotion turned out to be unprofitable.
5791 TPT.rollback(LastKnownGood);
5792 ProfitablyMovedExts.push_back(I);
5793 continue;
5794 }
5795 // Continue promoting NewExts as far as doing so is profitable.
5796 SmallVector<Instruction *, 2> NewlyMovedExts;
5797 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5798 bool NewPromoted = false;
5799 for (auto *ExtInst : NewlyMovedExts) {
5800 Instruction *MovedExt = cast<Instruction>(ExtInst);
5801 Value *ExtOperand = MovedExt->getOperand(0);
5802 // If we have reached to a load, we need this extra profitability check
5803 // as it could potentially be merged into an ext(load).
5804 if (isa<LoadInst>(ExtOperand) &&
5805 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5806 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5807 continue;
5808
5809 ProfitablyMovedExts.push_back(MovedExt);
5810 NewPromoted = true;
5811 }
5812
5813 // If none of speculative promotions for NewExts is profitable, rollback
5814 // and save the current extension (I) as the last profitable extension.
5815 if (!NewPromoted) {
5816 TPT.rollback(LastKnownGood);
5817 ProfitablyMovedExts.push_back(I);
5818 continue;
5819 }
5820 // The promotion is profitable.
5821 Promoted = true;
5822 }
5823 return Promoted;
5824 }
5825
5826 /// Merging redundant sexts when one is dominating the other.
mergeSExts(Function & F)5827 bool CodeGenPrepare::mergeSExts(Function &F) {
5828 bool Changed = false;
5829 for (auto &Entry : ValToSExtendedUses) {
5830 SExts &Insts = Entry.second;
5831 SExts CurPts;
5832 for (Instruction *Inst : Insts) {
5833 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5834 Inst->getOperand(0) != Entry.first)
5835 continue;
5836 bool inserted = false;
5837 for (auto &Pt : CurPts) {
5838 if (getDT(F).dominates(Inst, Pt)) {
5839 Pt->replaceAllUsesWith(Inst);
5840 RemovedInsts.insert(Pt);
5841 Pt->removeFromParent();
5842 Pt = Inst;
5843 inserted = true;
5844 Changed = true;
5845 break;
5846 }
5847 if (!getDT(F).dominates(Pt, Inst))
5848 // Give up if we need to merge in a common dominator as the
5849 // experiments show it is not profitable.
5850 continue;
5851 Inst->replaceAllUsesWith(Pt);
5852 RemovedInsts.insert(Inst);
5853 Inst->removeFromParent();
5854 inserted = true;
5855 Changed = true;
5856 break;
5857 }
5858 if (!inserted)
5859 CurPts.push_back(Inst);
5860 }
5861 }
5862 return Changed;
5863 }
5864
5865 // Splitting large data structures so that the GEPs accessing them can have
5866 // smaller offsets so that they can be sunk to the same blocks as their users.
5867 // For example, a large struct starting from %base is split into two parts
5868 // where the second part starts from %new_base.
5869 //
5870 // Before:
5871 // BB0:
5872 // %base =
5873 //
5874 // BB1:
5875 // %gep0 = gep %base, off0
5876 // %gep1 = gep %base, off1
5877 // %gep2 = gep %base, off2
5878 //
5879 // BB2:
5880 // %load1 = load %gep0
5881 // %load2 = load %gep1
5882 // %load3 = load %gep2
5883 //
5884 // After:
5885 // BB0:
5886 // %base =
5887 // %new_base = gep %base, off0
5888 //
5889 // BB1:
5890 // %new_gep0 = %new_base
5891 // %new_gep1 = gep %new_base, off1 - off0
5892 // %new_gep2 = gep %new_base, off2 - off0
5893 //
5894 // BB2:
5895 // %load1 = load i32, i32* %new_gep0
5896 // %load2 = load i32, i32* %new_gep1
5897 // %load3 = load i32, i32* %new_gep2
5898 //
5899 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5900 // their offsets are smaller enough to fit into the addressing mode.
splitLargeGEPOffsets()5901 bool CodeGenPrepare::splitLargeGEPOffsets() {
5902 bool Changed = false;
5903 for (auto &Entry : LargeOffsetGEPMap) {
5904 Value *OldBase = Entry.first;
5905 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5906 &LargeOffsetGEPs = Entry.second;
5907 auto compareGEPOffset =
5908 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5909 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5910 if (LHS.first == RHS.first)
5911 return false;
5912 if (LHS.second != RHS.second)
5913 return LHS.second < RHS.second;
5914 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5915 };
5916 // Sorting all the GEPs of the same data structures based on the offsets.
5917 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5918 LargeOffsetGEPs.erase(
5919 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5920 LargeOffsetGEPs.end());
5921 // Skip if all the GEPs have the same offsets.
5922 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5923 continue;
5924 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5925 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5926 Value *NewBaseGEP = nullptr;
5927
5928 auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5929 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5930 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5931 int64_t Offset = LargeOffsetGEP->second;
5932 if (Offset != BaseOffset) {
5933 TargetLowering::AddrMode AddrMode;
5934 AddrMode.BaseOffs = Offset - BaseOffset;
5935 // The result type of the GEP might not be the type of the memory
5936 // access.
5937 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5938 GEP->getResultElementType(),
5939 GEP->getAddressSpace())) {
5940 // We need to create a new base if the offset to the current base is
5941 // too large to fit into the addressing mode. So, a very large struct
5942 // may be split into several parts.
5943 BaseGEP = GEP;
5944 BaseOffset = Offset;
5945 NewBaseGEP = nullptr;
5946 }
5947 }
5948
5949 // Generate a new GEP to replace the current one.
5950 LLVMContext &Ctx = GEP->getContext();
5951 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5952 Type *I8PtrTy =
5953 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5954 Type *I8Ty = Type::getInt8Ty(Ctx);
5955
5956 if (!NewBaseGEP) {
5957 // Create a new base if we don't have one yet. Find the insertion
5958 // pointer for the new base first.
5959 BasicBlock::iterator NewBaseInsertPt;
5960 BasicBlock *NewBaseInsertBB;
5961 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5962 // If the base of the struct is an instruction, the new base will be
5963 // inserted close to it.
5964 NewBaseInsertBB = BaseI->getParent();
5965 if (isa<PHINode>(BaseI))
5966 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5967 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5968 NewBaseInsertBB =
5969 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5970 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5971 } else
5972 NewBaseInsertPt = std::next(BaseI->getIterator());
5973 } else {
5974 // If the current base is an argument or global value, the new base
5975 // will be inserted to the entry block.
5976 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5977 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5978 }
5979 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5980 // Create a new base.
5981 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5982 NewBaseGEP = OldBase;
5983 if (NewBaseGEP->getType() != I8PtrTy)
5984 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5985 NewBaseGEP =
5986 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5987 NewGEPBases.insert(NewBaseGEP);
5988 }
5989
5990 IRBuilder<> Builder(GEP);
5991 Value *NewGEP = NewBaseGEP;
5992 if (Offset == BaseOffset) {
5993 if (GEP->getType() != I8PtrTy)
5994 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5995 } else {
5996 // Calculate the new offset for the new GEP.
5997 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5998 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5999
6000 if (GEP->getType() != I8PtrTy)
6001 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
6002 }
6003 GEP->replaceAllUsesWith(NewGEP);
6004 LargeOffsetGEPID.erase(GEP);
6005 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6006 GEP->eraseFromParent();
6007 Changed = true;
6008 }
6009 }
6010 return Changed;
6011 }
6012
optimizePhiType(PHINode * I,SmallPtrSetImpl<PHINode * > & Visited,SmallPtrSetImpl<Instruction * > & DeletedInstrs)6013 bool CodeGenPrepare::optimizePhiType(
6014 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6015 SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6016 // We are looking for a collection on interconnected phi nodes that together
6017 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6018 // are of the same type. Convert the whole set of nodes to the type of the
6019 // bitcast.
6020 Type *PhiTy = I->getType();
6021 Type *ConvertTy = nullptr;
6022 if (Visited.count(I) ||
6023 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6024 return false;
6025
6026 SmallVector<Instruction *, 4> Worklist;
6027 Worklist.push_back(cast<Instruction>(I));
6028 SmallPtrSet<PHINode *, 4> PhiNodes;
6029 PhiNodes.insert(I);
6030 Visited.insert(I);
6031 SmallPtrSet<Instruction *, 4> Defs;
6032 SmallPtrSet<Instruction *, 4> Uses;
6033 // This works by adding extra bitcasts between load/stores and removing
6034 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6035 // we can get in the situation where we remove a bitcast in one iteration
6036 // just to add it again in the next. We need to ensure that at least one
6037 // bitcast we remove are anchored to something that will not change back.
6038 bool AnyAnchored = false;
6039
6040 while (!Worklist.empty()) {
6041 Instruction *II = Worklist.pop_back_val();
6042
6043 if (auto *Phi = dyn_cast<PHINode>(II)) {
6044 // Handle Defs, which might also be PHI's
6045 for (Value *V : Phi->incoming_values()) {
6046 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6047 if (!PhiNodes.count(OpPhi)) {
6048 if (!Visited.insert(OpPhi).second)
6049 return false;
6050 PhiNodes.insert(OpPhi);
6051 Worklist.push_back(OpPhi);
6052 }
6053 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6054 if (!OpLoad->isSimple())
6055 return false;
6056 if (Defs.insert(OpLoad).second)
6057 Worklist.push_back(OpLoad);
6058 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6059 if (Defs.insert(OpEx).second)
6060 Worklist.push_back(OpEx);
6061 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6062 if (!ConvertTy)
6063 ConvertTy = OpBC->getOperand(0)->getType();
6064 if (OpBC->getOperand(0)->getType() != ConvertTy)
6065 return false;
6066 if (Defs.insert(OpBC).second) {
6067 Worklist.push_back(OpBC);
6068 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6069 !isa<ExtractElementInst>(OpBC->getOperand(0));
6070 }
6071 } else if (!isa<UndefValue>(V)) {
6072 return false;
6073 }
6074 }
6075 }
6076
6077 // Handle uses which might also be phi's
6078 for (User *V : II->users()) {
6079 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6080 if (!PhiNodes.count(OpPhi)) {
6081 if (Visited.count(OpPhi))
6082 return false;
6083 PhiNodes.insert(OpPhi);
6084 Visited.insert(OpPhi);
6085 Worklist.push_back(OpPhi);
6086 }
6087 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6088 if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6089 return false;
6090 Uses.insert(OpStore);
6091 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6092 if (!ConvertTy)
6093 ConvertTy = OpBC->getType();
6094 if (OpBC->getType() != ConvertTy)
6095 return false;
6096 Uses.insert(OpBC);
6097 AnyAnchored |=
6098 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6099 } else {
6100 return false;
6101 }
6102 }
6103 }
6104
6105 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6106 return false;
6107
6108 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
6109 << *ConvertTy << "\n");
6110
6111 // Create all the new phi nodes of the new type, and bitcast any loads to the
6112 // correct type.
6113 ValueToValueMap ValMap;
6114 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
6115 for (Instruction *D : Defs) {
6116 if (isa<BitCastInst>(D)) {
6117 ValMap[D] = D->getOperand(0);
6118 DeletedInstrs.insert(D);
6119 } else {
6120 ValMap[D] =
6121 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6122 }
6123 }
6124 for (PHINode *Phi : PhiNodes)
6125 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6126 Phi->getName() + ".tc", Phi);
6127 // Pipe together all the PhiNodes.
