1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 229 using SExts = SmallVector<Instruction *, 16>; 230 using ValueToSExts = DenseMap<Value *, SExts>; 231 232 class TypePromotionTransaction; 233 234 class CodeGenPrepare : public FunctionPass { 235 const TargetMachine *TM = nullptr; 236 const TargetSubtargetInfo *SubtargetInfo; 237 const TargetLowering *TLI = nullptr; 238 const TargetRegisterInfo *TRI; 239 const TargetTransformInfo *TTI = nullptr; 240 const TargetLibraryInfo *TLInfo; 241 const LoopInfo *LI; 242 std::unique_ptr<BlockFrequencyInfo> BFI; 243 std::unique_ptr<BranchProbabilityInfo> BPI; 244 245 /// As we scan instructions optimizing them, this is the next instruction 246 /// to optimize. Transforms that can invalidate this should update it. 247 BasicBlock::iterator CurInstIterator; 248 249 /// Keeps track of non-local addresses that have been sunk into a block. 250 /// This allows us to avoid inserting duplicate code for blocks with 251 /// multiple load/stores of the same address. The usage of WeakTrackingVH 252 /// enables SunkAddrs to be treated as a cache whose entries can be 253 /// invalidated if a sunken address computation has been erased. 254 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 255 256 /// Keeps track of all instructions inserted for the current function. 257 SetOfInstrs InsertedInsts; 258 259 /// Keeps track of the type of the related instruction before their 260 /// promotion for the current function. 261 InstrToOrigTy PromotedInsts; 262 263 /// Keep track of instructions removed during promotion. 264 SetOfInstrs RemovedInsts; 265 266 /// Keep track of sext chains based on their initial value. 267 DenseMap<Value *, Instruction *> SeenChainsForSExt; 268 269 /// Keep track of GEPs accessing the same data structures such as structs or 270 /// arrays that are candidates to be split later because of their large 271 /// size. 272 DenseMap< 273 AssertingVH<Value>, 274 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 275 LargeOffsetGEPMap; 276 277 /// Keep track of new GEP base after splitting the GEPs having large offset. 278 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 279 280 /// Map serial numbers to Large offset GEPs. 281 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 282 283 /// Keep track of SExt promoted. 284 ValueToSExts ValToSExtendedUses; 285 286 /// True if CFG is modified in any way. 287 bool ModifiedDT; 288 289 /// True if optimizing for size. 290 bool OptSize; 291 292 /// DataLayout for the Function being processed. 293 const DataLayout *DL = nullptr; 294 295 public: 296 static char ID; // Pass identification, replacement for typeid 297 298 CodeGenPrepare() : FunctionPass(ID) { 299 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 300 } 301 302 bool runOnFunction(Function &F) override; 303 304 StringRef getPassName() const override { return "CodeGen Prepare"; } 305 306 void getAnalysisUsage(AnalysisUsage &AU) const override { 307 // FIXME: When we can selectively preserve passes, preserve the domtree. 308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 309 AU.addRequired<TargetLibraryInfoWrapperPass>(); 310 AU.addRequired<TargetTransformInfoWrapperPass>(); 311 AU.addRequired<LoopInfoWrapperPass>(); 312 } 313 314 private: 315 bool eliminateFallThrough(Function &F); 316 bool eliminateMostlyEmptyBlocks(Function &F); 317 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 318 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 319 void eliminateMostlyEmptyBlock(BasicBlock *BB); 320 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 321 bool isPreheader); 322 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 323 bool optimizeInst(Instruction *I, bool &ModifiedDT); 324 bool optimizeMemoryInst(Instruction *I, Value *Addr, 325 Type *AccessTy, unsigned AS); 326 bool optimizeInlineAsmInst(CallInst *CS); 327 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 328 bool optimizeExt(Instruction *&I); 329 bool optimizeExtUses(Instruction *I); 330 bool optimizeLoadExt(LoadInst *I); 331 bool optimizeSelectInst(SelectInst *SI); 332 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 333 bool optimizeSwitchInst(SwitchInst *CI); 334 bool optimizeExtractElementInst(Instruction *Inst); 335 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 336 bool placeDbgValues(Function &F); 337 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 338 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 339 bool tryToPromoteExts(TypePromotionTransaction &TPT, 340 const SmallVectorImpl<Instruction *> &Exts, 341 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 342 unsigned CreatedInstsCost = 0); 343 bool mergeSExts(Function &F); 344 bool splitLargeGEPOffsets(); 345 bool performAddressTypePromotion( 346 Instruction *&Inst, 347 bool AllowPromotionWithoutCommonHeader, 348 bool HasPromoted, TypePromotionTransaction &TPT, 349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 350 bool splitBranchCondition(Function &F); 351 bool simplifyOffsetableRelocate(Instruction &I); 352 }; 353 354 } // end anonymous namespace 355 356 char CodeGenPrepare::ID = 0; 357 358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 359 "Optimize for code generation", false, false) 360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 362 "Optimize for code generation", false, false) 363 364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 365 366 bool CodeGenPrepare::runOnFunction(Function &F) { 367 if (skipFunction(F)) 368 return false; 369 370 DL = &F.getParent()->getDataLayout(); 371 372 bool EverMadeChange = false; 373 // Clear per function information. 374 InsertedInsts.clear(); 375 PromotedInsts.clear(); 376 377 ModifiedDT = false; 378 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 379 TM = &TPC->getTM<TargetMachine>(); 380 SubtargetInfo = TM->getSubtargetImpl(F); 381 TLI = SubtargetInfo->getTargetLowering(); 382 TRI = SubtargetInfo->getRegisterInfo(); 383 } 384 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 385 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 386 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 387 BPI.reset(new BranchProbabilityInfo(F, *LI)); 388 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 389 OptSize = F.optForSize(); 390 391 ProfileSummaryInfo *PSI = 392 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 393 if (ProfileGuidedSectionPrefix) { 394 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 395 F.setSectionPrefix(".hot"); 396 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 397 F.setSectionPrefix(".unlikely"); 398 } 399 400 /// This optimization identifies DIV instructions that can be 401 /// profitably bypassed and carried out with a shorter, faster divide. 402 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 403 TLI->isSlowDivBypassed()) { 404 const DenseMap<unsigned int, unsigned int> &BypassWidths = 405 TLI->getBypassSlowDivWidths(); 406 BasicBlock* BB = &*F.begin(); 407 while (BB != nullptr) { 408 // bypassSlowDivision may create new BBs, but we don't want to reapply the 409 // optimization to those blocks. 410 BasicBlock* Next = BB->getNextNode(); 411 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 412 BB = Next; 413 } 414 } 415 416 // Eliminate blocks that contain only PHI nodes and an 417 // unconditional branch. 418 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 419 420 // llvm.dbg.value is far away from the value then iSel may not be able 421 // handle it properly. iSel will drop llvm.dbg.value if it can not 422 // find a node corresponding to the value. 423 EverMadeChange |= placeDbgValues(F); 424 425 if (!DisableBranchOpts) 426 EverMadeChange |= splitBranchCondition(F); 427 428 // Split some critical edges where one of the sources is an indirect branch, 429 // to help generate sane code for PHIs involving such edges. 430 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 431 432 bool MadeChange = true; 433 while (MadeChange) { 434 MadeChange = false; 435 SeenChainsForSExt.clear(); 436 ValToSExtendedUses.clear(); 437 RemovedInsts.clear(); 438 LargeOffsetGEPMap.clear(); 439 LargeOffsetGEPID.clear(); 440 for (Function::iterator I = F.begin(); I != F.end(); ) { 441 BasicBlock *BB = &*I++; 442 bool ModifiedDTOnIteration = false; 443 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 444 445 // Restart BB iteration if the dominator tree of the Function was changed 446 if (ModifiedDTOnIteration) 447 break; 448 } 449 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 450 MadeChange |= mergeSExts(F); 451 if (!LargeOffsetGEPMap.empty()) 452 MadeChange |= splitLargeGEPOffsets(); 453 454 // Really free removed instructions during promotion. 455 for (Instruction *I : RemovedInsts) 456 I->deleteValue(); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 SunkAddrs.clear(); 462 463 if (!DisableBranchOpts) { 464 MadeChange = false; 465 SmallPtrSet<BasicBlock*, 8> WorkList; 466 for (BasicBlock &BB : F) { 467 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 468 MadeChange |= ConstantFoldTerminator(&BB, true); 469 if (!MadeChange) continue; 470 471 for (SmallVectorImpl<BasicBlock*>::iterator 472 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 473 if (pred_begin(*II) == pred_end(*II)) 474 WorkList.insert(*II); 475 } 476 477 // Delete the dead blocks and any of their dead successors. 478 MadeChange |= !WorkList.empty(); 479 while (!WorkList.empty()) { 480 BasicBlock *BB = *WorkList.begin(); 481 WorkList.erase(BB); 482 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 483 484 DeleteDeadBlock(BB); 485 486 for (SmallVectorImpl<BasicBlock*>::iterator 487 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 488 if (pred_begin(*II) == pred_end(*II)) 489 WorkList.insert(*II); 490 } 491 492 // Merge pairs of basic blocks with unconditional branches, connected by 493 // a single edge. 494 if (EverMadeChange || MadeChange) 495 MadeChange |= eliminateFallThrough(F); 496 497 EverMadeChange |= MadeChange; 498 } 499 500 if (!DisableGCOpts) { 501 SmallVector<Instruction *, 2> Statepoints; 502 for (BasicBlock &BB : F) 503 for (Instruction &I : BB) 504 if (isStatepoint(I)) 505 Statepoints.push_back(&I); 506 for (auto &I : Statepoints) 507 EverMadeChange |= simplifyOffsetableRelocate(*I); 508 } 509 510 return EverMadeChange; 511 } 512 513 /// Merge basic blocks which are connected by a single edge, where one of the 514 /// basic blocks has a single successor pointing to the other basic block, 515 /// which has a single predecessor. 516 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 517 bool Changed = false; 518 // Scan all of the blocks in the function, except for the entry block. 519 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 520 BasicBlock *BB = &*I++; 521 // If the destination block has a single pred, then this is a trivial 522 // edge, just collapse it. 523 BasicBlock *SinglePred = BB->getSinglePredecessor(); 524 525 // Don't merge if BB's address is taken. 526 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 527 528 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 529 if (Term && !Term->isConditional()) { 530 Changed = true; 531 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 532 // Remember if SinglePred was the entry block of the function. 533 // If so, we will need to move BB back to the entry position. 534 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 535 MergeBasicBlockIntoOnlyPred(BB, nullptr); 536 537 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 538 BB->moveBefore(&BB->getParent()->getEntryBlock()); 539 540 // We have erased a block. Update the iterator. 541 I = BB->getIterator(); 542 } 543 } 544 return Changed; 545 } 546 547 /// Find a destination block from BB if BB is mergeable empty block. 548 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 549 // If this block doesn't end with an uncond branch, ignore it. 550 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 551 if (!BI || !BI->isUnconditional()) 552 return nullptr; 553 554 // If the instruction before the branch (skipping debug info) isn't a phi 555 // node, then other stuff is happening here. 556 BasicBlock::iterator BBI = BI->getIterator(); 557 if (BBI != BB->begin()) { 558 --BBI; 559 while (isa<DbgInfoIntrinsic>(BBI)) { 560 if (BBI == BB->begin()) 561 break; 562 --BBI; 563 } 564 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 565 return nullptr; 566 } 567 568 // Do not break infinite loops. 569 BasicBlock *DestBB = BI->getSuccessor(0); 570 if (DestBB == BB) 571 return nullptr; 572 573 if (!canMergeBlocks(BB, DestBB)) 574 DestBB = nullptr; 575 576 return DestBB; 577 } 578 579 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 580 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 581 /// edges in ways that are non-optimal for isel. Start by eliminating these 582 /// blocks so we can split them the way we want them. 583 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 584 SmallPtrSet<BasicBlock *, 16> Preheaders; 585 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 586 while (!LoopList.empty()) { 587 Loop *L = LoopList.pop_back_val(); 588 LoopList.insert(LoopList.end(), L->begin(), L->end()); 589 if (BasicBlock *Preheader = L->getLoopPreheader()) 590 Preheaders.insert(Preheader); 591 } 592 593 bool MadeChange = false; 594 // Note that this intentionally skips the entry block. 595 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 596 BasicBlock *BB = &*I++; 597 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 598 if (!DestBB || 599 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 600 continue; 601 602 eliminateMostlyEmptyBlock(BB); 603 MadeChange = true; 604 } 605 return MadeChange; 606 } 607 608 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 609 BasicBlock *DestBB, 610 bool isPreheader) { 611 // Do not delete loop preheaders if doing so would create a critical edge. 612 // Loop preheaders can be good locations to spill registers. If the 613 // preheader is deleted and we create a critical edge, registers may be 614 // spilled in the loop body instead. 615 if (!DisablePreheaderProtect && isPreheader && 616 !(BB->getSinglePredecessor() && 617 BB->getSinglePredecessor()->getSingleSuccessor())) 618 return false; 619 620 // Try to skip merging if the unique predecessor of BB is terminated by a 621 // switch or indirect branch instruction, and BB is used as an incoming block 622 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 623 // add COPY instructions in the predecessor of BB instead of BB (if it is not 624 // merged). Note that the critical edge created by merging such blocks wont be 625 // split in MachineSink because the jump table is not analyzable. By keeping 626 // such empty block (BB), ISel will place COPY instructions in BB, not in the 627 // predecessor of BB. 628 BasicBlock *Pred = BB->getUniquePredecessor(); 629 if (!Pred || 630 !(isa<SwitchInst>(Pred->getTerminator()) || 631 isa<IndirectBrInst>(Pred->getTerminator()))) 632 return true; 633 634 if (BB->getTerminator() != BB->getFirstNonPHI()) 635 return true; 636 637 // We use a simple cost heuristic which determine skipping merging is 638 // profitable if the cost of skipping merging is less than the cost of 639 // merging : Cost(skipping merging) < Cost(merging BB), where the 640 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 641 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 642 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 643 // Freq(Pred) / Freq(BB) > 2. 644 // Note that if there are multiple empty blocks sharing the same incoming 645 // value for the PHIs in the DestBB, we consider them together. In such 646 // case, Cost(merging BB) will be the sum of their frequencies. 647 648 if (!isa<PHINode>(DestBB->begin())) 649 return true; 650 651 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 652 653 // Find all other incoming blocks from which incoming values of all PHIs in 654 // DestBB are the same as the ones from BB. 655 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 656 ++PI) { 657 BasicBlock *DestBBPred = *PI; 658 if (DestBBPred == BB) 659 continue; 660 661 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 662 return DestPN.getIncomingValueForBlock(BB) == 663 DestPN.getIncomingValueForBlock(DestBBPred); 664 })) 665 SameIncomingValueBBs.insert(DestBBPred); 666 } 667 668 // See if all BB's incoming values are same as the value from Pred. In this 669 // case, no reason to skip merging because COPYs are expected to be place in 670 // Pred already. 671 if (SameIncomingValueBBs.count(Pred)) 672 return true; 673 674 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 675 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 676 677 for (auto SameValueBB : SameIncomingValueBBs) 678 if (SameValueBB->getUniquePredecessor() == Pred && 679 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 680 BBFreq += BFI->getBlockFreq(SameValueBB); 681 682 return PredFreq.getFrequency() <= 683 BBFreq.getFrequency() * FreqRatioToSkipMerge; 684 } 685 686 /// Return true if we can merge BB into DestBB if there is a single 687 /// unconditional branch between them, and BB contains no other non-phi 688 /// instructions. 689 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 690 const BasicBlock *DestBB) const { 691 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 692 // the successor. If there are more complex condition (e.g. preheaders), 693 // don't mess around with them. 694 for (const PHINode &PN : BB->phis()) { 695 for (const User *U : PN.users()) { 696 const Instruction *UI = cast<Instruction>(U); 697 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 698 return false; 699 // If User is inside DestBB block and it is a PHINode then check 700 // incoming value. If incoming value is not from BB then this is 701 // a complex condition (e.g. preheaders) we want to avoid here. 702 if (UI->getParent() == DestBB) { 703 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 704 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 705 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 706 if (Insn && Insn->getParent() == BB && 707 Insn->getParent() != UPN->getIncomingBlock(I)) 708 return false; 709 } 710 } 711 } 712 } 713 714 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 715 // and DestBB may have conflicting incoming values for the block. If so, we 716 // can't merge the block. 717 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 718 if (!DestBBPN) return true; // no conflict. 719 720 // Collect the preds of BB. 721 SmallPtrSet<const BasicBlock*, 16> BBPreds; 722 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 723 // It is faster to get preds from a PHI than with pred_iterator. 724 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 725 BBPreds.insert(BBPN->getIncomingBlock(i)); 726 } else { 727 BBPreds.insert(pred_begin(BB), pred_end(BB)); 728 } 729 730 // Walk the preds of DestBB. 731 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 732 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 733 if (BBPreds.count(Pred)) { // Common predecessor? 734 for (const PHINode &PN : DestBB->phis()) { 735 const Value *V1 = PN.getIncomingValueForBlock(Pred); 736 const Value *V2 = PN.getIncomingValueForBlock(BB); 737 738 // If V2 is a phi node in BB, look up what the mapped value will be. 739 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 740 if (V2PN->getParent() == BB) 741 V2 = V2PN->getIncomingValueForBlock(Pred); 742 743 // If there is a conflict, bail out. 744 if (V1 != V2) return false; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /// Eliminate a basic block that has only phi's and an unconditional branch in 753 /// it. 754 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 755 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 756 BasicBlock *DestBB = BI->getSuccessor(0); 757 758 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 759 760 // If the destination block has a single pred, then this is a trivial edge, 761 // just collapse it. 762 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 763 if (SinglePred != DestBB) { 764 // Remember if SinglePred was the entry block of the function. If so, we 765 // will need to move BB back to the entry position. 766 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 767 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 768 769 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 770 BB->moveBefore(&BB->getParent()->getEntryBlock()); 771 772 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 773 return; 774 } 775 } 776 777 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 778 // to handle the new incoming edges it is about to have. 779 for (PHINode &PN : DestBB->phis()) { 780 // Remove the incoming value for BB, and remember it. 781 Value *InVal = PN.removeIncomingValue(BB, false); 782 783 // Two options: either the InVal is a phi node defined in BB or it is some 784 // value that dominates BB. 785 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 786 if (InValPhi && InValPhi->getParent() == BB) { 787 // Add all of the input values of the input PHI as inputs of this phi. 788 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 789 PN.addIncoming(InValPhi->getIncomingValue(i), 790 InValPhi->getIncomingBlock(i)); 791 } else { 792 // Otherwise, add one instance of the dominating value for each edge that 793 // we will be adding. 794 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 795 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 796 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 797 } else { 798 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 799 PN.addIncoming(InVal, *PI); 800 } 801 } 802 } 803 804 // The PHIs are now updated, change everything that refers to BB to use 805 // DestBB and remove BB. 806 BB->replaceAllUsesWith(DestBB); 807 BB->eraseFromParent(); 808 ++NumBlocksElim; 809 810 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 811 } 812 813 // Computes a map of base pointer relocation instructions to corresponding 814 // derived pointer relocation instructions given a vector of all relocate calls 815 static void computeBaseDerivedRelocateMap( 816 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 817 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 818 &RelocateInstMap) { 819 // Collect information in two maps: one primarily for locating the base object 820 // while filling the second map; the second map is the final structure holding 821 // a mapping between Base and corresponding Derived relocate calls 822 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 823 for (auto *ThisRelocate : AllRelocateCalls) { 824 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 825 ThisRelocate->getDerivedPtrIndex()); 826 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 827 } 828 for (auto &Item : RelocateIdxMap) { 829 std::pair<unsigned, unsigned> Key = Item.first; 830 if (Key.first == Key.second) 831 // Base relocation: nothing to insert 832 continue; 833 834 GCRelocateInst *I = Item.second; 835 auto BaseKey = std::make_pair(Key.first, Key.first); 836 837 // We're iterating over RelocateIdxMap so we cannot modify it. 838 auto MaybeBase = RelocateIdxMap.find(BaseKey); 839 if (MaybeBase == RelocateIdxMap.end()) 840 // TODO: We might want to insert a new base object relocate and gep off 841 // that, if there are enough derived object relocates. 842 continue; 843 844 RelocateInstMap[MaybeBase->second].push_back(I); 845 } 846 } 847 848 // Accepts a GEP and extracts the operands into a vector provided they're all 849 // small integer constants 850 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 851 SmallVectorImpl<Value *> &OffsetV) { 852 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 853 // Only accept small constant integer operands 854 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 855 if (!Op || Op->getZExtValue() > 20) 856 return false; 857 } 858 859 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 860 OffsetV.push_back(GEP->getOperand(i)); 861 return true; 862 } 863 864 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 865 // replace, computes a replacement, and affects it. 866 static bool 867 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 868 const SmallVectorImpl<GCRelocateInst *> &Targets) { 869 bool MadeChange = false; 870 // We must ensure the relocation of derived pointer is defined after 871 // relocation of base pointer. If we find a relocation corresponding to base 872 // defined earlier than relocation of base then we move relocation of base 873 // right before found relocation. We consider only relocation in the same 874 // basic block as relocation of base. Relocations from other basic block will 875 // be skipped by optimization and we do not care about them. 876 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 877 &*R != RelocatedBase; ++R) 878 if (auto RI = dyn_cast<GCRelocateInst>(R)) 879 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 880 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 881 RelocatedBase->moveBefore(RI); 882 break; 883 } 884 885 for (GCRelocateInst *ToReplace : Targets) { 886 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 887 "Not relocating a derived object of the original base object"); 888 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 889 // A duplicate relocate call. TODO: coalesce duplicates. 890 continue; 891 } 892 893 if (RelocatedBase->getParent() != ToReplace->getParent()) { 894 // Base and derived relocates are in different basic blocks. 895 // In this case transform is only valid when base dominates derived 896 // relocate. However it would be too expensive to check dominance 897 // for each such relocate, so we skip the whole transformation. 898 continue; 899 } 900 901 Value *Base = ToReplace->getBasePtr(); 902 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 903 if (!Derived || Derived->getPointerOperand() != Base) 904 continue; 905 906 SmallVector<Value *, 2> OffsetV; 907 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 908 continue; 909 910 // Create a Builder and replace the target callsite with a gep 911 assert(RelocatedBase->getNextNode() && 912 "Should always have one since it's not a terminator"); 913 914 // Insert after RelocatedBase 915 IRBuilder<> Builder(RelocatedBase->getNextNode()); 916 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 917 918 // If gc_relocate does not match the actual type, cast it to the right type. 919 // In theory, there must be a bitcast after gc_relocate if the type does not 920 // match, and we should reuse it to get the derived pointer. But it could be 921 // cases like this: 922 // bb1: 923 // ... 924 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 925 // br label %merge 926 // 927 // bb2: 928 // ... 929 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 930 // br label %merge 931 // 932 // merge: 933 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 934 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 935 // 936 // In this case, we can not find the bitcast any more. So we insert a new bitcast 937 // no matter there is already one or not. In this way, we can handle all cases, and 938 // the extra bitcast should be optimized away in later passes. 939 Value *ActualRelocatedBase = RelocatedBase; 940 if (RelocatedBase->getType() != Base->getType()) { 941 ActualRelocatedBase = 942 Builder.CreateBitCast(RelocatedBase, Base->getType()); 943 } 944 Value *Replacement = Builder.CreateGEP( 945 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 946 Replacement->takeName(ToReplace); 947 // If the newly generated derived pointer's type does not match the original derived 948 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 949 Value *ActualReplacement = Replacement; 950 if (Replacement->getType() != ToReplace->getType()) { 951 ActualReplacement = 952 Builder.CreateBitCast(Replacement, ToReplace->getType()); 953 } 954 ToReplace->replaceAllUsesWith(ActualReplacement); 955 ToReplace->eraseFromParent(); 956 957 MadeChange = true; 958 } 959 return MadeChange; 960 } 961 962 // Turns this: 963 // 964 // %base = ... 965 // %ptr = gep %base + 15 966 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 967 // %base' = relocate(%tok, i32 4, i32 4) 968 // %ptr' = relocate(%tok, i32 4, i32 5) 969 // %val = load %ptr' 970 // 971 // into this: 972 // 973 // %base = ... 974 // %ptr = gep %base + 15 975 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 976 // %base' = gc.relocate(%tok, i32 4, i32 4) 977 // %ptr' = gep %base' + 15 978 // %val = load %ptr' 979 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 980 bool MadeChange = false; 981 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 982 983 for (auto *U : I.users()) 984 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 985 // Collect all the relocate calls associated with a statepoint 986 AllRelocateCalls.push_back(Relocate); 987 988 // We need atleast one base pointer relocation + one derived pointer 989 // relocation to mangle 990 if (AllRelocateCalls.size() < 2) 991 return false; 992 993 // RelocateInstMap is a mapping from the base relocate instruction to the 994 // corresponding derived relocate instructions 995 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 996 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 997 if (RelocateInstMap.empty()) 998 return false; 999 1000 for (auto &Item : RelocateInstMap) 1001 // Item.first is the RelocatedBase to offset against 1002 // Item.second is the vector of Targets to replace 1003 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1004 return MadeChange; 1005 } 1006 1007 /// SinkCast - Sink the specified cast instruction into its user blocks 1008 static bool SinkCast(CastInst *CI) { 1009 BasicBlock *DefBB = CI->getParent(); 1010 1011 /// InsertedCasts - Only insert a cast in each block once. 1012 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1013 1014 bool MadeChange = false; 1015 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1016 UI != E; ) { 1017 Use &TheUse = UI.getUse(); 1018 Instruction *User = cast<Instruction>(*UI); 1019 1020 // Figure out which BB this cast is used in. For PHI's this is the 1021 // appropriate predecessor block. 