1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateAssumptions(Function &F); 381 bool eliminateFallThrough(Function &F); 382 bool eliminateMostlyEmptyBlocks(Function &F); 383 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 384 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 385 void eliminateMostlyEmptyBlock(BasicBlock *BB); 386 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 387 bool isPreheader); 388 bool makeBitReverse(Instruction &I); 389 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 390 bool optimizeInst(Instruction *I, bool &ModifiedDT); 391 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 392 Type *AccessTy, unsigned AddrSpace); 393 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 394 bool optimizeInlineAsmInst(CallInst *CS); 395 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 396 bool optimizeExt(Instruction *&I); 397 bool optimizeExtUses(Instruction *I); 398 bool optimizeLoadExt(LoadInst *Load); 399 bool optimizeShiftInst(BinaryOperator *BO); 400 bool optimizeFunnelShift(IntrinsicInst *Fsh); 401 bool optimizeSelectInst(SelectInst *SI); 402 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 403 bool optimizeSwitchInst(SwitchInst *SI); 404 bool optimizeExtractElementInst(Instruction *Inst); 405 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 406 bool fixupDbgValue(Instruction *I); 407 bool placeDbgValues(Function &F); 408 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 409 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 410 bool tryToPromoteExts(TypePromotionTransaction &TPT, 411 const SmallVectorImpl<Instruction *> &Exts, 412 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 413 unsigned CreatedInstsCost = 0); 414 bool mergeSExts(Function &F); 415 bool splitLargeGEPOffsets(); 416 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 417 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 418 bool optimizePhiTypes(Function &F); 419 bool performAddressTypePromotion( 420 Instruction *&Inst, 421 bool AllowPromotionWithoutCommonHeader, 422 bool HasPromoted, TypePromotionTransaction &TPT, 423 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 424 bool splitBranchCondition(Function &F, bool &ModifiedDT); 425 bool simplifyOffsetableRelocate(GCStatepointInst &I); 426 427 bool tryToSinkFreeOperands(Instruction *I); 428 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 429 Value *Arg1, CmpInst *Cmp, 430 Intrinsic::ID IID); 431 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 void verifyBFIUpdates(Function &F); 435 }; 436 437 } // end anonymous namespace 438 439 char CodeGenPrepare::ID = 0; 440 441 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 448 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 449 "Optimize for code generation", false, false) 450 451 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 452 453 bool CodeGenPrepare::runOnFunction(Function &F) { 454 if (skipFunction(F)) 455 return false; 456 457 DL = &F.getParent()->getDataLayout(); 458 459 bool EverMadeChange = false; 460 // Clear per function information. 461 InsertedInsts.clear(); 462 PromotedInsts.clear(); 463 464 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 465 SubtargetInfo = TM->getSubtargetImpl(F); 466 TLI = SubtargetInfo->getTargetLowering(); 467 TRI = SubtargetInfo->getRegisterInfo(); 468 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 469 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 470 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 471 BPI.reset(new BranchProbabilityInfo(F, *LI)); 472 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 473 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 474 OptSize = F.hasOptSize(); 475 if (ProfileGuidedSectionPrefix) { 476 // The hot attribute overwrites profile count based hotness while profile 477 // counts based hotness overwrite the cold attribute. 478 // This is a conservative behabvior. 479 if (F.hasFnAttribute(Attribute::Hot) || 480 PSI->isFunctionHotInCallGraph(&F, *BFI)) 481 F.setSectionPrefix("hot"); 482 // If PSI shows this function is not hot, we will placed the function 483 // into unlikely section if (1) PSI shows this is a cold function, or 484 // (2) the function has a attribute of cold. 485 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 486 F.hasFnAttribute(Attribute::Cold)) 487 F.setSectionPrefix("unlikely"); 488 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 489 PSI->isFunctionHotnessUnknown(F)) 490 F.setSectionPrefix("unknown"); 491 } 492 493 /// This optimization identifies DIV instructions that can be 494 /// profitably bypassed and carried out with a shorter, faster divide. 495 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 496 const DenseMap<unsigned int, unsigned int> &BypassWidths = 497 TLI->getBypassSlowDivWidths(); 498 BasicBlock* BB = &*F.begin(); 499 while (BB != nullptr) { 500 // bypassSlowDivision may create new BBs, but we don't want to reapply the 501 // optimization to those blocks. 502 BasicBlock* Next = BB->getNextNode(); 503 // F.hasOptSize is already checked in the outer if statement. 504 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 505 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 506 BB = Next; 507 } 508 } 509 510 // Get rid of @llvm.assume builtins before attempting to eliminate empty 511 // blocks, since there might be blocks that only contain @llvm.assume calls 512 // (plus arguments that we can get rid of). 513 EverMadeChange |= eliminateAssumptions(F); 514 515 // Eliminate blocks that contain only PHI nodes and an 516 // unconditional branch. 517 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 518 519 bool ModifiedDT = false; 520 if (!DisableBranchOpts) 521 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 522 523 // Split some critical edges where one of the sources is an indirect branch, 524 // to help generate sane code for PHIs involving such edges. 525 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 526 527 bool MadeChange = true; 528 while (MadeChange) { 529 MadeChange = false; 530 DT.reset(); 531 for (Function::iterator I = F.begin(); I != F.end(); ) { 532 BasicBlock *BB = &*I++; 533 bool ModifiedDTOnIteration = false; 534 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 535 536 // Restart BB iteration if the dominator tree of the Function was changed 537 if (ModifiedDTOnIteration) 538 break; 539 } 540 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 541 MadeChange |= mergeSExts(F); 542 if (!LargeOffsetGEPMap.empty()) 543 MadeChange |= splitLargeGEPOffsets(); 544 MadeChange |= optimizePhiTypes(F); 545 546 if (MadeChange) 547 eliminateFallThrough(F); 548 549 // Really free removed instructions during promotion. 550 for (Instruction *I : RemovedInsts) 551 I->deleteValue(); 552 553 EverMadeChange |= MadeChange; 554 SeenChainsForSExt.clear(); 555 ValToSExtendedUses.clear(); 556 RemovedInsts.clear(); 557 LargeOffsetGEPMap.clear(); 558 LargeOffsetGEPID.clear(); 559 } 560 561 NewGEPBases.clear(); 562 SunkAddrs.clear(); 563 564 if (!DisableBranchOpts) { 565 MadeChange = false; 566 // Use a set vector to get deterministic iteration order. The order the 567 // blocks are removed may affect whether or not PHI nodes in successors 568 // are removed. 569 SmallSetVector<BasicBlock*, 8> WorkList; 570 for (BasicBlock &BB : F) { 571 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 572 MadeChange |= ConstantFoldTerminator(&BB, true); 573 if (!MadeChange) continue; 574 575 for (BasicBlock *Succ : Successors) 576 if (pred_empty(Succ)) 577 WorkList.insert(Succ); 578 } 579 580 // Delete the dead blocks and any of their dead successors. 581 MadeChange |= !WorkList.empty(); 582 while (!WorkList.empty()) { 583 BasicBlock *BB = WorkList.pop_back_val(); 584 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 585 586 DeleteDeadBlock(BB); 587 588 for (BasicBlock *Succ : Successors) 589 if (pred_empty(Succ)) 590 WorkList.insert(Succ); 591 } 592 593 // Merge pairs of basic blocks with unconditional branches, connected by 594 // a single edge. 595 if (EverMadeChange || MadeChange) 596 MadeChange |= eliminateFallThrough(F); 597 598 EverMadeChange |= MadeChange; 599 } 600 601 if (!DisableGCOpts) { 602 SmallVector<GCStatepointInst *, 2> Statepoints; 603 for (BasicBlock &BB : F) 604 for (Instruction &I : BB) 605 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 606 Statepoints.push_back(SP); 607 for (auto &I : Statepoints) 608 EverMadeChange |= simplifyOffsetableRelocate(*I); 609 } 610 611 // Do this last to clean up use-before-def scenarios introduced by other 612 // preparatory transforms. 613 EverMadeChange |= placeDbgValues(F); 614 615 #ifndef NDEBUG 616 if (VerifyBFIUpdates) 617 verifyBFIUpdates(F); 618 #endif 619 620 return EverMadeChange; 621 } 622 623 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 624 bool MadeChange = false; 625 for (BasicBlock &BB : F) { 626 CurInstIterator = BB.begin(); 627 while (CurInstIterator != BB.end()) { 628 Instruction *I = &*(CurInstIterator++); 629 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 630 if (II->getIntrinsicID() != Intrinsic::assume) 631 continue; 632 MadeChange = true; 633 Value *Operand = II->getOperand(0); 634 II->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 const auto &I = 663 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 if (I == GEPVector.end()) 665 return; 666 667 GEPVector.erase(I); 668 if (GEPVector.empty()) 669 LargeOffsetGEPMap.erase(VecI); 670 } 671 672 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 673 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 674 DominatorTree NewDT(F); 675 LoopInfo NewLI(NewDT); 676 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 677 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 678 NewBFI.verifyMatch(*BFI); 679 } 680 681 /// Merge basic blocks which are connected by a single edge, where one of the 682 /// basic blocks has a single successor pointing to the other basic block, 683 /// which has a single predecessor. 684 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 685 bool Changed = false; 686 // Scan all of the blocks in the function, except for the entry block. 687 // Use a temporary array to avoid iterator being invalidated when 688 // deleting blocks. 689 SmallVector<WeakTrackingVH, 16> Blocks; 690 for (auto &Block : llvm::drop_begin(F)) 691 Blocks.push_back(&Block); 692 693 SmallSet<WeakTrackingVH, 16> Preds; 694 for (auto &Block : Blocks) { 695 auto *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 // If the destination block has a single pred, then this is a trivial 699 // edge, just collapse it. 700 BasicBlock *SinglePred = BB->getSinglePredecessor(); 701 702 // Don't merge if BB's address is taken. 703 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 704 705 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 706 if (Term && !Term->isConditional()) { 707 Changed = true; 708 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 709 710 // Merge BB into SinglePred and delete it. 711 MergeBlockIntoPredecessor(BB); 712 Preds.insert(SinglePred); 713 } 714 } 715 716 // (Repeatedly) merging blocks into their predecessors can create redundant 717 // debug intrinsics. 718 for (auto &Pred : Preds) 719 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 720 RemoveRedundantDbgInstrs(BB); 721 722 return Changed; 723 } 724 725 /// Find a destination block from BB if BB is mergeable empty block. 726 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 727 // If this block doesn't end with an uncond branch, ignore it. 728 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 729 if (!BI || !BI->isUnconditional()) 730 return nullptr; 731 732 // If the instruction before the branch (skipping debug info) isn't a phi 733 // node, then other stuff is happening here. 734 BasicBlock::iterator BBI = BI->getIterator(); 735 if (BBI != BB->begin()) { 736 --BBI; 737 while (isa<DbgInfoIntrinsic>(BBI)) { 738 if (BBI == BB->begin()) 739 break; 740 --BBI; 741 } 742 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 743 return nullptr; 744 } 745 746 // Do not break infinite loops. 747 BasicBlock *DestBB = BI->getSuccessor(0); 748 if (DestBB == BB) 749 return nullptr; 750 751 if (!canMergeBlocks(BB, DestBB)) 752 DestBB = nullptr; 753 754 return DestBB; 755 } 756 757 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 758 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 759 /// edges in ways that are non-optimal for isel. Start by eliminating these 760 /// blocks so we can split them the way we want them. 761 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 762 SmallPtrSet<BasicBlock *, 16> Preheaders; 763 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 764 while (!LoopList.empty()) { 765 Loop *L = LoopList.pop_back_val(); 766 llvm::append_range(LoopList, *L); 767 if (BasicBlock *Preheader = L->getLoopPreheader()) 768 Preheaders.insert(Preheader); 769 } 770 771 bool MadeChange = false; 772 // Copy blocks into a temporary array to avoid iterator invalidation issues 773 // as we remove them. 774 // Note that this intentionally skips the entry block. 775 SmallVector<WeakTrackingVH, 16> Blocks; 776 for (auto &Block : llvm::drop_begin(F)) 777 Blocks.push_back(&Block); 778 779 for (auto &Block : Blocks) { 780 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 781 if (!BB) 782 continue; 783 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 784 if (!DestBB || 785 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 786 continue; 787 788 eliminateMostlyEmptyBlock(BB); 789 MadeChange = true; 790 } 791 return MadeChange; 792 } 793 794 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 795 BasicBlock *DestBB, 796 bool isPreheader) { 797 // Do not delete loop preheaders if doing so would create a critical edge. 798 // Loop preheaders can be good locations to spill registers. If the 799 // preheader is deleted and we create a critical edge, registers may be 800 // spilled in the loop body instead. 801 if (!DisablePreheaderProtect && isPreheader && 802 !(BB->getSinglePredecessor() && 803 BB->getSinglePredecessor()->getSingleSuccessor())) 804 return false; 805 806 // Skip merging if the block's successor is also a successor to any callbr 807 // that leads to this block. 808 // FIXME: Is this really needed? Is this a correctness issue? 809 for (BasicBlock *Pred : predecessors(BB)) { 810 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 811 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 812 if (DestBB == CBI->getSuccessor(i)) 813 return false; 814 } 815 816 // Try to skip merging if the unique predecessor of BB is terminated by a 817 // switch or indirect branch instruction, and BB is used as an incoming block 818 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 819 // add COPY instructions in the predecessor of BB instead of BB (if it is not 820 // merged). Note that the critical edge created by merging such blocks wont be 821 // split in MachineSink because the jump table is not analyzable. By keeping 822 // such empty block (BB), ISel will place COPY instructions in BB, not in the 823 // predecessor of BB. 824 BasicBlock *Pred = BB->getUniquePredecessor(); 825 if (!Pred || 826 !(isa<SwitchInst>(Pred->getTerminator()) || 827 isa<IndirectBrInst>(Pred->getTerminator()))) 828 return true; 829 830 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 831 return true; 832 833 // We use a simple cost heuristic which determine skipping merging is 834 // profitable if the cost of skipping merging is less than the cost of 835 // merging : Cost(skipping merging) < Cost(merging BB), where the 836 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 837 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 838 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 839 // Freq(Pred) / Freq(BB) > 2. 840 // Note that if there are multiple empty blocks sharing the same incoming 841 // value for the PHIs in the DestBB, we consider them together. In such 842 // case, Cost(merging BB) will be the sum of their frequencies. 843 844 if (!isa<PHINode>(DestBB->begin())) 845 return true; 846 847 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 848 849 // Find all other incoming blocks from which incoming values of all PHIs in 850 // DestBB are the same as the ones from BB. 851 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 852 if (DestBBPred == BB) 853 continue; 854 855 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 856 return DestPN.getIncomingValueForBlock(BB) == 857 DestPN.getIncomingValueForBlock(DestBBPred); 858 })) 859 SameIncomingValueBBs.insert(DestBBPred); 860 } 861 862 // See if all BB's incoming values are same as the value from Pred. In this 863 // case, no reason to skip merging because COPYs are expected to be place in 864 // Pred already. 865 if (SameIncomingValueBBs.count(Pred)) 866 return true; 867 868 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 869 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 870 871 for (auto *SameValueBB : SameIncomingValueBBs) 872 if (SameValueBB->getUniquePredecessor() == Pred && 873 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 874 BBFreq += BFI->getBlockFreq(SameValueBB); 875 876 return PredFreq.getFrequency() <= 877 BBFreq.getFrequency() * FreqRatioToSkipMerge; 878 } 879 880 /// Return true if we can merge BB into DestBB if there is a single 881 /// unconditional branch between them, and BB contains no other non-phi 882 /// instructions. 883 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 884 const BasicBlock *DestBB) const { 885 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 886 // the successor. If there are more complex condition (e.g. preheaders), 887 // don't mess around with them. 888 for (const PHINode &PN : BB->phis()) { 889 for (const User *U : PN.users()) { 890 const Instruction *UI = cast<Instruction>(U); 891 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 892 return false; 893 // If User is inside DestBB block and it is a PHINode then check 894 // incoming value. If incoming value is not from BB then this is 895 // a complex condition (e.g. preheaders) we want to avoid here. 896 if (UI->getParent() == DestBB) { 897 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 898 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 899 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 900 if (Insn && Insn->getParent() == BB && 901 Insn->getParent() != UPN->getIncomingBlock(I)) 902 return false; 903 } 904 } 905 } 906 } 907 908 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 909 // and DestBB may have conflicting incoming values for the block. If so, we 910 // can't merge the block. 911 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 912 if (!DestBBPN) return true; // no conflict. 913 914 // Collect the preds of BB. 915 SmallPtrSet<const BasicBlock*, 16> BBPreds; 916 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 917 // It is faster to get preds from a PHI than with pred_iterator. 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 BBPreds.insert(BBPN->getIncomingBlock(i)); 920 } else { 921 BBPreds.insert(pred_begin(BB), pred_end(BB)); 922 } 923 924 // Walk the preds of DestBB. 