6128 for (PHINode *Phi : PhiNodes) {
6129 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6130 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6131 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6132 Phi->getIncomingBlock(i));
6133 Visited.insert(NewPhi);
6134 }
6135 // And finally pipe up the stores and bitcasts
6136 for (Instruction *U : Uses) {
6137 if (isa<BitCastInst>(U)) {
6138 DeletedInstrs.insert(U);
6139 U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
6140 } else {
6141 U->setOperand(0,
6142 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6143 }
6144 }
6145
6146 // Save the removed phis to be deleted later.
6147 for (PHINode *Phi : PhiNodes)
6148 DeletedInstrs.insert(Phi);
6149 return true;
6150 }
6151
optimizePhiTypes(Function & F)6152 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6153 if (!OptimizePhiTypes)
6154 return false;
6155
6156 bool Changed = false;
6157 SmallPtrSet<PHINode *, 4> Visited;
6158 SmallPtrSet<Instruction *, 4> DeletedInstrs;
6159
6160 // Attempt to optimize all the phis in the functions to the correct type.
6161 for (auto &BB : F)
6162 for (auto &Phi : BB.phis())
6163 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6164
6165 // Remove any old phi's that have been converted.
6166 for (auto *I : DeletedInstrs) {
6167 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
6168 I->eraseFromParent();
6169 }
6170
6171 return Changed;
6172 }
6173
6174 /// Return true, if an ext(load) can be formed from an extension in
6175 /// \p MovedExts.
canFormExtLd(const SmallVectorImpl<Instruction * > & MovedExts,LoadInst * & LI,Instruction * & Inst,bool HasPromoted)6176 bool CodeGenPrepare::canFormExtLd(
6177 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6178 Instruction *&Inst, bool HasPromoted) {
6179 for (auto *MovedExtInst : MovedExts) {
6180 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6181 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6182 Inst = MovedExtInst;
6183 break;
6184 }
6185 }
6186 if (!LI)
6187 return false;
6188
6189 // If they're already in the same block, there's nothing to do.
6190 // Make the cheap checks first if we did not promote.
6191 // If we promoted, we need to check if it is indeed profitable.
6192 if (!HasPromoted && LI->getParent() == Inst->getParent())
6193 return false;
6194
6195 return TLI->isExtLoad(LI, Inst, *DL);
6196 }
6197
6198 /// Move a zext or sext fed by a load into the same basic block as the load,
6199 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6200 /// extend into the load.
6201 ///
6202 /// E.g.,
6203 /// \code
6204 /// %ld = load i32* %addr
6205 /// %add = add nuw i32 %ld, 4
6206 /// %zext = zext i32 %add to i64
6207 // \endcode
6208 /// =>
6209 /// \code
6210 /// %ld = load i32* %addr
6211 /// %zext = zext i32 %ld to i64
6212 /// %add = add nuw i64 %zext, 4
6213 /// \encode
6214 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6215 /// allow us to match zext(load i32*) to i64.
6216 ///
6217 /// Also, try to promote the computations used to obtain a sign extended
6218 /// value used into memory accesses.
6219 /// E.g.,
6220 /// \code
6221 /// a = add nsw i32 b, 3
6222 /// d = sext i32 a to i64
6223 /// e = getelementptr ..., i64 d
6224 /// \endcode
6225 /// =>
6226 /// \code
6227 /// f = sext i32 b to i64
6228 /// a = add nsw i64 f, 3
6229 /// e = getelementptr ..., i64 a
6230 /// \endcode
6231 ///
6232 /// \p Inst[in/out] the extension may be modified during the process if some
6233 /// promotions apply.
optimizeExt(Instruction * & Inst)6234 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6235 bool AllowPromotionWithoutCommonHeader = false;
6236 /// See if it is an interesting sext operations for the address type
6237 /// promotion before trying to promote it, e.g., the ones with the right
6238 /// type and used in memory accesses.
6239 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6240 *Inst, AllowPromotionWithoutCommonHeader);
6241 TypePromotionTransaction TPT(RemovedInsts);
6242 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6243 TPT.getRestorationPoint();
6244 SmallVector<Instruction *, 1> Exts;
6245 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6246 Exts.push_back(Inst);
6247
6248 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6249
6250 // Look for a load being extended.
6251 LoadInst *LI = nullptr;
6252 Instruction *ExtFedByLoad;
6253
6254 // Try to promote a chain of computation if it allows to form an extended
6255 // load.
6256 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6257 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6258 TPT.commit();
6259 // Move the extend into the same block as the load.
6260 ExtFedByLoad->moveAfter(LI);
6261 ++NumExtsMoved;
6262 Inst = ExtFedByLoad;
6263 return true;
6264 }
6265
6266 // Continue promoting SExts if known as considerable depending on targets.
6267 if (ATPConsiderable &&
6268 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6269 HasPromoted, TPT, SpeculativelyMovedExts))
6270 return true;
6271
6272 TPT.rollback(LastKnownGood);
6273 return false;
6274 }
6275
6276 // Perform address type promotion if doing so is profitable.
6277 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6278 // instructions that sign extended the same initial value. However, if
6279 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6280 // extension is just profitable.
performAddressTypePromotion(Instruction * & Inst,bool AllowPromotionWithoutCommonHeader,bool HasPromoted,TypePromotionTransaction & TPT,SmallVectorImpl<Instruction * > & SpeculativelyMovedExts)6281 bool CodeGenPrepare::performAddressTypePromotion(
6282 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6283 bool HasPromoted, TypePromotionTransaction &TPT,
6284 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6285 bool Promoted = false;
6286 SmallPtrSet<Instruction *, 1> UnhandledExts;
6287 bool AllSeenFirst = true;
6288 for (auto *I : SpeculativelyMovedExts) {
6289 Value *HeadOfChain = I->getOperand(0);
6290 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6291 SeenChainsForSExt.find(HeadOfChain);
6292 // If there is an unhandled SExt which has the same header, try to promote
6293 // it as well.
6294 if (AlreadySeen != SeenChainsForSExt.end()) {
6295 if (AlreadySeen->second != nullptr)
6296 UnhandledExts.insert(AlreadySeen->second);
6297 AllSeenFirst = false;
6298 }
6299 }
6300
6301 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6302 SpeculativelyMovedExts.size() == 1)) {
6303 TPT.commit();
6304 if (HasPromoted)
6305 Promoted = true;
6306 for (auto *I : SpeculativelyMovedExts) {
6307 Value *HeadOfChain = I->getOperand(0);
6308 SeenChainsForSExt[HeadOfChain] = nullptr;
6309 ValToSExtendedUses[HeadOfChain].push_back(I);
6310 }
6311 // Update Inst as promotion happen.
6312 Inst = SpeculativelyMovedExts.pop_back_val();
6313 } else {
6314 // This is the first chain visited from the header, keep the current chain
6315 // as unhandled. Defer to promote this until we encounter another SExt
6316 // chain derived from the same header.
6317 for (auto *I : SpeculativelyMovedExts) {
6318 Value *HeadOfChain = I->getOperand(0);
6319 SeenChainsForSExt[HeadOfChain] = Inst;
6320 }
6321 return false;
6322 }
6323
6324 if (!AllSeenFirst && !UnhandledExts.empty())
6325 for (auto *VisitedSExt : UnhandledExts) {
6326 if (RemovedInsts.count(VisitedSExt))
6327 continue;
6328 TypePromotionTransaction TPT(RemovedInsts);
6329 SmallVector<Instruction *, 1> Exts;
6330 SmallVector<Instruction *, 2> Chains;
6331 Exts.push_back(VisitedSExt);
6332 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6333 TPT.commit();
6334 if (HasPromoted)
6335 Promoted = true;
6336 for (auto *I : Chains) {
6337 Value *HeadOfChain = I->getOperand(0);
6338 // Mark this as handled.
6339 SeenChainsForSExt[HeadOfChain] = nullptr;
6340 ValToSExtendedUses[HeadOfChain].push_back(I);
6341 }
6342 }
6343 return Promoted;
6344 }
6345
optimizeExtUses(Instruction * I)6346 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6347 BasicBlock *DefBB = I->getParent();
6348
6349 // If the result of a {s|z}ext and its source are both live out, rewrite all
6350 // other uses of the source with result of extension.
6351 Value *Src = I->getOperand(0);
6352 if (Src->hasOneUse())
6353 return false;
6354
6355 // Only do this xform if truncating is free.
6356 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6357 return false;
6358
6359 // Only safe to perform the optimization if the source is also defined in
6360 // this block.
6361 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6362 return false;
6363
6364 bool DefIsLiveOut = false;
6365 for (User *U : I->users()) {
6366 Instruction *UI = cast<Instruction>(U);
6367
6368 // Figure out which BB this ext is used in.
6369 BasicBlock *UserBB = UI->getParent();
6370 if (UserBB == DefBB) continue;
6371 DefIsLiveOut = true;
6372 break;
6373 }
6374 if (!DefIsLiveOut)
6375 return false;
6376
6377 // Make sure none of the uses are PHI nodes.
6378 for (User *U : Src->users()) {
6379 Instruction *UI = cast<Instruction>(U);
6380 BasicBlock *UserBB = UI->getParent();
6381 if (UserBB == DefBB) continue;
6382 // Be conservative. We don't want this xform to end up introducing
6383 // reloads just before load / store instructions.
6384 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6385 return false;
6386 }
6387
6388 // InsertedTruncs - Only insert one trunc in each block once.
6389 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6390
6391 bool MadeChange = false;
6392 for (Use &U : Src->uses()) {
6393 Instruction *User = cast<Instruction>(U.getUser());
6394
6395 // Figure out which BB this ext is used in.
6396 BasicBlock *UserBB = User->getParent();
6397 if (UserBB == DefBB) continue;
6398
6399 // Both src and def are live in this block. Rewrite the use.
6400 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6401
6402 if (!InsertedTrunc) {
6403 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6404 assert(InsertPt != UserBB->end());
6405 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6406 InsertedInsts.insert(InsertedTrunc);
6407 }
6408
6409 // Replace a use of the {s|z}ext source with a use of the result.
6410 U = InsertedTrunc;
6411 ++NumExtUses;
6412 MadeChange = true;
6413 }
6414
6415 return MadeChange;
6416 }
6417
6418 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6419 // just after the load if the target can fold this into one extload instruction,
6420 // with the hope of eliminating some of the other later "and" instructions using
6421 // the loaded value. "and"s that are made trivially redundant by the insertion
6422 // of the new "and" are removed by this function, while others (e.g. those whose
6423 // path from the load goes through a phi) are left for isel to potentially
6424 // remove.
6425 //
6426 // For example:
6427 //
6428 // b0:
6429 // x = load i32
6430 // ...
6431 // b1:
6432 // y = and x, 0xff
6433 // z = use y
6434 //
6435 // becomes:
6436 //
6437 // b0:
6438 // x = load i32
6439 // x' = and x, 0xff
6440 // ...
6441 // b1:
6442 // z = use x'
6443 //
6444 // whereas:
6445 //
6446 // b0:
6447 // x1 = load i32
6448 // ...
6449 // b1:
6450 // x2 = load i32
6451 // ...
6452 // b2:
6453 // x = phi x1, x2
6454 // y = and x, 0xff
6455 //
6456 // becomes (after a call to optimizeLoadExt for each load):
6457 //
6458 // b0:
6459 // x1 = load i32
6460 // x1' = and x1, 0xff
6461 // ...