1022 BasicBlock *UserBB = User->getParent(); 1023 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1024 UserBB = PN->getIncomingBlock(TheUse); 1025 } 1026 1027 // Preincrement use iterator so we don't invalidate it. 1028 ++UI; 1029 1030 // The first insertion point of a block containing an EH pad is after the 1031 // pad. If the pad is the user, we cannot sink the cast past the pad. 1032 if (User->isEHPad()) 1033 continue; 1034 1035 // If the block selected to receive the cast is an EH pad that does not 1036 // allow non-PHI instructions before the terminator, we can't sink the 1037 // cast. 1038 if (UserBB->getTerminator()->isEHPad()) 1039 continue; 1040 1041 // If this user is in the same block as the cast, don't change the cast. 1042 if (UserBB == DefBB) continue; 1043 1044 // If we have already inserted a cast into this block, use it. 1045 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1046 1047 if (!InsertedCast) { 1048 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1049 assert(InsertPt != UserBB->end()); 1050 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1051 CI->getType(), "", &*InsertPt); 1052 } 1053 1054 // Replace a use of the cast with a use of the new cast. 1055 TheUse = InsertedCast; 1056 MadeChange = true; 1057 ++NumCastUses; 1058 } 1059 1060 // If we removed all uses, nuke the cast. 1061 if (CI->use_empty()) { 1062 salvageDebugInfo(*CI); 1063 CI->eraseFromParent(); 1064 MadeChange = true; 1065 } 1066 1067 return MadeChange; 1068 } 1069 1070 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1071 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1072 /// reduce the number of virtual registers that must be created and coalesced. 1073 /// 1074 /// Return true if any changes are made. 1075 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1076 const DataLayout &DL) { 1077 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1078 // than sinking only nop casts, but is helpful on some platforms. 1079 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1080 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1081 ASC->getDestAddressSpace())) 1082 return false; 1083 } 1084 1085 // If this is a noop copy, 1086 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1087 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1088 1089 // This is an fp<->int conversion? 1090 if (SrcVT.isInteger() != DstVT.isInteger()) 1091 return false; 1092 1093 // If this is an extension, it will be a zero or sign extension, which 1094 // isn't a noop. 1095 if (SrcVT.bitsLT(DstVT)) return false; 1096 1097 // If these values will be promoted, find out what they will be promoted 1098 // to. This helps us consider truncates on PPC as noop copies when they 1099 // are. 1100 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1101 TargetLowering::TypePromoteInteger) 1102 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1103 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1104 TargetLowering::TypePromoteInteger) 1105 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1106 1107 // If, after promotion, these are the same types, this is a noop copy. 1108 if (SrcVT != DstVT) 1109 return false; 1110 1111 return SinkCast(CI); 1112 } 1113 1114 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1115 /// possible. 1116 /// 1117 /// Return true if any changes were made. 1118 static bool CombineUAddWithOverflow(CmpInst *CI) { 1119 Value *A, *B; 1120 Instruction *AddI; 1121 if (!match(CI, 1122 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1123 return false; 1124 1125 Type *Ty = AddI->getType(); 1126 if (!isa<IntegerType>(Ty)) 1127 return false; 1128 1129 // We don't want to move around uses of condition values this late, so we we 1130 // check if it is legal to create the call to the intrinsic in the basic 1131 // block containing the icmp: 1132 1133 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1134 return false; 1135 1136 #ifndef NDEBUG 1137 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1138 // for now: 1139 if (AddI->hasOneUse()) 1140 assert(*AddI->user_begin() == CI && "expected!"); 1141 #endif 1142 1143 Module *M = CI->getModule(); 1144 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1145 1146 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1147 1148 auto *UAddWithOverflow = 1149 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1150 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1151 auto *Overflow = 1152 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1153 1154 CI->replaceAllUsesWith(Overflow); 1155 AddI->replaceAllUsesWith(UAdd); 1156 CI->eraseFromParent(); 1157 AddI->eraseFromParent(); 1158 return true; 1159 } 1160 1161 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1162 /// registers that must be created and coalesced. This is a clear win except on 1163 /// targets with multiple condition code registers (PowerPC), where it might 1164 /// lose; some adjustment may be wanted there. 1165 /// 1166 /// Return true if any changes are made. 1167 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1168 BasicBlock *DefBB = CI->getParent(); 1169 1170 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1171 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1172 return false; 1173 1174 // Only insert a cmp in each block once. 1175 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1176 1177 bool MadeChange = false; 1178 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1179 UI != E; ) { 1180 Use &TheUse = UI.getUse(); 1181 Instruction *User = cast<Instruction>(*UI); 1182 1183 // Preincrement use iterator so we don't invalidate it. 1184 ++UI; 1185 1186 // Don't bother for PHI nodes. 1187 if (isa<PHINode>(User)) 1188 continue; 1189 1190 // Figure out which BB this cmp is used in. 1191 BasicBlock *UserBB = User->getParent(); 1192 1193 // If this user is in the same block as the cmp, don't change the cmp. 1194 if (UserBB == DefBB) continue; 1195 1196 // If we have already inserted a cmp into this block, use it. 1197 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1198 1199 if (!InsertedCmp) { 1200 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1201 assert(InsertPt != UserBB->end()); 1202 InsertedCmp = 1203 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1204 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1205 // Propagate the debug info. 1206 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1207 } 1208 1209 // Replace a use of the cmp with a use of the new cmp. 1210 TheUse = InsertedCmp; 1211 MadeChange = true; 1212 ++NumCmpUses; 1213 } 1214 1215 // If we removed all uses, nuke the cmp. 1216 if (CI->use_empty()) { 1217 CI->eraseFromParent(); 1218 MadeChange = true; 1219 } 1220 1221 return MadeChange; 1222 } 1223 1224 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1225 if (SinkCmpExpression(CI, TLI)) 1226 return true; 1227 1228 if (CombineUAddWithOverflow(CI)) 1229 return true; 1230 1231 return false; 1232 } 1233 1234 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1235 /// used in a compare to allow isel to generate better code for targets where 1236 /// this operation can be combined. 1237 /// 1238 /// Return true if any changes are made. 1239 static bool sinkAndCmp0Expression(Instruction *AndI, 1240 const TargetLowering &TLI, 1241 SetOfInstrs &InsertedInsts) { 1242 // Double-check that we're not trying to optimize an instruction that was 1243 // already optimized by some other part of this pass. 1244 assert(!InsertedInsts.count(AndI) && 1245 "Attempting to optimize already optimized and instruction"); 1246 (void) InsertedInsts; 1247 1248 // Nothing to do for single use in same basic block. 1249 if (AndI->hasOneUse() && 1250 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1251 return false; 1252 1253 // Try to avoid cases where sinking/duplicating is likely to increase register 1254 // pressure. 1255 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1256 !isa<ConstantInt>(AndI->getOperand(1)) && 1257 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1258 return false; 1259 1260 for (auto *U : AndI->users()) { 1261 Instruction *User = cast<Instruction>(U); 1262 1263 // Only sink for and mask feeding icmp with 0. 1264 if (!isa<ICmpInst>(User)) 1265 return false; 1266 1267 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1268 if (!CmpC || !CmpC->isZero()) 1269 return false; 1270 } 1271 1272 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1273 return false; 1274 1275 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1276 DEBUG(AndI->getParent()->dump()); 1277 1278 // Push the 'and' into the same block as the icmp 0. There should only be 1279 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1280 // others, so we don't need to keep track of which BBs we insert into. 1281 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1282 UI != E; ) { 1283 Use &TheUse = UI.getUse(); 1284 Instruction *User = cast<Instruction>(*UI); 1285 1286 // Preincrement use iterator so we don't invalidate it. 1287 ++UI; 1288 1289 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1290 1291 // Keep the 'and' in the same place if the use is already in the same block. 1292 Instruction *InsertPt = 1293 User->getParent() == AndI->getParent() ? AndI : User; 1294 Instruction *InsertedAnd = 1295 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1296 AndI->getOperand(1), "", InsertPt); 1297 // Propagate the debug info. 1298 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1299 1300 // Replace a use of the 'and' with a use of the new 'and'. 1301 TheUse = InsertedAnd; 1302 ++NumAndUses; 1303 DEBUG(User->getParent()->dump()); 1304 } 1305 1306 // We removed all uses, nuke the and. 1307 AndI->eraseFromParent(); 1308 return true; 1309 } 1310 1311 /// Check if the candidates could be combined with a shift instruction, which 1312 /// includes: 1313 /// 1. Truncate instruction 1314 /// 2. And instruction and the imm is a mask of the low bits: 1315 /// imm & (imm+1) == 0 1316 static bool isExtractBitsCandidateUse(Instruction *User) { 1317 if (!isa<TruncInst>(User)) { 1318 if (User->getOpcode() != Instruction::And || 1319 !isa<ConstantInt>(User->getOperand(1))) 1320 return false; 1321 1322 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1323 1324 if ((Cimm & (Cimm + 1)).getBoolValue()) 1325 return false; 1326 } 1327 return true; 1328 } 1329 1330 /// Sink both shift and truncate instruction to the use of truncate's BB. 1331 static bool 1332 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1333 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1334 const TargetLowering &TLI, const DataLayout &DL) { 1335 BasicBlock *UserBB = User->getParent(); 1336 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1337 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1338 bool MadeChange = false; 1339 1340 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1341 TruncE = TruncI->user_end(); 1342 TruncUI != TruncE;) { 1343 1344 Use &TruncTheUse = TruncUI.getUse(); 1345 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1346 // Preincrement use iterator so we don't invalidate it. 1347 1348 ++TruncUI; 1349 1350 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1351 if (!ISDOpcode) 1352 continue; 1353 1354 // If the use is actually a legal node, there will not be an 1355 // implicit truncate. 1356 // FIXME: always querying the result type is just an 1357 // approximation; some nodes' legality is determined by the 1358 // operand or other means. There's no good way to find out though. 1359 if (TLI.isOperationLegalOrCustom( 1360 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1361 continue; 1362 1363 // Don't bother for PHI nodes. 1364 if (isa<PHINode>(TruncUser)) 1365 continue; 1366 1367 BasicBlock *TruncUserBB = TruncUser->getParent(); 1368 1369 if (UserBB == TruncUserBB) 1370 continue; 1371 1372 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1373 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1374 1375 if (!InsertedShift && !InsertedTrunc) { 1376 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1377 assert(InsertPt != TruncUserBB->end()); 1378 // Sink the shift 1379 if (ShiftI->getOpcode() == Instruction::AShr) 1380 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1381 "", &*InsertPt); 1382 else 1383 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1384 "", &*InsertPt); 1385 1386 // Sink the trunc 1387 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1388 TruncInsertPt++; 1389 assert(TruncInsertPt != TruncUserBB->end()); 1390 1391 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1392 TruncI->getType(), "", &*TruncInsertPt); 1393 1394 MadeChange = true; 1395 1396 TruncTheUse = InsertedTrunc; 1397 } 1398 } 1399 return MadeChange; 1400 } 1401 1402 /// Sink the shift *right* instruction into user blocks if the uses could 1403 /// potentially be combined with this shift instruction and generate BitExtract 1404 /// instruction. It will only be applied if the architecture supports BitExtract 1405 /// instruction. Here is an example: 1406 /// BB1: 1407 /// %x.extract.shift = lshr i64 %arg1, 32 1408 /// BB2: 1409 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1410 /// ==> 1411 /// 1412 /// BB2: 1413 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1414 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1415 /// 1416 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1417 /// instruction. 1418 /// Return true if any changes are made. 1419 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1420 const TargetLowering &TLI, 1421 const DataLayout &DL) { 1422 BasicBlock *DefBB = ShiftI->getParent(); 1423 1424 /// Only insert instructions in each block once. 1425 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1426 1427 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1428 1429 bool MadeChange = false; 1430 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1431 UI != E;) { 1432 Use &TheUse = UI.getUse(); 1433 Instruction *User = cast<Instruction>(*UI); 1434 // Preincrement use iterator so we don't invalidate it. 1435 ++UI; 1436 1437 // Don't bother for PHI nodes. 1438 if (isa<PHINode>(User)) 1439 continue; 1440 1441 if (!isExtractBitsCandidateUse(User)) 1442 continue; 1443 1444 BasicBlock *UserBB = User->getParent(); 1445 1446 if (UserBB == DefBB) { 1447 // If the shift and truncate instruction are in the same BB. The use of 1448 // the truncate(TruncUse) may still introduce another truncate if not 1449 // legal. In this case, we would like to sink both shift and truncate 1450 // instruction to the BB of TruncUse. 1451 // for example: 1452 // BB1: 1453 // i64 shift.result = lshr i64 opnd, imm 1454 // trunc.result = trunc shift.result to i16 1455 // 1456 // BB2: 1457 // ----> We will have an implicit truncate here if the architecture does 1458 // not have i16 compare. 1459 // cmp i16 trunc.result, opnd2 1460 // 1461 if (isa<TruncInst>(User) && shiftIsLegal 1462 // If the type of the truncate is legal, no trucate will be 1463 // introduced in other basic blocks. 1464 && 1465 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1466 MadeChange = 1467 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1468 1469 continue; 1470 } 1471 // If we have already inserted a shift into this block, use it. 1472 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1473 1474 if (!InsertedShift) { 1475 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1476 assert(InsertPt != UserBB->end()); 1477 1478 if (ShiftI->getOpcode() == Instruction::AShr) 1479 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1480 "", &*InsertPt); 1481 else 1482 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1483 "", &*InsertPt); 1484 1485 MadeChange = true; 1486 } 1487 1488 // Replace a use of the shift with a use of the new shift. 1489 TheUse = InsertedShift; 1490 } 1491 1492 // If we removed all uses, nuke the shift. 1493 if (ShiftI->use_empty()) 1494 ShiftI->eraseFromParent(); 1495 1496 return MadeChange; 1497 } 1498 1499 /// If counting leading or trailing zeros is an expensive operation and a zero 1500 /// input is defined, add a check for zero to avoid calling the intrinsic. 1501 /// 1502 /// We want to transform: 1503 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1504 /// 1505 /// into: 1506 /// entry: 1507 /// %cmpz = icmp eq i64 %A, 0 1508 /// br i1 %cmpz, label %cond.end, label %cond.false 1509 /// cond.false: 1510 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1511 /// br label %cond.end 1512 /// cond.end: 1513 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1514 /// 1515 /// If the transform is performed, return true and set ModifiedDT to true. 1516 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1517 const TargetLowering *TLI, 1518 const DataLayout *DL, 1519 bool &ModifiedDT) { 1520 if (!TLI || !DL) 1521 return false; 1522 1523 // If a zero input is undefined, it doesn't make sense to despeculate that. 1524 if (match(CountZeros->getOperand(1), m_One())) 1525 return false; 1526 1527 // If it's cheap to speculate, there's nothing to do. 1528 auto IntrinsicID = CountZeros->getIntrinsicID(); 1529 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1530 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1531 return false; 1532 1533 // Only handle legal scalar cases. Anything else requires too much work. 1534 Type *Ty = CountZeros->getType(); 1535 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1536 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1537 return false; 1538 1539 // The intrinsic will be sunk behind a compare against zero and branch. 1540 BasicBlock *StartBlock = CountZeros->getParent(); 1541 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1542 1543 // Create another block after the count zero intrinsic. A PHI will be added 1544 // in this block to select the result of the intrinsic or the bit-width 1545 // constant if the input to the intrinsic is zero. 1546 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1547 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1548 1549 // Set up a builder to create a compare, conditional branch, and PHI. 1550 IRBuilder<> Builder(CountZeros->getContext()); 1551 Builder.SetInsertPoint(StartBlock->getTerminator()); 1552 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1553 1554 // Replace the unconditional branch that was created by the first split with 1555 // a compare against zero and a conditional branch. 1556 Value *Zero = Constant::getNullValue(Ty); 1557 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1558 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1559 StartBlock->getTerminator()->eraseFromParent(); 1560 1561 // Create a PHI in the end block to select either the output of the intrinsic 1562 // or the bit width of the operand. 1563 Builder.SetInsertPoint(&EndBlock->front()); 1564 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1565 CountZeros->replaceAllUsesWith(PN); 1566 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1567 PN->addIncoming(BitWidth, StartBlock); 1568 PN->addIncoming(CountZeros, CallBlock); 1569 1570 // We are explicitly handling the zero case, so we can set the intrinsic's 1571 // undefined zero argument to 'true'. This will also prevent reprocessing the 1572 // intrinsic; we only despeculate when a zero input is defined. 1573 CountZeros->setArgOperand(1, Builder.getTrue()); 1574 ModifiedDT = true; 1575 return true; 1576 } 1577 1578 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1579 BasicBlock *BB = CI->getParent(); 1580 1581 // Lower inline assembly if we can. 1582 // If we found an inline asm expession, and if the target knows how to 1583 // lower it to normal LLVM code, do so now. 1584 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1585 if (TLI->ExpandInlineAsm(CI)) { 1586 // Avoid invalidating the iterator. 1587 CurInstIterator = BB->begin(); 1588 // Avoid processing instructions out of order, which could cause 1589 // reuse before a value is defined. 1590 SunkAddrs.clear(); 1591 return true; 1592 } 1593 // Sink address computing for memory operands into the block. 1594 if (optimizeInlineAsmInst(CI)) 1595 return true; 1596 } 1597 1598 // Align the pointer arguments to this call if the target thinks it's a good 1599 // idea 1600 unsigned MinSize, PrefAlign; 1601 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1602 for (auto &Arg : CI->arg_operands()) { 1603 // We want to align both objects whose address is used directly and 1604 // objects whose address is used in casts and GEPs, though it only makes 1605 // sense for GEPs if the offset is a multiple of the desired alignment and 1606 // if size - offset meets the size threshold. 1607 if (!Arg->getType()->isPointerTy()) 1608 continue; 1609 APInt Offset(DL->getIndexSizeInBits( 1610 cast<PointerType>(Arg->getType())->getAddressSpace()), 1611 0); 1612 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1613 uint64_t Offset2 = Offset.getLimitedValue(); 1614 if ((Offset2 & (PrefAlign-1)) != 0) 1615 continue; 1616 AllocaInst *AI; 1617 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1618 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1619 AI->setAlignment(PrefAlign); 1620 // Global variables can only be aligned if they are defined in this 1621 // object (i.e. they are uniquely initialized in this object), and 1622 // over-aligning global variables that have an explicit section is 1623 // forbidden. 1624 GlobalVariable *GV; 1625 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1626 GV->getPointerAlignment(*DL) < PrefAlign && 1627 DL->getTypeAllocSize(GV->getValueType()) >= 1628 MinSize + Offset2) 1629 GV->setAlignment(PrefAlign); 1630 } 1631 // If this is a memcpy (or similar) then we may be able to improve the 1632 // alignment 1633 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1634 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1635 if (DestAlign > MI->getDestAlignment()) 1636 MI->setDestAlignment(DestAlign); 1637 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1638 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1639 if (SrcAlign > MTI->getSourceAlignment()) 1640 MTI->setSourceAlignment(SrcAlign); 1641 } 1642 } 1643 } 1644 1645 // If we have a cold call site, try to sink addressing computation into the 1646 // cold block. This interacts with our handling for loads and stores to 1647 // ensure that we can fold all uses of a potential addressing computation 1648 // into their uses. TODO: generalize this to work over profiling data 1649 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1650 for (auto &Arg : CI->arg_operands()) { 1651 if (!Arg->getType()->isPointerTy()) 1652 continue; 1653 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1654 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1655 } 1656 1657 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1658 if (II) { 1659 switch (II->getIntrinsicID()) { 1660 default: break; 1661 case Intrinsic::objectsize: { 1662 // Lower all uses of llvm.objectsize.* 1663 ConstantInt *RetVal = 1664 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1665 // Substituting this can cause recursive simplifications, which can 1666 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1667 // this 1668 // happens. 1669 Value *CurValue = &*CurInstIterator; 1670 WeakTrackingVH IterHandle(CurValue); 1671 1672 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1673 1674 // If the iterator instruction was recursively deleted, start over at the 1675 // start of the block. 1676 if (IterHandle != CurValue) { 1677 CurInstIterator = BB->begin(); 1678 SunkAddrs.clear(); 1679 } 1680 return true; 1681 } 1682 case Intrinsic::aarch64_stlxr: 1683 case Intrinsic::aarch64_stxr: { 1684 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1685 if (!ExtVal || !ExtVal->hasOneUse() || 1686 ExtVal->getParent() == CI->getParent()) 1687 return false; 1688 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1689 ExtVal->moveBefore(CI); 1690 // Mark this instruction as "inserted by CGP", so that other 1691 // optimizations don't touch it. 1692 InsertedInsts.insert(ExtVal); 1693 return true; 1694 } 1695 case Intrinsic::launder_invariant_group: 1696 II->replaceAllUsesWith(II->getArgOperand(0)); 1697 II->eraseFromParent(); 1698 return true; 1699 1700 case Intrinsic::cttz: 1701 case Intrinsic::ctlz: 1702 // If counting zeros is expensive, try to avoid it. 1703 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1704 } 1705 1706 if (TLI) { 1707 SmallVector<Value*, 2> PtrOps; 1708 Type *AccessTy; 1709 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1710 while (!PtrOps.empty()) { 1711 Value *PtrVal = PtrOps.pop_back_val(); 1712 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1713 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1714 return true; 1715 } 1716 } 1717 } 1718 1719 // From here on out we're working with named functions. 1720 if (!CI->getCalledFunction()) return false; 1721 1722 // Lower all default uses of _chk calls. This is very similar 1723 // to what InstCombineCalls does, but here we are only lowering calls 1724 // to fortified library functions (e.g. __memcpy_chk) that have the default 1725 // "don't know" as the objectsize. Anything else should be left alone. 1726 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1727 if (Value *V = Simplifier.optimizeCall(CI)) { 1728 CI->replaceAllUsesWith(V); 1729 CI->eraseFromParent(); 1730 return true; 1731 } 1732 1733 return false; 1734 } 1735 1736 /// Look for opportunities to duplicate return instructions to the predecessor 1737 /// to enable tail call optimizations. The case it is currently looking for is: 1738 /// @code 1739 /// bb0: 1740 /// %tmp0 = tail call i32 @f0() 1741 /// br label %return 1742 /// bb1: 1743 /// %tmp1 = tail call i32 @f1() 1744 /// br label %return 1745 /// bb2: 1746 /// %tmp2 = tail call i32 @f2() 1747 /// br label %return 1748 /// return: 1749 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1750 /// ret i32 %retval 1751 /// @endcode 1752 /// 1753 /// => 1754 /// 1755 /// @code 1756 /// bb0: 1757 /// %tmp0 = tail call i32 @f0() 1758 /// ret i32 %tmp0 1759 /// bb1: 1760 /// %tmp1 = tail call i32 @f1() 1761 /// ret i32 %tmp1 1762 /// bb2: 1763 /// %tmp2 = tail call i32 @f2() 1764 /// ret i32 %tmp2 1765 /// @endcode 1766 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1767 if (!TLI) 1768 return false; 1769 1770 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1771 if (!RetI) 1772 return false; 1773 1774 PHINode *PN = nullptr; 1775 BitCastInst *BCI = nullptr; 1776 Value *V = RetI->getReturnValue(); 1777 if (V) { 1778 BCI = dyn_cast<BitCastInst>(V); 1779 if (BCI) 1780 V = BCI->getOperand(0); 1781 1782 PN = dyn_cast<PHINode>(V); 1783 if (!PN) 1784 return false; 1785 } 1786 1787 if (PN && PN->getParent() != BB) 1788 return false; 1789 1790 // Make sure there are no instructions between the PHI and return, or that the 1791 // return is the first instruction in the block. 1792 if (PN) { 1793 BasicBlock::iterator BI = BB->begin(); 1794 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1795 if (&*BI == BCI) 1796 // Also skip over the bitcast. 1797 ++BI; 1798 if (&*BI != RetI) 1799 return false; 1800 } else { 1801 BasicBlock::iterator BI = BB->begin(); 1802 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1803 if (&*BI != RetI) 1804 return false; 1805 } 1806 1807 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1808 /// call. 1809 const Function *F = BB->getParent(); 1810 SmallVector<CallInst*, 4> TailCalls; 1811 if (PN) { 1812 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1813 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1814 // Make sure the phi value is indeed produced by the tail call. 1815 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1816 TLI->mayBeEmittedAsTailCall(CI) && 1817 attributesPermitTailCall(F, CI, RetI, *TLI)) 1818 TailCalls.push_back(CI); 1819 } 1820 } else { 1821 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1822 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1823 if (!VisitedBBs.insert(*PI).second) 1824 continue; 1825 1826 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1827 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1828 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1829 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1830 if (RI == RE) 1831 continue; 1832 1833 CallInst *CI = dyn_cast<CallInst>(&*RI); 1834 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1835 attributesPermitTailCall(F, CI, RetI, *TLI)) 1836 TailCalls.push_back(CI); 1837 } 1838 } 1839 1840 bool Changed = false; 1841 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1842 CallInst *CI = TailCalls[i]; 1843 CallSite CS(CI); 1844 1845 // Conservatively require the attributes of the call to match those of the 1846 // return. Ignore noalias because it doesn't affect the call sequence. 1847 AttributeList CalleeAttrs = CS.getAttributes(); 1848 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1849 .removeAttribute(Attribute::NoAlias) != 1850 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1851 .removeAttribute(Attribute::NoAlias)) 1852 continue; 1853 1854 // Make sure the call instruction is followed by an unconditional branch to 1855 // the return block. 1856 BasicBlock *CallBB = CI->getParent(); 1857 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1858 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1859 continue; 1860 1861 // Duplicate the return into CallBB. 1862 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1863 ModifiedDT = Changed = true; 1864 ++NumRetsDup; 1865 } 1866 1867 // If we eliminated all predecessors of the block, delete the block now. 1868 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1869 BB->eraseFromParent(); 1870 1871 return Changed; 1872 } 1873 1874 //===----------------------------------------------------------------------===// 1875 // Memory Optimization 1876 //===----------------------------------------------------------------------===// 1877 1878 namespace { 1879 1880 /// This is an extended version of TargetLowering::AddrMode 1881 /// which holds actual Value*'s for register values. 1882 struct ExtAddrMode : public TargetLowering::AddrMode { 1883 Value *BaseReg = nullptr; 1884 Value *ScaledReg = nullptr; 1885 Value *OriginalValue = nullptr; 1886 1887 enum FieldName { 1888 NoField = 0x00, 1889 BaseRegField = 0x01, 1890 BaseGVField = 0x02, 1891 BaseOffsField = 0x04, 1892 ScaledRegField = 0x08, 1893 ScaleField = 0x10, 1894 MultipleFields = 0xff 1895 }; 1896 1897 ExtAddrMode() = default; 1898 1899 void print(raw_ostream &OS) const; 1900 void dump() const; 1901 1902 FieldName compare(const ExtAddrMode &other) { 1903 // First check that the types are the same on each field, as differing types 1904 // is something we can't cope with later on. 1905 if (BaseReg && other.BaseReg && 1906 BaseReg->getType() != other.BaseReg->getType()) 1907 return MultipleFields; 1908 if (BaseGV && other.BaseGV && 1909 BaseGV->getType() != other.BaseGV->getType()) 1910 return MultipleFields; 1911 if (ScaledReg && other.ScaledReg && 1912 ScaledReg->getType() != other.ScaledReg->getType()) 1913 return MultipleFields; 1914 1915 // Check each field to see if it differs. 