925 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 926 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 927 if (BBPreds.count(Pred)) { // Common predecessor? 928 for (const PHINode &PN : DestBB->phis()) { 929 const Value *V1 = PN.getIncomingValueForBlock(Pred); 930 const Value *V2 = PN.getIncomingValueForBlock(BB); 931 932 // If V2 is a phi node in BB, look up what the mapped value will be. 933 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 934 if (V2PN->getParent() == BB) 935 V2 = V2PN->getIncomingValueForBlock(Pred); 936 937 // If there is a conflict, bail out. 938 if (V1 != V2) return false; 939 } 940 } 941 } 942 943 return true; 944 } 945 946 /// Eliminate a basic block that has only phi's and an unconditional branch in 947 /// it. 948 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 949 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 950 BasicBlock *DestBB = BI->getSuccessor(0); 951 952 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 953 << *BB << *DestBB); 954 955 // If the destination block has a single pred, then this is a trivial edge, 956 // just collapse it. 957 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 958 if (SinglePred != DestBB) { 959 assert(SinglePred == BB && 960 "Single predecessor not the same as predecessor"); 961 // Merge DestBB into SinglePred/BB and delete it. 962 MergeBlockIntoPredecessor(DestBB); 963 // Note: BB(=SinglePred) will not be deleted on this path. 964 // DestBB(=its single successor) is the one that was deleted. 965 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 966 return; 967 } 968 } 969 970 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 971 // to handle the new incoming edges it is about to have. 972 for (PHINode &PN : DestBB->phis()) { 973 // Remove the incoming value for BB, and remember it. 974 Value *InVal = PN.removeIncomingValue(BB, false); 975 976 // Two options: either the InVal is a phi node defined in BB or it is some 977 // value that dominates BB. 978 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 979 if (InValPhi && InValPhi->getParent() == BB) { 980 // Add all of the input values of the input PHI as inputs of this phi. 981 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 982 PN.addIncoming(InValPhi->getIncomingValue(i), 983 InValPhi->getIncomingBlock(i)); 984 } else { 985 // Otherwise, add one instance of the dominating value for each edge that 986 // we will be adding. 987 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 988 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 989 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 990 } else { 991 for (BasicBlock *Pred : predecessors(BB)) 992 PN.addIncoming(InVal, Pred); 993 } 994 } 995 } 996 997 // The PHIs are now updated, change everything that refers to BB to use 998 // DestBB and remove BB. 999 BB->replaceAllUsesWith(DestBB); 1000 BB->eraseFromParent(); 1001 ++NumBlocksElim; 1002 1003 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1004 } 1005 1006 // Computes a map of base pointer relocation instructions to corresponding 1007 // derived pointer relocation instructions given a vector of all relocate calls 1008 static void computeBaseDerivedRelocateMap( 1009 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1011 &RelocateInstMap) { 1012 // Collect information in two maps: one primarily for locating the base object 1013 // while filling the second map; the second map is the final structure holding 1014 // a mapping between Base and corresponding Derived relocate calls 1015 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1016 for (auto *ThisRelocate : AllRelocateCalls) { 1017 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1018 ThisRelocate->getDerivedPtrIndex()); 1019 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1020 } 1021 for (auto &Item : RelocateIdxMap) { 1022 std::pair<unsigned, unsigned> Key = Item.first; 1023 if (Key.first == Key.second) 1024 // Base relocation: nothing to insert 1025 continue; 1026 1027 GCRelocateInst *I = Item.second; 1028 auto BaseKey = std::make_pair(Key.first, Key.first); 1029 1030 // We're iterating over RelocateIdxMap so we cannot modify it. 1031 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1032 if (MaybeBase == RelocateIdxMap.end()) 1033 // TODO: We might want to insert a new base object relocate and gep off 1034 // that, if there are enough derived object relocates. 1035 continue; 1036 1037 RelocateInstMap[MaybeBase->second].push_back(I); 1038 } 1039 } 1040 1041 // Accepts a GEP and extracts the operands into a vector provided they're all 1042 // small integer constants 1043 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1044 SmallVectorImpl<Value *> &OffsetV) { 1045 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1046 // Only accept small constant integer operands 1047 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1048 if (!Op || Op->getZExtValue() > 20) 1049 return false; 1050 } 1051 1052 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1053 OffsetV.push_back(GEP->getOperand(i)); 1054 return true; 1055 } 1056 1057 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1058 // replace, computes a replacement, and affects it. 1059 static bool 1060 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1061 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1062 bool MadeChange = false; 1063 // We must ensure the relocation of derived pointer is defined after 1064 // relocation of base pointer. If we find a relocation corresponding to base 1065 // defined earlier than relocation of base then we move relocation of base 1066 // right before found relocation. We consider only relocation in the same 1067 // basic block as relocation of base. Relocations from other basic block will 1068 // be skipped by optimization and we do not care about them. 1069 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1070 &*R != RelocatedBase; ++R) 1071 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1072 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1073 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1074 RelocatedBase->moveBefore(RI); 1075 break; 1076 } 1077 1078 for (GCRelocateInst *ToReplace : Targets) { 1079 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1080 "Not relocating a derived object of the original base object"); 1081 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1082 // A duplicate relocate call. TODO: coalesce duplicates. 1083 continue; 1084 } 1085 1086 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1087 // Base and derived relocates are in different basic blocks. 1088 // In this case transform is only valid when base dominates derived 1089 // relocate. However it would be too expensive to check dominance 1090 // for each such relocate, so we skip the whole transformation. 1091 continue; 1092 } 1093 1094 Value *Base = ToReplace->getBasePtr(); 1095 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1096 if (!Derived || Derived->getPointerOperand() != Base) 1097 continue; 1098 1099 SmallVector<Value *, 2> OffsetV; 1100 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1101 continue; 1102 1103 // Create a Builder and replace the target callsite with a gep 1104 assert(RelocatedBase->getNextNode() && 1105 "Should always have one since it's not a terminator"); 1106 1107 // Insert after RelocatedBase 1108 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1109 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1110 1111 // If gc_relocate does not match the actual type, cast it to the right type. 1112 // In theory, there must be a bitcast after gc_relocate if the type does not 1113 // match, and we should reuse it to get the derived pointer. But it could be 1114 // cases like this: 1115 // bb1: 1116 // ... 1117 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // bb2: 1121 // ... 1122 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1123 // br label %merge 1124 // 1125 // merge: 1126 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1127 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1128 // 1129 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1130 // no matter there is already one or not. In this way, we can handle all cases, and 1131 // the extra bitcast should be optimized away in later passes. 1132 Value *ActualRelocatedBase = RelocatedBase; 1133 if (RelocatedBase->getType() != Base->getType()) { 1134 ActualRelocatedBase = 1135 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1136 } 1137 Value *Replacement = Builder.CreateGEP( 1138 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1139 Replacement->takeName(ToReplace); 1140 // If the newly generated derived pointer's type does not match the original derived 1141 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1142 Value *ActualReplacement = Replacement; 1143 if (Replacement->getType() != ToReplace->getType()) { 1144 ActualReplacement = 1145 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1146 } 1147 ToReplace->replaceAllUsesWith(ActualReplacement); 1148 ToReplace->eraseFromParent(); 1149 1150 MadeChange = true; 1151 } 1152 return MadeChange; 1153 } 1154 1155 // Turns this: 1156 // 1157 // %base = ... 1158 // %ptr = gep %base + 15 1159 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1160 // %base' = relocate(%tok, i32 4, i32 4) 1161 // %ptr' = relocate(%tok, i32 4, i32 5) 1162 // %val = load %ptr' 1163 // 1164 // into this: 1165 // 1166 // %base = ... 1167 // %ptr = gep %base + 15 1168 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1169 // %base' = gc.relocate(%tok, i32 4, i32 4) 1170 // %ptr' = gep %base' + 15 1171 // %val = load %ptr' 1172 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1173 bool MadeChange = false; 1174 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1175 for (auto *U : I.users()) 1176 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1177 // Collect all the relocate calls associated with a statepoint 1178 AllRelocateCalls.push_back(Relocate); 1179 1180 // We need at least one base pointer relocation + one derived pointer 1181 // relocation to mangle 1182 if (AllRelocateCalls.size() < 2) 1183 return false; 1184 1185 // RelocateInstMap is a mapping from the base relocate instruction to the 1186 // corresponding derived relocate instructions 1187 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1188 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1189 if (RelocateInstMap.empty()) 1190 return false; 1191 1192 for (auto &Item : RelocateInstMap) 1193 // Item.first is the RelocatedBase to offset against 1194 // Item.second is the vector of Targets to replace 1195 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1196 return MadeChange; 1197 } 1198 1199 /// Sink the specified cast instruction into its user blocks. 1200 static bool SinkCast(CastInst *CI) { 1201 BasicBlock *DefBB = CI->getParent(); 1202 1203 /// InsertedCasts - Only insert a cast in each block once. 1204 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1205 1206 bool MadeChange = false; 1207 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1208 UI != E; ) { 1209 Use &TheUse = UI.getUse(); 1210 Instruction *User = cast<Instruction>(*UI); 1211 1212 // Figure out which BB this cast is used in. For PHI's this is the 1213 // appropriate predecessor block. 1214 BasicBlock *UserBB = User->getParent(); 1215 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1216 UserBB = PN->getIncomingBlock(TheUse); 1217 } 1218 1219 // Preincrement use iterator so we don't invalidate it. 1220 ++UI; 1221 1222 // The first insertion point of a block containing an EH pad is after the 1223 // pad. If the pad is the user, we cannot sink the cast past the pad. 1224 if (User->isEHPad()) 1225 continue; 1226 1227 // If the block selected to receive the cast is an EH pad that does not 1228 // allow non-PHI instructions before the terminator, we can't sink the 1229 // cast. 1230 if (UserBB->getTerminator()->isEHPad()) 1231 continue; 1232 1233 // If this user is in the same block as the cast, don't change the cast. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cast into this block, use it. 1237 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1238 1239 if (!InsertedCast) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1243 CI->getType(), "", &*InsertPt); 1244 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1245 } 1246 1247 // Replace a use of the cast with a use of the new cast. 1248 TheUse = InsertedCast; 1249 MadeChange = true; 1250 ++NumCastUses; 1251 } 1252 1253 // If we removed all uses, nuke the cast. 1254 if (CI->use_empty()) { 1255 salvageDebugInfo(*CI); 1256 CI->eraseFromParent(); 1257 MadeChange = true; 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1264 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1265 /// reduce the number of virtual registers that must be created and coalesced. 1266 /// 1267 /// Return true if any changes are made. 1268 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1269 const DataLayout &DL) { 1270 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1271 // than sinking only nop casts, but is helpful on some platforms. 1272 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1273 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1274 ASC->getDestAddressSpace())) 1275 return false; 1276 } 1277 1278 // If this is a noop copy, 1279 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1281 1282 // This is an fp<->int conversion? 1283 if (SrcVT.isInteger() != DstVT.isInteger()) 1284 return false; 1285 1286 // If this is an extension, it will be a zero or sign extension, which 1287 // isn't a noop. 1288 if (SrcVT.bitsLT(DstVT)) return false; 1289 1290 // If these values will be promoted, find out what they will be promoted 1291 // to. This helps us consider truncates on PPC as noop copies when they 1292 // are. 1293 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1294 TargetLowering::TypePromoteInteger) 1295 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1296 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1297 TargetLowering::TypePromoteInteger) 1298 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1299 1300 // If, after promotion, these are the same types, this is a noop copy. 1301 if (SrcVT != DstVT) 1302 return false; 1303 1304 return SinkCast(CI); 1305 } 1306 1307 /// If given \p PN is an inductive variable with value IVInc coming from the 1308 /// backedge, and on each iteration it gets increased by Step, return pair 1309 /// <IVInc, Step>. Otherwise, return None. 1310 static Optional<std::pair<Instruction *, Constant *> > 1311 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1312 const Loop *L = LI->getLoopFor(PN->getParent()); 1313 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1314 return None; 1315 auto *IVInc = 1316 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1317 if (!IVInc) 1318 return None; 1319 Constant *Step = nullptr; 1320 if (match(IVInc, m_Sub(m_Specific(PN), m_Constant(Step)))) 1321 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1322 if (match(IVInc, m_Add(m_Specific(PN), m_Constant(Step)))) 1323 return std::make_pair(IVInc, Step); 1324 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1325 m_Specific(PN), m_Constant(Step))))) 1326 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1327 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1328 m_Specific(PN), m_Constant(Step))))) 1329 return std::make_pair(IVInc, Step); 1330 return None; 1331 } 1332 1333 static bool isIVIncrement(const BinaryOperator *BO, const LoopInfo *LI) { 1334 auto *PN = dyn_cast<PHINode>(BO->getOperand(0)); 1335 if (!PN || LI->getLoopFor(BO->getParent()) != LI->getLoopFor(PN->getParent())) 1336 return false; 1337 if (auto IVInc = getIVIncrement(PN, LI)) 1338 return IVInc->first == BO; 1339 return false; 1340 } 1341 1342 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1343 Value *Arg0, Value *Arg1, 1344 CmpInst *Cmp, 1345 Intrinsic::ID IID) { 1346 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1347 if (!isIVIncrement(BO, LI)) 1348 return false; 1349 const Loop *L = LI->getLoopFor(BO->getParent()); 1350 assert(L && "L should not be null after isIVIncrement()"); 1351 // Do not risk on moving increment into a child loop. 1352 if (LI->getLoopFor(Cmp->getParent()) != L) 1353 return false; 1354 1355 // Finally, we need to ensure that the insert point will dominate all 1356 // existing uses of the increment. 1357 1358 auto &DT = getDT(*BO->getParent()->getParent()); 1359 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1360 // If we're moving up the dom tree, all uses are trivially dominated. 1361 // (This is the common case for code produced by LSR.) 1362 return true; 1363 1364 // Otherwise, special case the single use in the phi recurrence. 1365 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1366 }; 1367 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1368 // We used to use a dominator tree here to allow multi-block optimization. 1369 // But that was problematic because: 1370 // 1. It could cause a perf regression by hoisting the math op into the 1371 // critical path. 1372 // 2. It could cause a perf regression by creating a value that was live 1373 // across multiple blocks and increasing register pressure. 1374 // 3. Use of a dominator tree could cause large compile-time regression. 1375 // This is because we recompute the DT on every change in the main CGP 1376 // run-loop. The recomputing is probably unnecessary in many cases, so if 1377 // that was fixed, using a DT here would be ok. 1378 // 1379 // There is one important particular case we still want to handle: if BO is 1380 // the IV increment. Important properties that make it profitable: 1381 // - We can speculate IV increment anywhere in the loop (as long as the 1382 // indvar Phi is its only user); 1383 // - Upon computing Cmp, we effectively compute something equivalent to the 1384 // IV increment (despite it loops differently in the IR). So moving it up 1385 // to the cmp point does not really increase register pressure. 1386 return false; 1387 } 1388 1389 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1390 if (BO->getOpcode() == Instruction::Add && 1391 IID == Intrinsic::usub_with_overflow) { 1392 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1393 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1394 } 1395 1396 // Insert at the first instruction of the pair. 1397 Instruction *InsertPt = nullptr; 1398 for (Instruction &Iter : *Cmp->getParent()) { 1399 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1400 // the overflow intrinsic are defined. 1401 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1402 InsertPt = &Iter; 1403 break; 1404 } 1405 } 1406 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1407 1408 IRBuilder<> Builder(InsertPt); 1409 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1410 if (BO->getOpcode() != Instruction::Xor) { 1411 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1412 BO->replaceAllUsesWith(Math); 1413 } else 1414 assert(BO->hasOneUse() && 1415 "Patterns with XOr should use the BO only in the compare"); 1416 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1417 Cmp->replaceAllUsesWith(OV); 1418 Cmp->eraseFromParent(); 1419 BO->eraseFromParent(); 1420 return true; 1421 } 1422 1423 /// Match special-case patterns that check for unsigned add overflow. 