6462 // b1:
6463 // x2 = load i32
6464 // x2' = and x2, 0xff
6465 // ...
6466 // b2:
6467 // x = phi x1', x2'
6468 // y = and x, 0xff
optimizeLoadExt(LoadInst * Load)6469 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6470 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6471 return false;
6472
6473 // Skip loads we've already transformed.
6474 if (Load->hasOneUse() &&
6475 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6476 return false;
6477
6478 // Look at all uses of Load, looking through phis, to determine how many bits
6479 // of the loaded value are needed.
6480 SmallVector<Instruction *, 8> WorkList;
6481 SmallPtrSet<Instruction *, 16> Visited;
6482 SmallVector<Instruction *, 8> AndsToMaybeRemove;
6483 for (auto *U : Load->users())
6484 WorkList.push_back(cast<Instruction>(U));
6485
6486 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6487 unsigned BitWidth = LoadResultVT.getSizeInBits();
6488 // If the BitWidth is 0, do not try to optimize the type
6489 if (BitWidth == 0)
6490 return false;
6491
6492 APInt DemandBits(BitWidth, 0);
6493 APInt WidestAndBits(BitWidth, 0);
6494
6495 while (!WorkList.empty()) {
6496 Instruction *I = WorkList.pop_back_val();
6497
6498 // Break use-def graph loops.
6499 if (!Visited.insert(I).second)
6500 continue;
6501
6502 // For a PHI node, push all of its users.
6503 if (auto *Phi = dyn_cast<PHINode>(I)) {
6504 for (auto *U : Phi->users())
6505 WorkList.push_back(cast<Instruction>(U));
6506 continue;
6507 }
6508
6509 switch (I->getOpcode()) {
6510 case Instruction::And: {
6511 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6512 if (!AndC)
6513 return false;
6514 APInt AndBits = AndC->getValue();
6515 DemandBits |= AndBits;
6516 // Keep track of the widest and mask we see.
6517 if (AndBits.ugt(WidestAndBits))
6518 WidestAndBits = AndBits;
6519 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6520 AndsToMaybeRemove.push_back(I);
6521 break;
6522 }
6523
6524 case Instruction::Shl: {
6525 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6526 if (!ShlC)
6527 return false;
6528 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6529 DemandBits.setLowBits(BitWidth - ShiftAmt);
6530 break;
6531 }
6532
6533 case Instruction::Trunc: {
6534 EVT TruncVT = TLI->getValueType(*DL, I->getType());
6535 unsigned TruncBitWidth = TruncVT.getSizeInBits();
6536 DemandBits.setLowBits(TruncBitWidth);
6537 break;
6538 }
6539
6540 default:
6541 return false;
6542 }
6543 }
6544
6545 uint32_t ActiveBits = DemandBits.getActiveBits();
6546 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6547 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6548 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6549 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6550 // followed by an AND.
6551 // TODO: Look into removing this restriction by fixing backends to either
6552 // return false for isLoadExtLegal for i1 or have them select this pattern to
6553 // a single instruction.
6554 //
6555 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6556 // mask, since these are the only ands that will be removed by isel.
6557 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6558 WidestAndBits != DemandBits)
6559 return false;
6560
6561 LLVMContext &Ctx = Load->getType()->getContext();
6562 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6563 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6564
6565 // Reject cases that won't be matched as extloads.
6566 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6567 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6568 return false;
6569
6570 IRBuilder<> Builder(Load->getNextNode());
6571 auto *NewAnd = cast<Instruction>(
6572 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6573 // Mark this instruction as "inserted by CGP", so that other
6574 // optimizations don't touch it.
6575 InsertedInsts.insert(NewAnd);
6576
6577 // Replace all uses of load with new and (except for the use of load in the
6578 // new and itself).
6579 Load->replaceAllUsesWith(NewAnd);
6580 NewAnd->setOperand(0, Load);
6581
6582 // Remove any and instructions that are now redundant.
6583 for (auto *And : AndsToMaybeRemove)
6584 // Check that the and mask is the same as the one we decided to put on the
6585 // new and.
6586 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6587 And->replaceAllUsesWith(NewAnd);
6588 if (&*CurInstIterator == And)
6589 CurInstIterator = std::next(And->getIterator());
6590 And->eraseFromParent();
6591 ++NumAndUses;
6592 }
6593
6594 ++NumAndsAdded;
6595 return true;
6596 }
6597
6598 /// Check if V (an operand of a select instruction) is an expensive instruction
6599 /// that is only used once.
sinkSelectOperand(const TargetTransformInfo * TTI,Value * V)6600 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6601 auto *I = dyn_cast<Instruction>(V);
6602 // If it's safe to speculatively execute, then it should not have side
6603 // effects; therefore, it's safe to sink and possibly *not* execute.
6604 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6605 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6606 TargetTransformInfo::TCC_Expensive;
6607 }
6608
6609 /// Returns true if a SelectInst should be turned into an explicit branch.
isFormingBranchFromSelectProfitable(const TargetTransformInfo * TTI,const TargetLowering * TLI,SelectInst * SI)6610 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6611 const TargetLowering *TLI,
6612 SelectInst *SI) {
6613 // If even a predictable select is cheap, then a branch can't be cheaper.
6614 if (!TLI->isPredictableSelectExpensive())
6615 return false;
6616
6617 // FIXME: This should use the same heuristics as IfConversion to determine
6618 // whether a select is better represented as a branch.
6619
6620 // If metadata tells us that the select condition is obviously predictable,
6621 // then we want to replace the select with a branch.
6622 uint64_t TrueWeight, FalseWeight;
6623 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6624 uint64_t Max = std::max(TrueWeight, FalseWeight);
6625 uint64_t Sum = TrueWeight + FalseWeight;
6626 if (Sum != 0) {
6627 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6628 if (Probability > TTI->getPredictableBranchThreshold())
6629 return true;
6630 }
6631 }
6632
6633 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6634
6635 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6636 // comparison condition. If the compare has more than one use, there's
6637 // probably another cmov or setcc around, so it's not worth emitting a branch.
6638 if (!Cmp || !Cmp->hasOneUse())
6639 return false;
6640
6641 // If either operand of the select is expensive and only needed on one side
6642 // of the select, we should form a branch.
6643 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6644 sinkSelectOperand(TTI, SI->getFalseValue()))
6645 return true;
6646
6647 return false;
6648 }
6649
6650 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6651 /// false value of \p SI. If the true/false value of \p SI is defined by any
6652 /// select instructions in \p Selects, look through the defining select
6653 /// instruction until the true/false value is not defined in \p Selects.
getTrueOrFalseValue(SelectInst * SI,bool isTrue,const SmallPtrSet<const Instruction *,2> & Selects)6654 static Value *getTrueOrFalseValue(
6655 SelectInst *SI, bool isTrue,
6656 const SmallPtrSet<const Instruction *, 2> &Selects) {
6657 Value *V = nullptr;
6658
6659 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6660 DefSI = dyn_cast<SelectInst>(V)) {
6661 assert(DefSI->getCondition() == SI->getCondition() &&
6662 "The condition of DefSI does not match with SI");
6663 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6664 }
6665
6666 assert(V && "Failed to get select true/false value");
6667 return V;
6668 }
6669
optimizeShiftInst(BinaryOperator * Shift)6670 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6671 assert(Shift->isShift() && "Expected a shift");
6672
6673 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6674 // general vector shifts, and (3) the shift amount is a select-of-splatted
6675 // values, hoist the shifts before the select:
6676 // shift Op0, (select Cond, TVal, FVal) -->
6677 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6678 //
6679 // This is inverting a generic IR transform when we know that the cost of a
6680 // general vector shift is more than the cost of 2 shift-by-scalars.
6681 // We can't do this effectively in SDAG because we may not be able to
6682 // determine if the select operands are splats from within a basic block.
6683 Type *Ty = Shift->getType();
6684 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6685 return false;
6686 Value *Cond, *TVal, *FVal;
6687 if (!match(Shift->getOperand(1),
6688 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6689 return false;
6690 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6691 return false;
6692
6693 IRBuilder<> Builder(Shift);
6694 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6695 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6696 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6697 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6698 Shift->replaceAllUsesWith(NewSel);
6699 Shift->eraseFromParent();
6700 return true;
6701 }
6702
optimizeFunnelShift(IntrinsicInst * Fsh)6703 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6704 Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6705 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6706 "Expected a funnel shift");
6707
6708 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6709 // than general vector shifts, and (3) the shift amount is select-of-splatted
6710 // values, hoist the funnel shifts before the select:
6711 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6712 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6713 //
6714 // This is inverting a generic IR transform when we know that the cost of a
6715 // general vector shift is more than the cost of 2 shift-by-scalars.
6716 // We can't do this effectively in SDAG because we may not be able to
6717 // determine if the select operands are splats from within a basic block.
6718 Type *Ty = Fsh->getType();
6719 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6720 return false;
6721 Value *Cond, *TVal, *FVal;
6722 if (!match(Fsh->getOperand(2),
6723 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6724 return false;
6725 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6726 return false;
6727
6728 IRBuilder<> Builder(Fsh);
6729 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6730 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6731 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6732 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6733 Fsh->replaceAllUsesWith(NewSel);
6734 Fsh->eraseFromParent();
6735 return true;
6736 }
6737
6738 /// If we have a SelectInst that will likely profit from branch prediction,
6739 /// turn it into a branch.
optimizeSelectInst(SelectInst * SI)6740 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6741 if (DisableSelectToBranch)
6742 return false;
6743
6744 // Find all consecutive select instructions that share the same condition.
6745 SmallVector<SelectInst *, 2> ASI;
6746 ASI.push_back(SI);
6747 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6748 It != SI->getParent()->end(); ++It) {
6749 SelectInst *I = dyn_cast<SelectInst>(&*It);
6750 if (I && SI->getCondition() == I->getCondition()) {
6751 ASI.push_back(I);
6752 } else {
6753 break;
6754 }
6755 }
6756
6757 SelectInst *LastSI = ASI.back();
6758 // Increment the current iterator to skip all the rest of select instructions
6759 // because they will be either "not lowered" or "all lowered" to branch.
6760 CurInstIterator = std::next(LastSI->getIterator());
6761
6762 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6763
6764 // Can we convert the 'select' to CF ?
6765 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6766 return false;
6767
6768 TargetLowering::SelectSupportKind SelectKind;
6769 if (VectorCond)
6770 SelectKind = TargetLowering::VectorMaskSelect;
6771 else if (SI->getType()->isVectorTy())
6772 SelectKind = TargetLowering::ScalarCondVectorVal;
6773 else
6774 SelectKind = TargetLowering::ScalarValSelect;
6775
6776 if (TLI->isSelectSupported(SelectKind) &&
6777 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6778 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6779 return false;
6780
6781 // The DominatorTree needs to be rebuilt by any consumers after this
6782 // transformation. We simply reset here rather than setting the ModifiedDT
6783 // flag to avoid restarting the function walk in runOnFunction for each
6784 // select optimized.
6785 DT.reset();
6786
6787 // Transform a sequence like this:
6788 // start:
6789 // %cmp = cmp uge i32 %a, %b
6790 // %sel = select i1 %cmp, i32 %c, i32 %d
6791 //
6792 // Into:
6793 // start:
6794 // %cmp = cmp uge i32 %a, %b
6795 // %cmp.frozen = freeze %cmp
6796 // br i1 %cmp.frozen, label %select.true, label %select.false
6797 // select.true:
6798 // br label %select.end
6799 // select.false:
6800 // br label %select.end
6801 // select.end:
6802 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6803 //
6804 // %cmp should be frozen, otherwise it may introduce undefined behavior.