1916 unsigned Result = NoField; 1917 if (BaseReg != other.BaseReg) 1918 Result |= BaseRegField; 1919 if (BaseGV != other.BaseGV) 1920 Result |= BaseGVField; 1921 if (BaseOffs != other.BaseOffs) 1922 Result |= BaseOffsField; 1923 if (ScaledReg != other.ScaledReg) 1924 Result |= ScaledRegField; 1925 // Don't count 0 as being a different scale, because that actually means 1926 // unscaled (which will already be counted by having no ScaledReg). 1927 if (Scale && other.Scale && Scale != other.Scale) 1928 Result |= ScaleField; 1929 1930 if (countPopulation(Result) > 1) 1931 return MultipleFields; 1932 else 1933 return static_cast<FieldName>(Result); 1934 } 1935 1936 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1937 // with no offset. 1938 bool isTrivial() { 1939 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1940 // trivial if at most one of these terms is nonzero, except that BaseGV and 1941 // BaseReg both being zero actually means a null pointer value, which we 1942 // consider to be 'non-zero' here. 1943 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1944 } 1945 1946 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1947 switch (Field) { 1948 default: 1949 return nullptr; 1950 case BaseRegField: 1951 return BaseReg; 1952 case BaseGVField: 1953 return BaseGV; 1954 case ScaledRegField: 1955 return ScaledReg; 1956 case BaseOffsField: 1957 return ConstantInt::get(IntPtrTy, BaseOffs); 1958 } 1959 } 1960 1961 void SetCombinedField(FieldName Field, Value *V, 1962 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1963 switch (Field) { 1964 default: 1965 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1966 break; 1967 case ExtAddrMode::BaseRegField: 1968 BaseReg = V; 1969 break; 1970 case ExtAddrMode::BaseGVField: 1971 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1972 // in the BaseReg field. 1973 assert(BaseReg == nullptr); 1974 BaseReg = V; 1975 BaseGV = nullptr; 1976 break; 1977 case ExtAddrMode::ScaledRegField: 1978 ScaledReg = V; 1979 // If we have a mix of scaled and unscaled addrmodes then we want scale 1980 // to be the scale and not zero. 1981 if (!Scale) 1982 for (const ExtAddrMode &AM : AddrModes) 1983 if (AM.Scale) { 1984 Scale = AM.Scale; 1985 break; 1986 } 1987 break; 1988 case ExtAddrMode::BaseOffsField: 1989 // The offset is no longer a constant, so it goes in ScaledReg with a 1990 // scale of 1. 1991 assert(ScaledReg == nullptr); 1992 ScaledReg = V; 1993 Scale = 1; 1994 BaseOffs = 0; 1995 break; 1996 } 1997 } 1998 }; 1999 2000 } // end anonymous namespace 2001 2002 #ifndef NDEBUG 2003 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2004 AM.print(OS); 2005 return OS; 2006 } 2007 #endif 2008 2009 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2010 void ExtAddrMode::print(raw_ostream &OS) const { 2011 bool NeedPlus = false; 2012 OS << "["; 2013 if (BaseGV) { 2014 OS << (NeedPlus ? " + " : "") 2015 << "GV:"; 2016 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2017 NeedPlus = true; 2018 } 2019 2020 if (BaseOffs) { 2021 OS << (NeedPlus ? " + " : "") 2022 << BaseOffs; 2023 NeedPlus = true; 2024 } 2025 2026 if (BaseReg) { 2027 OS << (NeedPlus ? " + " : "") 2028 << "Base:"; 2029 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2030 NeedPlus = true; 2031 } 2032 if (Scale) { 2033 OS << (NeedPlus ? " + " : "") 2034 << Scale << "*"; 2035 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2036 } 2037 2038 OS << ']'; 2039 } 2040 2041 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2042 print(dbgs()); 2043 dbgs() << '\n'; 2044 } 2045 #endif 2046 2047 namespace { 2048 2049 /// This class provides transaction based operation on the IR. 2050 /// Every change made through this class is recorded in the internal state and 2051 /// can be undone (rollback) until commit is called. 2052 class TypePromotionTransaction { 2053 /// This represents the common interface of the individual transaction. 2054 /// Each class implements the logic for doing one specific modification on 2055 /// the IR via the TypePromotionTransaction. 2056 class TypePromotionAction { 2057 protected: 2058 /// The Instruction modified. 2059 Instruction *Inst; 2060 2061 public: 2062 /// Constructor of the action. 2063 /// The constructor performs the related action on the IR. 2064 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2065 2066 virtual ~TypePromotionAction() = default; 2067 2068 /// Undo the modification done by this action. 2069 /// When this method is called, the IR must be in the same state as it was 2070 /// before this action was applied. 2071 /// \pre Undoing the action works if and only if the IR is in the exact same 2072 /// state as it was directly after this action was applied. 2073 virtual void undo() = 0; 2074 2075 /// Advocate every change made by this action. 2076 /// When the results on the IR of the action are to be kept, it is important 2077 /// to call this function, otherwise hidden information may be kept forever. 2078 virtual void commit() { 2079 // Nothing to be done, this action is not doing anything. 2080 } 2081 }; 2082 2083 /// Utility to remember the position of an instruction. 2084 class InsertionHandler { 2085 /// Position of an instruction. 2086 /// Either an instruction: 2087 /// - Is the first in a basic block: BB is used. 2088 /// - Has a previous instructon: PrevInst is used. 2089 union { 2090 Instruction *PrevInst; 2091 BasicBlock *BB; 2092 } Point; 2093 2094 /// Remember whether or not the instruction had a previous instruction. 2095 bool HasPrevInstruction; 2096 2097 public: 2098 /// Record the position of \p Inst. 2099 InsertionHandler(Instruction *Inst) { 2100 BasicBlock::iterator It = Inst->getIterator(); 2101 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2102 if (HasPrevInstruction) 2103 Point.PrevInst = &*--It; 2104 else 2105 Point.BB = Inst->getParent(); 2106 } 2107 2108 /// Insert \p Inst at the recorded position. 2109 void insert(Instruction *Inst) { 2110 if (HasPrevInstruction) { 2111 if (Inst->getParent()) 2112 Inst->removeFromParent(); 2113 Inst->insertAfter(Point.PrevInst); 2114 } else { 2115 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2116 if (Inst->getParent()) 2117 Inst->moveBefore(Position); 2118 else 2119 Inst->insertBefore(Position); 2120 } 2121 } 2122 }; 2123 2124 /// Move an instruction before another. 2125 class InstructionMoveBefore : public TypePromotionAction { 2126 /// Original position of the instruction. 2127 InsertionHandler Position; 2128 2129 public: 2130 /// Move \p Inst before \p Before. 2131 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2132 : TypePromotionAction(Inst), Position(Inst) { 2133 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2134 Inst->moveBefore(Before); 2135 } 2136 2137 /// Move the instruction back to its original position. 2138 void undo() override { 2139 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2140 Position.insert(Inst); 2141 } 2142 }; 2143 2144 /// Set the operand of an instruction with a new value. 2145 class OperandSetter : public TypePromotionAction { 2146 /// Original operand of the instruction. 2147 Value *Origin; 2148 2149 /// Index of the modified instruction. 2150 unsigned Idx; 2151 2152 public: 2153 /// Set \p Idx operand of \p Inst with \p NewVal. 2154 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2155 : TypePromotionAction(Inst), Idx(Idx) { 2156 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2157 << "for:" << *Inst << "\n" 2158 << "with:" << *NewVal << "\n"); 2159 Origin = Inst->getOperand(Idx); 2160 Inst->setOperand(Idx, NewVal); 2161 } 2162 2163 /// Restore the original value of the instruction. 2164 void undo() override { 2165 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2166 << "for: " << *Inst << "\n" 2167 << "with: " << *Origin << "\n"); 2168 Inst->setOperand(Idx, Origin); 2169 } 2170 }; 2171 2172 /// Hide the operands of an instruction. 2173 /// Do as if this instruction was not using any of its operands. 2174 class OperandsHider : public TypePromotionAction { 2175 /// The list of original operands. 2176 SmallVector<Value *, 4> OriginalValues; 2177 2178 public: 2179 /// Remove \p Inst from the uses of the operands of \p Inst. 2180 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2181 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2182 unsigned NumOpnds = Inst->getNumOperands(); 2183 OriginalValues.reserve(NumOpnds); 2184 for (unsigned It = 0; It < NumOpnds; ++It) { 2185 // Save the current operand. 2186 Value *Val = Inst->getOperand(It); 2187 OriginalValues.push_back(Val); 2188 // Set a dummy one. 2189 // We could use OperandSetter here, but that would imply an overhead 2190 // that we are not willing to pay. 2191 Inst->setOperand(It, UndefValue::get(Val->getType())); 2192 } 2193 } 2194 2195 /// Restore the original list of uses. 2196 void undo() override { 2197 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2198 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2199 Inst->setOperand(It, OriginalValues[It]); 2200 } 2201 }; 2202 2203 /// Build a truncate instruction. 2204 class TruncBuilder : public TypePromotionAction { 2205 Value *Val; 2206 2207 public: 2208 /// Build a truncate instruction of \p Opnd producing a \p Ty 2209 /// result. 2210 /// trunc Opnd to Ty. 2211 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2212 IRBuilder<> Builder(Opnd); 2213 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2214 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2215 } 2216 2217 /// Get the built value. 2218 Value *getBuiltValue() { return Val; } 2219 2220 /// Remove the built instruction. 2221 void undo() override { 2222 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2223 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2224 IVal->eraseFromParent(); 2225 } 2226 }; 2227 2228 /// Build a sign extension instruction. 2229 class SExtBuilder : public TypePromotionAction { 2230 Value *Val; 2231 2232 public: 2233 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2234 /// result. 2235 /// sext Opnd to Ty. 2236 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2237 : TypePromotionAction(InsertPt) { 2238 IRBuilder<> Builder(InsertPt); 2239 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2240 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2241 } 2242 2243 /// Get the built value. 2244 Value *getBuiltValue() { return Val; } 2245 2246 /// Remove the built instruction. 2247 void undo() override { 2248 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2249 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2250 IVal->eraseFromParent(); 2251 } 2252 }; 2253 2254 /// Build a zero extension instruction. 2255 class ZExtBuilder : public TypePromotionAction { 2256 Value *Val; 2257 2258 public: 2259 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2260 /// result. 2261 /// zext Opnd to Ty. 2262 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2263 : TypePromotionAction(InsertPt) { 2264 IRBuilder<> Builder(InsertPt); 2265 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2266 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2267 } 2268 2269 /// Get the built value. 2270 Value *getBuiltValue() { return Val; } 2271 2272 /// Remove the built instruction. 2273 void undo() override { 2274 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2275 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2276 IVal->eraseFromParent(); 2277 } 2278 }; 2279 2280 /// Mutate an instruction to another type. 2281 class TypeMutator : public TypePromotionAction { 2282 /// Record the original type. 2283 Type *OrigTy; 2284 2285 public: 2286 /// Mutate the type of \p Inst into \p NewTy. 2287 TypeMutator(Instruction *Inst, Type *NewTy) 2288 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2289 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2290 << "\n"); 2291 Inst->mutateType(NewTy); 2292 } 2293 2294 /// Mutate the instruction back to its original type. 2295 void undo() override { 2296 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2297 << "\n"); 2298 Inst->mutateType(OrigTy); 2299 } 2300 }; 2301 2302 /// Replace the uses of an instruction by another instruction. 2303 class UsesReplacer : public TypePromotionAction { 2304 /// Helper structure to keep track of the replaced uses. 2305 struct InstructionAndIdx { 2306 /// The instruction using the instruction. 2307 Instruction *Inst; 2308 2309 /// The index where this instruction is used for Inst. 2310 unsigned Idx; 2311 2312 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2313 : Inst(Inst), Idx(Idx) {} 2314 }; 2315 2316 /// Keep track of the original uses (pair Instruction, Index). 2317 SmallVector<InstructionAndIdx, 4> OriginalUses; 2318 2319 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2320 2321 public: 2322 /// Replace all the use of \p Inst by \p New. 2323 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2324 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2325 << "\n"); 2326 // Record the original uses. 2327 for (Use &U : Inst->uses()) { 2328 Instruction *UserI = cast<Instruction>(U.getUser()); 2329 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2330 } 2331 // Now, we can replace the uses. 2332 Inst->replaceAllUsesWith(New); 2333 } 2334 2335 /// Reassign the original uses of Inst to Inst. 2336 void undo() override { 2337 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2338 for (use_iterator UseIt = OriginalUses.begin(), 2339 EndIt = OriginalUses.end(); 2340 UseIt != EndIt; ++UseIt) { 2341 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2342 } 2343 } 2344 }; 2345 2346 /// Remove an instruction from the IR. 2347 class InstructionRemover : public TypePromotionAction { 2348 /// Original position of the instruction. 2349 InsertionHandler Inserter; 2350 2351 /// Helper structure to hide all the link to the instruction. In other 2352 /// words, this helps to do as if the instruction was removed. 2353 OperandsHider Hider; 2354 2355 /// Keep track of the uses replaced, if any. 2356 UsesReplacer *Replacer = nullptr; 2357 2358 /// Keep track of instructions removed. 2359 SetOfInstrs &RemovedInsts; 2360 2361 public: 2362 /// Remove all reference of \p Inst and optinally replace all its 2363 /// uses with New. 2364 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2365 /// \pre If !Inst->use_empty(), then New != nullptr 2366 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2367 Value *New = nullptr) 2368 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2369 RemovedInsts(RemovedInsts) { 2370 if (New) 2371 Replacer = new UsesReplacer(Inst, New); 2372 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2373 RemovedInsts.insert(Inst); 2374 /// The instructions removed here will be freed after completing 2375 /// optimizeBlock() for all blocks as we need to keep track of the 2376 /// removed instructions during promotion. 2377 Inst->removeFromParent(); 2378 } 2379 2380 ~InstructionRemover() override { delete Replacer; } 2381 2382 /// Resurrect the instruction and reassign it to the proper uses if 2383 /// new value was provided when build this action. 2384 void undo() override { 2385 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2386 Inserter.insert(Inst); 2387 if (Replacer) 2388 Replacer->undo(); 2389 Hider.undo(); 2390 RemovedInsts.erase(Inst); 2391 } 2392 }; 2393 2394 public: 2395 /// Restoration point. 2396 /// The restoration point is a pointer to an action instead of an iterator 2397 /// because the iterator may be invalidated but not the pointer. 2398 using ConstRestorationPt = const TypePromotionAction *; 2399 2400 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2401 : RemovedInsts(RemovedInsts) {} 2402 2403 /// Advocate every changes made in that transaction. 2404 void commit(); 2405 2406 /// Undo all the changes made after the given point. 2407 void rollback(ConstRestorationPt Point); 2408 2409 /// Get the current restoration point. 2410 ConstRestorationPt getRestorationPoint() const; 2411 2412 /// \name API for IR modification with state keeping to support rollback. 2413 /// @{ 2414 /// Same as Instruction::setOperand. 2415 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2416 2417 /// Same as Instruction::eraseFromParent. 2418 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2419 2420 /// Same as Value::replaceAllUsesWith. 2421 void replaceAllUsesWith(Instruction *Inst, Value *New); 2422 2423 /// Same as Value::mutateType. 2424 void mutateType(Instruction *Inst, Type *NewTy); 2425 2426 /// Same as IRBuilder::createTrunc. 2427 Value *createTrunc(Instruction *Opnd, Type *Ty); 2428 2429 /// Same as IRBuilder::createSExt. 2430 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2431 2432 /// Same as IRBuilder::createZExt. 2433 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2434 2435 /// Same as Instruction::moveBefore. 2436 void moveBefore(Instruction *Inst, Instruction *Before); 2437 /// @} 2438 2439 private: 2440 /// The ordered list of actions made so far. 2441 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2442 2443 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2444 2445 SetOfInstrs &RemovedInsts; 2446 }; 2447 2448 } // end anonymous namespace 2449 2450 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2451 Value *NewVal) { 2452 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2453 Inst, Idx, NewVal)); 2454 } 2455 2456 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2457 Value *NewVal) { 2458 Actions.push_back( 2459 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2460 Inst, RemovedInsts, NewVal)); 2461 } 2462 2463 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2464 Value *New) { 2465 Actions.push_back( 2466 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2467 } 2468 2469 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2470 Actions.push_back( 2471 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2472 } 2473 2474 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2475 Type *Ty) { 2476 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2477 Value *Val = Ptr->getBuiltValue(); 2478 Actions.push_back(std::move(Ptr)); 2479 return Val; 2480 } 2481 2482 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2483 Value *Opnd, Type *Ty) { 2484 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2485 Value *Val = Ptr->getBuiltValue(); 2486 Actions.push_back(std::move(Ptr)); 2487 return Val; 2488 } 2489 2490 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2491 Value *Opnd, Type *Ty) { 2492 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2493 Value *Val = Ptr->getBuiltValue(); 2494 Actions.push_back(std::move(Ptr)); 2495 return Val; 2496 } 2497 2498 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2499 Instruction *Before) { 2500 Actions.push_back( 2501 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2502 Inst, Before)); 2503 } 2504 2505 TypePromotionTransaction::ConstRestorationPt 2506 TypePromotionTransaction::getRestorationPoint() const { 2507 return !Actions.empty() ? Actions.back().get() : nullptr; 2508 } 2509 2510 void TypePromotionTransaction::commit() { 2511 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2512 ++It) 2513 (*It)->commit(); 2514 Actions.clear(); 2515 } 2516 2517 void TypePromotionTransaction::rollback( 2518 TypePromotionTransaction::ConstRestorationPt Point) { 2519 while (!Actions.empty() && Point != Actions.back().get()) { 2520 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2521 Curr->undo(); 2522 } 2523 } 2524 2525 namespace { 2526 2527 /// A helper class for matching addressing modes. 2528 /// 2529 /// This encapsulates the logic for matching the target-legal addressing modes. 2530 class AddressingModeMatcher { 2531 SmallVectorImpl<Instruction*> &AddrModeInsts; 2532 const TargetLowering &TLI; 2533 const TargetRegisterInfo &TRI; 2534 const DataLayout &DL; 2535 2536 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2537 /// the memory instruction that we're computing this address for. 2538 Type *AccessTy; 2539 unsigned AddrSpace; 2540 Instruction *MemoryInst; 2541 2542 /// This is the addressing mode that we're building up. This is 2543 /// part of the return value of this addressing mode matching stuff. 2544 ExtAddrMode &AddrMode; 2545 2546 /// The instructions inserted by other CodeGenPrepare optimizations. 2547 const SetOfInstrs &InsertedInsts; 2548 2549 /// A map from the instructions to their type before promotion. 2550 InstrToOrigTy &PromotedInsts; 2551 2552 /// The ongoing transaction where every action should be registered. 2553 TypePromotionTransaction &TPT; 2554 2555 // A GEP which has too large offset to be folded into the addressing mode. 2556 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2557 2558 /// This is set to true when we should not do profitability checks. 2559 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2560 bool IgnoreProfitability; 2561 2562 AddressingModeMatcher( 2563 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2564 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2565 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2566 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2567 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2568 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2569 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2570 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2571 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2572 IgnoreProfitability = false; 2573 } 2574 2575 public: 2576 /// Find the maximal addressing mode that a load/store of V can fold, 2577 /// give an access type of AccessTy. This returns a list of involved 2578 /// instructions in AddrModeInsts. 2579 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2580 /// optimizations. 2581 /// \p PromotedInsts maps the instructions to their type before promotion. 2582 /// \p The ongoing transaction where every action should be registered. 2583 static ExtAddrMode 2584 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2585 SmallVectorImpl<Instruction *> &AddrModeInsts, 2586 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2587 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2588 TypePromotionTransaction &TPT, 2589 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2590 ExtAddrMode Result; 2591 2592 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2593 MemoryInst, Result, InsertedInsts, 2594 PromotedInsts, TPT, LargeOffsetGEP) 2595 .matchAddr(V, 0); 2596 (void)Success; assert(Success && "Couldn't select *anything*?"); 2597 return Result; 2598 } 2599 2600 private: 2601 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2602 bool matchAddr(Value *V, unsigned Depth); 2603 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2604 bool *MovedAway = nullptr); 2605 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2606 ExtAddrMode &AMBefore, 2607 ExtAddrMode &AMAfter); 2608 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2609 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2610 Value *PromotedOperand) const; 2611 }; 2612 2613 /// Keep track of simplification of Phi nodes. 2614 /// Accept the set of all phi nodes and erase phi node from this set 2615 /// if it is simplified. 2616 class SimplificationTracker { 2617 DenseMap<Value *, Value *> Storage; 2618 const SimplifyQuery &SQ; 2619 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2620 // order when iterating over the set in MatchPhiSet. 2621 SmallSetVector<PHINode *, 32> AllPhiNodes; 2622 // Tracks newly created Select nodes. 2623 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2624 2625 public: 2626 SimplificationTracker(const SimplifyQuery &sq) 2627 : SQ(sq) {} 2628 2629 Value *Get(Value *V) { 2630 do { 2631 auto SV = Storage.find(V); 2632 if (SV == Storage.end()) 2633 return V; 2634 V = SV->second; 2635 } while (true); 2636 } 2637 2638 Value *Simplify(Value *Val) { 2639 SmallVector<Value *, 32> WorkList; 2640 SmallPtrSet<Value *, 32> Visited; 2641 WorkList.push_back(Val); 2642 while (!WorkList.empty()) { 2643 auto P = WorkList.pop_back_val(); 2644 if (!Visited.insert(P).second) 2645 continue; 2646 if (auto *PI = dyn_cast<Instruction>(P)) 2647 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2648 for (auto *U : PI->users()) 2649 WorkList.push_back(cast<Value>(U)); 2650 Put(PI, V); 2651 PI->replaceAllUsesWith(V); 2652 if (auto *PHI = dyn_cast<PHINode>(PI)) 2653 AllPhiNodes.remove(PHI); 2654 if (auto *Select = dyn_cast<SelectInst>(PI)) 2655 AllSelectNodes.erase(Select); 2656 PI->eraseFromParent(); 2657 } 2658 } 2659 return Get(Val); 2660 } 2661 2662 void Put(Value *From, Value *To) { 2663 Storage.insert({ From, To }); 2664 } 2665 2666 void ReplacePhi(PHINode *From, PHINode *To) { 2667 Value* OldReplacement = Get(From); 2668 while (OldReplacement != From) { 2669 From = To; 2670 To = dyn_cast<PHINode>(OldReplacement); 2671 OldReplacement = Get(From); 2672 } 2673 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2674 Put(From, To); 2675 From->replaceAllUsesWith(To); 2676 AllPhiNodes.remove(From); 2677 From->eraseFromParent(); 2678 } 2679 2680 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2681 2682 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2683 2684 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2685 2686 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2687 2688 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2689 2690 void destroyNewNodes(Type *CommonType) { 2691 // For safe erasing, replace the uses with dummy value first. 2692 auto Dummy = UndefValue::get(CommonType); 2693 for (auto I : AllPhiNodes) { 2694 I->replaceAllUsesWith(Dummy); 2695 I->eraseFromParent(); 2696 } 2697 AllPhiNodes.clear(); 2698 for (auto I : AllSelectNodes) { 2699 I->replaceAllUsesWith(Dummy); 2700 I->eraseFromParent(); 2701 } 2702 AllSelectNodes.clear(); 2703 } 2704 }; 2705 2706 /// A helper class for combining addressing modes. 2707 class AddressingModeCombiner { 2708 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2709 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2710 typedef std::pair<PHINode *, PHINode *> PHIPair; 2711 2712 private: 2713 /// The addressing modes we've collected. 2714 SmallVector<ExtAddrMode, 16> AddrModes; 2715 2716 /// The field in which the AddrModes differ, when we have more than one. 2717 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2718 2719 /// Are the AddrModes that we have all just equal to their original values? 2720 bool AllAddrModesTrivial = true; 2721 2722 /// Common Type for all different fields in addressing modes. 2723 Type *CommonType; 2724 2725 /// SimplifyQuery for simplifyInstruction utility. 2726 const SimplifyQuery &SQ; 2727 2728 /// Original Address. 2729 ValueInBB Original; 2730 2731 public: 2732 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2733 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2734 2735 /// Get the combined AddrMode 2736 const ExtAddrMode &getAddrMode() const { 2737 return AddrModes[0]; 2738 } 2739 2740 /// Add a new AddrMode if it's compatible with the AddrModes we already 2741 /// have. 2742 /// \return True iff we succeeded in doing so. 2743 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2744 // Take note of if we have any non-trivial AddrModes, as we need to detect 2745 // when all AddrModes are trivial as then we would introduce a phi or select 2746 // which just duplicates what's already there. 2747 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2748 2749 // If this is the first addrmode then everything is fine. 2750 if (AddrModes.empty()) { 2751 AddrModes.emplace_back(NewAddrMode); 2752 return true; 2753 } 2754 2755 // Figure out how different this is from the other address modes, which we 2756 // can do just by comparing against the first one given that we only care 2757 // about the cumulative difference. 2758 ExtAddrMode::FieldName ThisDifferentField = 2759 AddrModes[0].compare(NewAddrMode); 2760 if (DifferentField == ExtAddrMode::NoField) 2761 DifferentField = ThisDifferentField; 2762 else if (DifferentField != ThisDifferentField) 2763 DifferentField = ExtAddrMode::MultipleFields; 2764 2765 // If NewAddrMode differs in more than one dimension we cannot handle it. 2766 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2767 2768 // If Scale Field is different then we reject. 2769 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2770 2771 // We also must reject the case when base offset is different and 2772 // scale reg is not null, we cannot handle this case due to merge of 2773 // different offsets will be used as ScaleReg. 2774 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2775 !NewAddrMode.ScaledReg); 2776 2777 // We also must reject the case when GV is different and BaseReg installed 2778 // due to we want to use base reg as a merge of GV values. 2779 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2780 !NewAddrMode.HasBaseReg); 2781 2782 // Even if NewAddMode is the same we still need to collect it due to 2783 // original value is different. And later we will need all original values 2784 // as anchors during finding the common Phi node. 2785 if (CanHandle) 2786 AddrModes.emplace_back(NewAddrMode); 2787 else 2788 AddrModes.clear(); 2789 2790 return CanHandle; 2791 } 2792 2793 /// Combine the addressing modes we've collected into a single 2794 /// addressing mode. 2795 /// \return True iff we successfully combined them or we only had one so 2796 /// didn't need to combine them anyway. 2797 bool combineAddrModes() { 2798 // If we have no AddrModes then they can't be combined. 2799 if (AddrModes.size() == 0) 2800 return false; 2801 2802 // A single AddrMode can trivially be combined. 2803 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2804 return true; 2805 2806 // If the AddrModes we collected are all just equal to the value they are 2807 // derived from then combining them wouldn't do anything useful. 2808 if (AllAddrModesTrivial) 2809 return false; 2810 2811 if (!addrModeCombiningAllowed()) 2812 return false; 2813 2814 // Build a map between <original value, basic block where we saw it> to 2815 // value of base register. 2816 // Bail out if there is no common type. 2817 FoldAddrToValueMapping Map; 2818 if (!initializeMap(Map)) 2819 return false; 2820 2821 Value *CommonValue = findCommon(Map); 2822 if (CommonValue) 2823 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2824 return CommonValue != nullptr; 2825 } 2826 2827 private: 2828 /// Initialize Map with anchor values. For address seen in some BB 2829 /// we set the value of different field saw in this address. 2830 /// If address is not an instruction than basic block is set to null. 2831 /// At the same time we find a common type for different field we will 2832 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2833 /// Return false if there is no common type found. 