1424 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1425 BinaryOperator *&Add) { 1426 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1427 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1428 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1429 1430 // We are not expecting non-canonical/degenerate code. Just bail out. 1431 if (isa<Constant>(A)) 1432 return false; 1433 1434 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1435 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1436 B = ConstantInt::get(B->getType(), 1); 1437 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1438 B = ConstantInt::get(B->getType(), -1); 1439 else 1440 return false; 1441 1442 // Check the users of the variable operand of the compare looking for an add 1443 // with the adjusted constant. 1444 for (User *U : A->users()) { 1445 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1446 Add = cast<BinaryOperator>(U); 1447 return true; 1448 } 1449 } 1450 return false; 1451 } 1452 1453 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1454 /// intrinsic. Return true if any changes were made. 1455 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1456 bool &ModifiedDT) { 1457 Value *A, *B; 1458 BinaryOperator *Add; 1459 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1460 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1461 return false; 1462 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1463 A = Add->getOperand(0); 1464 B = Add->getOperand(1); 1465 } 1466 1467 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1468 TLI->getValueType(*DL, Add->getType()), 1469 Add->hasNUsesOrMore(2))) 1470 return false; 1471 1472 // We don't want to move around uses of condition values this late, so we 1473 // check if it is legal to create the call to the intrinsic in the basic 1474 // block containing the icmp. 1475 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1476 return false; 1477 1478 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1479 Intrinsic::uadd_with_overflow)) 1480 return false; 1481 1482 // Reset callers - do not crash by iterating over a dead instruction. 1483 ModifiedDT = true; 1484 return true; 1485 } 1486 1487 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1488 bool &ModifiedDT) { 1489 // We are not expecting non-canonical/degenerate code. Just bail out. 1490 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1491 if (isa<Constant>(A) && isa<Constant>(B)) 1492 return false; 1493 1494 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1495 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1496 if (Pred == ICmpInst::ICMP_UGT) { 1497 std::swap(A, B); 1498 Pred = ICmpInst::ICMP_ULT; 1499 } 1500 // Convert special-case: (A == 0) is the same as (A u< 1). 1501 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1502 B = ConstantInt::get(B->getType(), 1); 1503 Pred = ICmpInst::ICMP_ULT; 1504 } 1505 // Convert special-case: (A != 0) is the same as (0 u< A). 1506 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1507 std::swap(A, B); 1508 Pred = ICmpInst::ICMP_ULT; 1509 } 1510 if (Pred != ICmpInst::ICMP_ULT) 1511 return false; 1512 1513 // Walk the users of a variable operand of a compare looking for a subtract or 1514 // add with that same operand. Also match the 2nd operand of the compare to 1515 // the add/sub, but that may be a negated constant operand of an add. 1516 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1517 BinaryOperator *Sub = nullptr; 1518 for (User *U : CmpVariableOperand->users()) { 1519 // A - B, A u< B --> usubo(A, B) 1520 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1521 Sub = cast<BinaryOperator>(U); 1522 break; 1523 } 1524 1525 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1526 const APInt *CmpC, *AddC; 1527 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1528 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1529 Sub = cast<BinaryOperator>(U); 1530 break; 1531 } 1532 } 1533 if (!Sub) 1534 return false; 1535 1536 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1537 TLI->getValueType(*DL, Sub->getType()), 1538 Sub->hasNUsesOrMore(2))) 1539 return false; 1540 1541 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1542 Cmp, Intrinsic::usub_with_overflow)) 1543 return false; 1544 1545 // Reset callers - do not crash by iterating over a dead instruction. 1546 ModifiedDT = true; 1547 return true; 1548 } 1549 1550 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1551 /// registers that must be created and coalesced. This is a clear win except on 1552 /// targets with multiple condition code registers (PowerPC), where it might 1553 /// lose; some adjustment may be wanted there. 1554 /// 1555 /// Return true if any changes are made. 1556 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1557 if (TLI.hasMultipleConditionRegisters()) 1558 return false; 1559 1560 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1561 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1562 return false; 1563 1564 // Only insert a cmp in each block once. 1565 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1566 1567 bool MadeChange = false; 1568 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1569 UI != E; ) { 1570 Use &TheUse = UI.getUse(); 1571 Instruction *User = cast<Instruction>(*UI); 1572 1573 // Preincrement use iterator so we don't invalidate it. 1574 ++UI; 1575 1576 // Don't bother for PHI nodes. 1577 if (isa<PHINode>(User)) 1578 continue; 1579 1580 // Figure out which BB this cmp is used in. 1581 BasicBlock *UserBB = User->getParent(); 1582 BasicBlock *DefBB = Cmp->getParent(); 1583 1584 // If this user is in the same block as the cmp, don't change the cmp. 1585 if (UserBB == DefBB) continue; 1586 1587 // If we have already inserted a cmp into this block, use it. 1588 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1589 1590 if (!InsertedCmp) { 1591 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1592 assert(InsertPt != UserBB->end()); 1593 InsertedCmp = 1594 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1595 Cmp->getOperand(0), Cmp->getOperand(1), "", 1596 &*InsertPt); 1597 // Propagate the debug info. 1598 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1599 } 1600 1601 // Replace a use of the cmp with a use of the new cmp. 1602 TheUse = InsertedCmp; 1603 MadeChange = true; 1604 ++NumCmpUses; 1605 } 1606 1607 // If we removed all uses, nuke the cmp. 1608 if (Cmp->use_empty()) { 1609 Cmp->eraseFromParent(); 1610 MadeChange = true; 1611 } 1612 1613 return MadeChange; 1614 } 1615 1616 /// For pattern like: 1617 /// 1618 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1619 /// ... 1620 /// DomBB: 1621 /// ... 1622 /// br DomCond, TrueBB, CmpBB 1623 /// CmpBB: (with DomBB being the single predecessor) 1624 /// ... 1625 /// Cmp = icmp eq CmpOp0, CmpOp1 1626 /// ... 1627 /// 1628 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1629 /// different from lowering of icmp eq (PowerPC). This function try to convert 1630 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1631 /// After that, DomCond and Cmp can use the same comparison so reduce one 1632 /// comparison. 1633 /// 1634 /// Return true if any changes are made. 1635 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1636 const TargetLowering &TLI) { 1637 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1638 return false; 1639 1640 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1641 if (Pred != ICmpInst::ICMP_EQ) 1642 return false; 1643 1644 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1645 // icmp slt/sgt would introduce more redundant LLVM IR. 1646 for (User *U : Cmp->users()) { 1647 if (isa<BranchInst>(U)) 1648 continue; 1649 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1650 continue; 1651 return false; 1652 } 1653 1654 // This is a cheap/incomplete check for dominance - just match a single 1655 // predecessor with a conditional branch. 1656 BasicBlock *CmpBB = Cmp->getParent(); 1657 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1658 if (!DomBB) 1659 return false; 1660 1661 // We want to ensure that the only way control gets to the comparison of 1662 // interest is that a less/greater than comparison on the same operands is 1663 // false. 1664 Value *DomCond; 1665 BasicBlock *TrueBB, *FalseBB; 1666 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1667 return false; 1668 if (CmpBB != FalseBB) 1669 return false; 1670 1671 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1672 ICmpInst::Predicate DomPred; 1673 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1674 return false; 1675 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1676 return false; 1677 1678 // Convert the equality comparison to the opposite of the dominating 1679 // comparison and swap the direction for all branch/select users. 1680 // We have conceptually converted: 1681 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1682 // to 1683 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1684 // And similarly for branches. 1685 for (User *U : Cmp->users()) { 1686 if (auto *BI = dyn_cast<BranchInst>(U)) { 1687 assert(BI->isConditional() && "Must be conditional"); 1688 BI->swapSuccessors(); 1689 continue; 1690 } 1691 if (auto *SI = dyn_cast<SelectInst>(U)) { 1692 // Swap operands 1693 SI->swapValues(); 1694 SI->swapProfMetadata(); 1695 continue; 1696 } 1697 llvm_unreachable("Must be a branch or a select"); 1698 } 1699 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1700 return true; 1701 } 1702 1703 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1704 if (sinkCmpExpression(Cmp, *TLI)) 1705 return true; 1706 1707 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1708 return true; 1709 1710 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1711 return true; 1712 1713 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1720 /// used in a compare to allow isel to generate better code for targets where 1721 /// this operation can be combined. 1722 /// 1723 /// Return true if any changes are made. 1724 static bool sinkAndCmp0Expression(Instruction *AndI, 1725 const TargetLowering &TLI, 1726 SetOfInstrs &InsertedInsts) { 1727 // Double-check that we're not trying to optimize an instruction that was 1728 // already optimized by some other part of this pass. 1729 assert(!InsertedInsts.count(AndI) && 1730 "Attempting to optimize already optimized and instruction"); 1731 (void) InsertedInsts; 1732 1733 // Nothing to do for single use in same basic block. 1734 if (AndI->hasOneUse() && 1735 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1736 return false; 1737 1738 // Try to avoid cases where sinking/duplicating is likely to increase register 1739 // pressure. 1740 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1741 !isa<ConstantInt>(AndI->getOperand(1)) && 1742 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1743 return false; 1744 1745 for (auto *U : AndI->users()) { 1746 Instruction *User = cast<Instruction>(U); 1747 1748 // Only sink 'and' feeding icmp with 0. 1749 if (!isa<ICmpInst>(User)) 1750 return false; 1751 1752 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1753 if (!CmpC || !CmpC->isZero()) 1754 return false; 1755 } 1756 1757 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1758 return false; 1759 1760 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1761 LLVM_DEBUG(AndI->getParent()->dump()); 1762 1763 // Push the 'and' into the same block as the icmp 0. There should only be 1764 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1765 // others, so we don't need to keep track of which BBs we insert into. 1766 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1767 UI != E; ) { 1768 Use &TheUse = UI.getUse(); 1769 Instruction *User = cast<Instruction>(*UI); 1770 1771 // Preincrement use iterator so we don't invalidate it. 1772 ++UI; 1773 1774 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1775 1776 // Keep the 'and' in the same place if the use is already in the same block. 1777 Instruction *InsertPt = 1778 User->getParent() == AndI->getParent() ? AndI : User; 1779 Instruction *InsertedAnd = 1780 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1781 AndI->getOperand(1), "", InsertPt); 1782 // Propagate the debug info. 1783 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1784 1785 // Replace a use of the 'and' with a use of the new 'and'. 1786 TheUse = InsertedAnd; 1787 ++NumAndUses; 1788 LLVM_DEBUG(User->getParent()->dump()); 1789 } 1790 1791 // We removed all uses, nuke the and. 1792 AndI->eraseFromParent(); 1793 return true; 1794 } 1795 1796 /// Check if the candidates could be combined with a shift instruction, which 1797 /// includes: 1798 /// 1. Truncate instruction 1799 /// 2. And instruction and the imm is a mask of the low bits: 1800 /// imm & (imm+1) == 0 1801 static bool isExtractBitsCandidateUse(Instruction *User) { 1802 if (!isa<TruncInst>(User)) { 1803 if (User->getOpcode() != Instruction::And || 1804 !isa<ConstantInt>(User->getOperand(1))) 1805 return false; 1806 1807 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1808 1809 if ((Cimm & (Cimm + 1)).getBoolValue()) 1810 return false; 1811 } 1812 return true; 1813 } 1814 1815 /// Sink both shift and truncate instruction to the use of truncate's BB. 1816 static bool 1817 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1818 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1819 const TargetLowering &TLI, const DataLayout &DL) { 1820 BasicBlock *UserBB = User->getParent(); 1821 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1822 auto *TruncI = cast<TruncInst>(User); 1823 bool MadeChange = false; 1824 1825 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1826 TruncE = TruncI->user_end(); 1827 TruncUI != TruncE;) { 1828 1829 Use &TruncTheUse = TruncUI.getUse(); 1830 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1831 // Preincrement use iterator so we don't invalidate it. 1832 1833 ++TruncUI; 1834 1835 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1836 if (!ISDOpcode) 1837 continue; 1838 1839 // If the use is actually a legal node, there will not be an 1840 // implicit truncate. 1841 // FIXME: always querying the result type is just an 1842 // approximation; some nodes' legality is determined by the 1843 // operand or other means. There's no good way to find out though. 1844 if (TLI.isOperationLegalOrCustom( 1845 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1846 continue; 1847 1848 // Don't bother for PHI nodes. 1849 if (isa<PHINode>(TruncUser)) 1850 continue; 1851 1852 BasicBlock *TruncUserBB = TruncUser->getParent(); 1853 1854 if (UserBB == TruncUserBB) 1855 continue; 1856 1857 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1858 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1859 1860 if (!InsertedShift && !InsertedTrunc) { 1861 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1862 assert(InsertPt != TruncUserBB->end()); 1863 // Sink the shift 1864 if (ShiftI->getOpcode() == Instruction::AShr) 1865 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1866 "", &*InsertPt); 1867 else 1868 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1869 "", &*InsertPt); 1870 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1871 1872 // Sink the trunc 1873 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1874 TruncInsertPt++; 1875 assert(TruncInsertPt != TruncUserBB->end()); 1876 1877 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1878 TruncI->getType(), "", &*TruncInsertPt); 1879 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1880 1881 MadeChange = true; 1882 1883 TruncTheUse = InsertedTrunc; 1884 } 1885 } 1886 return MadeChange; 1887 } 1888 1889 /// Sink the shift *right* instruction into user blocks if the uses could 1890 /// potentially be combined with this shift instruction and generate BitExtract 1891 /// instruction. It will only be applied if the architecture supports BitExtract 1892 /// instruction. Here is an example: 1893 /// BB1: 1894 /// %x.extract.shift = lshr i64 %arg1, 32 1895 /// BB2: 1896 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1897 /// ==> 1898 /// 1899 /// BB2: 1900 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1901 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1902 /// 1903 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1904 /// instruction. 1905 /// Return true if any changes are made. 1906 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1907 const TargetLowering &TLI, 1908 const DataLayout &DL) { 1909 BasicBlock *DefBB = ShiftI->getParent(); 1910 1911 /// Only insert instructions in each block once. 1912 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1913 1914 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1915 1916 bool MadeChange = false; 1917 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1918 UI != E;) { 1919 Use &TheUse = UI.getUse(); 1920 Instruction *User = cast<Instruction>(*UI); 1921 // Preincrement use iterator so we don't invalidate it. 1922 ++UI; 1923 1924 // Don't bother for PHI nodes. 1925 if (isa<PHINode>(User)) 1926 continue; 1927 1928 if (!isExtractBitsCandidateUse(User)) 1929 continue; 1930 1931 BasicBlock *UserBB = User->getParent(); 1932 1933 if (UserBB == DefBB) { 1934 // If the shift and truncate instruction are in the same BB. The use of 1935 // the truncate(TruncUse) may still introduce another truncate if not 1936 // legal. In this case, we would like to sink both shift and truncate 1937 // instruction to the BB of TruncUse. 1938 // for example: 1939 // BB1: 1940 // i64 shift.result = lshr i64 opnd, imm 1941 // trunc.result = trunc shift.result to i16 1942 // 1943 // BB2: 1944 // ----> We will have an implicit truncate here if the architecture does 1945 // not have i16 compare. 1946 // cmp i16 trunc.result, opnd2 1947 // 1948 if (isa<TruncInst>(User) && shiftIsLegal 1949 // If the type of the truncate is legal, no truncate will be 1950 // introduced in other basic blocks. 1951 && 1952 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1953 MadeChange = 1954 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1955 1956 continue; 1957 } 1958 // If we have already inserted a shift into this block, use it. 1959 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1960 1961 if (!InsertedShift) { 1962 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1963 assert(InsertPt != UserBB->end()); 1964 1965 if (ShiftI->getOpcode() == Instruction::AShr) 1966 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1967 "", &*InsertPt); 1968 else 1969 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1970 "", &*InsertPt); 1971 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1972 1973 MadeChange = true; 1974 } 1975 1976 // Replace a use of the shift with a use of the new shift. 1977 TheUse = InsertedShift; 1978 } 1979 1980 // If we removed all uses, or there are none, nuke the shift. 1981 if (ShiftI->use_empty()) { 1982 salvageDebugInfo(*ShiftI); 1983 ShiftI->eraseFromParent(); 1984 MadeChange = true; 1985 } 1986 1987 return MadeChange; 1988 } 1989 1990 /// If counting leading or trailing zeros is an expensive operation and a zero 1991 /// input is defined, add a check for zero to avoid calling the intrinsic. 