6805 // In addition, we may sink instructions that produce %c or %d from
6806 // the entry block into the destination(s) of the new branch.
6807 // If the true or false blocks do not contain a sunken instruction, that
6808 // block and its branch may be optimized away. In that case, one side of the
6809 // first branch will point directly to select.end, and the corresponding PHI
6810 // predecessor block will be the start block.
6811
6812 // First, we split the block containing the select into 2 blocks.
6813 BasicBlock *StartBlock = SI->getParent();
6814 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6815 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6816 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6817
6818 // Delete the unconditional branch that was just created by the split.
6819 StartBlock->getTerminator()->eraseFromParent();
6820
6821 // These are the new basic blocks for the conditional branch.
6822 // At least one will become an actual new basic block.
6823 BasicBlock *TrueBlock = nullptr;
6824 BasicBlock *FalseBlock = nullptr;
6825 BranchInst *TrueBranch = nullptr;
6826 BranchInst *FalseBranch = nullptr;
6827
6828 // Sink expensive instructions into the conditional blocks to avoid executing
6829 // them speculatively.
6830 for (SelectInst *SI : ASI) {
6831 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6832 if (TrueBlock == nullptr) {
6833 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6834 EndBlock->getParent(), EndBlock);
6835 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6836 TrueBranch->setDebugLoc(SI->getDebugLoc());
6837 }
6838 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6839 TrueInst->moveBefore(TrueBranch);
6840 }
6841 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6842 if (FalseBlock == nullptr) {
6843 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6844 EndBlock->getParent(), EndBlock);
6845 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6846 FalseBranch->setDebugLoc(SI->getDebugLoc());
6847 }
6848 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6849 FalseInst->moveBefore(FalseBranch);
6850 }
6851 }
6852
6853 // If there was nothing to sink, then arbitrarily choose the 'false' side
6854 // for a new input value to the PHI.
6855 if (TrueBlock == FalseBlock) {
6856 assert(TrueBlock == nullptr &&
6857 "Unexpected basic block transform while optimizing select");
6858
6859 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6860 EndBlock->getParent(), EndBlock);
6861 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6862 FalseBranch->setDebugLoc(SI->getDebugLoc());
6863 }
6864
6865 // Insert the real conditional branch based on the original condition.
6866 // If we did not create a new block for one of the 'true' or 'false' paths
6867 // of the condition, it means that side of the branch goes to the end block
6868 // directly and the path originates from the start block from the point of
6869 // view of the new PHI.
6870 BasicBlock *TT, *FT;
6871 if (TrueBlock == nullptr) {
6872 TT = EndBlock;
6873 FT = FalseBlock;
6874 TrueBlock = StartBlock;
6875 } else if (FalseBlock == nullptr) {
6876 TT = TrueBlock;
6877 FT = EndBlock;
6878 FalseBlock = StartBlock;
6879 } else {
6880 TT = TrueBlock;
6881 FT = FalseBlock;
6882 }
6883 IRBuilder<> IB(SI);
6884 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6885 IB.CreateCondBr(CondFr, TT, FT, SI);
6886
6887 SmallPtrSet<const Instruction *, 2> INS;
6888 INS.insert(ASI.begin(), ASI.end());
6889 // Use reverse iterator because later select may use the value of the
6890 // earlier select, and we need to propagate value through earlier select
6891 // to get the PHI operand.
6892 for (SelectInst *SI : llvm::reverse(ASI)) {
6893 // The select itself is replaced with a PHI Node.
6894 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6895 PN->takeName(SI);
6896 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6897 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6898 PN->setDebugLoc(SI->getDebugLoc());
6899
6900 SI->replaceAllUsesWith(PN);
6901 SI->eraseFromParent();
6902 INS.erase(SI);
6903 ++NumSelectsExpanded;
6904 }
6905
6906 // Instruct OptimizeBlock to skip to the next block.
6907 CurInstIterator = StartBlock->end();
6908 return true;
6909 }
6910
6911 /// Some targets only accept certain types for splat inputs. For example a VDUP
6912 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6913 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
optimizeShuffleVectorInst(ShuffleVectorInst * SVI)6914 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6915 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6916 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6917 m_Undef(), m_ZeroMask())))
6918 return false;
6919 Type *NewType = TLI->shouldConvertSplatType(SVI);
6920 if (!NewType)
6921 return false;
6922
6923 auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6924 assert(!NewType->isVectorTy() && "Expected a scalar type!");
6925 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6926 "Expected a type of the same size!");
6927 auto *NewVecType =
6928 FixedVectorType::get(NewType, SVIVecType->getNumElements());
6929
6930 // Create a bitcast (shuffle (insert (bitcast(..))))
6931 IRBuilder<> Builder(SVI->getContext());
6932 Builder.SetInsertPoint(SVI);
6933 Value *BC1 = Builder.CreateBitCast(
6934 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6935 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6936 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6937
6938 SVI->replaceAllUsesWith(BC2);
6939 RecursivelyDeleteTriviallyDeadInstructions(
6940 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6941
6942 // Also hoist the bitcast up to its operand if it they are not in the same
6943 // block.
6944 if (auto *BCI = dyn_cast<Instruction>(BC1))
6945 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6946 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6947 !Op->isTerminator() && !Op->isEHPad())
6948 BCI->moveAfter(Op);
6949
6950 return true;
6951 }
6952
tryToSinkFreeOperands(Instruction * I)6953 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6954 // If the operands of I can be folded into a target instruction together with
6955 // I, duplicate and sink them.
6956 SmallVector<Use *, 4> OpsToSink;
6957 if (!TLI->shouldSinkOperands(I, OpsToSink))
6958 return false;
6959
6960 // OpsToSink can contain multiple uses in a use chain (e.g.
6961 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6962 // uses must come first, so we process the ops in reverse order so as to not
6963 // create invalid IR.
6964 BasicBlock *TargetBB = I->getParent();
6965 bool Changed = false;
6966 SmallVector<Use *, 4> ToReplace;
6967 Instruction *InsertPoint = I;
6968 DenseMap<const Instruction *, unsigned long> InstOrdering;
6969 unsigned long InstNumber = 0;
6970 for (const auto &I : *TargetBB)
6971 InstOrdering[&I] = InstNumber++;
6972
6973 for (Use *U : reverse(OpsToSink)) {
6974 auto *UI = cast<Instruction>(U->get());
6975 if (isa<PHINode>(UI))
6976 continue;
6977 if (UI->getParent() == TargetBB) {
6978 if (InstOrdering[UI] < InstOrdering[InsertPoint])
6979 InsertPoint = UI;
6980 continue;
6981 }
6982 ToReplace.push_back(U);
6983 }
6984
6985 SetVector<Instruction *> MaybeDead;
6986 DenseMap<Instruction *, Instruction *> NewInstructions;
6987 for (Use *U : ToReplace) {
6988 auto *UI = cast<Instruction>(U->get());
6989 Instruction *NI = UI->clone();
6990 NewInstructions[UI] = NI;
6991 MaybeDead.insert(UI);
6992 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6993 NI->insertBefore(InsertPoint);
6994 InsertPoint = NI;
6995 InsertedInsts.insert(NI);
6996
6997 // Update the use for the new instruction, making sure that we update the
6998 // sunk instruction uses, if it is part of a chain that has already been
6999 // sunk.
7000 Instruction *OldI = cast<Instruction>(U->getUser());
7001 if (NewInstructions.count(OldI))
7002 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7003 else
7004 U->set(NI);
7005 Changed = true;
7006 }
7007
7008 // Remove instructions that are dead after sinking.
7009 for (auto *I : MaybeDead) {
7010 if (!I->hasNUsesOrMore(1)) {
7011 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7012 I->eraseFromParent();
7013 }
7014 }
7015
7016 return Changed;
7017 }
7018
optimizeSwitchType(SwitchInst * SI)7019 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7020 Value *Cond = SI->getCondition();
7021 Type *OldType = Cond->getType();
7022 LLVMContext &Context = Cond->getContext();
7023 EVT OldVT = TLI->getValueType(*DL, OldType);
7024 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7025 unsigned RegWidth = RegType.getSizeInBits();
7026
7027 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7028 return false;
7029
7030 // If the register width is greater than the type width, expand the condition
7031 // of the switch instruction and each case constant to the width of the
7032 // register. By widening the type of the switch condition, subsequent
7033 // comparisons (for case comparisons) will not need to be extended to the
7034 // preferred register width, so we will potentially eliminate N-1 extends,
7035 // where N is the number of cases in the switch.
7036 auto *NewType = Type::getIntNTy(Context, RegWidth);
7037
7038 // Extend the switch condition and case constants using the target preferred
7039 // extend unless the switch condition is a function argument with an extend
7040 // attribute. In that case, we can avoid an unnecessary mask/extension by
7041 // matching the argument extension instead.
7042 Instruction::CastOps ExtType = Instruction::ZExt;
7043 // Some targets prefer SExt over ZExt.
7044 if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7045 ExtType = Instruction::SExt;
7046
7047 if (auto *Arg = dyn_cast<Argument>(Cond)) {
7048 if (Arg->hasSExtAttr())
7049 ExtType = Instruction::SExt;
7050 if (Arg->hasZExtAttr())
7051 ExtType = Instruction::ZExt;
7052 }
7053
7054 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7055 ExtInst->insertBefore(SI);
7056 ExtInst->setDebugLoc(SI->getDebugLoc());
7057 SI->setCondition(ExtInst);
7058 for (auto Case : SI->cases()) {
7059 const APInt &NarrowConst = Case.getCaseValue()->getValue();
7060 APInt WideConst = (ExtType == Instruction::ZExt) ?
7061 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
7062 Case.setValue(ConstantInt::get(Context, WideConst));
7063 }
7064
7065 return true;
7066 }
7067
optimizeSwitchPhiConstants(SwitchInst * SI)7068 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7069 // The SCCP optimization tends to produce code like this:
7070 // switch(x) { case 42: phi(42, ...) }
7071 // Materializing the constant for the phi-argument needs instructions; So we
7072 // change the code to:
7073 // switch(x) { case 42: phi(x, ...) }
7074
7075 Value *Condition = SI->getCondition();
7076 // Avoid endless loop in degenerate case.
7077 if (isa<ConstantInt>(*Condition))
7078 return false;
7079
7080 bool Changed = false;
7081 BasicBlock *SwitchBB = SI->getParent();
7082 Type *ConditionType = Condition->getType();
7083
7084 for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7085 ConstantInt *CaseValue = Case.getCaseValue();
7086 BasicBlock *CaseBB = Case.getCaseSuccessor();
7087 // Set to true if we previously checked that `CaseBB` is only reached by
7088 // a single case from this switch.
7089 bool CheckedForSinglePred = false;
7090 for (PHINode &PHI : CaseBB->phis()) {
7091 Type *PHIType = PHI.getType();
7092 // If ZExt is free then we can also catch patterns like this:
7093 // switch((i32)x) { case 42: phi((i64)42, ...); }
7094 // and replace `(i64)42` with `zext i32 %x to i64`.