2834 bool initializeMap(FoldAddrToValueMapping &Map) { 2835 // Keep track of keys where the value is null. We will need to replace it 2836 // with constant null when we know the common type. 2837 SmallVector<ValueInBB, 2> NullValue; 2838 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2839 for (auto &AM : AddrModes) { 2840 BasicBlock *BB = nullptr; 2841 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2842 BB = I->getParent(); 2843 2844 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2845 if (DV) { 2846 auto *Type = DV->getType(); 2847 if (CommonType && CommonType != Type) 2848 return false; 2849 CommonType = Type; 2850 Map[{ AM.OriginalValue, BB }] = DV; 2851 } else { 2852 NullValue.push_back({ AM.OriginalValue, BB }); 2853 } 2854 } 2855 assert(CommonType && "At least one non-null value must be!"); 2856 for (auto VIBB : NullValue) 2857 Map[VIBB] = Constant::getNullValue(CommonType); 2858 return true; 2859 } 2860 2861 /// We have mapping between value A and basic block where value A 2862 /// seen to other value B where B was a field in addressing mode represented 2863 /// by A. Also we have an original value C representin an address in some 2864 /// basic block. Traversing from C through phi and selects we ended up with 2865 /// A's in a map. This utility function tries to find a value V which is a 2866 /// field in addressing mode C and traversing through phi nodes and selects 2867 /// we will end up in corresponded values B in a map. 2868 /// The utility will create a new Phi/Selects if needed. 2869 // The simple example looks as follows: 2870 // BB1: 2871 // p1 = b1 + 40 2872 // br cond BB2, BB3 2873 // BB2: 2874 // p2 = b2 + 40 2875 // br BB3 2876 // BB3: 2877 // p = phi [p1, BB1], [p2, BB2] 2878 // v = load p 2879 // Map is 2880 // <p1, BB1> -> b1 2881 // <p2, BB2> -> b2 2882 // Request is 2883 // <p, BB3> -> ? 2884 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2885 Value *findCommon(FoldAddrToValueMapping &Map) { 2886 // Tracks the simplification of newly created phi nodes. The reason we use 2887 // this mapping is because we will add new created Phi nodes in AddrToBase. 2888 // Simplification of Phi nodes is recursive, so some Phi node may 2889 // be simplified after we added it to AddrToBase. 2890 // Using this mapping we can find the current value in AddrToBase. 2891 SimplificationTracker ST(SQ); 2892 2893 // First step, DFS to create PHI nodes for all intermediate blocks. 2894 // Also fill traverse order for the second step. 2895 SmallVector<ValueInBB, 32> TraverseOrder; 2896 InsertPlaceholders(Map, TraverseOrder, ST); 2897 2898 // Second Step, fill new nodes by merged values and simplify if possible. 2899 FillPlaceholders(Map, TraverseOrder, ST); 2900 2901 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2902 ST.destroyNewNodes(CommonType); 2903 return nullptr; 2904 } 2905 2906 // Now we'd like to match New Phi nodes to existed ones. 2907 unsigned PhiNotMatchedCount = 0; 2908 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2909 ST.destroyNewNodes(CommonType); 2910 return nullptr; 2911 } 2912 2913 auto *Result = ST.Get(Map.find(Original)->second); 2914 if (Result) { 2915 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2916 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2917 } 2918 return Result; 2919 } 2920 2921 /// Try to match PHI node to Candidate. 2922 /// Matcher tracks the matched Phi nodes. 2923 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2924 SmallSetVector<PHIPair, 8> &Matcher, 2925 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2926 SmallVector<PHIPair, 8> WorkList; 2927 Matcher.insert({ PHI, Candidate }); 2928 WorkList.push_back({ PHI, Candidate }); 2929 SmallSet<PHIPair, 8> Visited; 2930 while (!WorkList.empty()) { 2931 auto Item = WorkList.pop_back_val(); 2932 if (!Visited.insert(Item).second) 2933 continue; 2934 // We iterate over all incoming values to Phi to compare them. 2935 // If values are different and both of them Phi and the first one is a 2936 // Phi we added (subject to match) and both of them is in the same basic 2937 // block then we can match our pair if values match. So we state that 2938 // these values match and add it to work list to verify that. 2939 for (auto B : Item.first->blocks()) { 2940 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2941 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2942 if (FirstValue == SecondValue) 2943 continue; 2944 2945 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2946 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2947 2948 // One of them is not Phi or 2949 // The first one is not Phi node from the set we'd like to match or 2950 // Phi nodes from different basic blocks then 2951 // we will not be able to match. 2952 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2953 FirstPhi->getParent() != SecondPhi->getParent()) 2954 return false; 2955 2956 // If we already matched them then continue. 2957 if (Matcher.count({ FirstPhi, SecondPhi })) 2958 continue; 2959 // So the values are different and does not match. So we need them to 2960 // match. 2961 Matcher.insert({ FirstPhi, SecondPhi }); 2962 // But me must check it. 2963 WorkList.push_back({ FirstPhi, SecondPhi }); 2964 } 2965 } 2966 return true; 2967 } 2968 2969 /// For the given set of PHI nodes (in the SimplificationTracker) try 2970 /// to find their equivalents. 2971 /// Returns false if this matching fails and creation of new Phi is disabled. 2972 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2973 unsigned &PhiNotMatchedCount) { 2974 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2975 // in a deterministic order below. 2976 SmallSetVector<PHIPair, 8> Matched; 2977 SmallPtrSet<PHINode *, 8> WillNotMatch; 2978 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2979 while (PhiNodesToMatch.size()) { 2980 PHINode *PHI = *PhiNodesToMatch.begin(); 2981 2982 // Add us, if no Phi nodes in the basic block we do not match. 2983 WillNotMatch.clear(); 2984 WillNotMatch.insert(PHI); 2985 2986 // Traverse all Phis until we found equivalent or fail to do that. 2987 bool IsMatched = false; 2988 for (auto &P : PHI->getParent()->phis()) { 2989 if (&P == PHI) 2990 continue; 2991 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2992 break; 2993 // If it does not match, collect all Phi nodes from matcher. 2994 // if we end up with no match, them all these Phi nodes will not match 2995 // later. 2996 for (auto M : Matched) 2997 WillNotMatch.insert(M.first); 2998 Matched.clear(); 2999 } 3000 if (IsMatched) { 3001 // Replace all matched values and erase them. 3002 for (auto MV : Matched) 3003 ST.ReplacePhi(MV.first, MV.second); 3004 Matched.clear(); 3005 continue; 3006 } 3007 // If we are not allowed to create new nodes then bail out. 3008 if (!AllowNewPhiNodes) 3009 return false; 3010 // Just remove all seen values in matcher. They will not match anything. 3011 PhiNotMatchedCount += WillNotMatch.size(); 3012 for (auto *P : WillNotMatch) 3013 PhiNodesToMatch.remove(P); 3014 } 3015 return true; 3016 } 3017 /// Fill the placeholder with values from predecessors and simplify it. 3018 void FillPlaceholders(FoldAddrToValueMapping &Map, 3019 SmallVectorImpl<ValueInBB> &TraverseOrder, 3020 SimplificationTracker &ST) { 3021 while (!TraverseOrder.empty()) { 3022 auto Current = TraverseOrder.pop_back_val(); 3023 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3024 Value *CurrentValue = Current.first; 3025 BasicBlock *CurrentBlock = Current.second; 3026 Value *V = Map[Current]; 3027 3028 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3029 // CurrentValue also must be Select. 3030 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3031 auto *TrueValue = CurrentSelect->getTrueValue(); 3032 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3033 ? CurrentBlock 3034 : nullptr }; 3035 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3036 Select->setTrueValue(ST.Get(Map[TrueItem])); 3037 auto *FalseValue = CurrentSelect->getFalseValue(); 3038 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3039 ? CurrentBlock 3040 : nullptr }; 3041 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3042 Select->setFalseValue(ST.Get(Map[FalseItem])); 3043 } else { 3044 // Must be a Phi node then. 3045 PHINode *PHI = cast<PHINode>(V); 3046 // Fill the Phi node with values from predecessors. 3047 bool IsDefinedInThisBB = 3048 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3049 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3050 for (auto B : predecessors(CurrentBlock)) { 3051 Value *PV = IsDefinedInThisBB 3052 ? CurrentPhi->getIncomingValueForBlock(B) 3053 : CurrentValue; 3054 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3055 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3056 PHI->addIncoming(ST.Get(Map[item]), B); 3057 } 3058 } 3059 // Simplify if possible. 3060 Map[Current] = ST.Simplify(V); 3061 } 3062 } 3063 3064 /// Starting from value recursively iterates over predecessors up to known 3065 /// ending values represented in a map. For each traversed block inserts 3066 /// a placeholder Phi or Select. 3067 /// Reports all new created Phi/Select nodes by adding them to set. 3068 /// Also reports and order in what basic blocks have been traversed. 3069 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3070 SmallVectorImpl<ValueInBB> &TraverseOrder, 3071 SimplificationTracker &ST) { 3072 SmallVector<ValueInBB, 32> Worklist; 3073 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3074 "Address must be a Phi or Select node"); 3075 auto *Dummy = UndefValue::get(CommonType); 3076 Worklist.push_back(Original); 3077 while (!Worklist.empty()) { 3078 auto Current = Worklist.pop_back_val(); 3079 // If value is not an instruction it is something global, constant, 3080 // parameter and we can say that this value is observable in any block. 3081 // Set block to null to denote it. 3082 // Also please take into account that it is how we build anchors. 3083 if (!isa<Instruction>(Current.first)) 3084 Current.second = nullptr; 3085 // if it is already visited or it is an ending value then skip it. 3086 if (Map.find(Current) != Map.end()) 3087 continue; 3088 TraverseOrder.push_back(Current); 3089 3090 Value *CurrentValue = Current.first; 3091 BasicBlock *CurrentBlock = Current.second; 3092 // CurrentValue must be a Phi node or select. All others must be covered 3093 // by anchors. 3094 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3095 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3096 3097 unsigned PredCount = 3098 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3099 // if Current Value is not defined in this basic block we are interested 3100 // in values in predecessors. 3101 if (!IsDefinedInThisBB) { 3102 assert(PredCount && "Unreachable block?!"); 3103 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3104 &CurrentBlock->front()); 3105 Map[Current] = PHI; 3106 ST.insertNewPhi(PHI); 3107 // Add all predecessors in work list. 3108 for (auto B : predecessors(CurrentBlock)) 3109 Worklist.push_back({ CurrentValue, B }); 3110 continue; 3111 } 3112 // Value is defined in this basic block. 3113 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3114 // Is it OK to get metadata from OrigSelect?! 3115 // Create a Select placeholder with dummy value. 3116 SelectInst *Select = 3117 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3118 OrigSelect->getName(), OrigSelect, OrigSelect); 3119 Map[Current] = Select; 3120 ST.insertNewSelect(Select); 3121 // We are interested in True and False value in this basic block. 3122 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3123 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3124 } else { 3125 // It must be a Phi node then. 3126 auto *CurrentPhi = cast<PHINode>(CurrentI); 3127 // Create new Phi node for merge of bases. 3128 assert(PredCount && "Unreachable block?!"); 3129 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3130 &CurrentBlock->front()); 3131 Map[Current] = PHI; 3132 ST.insertNewPhi(PHI); 3133 3134 // Add all predecessors in work list. 3135 for (auto B : predecessors(CurrentBlock)) 3136 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3137 } 3138 } 3139 } 3140 3141 bool addrModeCombiningAllowed() { 3142 if (DisableComplexAddrModes) 3143 return false; 3144 switch (DifferentField) { 3145 default: 3146 return false; 3147 case ExtAddrMode::BaseRegField: 3148 return AddrSinkCombineBaseReg; 3149 case ExtAddrMode::BaseGVField: 3150 return AddrSinkCombineBaseGV; 3151 case ExtAddrMode::BaseOffsField: 3152 return AddrSinkCombineBaseOffs; 3153 case ExtAddrMode::ScaledRegField: 3154 return AddrSinkCombineScaledReg; 3155 } 3156 } 3157 }; 3158 } // end anonymous namespace 3159 3160 /// Try adding ScaleReg*Scale to the current addressing mode. 3161 /// Return true and update AddrMode if this addr mode is legal for the target, 3162 /// false if not. 3163 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3164 unsigned Depth) { 3165 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3166 // mode. Just process that directly. 3167 if (Scale == 1) 3168 return matchAddr(ScaleReg, Depth); 3169 3170 // If the scale is 0, it takes nothing to add this. 3171 if (Scale == 0) 3172 return true; 3173 3174 // If we already have a scale of this value, we can add to it, otherwise, we 3175 // need an available scale field. 3176 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3177 return false; 3178 3179 ExtAddrMode TestAddrMode = AddrMode; 3180 3181 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3182 // [A+B + A*7] -> [B+A*8]. 3183 TestAddrMode.Scale += Scale; 3184 TestAddrMode.ScaledReg = ScaleReg; 3185 3186 // If the new address isn't legal, bail out. 3187 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3188 return false; 3189 3190 // It was legal, so commit it. 3191 AddrMode = TestAddrMode; 3192 3193 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3194 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3195 // X*Scale + C*Scale to addr mode. 3196 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3197 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3198 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3199 TestAddrMode.ScaledReg = AddLHS; 3200 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3201 3202 // If this addressing mode is legal, commit it and remember that we folded 3203 // this instruction. 3204 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3205 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3206 AddrMode = TestAddrMode; 3207 return true; 3208 } 3209 } 3210 3211 // Otherwise, not (x+c)*scale, just return what we have. 3212 return true; 3213 } 3214 3215 /// This is a little filter, which returns true if an addressing computation 3216 /// involving I might be folded into a load/store accessing it. 3217 /// This doesn't need to be perfect, but needs to accept at least 3218 /// the set of instructions that MatchOperationAddr can. 3219 static bool MightBeFoldableInst(Instruction *I) { 3220 switch (I->getOpcode()) { 3221 case Instruction::BitCast: 3222 case Instruction::AddrSpaceCast: 3223 // Don't touch identity bitcasts. 3224 if (I->getType() == I->getOperand(0)->getType()) 3225 return false; 3226 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3227 case Instruction::PtrToInt: 3228 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3229 return true; 3230 case Instruction::IntToPtr: 3231 // We know the input is intptr_t, so this is foldable. 3232 return true; 3233 case Instruction::Add: 3234 return true; 3235 case Instruction::Mul: 3236 case Instruction::Shl: 3237 // Can only handle X*C and X << C. 3238 return isa<ConstantInt>(I->getOperand(1)); 3239 case Instruction::GetElementPtr: 3240 return true; 3241 default: 3242 return false; 3243 } 3244 } 3245 3246 /// Check whether or not \p Val is a legal instruction for \p TLI. 3247 /// \note \p Val is assumed to be the product of some type promotion. 3248 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3249 /// to be legal, as the non-promoted value would have had the same state. 3250 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3251 const DataLayout &DL, Value *Val) { 3252 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3253 if (!PromotedInst) 3254 return false; 3255 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3256 // If the ISDOpcode is undefined, it was undefined before the promotion. 3257 if (!ISDOpcode) 3258 return true; 3259 // Otherwise, check if the promoted instruction is legal or not. 3260 return TLI.isOperationLegalOrCustom( 3261 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3262 } 3263 3264 namespace { 3265 3266 /// Hepler class to perform type promotion. 3267 class TypePromotionHelper { 3268 /// Utility function to check whether or not a sign or zero extension 3269 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3270 /// either using the operands of \p Inst or promoting \p Inst. 3271 /// The type of the extension is defined by \p IsSExt. 3272 /// In other words, check if: 3273 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3274 /// #1 Promotion applies: 3275 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3276 /// #2 Operand reuses: 3277 /// ext opnd1 to ConsideredExtType. 3278 /// \p PromotedInsts maps the instructions to their type before promotion. 3279 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3280 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3281 3282 /// Utility function to determine if \p OpIdx should be promoted when 3283 /// promoting \p Inst. 3284 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3285 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3286 } 3287 3288 /// Utility function to promote the operand of \p Ext when this 3289 /// operand is a promotable trunc or sext or zext. 3290 /// \p PromotedInsts maps the instructions to their type before promotion. 3291 /// \p CreatedInstsCost[out] contains the cost of all instructions 3292 /// created to promote the operand of Ext. 3293 /// Newly added extensions are inserted in \p Exts. 3294 /// Newly added truncates are inserted in \p Truncs. 3295 /// Should never be called directly. 3296 /// \return The promoted value which is used instead of Ext. 3297 static Value *promoteOperandForTruncAndAnyExt( 3298 Instruction *Ext, TypePromotionTransaction &TPT, 3299 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3300 SmallVectorImpl<Instruction *> *Exts, 3301 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3302 3303 /// Utility function to promote the operand of \p Ext when this 3304 /// operand is promotable and is not a supported trunc or sext. 3305 /// \p PromotedInsts maps the instructions to their type before promotion. 3306 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3307 /// created to promote the operand of Ext. 3308 /// Newly added extensions are inserted in \p Exts. 3309 /// Newly added truncates are inserted in \p Truncs. 3310 /// Should never be called directly. 3311 /// \return The promoted value which is used instead of Ext. 3312 static Value *promoteOperandForOther(Instruction *Ext, 3313 TypePromotionTransaction &TPT, 3314 InstrToOrigTy &PromotedInsts, 3315 unsigned &CreatedInstsCost, 3316 SmallVectorImpl<Instruction *> *Exts, 3317 SmallVectorImpl<Instruction *> *Truncs, 3318 const TargetLowering &TLI, bool IsSExt); 3319 3320 /// \see promoteOperandForOther. 3321 static Value *signExtendOperandForOther( 3322 Instruction *Ext, TypePromotionTransaction &TPT, 3323 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3324 SmallVectorImpl<Instruction *> *Exts, 3325 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3326 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3327 Exts, Truncs, TLI, true); 3328 } 3329 3330 /// \see promoteOperandForOther. 3331 static Value *zeroExtendOperandForOther( 3332 Instruction *Ext, TypePromotionTransaction &TPT, 3333 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3334 SmallVectorImpl<Instruction *> *Exts, 3335 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3336 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3337 Exts, Truncs, TLI, false); 3338 } 3339 3340 public: 3341 /// Type for the utility function that promotes the operand of Ext. 3342 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3343 InstrToOrigTy &PromotedInsts, 3344 unsigned &CreatedInstsCost, 3345 SmallVectorImpl<Instruction *> *Exts, 3346 SmallVectorImpl<Instruction *> *Truncs, 3347 const TargetLowering &TLI); 3348 3349 /// Given a sign/zero extend instruction \p Ext, return the approriate 3350 /// action to promote the operand of \p Ext instead of using Ext. 3351 /// \return NULL if no promotable action is possible with the current 3352 /// sign extension. 3353 /// \p InsertedInsts keeps track of all the instructions inserted by the 3354 /// other CodeGenPrepare optimizations. This information is important 3355 /// because we do not want to promote these instructions as CodeGenPrepare 3356 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3357 /// \p PromotedInsts maps the instructions to their type before promotion. 3358 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3359 const TargetLowering &TLI, 3360 const InstrToOrigTy &PromotedInsts); 3361 }; 3362 3363 } // end anonymous namespace 3364 3365 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3366 Type *ConsideredExtType, 3367 const InstrToOrigTy &PromotedInsts, 3368 bool IsSExt) { 3369 // The promotion helper does not know how to deal with vector types yet. 3370 // To be able to fix that, we would need to fix the places where we 3371 // statically extend, e.g., constants and such. 3372 if (Inst->getType()->isVectorTy()) 3373 return false; 3374 3375 // We can always get through zext. 3376 if (isa<ZExtInst>(Inst)) 3377 return true; 3378 3379 // sext(sext) is ok too. 3380 if (IsSExt && isa<SExtInst>(Inst)) 3381 return true; 3382 3383 // We can get through binary operator, if it is legal. In other words, the 3384 // binary operator must have a nuw or nsw flag. 3385 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3386 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3387 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3388 (IsSExt && BinOp->hasNoSignedWrap()))) 3389 return true; 3390 3391 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3392 if ((Inst->getOpcode() == Instruction::And || 3393 Inst->getOpcode() == Instruction::Or)) 3394 return true; 3395 3396 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3397 if (Inst->getOpcode() == Instruction::Xor) { 3398 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3399 // Make sure it is not a NOT. 3400 if (Cst && !Cst->getValue().isAllOnesValue()) 3401 return true; 3402 } 3403 3404 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3405 // It may change a poisoned value into a regular value, like 3406 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3407 // poisoned value regular value 3408 // It should be OK since undef covers valid value. 3409 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3410 return true; 3411 3412 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3413 // It may change a poisoned value into a regular value, like 3414 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3415 // poisoned value regular value 3416 // It should be OK since undef covers valid value. 3417 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3418 const Instruction *ExtInst = 3419 dyn_cast<const Instruction>(*Inst->user_begin()); 3420 if (ExtInst->hasOneUse()) { 3421 const Instruction *AndInst = 3422 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3423 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3424 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3425 if (Cst && 3426 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3427 return true; 3428 } 3429 } 3430 } 3431 3432 // Check if we can do the following simplification. 3433 // ext(trunc(opnd)) --> ext(opnd) 3434 if (!isa<TruncInst>(Inst)) 3435 return false; 3436 3437 Value *OpndVal = Inst->getOperand(0); 3438 // Check if we can use this operand in the extension. 3439 // If the type is larger than the result type of the extension, we cannot. 3440 if (!OpndVal->getType()->isIntegerTy() || 3441 OpndVal->getType()->getIntegerBitWidth() > 3442 ConsideredExtType->getIntegerBitWidth()) 3443 return false; 3444 3445 // If the operand of the truncate is not an instruction, we will not have 3446 // any information on the dropped bits. 3447 // (Actually we could for constant but it is not worth the extra logic). 3448 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3449 if (!Opnd) 3450 return false; 3451 3452 // Check if the source of the type is narrow enough. 3453 // I.e., check that trunc just drops extended bits of the same kind of 3454 // the extension. 3455 // #1 get the type of the operand and check the kind of the extended bits. 3456 const Type *OpndType; 3457 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3458 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3459 OpndType = It->second.getPointer(); 3460 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3461 OpndType = Opnd->getOperand(0)->getType(); 3462 else 3463 return false; 3464 3465 // #2 check that the truncate just drops extended bits. 3466 return Inst->getType()->getIntegerBitWidth() >= 3467 OpndType->getIntegerBitWidth(); 3468 } 3469 3470 TypePromotionHelper::Action TypePromotionHelper::getAction( 3471 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3472 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3473 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3474 "Unexpected instruction type"); 3475 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3476 Type *ExtTy = Ext->getType(); 3477 bool IsSExt = isa<SExtInst>(Ext); 3478 // If the operand of the extension is not an instruction, we cannot 3479 // get through. 3480 // If it, check we can get through. 3481 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3482 return nullptr; 3483 3484 // Do not promote if the operand has been added by codegenprepare. 3485 // Otherwise, it means we are undoing an optimization that is likely to be 3486 // redone, thus causing potential infinite loop. 3487 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3488 return nullptr; 3489 3490 // SExt or Trunc instructions. 3491 // Return the related handler. 3492 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3493 isa<ZExtInst>(ExtOpnd)) 3494 return promoteOperandForTruncAndAnyExt; 3495 3496 // Regular instruction. 3497 // Abort early if we will have to insert non-free instructions. 3498 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3499 return nullptr; 3500 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3501 } 3502 3503 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3504 Instruction *SExt, TypePromotionTransaction &TPT, 3505 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3506 SmallVectorImpl<Instruction *> *Exts, 3507 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3508 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3509 // get through it and this method should not be called. 3510 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3511 Value *ExtVal = SExt; 3512 bool HasMergedNonFreeExt = false; 3513 if (isa<ZExtInst>(SExtOpnd)) { 3514 // Replace s|zext(zext(opnd)) 3515 // => zext(opnd). 3516 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3517 Value *ZExt = 3518 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3519 TPT.replaceAllUsesWith(SExt, ZExt); 3520 TPT.eraseInstruction(SExt); 3521 ExtVal = ZExt; 3522 } else { 3523 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3524 // => z|sext(opnd). 3525 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3526 } 3527 CreatedInstsCost = 0; 3528 3529 // Remove dead code. 3530 if (SExtOpnd->use_empty()) 3531 TPT.eraseInstruction(SExtOpnd); 3532 3533 // Check if the extension is still needed. 3534 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3535 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3536 if (ExtInst) { 3537 if (Exts) 3538 Exts->push_back(ExtInst); 3539 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3540 } 3541 return ExtVal; 3542 } 3543 3544 // At this point we have: ext ty opnd to ty. 3545 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3546 Value *NextVal = ExtInst->getOperand(0); 3547 TPT.eraseInstruction(ExtInst, NextVal); 3548 return NextVal; 3549 } 3550 3551 Value *TypePromotionHelper::promoteOperandForOther( 3552 Instruction *Ext, TypePromotionTransaction &TPT, 3553 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3554 SmallVectorImpl<Instruction *> *Exts, 3555 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3556 bool IsSExt) { 3557 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3558 // get through it and this method should not be called. 3559 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3560 CreatedInstsCost = 0; 3561 if (!ExtOpnd->hasOneUse()) { 3562 // ExtOpnd will be promoted. 3563 // All its uses, but Ext, will need to use a truncated value of the 3564 // promoted version. 3565 // Create the truncate now. 3566 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3567 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3568 // Insert it just after the definition. 3569 ITrunc->moveAfter(ExtOpnd); 3570 if (Truncs) 3571 Truncs->push_back(ITrunc); 3572 } 3573 3574 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3575 // Restore the operand of Ext (which has been replaced by the previous call 3576 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3577 TPT.setOperand(Ext, 0, ExtOpnd); 3578 } 3579 3580 // Get through the Instruction: 3581 // 1. Update its type. 3582 // 2. Replace the uses of Ext by Inst. 3583 // 3. Extend each operand that needs to be extended. 3584 3585 // Remember the original type of the instruction before promotion. 3586 // This is useful to know that the high bits are sign extended bits. 3587 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3588 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3589 // Step #1. 3590 TPT.mutateType(ExtOpnd, Ext->getType()); 3591 // Step #2. 3592 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3593 // Step #3. 3594 Instruction *ExtForOpnd = Ext; 3595 3596 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3597 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3598 ++OpIdx) { 3599 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3600 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3601 !shouldExtOperand(ExtOpnd, OpIdx)) { 3602 DEBUG(dbgs() << "No need to propagate\n"); 3603 continue; 3604 } 3605 // Check if we can statically extend the operand. 