1992 /// 1993 /// We want to transform: 1994 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1995 /// 1996 /// into: 1997 /// entry: 1998 /// %cmpz = icmp eq i64 %A, 0 1999 /// br i1 %cmpz, label %cond.end, label %cond.false 2000 /// cond.false: 2001 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2002 /// br label %cond.end 2003 /// cond.end: 2004 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2005 /// 2006 /// If the transform is performed, return true and set ModifiedDT to true. 2007 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2008 const TargetLowering *TLI, 2009 const DataLayout *DL, 2010 bool &ModifiedDT) { 2011 // If a zero input is undefined, it doesn't make sense to despeculate that. 2012 if (match(CountZeros->getOperand(1), m_One())) 2013 return false; 2014 2015 // If it's cheap to speculate, there's nothing to do. 2016 auto IntrinsicID = CountZeros->getIntrinsicID(); 2017 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2018 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2019 return false; 2020 2021 // Only handle legal scalar cases. Anything else requires too much work. 2022 Type *Ty = CountZeros->getType(); 2023 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2024 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2025 return false; 2026 2027 // The intrinsic will be sunk behind a compare against zero and branch. 2028 BasicBlock *StartBlock = CountZeros->getParent(); 2029 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2030 2031 // Create another block after the count zero intrinsic. A PHI will be added 2032 // in this block to select the result of the intrinsic or the bit-width 2033 // constant if the input to the intrinsic is zero. 2034 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2035 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2036 2037 // Set up a builder to create a compare, conditional branch, and PHI. 2038 IRBuilder<> Builder(CountZeros->getContext()); 2039 Builder.SetInsertPoint(StartBlock->getTerminator()); 2040 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2041 2042 // Replace the unconditional branch that was created by the first split with 2043 // a compare against zero and a conditional branch. 2044 Value *Zero = Constant::getNullValue(Ty); 2045 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2046 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2047 StartBlock->getTerminator()->eraseFromParent(); 2048 2049 // Create a PHI in the end block to select either the output of the intrinsic 2050 // or the bit width of the operand. 2051 Builder.SetInsertPoint(&EndBlock->front()); 2052 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2053 CountZeros->replaceAllUsesWith(PN); 2054 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2055 PN->addIncoming(BitWidth, StartBlock); 2056 PN->addIncoming(CountZeros, CallBlock); 2057 2058 // We are explicitly handling the zero case, so we can set the intrinsic's 2059 // undefined zero argument to 'true'. This will also prevent reprocessing the 2060 // intrinsic; we only despeculate when a zero input is defined. 2061 CountZeros->setArgOperand(1, Builder.getTrue()); 2062 ModifiedDT = true; 2063 return true; 2064 } 2065 2066 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2067 BasicBlock *BB = CI->getParent(); 2068 2069 // Lower inline assembly if we can. 2070 // If we found an inline asm expession, and if the target knows how to 2071 // lower it to normal LLVM code, do so now. 2072 if (CI->isInlineAsm()) { 2073 if (TLI->ExpandInlineAsm(CI)) { 2074 // Avoid invalidating the iterator. 2075 CurInstIterator = BB->begin(); 2076 // Avoid processing instructions out of order, which could cause 2077 // reuse before a value is defined. 2078 SunkAddrs.clear(); 2079 return true; 2080 } 2081 // Sink address computing for memory operands into the block. 2082 if (optimizeInlineAsmInst(CI)) 2083 return true; 2084 } 2085 2086 // Align the pointer arguments to this call if the target thinks it's a good 2087 // idea 2088 unsigned MinSize, PrefAlign; 2089 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2090 for (auto &Arg : CI->arg_operands()) { 2091 // We want to align both objects whose address is used directly and 2092 // objects whose address is used in casts and GEPs, though it only makes 2093 // sense for GEPs if the offset is a multiple of the desired alignment and 2094 // if size - offset meets the size threshold. 2095 if (!Arg->getType()->isPointerTy()) 2096 continue; 2097 APInt Offset(DL->getIndexSizeInBits( 2098 cast<PointerType>(Arg->getType())->getAddressSpace()), 2099 0); 2100 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2101 uint64_t Offset2 = Offset.getLimitedValue(); 2102 if ((Offset2 & (PrefAlign-1)) != 0) 2103 continue; 2104 AllocaInst *AI; 2105 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2106 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2107 AI->setAlignment(Align(PrefAlign)); 2108 // Global variables can only be aligned if they are defined in this 2109 // object (i.e. they are uniquely initialized in this object), and 2110 // over-aligning global variables that have an explicit section is 2111 // forbidden. 2112 GlobalVariable *GV; 2113 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2114 GV->getPointerAlignment(*DL) < PrefAlign && 2115 DL->getTypeAllocSize(GV->getValueType()) >= 2116 MinSize + Offset2) 2117 GV->setAlignment(MaybeAlign(PrefAlign)); 2118 } 2119 // If this is a memcpy (or similar) then we may be able to improve the 2120 // alignment 2121 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2122 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2123 MaybeAlign MIDestAlign = MI->getDestAlign(); 2124 if (!MIDestAlign || DestAlign > *MIDestAlign) 2125 MI->setDestAlignment(DestAlign); 2126 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2127 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2128 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2129 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2130 MTI->setSourceAlignment(SrcAlign); 2131 } 2132 } 2133 } 2134 2135 // If we have a cold call site, try to sink addressing computation into the 2136 // cold block. This interacts with our handling for loads and stores to 2137 // ensure that we can fold all uses of a potential addressing computation 2138 // into their uses. TODO: generalize this to work over profiling data 2139 if (CI->hasFnAttr(Attribute::Cold) && 2140 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2141 for (auto &Arg : CI->arg_operands()) { 2142 if (!Arg->getType()->isPointerTy()) 2143 continue; 2144 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2145 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2146 } 2147 2148 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2149 if (II) { 2150 switch (II->getIntrinsicID()) { 2151 default: break; 2152 case Intrinsic::assume: 2153 llvm_unreachable("llvm.assume should have been removed already"); 2154 case Intrinsic::experimental_widenable_condition: { 2155 // Give up on future widening oppurtunties so that we can fold away dead 2156 // paths and merge blocks before going into block-local instruction 2157 // selection. 2158 if (II->use_empty()) { 2159 II->eraseFromParent(); 2160 return true; 2161 } 2162 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2163 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2164 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2165 }); 2166 return true; 2167 } 2168 case Intrinsic::objectsize: 2169 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2170 case Intrinsic::is_constant: 2171 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2172 case Intrinsic::aarch64_stlxr: 2173 case Intrinsic::aarch64_stxr: { 2174 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2175 if (!ExtVal || !ExtVal->hasOneUse() || 2176 ExtVal->getParent() == CI->getParent()) 2177 return false; 2178 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2179 ExtVal->moveBefore(CI); 2180 // Mark this instruction as "inserted by CGP", so that other 2181 // optimizations don't touch it. 2182 InsertedInsts.insert(ExtVal); 2183 return true; 2184 } 2185 2186 case Intrinsic::launder_invariant_group: 2187 case Intrinsic::strip_invariant_group: { 2188 Value *ArgVal = II->getArgOperand(0); 2189 auto it = LargeOffsetGEPMap.find(II); 2190 if (it != LargeOffsetGEPMap.end()) { 2191 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2192 // Make sure not to have to deal with iterator invalidation 2193 // after possibly adding ArgVal to LargeOffsetGEPMap. 2194 auto GEPs = std::move(it->second); 2195 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2196 LargeOffsetGEPMap.erase(II); 2197 } 2198 2199 II->replaceAllUsesWith(ArgVal); 2200 II->eraseFromParent(); 2201 return true; 2202 } 2203 case Intrinsic::cttz: 2204 case Intrinsic::ctlz: 2205 // If counting zeros is expensive, try to avoid it. 2206 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2207 case Intrinsic::fshl: 2208 case Intrinsic::fshr: 2209 return optimizeFunnelShift(II); 2210 case Intrinsic::dbg_value: 2211 return fixupDbgValue(II); 2212 case Intrinsic::vscale: { 2213 // If datalayout has no special restrictions on vector data layout, 2214 // replace `llvm.vscale` by an equivalent constant expression 2215 // to benefit from cheap constant propagation. 2216 Type *ScalableVectorTy = 2217 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2218 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2219 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2220 auto *One = ConstantInt::getSigned(II->getType(), 1); 2221 auto *CGep = 2222 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2223 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2224 II->eraseFromParent(); 2225 return true; 2226 } 2227 break; 2228 } 2229 case Intrinsic::masked_gather: 2230 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2231 case Intrinsic::masked_scatter: 2232 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2233 } 2234 2235 SmallVector<Value *, 2> PtrOps; 2236 Type *AccessTy; 2237 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2238 while (!PtrOps.empty()) { 2239 Value *PtrVal = PtrOps.pop_back_val(); 2240 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2241 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2242 return true; 2243 } 2244 } 2245 2246 // From here on out we're working with named functions. 2247 if (!CI->getCalledFunction()) return false; 2248 2249 // Lower all default uses of _chk calls. This is very similar 2250 // to what InstCombineCalls does, but here we are only lowering calls 2251 // to fortified library functions (e.g. __memcpy_chk) that have the default 2252 // "don't know" as the objectsize. Anything else should be left alone. 2253 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2254 IRBuilder<> Builder(CI); 2255 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2256 CI->replaceAllUsesWith(V); 2257 CI->eraseFromParent(); 2258 return true; 2259 } 2260 2261 return false; 2262 } 2263 2264 /// Look for opportunities to duplicate return instructions to the predecessor 2265 /// to enable tail call optimizations. The case it is currently looking for is: 2266 /// @code 2267 /// bb0: 2268 /// %tmp0 = tail call i32 @f0() 2269 /// br label %return 2270 /// bb1: 2271 /// %tmp1 = tail call i32 @f1() 2272 /// br label %return 2273 /// bb2: 2274 /// %tmp2 = tail call i32 @f2() 2275 /// br label %return 2276 /// return: 2277 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2278 /// ret i32 %retval 2279 /// @endcode 2280 /// 2281 /// => 2282 /// 2283 /// @code 2284 /// bb0: 2285 /// %tmp0 = tail call i32 @f0() 2286 /// ret i32 %tmp0 2287 /// bb1: 2288 /// %tmp1 = tail call i32 @f1() 2289 /// ret i32 %tmp1 2290 /// bb2: 2291 /// %tmp2 = tail call i32 @f2() 2292 /// ret i32 %tmp2 2293 /// @endcode 2294 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2295 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2296 if (!RetI) 2297 return false; 2298 2299 PHINode *PN = nullptr; 2300 ExtractValueInst *EVI = nullptr; 2301 BitCastInst *BCI = nullptr; 2302 Value *V = RetI->getReturnValue(); 2303 if (V) { 2304 BCI = dyn_cast<BitCastInst>(V); 2305 if (BCI) 2306 V = BCI->getOperand(0); 2307 2308 EVI = dyn_cast<ExtractValueInst>(V); 2309 if (EVI) { 2310 V = EVI->getOperand(0); 2311 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2312 return false; 2313 } 2314 2315 PN = dyn_cast<PHINode>(V); 2316 if (!PN) 2317 return false; 2318 } 2319 2320 if (PN && PN->getParent() != BB) 2321 return false; 2322 2323 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2324 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2325 if (BC && BC->hasOneUse()) 2326 Inst = BC->user_back(); 2327 2328 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2329 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2330 return false; 2331 }; 2332 2333 // Make sure there are no instructions between the first instruction 2334 // and return. 2335 const Instruction *BI = BB->getFirstNonPHI(); 2336 // Skip over debug and the bitcast. 2337 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2338 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2339 BI = BI->getNextNode(); 2340 if (BI != RetI) 2341 return false; 2342 2343 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2344 /// call. 2345 const Function *F = BB->getParent(); 2346 SmallVector<BasicBlock*, 4> TailCallBBs; 2347 if (PN) { 2348 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2349 // Look through bitcasts. 2350 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2351 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2352 BasicBlock *PredBB = PN->getIncomingBlock(I); 2353 // Make sure the phi value is indeed produced by the tail call. 2354 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2355 TLI->mayBeEmittedAsTailCall(CI) && 2356 attributesPermitTailCall(F, CI, RetI, *TLI)) 2357 TailCallBBs.push_back(PredBB); 2358 } 2359 } else { 2360 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2361 for (BasicBlock *Pred : predecessors(BB)) { 2362 if (!VisitedBBs.insert(Pred).second) 2363 continue; 2364 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2365 CallInst *CI = dyn_cast<CallInst>(I); 2366 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2367 attributesPermitTailCall(F, CI, RetI, *TLI)) 2368 TailCallBBs.push_back(Pred); 2369 } 2370 } 2371 } 2372 2373 bool Changed = false; 2374 for (auto const &TailCallBB : TailCallBBs) { 2375 // Make sure the call instruction is followed by an unconditional branch to 2376 // the return block. 2377 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2378 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2379 continue; 2380 2381 // Duplicate the return into TailCallBB. 2382 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2383 assert(!VerifyBFIUpdates || 2384 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2385 BFI->setBlockFreq( 2386 BB, 2387 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2388 ModifiedDT = Changed = true; 2389 ++NumRetsDup; 2390 } 2391 2392 // If we eliminated all predecessors of the block, delete the block now. 2393 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2394 BB->eraseFromParent(); 2395 2396 return Changed; 2397 } 2398 2399 //===----------------------------------------------------------------------===// 2400 // Memory Optimization 2401 //===----------------------------------------------------------------------===// 2402 2403 namespace { 2404 2405 /// This is an extended version of TargetLowering::AddrMode 2406 /// which holds actual Value*'s for register values. 2407 struct ExtAddrMode : public TargetLowering::AddrMode { 2408 Value *BaseReg = nullptr; 2409 Value *ScaledReg = nullptr; 2410 Value *OriginalValue = nullptr; 2411 bool InBounds = true; 2412 2413 enum FieldName { 2414 NoField = 0x00, 2415 BaseRegField = 0x01, 2416 BaseGVField = 0x02, 2417 BaseOffsField = 0x04, 2418 ScaledRegField = 0x08, 2419 ScaleField = 0x10, 2420 MultipleFields = 0xff 2421 }; 2422 2423 2424 ExtAddrMode() = default; 2425 2426 void print(raw_ostream &OS) const; 2427 void dump() const; 2428 2429 FieldName compare(const ExtAddrMode &other) { 2430 // First check that the types are the same on each field, as differing types 2431 // is something we can't cope with later on. 2432 if (BaseReg && other.BaseReg && 2433 BaseReg->getType() != other.BaseReg->getType()) 2434 return MultipleFields; 2435 if (BaseGV && other.BaseGV && 2436 BaseGV->getType() != other.BaseGV->getType()) 2437 return MultipleFields; 2438 if (ScaledReg && other.ScaledReg && 2439 ScaledReg->getType() != other.ScaledReg->getType()) 2440 return MultipleFields; 2441 2442 // Conservatively reject 'inbounds' mismatches. 2443 if (InBounds != other.InBounds) 2444 return MultipleFields; 2445 2446 // Check each field to see if it differs. 2447 unsigned Result = NoField; 2448 if (BaseReg != other.BaseReg) 2449 Result |= BaseRegField; 2450 if (BaseGV != other.BaseGV) 2451 Result |= BaseGVField; 2452 if (BaseOffs != other.BaseOffs) 2453 Result |= BaseOffsField; 2454 if (ScaledReg != other.ScaledReg) 2455 Result |= ScaledRegField; 2456 // Don't count 0 as being a different scale, because that actually means 2457 // unscaled (which will already be counted by having no ScaledReg). 2458 if (Scale && other.Scale && Scale != other.Scale) 2459 Result |= ScaleField; 2460 2461 if (countPopulation(Result) > 1) 2462 return MultipleFields; 2463 else 2464 return static_cast<FieldName>(Result); 2465 } 2466 2467 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2468 // with no offset. 2469 bool isTrivial() { 2470 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2471 // trivial if at most one of these terms is nonzero, except that BaseGV and 2472 // BaseReg both being zero actually means a null pointer value, which we 2473 // consider to be 'non-zero' here. 2474 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2475 } 2476 2477 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2478 switch (Field) { 2479 default: 2480 return nullptr; 2481 case BaseRegField: 2482 return BaseReg; 2483 case BaseGVField: 2484 return BaseGV; 2485 case ScaledRegField: 2486 return ScaledReg; 2487 case BaseOffsField: 2488 return ConstantInt::get(IntPtrTy, BaseOffs); 2489 } 2490 } 2491 2492 void SetCombinedField(FieldName Field, Value *V, 2493 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2494 switch (Field) { 2495 default: 2496 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2497 break; 2498 case ExtAddrMode::BaseRegField: 2499 BaseReg = V; 2500 break; 2501 case ExtAddrMode::BaseGVField: 2502 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2503 // in the BaseReg field. 2504 assert(BaseReg == nullptr); 2505 BaseReg = V; 2506 BaseGV = nullptr; 2507 break; 2508 case ExtAddrMode::ScaledRegField: 2509 ScaledReg = V; 2510 // If we have a mix of scaled and unscaled addrmodes then we want scale 2511 // to be the scale and not zero. 2512 if (!Scale) 2513 for (const ExtAddrMode &AM : AddrModes) 2514 if (AM.Scale) { 2515 Scale = AM.Scale; 2516 break; 2517 } 2518 break; 2519 case ExtAddrMode::BaseOffsField: 2520 // The offset is no longer a constant, so it goes in ScaledReg with a 2521 // scale of 1. 