7095 bool TryZExt =
7096 PHIType->isIntegerTy() &&
7097 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7098 TLI->isZExtFree(ConditionType, PHIType);
7099 if (PHIType == ConditionType || TryZExt) {
7100 // Set to true to skip this case because of multiple preds.
7101 bool SkipCase = false;
7102 Value *Replacement = nullptr;
7103 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7104 Value *PHIValue = PHI.getIncomingValue(I);
7105 if (PHIValue != CaseValue) {
7106 if (!TryZExt)
7107 continue;
7108 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7109 if (!PHIValueInt ||
7110 PHIValueInt->getValue() !=
7111 CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7112 continue;
7113 }
7114 if (PHI.getIncomingBlock(I) != SwitchBB)
7115 continue;
7116 // We cannot optimize if there are multiple case labels jumping to
7117 // this block. This check may get expensive when there are many
7118 // case labels so we test for it last.
7119 if (!CheckedForSinglePred) {
7120 CheckedForSinglePred = true;
7121 if (SI->findCaseDest(CaseBB) == nullptr) {
7122 SkipCase = true;
7123 break;
7124 }
7125 }
7126
7127 if (Replacement == nullptr) {
7128 if (PHIValue == CaseValue) {
7129 Replacement = Condition;
7130 } else {
7131 IRBuilder<> Builder(SI);
7132 Replacement = Builder.CreateZExt(Condition, PHIType);
7133 }
7134 }
7135 PHI.setIncomingValue(I, Replacement);
7136 Changed = true;
7137 }
7138 if (SkipCase)
7139 break;
7140 }
7141 }
7142 }
7143 return Changed;
7144 }
7145
optimizeSwitchInst(SwitchInst * SI)7146 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7147 bool Changed = optimizeSwitchType(SI);
7148 Changed |= optimizeSwitchPhiConstants(SI);
7149 return Changed;
7150 }
7151
7152 namespace {
7153
7154 /// Helper class to promote a scalar operation to a vector one.
7155 /// This class is used to move downward extractelement transition.
7156 /// E.g.,
7157 /// a = vector_op <2 x i32>
7158 /// b = extractelement <2 x i32> a, i32 0
7159 /// c = scalar_op b
7160 /// store c
7161 ///
7162 /// =>
7163 /// a = vector_op <2 x i32>
7164 /// c = vector_op a (equivalent to scalar_op on the related lane)
7165 /// * d = extractelement <2 x i32> c, i32 0
7166 /// * store d
7167 /// Assuming both extractelement and store can be combine, we get rid of the
7168 /// transition.
7169 class VectorPromoteHelper {
7170 /// DataLayout associated with the current module.
7171 const DataLayout &DL;
7172
7173 /// Used to perform some checks on the legality of vector operations.
7174 const TargetLowering &TLI;
7175
7176 /// Used to estimated the cost of the promoted chain.
7177 const TargetTransformInfo &TTI;
7178
7179 /// The transition being moved downwards.
7180 Instruction *Transition;
7181
7182 /// The sequence of instructions to be promoted.
7183 SmallVector<Instruction *, 4> InstsToBePromoted;
7184
7185 /// Cost of combining a store and an extract.
7186 unsigned StoreExtractCombineCost;
7187
7188 /// Instruction that will be combined with the transition.
7189 Instruction *CombineInst = nullptr;
7190
7191 /// The instruction that represents the current end of the transition.
7192 /// Since we are faking the promotion until we reach the end of the chain
7193 /// of computation, we need a way to get the current end of the transition.
getEndOfTransition() const7194 Instruction *getEndOfTransition() const {
7195 if (InstsToBePromoted.empty())
7196 return Transition;
7197 return InstsToBePromoted.back();
7198 }
7199
7200 /// Return the index of the original value in the transition.
7201 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7202 /// c, is at index 0.
getTransitionOriginalValueIdx() const7203 unsigned getTransitionOriginalValueIdx() const {
7204 assert(isa<ExtractElementInst>(Transition) &&
7205 "Other kind of transitions are not supported yet");
7206 return 0;
7207 }
7208
7209 /// Return the index of the index in the transition.
7210 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7211 /// is at index 1.
getTransitionIdx() const7212 unsigned getTransitionIdx() const {
7213 assert(isa<ExtractElementInst>(Transition) &&
7214 "Other kind of transitions are not supported yet");
7215 return 1;
7216 }
7217
7218 /// Get the type of the transition.
7219 /// This is the type of the original value.
7220 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7221 /// transition is <2 x i32>.
getTransitionType() const7222 Type *getTransitionType() const {
7223 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7224 }
7225
7226 /// Promote \p ToBePromoted by moving \p Def downward through.
7227 /// I.e., we have the following sequence:
7228 /// Def = Transition <ty1> a to <ty2>
7229 /// b = ToBePromoted <ty2> Def, ...
7230 /// =>
7231 /// b = ToBePromoted <ty1> a, ...
7232 /// Def = Transition <ty1> ToBePromoted to <ty2>
7233 void promoteImpl(Instruction *ToBePromoted);
7234
7235 /// Check whether or not it is profitable to promote all the
7236 /// instructions enqueued to be promoted.
isProfitableToPromote()7237 bool isProfitableToPromote() {
7238 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7239 unsigned Index = isa<ConstantInt>(ValIdx)
7240 ? cast<ConstantInt>(ValIdx)->getZExtValue()
7241 : -1;
7242 Type *PromotedType = getTransitionType();
7243
7244 StoreInst *ST = cast<StoreInst>(CombineInst);
7245 unsigned AS = ST->getPointerAddressSpace();
7246 // Check if this store is supported.
7247 if (!TLI.allowsMisalignedMemoryAccesses(
7248 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7249 ST->getAlign())) {
7250 // If this is not supported, there is no way we can combine
7251 // the extract with the store.
7252 return false;
7253 }
7254
7255 // The scalar chain of computation has to pay for the transition
7256 // scalar to vector.
7257 // The vector chain has to account for the combining cost.
7258 InstructionCost ScalarCost =
7259 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
7260 InstructionCost VectorCost = StoreExtractCombineCost;
7261 enum TargetTransformInfo::TargetCostKind CostKind =
7262 TargetTransformInfo::TCK_RecipThroughput;
7263 for (const auto &Inst : InstsToBePromoted) {
7264 // Compute the cost.
7265 // By construction, all instructions being promoted are arithmetic ones.
7266 // Moreover, one argument is a constant that can be viewed as a splat
7267 // constant.
7268 Value *Arg0 = Inst->getOperand(0);
7269 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7270 isa<ConstantFP>(Arg0);
7271 TargetTransformInfo::OperandValueKind Arg0OVK =
7272 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7273 : TargetTransformInfo::OK_AnyValue;
7274 TargetTransformInfo::OperandValueKind Arg1OVK =
7275 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7276 : TargetTransformInfo::OK_AnyValue;
7277 ScalarCost += TTI.getArithmeticInstrCost(
7278 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
7279 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7280 CostKind,
7281 Arg0OVK, Arg1OVK);
7282 }
7283 LLVM_DEBUG(
7284 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7285 << ScalarCost << "\nVector: " << VectorCost << '\n');
7286 return ScalarCost > VectorCost;
7287 }
7288
7289 /// Generate a constant vector with \p Val with the same
7290 /// number of elements as the transition.
7291 /// \p UseSplat defines whether or not \p Val should be replicated
7292 /// across the whole vector.
7293 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7294 /// otherwise we generate a vector with as many undef as possible:
7295 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7296 /// used at the index of the extract.
getConstantVector(Constant * Val,bool UseSplat) const7297 Value *getConstantVector(Constant *Val, bool UseSplat) const {
7298 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7299 if (!UseSplat) {
7300 // If we cannot determine where the constant must be, we have to
7301 // use a splat constant.
7302 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7303 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7304 ExtractIdx = CstVal->getSExtValue();
7305 else
7306 UseSplat = true;
7307 }
7308
7309 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7310 if (UseSplat)
7311 return ConstantVector::getSplat(EC, Val);
7312
7313 if (!EC.isScalable()) {
7314 SmallVector<Constant *, 4> ConstVec;
7315 UndefValue *UndefVal = UndefValue::get(Val->getType());
7316 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7317 if (Idx == ExtractIdx)
7318 ConstVec.push_back(Val);
7319 else
7320 ConstVec.push_back(UndefVal);
7321 }
7322 return ConstantVector::get(ConstVec);
7323 } else
7324 llvm_unreachable(
7325 "Generate scalable vector for non-splat is unimplemented");
7326 }
7327
7328 /// Check if promoting to a vector type an operand at \p OperandIdx
7329 /// in \p Use can trigger undefined behavior.
canCauseUndefinedBehavior(const Instruction * Use,unsigned OperandIdx)7330 static bool canCauseUndefinedBehavior(const Instruction *Use,
7331 unsigned OperandIdx) {
7332 // This is not safe to introduce undef when the operand is on
7333 // the right hand side of a division-like instruction.
7334 if (OperandIdx != 1)
7335 return false;
7336 switch (Use->getOpcode()) {
7337 default:
7338 return false;
7339 case Instruction::SDiv:
7340 case Instruction::UDiv:
7341 case Instruction::SRem:
7342 case Instruction::URem:
7343 return true;
7344 case Instruction::FDiv:
7345 case Instruction::FRem:
7346 return !Use->hasNoNaNs();
7347 }
7348 llvm_unreachable(nullptr);
7349 }
7350
7351 public:
VectorPromoteHelper(const DataLayout & DL,const TargetLowering & TLI,const TargetTransformInfo & TTI,Instruction * Transition,unsigned CombineCost)7352 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7353 const TargetTransformInfo &TTI, Instruction *Transition,
7354 unsigned CombineCost)
7355 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7356 StoreExtractCombineCost(CombineCost) {
7357 assert(Transition && "Do not know how to promote null");
7358 }
7359
7360 /// Check if we can promote \p ToBePromoted to \p Type.
canPromote(const Instruction * ToBePromoted) const7361 bool canPromote(const Instruction *ToBePromoted) const {
7362 // We could support CastInst too.
7363 return isa<BinaryOperator>(ToBePromoted);
7364 }
7365
7366 /// Check if it is profitable to promote \p ToBePromoted
7367 /// by moving downward the transition through.
shouldPromote(const Instruction * ToBePromoted) const7368 bool shouldPromote(const Instruction *ToBePromoted) const {
7369 // Promote only if all the operands can be statically expanded.
7370 // Indeed, we do not want to introduce any new kind of transitions.
7371 for (const Use &U : ToBePromoted->operands()) {
7372 const Value *Val = U.get();
7373 if (Val == getEndOfTransition()) {
7374 // If the use is a division and the transition is on the rhs,
7375 // we cannot promote the operation, otherwise we may create a
7376 // division by zero.
7377 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7378 return false;
7379 continue;
7380 }
7381 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7382 !isa<ConstantFP>(Val))
7383 return false;
7384 }
7385 // Check that the resulting operation is legal.
7386 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7387 if (!ISDOpcode)
7388 return false;
7389 return StressStoreExtract ||
7390 TLI.isOperationLegalOrCustom(
7391 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7392 }
7393
7394 /// Check whether or not \p Use can be combined
7395 /// with the transition.