3606 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3607 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3608 DEBUG(dbgs() << "Statically extend\n"); 3609 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3610 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3611 : Cst->getValue().zext(BitWidth); 3612 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3613 continue; 3614 } 3615 // UndefValue are typed, so we have to statically sign extend them. 3616 if (isa<UndefValue>(Opnd)) { 3617 DEBUG(dbgs() << "Statically extend\n"); 3618 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3619 continue; 3620 } 3621 3622 // Otherwise we have to explicity sign extend the operand. 3623 // Check if Ext was reused to extend an operand. 3624 if (!ExtForOpnd) { 3625 // If yes, create a new one. 3626 DEBUG(dbgs() << "More operands to ext\n"); 3627 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3628 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3629 if (!isa<Instruction>(ValForExtOpnd)) { 3630 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3631 continue; 3632 } 3633 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3634 } 3635 if (Exts) 3636 Exts->push_back(ExtForOpnd); 3637 TPT.setOperand(ExtForOpnd, 0, Opnd); 3638 3639 // Move the sign extension before the insertion point. 3640 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3641 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3642 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3643 // If more sext are required, new instructions will have to be created. 3644 ExtForOpnd = nullptr; 3645 } 3646 if (ExtForOpnd == Ext) { 3647 DEBUG(dbgs() << "Extension is useless now\n"); 3648 TPT.eraseInstruction(Ext); 3649 } 3650 return ExtOpnd; 3651 } 3652 3653 /// Check whether or not promoting an instruction to a wider type is profitable. 3654 /// \p NewCost gives the cost of extension instructions created by the 3655 /// promotion. 3656 /// \p OldCost gives the cost of extension instructions before the promotion 3657 /// plus the number of instructions that have been 3658 /// matched in the addressing mode the promotion. 3659 /// \p PromotedOperand is the value that has been promoted. 3660 /// \return True if the promotion is profitable, false otherwise. 3661 bool AddressingModeMatcher::isPromotionProfitable( 3662 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3663 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3664 // The cost of the new extensions is greater than the cost of the 3665 // old extension plus what we folded. 3666 // This is not profitable. 3667 if (NewCost > OldCost) 3668 return false; 3669 if (NewCost < OldCost) 3670 return true; 3671 // The promotion is neutral but it may help folding the sign extension in 3672 // loads for instance. 3673 // Check that we did not create an illegal instruction. 3674 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3675 } 3676 3677 /// Given an instruction or constant expr, see if we can fold the operation 3678 /// into the addressing mode. If so, update the addressing mode and return 3679 /// true, otherwise return false without modifying AddrMode. 3680 /// If \p MovedAway is not NULL, it contains the information of whether or 3681 /// not AddrInst has to be folded into the addressing mode on success. 3682 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3683 /// because it has been moved away. 3684 /// Thus AddrInst must not be added in the matched instructions. 3685 /// This state can happen when AddrInst is a sext, since it may be moved away. 3686 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3687 /// not be referenced anymore. 3688 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3689 unsigned Depth, 3690 bool *MovedAway) { 3691 // Avoid exponential behavior on extremely deep expression trees. 3692 if (Depth >= 5) return false; 3693 3694 // By default, all matched instructions stay in place. 3695 if (MovedAway) 3696 *MovedAway = false; 3697 3698 switch (Opcode) { 3699 case Instruction::PtrToInt: 3700 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3701 return matchAddr(AddrInst->getOperand(0), Depth); 3702 case Instruction::IntToPtr: { 3703 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3704 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3705 // This inttoptr is a no-op if the integer type is pointer sized. 3706 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3707 return matchAddr(AddrInst->getOperand(0), Depth); 3708 return false; 3709 } 3710 case Instruction::BitCast: 3711 // BitCast is always a noop, and we can handle it as long as it is 3712 // int->int or pointer->pointer (we don't want int<->fp or something). 3713 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3714 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3715 // Don't touch identity bitcasts. These were probably put here by LSR, 3716 // and we don't want to mess around with them. Assume it knows what it 3717 // is doing. 3718 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3719 return matchAddr(AddrInst->getOperand(0), Depth); 3720 return false; 3721 case Instruction::AddrSpaceCast: { 3722 unsigned SrcAS 3723 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3724 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3725 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3726 return matchAddr(AddrInst->getOperand(0), Depth); 3727 return false; 3728 } 3729 case Instruction::Add: { 3730 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3731 ExtAddrMode BackupAddrMode = AddrMode; 3732 unsigned OldSize = AddrModeInsts.size(); 3733 // Start a transaction at this point. 3734 // The LHS may match but not the RHS. 3735 // Therefore, we need a higher level restoration point to undo partially 3736 // matched operation. 3737 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3738 TPT.getRestorationPoint(); 3739 3740 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3741 matchAddr(AddrInst->getOperand(0), Depth+1)) 3742 return true; 3743 3744 // Restore the old addr mode info. 3745 AddrMode = BackupAddrMode; 3746 AddrModeInsts.resize(OldSize); 3747 TPT.rollback(LastKnownGood); 3748 3749 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3750 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3751 matchAddr(AddrInst->getOperand(1), Depth+1)) 3752 return true; 3753 3754 // Otherwise we definitely can't merge the ADD in. 3755 AddrMode = BackupAddrMode; 3756 AddrModeInsts.resize(OldSize); 3757 TPT.rollback(LastKnownGood); 3758 break; 3759 } 3760 //case Instruction::Or: 3761 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3762 //break; 3763 case Instruction::Mul: 3764 case Instruction::Shl: { 3765 // Can only handle X*C and X << C. 3766 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3767 if (!RHS || RHS->getBitWidth() > 64) 3768 return false; 3769 int64_t Scale = RHS->getSExtValue(); 3770 if (Opcode == Instruction::Shl) 3771 Scale = 1LL << Scale; 3772 3773 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3774 } 3775 case Instruction::GetElementPtr: { 3776 // Scan the GEP. We check it if it contains constant offsets and at most 3777 // one variable offset. 3778 int VariableOperand = -1; 3779 unsigned VariableScale = 0; 3780 3781 int64_t ConstantOffset = 0; 3782 gep_type_iterator GTI = gep_type_begin(AddrInst); 3783 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3784 if (StructType *STy = GTI.getStructTypeOrNull()) { 3785 const StructLayout *SL = DL.getStructLayout(STy); 3786 unsigned Idx = 3787 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3788 ConstantOffset += SL->getElementOffset(Idx); 3789 } else { 3790 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3791 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3792 ConstantOffset += CI->getSExtValue() * TypeSize; 3793 } else if (TypeSize) { // Scales of zero don't do anything. 3794 // We only allow one variable index at the moment. 3795 if (VariableOperand != -1) 3796 return false; 3797 3798 // Remember the variable index. 3799 VariableOperand = i; 3800 VariableScale = TypeSize; 3801 } 3802 } 3803 } 3804 3805 // A common case is for the GEP to only do a constant offset. In this case, 3806 // just add it to the disp field and check validity. 3807 if (VariableOperand == -1) { 3808 AddrMode.BaseOffs += ConstantOffset; 3809 if (ConstantOffset == 0 || 3810 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3811 // Check to see if we can fold the base pointer in too. 3812 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3813 return true; 3814 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3815 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3816 ConstantOffset > 0) { 3817 // Record GEPs with non-zero offsets as candidates for splitting in the 3818 // event that the offset cannot fit into the r+i addressing mode. 3819 // Simple and common case that only one GEP is used in calculating the 3820 // address for the memory access. 3821 Value *Base = AddrInst->getOperand(0); 3822 auto *BaseI = dyn_cast<Instruction>(Base); 3823 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3824 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3825 (BaseI && !isa<CastInst>(BaseI) && 3826 !isa<GetElementPtrInst>(BaseI))) { 3827 // If the base is an instruction, make sure the GEP is not in the same 3828 // basic block as the base. If the base is an argument or global 3829 // value, make sure the GEP is not in the entry block. Otherwise, 3830 // instruction selection can undo the split. Also make sure the 3831 // parent block allows inserting non-PHI instructions before the 3832 // terminator. 3833 BasicBlock *Parent = 3834 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3835 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3836 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3837 } 3838 } 3839 AddrMode.BaseOffs -= ConstantOffset; 3840 return false; 3841 } 3842 3843 // Save the valid addressing mode in case we can't match. 3844 ExtAddrMode BackupAddrMode = AddrMode; 3845 unsigned OldSize = AddrModeInsts.size(); 3846 3847 // See if the scale and offset amount is valid for this target. 3848 AddrMode.BaseOffs += ConstantOffset; 3849 3850 // Match the base operand of the GEP. 3851 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3852 // If it couldn't be matched, just stuff the value in a register. 3853 if (AddrMode.HasBaseReg) { 3854 AddrMode = BackupAddrMode; 3855 AddrModeInsts.resize(OldSize); 3856 return false; 3857 } 3858 AddrMode.HasBaseReg = true; 3859 AddrMode.BaseReg = AddrInst->getOperand(0); 3860 } 3861 3862 // Match the remaining variable portion of the GEP. 3863 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3864 Depth)) { 3865 // If it couldn't be matched, try stuffing the base into a register 3866 // instead of matching it, and retrying the match of the scale. 3867 AddrMode = BackupAddrMode; 3868 AddrModeInsts.resize(OldSize); 3869 if (AddrMode.HasBaseReg) 3870 return false; 3871 AddrMode.HasBaseReg = true; 3872 AddrMode.BaseReg = AddrInst->getOperand(0); 3873 AddrMode.BaseOffs += ConstantOffset; 3874 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3875 VariableScale, Depth)) { 3876 // If even that didn't work, bail. 3877 AddrMode = BackupAddrMode; 3878 AddrModeInsts.resize(OldSize); 3879 return false; 3880 } 3881 } 3882 3883 return true; 3884 } 3885 case Instruction::SExt: 3886 case Instruction::ZExt: { 3887 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3888 if (!Ext) 3889 return false; 3890 3891 // Try to move this ext out of the way of the addressing mode. 3892 // Ask for a method for doing so. 3893 TypePromotionHelper::Action TPH = 3894 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3895 if (!TPH) 3896 return false; 3897 3898 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3899 TPT.getRestorationPoint(); 3900 unsigned CreatedInstsCost = 0; 3901 unsigned ExtCost = !TLI.isExtFree(Ext); 3902 Value *PromotedOperand = 3903 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3904 // SExt has been moved away. 3905 // Thus either it will be rematched later in the recursive calls or it is 3906 // gone. Anyway, we must not fold it into the addressing mode at this point. 3907 // E.g., 3908 // op = add opnd, 1 3909 // idx = ext op 3910 // addr = gep base, idx 3911 // is now: 3912 // promotedOpnd = ext opnd <- no match here 3913 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3914 // addr = gep base, op <- match 3915 if (MovedAway) 3916 *MovedAway = true; 3917 3918 assert(PromotedOperand && 3919 "TypePromotionHelper should have filtered out those cases"); 3920 3921 ExtAddrMode BackupAddrMode = AddrMode; 3922 unsigned OldSize = AddrModeInsts.size(); 3923 3924 if (!matchAddr(PromotedOperand, Depth) || 3925 // The total of the new cost is equal to the cost of the created 3926 // instructions. 3927 // The total of the old cost is equal to the cost of the extension plus 3928 // what we have saved in the addressing mode. 3929 !isPromotionProfitable(CreatedInstsCost, 3930 ExtCost + (AddrModeInsts.size() - OldSize), 3931 PromotedOperand)) { 3932 AddrMode = BackupAddrMode; 3933 AddrModeInsts.resize(OldSize); 3934 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3935 TPT.rollback(LastKnownGood); 3936 return false; 3937 } 3938 return true; 3939 } 3940 } 3941 return false; 3942 } 3943 3944 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3945 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3946 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3947 /// for the target. 3948 /// 3949 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3950 // Start a transaction at this point that we will rollback if the matching 3951 // fails. 3952 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3953 TPT.getRestorationPoint(); 3954 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3955 // Fold in immediates if legal for the target. 3956 AddrMode.BaseOffs += CI->getSExtValue(); 3957 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3958 return true; 3959 AddrMode.BaseOffs -= CI->getSExtValue(); 3960 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3961 // If this is a global variable, try to fold it into the addressing mode. 3962 if (!AddrMode.BaseGV) { 3963 AddrMode.BaseGV = GV; 3964 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3965 return true; 3966 AddrMode.BaseGV = nullptr; 3967 } 3968 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3969 ExtAddrMode BackupAddrMode = AddrMode; 3970 unsigned OldSize = AddrModeInsts.size(); 3971 3972 // Check to see if it is possible to fold this operation. 3973 bool MovedAway = false; 3974 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3975 // This instruction may have been moved away. If so, there is nothing 3976 // to check here. 3977 if (MovedAway) 3978 return true; 3979 // Okay, it's possible to fold this. Check to see if it is actually 3980 // *profitable* to do so. We use a simple cost model to avoid increasing 3981 // register pressure too much. 3982 if (I->hasOneUse() || 3983 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3984 AddrModeInsts.push_back(I); 3985 return true; 3986 } 3987 3988 // It isn't profitable to do this, roll back. 3989 //cerr << "NOT FOLDING: " << *I; 3990 AddrMode = BackupAddrMode; 3991 AddrModeInsts.resize(OldSize); 3992 TPT.rollback(LastKnownGood); 3993 } 3994 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3995 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3996 return true; 3997 TPT.rollback(LastKnownGood); 3998 } else if (isa<ConstantPointerNull>(Addr)) { 3999 // Null pointer gets folded without affecting the addressing mode. 4000 return true; 4001 } 4002 4003 // Worse case, the target should support [reg] addressing modes. :) 4004 if (!AddrMode.HasBaseReg) { 4005 AddrMode.HasBaseReg = true; 4006 AddrMode.BaseReg = Addr; 4007 // Still check for legality in case the target supports [imm] but not [i+r]. 4008 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4009 return true; 4010 AddrMode.HasBaseReg = false; 4011 AddrMode.BaseReg = nullptr; 4012 } 4013 4014 // If the base register is already taken, see if we can do [r+r]. 4015 if (AddrMode.Scale == 0) { 4016 AddrMode.Scale = 1; 4017 AddrMode.ScaledReg = Addr; 4018 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4019 return true; 4020 AddrMode.Scale = 0; 4021 AddrMode.ScaledReg = nullptr; 4022 } 4023 // Couldn't match. 4024 TPT.rollback(LastKnownGood); 4025 return false; 4026 } 4027 4028 /// Check to see if all uses of OpVal by the specified inline asm call are due 4029 /// to memory operands. If so, return true, otherwise return false. 4030 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4031 const TargetLowering &TLI, 4032 const TargetRegisterInfo &TRI) { 4033 const Function *F = CI->getFunction(); 4034 TargetLowering::AsmOperandInfoVector TargetConstraints = 4035 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4036 ImmutableCallSite(CI)); 4037 4038 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4039 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4040 4041 // Compute the constraint code and ConstraintType to use. 4042 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4043 4044 // If this asm operand is our Value*, and if it isn't an indirect memory 4045 // operand, we can't fold it! 4046 if (OpInfo.CallOperandVal == OpVal && 4047 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4048 !OpInfo.isIndirect)) 4049 return false; 4050 } 4051 4052 return true; 4053 } 4054 4055 // Max number of memory uses to look at before aborting the search to conserve 4056 // compile time. 4057 static constexpr int MaxMemoryUsesToScan = 20; 4058 4059 /// Recursively walk all the uses of I until we find a memory use. 4060 /// If we find an obviously non-foldable instruction, return true. 4061 /// Add the ultimately found memory instructions to MemoryUses. 4062 static bool FindAllMemoryUses( 4063 Instruction *I, 4064 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4065 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4066 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4067 // If we already considered this instruction, we're done. 4068 if (!ConsideredInsts.insert(I).second) 4069 return false; 4070 4071 // If this is an obviously unfoldable instruction, bail out. 4072 if (!MightBeFoldableInst(I)) 4073 return true; 4074 4075 const bool OptSize = I->getFunction()->optForSize(); 4076 4077 // Loop over all the uses, recursively processing them. 4078 for (Use &U : I->uses()) { 4079 // Conservatively return true if we're seeing a large number or a deep chain 4080 // of users. This avoids excessive compilation times in pathological cases. 4081 if (SeenInsts++ >= MaxMemoryUsesToScan) 4082 return true; 4083 4084 Instruction *UserI = cast<Instruction>(U.getUser()); 4085 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4086 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4087 continue; 4088 } 4089 4090 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4091 unsigned opNo = U.getOperandNo(); 4092 if (opNo != StoreInst::getPointerOperandIndex()) 4093 return true; // Storing addr, not into addr. 4094 MemoryUses.push_back(std::make_pair(SI, opNo)); 4095 continue; 4096 } 4097 4098 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4099 unsigned opNo = U.getOperandNo(); 4100 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4101 return true; // Storing addr, not into addr. 4102 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4103 continue; 4104 } 4105 4106 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4107 unsigned opNo = U.getOperandNo(); 4108 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4109 return true; // Storing addr, not into addr. 4110 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4111 continue; 4112 } 4113 4114 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4115 // If this is a cold call, we can sink the addressing calculation into 4116 // the cold path. See optimizeCallInst 4117 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4118 continue; 4119 4120 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4121 if (!IA) return true; 4122 4123 // If this is a memory operand, we're cool, otherwise bail out. 4124 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4125 return true; 4126 continue; 4127 } 4128 4129 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4130 SeenInsts)) 4131 return true; 4132 } 4133 4134 return false; 4135 } 4136 4137 /// Return true if Val is already known to be live at the use site that we're 4138 /// folding it into. If so, there is no cost to include it in the addressing 4139 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4140 /// instruction already. 4141 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4142 Value *KnownLive2) { 4143 // If Val is either of the known-live values, we know it is live! 4144 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4145 return true; 4146 4147 // All values other than instructions and arguments (e.g. constants) are live. 4148 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4149 4150 // If Val is a constant sized alloca in the entry block, it is live, this is 4151 // true because it is just a reference to the stack/frame pointer, which is 4152 // live for the whole function. 4153 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4154 if (AI->isStaticAlloca()) 4155 return true; 4156 4157 // Check to see if this value is already used in the memory instruction's 4158 // block. If so, it's already live into the block at the very least, so we 4159 // can reasonably fold it. 4160 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4161 } 4162 4163 /// It is possible for the addressing mode of the machine to fold the specified 4164 /// instruction into a load or store that ultimately uses it. 4165 /// However, the specified instruction has multiple uses. 4166 /// Given this, it may actually increase register pressure to fold it 4167 /// into the load. For example, consider this code: 4168 /// 4169 /// X = ... 4170 /// Y = X+1 4171 /// use(Y) -> nonload/store 4172 /// Z = Y+1 4173 /// load Z 4174 /// 4175 /// In this case, Y has multiple uses, and can be folded into the load of Z 4176 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4177 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4178 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4179 /// number of computations either. 4180 /// 4181 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4182 /// X was live across 'load Z' for other reasons, we actually *would* want to 4183 /// fold the addressing mode in the Z case. This would make Y die earlier. 4184 bool AddressingModeMatcher:: 4185 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4186 ExtAddrMode &AMAfter) { 4187 if (IgnoreProfitability) return true; 4188 4189 // AMBefore is the addressing mode before this instruction was folded into it, 4190 // and AMAfter is the addressing mode after the instruction was folded. Get 4191 // the set of registers referenced by AMAfter and subtract out those 4192 // referenced by AMBefore: this is the set of values which folding in this 4193 // address extends the lifetime of. 4194 // 4195 // Note that there are only two potential values being referenced here, 4196 // BaseReg and ScaleReg (global addresses are always available, as are any 4197 // folded immediates). 4198 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4199 4200 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4201 // lifetime wasn't extended by adding this instruction. 4202 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4203 BaseReg = nullptr; 4204 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4205 ScaledReg = nullptr; 4206 4207 // If folding this instruction (and it's subexprs) didn't extend any live 4208 // ranges, we're ok with it. 4209 if (!BaseReg && !ScaledReg) 4210 return true; 4211 4212 // If all uses of this instruction can have the address mode sunk into them, 4213 // we can remove the addressing mode and effectively trade one live register 4214 // for another (at worst.) In this context, folding an addressing mode into 4215 // the use is just a particularly nice way of sinking it. 4216 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4217 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4218 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4219 return false; // Has a non-memory, non-foldable use! 4220 4221 // Now that we know that all uses of this instruction are part of a chain of 4222 // computation involving only operations that could theoretically be folded 4223 // into a memory use, loop over each of these memory operation uses and see 4224 // if they could *actually* fold the instruction. The assumption is that 4225 // addressing modes are cheap and that duplicating the computation involved 4226 // many times is worthwhile, even on a fastpath. For sinking candidates 4227 // (i.e. cold call sites), this serves as a way to prevent excessive code 4228 // growth since most architectures have some reasonable small and fast way to 4229 // compute an effective address. (i.e LEA on x86) 4230 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4231 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4232 Instruction *User = MemoryUses[i].first; 4233 unsigned OpNo = MemoryUses[i].second; 4234 4235 // Get the access type of this use. If the use isn't a pointer, we don't 4236 // know what it accesses. 4237 Value *Address = User->getOperand(OpNo); 4238 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4239 if (!AddrTy) 4240 return false; 4241 Type *AddressAccessTy = AddrTy->getElementType(); 4242 unsigned AS = AddrTy->getAddressSpace(); 4243 4244 // Do a match against the root of this address, ignoring profitability. This 4245 // will tell us if the addressing mode for the memory operation will 4246 // *actually* cover the shared instruction. 4247 ExtAddrMode Result; 4248 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4249 0); 4250 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4251 TPT.getRestorationPoint(); 4252 AddressingModeMatcher Matcher( 4253 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4254 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4255 Matcher.IgnoreProfitability = true; 4256 bool Success = Matcher.matchAddr(Address, 0); 4257 (void)Success; assert(Success && "Couldn't select *anything*?"); 4258 4259 // The match was to check the profitability, the changes made are not 4260 // part of the original matcher. Therefore, they should be dropped 4261 // otherwise the original matcher will not present the right state. 4262 TPT.rollback(LastKnownGood); 4263 4264 // If the match didn't cover I, then it won't be shared by it. 4265 if (!is_contained(MatchedAddrModeInsts, I)) 4266 return false; 4267 4268 MatchedAddrModeInsts.clear(); 4269 } 4270 4271 return true; 4272 } 4273 4274 /// Return true if the specified values are defined in a 4275 /// different basic block than BB. 4276 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4277 if (Instruction *I = dyn_cast<Instruction>(V)) 4278 return I->getParent() != BB; 4279 return false; 4280 } 4281 4282 /// Sink addressing mode computation immediate before MemoryInst if doing so 4283 /// can be done without increasing register pressure. The need for the 4284 /// register pressure constraint means this can end up being an all or nothing 4285 /// decision for all uses of the same addressing computation. 4286 /// 4287 /// Load and Store Instructions often have addressing modes that can do 4288 /// significant amounts of computation. As such, instruction selection will try 4289 /// to get the load or store to do as much computation as possible for the 4290 /// program. The problem is that isel can only see within a single block. As 4291 /// such, we sink as much legal addressing mode work into the block as possible. 4292 /// 4293 /// This method is used to optimize both load/store and inline asms with memory 4294 /// operands. It's also used to sink addressing computations feeding into cold 4295 /// call sites into their (cold) basic block. 4296 /// 4297 /// The motivation for handling sinking into cold blocks is that doing so can 4298 /// both enable other address mode sinking (by satisfying the register pressure 4299 /// constraint above), and reduce register pressure globally (by removing the 4300 /// addressing mode computation from the fast path entirely.). 4301 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4302 Type *AccessTy, unsigned AddrSpace) { 4303 Value *Repl = Addr; 4304 4305 // Try to collapse single-value PHI nodes. This is necessary to undo 4306 // unprofitable PRE transformations. 4307 SmallVector<Value*, 8> worklist; 4308 SmallPtrSet<Value*, 16> Visited; 4309 worklist.push_back(Addr); 4310 4311 // Use a worklist to iteratively look through PHI and select nodes, and 4312 // ensure that the addressing mode obtained from the non-PHI/select roots of 4313 // the graph are compatible. 4314 bool PhiOrSelectSeen = false; 4315 SmallVector<Instruction*, 16> AddrModeInsts; 4316 const SimplifyQuery SQ(*DL, TLInfo); 4317 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4318 TypePromotionTransaction TPT(RemovedInsts); 4319 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4320 TPT.getRestorationPoint(); 4321 while (!worklist.empty()) { 4322 Value *V = worklist.back(); 4323 worklist.pop_back(); 4324 4325 // We allow traversing cyclic Phi nodes. 4326 // In case of success after this loop we ensure that traversing through 4327 // Phi nodes ends up with all cases to compute address of the form 4328 // BaseGV + Base + Scale * Index + Offset 4329 // where Scale and Offset are constans and BaseGV, Base and Index 4330 // are exactly the same Values in all cases. 4331 // It means that BaseGV, Scale and Offset dominate our memory instruction 4332 // and have the same value as they had in address computation represented 4333 // as Phi. So we can safely sink address computation to memory instruction. 4334 if (!Visited.insert(V).second) 4335 continue; 4336 4337 // For a PHI node, push all of its incoming values. 4338 if (PHINode *P = dyn_cast<PHINode>(V)) { 4339 for (Value *IncValue : P->incoming_values()) 4340 worklist.push_back(IncValue); 4341 PhiOrSelectSeen = true; 4342 continue; 4343 } 4344 // Similar for select. 4345 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4346 worklist.push_back(SI->getFalseValue()); 4347 worklist.push_back(SI->getTrueValue()); 4348 PhiOrSelectSeen = true; 4349 continue; 4350 } 4351 4352 // For non-PHIs, determine the addressing mode being computed. Note that 4353 // the result may differ depending on what other uses our candidate 4354 // addressing instructions might have. 4355 AddrModeInsts.clear(); 4356 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4357 0); 4358 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4359 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4360 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4361 4362 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4363 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4364 !NewGEPBases.count(GEP)) { 4365 // If splitting the underlying data structure can reduce the offset of a 4366 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4367 // previously split data structures. 