2522 assert(ScaledReg == nullptr); 2523 ScaledReg = V; 2524 Scale = 1; 2525 BaseOffs = 0; 2526 break; 2527 } 2528 } 2529 }; 2530 2531 } // end anonymous namespace 2532 2533 #ifndef NDEBUG 2534 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2535 AM.print(OS); 2536 return OS; 2537 } 2538 #endif 2539 2540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2541 void ExtAddrMode::print(raw_ostream &OS) const { 2542 bool NeedPlus = false; 2543 OS << "["; 2544 if (InBounds) 2545 OS << "inbounds "; 2546 if (BaseGV) { 2547 OS << (NeedPlus ? " + " : "") 2548 << "GV:"; 2549 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2550 NeedPlus = true; 2551 } 2552 2553 if (BaseOffs) { 2554 OS << (NeedPlus ? " + " : "") 2555 << BaseOffs; 2556 NeedPlus = true; 2557 } 2558 2559 if (BaseReg) { 2560 OS << (NeedPlus ? " + " : "") 2561 << "Base:"; 2562 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2563 NeedPlus = true; 2564 } 2565 if (Scale) { 2566 OS << (NeedPlus ? " + " : "") 2567 << Scale << "*"; 2568 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2569 } 2570 2571 OS << ']'; 2572 } 2573 2574 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2575 print(dbgs()); 2576 dbgs() << '\n'; 2577 } 2578 #endif 2579 2580 namespace { 2581 2582 /// This class provides transaction based operation on the IR. 2583 /// Every change made through this class is recorded in the internal state and 2584 /// can be undone (rollback) until commit is called. 2585 /// CGP does not check if instructions could be speculatively executed when 2586 /// moved. Preserving the original location would pessimize the debugging 2587 /// experience, as well as negatively impact the quality of sample PGO. 2588 class TypePromotionTransaction { 2589 /// This represents the common interface of the individual transaction. 2590 /// Each class implements the logic for doing one specific modification on 2591 /// the IR via the TypePromotionTransaction. 2592 class TypePromotionAction { 2593 protected: 2594 /// The Instruction modified. 2595 Instruction *Inst; 2596 2597 public: 2598 /// Constructor of the action. 2599 /// The constructor performs the related action on the IR. 2600 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2601 2602 virtual ~TypePromotionAction() = default; 2603 2604 /// Undo the modification done by this action. 2605 /// When this method is called, the IR must be in the same state as it was 2606 /// before this action was applied. 2607 /// \pre Undoing the action works if and only if the IR is in the exact same 2608 /// state as it was directly after this action was applied. 2609 virtual void undo() = 0; 2610 2611 /// Advocate every change made by this action. 2612 /// When the results on the IR of the action are to be kept, it is important 2613 /// to call this function, otherwise hidden information may be kept forever. 2614 virtual void commit() { 2615 // Nothing to be done, this action is not doing anything. 2616 } 2617 }; 2618 2619 /// Utility to remember the position of an instruction. 2620 class InsertionHandler { 2621 /// Position of an instruction. 2622 /// Either an instruction: 2623 /// - Is the first in a basic block: BB is used. 2624 /// - Has a previous instruction: PrevInst is used. 2625 union { 2626 Instruction *PrevInst; 2627 BasicBlock *BB; 2628 } Point; 2629 2630 /// Remember whether or not the instruction had a previous instruction. 2631 bool HasPrevInstruction; 2632 2633 public: 2634 /// Record the position of \p Inst. 2635 InsertionHandler(Instruction *Inst) { 2636 BasicBlock::iterator It = Inst->getIterator(); 2637 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2638 if (HasPrevInstruction) 2639 Point.PrevInst = &*--It; 2640 else 2641 Point.BB = Inst->getParent(); 2642 } 2643 2644 /// Insert \p Inst at the recorded position. 2645 void insert(Instruction *Inst) { 2646 if (HasPrevInstruction) { 2647 if (Inst->getParent()) 2648 Inst->removeFromParent(); 2649 Inst->insertAfter(Point.PrevInst); 2650 } else { 2651 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2652 if (Inst->getParent()) 2653 Inst->moveBefore(Position); 2654 else 2655 Inst->insertBefore(Position); 2656 } 2657 } 2658 }; 2659 2660 /// Move an instruction before another. 2661 class InstructionMoveBefore : public TypePromotionAction { 2662 /// Original position of the instruction. 2663 InsertionHandler Position; 2664 2665 public: 2666 /// Move \p Inst before \p Before. 2667 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2668 : TypePromotionAction(Inst), Position(Inst) { 2669 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2670 << "\n"); 2671 Inst->moveBefore(Before); 2672 } 2673 2674 /// Move the instruction back to its original position. 2675 void undo() override { 2676 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2677 Position.insert(Inst); 2678 } 2679 }; 2680 2681 /// Set the operand of an instruction with a new value. 2682 class OperandSetter : public TypePromotionAction { 2683 /// Original operand of the instruction. 2684 Value *Origin; 2685 2686 /// Index of the modified instruction. 2687 unsigned Idx; 2688 2689 public: 2690 /// Set \p Idx operand of \p Inst with \p NewVal. 2691 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2692 : TypePromotionAction(Inst), Idx(Idx) { 2693 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2694 << "for:" << *Inst << "\n" 2695 << "with:" << *NewVal << "\n"); 2696 Origin = Inst->getOperand(Idx); 2697 Inst->setOperand(Idx, NewVal); 2698 } 2699 2700 /// Restore the original value of the instruction. 2701 void undo() override { 2702 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2703 << "for: " << *Inst << "\n" 2704 << "with: " << *Origin << "\n"); 2705 Inst->setOperand(Idx, Origin); 2706 } 2707 }; 2708 2709 /// Hide the operands of an instruction. 2710 /// Do as if this instruction was not using any of its operands. 2711 class OperandsHider : public TypePromotionAction { 2712 /// The list of original operands. 2713 SmallVector<Value *, 4> OriginalValues; 2714 2715 public: 2716 /// Remove \p Inst from the uses of the operands of \p Inst. 2717 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2718 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2719 unsigned NumOpnds = Inst->getNumOperands(); 2720 OriginalValues.reserve(NumOpnds); 2721 for (unsigned It = 0; It < NumOpnds; ++It) { 2722 // Save the current operand. 2723 Value *Val = Inst->getOperand(It); 2724 OriginalValues.push_back(Val); 2725 // Set a dummy one. 2726 // We could use OperandSetter here, but that would imply an overhead 2727 // that we are not willing to pay. 2728 Inst->setOperand(It, UndefValue::get(Val->getType())); 2729 } 2730 } 2731 2732 /// Restore the original list of uses. 2733 void undo() override { 2734 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2735 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2736 Inst->setOperand(It, OriginalValues[It]); 2737 } 2738 }; 2739 2740 /// Build a truncate instruction. 2741 class TruncBuilder : public TypePromotionAction { 2742 Value *Val; 2743 2744 public: 2745 /// Build a truncate instruction of \p Opnd producing a \p Ty 2746 /// result. 2747 /// trunc Opnd to Ty. 2748 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2749 IRBuilder<> Builder(Opnd); 2750 Builder.SetCurrentDebugLocation(DebugLoc()); 2751 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2752 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2753 } 2754 2755 /// Get the built value. 2756 Value *getBuiltValue() { return Val; } 2757 2758 /// Remove the built instruction. 2759 void undo() override { 2760 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2761 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2762 IVal->eraseFromParent(); 2763 } 2764 }; 2765 2766 /// Build a sign extension instruction. 2767 class SExtBuilder : public TypePromotionAction { 2768 Value *Val; 2769 2770 public: 2771 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2772 /// result. 2773 /// sext Opnd to Ty. 2774 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2775 : TypePromotionAction(InsertPt) { 2776 IRBuilder<> Builder(InsertPt); 2777 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2778 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2779 } 2780 2781 /// Get the built value. 2782 Value *getBuiltValue() { return Val; } 2783 2784 /// Remove the built instruction. 2785 void undo() override { 2786 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2787 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2788 IVal->eraseFromParent(); 2789 } 2790 }; 2791 2792 /// Build a zero extension instruction. 2793 class ZExtBuilder : public TypePromotionAction { 2794 Value *Val; 2795 2796 public: 2797 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2798 /// result. 2799 /// zext Opnd to Ty. 2800 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2801 : TypePromotionAction(InsertPt) { 2802 IRBuilder<> Builder(InsertPt); 2803 Builder.SetCurrentDebugLocation(DebugLoc()); 2804 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2805 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2806 } 2807 2808 /// Get the built value. 2809 Value *getBuiltValue() { return Val; } 2810 2811 /// Remove the built instruction. 2812 void undo() override { 2813 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2814 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2815 IVal->eraseFromParent(); 2816 } 2817 }; 2818 2819 /// Mutate an instruction to another type. 2820 class TypeMutator : public TypePromotionAction { 2821 /// Record the original type. 2822 Type *OrigTy; 2823 2824 public: 2825 /// Mutate the type of \p Inst into \p NewTy. 2826 TypeMutator(Instruction *Inst, Type *NewTy) 2827 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2828 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2829 << "\n"); 2830 Inst->mutateType(NewTy); 2831 } 2832 2833 /// Mutate the instruction back to its original type. 2834 void undo() override { 2835 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2836 << "\n"); 2837 Inst->mutateType(OrigTy); 2838 } 2839 }; 2840 2841 /// Replace the uses of an instruction by another instruction. 2842 class UsesReplacer : public TypePromotionAction { 2843 /// Helper structure to keep track of the replaced uses. 2844 struct InstructionAndIdx { 2845 /// The instruction using the instruction. 2846 Instruction *Inst; 2847 2848 /// The index where this instruction is used for Inst. 2849 unsigned Idx; 2850 2851 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2852 : Inst(Inst), Idx(Idx) {} 2853 }; 2854 2855 /// Keep track of the original uses (pair Instruction, Index). 2856 SmallVector<InstructionAndIdx, 4> OriginalUses; 2857 /// Keep track of the debug users. 2858 SmallVector<DbgValueInst *, 1> DbgValues; 2859 2860 /// Keep track of the new value so that we can undo it by replacing 2861 /// instances of the new value with the original value. 2862 Value *New; 2863 2864 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2865 2866 public: 2867 /// Replace all the use of \p Inst by \p New. 2868 UsesReplacer(Instruction *Inst, Value *New) 2869 : TypePromotionAction(Inst), New(New) { 2870 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2871 << "\n"); 2872 // Record the original uses. 2873 for (Use &U : Inst->uses()) { 2874 Instruction *UserI = cast<Instruction>(U.getUser()); 2875 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2876 } 2877 // Record the debug uses separately. They are not in the instruction's 2878 // use list, but they are replaced by RAUW. 2879 findDbgValues(DbgValues, Inst); 2880 2881 // Now, we can replace the uses. 2882 Inst->replaceAllUsesWith(New); 2883 } 2884 2885 /// Reassign the original uses of Inst to Inst. 2886 void undo() override { 2887 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2888 for (InstructionAndIdx &Use : OriginalUses) 2889 Use.Inst->setOperand(Use.Idx, Inst); 2890 // RAUW has replaced all original uses with references to the new value, 2891 // including the debug uses. Since we are undoing the replacements, 2892 // the original debug uses must also be reinstated to maintain the 2893 // correctness and utility of debug value instructions. 2894 for (auto *DVI : DbgValues) 2895 DVI->replaceVariableLocationOp(New, Inst); 2896 } 2897 }; 2898 2899 /// Remove an instruction from the IR. 2900 class InstructionRemover : public TypePromotionAction { 2901 /// Original position of the instruction. 2902 InsertionHandler Inserter; 2903 2904 /// Helper structure to hide all the link to the instruction. In other 2905 /// words, this helps to do as if the instruction was removed. 2906 OperandsHider Hider; 2907 2908 /// Keep track of the uses replaced, if any. 2909 UsesReplacer *Replacer = nullptr; 2910 2911 /// Keep track of instructions removed. 2912 SetOfInstrs &RemovedInsts; 2913 2914 public: 2915 /// Remove all reference of \p Inst and optionally replace all its 2916 /// uses with New. 2917 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2918 /// \pre If !Inst->use_empty(), then New != nullptr 2919 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2920 Value *New = nullptr) 2921 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2922 RemovedInsts(RemovedInsts) { 2923 if (New) 2924 Replacer = new UsesReplacer(Inst, New); 2925 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2926 RemovedInsts.insert(Inst); 2927 /// The instructions removed here will be freed after completing 2928 /// optimizeBlock() for all blocks as we need to keep track of the 2929 /// removed instructions during promotion. 2930 Inst->removeFromParent(); 2931 } 2932 2933 ~InstructionRemover() override { delete Replacer; } 2934 2935 /// Resurrect the instruction and reassign it to the proper uses if 2936 /// new value was provided when build this action. 2937 void undo() override { 2938 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2939 Inserter.insert(Inst); 2940 if (Replacer) 2941 Replacer->undo(); 2942 Hider.undo(); 2943 RemovedInsts.erase(Inst); 2944 } 2945 }; 2946 2947 public: 2948 /// Restoration point. 2949 /// The restoration point is a pointer to an action instead of an iterator 2950 /// because the iterator may be invalidated but not the pointer. 2951 using ConstRestorationPt = const TypePromotionAction *; 2952 2953 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2954 : RemovedInsts(RemovedInsts) {} 2955 2956 /// Advocate every changes made in that transaction. Return true if any change 2957 /// happen. 2958 bool commit(); 2959 2960 /// Undo all the changes made after the given point. 2961 void rollback(ConstRestorationPt Point); 2962 2963 /// Get the current restoration point. 2964 ConstRestorationPt getRestorationPoint() const; 2965 2966 /// \name API for IR modification with state keeping to support rollback. 2967 /// @{ 2968 /// Same as Instruction::setOperand. 2969 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2970 2971 /// Same as Instruction::eraseFromParent. 2972 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2973 2974 /// Same as Value::replaceAllUsesWith. 2975 void replaceAllUsesWith(Instruction *Inst, Value *New); 2976 2977 /// Same as Value::mutateType. 2978 void mutateType(Instruction *Inst, Type *NewTy); 2979 2980 /// Same as IRBuilder::createTrunc. 2981 Value *createTrunc(Instruction *Opnd, Type *Ty); 2982 2983 /// Same as IRBuilder::createSExt. 2984 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2985 2986 /// Same as IRBuilder::createZExt. 2987 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2988 2989 /// Same as Instruction::moveBefore. 2990 void moveBefore(Instruction *Inst, Instruction *Before); 2991 /// @} 2992 2993 private: 2994 /// The ordered list of actions made so far. 2995 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2996 2997 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2998 2999 SetOfInstrs &RemovedInsts; 3000 }; 3001 3002 } // end anonymous namespace 3003 3004 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3005 Value *NewVal) { 3006 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3007 Inst, Idx, NewVal)); 3008 } 3009 3010 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3011 Value *NewVal) { 3012 Actions.push_back( 3013 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3014 Inst, RemovedInsts, NewVal)); 3015 } 3016 3017 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3018 Value *New) { 3019 Actions.push_back( 3020 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3021 } 3022 3023 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3024 Actions.push_back( 3025 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3026 } 3027 3028 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3029 Type *Ty) { 3030 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3031 Value *Val = Ptr->getBuiltValue(); 3032 Actions.push_back(std::move(Ptr)); 3033 return Val; 3034 } 3035 3036 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3037 Value *Opnd, Type *Ty) { 3038 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3039 Value *Val = Ptr->getBuiltValue(); 3040 Actions.push_back(std::move(Ptr)); 3041 return Val; 3042 } 3043 3044 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3045 Value *Opnd, Type *Ty) { 3046 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3047 Value *Val = Ptr->getBuiltValue(); 3048 Actions.push_back(std::move(Ptr)); 3049 return Val; 3050 } 3051 3052 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3053 Instruction *Before) { 3054 Actions.push_back( 3055 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3056 Inst, Before)); 3057 } 3058 3059 TypePromotionTransaction::ConstRestorationPt 3060 TypePromotionTransaction::getRestorationPoint() const { 3061 return !Actions.empty() ? Actions.back().get() : nullptr; 3062 } 3063 3064 bool TypePromotionTransaction::commit() { 3065 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3066 Action->commit(); 3067 bool Modified = !Actions.empty(); 3068 Actions.clear(); 3069 return Modified; 3070 } 3071 3072 void TypePromotionTransaction::rollback( 3073 TypePromotionTransaction::ConstRestorationPt Point) { 3074 while (!Actions.empty() && Point != Actions.back().get()) { 3075 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3076 Curr->undo(); 3077 } 3078 } 3079 3080 namespace { 3081 3082 /// A helper class for matching addressing modes. 3083 /// 3084 /// This encapsulates the logic for matching the target-legal addressing modes. 3085 class AddressingModeMatcher { 3086 SmallVectorImpl<Instruction*> &AddrModeInsts; 3087 const TargetLowering &TLI; 3088 const TargetRegisterInfo &TRI; 3089 const DataLayout &DL; 3090 const LoopInfo &LI; 3091 const std::function<const DominatorTree &()> getDTFn; 3092 3093 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3094 /// the memory instruction that we're computing this address for. 3095 Type *AccessTy; 3096 unsigned AddrSpace; 3097 Instruction *MemoryInst; 3098 3099 /// This is the addressing mode that we're building up. This is 3100 /// part of the return value of this addressing mode matching stuff. 3101 ExtAddrMode &AddrMode; 3102 3103 /// The instructions inserted by other CodeGenPrepare optimizations. 