7396 /// I.e., is it possible to do Use(Transition) => AnotherUse?
canCombine(const Instruction * Use)7397 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7398
7399 /// Record \p ToBePromoted as part of the chain to be promoted.
enqueueForPromotion(Instruction * ToBePromoted)7400 void enqueueForPromotion(Instruction *ToBePromoted) {
7401 InstsToBePromoted.push_back(ToBePromoted);
7402 }
7403
7404 /// Set the instruction that will be combined with the transition.
recordCombineInstruction(Instruction * ToBeCombined)7405 void recordCombineInstruction(Instruction *ToBeCombined) {
7406 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7407 CombineInst = ToBeCombined;
7408 }
7409
7410 /// Promote all the instructions enqueued for promotion if it is
7411 /// is profitable.
7412 /// \return True if the promotion happened, false otherwise.
promote()7413 bool promote() {
7414 // Check if there is something to promote.
7415 // Right now, if we do not have anything to combine with,
7416 // we assume the promotion is not profitable.
7417 if (InstsToBePromoted.empty() || !CombineInst)
7418 return false;
7419
7420 // Check cost.
7421 if (!StressStoreExtract && !isProfitableToPromote())
7422 return false;
7423
7424 // Promote.
7425 for (auto &ToBePromoted : InstsToBePromoted)
7426 promoteImpl(ToBePromoted);
7427 InstsToBePromoted.clear();
7428 return true;
7429 }
7430 };
7431
7432 } // end anonymous namespace
7433
promoteImpl(Instruction * ToBePromoted)7434 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7435 // At this point, we know that all the operands of ToBePromoted but Def
7436 // can be statically promoted.
7437 // For Def, we need to use its parameter in ToBePromoted:
7438 // b = ToBePromoted ty1 a
7439 // Def = Transition ty1 b to ty2
7440 // Move the transition down.
7441 // 1. Replace all uses of the promoted operation by the transition.
7442 // = ... b => = ... Def.
7443 assert(ToBePromoted->getType() == Transition->getType() &&
7444 "The type of the result of the transition does not match "
7445 "the final type");
7446 ToBePromoted->replaceAllUsesWith(Transition);
7447 // 2. Update the type of the uses.
7448 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7449 Type *TransitionTy = getTransitionType();
7450 ToBePromoted->mutateType(TransitionTy);
7451 // 3. Update all the operands of the promoted operation with promoted
7452 // operands.
7453 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7454 for (Use &U : ToBePromoted->operands()) {
7455 Value *Val = U.get();
7456 Value *NewVal = nullptr;
7457 if (Val == Transition)
7458 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7459 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7460 isa<ConstantFP>(Val)) {
7461 // Use a splat constant if it is not safe to use undef.
7462 NewVal = getConstantVector(
7463 cast<Constant>(Val),
7464 isa<UndefValue>(Val) ||
7465 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7466 } else
7467 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7468 "this?");
7469 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7470 }
7471 Transition->moveAfter(ToBePromoted);
7472 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7473 }
7474
7475 /// Some targets can do store(extractelement) with one instruction.
7476 /// Try to push the extractelement towards the stores when the target
7477 /// has this feature and this is profitable.
optimizeExtractElementInst(Instruction * Inst)7478 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7479 unsigned CombineCost = std::numeric_limits<unsigned>::max();
7480 if (DisableStoreExtract ||
7481 (!StressStoreExtract &&
7482 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7483 Inst->getOperand(1), CombineCost)))
7484 return false;
7485
7486 // At this point we know that Inst is a vector to scalar transition.
7487 // Try to move it down the def-use chain, until:
7488 // - We can combine the transition with its single use
7489 // => we got rid of the transition.
7490 // - We escape the current basic block
7491 // => we would need to check that we are moving it at a cheaper place and
7492 // we do not do that for now.
7493 BasicBlock *Parent = Inst->getParent();
7494 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7495 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7496 // If the transition has more than one use, assume this is not going to be
7497 // beneficial.
7498 while (Inst->hasOneUse()) {
7499 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7500 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7501
7502 if (ToBePromoted->getParent() != Parent) {
7503 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7504 << ToBePromoted->getParent()->getName()
7505 << ") than the transition (" << Parent->getName()
7506 << ").\n");
7507 return false;
7508 }
7509
7510 if (VPH.canCombine(ToBePromoted)) {
7511 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7512 << "will be combined with: " << *ToBePromoted << '\n');
7513 VPH.recordCombineInstruction(ToBePromoted);
7514 bool Changed = VPH.promote();
7515 NumStoreExtractExposed += Changed;
7516 return Changed;
7517 }
7518
7519 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7520 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7521 return false;
7522
7523 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7524
7525 VPH.enqueueForPromotion(ToBePromoted);
7526 Inst = ToBePromoted;
7527 }
7528 return false;
7529 }
7530
7531 /// For the instruction sequence of store below, F and I values
7532 /// are bundled together as an i64 value before being stored into memory.
7533 /// Sometimes it is more efficient to generate separate stores for F and I,
7534 /// which can remove the bitwise instructions or sink them to colder places.
7535 ///
7536 /// (store (or (zext (bitcast F to i32) to i64),
7537 /// (shl (zext I to i64), 32)), addr) -->
7538 /// (store F, addr) and (store I, addr+4)
7539 ///
7540 /// Similarly, splitting for other merged store can also be beneficial, like:
7541 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7542 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7543 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7544 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7545 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7546 ///
7547 /// We allow each target to determine specifically which kind of splitting is
7548 /// supported.
7549 ///
7550 /// The store patterns are commonly seen from the simple code snippet below
7551 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7552 /// void goo(const std::pair<int, float> &);
7553 /// hoo() {
7554 /// ...
7555 /// goo(std::make_pair(tmp, ftmp));
7556 /// ...
7557 /// }
7558 ///
7559 /// Although we already have similar splitting in DAG Combine, we duplicate
7560 /// it in CodeGenPrepare to catch the case in which pattern is across
7561 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7562 /// during code expansion.
splitMergedValStore(StoreInst & SI,const DataLayout & DL,const TargetLowering & TLI)7563 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7564 const TargetLowering &TLI) {
7565 // Handle simple but common cases only.
7566 Type *StoreType = SI.getValueOperand()->getType();
7567
7568 // The code below assumes shifting a value by <number of bits>,
7569 // whereas scalable vectors would have to be shifted by
7570 // <2log(vscale) + number of bits> in order to store the
7571 // low/high parts. Bailing out for now.
7572 if (isa<ScalableVectorType>(StoreType))
7573 return false;
7574
7575 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7576 DL.getTypeSizeInBits(StoreType) == 0)
7577 return false;
7578
7579 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7580 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7581 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7582 return false;
7583
7584 // Don't split the store if it is volatile.
7585 if (SI.isVolatile())
7586 return false;
7587
7588 // Match the following patterns:
7589 // (store (or (zext LValue to i64),
7590 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7591 // or
7592 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7593 // (zext LValue to i64),
7594 // Expect both operands of OR and the first operand of SHL have only
7595 // one use.
7596 Value *LValue, *HValue;
7597 if (!match(SI.getValueOperand(),
7598 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7599 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7600 m_SpecificInt(HalfValBitSize))))))
7601 return false;
7602
7603 // Check LValue and HValue are int with size less or equal than 32.
7604 if (!LValue->getType()->isIntegerTy() ||
7605 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7606 !HValue->getType()->isIntegerTy() ||
7607 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7608 return false;
7609
7610 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7611 // as the input of target query.
7612 auto *LBC = dyn_cast<BitCastInst>(LValue);
7613 auto *HBC = dyn_cast<BitCastInst>(HValue);
7614 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7615 : EVT::getEVT(LValue->getType());
7616 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7617 : EVT::getEVT(HValue->getType());
7618 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7619 return false;
7620
7621 // Start to split store.
7622 IRBuilder<> Builder(SI.getContext());
7623 Builder.SetInsertPoint(&SI);
7624
7625 // If LValue/HValue is a bitcast in another BB, create a new one in current
7626 // BB so it may be merged with the splitted stores by dag combiner.
7627 if (LBC && LBC->getParent() != SI.getParent())
7628 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7629 if (HBC && HBC->getParent() != SI.getParent())
7630 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7631
7632 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7633 auto CreateSplitStore = [&](Value *V, bool Upper) {
7634 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7635 Value *Addr = Builder.CreateBitCast(
7636 SI.getOperand(1),
7637 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7638 Align Alignment = SI.getAlign();
7639 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7640 if (IsOffsetStore) {
7641 Addr = Builder.CreateGEP(
7642 SplitStoreType, Addr,
7643 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7644
7645 // When splitting the store in half, naturally one half will retain the
7646 // alignment of the original wider store, regardless of whether it was
7647 // over-aligned or not, while the other will require adjustment.
7648 Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7649 }
7650 Builder.CreateAlignedStore(V, Addr, Alignment);
7651 };
7652
7653 CreateSplitStore(LValue, false);
7654 CreateSplitStore(HValue, true);
7655
7656 // Delete the old store.
7657 SI.eraseFromParent();
7658 return true;
7659 }
7660
7661 // Return true if the GEP has two operands, the first operand is of a sequential
7662 // type, and the second operand is a constant.
GEPSequentialConstIndexed(GetElementPtrInst * GEP)7663 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7664 gep_type_iterator I = gep_type_begin(*GEP);
7665 return GEP->getNumOperands() == 2 &&
7666 I.isSequential() &&
7667 isa<ConstantInt>(GEP->getOperand(1));
7668 }
7669
7670 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7671 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7672 // reducing liveness interference across those edges benefits global register
7673 // allocation. Currently handles only certain cases.
7674 //
7675 // For example, unmerge %GEPI and %UGEPI as below.
7676 //
7677 // ---------- BEFORE ----------
7678 // SrcBlock:
7679 // ...
7680 // %GEPIOp = ...
7681 // ...
7682 // %GEPI = gep %GEPIOp, Idx
7683 // ...
7684 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7685 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7686 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7687 // %UGEPI)
7688 //
7689 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7690 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7691 // ...
7692 //
7693 // DstBi:
7694 // ...
7695 // %UGEPI = gep %GEPIOp, UIdx
7696 // ...
7697 // ---------------------------
7698 //
7699 // ---------- AFTER ----------
7700 // SrcBlock:
7701 // ... (same as above)
7702 // (* %GEPI is still alive on the indirectbr edges)
7703 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7704 // unmerging)
7705 // ...
7706 //
7707 // DstBi:
7708 // ...
7709 // %UGEPI = gep %GEPI, (UIdx-Idx)
7710 // ...
7711 // ---------------------------
7712 //
7713 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7714 // no longer alive on them.
7715 //
7716 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7717 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7718 // not to disable further simplications and optimizations as a result of GEP
7719 // merging.
7720 //
7721 // Note this unmerging may increase the length of the data flow critical path
7722 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7723 // between the register pressure and the length of data-flow critical
7724 // path. Restricting this to the uncommon IndirectBr case would minimize the
7725 // impact of potentially longer critical path, if any, and the impact on compile
7726 // time.
tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst * GEPI,const TargetTransformInfo * TTI)7727 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7728 const TargetTransformInfo *TTI) {
7729 BasicBlock *SrcBlock = GEPI->getParent();
7730 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7731 // (non-IndirectBr) cases exit early here.
7732 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7733 return false;
7734 // Check that GEPI is a simple gep with a single constant index.
7735 if (!GEPSequentialConstIndexed(GEPI))
7736 return false;
7737 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7738 // Check that GEPI is a cheap one.