4368 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4369 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4370 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4371 } 4372 4373 NewAddrMode.OriginalValue = V; 4374 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4375 break; 4376 } 4377 4378 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4379 // or we have multiple but either couldn't combine them or combining them 4380 // wouldn't do anything useful, bail out now. 4381 if (!AddrModes.combineAddrModes()) { 4382 TPT.rollback(LastKnownGood); 4383 return false; 4384 } 4385 TPT.commit(); 4386 4387 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4388 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4389 4390 // If all the instructions matched are already in this BB, don't do anything. 4391 // If we saw a Phi node then it is not local definitely, and if we saw a select 4392 // then we want to push the address calculation past it even if it's already 4393 // in this BB. 4394 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4395 return IsNonLocalValue(V, MemoryInst->getParent()); 4396 })) { 4397 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4398 return false; 4399 } 4400 4401 // Insert this computation right after this user. Since our caller is 4402 // scanning from the top of the BB to the bottom, reuse of the expr are 4403 // guaranteed to happen later. 4404 IRBuilder<> Builder(MemoryInst); 4405 4406 // Now that we determined the addressing expression we want to use and know 4407 // that we have to sink it into this block. Check to see if we have already 4408 // done this for some other load/store instr in this block. If so, reuse 4409 // the computation. Before attempting reuse, check if the address is valid 4410 // as it may have been erased. 4411 4412 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4413 4414 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4415 if (SunkAddr) { 4416 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4417 << *MemoryInst << "\n"); 4418 if (SunkAddr->getType() != Addr->getType()) 4419 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4420 } else if (AddrSinkUsingGEPs || 4421 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4422 // By default, we use the GEP-based method when AA is used later. This 4423 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4424 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4425 << *MemoryInst << "\n"); 4426 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4427 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4428 4429 // First, find the pointer. 4430 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4431 ResultPtr = AddrMode.BaseReg; 4432 AddrMode.BaseReg = nullptr; 4433 } 4434 4435 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4436 // We can't add more than one pointer together, nor can we scale a 4437 // pointer (both of which seem meaningless). 4438 if (ResultPtr || AddrMode.Scale != 1) 4439 return false; 4440 4441 ResultPtr = AddrMode.ScaledReg; 4442 AddrMode.Scale = 0; 4443 } 4444 4445 // It is only safe to sign extend the BaseReg if we know that the math 4446 // required to create it did not overflow before we extend it. Since 4447 // the original IR value was tossed in favor of a constant back when 4448 // the AddrMode was created we need to bail out gracefully if widths 4449 // do not match instead of extending it. 4450 // 4451 // (See below for code to add the scale.) 4452 if (AddrMode.Scale) { 4453 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4454 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4455 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4456 return false; 4457 } 4458 4459 if (AddrMode.BaseGV) { 4460 if (ResultPtr) 4461 return false; 4462 4463 ResultPtr = AddrMode.BaseGV; 4464 } 4465 4466 // If the real base value actually came from an inttoptr, then the matcher 4467 // will look through it and provide only the integer value. In that case, 4468 // use it here. 4469 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4470 if (!ResultPtr && AddrMode.BaseReg) { 4471 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4472 "sunkaddr"); 4473 AddrMode.BaseReg = nullptr; 4474 } else if (!ResultPtr && AddrMode.Scale == 1) { 4475 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4476 "sunkaddr"); 4477 AddrMode.Scale = 0; 4478 } 4479 } 4480 4481 if (!ResultPtr && 4482 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4483 SunkAddr = Constant::getNullValue(Addr->getType()); 4484 } else if (!ResultPtr) { 4485 return false; 4486 } else { 4487 Type *I8PtrTy = 4488 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4489 Type *I8Ty = Builder.getInt8Ty(); 4490 4491 // Start with the base register. Do this first so that subsequent address 4492 // matching finds it last, which will prevent it from trying to match it 4493 // as the scaled value in case it happens to be a mul. That would be 4494 // problematic if we've sunk a different mul for the scale, because then 4495 // we'd end up sinking both muls. 4496 if (AddrMode.BaseReg) { 4497 Value *V = AddrMode.BaseReg; 4498 if (V->getType() != IntPtrTy) 4499 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4500 4501 ResultIndex = V; 4502 } 4503 4504 // Add the scale value. 4505 if (AddrMode.Scale) { 4506 Value *V = AddrMode.ScaledReg; 4507 if (V->getType() == IntPtrTy) { 4508 // done. 4509 } else { 4510 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4511 cast<IntegerType>(V->getType())->getBitWidth() && 4512 "We can't transform if ScaledReg is too narrow"); 4513 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4514 } 4515 4516 if (AddrMode.Scale != 1) 4517 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4518 "sunkaddr"); 4519 if (ResultIndex) 4520 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4521 else 4522 ResultIndex = V; 4523 } 4524 4525 // Add in the Base Offset if present. 4526 if (AddrMode.BaseOffs) { 4527 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4528 if (ResultIndex) { 4529 // We need to add this separately from the scale above to help with 4530 // SDAG consecutive load/store merging. 4531 if (ResultPtr->getType() != I8PtrTy) 4532 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4533 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4534 } 4535 4536 ResultIndex = V; 4537 } 4538 4539 if (!ResultIndex) { 4540 SunkAddr = ResultPtr; 4541 } else { 4542 if (ResultPtr->getType() != I8PtrTy) 4543 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4544 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4545 } 4546 4547 if (SunkAddr->getType() != Addr->getType()) 4548 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4549 } 4550 } else { 4551 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4552 // non-integral pointers, so in that case bail out now. 4553 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4554 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4555 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4556 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4557 if (DL->isNonIntegralPointerType(Addr->getType()) || 4558 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4559 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4560 (AddrMode.BaseGV && 4561 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4562 return false; 4563 4564 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4565 << *MemoryInst << "\n"); 4566 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4567 Value *Result = nullptr; 4568 4569 // Start with the base register. Do this first so that subsequent address 4570 // matching finds it last, which will prevent it from trying to match it 4571 // as the scaled value in case it happens to be a mul. That would be 4572 // problematic if we've sunk a different mul for the scale, because then 4573 // we'd end up sinking both muls. 4574 if (AddrMode.BaseReg) { 4575 Value *V = AddrMode.BaseReg; 4576 if (V->getType()->isPointerTy()) 4577 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4578 if (V->getType() != IntPtrTy) 4579 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4580 Result = V; 4581 } 4582 4583 // Add the scale value. 4584 if (AddrMode.Scale) { 4585 Value *V = AddrMode.ScaledReg; 4586 if (V->getType() == IntPtrTy) { 4587 // done. 4588 } else if (V->getType()->isPointerTy()) { 4589 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4590 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4591 cast<IntegerType>(V->getType())->getBitWidth()) { 4592 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4593 } else { 4594 // It is only safe to sign extend the BaseReg if we know that the math 4595 // required to create it did not overflow before we extend it. Since 4596 // the original IR value was tossed in favor of a constant back when 4597 // the AddrMode was created we need to bail out gracefully if widths 4598 // do not match instead of extending it. 4599 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4600 if (I && (Result != AddrMode.BaseReg)) 4601 I->eraseFromParent(); 4602 return false; 4603 } 4604 if (AddrMode.Scale != 1) 4605 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4606 "sunkaddr"); 4607 if (Result) 4608 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4609 else 4610 Result = V; 4611 } 4612 4613 // Add in the BaseGV if present. 4614 if (AddrMode.BaseGV) { 4615 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4616 if (Result) 4617 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4618 else 4619 Result = V; 4620 } 4621 4622 // Add in the Base Offset if present. 4623 if (AddrMode.BaseOffs) { 4624 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4625 if (Result) 4626 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4627 else 4628 Result = V; 4629 } 4630 4631 if (!Result) 4632 SunkAddr = Constant::getNullValue(Addr->getType()); 4633 else 4634 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4635 } 4636 4637 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4638 // Store the newly computed address into the cache. In the case we reused a 4639 // value, this should be idempotent. 4640 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4641 4642 // If we have no uses, recursively delete the value and all dead instructions 4643 // using it. 4644 if (Repl->use_empty()) { 4645 // This can cause recursive deletion, which can invalidate our iterator. 4646 // Use a WeakTrackingVH to hold onto it in case this happens. 4647 Value *CurValue = &*CurInstIterator; 4648 WeakTrackingVH IterHandle(CurValue); 4649 BasicBlock *BB = CurInstIterator->getParent(); 4650 4651 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4652 4653 if (IterHandle != CurValue) { 4654 // If the iterator instruction was recursively deleted, start over at the 4655 // start of the block. 4656 CurInstIterator = BB->begin(); 4657 SunkAddrs.clear(); 4658 } 4659 } 4660 ++NumMemoryInsts; 4661 return true; 4662 } 4663 4664 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4665 /// address computing into the block when possible / profitable. 4666 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4667 bool MadeChange = false; 4668 4669 const TargetRegisterInfo *TRI = 4670 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4671 TargetLowering::AsmOperandInfoVector TargetConstraints = 4672 TLI->ParseConstraints(*DL, TRI, CS); 4673 unsigned ArgNo = 0; 4674 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4675 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4676 4677 // Compute the constraint code and ConstraintType to use. 4678 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4679 4680 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4681 OpInfo.isIndirect) { 4682 Value *OpVal = CS->getArgOperand(ArgNo++); 4683 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4684 } else if (OpInfo.Type == InlineAsm::isInput) 4685 ArgNo++; 4686 } 4687 4688 return MadeChange; 4689 } 4690 4691 /// Check if all the uses of \p Val are equivalent (or free) zero or 4692 /// sign extensions. 4693 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4694 assert(!Val->use_empty() && "Input must have at least one use"); 4695 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4696 bool IsSExt = isa<SExtInst>(FirstUser); 4697 Type *ExtTy = FirstUser->getType(); 4698 for (const User *U : Val->users()) { 4699 const Instruction *UI = cast<Instruction>(U); 4700 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4701 return false; 4702 Type *CurTy = UI->getType(); 4703 // Same input and output types: Same instruction after CSE. 4704 if (CurTy == ExtTy) 4705 continue; 4706 4707 // If IsSExt is true, we are in this situation: 4708 // a = Val 4709 // b = sext ty1 a to ty2 4710 // c = sext ty1 a to ty3 4711 // Assuming ty2 is shorter than ty3, this could be turned into: 4712 // a = Val 4713 // b = sext ty1 a to ty2 4714 // c = sext ty2 b to ty3 4715 // However, the last sext is not free. 4716 if (IsSExt) 4717 return false; 4718 4719 // This is a ZExt, maybe this is free to extend from one type to another. 4720 // In that case, we would not account for a different use. 4721 Type *NarrowTy; 4722 Type *LargeTy; 4723 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4724 CurTy->getScalarType()->getIntegerBitWidth()) { 4725 NarrowTy = CurTy; 4726 LargeTy = ExtTy; 4727 } else { 4728 NarrowTy = ExtTy; 4729 LargeTy = CurTy; 4730 } 4731 4732 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4733 return false; 4734 } 4735 // All uses are the same or can be derived from one another for free. 4736 return true; 4737 } 4738 4739 /// Try to speculatively promote extensions in \p Exts and continue 4740 /// promoting through newly promoted operands recursively as far as doing so is 4741 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4742 /// When some promotion happened, \p TPT contains the proper state to revert 4743 /// them. 4744 /// 4745 /// \return true if some promotion happened, false otherwise. 4746 bool CodeGenPrepare::tryToPromoteExts( 4747 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4748 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4749 unsigned CreatedInstsCost) { 4750 bool Promoted = false; 4751 4752 // Iterate over all the extensions to try to promote them. 4753 for (auto I : Exts) { 4754 // Early check if we directly have ext(load). 4755 if (isa<LoadInst>(I->getOperand(0))) { 4756 ProfitablyMovedExts.push_back(I); 4757 continue; 4758 } 4759 4760 // Check whether or not we want to do any promotion. The reason we have 4761 // this check inside the for loop is to catch the case where an extension 4762 // is directly fed by a load because in such case the extension can be moved 4763 // up without any promotion on its operands. 4764 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4765 return false; 4766 4767 // Get the action to perform the promotion. 4768 TypePromotionHelper::Action TPH = 4769 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4770 // Check if we can promote. 4771 if (!TPH) { 4772 // Save the current extension as we cannot move up through its operand. 4773 ProfitablyMovedExts.push_back(I); 4774 continue; 4775 } 4776 4777 // Save the current state. 4778 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4779 TPT.getRestorationPoint(); 4780 SmallVector<Instruction *, 4> NewExts; 4781 unsigned NewCreatedInstsCost = 0; 4782 unsigned ExtCost = !TLI->isExtFree(I); 4783 // Promote. 4784 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4785 &NewExts, nullptr, *TLI); 4786 assert(PromotedVal && 4787 "TypePromotionHelper should have filtered out those cases"); 4788 4789 // We would be able to merge only one extension in a load. 4790 // Therefore, if we have more than 1 new extension we heuristically 4791 // cut this search path, because it means we degrade the code quality. 4792 // With exactly 2, the transformation is neutral, because we will merge 4793 // one extension but leave one. However, we optimistically keep going, 4794 // because the new extension may be removed too. 4795 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4796 // FIXME: It would be possible to propagate a negative value instead of 4797 // conservatively ceiling it to 0. 4798 TotalCreatedInstsCost = 4799 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4800 if (!StressExtLdPromotion && 4801 (TotalCreatedInstsCost > 1 || 4802 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4803 // This promotion is not profitable, rollback to the previous state, and 4804 // save the current extension in ProfitablyMovedExts as the latest 4805 // speculative promotion turned out to be unprofitable. 4806 TPT.rollback(LastKnownGood); 4807 ProfitablyMovedExts.push_back(I); 4808 continue; 4809 } 4810 // Continue promoting NewExts as far as doing so is profitable. 4811 SmallVector<Instruction *, 2> NewlyMovedExts; 4812 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4813 bool NewPromoted = false; 4814 for (auto ExtInst : NewlyMovedExts) { 4815 Instruction *MovedExt = cast<Instruction>(ExtInst); 4816 Value *ExtOperand = MovedExt->getOperand(0); 4817 // If we have reached to a load, we need this extra profitability check 4818 // as it could potentially be merged into an ext(load). 4819 if (isa<LoadInst>(ExtOperand) && 4820 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4821 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4822 continue; 4823 4824 ProfitablyMovedExts.push_back(MovedExt); 4825 NewPromoted = true; 4826 } 4827 4828 // If none of speculative promotions for NewExts is profitable, rollback 4829 // and save the current extension (I) as the last profitable extension. 4830 if (!NewPromoted) { 4831 TPT.rollback(LastKnownGood); 4832 ProfitablyMovedExts.push_back(I); 4833 continue; 4834 } 4835 // The promotion is profitable. 4836 Promoted = true; 4837 } 4838 return Promoted; 4839 } 4840 4841 /// Merging redundant sexts when one is dominating the other. 4842 bool CodeGenPrepare::mergeSExts(Function &F) { 4843 DominatorTree DT(F); 4844 bool Changed = false; 4845 for (auto &Entry : ValToSExtendedUses) { 4846 SExts &Insts = Entry.second; 4847 SExts CurPts; 4848 for (Instruction *Inst : Insts) { 4849 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4850 Inst->getOperand(0) != Entry.first) 4851 continue; 4852 bool inserted = false; 4853 for (auto &Pt : CurPts) { 4854 if (DT.dominates(Inst, Pt)) { 4855 Pt->replaceAllUsesWith(Inst); 4856 RemovedInsts.insert(Pt); 4857 Pt->removeFromParent(); 4858 Pt = Inst; 4859 inserted = true; 4860 Changed = true; 4861 break; 4862 } 4863 if (!DT.dominates(Pt, Inst)) 4864 // Give up if we need to merge in a common dominator as the 4865 // expermients show it is not profitable. 4866 continue; 4867 Inst->replaceAllUsesWith(Pt); 4868 RemovedInsts.insert(Inst); 4869 Inst->removeFromParent(); 4870 inserted = true; 4871 Changed = true; 4872 break; 4873 } 4874 if (!inserted) 4875 CurPts.push_back(Inst); 4876 } 4877 } 4878 return Changed; 4879 } 4880 4881 // Spliting large data structures so that the GEPs accessing them can have 4882 // smaller offsets so that they can be sunk to the same blocks as their users. 4883 // For example, a large struct starting from %base is splitted into two parts 4884 // where the second part starts from %new_base. 4885 // 4886 // Before: 4887 // BB0: 4888 // %base = 4889 // 4890 // BB1: 4891 // %gep0 = gep %base, off0 4892 // %gep1 = gep %base, off1 4893 // %gep2 = gep %base, off2 4894 // 4895 // BB2: 4896 // %load1 = load %gep0 4897 // %load2 = load %gep1 4898 // %load3 = load %gep2 4899 // 4900 // After: 4901 // BB0: 4902 // %base = 4903 // %new_base = gep %base, off0 4904 // 4905 // BB1: 4906 // %new_gep0 = %new_base 4907 // %new_gep1 = gep %new_base, off1 - off0 4908 // %new_gep2 = gep %new_base, off2 - off0 4909 // 4910 // BB2: 4911 // %load1 = load i32, i32* %new_gep0 4912 // %load2 = load i32, i32* %new_gep1 4913 // %load3 = load i32, i32* %new_gep2 4914 // 4915 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4916 // their offsets are smaller enough to fit into the addressing mode. 4917 bool CodeGenPrepare::splitLargeGEPOffsets() { 4918 bool Changed = false; 4919 for (auto &Entry : LargeOffsetGEPMap) { 4920 Value *OldBase = Entry.first; 4921 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4922 &LargeOffsetGEPs = Entry.second; 4923 auto compareGEPOffset = 4924 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4925 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4926 if (LHS.first == RHS.first) 4927 return false; 4928 if (LHS.second != RHS.second) 4929 return LHS.second < RHS.second; 4930 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4931 }; 4932 // Sorting all the GEPs of the same data structures based on the offsets. 4933 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4934 compareGEPOffset); 4935 LargeOffsetGEPs.erase( 4936 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 4937 LargeOffsetGEPs.end()); 4938 // Skip if all the GEPs have the same offsets. 4939 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 4940 continue; 4941 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 4942 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 4943 Value *NewBaseGEP = nullptr; 4944 4945 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 4946 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 4947 GetElementPtrInst *GEP = LargeOffsetGEP->first; 4948 int64_t Offset = LargeOffsetGEP->second; 4949 if (Offset != BaseOffset) { 4950 TargetLowering::AddrMode AddrMode; 4951 AddrMode.BaseOffs = Offset - BaseOffset; 4952 // The result type of the GEP might not be the type of the memory 4953 // access. 4954 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 4955 GEP->getResultElementType(), 4956 GEP->getAddressSpace())) { 4957 // We need to create a new base if the offset to the current base is 4958 // too large to fit into the addressing mode. So, a very large struct 4959 // may be splitted into several parts. 4960 BaseGEP = GEP; 4961 BaseOffset = Offset; 4962 NewBaseGEP = nullptr; 4963 } 4964 } 4965 4966 // Generate a new GEP to replace the current one. 4967 IRBuilder<> Builder(GEP); 4968 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 4969 Type *I8PtrTy = 4970 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 4971 Type *I8Ty = Builder.getInt8Ty(); 4972 4973 if (!NewBaseGEP) { 4974 // Create a new base if we don't have one yet. Find the insertion 4975 // pointer for the new base first. 4976 BasicBlock::iterator NewBaseInsertPt; 4977 BasicBlock *NewBaseInsertBB; 4978 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 4979 // If the base of the struct is an instruction, the new base will be 4980 // inserted close to it. 4981 NewBaseInsertBB = BaseI->getParent(); 4982 if (isa<PHINode>(BaseI)) 4983 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4984 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 4985 NewBaseInsertBB = 4986 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 4987 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4988 } else 4989 NewBaseInsertPt = std::next(BaseI->getIterator()); 4990 } else { 4991 // If the current base is an argument or global value, the new base 4992 // will be inserted to the entry block. 4993 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 4994 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4995 } 4996 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 4997 // Create a new base. 4998 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 4999 NewBaseGEP = OldBase; 5000 if (NewBaseGEP->getType() != I8PtrTy) 5001 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5002 NewBaseGEP = 5003 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5004 NewGEPBases.insert(NewBaseGEP); 5005 } 5006 5007 Value *NewGEP = NewBaseGEP; 5008 if (Offset == BaseOffset) { 5009 if (GEP->getType() != I8PtrTy) 5010 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5011 } else { 5012 // Calculate the new offset for the new GEP. 5013 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5014 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5015 5016 if (GEP->getType() != I8PtrTy) 5017 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5018 } 5019 GEP->replaceAllUsesWith(NewGEP); 5020 LargeOffsetGEPID.erase(GEP); 5021 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5022 GEP->eraseFromParent(); 5023 Changed = true; 5024 } 5025 } 5026 return Changed; 5027 } 5028 5029 /// Return true, if an ext(load) can be formed from an extension in 5030 /// \p MovedExts. 5031 bool CodeGenPrepare::canFormExtLd( 5032 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5033 Instruction *&Inst, bool HasPromoted) { 5034 for (auto *MovedExtInst : MovedExts) { 5035 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5036 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5037 Inst = MovedExtInst; 5038 break; 5039 } 5040 } 5041 if (!LI) 5042 return false; 5043 5044 // If they're already in the same block, there's nothing to do. 5045 // Make the cheap checks first if we did not promote. 5046 // If we promoted, we need to check if it is indeed profitable. 5047 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5048 return false; 5049 5050 return TLI->isExtLoad(LI, Inst, *DL); 5051 } 5052 5053 /// Move a zext or sext fed by a load into the same basic block as the load, 5054 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5055 /// extend into the load. 5056 /// 5057 /// E.g., 5058 /// \code 5059 /// %ld = load i32* %addr 5060 /// %add = add nuw i32 %ld, 4 5061 /// %zext = zext i32 %add to i64 5062 // \endcode 5063 /// => 5064 /// \code 5065 /// %ld = load i32* %addr 5066 /// %zext = zext i32 %ld to i64 5067 /// %add = add nuw i64 %zext, 4 5068 /// \encode 5069 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5070 /// allow us to match zext(load i32*) to i64. 5071 /// 5072 /// Also, try to promote the computations used to obtain a sign extended 5073 /// value used into memory accesses. 5074 /// E.g., 5075 /// \code 5076 /// a = add nsw i32 b, 3 5077 /// d = sext i32 a to i64 5078 /// e = getelementptr ..., i64 d 5079 /// \endcode 5080 /// => 5081 /// \code 5082 /// f = sext i32 b to i64 5083 /// a = add nsw i64 f, 3 5084 /// e = getelementptr ..., i64 a 5085 /// \endcode 5086 /// 5087 /// \p Inst[in/out] the extension may be modified during the process if some 5088 /// promotions apply. 5089 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5090 // ExtLoad formation and address type promotion infrastructure requires TLI to 5091 // be effective. 5092 if (!TLI) 5093 return false; 5094 5095 bool AllowPromotionWithoutCommonHeader = false; 5096 /// See if it is an interesting sext operations for the address type 5097 /// promotion before trying to promote it, e.g., the ones with the right 5098 /// type and used in memory accesses. 5099 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5100 *Inst, AllowPromotionWithoutCommonHeader); 5101 TypePromotionTransaction TPT(RemovedInsts); 5102 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5103 TPT.getRestorationPoint(); 5104 SmallVector<Instruction *, 1> Exts; 5105 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5106 Exts.push_back(Inst); 5107 5108 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5109 5110 // Look for a load being extended. 5111 LoadInst *LI = nullptr; 5112 Instruction *ExtFedByLoad; 5113 5114 // Try to promote a chain of computation if it allows to form an extended 5115 // load. 5116 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5117 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5118 TPT.commit(); 5119 // Move the extend into the same block as the load 5120 ExtFedByLoad->moveAfter(LI); 5121 // CGP does not check if the zext would be speculatively executed when moved 5122 // to the same basic block as the load. Preserving its original location 5123 // would pessimize the debugging experience, as well as negatively impact 5124 // the quality of sample pgo. We don't want to use "line 0" as that has a 5125 // size cost in the line-table section and logically the zext can be seen as 5126 // part of the load. Therefore we conservatively reuse the same debug 5127 // location for the load and the zext. 5128 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5129 ++NumExtsMoved; 5130 Inst = ExtFedByLoad; 5131 return true; 5132 } 5133 5134 // Continue promoting SExts if known as considerable depending on targets. 5135 if (ATPConsiderable && 5136 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5137 HasPromoted, TPT, SpeculativelyMovedExts)) 5138 return true; 5139 5140 TPT.rollback(LastKnownGood); 5141 return false; 5142 } 5143 5144 // Perform address type promotion if doing so is profitable. 5145 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5146 // instructions that sign extended the same initial value. However, if 5147 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5148 // extension is just profitable. 5149 bool CodeGenPrepare::performAddressTypePromotion( 5150 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5151 bool HasPromoted, TypePromotionTransaction &TPT, 5152 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5153 bool Promoted = false; 5154 SmallPtrSet<Instruction *, 1> UnhandledExts; 5155 bool AllSeenFirst = true; 5156 for (auto I : SpeculativelyMovedExts) { 5157 Value *HeadOfChain = I->getOperand(0); 5158 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5159 SeenChainsForSExt.find(HeadOfChain); 5160 // If there is an unhandled SExt which has the same header, try to promote 5161 // it as well. 5162 if (AlreadySeen != SeenChainsForSExt.end()) { 5163 if (AlreadySeen->second != nullptr) 5164 UnhandledExts.insert(AlreadySeen->second); 5165 AllSeenFirst = false; 5166 } 5167 } 5168 5169 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5170 SpeculativelyMovedExts.size() == 1)) { 5171 TPT.commit(); 5172 if (HasPromoted) 5173 Promoted = true; 5174 for (auto I : SpeculativelyMovedExts) { 5175 Value *HeadOfChain = I->getOperand(0); 5176 SeenChainsForSExt[HeadOfChain] = nullptr; 5177 ValToSExtendedUses[HeadOfChain].push_back(I); 5178 } 5179 // Update Inst as promotion happen. 5180 Inst = SpeculativelyMovedExts.pop_back_val(); 5181 } else { 5182 // This is the first chain visited from the header, keep the current chain 5183 // as unhandled. Defer to promote this until we encounter another SExt 5184 // chain derived from the same header. 