3104 const SetOfInstrs &InsertedInsts; 3105 3106 /// A map from the instructions to their type before promotion. 3107 InstrToOrigTy &PromotedInsts; 3108 3109 /// The ongoing transaction where every action should be registered. 3110 TypePromotionTransaction &TPT; 3111 3112 // A GEP which has too large offset to be folded into the addressing mode. 3113 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3114 3115 /// This is set to true when we should not do profitability checks. 3116 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3117 bool IgnoreProfitability; 3118 3119 /// True if we are optimizing for size. 3120 bool OptSize; 3121 3122 ProfileSummaryInfo *PSI; 3123 BlockFrequencyInfo *BFI; 3124 3125 AddressingModeMatcher( 3126 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3127 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3128 const std::function<const DominatorTree &()> getDTFn, 3129 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3130 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3131 TypePromotionTransaction &TPT, 3132 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3133 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3134 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3135 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3136 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3137 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3138 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3139 IgnoreProfitability = false; 3140 } 3141 3142 public: 3143 /// Find the maximal addressing mode that a load/store of V can fold, 3144 /// give an access type of AccessTy. This returns a list of involved 3145 /// instructions in AddrModeInsts. 3146 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3147 /// optimizations. 3148 /// \p PromotedInsts maps the instructions to their type before promotion. 3149 /// \p The ongoing transaction where every action should be registered. 3150 static ExtAddrMode 3151 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3152 SmallVectorImpl<Instruction *> &AddrModeInsts, 3153 const TargetLowering &TLI, const LoopInfo &LI, 3154 const std::function<const DominatorTree &()> getDTFn, 3155 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3156 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3157 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3158 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3159 ExtAddrMode Result; 3160 3161 bool Success = AddressingModeMatcher( 3162 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3163 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3164 BFI).matchAddr(V, 0); 3165 (void)Success; assert(Success && "Couldn't select *anything*?"); 3166 return Result; 3167 } 3168 3169 private: 3170 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3171 bool matchAddr(Value *Addr, unsigned Depth); 3172 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3173 bool *MovedAway = nullptr); 3174 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3175 ExtAddrMode &AMBefore, 3176 ExtAddrMode &AMAfter); 3177 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3178 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3179 Value *PromotedOperand) const; 3180 }; 3181 3182 class PhiNodeSet; 3183 3184 /// An iterator for PhiNodeSet. 3185 class PhiNodeSetIterator { 3186 PhiNodeSet * const Set; 3187 size_t CurrentIndex = 0; 3188 3189 public: 3190 /// The constructor. Start should point to either a valid element, or be equal 3191 /// to the size of the underlying SmallVector of the PhiNodeSet. 3192 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3193 PHINode * operator*() const; 3194 PhiNodeSetIterator& operator++(); 3195 bool operator==(const PhiNodeSetIterator &RHS) const; 3196 bool operator!=(const PhiNodeSetIterator &RHS) const; 3197 }; 3198 3199 /// Keeps a set of PHINodes. 3200 /// 3201 /// This is a minimal set implementation for a specific use case: 3202 /// It is very fast when there are very few elements, but also provides good 3203 /// performance when there are many. It is similar to SmallPtrSet, but also 3204 /// provides iteration by insertion order, which is deterministic and stable 3205 /// across runs. It is also similar to SmallSetVector, but provides removing 3206 /// elements in O(1) time. This is achieved by not actually removing the element 3207 /// from the underlying vector, so comes at the cost of using more memory, but 3208 /// that is fine, since PhiNodeSets are used as short lived objects. 3209 class PhiNodeSet { 3210 friend class PhiNodeSetIterator; 3211 3212 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3213 using iterator = PhiNodeSetIterator; 3214 3215 /// Keeps the elements in the order of their insertion in the underlying 3216 /// vector. To achieve constant time removal, it never deletes any element. 3217 SmallVector<PHINode *, 32> NodeList; 3218 3219 /// Keeps the elements in the underlying set implementation. This (and not the 3220 /// NodeList defined above) is the source of truth on whether an element 3221 /// is actually in the collection. 3222 MapType NodeMap; 3223 3224 /// Points to the first valid (not deleted) element when the set is not empty 3225 /// and the value is not zero. Equals to the size of the underlying vector 3226 /// when the set is empty. When the value is 0, as in the beginning, the 3227 /// first element may or may not be valid. 3228 size_t FirstValidElement = 0; 3229 3230 public: 3231 /// Inserts a new element to the collection. 3232 /// \returns true if the element is actually added, i.e. was not in the 3233 /// collection before the operation. 3234 bool insert(PHINode *Ptr) { 3235 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3236 NodeList.push_back(Ptr); 3237 return true; 3238 } 3239 return false; 3240 } 3241 3242 /// Removes the element from the collection. 3243 /// \returns whether the element is actually removed, i.e. was in the 3244 /// collection before the operation. 3245 bool erase(PHINode *Ptr) { 3246 if (NodeMap.erase(Ptr)) { 3247 SkipRemovedElements(FirstValidElement); 3248 return true; 3249 } 3250 return false; 3251 } 3252 3253 /// Removes all elements and clears the collection. 3254 void clear() { 3255 NodeMap.clear(); 3256 NodeList.clear(); 3257 FirstValidElement = 0; 3258 } 3259 3260 /// \returns an iterator that will iterate the elements in the order of 3261 /// insertion. 3262 iterator begin() { 3263 if (FirstValidElement == 0) 3264 SkipRemovedElements(FirstValidElement); 3265 return PhiNodeSetIterator(this, FirstValidElement); 3266 } 3267 3268 /// \returns an iterator that points to the end of the collection. 3269 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3270 3271 /// Returns the number of elements in the collection. 3272 size_t size() const { 3273 return NodeMap.size(); 3274 } 3275 3276 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3277 size_t count(PHINode *Ptr) const { 3278 return NodeMap.count(Ptr); 3279 } 3280 3281 private: 3282 /// Updates the CurrentIndex so that it will point to a valid element. 3283 /// 3284 /// If the element of NodeList at CurrentIndex is valid, it does not 3285 /// change it. If there are no more valid elements, it updates CurrentIndex 3286 /// to point to the end of the NodeList. 3287 void SkipRemovedElements(size_t &CurrentIndex) { 3288 while (CurrentIndex < NodeList.size()) { 3289 auto it = NodeMap.find(NodeList[CurrentIndex]); 3290 // If the element has been deleted and added again later, NodeMap will 3291 // point to a different index, so CurrentIndex will still be invalid. 3292 if (it != NodeMap.end() && it->second == CurrentIndex) 3293 break; 3294 ++CurrentIndex; 3295 } 3296 } 3297 }; 3298 3299 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3300 : Set(Set), CurrentIndex(Start) {} 3301 3302 PHINode * PhiNodeSetIterator::operator*() const { 3303 assert(CurrentIndex < Set->NodeList.size() && 3304 "PhiNodeSet access out of range"); 3305 return Set->NodeList[CurrentIndex]; 3306 } 3307 3308 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3309 assert(CurrentIndex < Set->NodeList.size() && 3310 "PhiNodeSet access out of range"); 3311 ++CurrentIndex; 3312 Set->SkipRemovedElements(CurrentIndex); 3313 return *this; 3314 } 3315 3316 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3317 return CurrentIndex == RHS.CurrentIndex; 3318 } 3319 3320 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3321 return !((*this) == RHS); 3322 } 3323 3324 /// Keep track of simplification of Phi nodes. 3325 /// Accept the set of all phi nodes and erase phi node from this set 3326 /// if it is simplified. 3327 class SimplificationTracker { 3328 DenseMap<Value *, Value *> Storage; 3329 const SimplifyQuery &SQ; 3330 // Tracks newly created Phi nodes. The elements are iterated by insertion 3331 // order. 3332 PhiNodeSet AllPhiNodes; 3333 // Tracks newly created Select nodes. 3334 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3335 3336 public: 3337 SimplificationTracker(const SimplifyQuery &sq) 3338 : SQ(sq) {} 3339 3340 Value *Get(Value *V) { 3341 do { 3342 auto SV = Storage.find(V); 3343 if (SV == Storage.end()) 3344 return V; 3345 V = SV->second; 3346 } while (true); 3347 } 3348 3349 Value *Simplify(Value *Val) { 3350 SmallVector<Value *, 32> WorkList; 3351 SmallPtrSet<Value *, 32> Visited; 3352 WorkList.push_back(Val); 3353 while (!WorkList.empty()) { 3354 auto *P = WorkList.pop_back_val(); 3355 if (!Visited.insert(P).second) 3356 continue; 3357 if (auto *PI = dyn_cast<Instruction>(P)) 3358 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3359 for (auto *U : PI->users()) 3360 WorkList.push_back(cast<Value>(U)); 3361 Put(PI, V); 3362 PI->replaceAllUsesWith(V); 3363 if (auto *PHI = dyn_cast<PHINode>(PI)) 3364 AllPhiNodes.erase(PHI); 3365 if (auto *Select = dyn_cast<SelectInst>(PI)) 3366 AllSelectNodes.erase(Select); 3367 PI->eraseFromParent(); 3368 } 3369 } 3370 return Get(Val); 3371 } 3372 3373 void Put(Value *From, Value *To) { 3374 Storage.insert({ From, To }); 3375 } 3376 3377 void ReplacePhi(PHINode *From, PHINode *To) { 3378 Value* OldReplacement = Get(From); 3379 while (OldReplacement != From) { 3380 From = To; 3381 To = dyn_cast<PHINode>(OldReplacement); 3382 OldReplacement = Get(From); 3383 } 3384 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3385 Put(From, To); 3386 From->replaceAllUsesWith(To); 3387 AllPhiNodes.erase(From); 3388 From->eraseFromParent(); 3389 } 3390 3391 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3392 3393 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3394 3395 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3396 3397 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3398 3399 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3400 3401 void destroyNewNodes(Type *CommonType) { 3402 // For safe erasing, replace the uses with dummy value first. 3403 auto *Dummy = UndefValue::get(CommonType); 3404 for (auto *I : AllPhiNodes) { 3405 I->replaceAllUsesWith(Dummy); 3406 I->eraseFromParent(); 3407 } 3408 AllPhiNodes.clear(); 3409 for (auto *I : AllSelectNodes) { 3410 I->replaceAllUsesWith(Dummy); 3411 I->eraseFromParent(); 3412 } 3413 AllSelectNodes.clear(); 3414 } 3415 }; 3416 3417 /// A helper class for combining addressing modes. 3418 class AddressingModeCombiner { 3419 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3420 typedef std::pair<PHINode *, PHINode *> PHIPair; 3421 3422 private: 3423 /// The addressing modes we've collected. 3424 SmallVector<ExtAddrMode, 16> AddrModes; 3425 3426 /// The field in which the AddrModes differ, when we have more than one. 3427 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3428 3429 /// Are the AddrModes that we have all just equal to their original values? 3430 bool AllAddrModesTrivial = true; 3431 3432 /// Common Type for all different fields in addressing modes. 3433 Type *CommonType; 3434 3435 /// SimplifyQuery for simplifyInstruction utility. 3436 const SimplifyQuery &SQ; 3437 3438 /// Original Address. 3439 Value *Original; 3440 3441 public: 3442 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3443 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3444 3445 /// Get the combined AddrMode 3446 const ExtAddrMode &getAddrMode() const { 3447 return AddrModes[0]; 3448 } 3449 3450 /// Add a new AddrMode if it's compatible with the AddrModes we already 3451 /// have. 3452 /// \return True iff we succeeded in doing so. 3453 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3454 // Take note of if we have any non-trivial AddrModes, as we need to detect 3455 // when all AddrModes are trivial as then we would introduce a phi or select 3456 // which just duplicates what's already there. 3457 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3458 3459 // If this is the first addrmode then everything is fine. 3460 if (AddrModes.empty()) { 3461 AddrModes.emplace_back(NewAddrMode); 3462 return true; 3463 } 3464 3465 // Figure out how different this is from the other address modes, which we 3466 // can do just by comparing against the first one given that we only care 3467 // about the cumulative difference. 3468 ExtAddrMode::FieldName ThisDifferentField = 3469 AddrModes[0].compare(NewAddrMode); 3470 if (DifferentField == ExtAddrMode::NoField) 3471 DifferentField = ThisDifferentField; 3472 else if (DifferentField != ThisDifferentField) 3473 DifferentField = ExtAddrMode::MultipleFields; 3474 3475 // If NewAddrMode differs in more than one dimension we cannot handle it. 3476 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3477 3478 // If Scale Field is different then we reject. 3479 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3480 3481 // We also must reject the case when base offset is different and 3482 // scale reg is not null, we cannot handle this case due to merge of 3483 // different offsets will be used as ScaleReg. 3484 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3485 !NewAddrMode.ScaledReg); 3486 3487 // We also must reject the case when GV is different and BaseReg installed 3488 // due to we want to use base reg as a merge of GV values. 3489 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3490 !NewAddrMode.HasBaseReg); 3491 3492 // Even if NewAddMode is the same we still need to collect it due to 3493 // original value is different. And later we will need all original values 3494 // as anchors during finding the common Phi node. 3495 if (CanHandle) 3496 AddrModes.emplace_back(NewAddrMode); 3497 else 3498 AddrModes.clear(); 3499 3500 return CanHandle; 3501 } 3502 3503 /// Combine the addressing modes we've collected into a single 3504 /// addressing mode. 3505 /// \return True iff we successfully combined them or we only had one so 3506 /// didn't need to combine them anyway. 3507 bool combineAddrModes() { 3508 // If we have no AddrModes then they can't be combined. 3509 if (AddrModes.size() == 0) 3510 return false; 3511 3512 // A single AddrMode can trivially be combined. 3513 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3514 return true; 3515 3516 // If the AddrModes we collected are all just equal to the value they are 3517 // derived from then combining them wouldn't do anything useful. 3518 if (AllAddrModesTrivial) 3519 return false; 3520 3521 if (!addrModeCombiningAllowed()) 3522 return false; 3523 3524 // Build a map between <original value, basic block where we saw it> to 3525 // value of base register. 3526 // Bail out if there is no common type. 3527 FoldAddrToValueMapping Map; 3528 if (!initializeMap(Map)) 3529 return false; 3530 3531 Value *CommonValue = findCommon(Map); 3532 if (CommonValue) 3533 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3534 return CommonValue != nullptr; 3535 } 3536 3537 private: 3538 /// Initialize Map with anchor values. For address seen 3539 /// we set the value of different field saw in this address. 3540 /// At the same time we find a common type for different field we will 3541 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3542 /// Return false if there is no common type found. 3543 bool initializeMap(FoldAddrToValueMapping &Map) { 3544 // Keep track of keys where the value is null. We will need to replace it 3545 // with constant null when we know the common type. 3546 SmallVector<Value *, 2> NullValue; 3547 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3548 for (auto &AM : AddrModes) { 3549 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3550 if (DV) { 3551 auto *Type = DV->getType(); 3552 if (CommonType && CommonType != Type) 3553 return false; 3554 CommonType = Type; 3555 Map[AM.OriginalValue] = DV; 3556 } else { 3557 NullValue.push_back(AM.OriginalValue); 3558 } 3559 } 3560 assert(CommonType && "At least one non-null value must be!"); 3561 for (auto *V : NullValue) 3562 Map[V] = Constant::getNullValue(CommonType); 3563 return true; 3564 } 3565 3566 /// We have mapping between value A and other value B where B was a field in 3567 /// addressing mode represented by A. Also we have an original value C 3568 /// representing an address we start with. Traversing from C through phi and 3569 /// selects we ended up with A's in a map. This utility function tries to find 3570 /// a value V which is a field in addressing mode C and traversing through phi 3571 /// nodes and selects we will end up in corresponded values B in a map. 3572 /// The utility will create a new Phi/Selects if needed. 3573 // The simple example looks as follows: 3574 // BB1: 3575 // p1 = b1 + 40 3576 // br cond BB2, BB3 3577 // BB2: 3578 // p2 = b2 + 40 3579 // br BB3 3580 // BB3: 3581 // p = phi [p1, BB1], [p2, BB2] 3582 // v = load p 3583 // Map is 3584 // p1 -> b1 3585 // p2 -> b2 3586 // Request is 3587 // p -> ? 3588 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3589 Value *findCommon(FoldAddrToValueMapping &Map) { 3590 // Tracks the simplification of newly created phi nodes. The reason we use 3591 // this mapping is because we will add new created Phi nodes in AddrToBase. 3592 // Simplification of Phi nodes is recursive, so some Phi node may 3593 // be simplified after we added it to AddrToBase. In reality this 3594 // simplification is possible only if original phi/selects were not 3595 // simplified yet. 3596 // Using this mapping we can find the current value in AddrToBase. 3597 SimplificationTracker ST(SQ); 3598 3599 // First step, DFS to create PHI nodes for all intermediate blocks. 3600 // Also fill traverse order for the second step. 3601 SmallVector<Value *, 32> TraverseOrder; 3602 InsertPlaceholders(Map, TraverseOrder, ST); 3603 3604 // Second Step, fill new nodes by merged values and simplify if possible. 3605 FillPlaceholders(Map, TraverseOrder, ST); 3606 3607 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3608 ST.destroyNewNodes(CommonType); 3609 return nullptr; 3610 } 3611 3612 // Now we'd like to match New Phi nodes to existed ones. 3613 unsigned PhiNotMatchedCount = 0; 3614 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3615 ST.destroyNewNodes(CommonType); 3616 return nullptr; 3617 } 3618 3619 auto *Result = ST.Get(Map.find(Original)->second); 3620 if (Result) { 3621 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3622 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3623 } 3624 return Result; 3625 } 3626 3627 /// Try to match PHI node to Candidate. 