7739 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7740 TargetTransformInfo::TCK_SizeAndLatency)
7741 > TargetTransformInfo::TCC_Basic)
7742 return false;
7743 Value *GEPIOp = GEPI->getOperand(0);
7744 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7745 if (!isa<Instruction>(GEPIOp))
7746 return false;
7747 auto *GEPIOpI = cast<Instruction>(GEPIOp);
7748 if (GEPIOpI->getParent() != SrcBlock)
7749 return false;
7750 // Check that GEP is used outside the block, meaning it's alive on the
7751 // IndirectBr edge(s).
7752 if (find_if(GEPI->users(), [&](User *Usr) {
7753 if (auto *I = dyn_cast<Instruction>(Usr)) {
7754 if (I->getParent() != SrcBlock) {
7755 return true;
7756 }
7757 }
7758 return false;
7759 }) == GEPI->users().end())
7760 return false;
7761 // The second elements of the GEP chains to be unmerged.
7762 std::vector<GetElementPtrInst *> UGEPIs;
7763 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7764 // on IndirectBr edges.
7765 for (User *Usr : GEPIOp->users()) {
7766 if (Usr == GEPI) continue;
7767 // Check if Usr is an Instruction. If not, give up.
7768 if (!isa<Instruction>(Usr))
7769 return false;
7770 auto *UI = cast<Instruction>(Usr);
7771 // Check if Usr in the same block as GEPIOp, which is fine, skip.
7772 if (UI->getParent() == SrcBlock)
7773 continue;
7774 // Check if Usr is a GEP. If not, give up.
7775 if (!isa<GetElementPtrInst>(Usr))
7776 return false;
7777 auto *UGEPI = cast<GetElementPtrInst>(Usr);
7778 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7779 // the pointer operand to it. If so, record it in the vector. If not, give
7780 // up.
7781 if (!GEPSequentialConstIndexed(UGEPI))
7782 return false;
7783 if (UGEPI->getOperand(0) != GEPIOp)
7784 return false;
7785 if (GEPIIdx->getType() !=
7786 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7787 return false;
7788 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7789 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7790 TargetTransformInfo::TCK_SizeAndLatency)
7791 > TargetTransformInfo::TCC_Basic)
7792 return false;
7793 UGEPIs.push_back(UGEPI);
7794 }
7795 if (UGEPIs.size() == 0)
7796 return false;
7797 // Check the materializing cost of (Uidx-Idx).
7798 for (GetElementPtrInst *UGEPI : UGEPIs) {
7799 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7800 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7801 InstructionCost ImmCost = TTI->getIntImmCost(
7802 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
7803 if (ImmCost > TargetTransformInfo::TCC_Basic)
7804 return false;
7805 }
7806 // Now unmerge between GEPI and UGEPIs.
7807 for (GetElementPtrInst *UGEPI : UGEPIs) {
7808 UGEPI->setOperand(0, GEPI);
7809 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7810 Constant *NewUGEPIIdx =
7811 ConstantInt::get(GEPIIdx->getType(),
7812 UGEPIIdx->getValue() - GEPIIdx->getValue());
7813 UGEPI->setOperand(1, NewUGEPIIdx);
7814 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7815 // inbounds to avoid UB.
7816 if (!GEPI->isInBounds()) {
7817 UGEPI->setIsInBounds(false);
7818 }
7819 }
7820 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7821 // alive on IndirectBr edges).
7822 assert(llvm::none_of(GEPIOp->users(),
7823 [&](User *Usr) {
7824 return cast<Instruction>(Usr)->getParent() != SrcBlock;
7825 }) &&
7826 "GEPIOp is used outside SrcBlock");
7827 return true;
7828 }
7829
optimizeBranch(BranchInst * Branch,const TargetLowering & TLI)7830 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) {
7831 // Try and convert
7832 // %c = icmp ult %x, 8
7833 // br %c, bla, blb
7834 // %tc = lshr %x, 3
7835 // to
7836 // %tc = lshr %x, 3
7837 // %c = icmp eq %tc, 0
7838 // br %c, bla, blb
7839 // Creating the cmp to zero can be better for the backend, especially if the
7840 // lshr produces flags that can be used automatically.
7841 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
7842 return false;
7843
7844 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
7845 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
7846 return false;
7847
7848 Value *X = Cmp->getOperand(0);
7849 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
7850
7851 for (auto *U : X->users()) {
7852 Instruction *UI = dyn_cast<Instruction>(U);
7853 // A quick dominance check
7854 if (!UI ||
7855 (UI->getParent() != Branch->getParent() &&
7856 UI->getParent() != Branch->getSuccessor(0) &&
7857 UI->getParent() != Branch->getSuccessor(1)) ||
7858 (UI->getParent() != Branch->getParent() &&
7859 !UI->getParent()->getSinglePredecessor()))
7860 continue;
7861
7862 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
7863 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
7864 IRBuilder<> Builder(Branch);
7865 if (UI->getParent() != Branch->getParent())
7866 UI->moveBefore(Branch);
7867 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
7868 ConstantInt::get(UI->getType(), 0));
7869 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7870 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7871 Cmp->replaceAllUsesWith(NewCmp);
7872 return true;
7873 }
7874 if (Cmp->isEquality() &&
7875 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
7876 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
7877 IRBuilder<> Builder(Branch);
7878 if (UI->getParent() != Branch->getParent())
7879 UI->moveBefore(Branch);
7880 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
7881 ConstantInt::get(UI->getType(), 0));
7882 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7883 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7884 Cmp->replaceAllUsesWith(NewCmp);
7885 return true;
7886 }
7887 }
7888 return false;
7889 }
7890
optimizeInst(Instruction * I,bool & ModifiedDT)7891 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7892 // Bail out if we inserted the instruction to prevent optimizations from
7893 // stepping on each other's toes.
7894 if (InsertedInsts.count(I))
7895 return false;
7896
7897 // TODO: Move into the switch on opcode below here.
7898 if (PHINode *P = dyn_cast<PHINode>(I)) {
7899 // It is possible for very late stage optimizations (such as SimplifyCFG)
7900 // to introduce PHI nodes too late to be cleaned up. If we detect such a
7901 // trivial PHI, go ahead and zap it here.
7902 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
7903 LargeOffsetGEPMap.erase(P);
7904 P->replaceAllUsesWith(V);
7905 P->eraseFromParent();
7906 ++NumPHIsElim;
7907 return true;
7908 }
7909 return false;
7910 }
7911
7912 if (CastInst *CI = dyn_cast<CastInst>(I)) {
7913 // If the source of the cast is a constant, then this should have
7914 // already been constant folded. The only reason NOT to constant fold
7915 // it is if something (e.g. LSR) was careful to place the constant
7916 // evaluation in a block other than then one that uses it (e.g. to hoist
7917 // the address of globals out of a loop). If this is the case, we don't
7918 // want to forward-subst the cast.
7919 if (isa<Constant>(CI->getOperand(0)))
7920 return false;
7921
7922 if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7923 return true;
7924
7925 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7926 /// Sink a zext or sext into its user blocks if the target type doesn't
7927 /// fit in one register
7928 if (TLI->getTypeAction(CI->getContext(),
7929 TLI->getValueType(*DL, CI->getType())) ==
7930 TargetLowering::TypeExpandInteger) {
7931 return SinkCast(CI);
7932 } else {
7933 bool MadeChange = optimizeExt(I);
7934 return MadeChange | optimizeExtUses(I);
7935 }
7936 }
7937 return false;
7938 }
7939
7940 if (auto *Cmp = dyn_cast<CmpInst>(I))
7941 if (optimizeCmp(Cmp, ModifiedDT))
7942 return true;
7943
7944 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7945 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7946 bool Modified = optimizeLoadExt(LI);
7947 unsigned AS = LI->getPointerAddressSpace();
7948 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7949 return Modified;
7950 }
7951
7952 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7953 if (splitMergedValStore(*SI, *DL, *TLI))
7954 return true;
7955 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7956 unsigned AS = SI->getPointerAddressSpace();
7957 return optimizeMemoryInst(I, SI->getOperand(1),
7958 SI->getOperand(0)->getType(), AS);
7959 }
7960
7961 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7962 unsigned AS = RMW->getPointerAddressSpace();
7963 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7964 RMW->getType(), AS);
7965 }
7966
7967 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7968 unsigned AS = CmpX->getPointerAddressSpace();
7969 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7970 CmpX->getCompareOperand()->getType(), AS);
7971 }
7972
7973 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7974
7975 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
7976 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
7977 return true;
7978
7979 // TODO: Move this into the switch on opcode - it handles shifts already.
7980 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7981 BinOp->getOpcode() == Instruction::LShr)) {
7982 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7983 if (CI && TLI->hasExtractBitsInsn())
7984 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7985 return true;
7986 }
7987
7988 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7989 if (GEPI->hasAllZeroIndices()) {
7990 /// The GEP operand must be a pointer, so must its result -> BitCast
7991 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7992 GEPI->getName(), GEPI);
7993 NC->setDebugLoc(GEPI->getDebugLoc());
7994 GEPI->replaceAllUsesWith(NC);
7995 GEPI->eraseFromParent();
7996 ++NumGEPsElim;
7997 optimizeInst(NC, ModifiedDT);
7998 return true;
7999 }
8000 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8001 return true;
8002 }
8003 return false;
8004 }
8005
8006 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8007 // freeze(icmp a, const)) -> icmp (freeze a), const
8008 // This helps generate efficient conditional jumps.
8009 Instruction *CmpI = nullptr;
8010 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8011 CmpI = II;
8012 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8013 CmpI = F->getFastMathFlags().none() ? F : nullptr;
8014
8015 if (CmpI && CmpI->hasOneUse()) {
8016 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8017 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8018 isa<ConstantPointerNull>(Op0);
8019 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8020 isa<ConstantPointerNull>(Op1);
8021 if (Const0 || Const1) {
8022 if (!Const0 || !Const1) {
8023 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
8024 F->takeName(FI);
8025 CmpI->setOperand(Const0 ? 1 : 0, F);
8026 }
8027 FI->replaceAllUsesWith(CmpI);
8028 FI->eraseFromParent();
8029 return true;
8030 }
8031 }
8032 return false;
8033 }
8034
8035 if (tryToSinkFreeOperands(I))
8036 return true;
8037
8038 switch (I->getOpcode()) {
8039 case Instruction::Shl:
8040 case Instruction::LShr:
8041 case Instruction::AShr:
8042 return optimizeShiftInst(cast<BinaryOperator>(I));
8043 case Instruction::Call:
8044 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8045 case Instruction::Select:
8046 return optimizeSelectInst(cast<SelectInst>(I));
8047 case Instruction::ShuffleVector:
8048 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8049 case Instruction::Switch:
8050 return optimizeSwitchInst(cast<SwitchInst>(I));
8051 case Instruction::ExtractElement:
8052 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8053 case Instruction::Br:
8054 return optimizeBranch(cast<BranchInst>(I), *TLI);
8055 }
8056
8057 return false;
8058 }
8059
8060 /// Given an OR instruction, check to see if this is a bitreverse
8061 /// idiom. If so, insert the new intrinsic and return true.
makeBitReverse(Instruction & I)8062 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8063 if (!I.getType()->isIntegerTy() ||
8064 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8065 TLI->getValueType(*DL, I.getType(), true)))
8066 return false;
8067
8068 SmallVector<Instruction*, 4> Insts;
8069 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8070 return false;
8071 Instruction *LastInst = Insts.back();
8072 I.replaceAllUsesWith(LastInst);
8073 RecursivelyDeleteTriviallyDeadInstructions(
8074 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
8075 return true;
8076 }
8077
8078 // In this pass we look for GEP and cast instructions that are used
8079 // across basic blocks and rewrite them to improve basic-block-at-a-time
8080 // selection.
optimizeBlock(BasicBlock & BB,bool & ModifiedDT)8081 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
8082 SunkAddrs.clear();
8083 bool MadeChange = false;
8084
8085 CurInstIterator = BB.begin();
8086 while (CurInstIterator != BB.end()) {
8087 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8088 if (ModifiedDT)
8089 return true;
8090 }
8091
8092 bool MadeBitReverse = true;
8093 while (MadeBitReverse) {
8094 MadeBitReverse = false;
8095 for (auto &I : reverse(BB)) {
8096 if (makeBitReverse(I)) {
8097 MadeBitReverse = MadeChange = true;
8098 break;
8099 }
8100 }
8101 }
8102 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8103
8104 return MadeChange;
8105 }
8106
8107 // Some CGP optimizations may move or alter what's computed in a block. Check
8108 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
fixupDbgValue(Instruction * I)8109 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8110 assert(isa<DbgValueInst>(I));
8111 DbgValueInst &DVI = *cast<DbgValueInst>(I);
8112
8113 // Does this dbg.value refer to a sunk address calculation?