5185 for (auto I : SpeculativelyMovedExts) { 5186 Value *HeadOfChain = I->getOperand(0); 5187 SeenChainsForSExt[HeadOfChain] = Inst; 5188 } 5189 return false; 5190 } 5191 5192 if (!AllSeenFirst && !UnhandledExts.empty()) 5193 for (auto VisitedSExt : UnhandledExts) { 5194 if (RemovedInsts.count(VisitedSExt)) 5195 continue; 5196 TypePromotionTransaction TPT(RemovedInsts); 5197 SmallVector<Instruction *, 1> Exts; 5198 SmallVector<Instruction *, 2> Chains; 5199 Exts.push_back(VisitedSExt); 5200 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5201 TPT.commit(); 5202 if (HasPromoted) 5203 Promoted = true; 5204 for (auto I : Chains) { 5205 Value *HeadOfChain = I->getOperand(0); 5206 // Mark this as handled. 5207 SeenChainsForSExt[HeadOfChain] = nullptr; 5208 ValToSExtendedUses[HeadOfChain].push_back(I); 5209 } 5210 } 5211 return Promoted; 5212 } 5213 5214 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5215 BasicBlock *DefBB = I->getParent(); 5216 5217 // If the result of a {s|z}ext and its source are both live out, rewrite all 5218 // other uses of the source with result of extension. 5219 Value *Src = I->getOperand(0); 5220 if (Src->hasOneUse()) 5221 return false; 5222 5223 // Only do this xform if truncating is free. 5224 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5225 return false; 5226 5227 // Only safe to perform the optimization if the source is also defined in 5228 // this block. 5229 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5230 return false; 5231 5232 bool DefIsLiveOut = false; 5233 for (User *U : I->users()) { 5234 Instruction *UI = cast<Instruction>(U); 5235 5236 // Figure out which BB this ext is used in. 5237 BasicBlock *UserBB = UI->getParent(); 5238 if (UserBB == DefBB) continue; 5239 DefIsLiveOut = true; 5240 break; 5241 } 5242 if (!DefIsLiveOut) 5243 return false; 5244 5245 // Make sure none of the uses are PHI nodes. 5246 for (User *U : Src->users()) { 5247 Instruction *UI = cast<Instruction>(U); 5248 BasicBlock *UserBB = UI->getParent(); 5249 if (UserBB == DefBB) continue; 5250 // Be conservative. We don't want this xform to end up introducing 5251 // reloads just before load / store instructions. 5252 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5253 return false; 5254 } 5255 5256 // InsertedTruncs - Only insert one trunc in each block once. 5257 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5258 5259 bool MadeChange = false; 5260 for (Use &U : Src->uses()) { 5261 Instruction *User = cast<Instruction>(U.getUser()); 5262 5263 // Figure out which BB this ext is used in. 5264 BasicBlock *UserBB = User->getParent(); 5265 if (UserBB == DefBB) continue; 5266 5267 // Both src and def are live in this block. Rewrite the use. 5268 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5269 5270 if (!InsertedTrunc) { 5271 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5272 assert(InsertPt != UserBB->end()); 5273 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5274 InsertedInsts.insert(InsertedTrunc); 5275 } 5276 5277 // Replace a use of the {s|z}ext source with a use of the result. 5278 U = InsertedTrunc; 5279 ++NumExtUses; 5280 MadeChange = true; 5281 } 5282 5283 return MadeChange; 5284 } 5285 5286 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5287 // just after the load if the target can fold this into one extload instruction, 5288 // with the hope of eliminating some of the other later "and" instructions using 5289 // the loaded value. "and"s that are made trivially redundant by the insertion 5290 // of the new "and" are removed by this function, while others (e.g. those whose 5291 // path from the load goes through a phi) are left for isel to potentially 5292 // remove. 5293 // 5294 // For example: 5295 // 5296 // b0: 5297 // x = load i32 5298 // ... 5299 // b1: 5300 // y = and x, 0xff 5301 // z = use y 5302 // 5303 // becomes: 5304 // 5305 // b0: 5306 // x = load i32 5307 // x' = and x, 0xff 5308 // ... 5309 // b1: 5310 // z = use x' 5311 // 5312 // whereas: 5313 // 5314 // b0: 5315 // x1 = load i32 5316 // ... 5317 // b1: 5318 // x2 = load i32 5319 // ... 5320 // b2: 5321 // x = phi x1, x2 5322 // y = and x, 0xff 5323 // 5324 // becomes (after a call to optimizeLoadExt for each load): 5325 // 5326 // b0: 5327 // x1 = load i32 5328 // x1' = and x1, 0xff 5329 // ... 5330 // b1: 5331 // x2 = load i32 5332 // x2' = and x2, 0xff 5333 // ... 5334 // b2: 5335 // x = phi x1', x2' 5336 // y = and x, 0xff 5337 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5338 if (!Load->isSimple() || 5339 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5340 return false; 5341 5342 // Skip loads we've already transformed. 5343 if (Load->hasOneUse() && 5344 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5345 return false; 5346 5347 // Look at all uses of Load, looking through phis, to determine how many bits 5348 // of the loaded value are needed. 5349 SmallVector<Instruction *, 8> WorkList; 5350 SmallPtrSet<Instruction *, 16> Visited; 5351 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5352 for (auto *U : Load->users()) 5353 WorkList.push_back(cast<Instruction>(U)); 5354 5355 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5356 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5357 APInt DemandBits(BitWidth, 0); 5358 APInt WidestAndBits(BitWidth, 0); 5359 5360 while (!WorkList.empty()) { 5361 Instruction *I = WorkList.back(); 5362 WorkList.pop_back(); 5363 5364 // Break use-def graph loops. 5365 if (!Visited.insert(I).second) 5366 continue; 5367 5368 // For a PHI node, push all of its users. 5369 if (auto *Phi = dyn_cast<PHINode>(I)) { 5370 for (auto *U : Phi->users()) 5371 WorkList.push_back(cast<Instruction>(U)); 5372 continue; 5373 } 5374 5375 switch (I->getOpcode()) { 5376 case Instruction::And: { 5377 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5378 if (!AndC) 5379 return false; 5380 APInt AndBits = AndC->getValue(); 5381 DemandBits |= AndBits; 5382 // Keep track of the widest and mask we see. 5383 if (AndBits.ugt(WidestAndBits)) 5384 WidestAndBits = AndBits; 5385 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5386 AndsToMaybeRemove.push_back(I); 5387 break; 5388 } 5389 5390 case Instruction::Shl: { 5391 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5392 if (!ShlC) 5393 return false; 5394 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5395 DemandBits.setLowBits(BitWidth - ShiftAmt); 5396 break; 5397 } 5398 5399 case Instruction::Trunc: { 5400 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5401 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5402 DemandBits.setLowBits(TruncBitWidth); 5403 break; 5404 } 5405 5406 default: 5407 return false; 5408 } 5409 } 5410 5411 uint32_t ActiveBits = DemandBits.getActiveBits(); 5412 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5413 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5414 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5415 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5416 // followed by an AND. 5417 // TODO: Look into removing this restriction by fixing backends to either 5418 // return false for isLoadExtLegal for i1 or have them select this pattern to 5419 // a single instruction. 5420 // 5421 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5422 // mask, since these are the only ands that will be removed by isel. 5423 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5424 WidestAndBits != DemandBits) 5425 return false; 5426 5427 LLVMContext &Ctx = Load->getType()->getContext(); 5428 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5429 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5430 5431 // Reject cases that won't be matched as extloads. 5432 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5433 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5434 return false; 5435 5436 IRBuilder<> Builder(Load->getNextNode()); 5437 auto *NewAnd = dyn_cast<Instruction>( 5438 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5439 // Mark this instruction as "inserted by CGP", so that other 5440 // optimizations don't touch it. 5441 InsertedInsts.insert(NewAnd); 5442 5443 // Replace all uses of load with new and (except for the use of load in the 5444 // new and itself). 5445 Load->replaceAllUsesWith(NewAnd); 5446 NewAnd->setOperand(0, Load); 5447 5448 // Remove any and instructions that are now redundant. 5449 for (auto *And : AndsToMaybeRemove) 5450 // Check that the and mask is the same as the one we decided to put on the 5451 // new and. 5452 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5453 And->replaceAllUsesWith(NewAnd); 5454 if (&*CurInstIterator == And) 5455 CurInstIterator = std::next(And->getIterator()); 5456 And->eraseFromParent(); 5457 ++NumAndUses; 5458 } 5459 5460 ++NumAndsAdded; 5461 return true; 5462 } 5463 5464 /// Check if V (an operand of a select instruction) is an expensive instruction 5465 /// that is only used once. 5466 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5467 auto *I = dyn_cast<Instruction>(V); 5468 // If it's safe to speculatively execute, then it should not have side 5469 // effects; therefore, it's safe to sink and possibly *not* execute. 5470 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5471 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5472 } 5473 5474 /// Returns true if a SelectInst should be turned into an explicit branch. 5475 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5476 const TargetLowering *TLI, 5477 SelectInst *SI) { 5478 // If even a predictable select is cheap, then a branch can't be cheaper. 5479 if (!TLI->isPredictableSelectExpensive()) 5480 return false; 5481 5482 // FIXME: This should use the same heuristics as IfConversion to determine 5483 // whether a select is better represented as a branch. 5484 5485 // If metadata tells us that the select condition is obviously predictable, 5486 // then we want to replace the select with a branch. 5487 uint64_t TrueWeight, FalseWeight; 5488 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5489 uint64_t Max = std::max(TrueWeight, FalseWeight); 5490 uint64_t Sum = TrueWeight + FalseWeight; 5491 if (Sum != 0) { 5492 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5493 if (Probability > TLI->getPredictableBranchThreshold()) 5494 return true; 5495 } 5496 } 5497 5498 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5499 5500 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5501 // comparison condition. If the compare has more than one use, there's 5502 // probably another cmov or setcc around, so it's not worth emitting a branch. 5503 if (!Cmp || !Cmp->hasOneUse()) 5504 return false; 5505 5506 // If either operand of the select is expensive and only needed on one side 5507 // of the select, we should form a branch. 5508 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5509 sinkSelectOperand(TTI, SI->getFalseValue())) 5510 return true; 5511 5512 return false; 5513 } 5514 5515 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5516 /// false value of \p SI. If the true/false value of \p SI is defined by any 5517 /// select instructions in \p Selects, look through the defining select 5518 /// instruction until the true/false value is not defined in \p Selects. 5519 static Value *getTrueOrFalseValue( 5520 SelectInst *SI, bool isTrue, 5521 const SmallPtrSet<const Instruction *, 2> &Selects) { 5522 Value *V; 5523 5524 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5525 DefSI = dyn_cast<SelectInst>(V)) { 5526 assert(DefSI->getCondition() == SI->getCondition() && 5527 "The condition of DefSI does not match with SI"); 5528 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5529 } 5530 return V; 5531 } 5532 5533 /// If we have a SelectInst that will likely profit from branch prediction, 5534 /// turn it into a branch. 5535 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5536 // Find all consecutive select instructions that share the same condition. 5537 SmallVector<SelectInst *, 2> ASI; 5538 ASI.push_back(SI); 5539 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5540 It != SI->getParent()->end(); ++It) { 5541 SelectInst *I = dyn_cast<SelectInst>(&*It); 5542 if (I && SI->getCondition() == I->getCondition()) { 5543 ASI.push_back(I); 5544 } else { 5545 break; 5546 } 5547 } 5548 5549 SelectInst *LastSI = ASI.back(); 5550 // Increment the current iterator to skip all the rest of select instructions 5551 // because they will be either "not lowered" or "all lowered" to branch. 5552 CurInstIterator = std::next(LastSI->getIterator()); 5553 5554 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5555 5556 // Can we convert the 'select' to CF ? 5557 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5558 SI->getMetadata(LLVMContext::MD_unpredictable)) 5559 return false; 5560 5561 TargetLowering::SelectSupportKind SelectKind; 5562 if (VectorCond) 5563 SelectKind = TargetLowering::VectorMaskSelect; 5564 else if (SI->getType()->isVectorTy()) 5565 SelectKind = TargetLowering::ScalarCondVectorVal; 5566 else 5567 SelectKind = TargetLowering::ScalarValSelect; 5568 5569 if (TLI->isSelectSupported(SelectKind) && 5570 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5571 return false; 5572 5573 ModifiedDT = true; 5574 5575 // Transform a sequence like this: 5576 // start: 5577 // %cmp = cmp uge i32 %a, %b 5578 // %sel = select i1 %cmp, i32 %c, i32 %d 5579 // 5580 // Into: 5581 // start: 5582 // %cmp = cmp uge i32 %a, %b 5583 // br i1 %cmp, label %select.true, label %select.false 5584 // select.true: 5585 // br label %select.end 5586 // select.false: 5587 // br label %select.end 5588 // select.end: 5589 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5590 // 5591 // In addition, we may sink instructions that produce %c or %d from 5592 // the entry block into the destination(s) of the new branch. 5593 // If the true or false blocks do not contain a sunken instruction, that 5594 // block and its branch may be optimized away. In that case, one side of the 5595 // first branch will point directly to select.end, and the corresponding PHI 5596 // predecessor block will be the start block. 5597 5598 // First, we split the block containing the select into 2 blocks. 5599 BasicBlock *StartBlock = SI->getParent(); 5600 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5601 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5602 5603 // Delete the unconditional branch that was just created by the split. 5604 StartBlock->getTerminator()->eraseFromParent(); 5605 5606 // These are the new basic blocks for the conditional branch. 5607 // At least one will become an actual new basic block. 5608 BasicBlock *TrueBlock = nullptr; 5609 BasicBlock *FalseBlock = nullptr; 5610 BranchInst *TrueBranch = nullptr; 5611 BranchInst *FalseBranch = nullptr; 5612 5613 // Sink expensive instructions into the conditional blocks to avoid executing 5614 // them speculatively. 5615 for (SelectInst *SI : ASI) { 5616 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5617 if (TrueBlock == nullptr) { 5618 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5619 EndBlock->getParent(), EndBlock); 5620 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5621 } 5622 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5623 TrueInst->moveBefore(TrueBranch); 5624 } 5625 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5626 if (FalseBlock == nullptr) { 5627 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5628 EndBlock->getParent(), EndBlock); 5629 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5630 } 5631 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5632 FalseInst->moveBefore(FalseBranch); 5633 } 5634 } 5635 5636 // If there was nothing to sink, then arbitrarily choose the 'false' side 5637 // for a new input value to the PHI. 5638 if (TrueBlock == FalseBlock) { 5639 assert(TrueBlock == nullptr && 5640 "Unexpected basic block transform while optimizing select"); 5641 5642 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5643 EndBlock->getParent(), EndBlock); 5644 BranchInst::Create(EndBlock, FalseBlock); 5645 } 5646 5647 // Insert the real conditional branch based on the original condition. 5648 // If we did not create a new block for one of the 'true' or 'false' paths 5649 // of the condition, it means that side of the branch goes to the end block 5650 // directly and the path originates from the start block from the point of 5651 // view of the new PHI. 5652 BasicBlock *TT, *FT; 5653 if (TrueBlock == nullptr) { 5654 TT = EndBlock; 5655 FT = FalseBlock; 5656 TrueBlock = StartBlock; 5657 } else if (FalseBlock == nullptr) { 5658 TT = TrueBlock; 5659 FT = EndBlock; 5660 FalseBlock = StartBlock; 5661 } else { 5662 TT = TrueBlock; 5663 FT = FalseBlock; 5664 } 5665 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5666 5667 SmallPtrSet<const Instruction *, 2> INS; 5668 INS.insert(ASI.begin(), ASI.end()); 5669 // Use reverse iterator because later select may use the value of the 5670 // earlier select, and we need to propagate value through earlier select 5671 // to get the PHI operand. 5672 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5673 SelectInst *SI = *It; 5674 // The select itself is replaced with a PHI Node. 5675 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5676 PN->takeName(SI); 5677 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5678 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5679 5680 SI->replaceAllUsesWith(PN); 5681 SI->eraseFromParent(); 5682 INS.erase(SI); 5683 ++NumSelectsExpanded; 5684 } 5685 5686 // Instruct OptimizeBlock to skip to the next block. 5687 CurInstIterator = StartBlock->end(); 5688 return true; 5689 } 5690 5691 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5692 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5693 int SplatElem = -1; 5694 for (unsigned i = 0; i < Mask.size(); ++i) { 5695 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5696 return false; 5697 SplatElem = Mask[i]; 5698 } 5699 5700 return true; 5701 } 5702 5703 /// Some targets have expensive vector shifts if the lanes aren't all the same 5704 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5705 /// it's often worth sinking a shufflevector splat down to its use so that 5706 /// codegen can spot all lanes are identical. 5707 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5708 BasicBlock *DefBB = SVI->getParent(); 5709 5710 // Only do this xform if variable vector shifts are particularly expensive. 5711 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5712 return false; 5713 5714 // We only expect better codegen by sinking a shuffle if we can recognise a 5715 // constant splat. 5716 if (!isBroadcastShuffle(SVI)) 5717 return false; 5718 5719 // InsertedShuffles - Only insert a shuffle in each block once. 5720 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5721 5722 bool MadeChange = false; 5723 for (User *U : SVI->users()) { 5724 Instruction *UI = cast<Instruction>(U); 5725 5726 // Figure out which BB this ext is used in. 5727 BasicBlock *UserBB = UI->getParent(); 5728 if (UserBB == DefBB) continue; 5729 5730 // For now only apply this when the splat is used by a shift instruction. 5731 if (!UI->isShift()) continue; 5732 5733 // Everything checks out, sink the shuffle if the user's block doesn't 5734 // already have a copy. 5735 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5736 5737 if (!InsertedShuffle) { 5738 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5739 assert(InsertPt != UserBB->end()); 5740 InsertedShuffle = 5741 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5742 SVI->getOperand(2), "", &*InsertPt); 5743 } 5744 5745 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5746 MadeChange = true; 5747 } 5748 5749 // If we removed all uses, nuke the shuffle. 5750 if (SVI->use_empty()) { 5751 SVI->eraseFromParent(); 5752 MadeChange = true; 5753 } 5754 5755 return MadeChange; 5756 } 5757 5758 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5759 if (!TLI || !DL) 5760 return false; 5761 5762 Value *Cond = SI->getCondition(); 5763 Type *OldType = Cond->getType(); 5764 LLVMContext &Context = Cond->getContext(); 5765 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5766 unsigned RegWidth = RegType.getSizeInBits(); 5767 5768 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5769 return false; 5770 5771 // If the register width is greater than the type width, expand the condition 5772 // of the switch instruction and each case constant to the width of the 5773 // register. By widening the type of the switch condition, subsequent 5774 // comparisons (for case comparisons) will not need to be extended to the 5775 // preferred register width, so we will potentially eliminate N-1 extends, 5776 // where N is the number of cases in the switch. 5777 auto *NewType = Type::getIntNTy(Context, RegWidth); 5778 5779 // Zero-extend the switch condition and case constants unless the switch 5780 // condition is a function argument that is already being sign-extended. 5781 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5782 // everything instead. 5783 Instruction::CastOps ExtType = Instruction::ZExt; 5784 if (auto *Arg = dyn_cast<Argument>(Cond)) 5785 if (Arg->hasSExtAttr()) 5786 ExtType = Instruction::SExt; 5787 5788 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5789 ExtInst->insertBefore(SI); 5790 SI->setCondition(ExtInst); 5791 for (auto Case : SI->cases()) { 5792 APInt NarrowConst = Case.getCaseValue()->getValue(); 5793 APInt WideConst = (ExtType == Instruction::ZExt) ? 5794 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5795 Case.setValue(ConstantInt::get(Context, WideConst)); 5796 } 5797 5798 return true; 5799 } 5800 5801 5802 namespace { 5803 5804 /// Helper class to promote a scalar operation to a vector one. 5805 /// This class is used to move downward extractelement transition. 5806 /// E.g., 5807 /// a = vector_op <2 x i32> 5808 /// b = extractelement <2 x i32> a, i32 0 5809 /// c = scalar_op b 5810 /// store c 5811 /// 5812 /// => 5813 /// a = vector_op <2 x i32> 5814 /// c = vector_op a (equivalent to scalar_op on the related lane) 5815 /// * d = extractelement <2 x i32> c, i32 0 5816 /// * store d 5817 /// Assuming both extractelement and store can be combine, we get rid of the 5818 /// transition. 5819 class VectorPromoteHelper { 5820 /// DataLayout associated with the current module. 5821 const DataLayout &DL; 5822 5823 /// Used to perform some checks on the legality of vector operations. 5824 const TargetLowering &TLI; 5825 5826 /// Used to estimated the cost of the promoted chain. 5827 const TargetTransformInfo &TTI; 5828 5829 /// The transition being moved downwards. 5830 Instruction *Transition; 5831 5832 /// The sequence of instructions to be promoted. 5833 SmallVector<Instruction *, 4> InstsToBePromoted; 5834 5835 /// Cost of combining a store and an extract. 5836 unsigned StoreExtractCombineCost; 5837 5838 /// Instruction that will be combined with the transition. 5839 Instruction *CombineInst = nullptr; 5840 5841 /// The instruction that represents the current end of the transition. 5842 /// Since we are faking the promotion until we reach the end of the chain 5843 /// of computation, we need a way to get the current end of the transition. 5844 Instruction *getEndOfTransition() const { 5845 if (InstsToBePromoted.empty()) 5846 return Transition; 5847 return InstsToBePromoted.back(); 5848 } 5849 5850 /// Return the index of the original value in the transition. 5851 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5852 /// c, is at index 0. 5853 unsigned getTransitionOriginalValueIdx() const { 5854 assert(isa<ExtractElementInst>(Transition) && 5855 "Other kind of transitions are not supported yet"); 5856 return 0; 5857 } 5858 5859 /// Return the index of the index in the transition. 5860 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5861 /// is at index 1. 5862 unsigned getTransitionIdx() const { 5863 assert(isa<ExtractElementInst>(Transition) && 5864 "Other kind of transitions are not supported yet"); 5865 return 1; 5866 } 5867 5868 /// Get the type of the transition. 5869 /// This is the type of the original value. 5870 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5871 /// transition is <2 x i32>. 5872 Type *getTransitionType() const { 5873 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5874 } 5875 5876 /// Promote \p ToBePromoted by moving \p Def downward through. 5877 /// I.e., we have the following sequence: 5878 /// Def = Transition <ty1> a to <ty2> 5879 /// b = ToBePromoted <ty2> Def, ... 5880 /// => 5881 /// b = ToBePromoted <ty1> a, ... 5882 /// Def = Transition <ty1> ToBePromoted to <ty2> 5883 void promoteImpl(Instruction *ToBePromoted); 5884 5885 /// Check whether or not it is profitable to promote all the 5886 /// instructions enqueued to be promoted. 5887 bool isProfitableToPromote() { 5888 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5889 unsigned Index = isa<ConstantInt>(ValIdx) 5890 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5891 : -1; 5892 Type *PromotedType = getTransitionType(); 5893 5894 StoreInst *ST = cast<StoreInst>(CombineInst); 5895 unsigned AS = ST->getPointerAddressSpace(); 5896 unsigned Align = ST->getAlignment(); 5897 // Check if this store is supported. 5898 if (!TLI.allowsMisalignedMemoryAccesses( 5899 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5900 Align)) { 5901 // If this is not supported, there is no way we can combine 5902 // the extract with the store. 5903 return false; 5904 } 5905 5906 // The scalar chain of computation has to pay for the transition 5907 // scalar to vector. 5908 // The vector chain has to account for the combining cost. 5909 uint64_t ScalarCost = 5910 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5911 uint64_t VectorCost = StoreExtractCombineCost; 5912 for (const auto &Inst : InstsToBePromoted) { 5913 // Compute the cost. 5914 // By construction, all instructions being promoted are arithmetic ones. 5915 // Moreover, one argument is a constant that can be viewed as a splat 5916 // constant. 5917 Value *Arg0 = Inst->getOperand(0); 5918 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5919 isa<ConstantFP>(Arg0); 5920 TargetTransformInfo::OperandValueKind Arg0OVK = 5921 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5922 : TargetTransformInfo::OK_AnyValue; 5923 TargetTransformInfo::OperandValueKind Arg1OVK = 5924 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5925 : TargetTransformInfo::OK_AnyValue; 5926 ScalarCost += TTI.getArithmeticInstrCost( 5927 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5928 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5929 Arg0OVK, Arg1OVK); 5930 } 5931 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5932 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5933 return ScalarCost > VectorCost; 5934 } 5935 5936 /// Generate a constant vector with \p Val with the same 5937 /// number of elements as the transition. 5938 /// \p UseSplat defines whether or not \p Val should be replicated 5939 /// across the whole vector. 5940 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5941 /// otherwise we generate a vector with as many undef as possible: 5942 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5943 /// used at the index of the extract. 5944 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5945 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5946 if (!UseSplat) { 5947 // If we cannot determine where the constant must be, we have to 5948 // use a splat constant. 5949 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5950 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5951 ExtractIdx = CstVal->getSExtValue(); 5952 else 5953 UseSplat = true; 5954 } 5955 5956 unsigned End = getTransitionType()->getVectorNumElements(); 5957 if (UseSplat) 5958 return ConstantVector::getSplat(End, Val); 5959 5960 SmallVector<Constant *, 4> ConstVec; 5961 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5962 for (unsigned Idx = 0; Idx != End; ++Idx) { 5963 if (Idx == ExtractIdx) 5964 ConstVec.push_back(Val); 5965 else 5966 ConstVec.push_back(UndefVal); 5967 } 5968 return ConstantVector::get(ConstVec); 5969 } 5970 5971 /// Check if promoting to a vector type an operand at \p OperandIdx 5972 /// in \p Use can trigger undefined behavior. 5973 static bool canCauseUndefinedBehavior(const Instruction *Use, 5974 unsigned OperandIdx) { 5975 // This is not safe to introduce undef when the operand is on 5976 // the right hand side of a division-like instruction. 5977 if (OperandIdx != 1) 5978 return false; 5979 switch (Use->getOpcode()) { 5980 default: 5981 return false; 5982 case Instruction::SDiv: 5983 case Instruction::UDiv: 5984 case Instruction::SRem: 5985 case Instruction::URem: 5986 return true; 5987 case Instruction::FDiv: 5988 case Instruction::FRem: 5989 return !Use->hasNoNaNs(); 5990 } 5991 llvm_unreachable(nullptr); 5992 } 5993 5994 public: 5995 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5996 const TargetTransformInfo &TTI, Instruction *Transition, 5997 unsigned CombineCost) 5998 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5999 StoreExtractCombineCost(CombineCost) { 6000 assert(Transition && "Do not know how to promote null"); 6001 } 6002 6003 /// Check if we can promote \p ToBePromoted to \p Type. 6004 bool canPromote(const Instruction *ToBePromoted) const { 6005 // We could support CastInst too. 6006 return isa<BinaryOperator>(ToBePromoted); 6007 } 6008 6009 /// Check if it is profitable to promote \p ToBePromoted 6010 /// by moving downward the transition through. 6011 bool shouldPromote(const Instruction *ToBePromoted) const { 6012 // Promote only if all the operands can be statically expanded. 6013 // Indeed, we do not want to introduce any new kind of transitions. 6014 for (const Use &U : ToBePromoted->operands()) { 6015 const Value *Val = U.get(); 6016 if (Val == getEndOfTransition()) { 6017 // If the use is a division and the transition is on the rhs, 6018 // we cannot promote the operation, otherwise we may create a 6019 // division by zero. 6020 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6021 return false; 6022 continue; 6023 } 6024 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6025 !isa<ConstantFP>(Val)) 6026 return false; 6027 } 6028 // Check that the resulting operation is legal. 6029 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6030 if (!ISDOpcode) 6031 return false; 6032 return StressStoreExtract || 6033 TLI.isOperationLegalOrCustom( 6034 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6035 } 6036 6037 /// Check whether or not \p Use can be combined 6038 /// with the transition. 