3628 /// Matcher tracks the matched Phi nodes. 3629 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3630 SmallSetVector<PHIPair, 8> &Matcher, 3631 PhiNodeSet &PhiNodesToMatch) { 3632 SmallVector<PHIPair, 8> WorkList; 3633 Matcher.insert({ PHI, Candidate }); 3634 SmallSet<PHINode *, 8> MatchedPHIs; 3635 MatchedPHIs.insert(PHI); 3636 WorkList.push_back({ PHI, Candidate }); 3637 SmallSet<PHIPair, 8> Visited; 3638 while (!WorkList.empty()) { 3639 auto Item = WorkList.pop_back_val(); 3640 if (!Visited.insert(Item).second) 3641 continue; 3642 // We iterate over all incoming values to Phi to compare them. 3643 // If values are different and both of them Phi and the first one is a 3644 // Phi we added (subject to match) and both of them is in the same basic 3645 // block then we can match our pair if values match. So we state that 3646 // these values match and add it to work list to verify that. 3647 for (auto B : Item.first->blocks()) { 3648 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3649 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3650 if (FirstValue == SecondValue) 3651 continue; 3652 3653 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3654 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3655 3656 // One of them is not Phi or 3657 // The first one is not Phi node from the set we'd like to match or 3658 // Phi nodes from different basic blocks then 3659 // we will not be able to match. 3660 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3661 FirstPhi->getParent() != SecondPhi->getParent()) 3662 return false; 3663 3664 // If we already matched them then continue. 3665 if (Matcher.count({ FirstPhi, SecondPhi })) 3666 continue; 3667 // So the values are different and does not match. So we need them to 3668 // match. (But we register no more than one match per PHI node, so that 3669 // we won't later try to replace them twice.) 3670 if (MatchedPHIs.insert(FirstPhi).second) 3671 Matcher.insert({ FirstPhi, SecondPhi }); 3672 // But me must check it. 3673 WorkList.push_back({ FirstPhi, SecondPhi }); 3674 } 3675 } 3676 return true; 3677 } 3678 3679 /// For the given set of PHI nodes (in the SimplificationTracker) try 3680 /// to find their equivalents. 3681 /// Returns false if this matching fails and creation of new Phi is disabled. 3682 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3683 unsigned &PhiNotMatchedCount) { 3684 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3685 // order, so the replacements (ReplacePhi) are also done in a deterministic 3686 // order. 3687 SmallSetVector<PHIPair, 8> Matched; 3688 SmallPtrSet<PHINode *, 8> WillNotMatch; 3689 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3690 while (PhiNodesToMatch.size()) { 3691 PHINode *PHI = *PhiNodesToMatch.begin(); 3692 3693 // Add us, if no Phi nodes in the basic block we do not match. 3694 WillNotMatch.clear(); 3695 WillNotMatch.insert(PHI); 3696 3697 // Traverse all Phis until we found equivalent or fail to do that. 3698 bool IsMatched = false; 3699 for (auto &P : PHI->getParent()->phis()) { 3700 if (&P == PHI) 3701 continue; 3702 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3703 break; 3704 // If it does not match, collect all Phi nodes from matcher. 3705 // if we end up with no match, them all these Phi nodes will not match 3706 // later. 3707 for (auto M : Matched) 3708 WillNotMatch.insert(M.first); 3709 Matched.clear(); 3710 } 3711 if (IsMatched) { 3712 // Replace all matched values and erase them. 3713 for (auto MV : Matched) 3714 ST.ReplacePhi(MV.first, MV.second); 3715 Matched.clear(); 3716 continue; 3717 } 3718 // If we are not allowed to create new nodes then bail out. 3719 if (!AllowNewPhiNodes) 3720 return false; 3721 // Just remove all seen values in matcher. They will not match anything. 3722 PhiNotMatchedCount += WillNotMatch.size(); 3723 for (auto *P : WillNotMatch) 3724 PhiNodesToMatch.erase(P); 3725 } 3726 return true; 3727 } 3728 /// Fill the placeholders with values from predecessors and simplify them. 3729 void FillPlaceholders(FoldAddrToValueMapping &Map, 3730 SmallVectorImpl<Value *> &TraverseOrder, 3731 SimplificationTracker &ST) { 3732 while (!TraverseOrder.empty()) { 3733 Value *Current = TraverseOrder.pop_back_val(); 3734 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3735 Value *V = Map[Current]; 3736 3737 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3738 // CurrentValue also must be Select. 3739 auto *CurrentSelect = cast<SelectInst>(Current); 3740 auto *TrueValue = CurrentSelect->getTrueValue(); 3741 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3742 Select->setTrueValue(ST.Get(Map[TrueValue])); 3743 auto *FalseValue = CurrentSelect->getFalseValue(); 3744 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3745 Select->setFalseValue(ST.Get(Map[FalseValue])); 3746 } else { 3747 // Must be a Phi node then. 3748 auto *PHI = cast<PHINode>(V); 3749 // Fill the Phi node with values from predecessors. 3750 for (auto *B : predecessors(PHI->getParent())) { 3751 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3752 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3753 PHI->addIncoming(ST.Get(Map[PV]), B); 3754 } 3755 } 3756 Map[Current] = ST.Simplify(V); 3757 } 3758 } 3759 3760 /// Starting from original value recursively iterates over def-use chain up to 3761 /// known ending values represented in a map. For each traversed phi/select 3762 /// inserts a placeholder Phi or Select. 3763 /// Reports all new created Phi/Select nodes by adding them to set. 3764 /// Also reports and order in what values have been traversed. 3765 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3766 SmallVectorImpl<Value *> &TraverseOrder, 3767 SimplificationTracker &ST) { 3768 SmallVector<Value *, 32> Worklist; 3769 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3770 "Address must be a Phi or Select node"); 3771 auto *Dummy = UndefValue::get(CommonType); 3772 Worklist.push_back(Original); 3773 while (!Worklist.empty()) { 3774 Value *Current = Worklist.pop_back_val(); 3775 // if it is already visited or it is an ending value then skip it. 3776 if (Map.find(Current) != Map.end()) 3777 continue; 3778 TraverseOrder.push_back(Current); 3779 3780 // CurrentValue must be a Phi node or select. All others must be covered 3781 // by anchors. 3782 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3783 // Is it OK to get metadata from OrigSelect?! 3784 // Create a Select placeholder with dummy value. 3785 SelectInst *Select = SelectInst::Create( 3786 CurrentSelect->getCondition(), Dummy, Dummy, 3787 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3788 Map[Current] = Select; 3789 ST.insertNewSelect(Select); 3790 // We are interested in True and False values. 3791 Worklist.push_back(CurrentSelect->getTrueValue()); 3792 Worklist.push_back(CurrentSelect->getFalseValue()); 3793 } else { 3794 // It must be a Phi node then. 3795 PHINode *CurrentPhi = cast<PHINode>(Current); 3796 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3797 PHINode *PHI = 3798 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3799 Map[Current] = PHI; 3800 ST.insertNewPhi(PHI); 3801 append_range(Worklist, CurrentPhi->incoming_values()); 3802 } 3803 } 3804 } 3805 3806 bool addrModeCombiningAllowed() { 3807 if (DisableComplexAddrModes) 3808 return false; 3809 switch (DifferentField) { 3810 default: 3811 return false; 3812 case ExtAddrMode::BaseRegField: 3813 return AddrSinkCombineBaseReg; 3814 case ExtAddrMode::BaseGVField: 3815 return AddrSinkCombineBaseGV; 3816 case ExtAddrMode::BaseOffsField: 3817 return AddrSinkCombineBaseOffs; 3818 case ExtAddrMode::ScaledRegField: 3819 return AddrSinkCombineScaledReg; 3820 } 3821 } 3822 }; 3823 } // end anonymous namespace 3824 3825 /// Try adding ScaleReg*Scale to the current addressing mode. 3826 /// Return true and update AddrMode if this addr mode is legal for the target, 3827 /// false if not. 3828 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3829 unsigned Depth) { 3830 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3831 // mode. Just process that directly. 3832 if (Scale == 1) 3833 return matchAddr(ScaleReg, Depth); 3834 3835 // If the scale is 0, it takes nothing to add this. 3836 if (Scale == 0) 3837 return true; 3838 3839 // If we already have a scale of this value, we can add to it, otherwise, we 3840 // need an available scale field. 3841 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3842 return false; 3843 3844 ExtAddrMode TestAddrMode = AddrMode; 3845 3846 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3847 // [A+B + A*7] -> [B+A*8]. 3848 TestAddrMode.Scale += Scale; 3849 TestAddrMode.ScaledReg = ScaleReg; 3850 3851 // If the new address isn't legal, bail out. 3852 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3853 return false; 3854 3855 // It was legal, so commit it. 3856 AddrMode = TestAddrMode; 3857 3858 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3859 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3860 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3861 // go any further: we can reuse it and cannot eliminate it. 3862 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3863 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3864 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3865 !isIVIncrement(cast<BinaryOperator>(ScaleReg), &LI) && 3866 CI->getValue().isSignedIntN(64)) { 3867 TestAddrMode.InBounds = false; 3868 TestAddrMode.ScaledReg = AddLHS; 3869 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3870 3871 // If this addressing mode is legal, commit it and remember that we folded 3872 // this instruction. 3873 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3874 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3875 AddrMode = TestAddrMode; 3876 return true; 3877 } 3878 // Restore status quo. 3879 TestAddrMode = AddrMode; 3880 } 3881 3882 auto GetConstantStep = [this](const Value * V) 3883 ->Optional<std::pair<Instruction *, APInt> > { 3884 auto *PN = dyn_cast<PHINode>(V); 3885 if (!PN) 3886 return None; 3887 auto IVInc = getIVIncrement(PN, &LI); 3888 if (!IVInc) 3889 return None; 3890 // TODO: The result of the intrinsics above is two-compliment. However when 3891 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3892 // If it has nuw or nsw flags, we need to make sure that these flags are 3893 // inferrable at the point of memory instruction. Otherwise we are replacing 3894 // well-defined two-compliment computation with poison. Currently, to avoid 3895 // potentially complex analysis needed to prove this, we reject such cases. 3896 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3897 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3898 return None; 3899 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3900 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3901 return None; 3902 }; 3903 3904 // Try to account for the following special case: 3905 // 1. ScaleReg is an inductive variable; 3906 // 2. We use it with non-zero offset; 3907 // 3. IV's increment is available at the point of memory instruction. 3908 // 3909 // In this case, we may reuse the IV increment instead of the IV Phi to 3910 // achieve the following advantages: 3911 // 1. If IV step matches the offset, we will have no need in the offset; 3912 // 2. Even if they don't match, we will reduce the overlap of living IV 3913 // and IV increment, that will potentially lead to better register 3914 // assignment. 3915 if (AddrMode.BaseOffs) { 3916 if (auto IVStep = GetConstantStep(ScaleReg)) { 3917 Instruction *IVInc = IVStep->first; 3918 APInt Step = IVStep->second; 3919 APInt Offset = Step * AddrMode.Scale; 3920 if (Offset.isSignedIntN(64)) { 3921 TestAddrMode.InBounds = false; 3922 TestAddrMode.ScaledReg = IVInc; 3923 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3924 // If this addressing mode is legal, commit it.. 3925 // (Note that we defer the (expensive) domtree base legality check 3926 // to the very last possible point.) 3927 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3928 getDTFn().dominates(IVInc, MemoryInst)) { 3929 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3930 AddrMode = TestAddrMode; 3931 return true; 3932 } 3933 // Restore status quo. 3934 TestAddrMode = AddrMode; 3935 } 3936 } 3937 } 3938 3939 // Otherwise, just return what we have. 3940 return true; 3941 } 3942 3943 /// This is a little filter, which returns true if an addressing computation 3944 /// involving I might be folded into a load/store accessing it. 3945 /// This doesn't need to be perfect, but needs to accept at least 3946 /// the set of instructions that MatchOperationAddr can. 3947 static bool MightBeFoldableInst(Instruction *I) { 3948 switch (I->getOpcode()) { 3949 case Instruction::BitCast: 3950 case Instruction::AddrSpaceCast: 3951 // Don't touch identity bitcasts. 3952 if (I->getType() == I->getOperand(0)->getType()) 3953 return false; 3954 return I->getType()->isIntOrPtrTy(); 3955 case Instruction::PtrToInt: 3956 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3957 return true; 3958 case Instruction::IntToPtr: 3959 // We know the input is intptr_t, so this is foldable. 3960 return true; 3961 case Instruction::Add: 3962 return true; 3963 case Instruction::Mul: 3964 case Instruction::Shl: 3965 // Can only handle X*C and X << C. 3966 return isa<ConstantInt>(I->getOperand(1)); 3967 case Instruction::GetElementPtr: 3968 return true; 3969 default: 3970 return false; 3971 } 3972 } 3973 3974 /// Check whether or not \p Val is a legal instruction for \p TLI. 3975 /// \note \p Val is assumed to be the product of some type promotion. 3976 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3977 /// to be legal, as the non-promoted value would have had the same state. 3978 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3979 const DataLayout &DL, Value *Val) { 3980 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3981 if (!PromotedInst) 3982 return false; 3983 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3984 // If the ISDOpcode is undefined, it was undefined before the promotion. 3985 if (!ISDOpcode) 3986 return true; 3987 // Otherwise, check if the promoted instruction is legal or not. 3988 return TLI.isOperationLegalOrCustom( 3989 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3990 } 3991 3992 namespace { 3993 3994 /// Hepler class to perform type promotion. 3995 class TypePromotionHelper { 3996 /// Utility function to add a promoted instruction \p ExtOpnd to 3997 /// \p PromotedInsts and record the type of extension we have seen. 3998 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3999 Instruction *ExtOpnd, 4000 bool IsSExt) { 4001 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4002 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4003 if (It != PromotedInsts.end()) { 4004 // If the new extension is same as original, the information in 4005 // PromotedInsts[ExtOpnd] is still correct. 4006 if (It->second.getInt() == ExtTy) 4007 return; 4008 4009 // Now the new extension is different from old extension, we make 4010 // the type information invalid by setting extension type to 4011 // BothExtension. 4012 ExtTy = BothExtension; 4013 } 4014 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4015 } 4016 4017 /// Utility function to query the original type of instruction \p Opnd 4018 /// with a matched extension type. If the extension doesn't match, we 4019 /// cannot use the information we had on the original type. 4020 /// BothExtension doesn't match any extension type. 4021 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4022 Instruction *Opnd, 4023 bool IsSExt) { 4024 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4025 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4026 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4027 return It->second.getPointer(); 4028 return nullptr; 4029 } 4030 4031 /// Utility function to check whether or not a sign or zero extension 4032 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4033 /// either using the operands of \p Inst or promoting \p Inst. 4034 /// The type of the extension is defined by \p IsSExt. 4035 /// In other words, check if: 4036 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4037 /// #1 Promotion applies: 4038 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4039 /// #2 Operand reuses: 4040 /// ext opnd1 to ConsideredExtType. 4041 /// \p PromotedInsts maps the instructions to their type before promotion. 4042 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4043 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4044 4045 /// Utility function to determine if \p OpIdx should be promoted when 4046 /// promoting \p Inst. 4047 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4048 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4049 } 4050 4051 /// Utility function to promote the operand of \p Ext when this 4052 /// operand is a promotable trunc or sext or zext. 4053 /// \p PromotedInsts maps the instructions to their type before promotion. 4054 /// \p CreatedInstsCost[out] contains the cost of all instructions 4055 /// created to promote the operand of Ext. 4056 /// Newly added extensions are inserted in \p Exts. 4057 /// Newly added truncates are inserted in \p Truncs. 4058 /// Should never be called directly. 4059 /// \return The promoted value which is used instead of Ext. 4060 static Value *promoteOperandForTruncAndAnyExt( 4061 Instruction *Ext, TypePromotionTransaction &TPT, 4062 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4063 SmallVectorImpl<Instruction *> *Exts, 4064 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4065 4066 /// Utility function to promote the operand of \p Ext when this 4067 /// operand is promotable and is not a supported trunc or sext. 4068 /// \p PromotedInsts maps the instructions to their type before promotion. 4069 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4070 /// created to promote the operand of Ext. 4071 /// Newly added extensions are inserted in \p Exts. 4072 /// Newly added truncates are inserted in \p Truncs. 4073 /// Should never be called directly. 4074 /// \return The promoted value which is used instead of Ext. 4075 static Value *promoteOperandForOther(Instruction *Ext, 4076 TypePromotionTransaction &TPT, 4077 InstrToOrigTy &PromotedInsts, 4078 unsigned &CreatedInstsCost, 4079 SmallVectorImpl<Instruction *> *Exts, 4080 SmallVectorImpl<Instruction *> *Truncs, 4081 const TargetLowering &TLI, bool IsSExt); 4082 4083 /// \see promoteOperandForOther. 4084 static Value *signExtendOperandForOther( 4085 Instruction *Ext, TypePromotionTransaction &TPT, 4086 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4087 SmallVectorImpl<Instruction *> *Exts, 4088 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4089 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4090 Exts, Truncs, TLI, true); 4091 } 4092 4093 /// \see promoteOperandForOther. 