8114 bool AnyChange = false;
8115 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8116 DVI.location_ops().end());
8117 for (Value *Location : LocationOps) {
8118 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8119 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8120 if (SunkAddr) {
8121 // Point dbg.value at locally computed address, which should give the best
8122 // opportunity to be accurately lowered. This update may change the type
8123 // of pointer being referred to; however this makes no difference to
8124 // debugging information, and we can't generate bitcasts that may affect
8125 // codegen.
8126 DVI.replaceVariableLocationOp(Location, SunkAddr);
8127 AnyChange = true;
8128 }
8129 }
8130 return AnyChange;
8131 }
8132
8133 // A llvm.dbg.value may be using a value before its definition, due to
8134 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8135 // them by moving the dbg.value to immediately after the value definition.
8136 // FIXME: Ideally this should never be necessary, and this has the potential
8137 // to re-order dbg.value intrinsics.
placeDbgValues(Function & F)8138 bool CodeGenPrepare::placeDbgValues(Function &F) {
8139 bool MadeChange = false;
8140 DominatorTree DT(F);
8141
8142 for (BasicBlock &BB : F) {
8143 for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8144 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8145 if (!DVI)
8146 continue;
8147
8148 SmallVector<Instruction *, 4> VIs;
8149 for (Value *V : DVI->getValues())
8150 if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8151 VIs.push_back(VI);
8152
8153 // This DVI may depend on multiple instructions, complicating any
8154 // potential sink. This block takes the defensive approach, opting to
8155 // "undef" the DVI if it has more than one instruction and any of them do
8156 // not dominate DVI.
8157 for (Instruction *VI : VIs) {
8158 if (VI->isTerminator())
8159 continue;
8160
8161 // If VI is a phi in a block with an EHPad terminator, we can't insert
8162 // after it.
8163 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8164 continue;
8165
8166 // If the defining instruction dominates the dbg.value, we do not need
8167 // to move the dbg.value.
8168 if (DT.dominates(VI, DVI))
8169 continue;
8170
8171 // If we depend on multiple instructions and any of them doesn't
8172 // dominate this DVI, we probably can't salvage it: moving it to
8173 // after any of the instructions could cause us to lose the others.
8174 if (VIs.size() > 1) {
8175 LLVM_DEBUG(
8176 dbgs()
8177 << "Unable to find valid location for Debug Value, undefing:\n"
8178 << *DVI);
8179 DVI->setUndef();
8180 break;
8181 }
8182
8183 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8184 << *DVI << ' ' << *VI);
8185 DVI->removeFromParent();
8186 if (isa<PHINode>(VI))
8187 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8188 else
8189 DVI->insertAfter(VI);
8190 MadeChange = true;
8191 ++NumDbgValueMoved;
8192 }
8193 }
8194 }
8195 return MadeChange;
8196 }
8197
8198 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8199 // probes can be chained dependencies of other regular DAG nodes and block DAG
8200 // combine optimizations.
placePseudoProbes(Function & F)8201 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8202 bool MadeChange = false;
8203 for (auto &Block : F) {
8204 // Move the rest probes to the beginning of the block.
8205 auto FirstInst = Block.getFirstInsertionPt();
8206 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8207 ++FirstInst;
8208 BasicBlock::iterator I(FirstInst);
8209 I++;
8210 while (I != Block.end()) {
8211 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8212 II->moveBefore(&*FirstInst);
8213 MadeChange = true;
8214 }
8215 }
8216 }
8217 return MadeChange;
8218 }
8219
8220 /// Scale down both weights to fit into uint32_t.
scaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)8221 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8222 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8223 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8224 NewTrue = NewTrue / Scale;
8225 NewFalse = NewFalse / Scale;
8226 }
8227
8228 /// Some targets prefer to split a conditional branch like:
8229 /// \code
8230 /// %0 = icmp ne i32 %a, 0
8231 /// %1 = icmp ne i32 %b, 0
8232 /// %or.cond = or i1 %0, %1
8233 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8234 /// \endcode
8235 /// into multiple branch instructions like:
8236 /// \code
8237 /// bb1:
8238 /// %0 = icmp ne i32 %a, 0
8239 /// br i1 %0, label %TrueBB, label %bb2
8240 /// bb2:
8241 /// %1 = icmp ne i32 %b, 0
8242 /// br i1 %1, label %TrueBB, label %FalseBB
8243 /// \endcode
8244 /// This usually allows instruction selection to do even further optimizations
8245 /// and combine the compare with the branch instruction. Currently this is
8246 /// applied for targets which have "cheap" jump instructions.
8247 ///
8248 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8249 ///
splitBranchCondition(Function & F,bool & ModifiedDT)8250 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
8251 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8252 return false;
8253
8254 bool MadeChange = false;
8255 for (auto &BB : F) {
8256 // Does this BB end with the following?
8257 // %cond1 = icmp|fcmp|binary instruction ...
8258 // %cond2 = icmp|fcmp|binary instruction ...
8259 // %cond.or = or|and i1 %cond1, cond2
8260 // br i1 %cond.or label %dest1, label %dest2"
8261 Instruction *LogicOp;
8262 BasicBlock *TBB, *FBB;
8263 if (!match(BB.getTerminator(),
8264 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8265 continue;
8266
8267 auto *Br1 = cast<BranchInst>(BB.getTerminator());
8268 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8269 continue;
8270
8271 // The merging of mostly empty BB can cause a degenerate branch.
8272 if (TBB == FBB)
8273 continue;
8274
8275 unsigned Opc;
8276 Value *Cond1, *Cond2;
8277 if (match(LogicOp,
8278 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8279 Opc = Instruction::And;
8280 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8281 m_OneUse(m_Value(Cond2)))))
8282 Opc = Instruction::Or;
8283 else
8284 continue;
8285
8286 auto IsGoodCond = [](Value *Cond) {
8287 return match(
8288 Cond,
8289 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8290 m_LogicalOr(m_Value(), m_Value()))));
8291 };
8292 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8293 continue;
8294
8295 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8296
8297 // Create a new BB.
8298 auto *TmpBB =
8299 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8300 BB.getParent(), BB.getNextNode());
8301
8302 // Update original basic block by using the first condition directly by the
8303 // branch instruction and removing the no longer needed and/or instruction.
8304 Br1->setCondition(Cond1);
8305 LogicOp->eraseFromParent();
8306
8307 // Depending on the condition we have to either replace the true or the
8308 // false successor of the original branch instruction.
8309 if (Opc == Instruction::And)
8310 Br1->setSuccessor(0, TmpBB);
8311 else
8312 Br1->setSuccessor(1, TmpBB);
8313
8314 // Fill in the new basic block.
8315 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8316 if (auto *I = dyn_cast<Instruction>(Cond2)) {
8317 I->removeFromParent();
8318 I->insertBefore(Br2);
8319 }
8320
8321 // Update PHI nodes in both successors. The original BB needs to be
8322 // replaced in one successor's PHI nodes, because the branch comes now from
8323 // the newly generated BB (NewBB). In the other successor we need to add one
8324 // incoming edge to the PHI nodes, because both branch instructions target
8325 // now the same successor. Depending on the original branch condition
8326 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8327 // we perform the correct update for the PHI nodes.
8328 // This doesn't change the successor order of the just created branch
8329 // instruction (or any other instruction).
8330 if (Opc == Instruction::Or)
8331 std::swap(TBB, FBB);
8332
8333 // Replace the old BB with the new BB.
8334 TBB->replacePhiUsesWith(&BB, TmpBB);
8335
8336 // Add another incoming edge form the new BB.
8337 for (PHINode &PN : FBB->phis()) {
8338 auto *Val = PN.getIncomingValueForBlock(&BB);
8339 PN.addIncoming(Val, TmpBB);
8340 }
8341
8342 // Update the branch weights (from SelectionDAGBuilder::
8343 // FindMergedConditions).
8344 if (Opc == Instruction::Or) {
8345 // Codegen X | Y as:
8346 // BB1:
8347 // jmp_if_X TBB
8348 // jmp TmpBB
8349 // TmpBB:
8350 // jmp_if_Y TBB
8351 // jmp FBB
8352 //
8353
8354 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8355 // The requirement is that
8356 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8357 // = TrueProb for original BB.
8358 // Assuming the original weights are A and B, one choice is to set BB1's
8359 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8360 // assumes that
8361 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8362 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8363 // TmpBB, but the math is more complicated.
8364 uint64_t TrueWeight, FalseWeight;
8365 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8366 uint64_t NewTrueWeight = TrueWeight;
8367 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8368 scaleWeights(NewTrueWeight, NewFalseWeight);
8369 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8370 .createBranchWeights(TrueWeight, FalseWeight));
8371
8372 NewTrueWeight = TrueWeight;
8373 NewFalseWeight = 2 * FalseWeight;
8374 scaleWeights(NewTrueWeight, NewFalseWeight);
8375 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8376 .createBranchWeights(TrueWeight, FalseWeight));
8377 }
8378 } else {
8379 // Codegen X & Y as:
8380 // BB1:
8381 // jmp_if_X TmpBB
8382 // jmp FBB
8383 // TmpBB:
8384 // jmp_if_Y TBB
8385 // jmp FBB
8386 //
8387 // This requires creation of TmpBB after CurBB.
8388
8389 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8390 // The requirement is that
8391 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8392 // = FalseProb for original BB.
8393 // Assuming the original weights are A and B, one choice is to set BB1's
8394 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8395 // assumes that
8396 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8397 uint64_t TrueWeight, FalseWeight;
8398 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8399 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8400 uint64_t NewFalseWeight = FalseWeight;
8401 scaleWeights(NewTrueWeight, NewFalseWeight);
8402 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8403 .createBranchWeights(TrueWeight, FalseWeight));
8404
8405 NewTrueWeight = 2 * TrueWeight;
8406 NewFalseWeight = FalseWeight;
8407 scaleWeights(NewTrueWeight, NewFalseWeight);
8408 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8409 .createBranchWeights(TrueWeight, FalseWeight));
8410 }
8411 }
8412
8413 ModifiedDT = true;
8414 MadeChange = true;
8415
8416 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8417 TmpBB->dump());
8418 }
8419 return MadeChange;
8420 }
8421