6039 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6040 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6041 6042 /// Record \p ToBePromoted as part of the chain to be promoted. 6043 void enqueueForPromotion(Instruction *ToBePromoted) { 6044 InstsToBePromoted.push_back(ToBePromoted); 6045 } 6046 6047 /// Set the instruction that will be combined with the transition. 6048 void recordCombineInstruction(Instruction *ToBeCombined) { 6049 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6050 CombineInst = ToBeCombined; 6051 } 6052 6053 /// Promote all the instructions enqueued for promotion if it is 6054 /// is profitable. 6055 /// \return True if the promotion happened, false otherwise. 6056 bool promote() { 6057 // Check if there is something to promote. 6058 // Right now, if we do not have anything to combine with, 6059 // we assume the promotion is not profitable. 6060 if (InstsToBePromoted.empty() || !CombineInst) 6061 return false; 6062 6063 // Check cost. 6064 if (!StressStoreExtract && !isProfitableToPromote()) 6065 return false; 6066 6067 // Promote. 6068 for (auto &ToBePromoted : InstsToBePromoted) 6069 promoteImpl(ToBePromoted); 6070 InstsToBePromoted.clear(); 6071 return true; 6072 } 6073 }; 6074 6075 } // end anonymous namespace 6076 6077 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6078 // At this point, we know that all the operands of ToBePromoted but Def 6079 // can be statically promoted. 6080 // For Def, we need to use its parameter in ToBePromoted: 6081 // b = ToBePromoted ty1 a 6082 // Def = Transition ty1 b to ty2 6083 // Move the transition down. 6084 // 1. Replace all uses of the promoted operation by the transition. 6085 // = ... b => = ... Def. 6086 assert(ToBePromoted->getType() == Transition->getType() && 6087 "The type of the result of the transition does not match " 6088 "the final type"); 6089 ToBePromoted->replaceAllUsesWith(Transition); 6090 // 2. Update the type of the uses. 6091 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6092 Type *TransitionTy = getTransitionType(); 6093 ToBePromoted->mutateType(TransitionTy); 6094 // 3. Update all the operands of the promoted operation with promoted 6095 // operands. 6096 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6097 for (Use &U : ToBePromoted->operands()) { 6098 Value *Val = U.get(); 6099 Value *NewVal = nullptr; 6100 if (Val == Transition) 6101 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6102 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6103 isa<ConstantFP>(Val)) { 6104 // Use a splat constant if it is not safe to use undef. 6105 NewVal = getConstantVector( 6106 cast<Constant>(Val), 6107 isa<UndefValue>(Val) || 6108 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6109 } else 6110 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6111 "this?"); 6112 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6113 } 6114 Transition->moveAfter(ToBePromoted); 6115 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6116 } 6117 6118 /// Some targets can do store(extractelement) with one instruction. 6119 /// Try to push the extractelement towards the stores when the target 6120 /// has this feature and this is profitable. 6121 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6122 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6123 if (DisableStoreExtract || !TLI || 6124 (!StressStoreExtract && 6125 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6126 Inst->getOperand(1), CombineCost))) 6127 return false; 6128 6129 // At this point we know that Inst is a vector to scalar transition. 6130 // Try to move it down the def-use chain, until: 6131 // - We can combine the transition with its single use 6132 // => we got rid of the transition. 6133 // - We escape the current basic block 6134 // => we would need to check that we are moving it at a cheaper place and 6135 // we do not do that for now. 6136 BasicBlock *Parent = Inst->getParent(); 6137 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6138 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6139 // If the transition has more than one use, assume this is not going to be 6140 // beneficial. 6141 while (Inst->hasOneUse()) { 6142 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6143 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6144 6145 if (ToBePromoted->getParent() != Parent) { 6146 DEBUG(dbgs() << "Instruction to promote is in a different block (" 6147 << ToBePromoted->getParent()->getName() 6148 << ") than the transition (" << Parent->getName() << ").\n"); 6149 return false; 6150 } 6151 6152 if (VPH.canCombine(ToBePromoted)) { 6153 DEBUG(dbgs() << "Assume " << *Inst << '\n' 6154 << "will be combined with: " << *ToBePromoted << '\n'); 6155 VPH.recordCombineInstruction(ToBePromoted); 6156 bool Changed = VPH.promote(); 6157 NumStoreExtractExposed += Changed; 6158 return Changed; 6159 } 6160 6161 DEBUG(dbgs() << "Try promoting.\n"); 6162 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6163 return false; 6164 6165 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6166 6167 VPH.enqueueForPromotion(ToBePromoted); 6168 Inst = ToBePromoted; 6169 } 6170 return false; 6171 } 6172 6173 /// For the instruction sequence of store below, F and I values 6174 /// are bundled together as an i64 value before being stored into memory. 6175 /// Sometimes it is more efficent to generate separate stores for F and I, 6176 /// which can remove the bitwise instructions or sink them to colder places. 6177 /// 6178 /// (store (or (zext (bitcast F to i32) to i64), 6179 /// (shl (zext I to i64), 32)), addr) --> 6180 /// (store F, addr) and (store I, addr+4) 6181 /// 6182 /// Similarly, splitting for other merged store can also be beneficial, like: 6183 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6184 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6185 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6186 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6187 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6188 /// 6189 /// We allow each target to determine specifically which kind of splitting is 6190 /// supported. 6191 /// 6192 /// The store patterns are commonly seen from the simple code snippet below 6193 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6194 /// void goo(const std::pair<int, float> &); 6195 /// hoo() { 6196 /// ... 6197 /// goo(std::make_pair(tmp, ftmp)); 6198 /// ... 6199 /// } 6200 /// 6201 /// Although we already have similar splitting in DAG Combine, we duplicate 6202 /// it in CodeGenPrepare to catch the case in which pattern is across 6203 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6204 /// during code expansion. 6205 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6206 const TargetLowering &TLI) { 6207 // Handle simple but common cases only. 6208 Type *StoreType = SI.getValueOperand()->getType(); 6209 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6210 DL.getTypeSizeInBits(StoreType) == 0) 6211 return false; 6212 6213 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6214 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6215 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6216 DL.getTypeSizeInBits(SplitStoreType)) 6217 return false; 6218 6219 // Match the following patterns: 6220 // (store (or (zext LValue to i64), 6221 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6222 // or 6223 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6224 // (zext LValue to i64), 6225 // Expect both operands of OR and the first operand of SHL have only 6226 // one use. 6227 Value *LValue, *HValue; 6228 if (!match(SI.getValueOperand(), 6229 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6230 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6231 m_SpecificInt(HalfValBitSize)))))) 6232 return false; 6233 6234 // Check LValue and HValue are int with size less or equal than 32. 6235 if (!LValue->getType()->isIntegerTy() || 6236 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6237 !HValue->getType()->isIntegerTy() || 6238 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6239 return false; 6240 6241 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6242 // as the input of target query. 6243 auto *LBC = dyn_cast<BitCastInst>(LValue); 6244 auto *HBC = dyn_cast<BitCastInst>(HValue); 6245 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6246 : EVT::getEVT(LValue->getType()); 6247 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6248 : EVT::getEVT(HValue->getType()); 6249 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6250 return false; 6251 6252 // Start to split store. 6253 IRBuilder<> Builder(SI.getContext()); 6254 Builder.SetInsertPoint(&SI); 6255 6256 // If LValue/HValue is a bitcast in another BB, create a new one in current 6257 // BB so it may be merged with the splitted stores by dag combiner. 6258 if (LBC && LBC->getParent() != SI.getParent()) 6259 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6260 if (HBC && HBC->getParent() != SI.getParent()) 6261 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6262 6263 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6264 auto CreateSplitStore = [&](Value *V, bool Upper) { 6265 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6266 Value *Addr = Builder.CreateBitCast( 6267 SI.getOperand(1), 6268 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6269 if ((IsLE && Upper) || (!IsLE && !Upper)) 6270 Addr = Builder.CreateGEP( 6271 SplitStoreType, Addr, 6272 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6273 Builder.CreateAlignedStore( 6274 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6275 }; 6276 6277 CreateSplitStore(LValue, false); 6278 CreateSplitStore(HValue, true); 6279 6280 // Delete the old store. 6281 SI.eraseFromParent(); 6282 return true; 6283 } 6284 6285 // Return true if the GEP has two operands, the first operand is of a sequential 6286 // type, and the second operand is a constant. 6287 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6288 gep_type_iterator I = gep_type_begin(*GEP); 6289 return GEP->getNumOperands() == 2 && 6290 I.isSequential() && 6291 isa<ConstantInt>(GEP->getOperand(1)); 6292 } 6293 6294 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6295 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6296 // reducing liveness interference across those edges benefits global register 6297 // allocation. Currently handles only certain cases. 6298 // 6299 // For example, unmerge %GEPI and %UGEPI as below. 6300 // 6301 // ---------- BEFORE ---------- 6302 // SrcBlock: 6303 // ... 6304 // %GEPIOp = ... 6305 // ... 6306 // %GEPI = gep %GEPIOp, Idx 6307 // ... 6308 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6309 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6310 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6311 // %UGEPI) 6312 // 6313 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6314 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6315 // ... 6316 // 6317 // DstBi: 6318 // ... 6319 // %UGEPI = gep %GEPIOp, UIdx 6320 // ... 6321 // --------------------------- 6322 // 6323 // ---------- AFTER ---------- 6324 // SrcBlock: 6325 // ... (same as above) 6326 // (* %GEPI is still alive on the indirectbr edges) 6327 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6328 // unmerging) 6329 // ... 6330 // 6331 // DstBi: 6332 // ... 6333 // %UGEPI = gep %GEPI, (UIdx-Idx) 6334 // ... 6335 // --------------------------- 6336 // 6337 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6338 // no longer alive on them. 6339 // 6340 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6341 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6342 // not to disable further simplications and optimizations as a result of GEP 6343 // merging. 6344 // 6345 // Note this unmerging may increase the length of the data flow critical path 6346 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6347 // between the register pressure and the length of data-flow critical 6348 // path. Restricting this to the uncommon IndirectBr case would minimize the 6349 // impact of potentially longer critical path, if any, and the impact on compile 6350 // time. 6351 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6352 const TargetTransformInfo *TTI) { 6353 BasicBlock *SrcBlock = GEPI->getParent(); 6354 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6355 // (non-IndirectBr) cases exit early here. 6356 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6357 return false; 6358 // Check that GEPI is a simple gep with a single constant index. 6359 if (!GEPSequentialConstIndexed(GEPI)) 6360 return false; 6361 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6362 // Check that GEPI is a cheap one. 6363 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6364 > TargetTransformInfo::TCC_Basic) 6365 return false; 6366 Value *GEPIOp = GEPI->getOperand(0); 6367 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6368 if (!isa<Instruction>(GEPIOp)) 6369 return false; 6370 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6371 if (GEPIOpI->getParent() != SrcBlock) 6372 return false; 6373 // Check that GEP is used outside the block, meaning it's alive on the 6374 // IndirectBr edge(s). 6375 if (find_if(GEPI->users(), [&](User *Usr) { 6376 if (auto *I = dyn_cast<Instruction>(Usr)) { 6377 if (I->getParent() != SrcBlock) { 6378 return true; 6379 } 6380 } 6381 return false; 6382 }) == GEPI->users().end()) 6383 return false; 6384 // The second elements of the GEP chains to be unmerged. 6385 std::vector<GetElementPtrInst *> UGEPIs; 6386 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6387 // on IndirectBr edges. 6388 for (User *Usr : GEPIOp->users()) { 6389 if (Usr == GEPI) continue; 6390 // Check if Usr is an Instruction. If not, give up. 6391 if (!isa<Instruction>(Usr)) 6392 return false; 6393 auto *UI = cast<Instruction>(Usr); 6394 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6395 if (UI->getParent() == SrcBlock) 6396 continue; 6397 // Check if Usr is a GEP. If not, give up. 6398 if (!isa<GetElementPtrInst>(Usr)) 6399 return false; 6400 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6401 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6402 // the pointer operand to it. If so, record it in the vector. If not, give 6403 // up. 6404 if (!GEPSequentialConstIndexed(UGEPI)) 6405 return false; 6406 if (UGEPI->getOperand(0) != GEPIOp) 6407 return false; 6408 if (GEPIIdx->getType() != 6409 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6410 return false; 6411 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6412 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6413 > TargetTransformInfo::TCC_Basic) 6414 return false; 6415 UGEPIs.push_back(UGEPI); 6416 } 6417 if (UGEPIs.size() == 0) 6418 return false; 6419 // Check the materializing cost of (Uidx-Idx). 6420 for (GetElementPtrInst *UGEPI : UGEPIs) { 6421 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6422 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6423 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6424 if (ImmCost > TargetTransformInfo::TCC_Basic) 6425 return false; 6426 } 6427 // Now unmerge between GEPI and UGEPIs. 6428 for (GetElementPtrInst *UGEPI : UGEPIs) { 6429 UGEPI->setOperand(0, GEPI); 6430 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6431 Constant *NewUGEPIIdx = 6432 ConstantInt::get(GEPIIdx->getType(), 6433 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6434 UGEPI->setOperand(1, NewUGEPIIdx); 6435 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6436 // inbounds to avoid UB. 6437 if (!GEPI->isInBounds()) { 6438 UGEPI->setIsInBounds(false); 6439 } 6440 } 6441 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6442 // alive on IndirectBr edges). 6443 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6444 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6445 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6446 return true; 6447 } 6448 6449 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6450 // Bail out if we inserted the instruction to prevent optimizations from 6451 // stepping on each other's toes. 6452 if (InsertedInsts.count(I)) 6453 return false; 6454 6455 if (PHINode *P = dyn_cast<PHINode>(I)) { 6456 // It is possible for very late stage optimizations (such as SimplifyCFG) 6457 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6458 // trivial PHI, go ahead and zap it here. 6459 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6460 P->replaceAllUsesWith(V); 6461 P->eraseFromParent(); 6462 ++NumPHIsElim; 6463 return true; 6464 } 6465 return false; 6466 } 6467 6468 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6469 // If the source of the cast is a constant, then this should have 6470 // already been constant folded. The only reason NOT to constant fold 6471 // it is if something (e.g. LSR) was careful to place the constant 6472 // evaluation in a block other than then one that uses it (e.g. to hoist 6473 // the address of globals out of a loop). If this is the case, we don't 6474 // want to forward-subst the cast. 6475 if (isa<Constant>(CI->getOperand(0))) 6476 return false; 6477 6478 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6479 return true; 6480 6481 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6482 /// Sink a zext or sext into its user blocks if the target type doesn't 6483 /// fit in one register 6484 if (TLI && 6485 TLI->getTypeAction(CI->getContext(), 6486 TLI->getValueType(*DL, CI->getType())) == 6487 TargetLowering::TypeExpandInteger) { 6488 return SinkCast(CI); 6489 } else { 6490 bool MadeChange = optimizeExt(I); 6491 return MadeChange | optimizeExtUses(I); 6492 } 6493 } 6494 return false; 6495 } 6496 6497 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6498 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6499 return OptimizeCmpExpression(CI, TLI); 6500 6501 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6502 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6503 if (TLI) { 6504 bool Modified = optimizeLoadExt(LI); 6505 unsigned AS = LI->getPointerAddressSpace(); 6506 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6507 return Modified; 6508 } 6509 return false; 6510 } 6511 6512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6513 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6514 return true; 6515 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6516 if (TLI) { 6517 unsigned AS = SI->getPointerAddressSpace(); 6518 return optimizeMemoryInst(I, SI->getOperand(1), 6519 SI->getOperand(0)->getType(), AS); 6520 } 6521 return false; 6522 } 6523 6524 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6525 unsigned AS = RMW->getPointerAddressSpace(); 6526 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6527 RMW->getType(), AS); 6528 } 6529 6530 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6531 unsigned AS = CmpX->getPointerAddressSpace(); 6532 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6533 CmpX->getCompareOperand()->getType(), AS); 6534 } 6535 6536 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6537 6538 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6539 EnableAndCmpSinking && TLI) 6540 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6541 6542 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6543 BinOp->getOpcode() == Instruction::LShr)) { 6544 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6545 if (TLI && CI && TLI->hasExtractBitsInsn()) 6546 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6547 6548 return false; 6549 } 6550 6551 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6552 if (GEPI->hasAllZeroIndices()) { 6553 /// The GEP operand must be a pointer, so must its result -> BitCast 6554 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6555 GEPI->getName(), GEPI); 6556 GEPI->replaceAllUsesWith(NC); 6557 GEPI->eraseFromParent(); 6558 ++NumGEPsElim; 6559 optimizeInst(NC, ModifiedDT); 6560 return true; 6561 } 6562 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6563 return true; 6564 } 6565 return false; 6566 } 6567 6568 if (CallInst *CI = dyn_cast<CallInst>(I)) 6569 return optimizeCallInst(CI, ModifiedDT); 6570 6571 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6572 return optimizeSelectInst(SI); 6573 6574 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6575 return optimizeShuffleVectorInst(SVI); 6576 6577 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6578 return optimizeSwitchInst(Switch); 6579 6580 if (isa<ExtractElementInst>(I)) 6581 return optimizeExtractElementInst(I); 6582 6583 return false; 6584 } 6585 6586 /// Given an OR instruction, check to see if this is a bitreverse 6587 /// idiom. If so, insert the new intrinsic and return true. 6588 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6589 const TargetLowering &TLI) { 6590 if (!I.getType()->isIntegerTy() || 6591 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6592 TLI.getValueType(DL, I.getType(), true))) 6593 return false; 6594 6595 SmallVector<Instruction*, 4> Insts; 6596 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6597 return false; 6598 Instruction *LastInst = Insts.back(); 6599 I.replaceAllUsesWith(LastInst); 6600 RecursivelyDeleteTriviallyDeadInstructions(&I); 6601 return true; 6602 } 6603 6604 // In this pass we look for GEP and cast instructions that are used 6605 // across basic blocks and rewrite them to improve basic-block-at-a-time 6606 // selection. 6607 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6608 SunkAddrs.clear(); 6609 bool MadeChange = false; 6610 6611 CurInstIterator = BB.begin(); 6612 while (CurInstIterator != BB.end()) { 6613 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6614 if (ModifiedDT) 6615 return true; 6616 } 6617 6618 bool MadeBitReverse = true; 6619 while (TLI && MadeBitReverse) { 6620 MadeBitReverse = false; 6621 for (auto &I : reverse(BB)) { 6622 if (makeBitReverse(I, *DL, *TLI)) { 6623 MadeBitReverse = MadeChange = true; 6624 ModifiedDT = true; 6625 break; 6626 } 6627 } 6628 } 6629 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6630 6631 return MadeChange; 6632 } 6633 6634 // llvm.dbg.value is far away from the value then iSel may not be able 6635 // handle it properly. iSel will drop llvm.dbg.value if it can not 6636 // find a node corresponding to the value. 6637 bool CodeGenPrepare::placeDbgValues(Function &F) { 6638 bool MadeChange = false; 6639 for (BasicBlock &BB : F) { 6640 Instruction *PrevNonDbgInst = nullptr; 6641 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6642 Instruction *Insn = &*BI++; 6643 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6644 // Leave dbg.values that refer to an alloca alone. These 6645 // intrinsics describe the address of a variable (= the alloca) 6646 // being taken. They should not be moved next to the alloca 6647 // (and to the beginning of the scope), but rather stay close to 6648 // where said address is used. 6649 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6650 PrevNonDbgInst = Insn; 6651 continue; 6652 } 6653 6654 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6655 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6656 // If VI is a phi in a block with an EHPad terminator, we can't insert 6657 // after it. 6658 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6659 continue; 6660 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6661 DVI->removeFromParent(); 6662 if (isa<PHINode>(VI)) 6663 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6664 else 6665 DVI->insertAfter(VI); 6666 MadeChange = true; 6667 ++NumDbgValueMoved; 6668 } 6669 } 6670 } 6671 return MadeChange; 6672 } 6673 6674 /// Scale down both weights to fit into uint32_t. 6675 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6676 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6677 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6678 NewTrue = NewTrue / Scale; 6679 NewFalse = NewFalse / Scale; 6680 } 6681 6682 /// Some targets prefer to split a conditional branch like: 6683 /// \code 6684 /// %0 = icmp ne i32 %a, 0 6685 /// %1 = icmp ne i32 %b, 0 6686 /// %or.cond = or i1 %0, %1 6687 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6688 /// \endcode 6689 /// into multiple branch instructions like: 6690 /// \code 6691 /// bb1: 6692 /// %0 = icmp ne i32 %a, 0 6693 /// br i1 %0, label %TrueBB, label %bb2 6694 /// bb2: 6695 /// %1 = icmp ne i32 %b, 0 6696 /// br i1 %1, label %TrueBB, label %FalseBB 6697 /// \endcode 6698 /// This usually allows instruction selection to do even further optimizations 6699 /// and combine the compare with the branch instruction. Currently this is 6700 /// applied for targets which have "cheap" jump instructions. 6701 /// 6702 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6703 /// 6704 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6705 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6706 return false; 6707 6708 bool MadeChange = false; 6709 for (auto &BB : F) { 6710 // Does this BB end with the following? 6711 // %cond1 = icmp|fcmp|binary instruction ... 6712 // %cond2 = icmp|fcmp|binary instruction ... 6713 // %cond.or = or|and i1 %cond1, cond2 6714 // br i1 %cond.or label %dest1, label %dest2" 6715 BinaryOperator *LogicOp; 6716 BasicBlock *TBB, *FBB; 6717 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6718 continue; 6719 6720 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6721 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6722 continue; 6723 6724 unsigned Opc; 6725 Value *Cond1, *Cond2; 6726 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6727 m_OneUse(m_Value(Cond2))))) 6728 Opc = Instruction::And; 6729 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6730 m_OneUse(m_Value(Cond2))))) 6731 Opc = Instruction::Or; 6732 else 6733 continue; 6734 6735 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6736 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6737 continue; 6738 6739 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6740 6741 // Create a new BB. 6742 auto TmpBB = 6743 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6744 BB.getParent(), BB.getNextNode()); 6745 6746 // Update original basic block by using the first condition directly by the 6747 // branch instruction and removing the no longer needed and/or instruction. 6748 Br1->setCondition(Cond1); 6749 LogicOp->eraseFromParent(); 6750 6751 // Depending on the conditon we have to either replace the true or the false 6752 // successor of the original branch instruction. 6753 if (Opc == Instruction::And) 6754 Br1->setSuccessor(0, TmpBB); 6755 else 6756 Br1->setSuccessor(1, TmpBB); 6757 6758 // Fill in the new basic block. 6759 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6760 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6761 I->removeFromParent(); 6762 I->insertBefore(Br2); 6763 } 6764 6765 // Update PHI nodes in both successors. The original BB needs to be 6766 // replaced in one successor's PHI nodes, because the branch comes now from 6767 // the newly generated BB (NewBB). In the other successor we need to add one 6768 // incoming edge to the PHI nodes, because both branch instructions target 6769 // now the same successor. Depending on the original branch condition 6770 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6771 // we perform the correct update for the PHI nodes. 6772 // This doesn't change the successor order of the just created branch 6773 // instruction (or any other instruction). 6774 if (Opc == Instruction::Or) 6775 std::swap(TBB, FBB); 6776 6777 // Replace the old BB with the new BB. 6778 for (PHINode &PN : TBB->phis()) { 6779 int i; 6780 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6781 PN.setIncomingBlock(i, TmpBB); 6782 } 6783 6784 // Add another incoming edge form the new BB. 6785 for (PHINode &PN : FBB->phis()) { 6786 auto *Val = PN.getIncomingValueForBlock(&BB); 6787 PN.addIncoming(Val, TmpBB); 6788 } 6789 6790 // Update the branch weights (from SelectionDAGBuilder:: 6791 // FindMergedConditions). 6792 if (Opc == Instruction::Or) { 6793 // Codegen X | Y as: 6794 // BB1: 6795 // jmp_if_X TBB 6796 // jmp TmpBB 6797 // TmpBB: 6798 // jmp_if_Y TBB 6799 // jmp FBB 6800 // 6801 6802 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6803 // The requirement is that 6804 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6805 // = TrueProb for orignal BB. 6806 // Assuming the orignal weights are A and B, one choice is to set BB1's 6807 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6808 // assumes that 6809 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6810 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6811 // TmpBB, but the math is more complicated. 6812 uint64_t TrueWeight, FalseWeight; 6813 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6814 uint64_t NewTrueWeight = TrueWeight; 6815 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6816 scaleWeights(NewTrueWeight, NewFalseWeight); 6817 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6818 .createBranchWeights(TrueWeight, FalseWeight)); 6819 6820 NewTrueWeight = TrueWeight; 6821 NewFalseWeight = 2 * FalseWeight; 6822 scaleWeights(NewTrueWeight, NewFalseWeight); 6823 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6824 .createBranchWeights(TrueWeight, FalseWeight)); 6825 } 6826 } else { 6827 // Codegen X & Y as: 6828 // BB1: 6829 // jmp_if_X TmpBB 6830 // jmp FBB 6831 // TmpBB: 6832 // jmp_if_Y TBB 6833 // jmp FBB 6834 // 6835 // This requires creation of TmpBB after CurBB. 6836 6837 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6838 // The requirement is that 6839 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6840 // = FalseProb for orignal BB. 6841 // Assuming the orignal weights are A and B, one choice is to set BB1's 6842 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6843 // assumes that 6844 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6845 uint64_t TrueWeight, FalseWeight; 6846 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6847 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6848 uint64_t NewFalseWeight = FalseWeight; 6849 scaleWeights(NewTrueWeight, NewFalseWeight); 6850 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6851 .createBranchWeights(TrueWeight, FalseWeight)); 6852 6853 NewTrueWeight = 2 * TrueWeight; 6854 NewFalseWeight = FalseWeight; 6855 scaleWeights(NewTrueWeight, NewFalseWeight); 6856 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6857 .createBranchWeights(TrueWeight, FalseWeight)); 6858 } 6859 } 6860 6861 // Note: No point in getting fancy here, since the DT info is never 6862 // available to CodeGenPrepare. 6863 ModifiedDT = true; 6864 6865 MadeChange = true; 6866 6867 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6868 TmpBB->dump()); 6869 } 6870 return MadeChange; 6871 } 6872