4094 static Value *zeroExtendOperandForOther( 4095 Instruction *Ext, TypePromotionTransaction &TPT, 4096 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4097 SmallVectorImpl<Instruction *> *Exts, 4098 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4099 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4100 Exts, Truncs, TLI, false); 4101 } 4102 4103 public: 4104 /// Type for the utility function that promotes the operand of Ext. 4105 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4106 InstrToOrigTy &PromotedInsts, 4107 unsigned &CreatedInstsCost, 4108 SmallVectorImpl<Instruction *> *Exts, 4109 SmallVectorImpl<Instruction *> *Truncs, 4110 const TargetLowering &TLI); 4111 4112 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4113 /// action to promote the operand of \p Ext instead of using Ext. 4114 /// \return NULL if no promotable action is possible with the current 4115 /// sign extension. 4116 /// \p InsertedInsts keeps track of all the instructions inserted by the 4117 /// other CodeGenPrepare optimizations. This information is important 4118 /// because we do not want to promote these instructions as CodeGenPrepare 4119 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4120 /// \p PromotedInsts maps the instructions to their type before promotion. 4121 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4122 const TargetLowering &TLI, 4123 const InstrToOrigTy &PromotedInsts); 4124 }; 4125 4126 } // end anonymous namespace 4127 4128 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4129 Type *ConsideredExtType, 4130 const InstrToOrigTy &PromotedInsts, 4131 bool IsSExt) { 4132 // The promotion helper does not know how to deal with vector types yet. 4133 // To be able to fix that, we would need to fix the places where we 4134 // statically extend, e.g., constants and such. 4135 if (Inst->getType()->isVectorTy()) 4136 return false; 4137 4138 // We can always get through zext. 4139 if (isa<ZExtInst>(Inst)) 4140 return true; 4141 4142 // sext(sext) is ok too. 4143 if (IsSExt && isa<SExtInst>(Inst)) 4144 return true; 4145 4146 // We can get through binary operator, if it is legal. In other words, the 4147 // binary operator must have a nuw or nsw flag. 4148 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4149 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4150 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4151 (IsSExt && BinOp->hasNoSignedWrap()))) 4152 return true; 4153 4154 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4155 if ((Inst->getOpcode() == Instruction::And || 4156 Inst->getOpcode() == Instruction::Or)) 4157 return true; 4158 4159 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4160 if (Inst->getOpcode() == Instruction::Xor) { 4161 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4162 // Make sure it is not a NOT. 4163 if (Cst && !Cst->getValue().isAllOnesValue()) 4164 return true; 4165 } 4166 4167 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4168 // It may change a poisoned value into a regular value, like 4169 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4170 // poisoned value regular value 4171 // It should be OK since undef covers valid value. 4172 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4173 return true; 4174 4175 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4176 // It may change a poisoned value into a regular value, like 4177 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4178 // poisoned value regular value 4179 // It should be OK since undef covers valid value. 4180 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4181 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4182 if (ExtInst->hasOneUse()) { 4183 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4184 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4185 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4186 if (Cst && 4187 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4188 return true; 4189 } 4190 } 4191 } 4192 4193 // Check if we can do the following simplification. 4194 // ext(trunc(opnd)) --> ext(opnd) 4195 if (!isa<TruncInst>(Inst)) 4196 return false; 4197 4198 Value *OpndVal = Inst->getOperand(0); 4199 // Check if we can use this operand in the extension. 4200 // If the type is larger than the result type of the extension, we cannot. 4201 if (!OpndVal->getType()->isIntegerTy() || 4202 OpndVal->getType()->getIntegerBitWidth() > 4203 ConsideredExtType->getIntegerBitWidth()) 4204 return false; 4205 4206 // If the operand of the truncate is not an instruction, we will not have 4207 // any information on the dropped bits. 4208 // (Actually we could for constant but it is not worth the extra logic). 4209 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4210 if (!Opnd) 4211 return false; 4212 4213 // Check if the source of the type is narrow enough. 4214 // I.e., check that trunc just drops extended bits of the same kind of 4215 // the extension. 4216 // #1 get the type of the operand and check the kind of the extended bits. 4217 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4218 if (OpndType) 4219 ; 4220 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4221 OpndType = Opnd->getOperand(0)->getType(); 4222 else 4223 return false; 4224 4225 // #2 check that the truncate just drops extended bits. 4226 return Inst->getType()->getIntegerBitWidth() >= 4227 OpndType->getIntegerBitWidth(); 4228 } 4229 4230 TypePromotionHelper::Action TypePromotionHelper::getAction( 4231 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4232 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4233 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4234 "Unexpected instruction type"); 4235 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4236 Type *ExtTy = Ext->getType(); 4237 bool IsSExt = isa<SExtInst>(Ext); 4238 // If the operand of the extension is not an instruction, we cannot 4239 // get through. 4240 // If it, check we can get through. 4241 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4242 return nullptr; 4243 4244 // Do not promote if the operand has been added by codegenprepare. 4245 // Otherwise, it means we are undoing an optimization that is likely to be 4246 // redone, thus causing potential infinite loop. 4247 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4248 return nullptr; 4249 4250 // SExt or Trunc instructions. 4251 // Return the related handler. 4252 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4253 isa<ZExtInst>(ExtOpnd)) 4254 return promoteOperandForTruncAndAnyExt; 4255 4256 // Regular instruction. 4257 // Abort early if we will have to insert non-free instructions. 4258 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4259 return nullptr; 4260 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4261 } 4262 4263 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4264 Instruction *SExt, TypePromotionTransaction &TPT, 4265 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4266 SmallVectorImpl<Instruction *> *Exts, 4267 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4268 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4269 // get through it and this method should not be called. 4270 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4271 Value *ExtVal = SExt; 4272 bool HasMergedNonFreeExt = false; 4273 if (isa<ZExtInst>(SExtOpnd)) { 4274 // Replace s|zext(zext(opnd)) 4275 // => zext(opnd). 4276 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4277 Value *ZExt = 4278 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4279 TPT.replaceAllUsesWith(SExt, ZExt); 4280 TPT.eraseInstruction(SExt); 4281 ExtVal = ZExt; 4282 } else { 4283 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4284 // => z|sext(opnd). 4285 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4286 } 4287 CreatedInstsCost = 0; 4288 4289 // Remove dead code. 4290 if (SExtOpnd->use_empty()) 4291 TPT.eraseInstruction(SExtOpnd); 4292 4293 // Check if the extension is still needed. 4294 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4295 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4296 if (ExtInst) { 4297 if (Exts) 4298 Exts->push_back(ExtInst); 4299 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4300 } 4301 return ExtVal; 4302 } 4303 4304 // At this point we have: ext ty opnd to ty. 4305 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4306 Value *NextVal = ExtInst->getOperand(0); 4307 TPT.eraseInstruction(ExtInst, NextVal); 4308 return NextVal; 4309 } 4310 4311 Value *TypePromotionHelper::promoteOperandForOther( 4312 Instruction *Ext, TypePromotionTransaction &TPT, 4313 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4314 SmallVectorImpl<Instruction *> *Exts, 4315 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4316 bool IsSExt) { 4317 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4318 // get through it and this method should not be called. 4319 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4320 CreatedInstsCost = 0; 4321 if (!ExtOpnd->hasOneUse()) { 4322 // ExtOpnd will be promoted. 4323 // All its uses, but Ext, will need to use a truncated value of the 4324 // promoted version. 4325 // Create the truncate now. 4326 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4327 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4328 // Insert it just after the definition. 4329 ITrunc->moveAfter(ExtOpnd); 4330 if (Truncs) 4331 Truncs->push_back(ITrunc); 4332 } 4333 4334 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4335 // Restore the operand of Ext (which has been replaced by the previous call 4336 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4337 TPT.setOperand(Ext, 0, ExtOpnd); 4338 } 4339 4340 // Get through the Instruction: 4341 // 1. Update its type. 4342 // 2. Replace the uses of Ext by Inst. 4343 // 3. Extend each operand that needs to be extended. 4344 4345 // Remember the original type of the instruction before promotion. 4346 // This is useful to know that the high bits are sign extended bits. 4347 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4348 // Step #1. 4349 TPT.mutateType(ExtOpnd, Ext->getType()); 4350 // Step #2. 4351 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4352 // Step #3. 4353 Instruction *ExtForOpnd = Ext; 4354 4355 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4356 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4357 ++OpIdx) { 4358 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4359 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4360 !shouldExtOperand(ExtOpnd, OpIdx)) { 4361 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4362 continue; 4363 } 4364 // Check if we can statically extend the operand. 4365 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4366 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4367 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4368 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4369 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4370 : Cst->getValue().zext(BitWidth); 4371 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4372 continue; 4373 } 4374 // UndefValue are typed, so we have to statically sign extend them. 4375 if (isa<UndefValue>(Opnd)) { 4376 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4377 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4378 continue; 4379 } 4380 4381 // Otherwise we have to explicitly sign extend the operand. 4382 // Check if Ext was reused to extend an operand. 4383 if (!ExtForOpnd) { 4384 // If yes, create a new one. 4385 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4386 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4387 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4388 if (!isa<Instruction>(ValForExtOpnd)) { 4389 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4390 continue; 4391 } 4392 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4393 } 4394 if (Exts) 4395 Exts->push_back(ExtForOpnd); 4396 TPT.setOperand(ExtForOpnd, 0, Opnd); 4397 4398 // Move the sign extension before the insertion point. 4399 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4400 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4401 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4402 // If more sext are required, new instructions will have to be created. 4403 ExtForOpnd = nullptr; 4404 } 4405 if (ExtForOpnd == Ext) { 4406 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4407 TPT.eraseInstruction(Ext); 4408 } 4409 return ExtOpnd; 4410 } 4411 4412 /// Check whether or not promoting an instruction to a wider type is profitable. 4413 /// \p NewCost gives the cost of extension instructions created by the 4414 /// promotion. 4415 /// \p OldCost gives the cost of extension instructions before the promotion 4416 /// plus the number of instructions that have been 4417 /// matched in the addressing mode the promotion. 4418 /// \p PromotedOperand is the value that has been promoted. 4419 /// \return True if the promotion is profitable, false otherwise. 4420 bool AddressingModeMatcher::isPromotionProfitable( 4421 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4422 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4423 << '\n'); 4424 // The cost of the new extensions is greater than the cost of the 4425 // old extension plus what we folded. 4426 // This is not profitable. 4427 if (NewCost > OldCost) 4428 return false; 4429 if (NewCost < OldCost) 4430 return true; 4431 // The promotion is neutral but it may help folding the sign extension in 4432 // loads for instance. 4433 // Check that we did not create an illegal instruction. 4434 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4435 } 4436 4437 /// Given an instruction or constant expr, see if we can fold the operation 4438 /// into the addressing mode. If so, update the addressing mode and return 4439 /// true, otherwise return false without modifying AddrMode. 4440 /// If \p MovedAway is not NULL, it contains the information of whether or 4441 /// not AddrInst has to be folded into the addressing mode on success. 4442 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4443 /// because it has been moved away. 4444 /// Thus AddrInst must not be added in the matched instructions. 4445 /// This state can happen when AddrInst is a sext, since it may be moved away. 4446 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4447 /// not be referenced anymore. 4448 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4449 unsigned Depth, 4450 bool *MovedAway) { 4451 // Avoid exponential behavior on extremely deep expression trees. 4452 if (Depth >= 5) return false; 4453 4454 // By default, all matched instructions stay in place. 4455 if (MovedAway) 4456 *MovedAway = false; 4457 4458 switch (Opcode) { 4459 case Instruction::PtrToInt: 4460 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4461 return matchAddr(AddrInst->getOperand(0), Depth); 4462 case Instruction::IntToPtr: { 4463 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4464 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4465 // This inttoptr is a no-op if the integer type is pointer sized. 4466 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4467 return matchAddr(AddrInst->getOperand(0), Depth); 4468 return false; 4469 } 4470 case Instruction::BitCast: 4471 // BitCast is always a noop, and we can handle it as long as it is 4472 // int->int or pointer->pointer (we don't want int<->fp or something). 4473 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4474 // Don't touch identity bitcasts. These were probably put here by LSR, 4475 // and we don't want to mess around with them. Assume it knows what it 4476 // is doing. 4477 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4478 return matchAddr(AddrInst->getOperand(0), Depth); 4479 return false; 4480 case Instruction::AddrSpaceCast: { 4481 unsigned SrcAS 4482 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4483 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4484 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4485 return matchAddr(AddrInst->getOperand(0), Depth); 4486 return false; 4487 } 4488 case Instruction::Add: { 4489 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4490 ExtAddrMode BackupAddrMode = AddrMode; 4491 unsigned OldSize = AddrModeInsts.size(); 4492 // Start a transaction at this point. 4493 // The LHS may match but not the RHS. 4494 // Therefore, we need a higher level restoration point to undo partially 4495 // matched operation. 4496 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4497 TPT.getRestorationPoint(); 4498 4499 AddrMode.InBounds = false; 4500 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4501 matchAddr(AddrInst->getOperand(0), Depth+1)) 4502 return true; 4503 4504 // Restore the old addr mode info. 4505 AddrMode = BackupAddrMode; 4506 AddrModeInsts.resize(OldSize); 4507 TPT.rollback(LastKnownGood); 4508 4509 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4510 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4511 matchAddr(AddrInst->getOperand(1), Depth+1)) 4512 return true; 4513 4514 // Otherwise we definitely can't merge the ADD in. 4515 AddrMode = BackupAddrMode; 4516 AddrModeInsts.resize(OldSize); 4517 TPT.rollback(LastKnownGood); 4518 break; 4519 } 4520 //case Instruction::Or: 4521 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4522 //break; 4523 case Instruction::Mul: 4524 case Instruction::Shl: { 4525 // Can only handle X*C and X << C. 4526 AddrMode.InBounds = false; 4527 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4528 if (!RHS || RHS->getBitWidth() > 64) 4529 return false; 4530 int64_t Scale = RHS->getSExtValue(); 4531 if (Opcode == Instruction::Shl) 4532 Scale = 1LL << Scale; 4533 4534 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4535 } 4536 case Instruction::GetElementPtr: { 4537 // Scan the GEP. We check it if it contains constant offsets and at most 4538 // one variable offset. 4539 int VariableOperand = -1; 4540 unsigned VariableScale = 0; 4541 4542 int64_t ConstantOffset = 0; 4543 gep_type_iterator GTI = gep_type_begin(AddrInst); 4544 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4545 if (StructType *STy = GTI.getStructTypeOrNull()) { 4546 const StructLayout *SL = DL.getStructLayout(STy); 4547 unsigned Idx = 4548 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4549 ConstantOffset += SL->getElementOffset(Idx); 4550 } else { 4551 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4552 if (TS.isNonZero()) { 4553 // The optimisations below currently only work for fixed offsets. 4554 if (TS.isScalable()) 4555 return false; 4556 int64_t TypeSize = TS.getFixedSize(); 4557 if (ConstantInt *CI = 4558 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4559 const APInt &CVal = CI->getValue(); 4560 if (CVal.getMinSignedBits() <= 64) { 4561 ConstantOffset += CVal.getSExtValue() * TypeSize; 4562 continue; 4563 } 4564 } 4565 // We only allow one variable index at the moment. 4566 if (VariableOperand != -1) 4567 return false; 4568 4569 // Remember the variable index. 4570 VariableOperand = i; 4571 VariableScale = TypeSize; 4572 } 4573 } 4574 } 4575 4576 // A common case is for the GEP to only do a constant offset. In this case, 4577 // just add it to the disp field and check validity. 4578 if (VariableOperand == -1) { 4579 AddrMode.BaseOffs += ConstantOffset; 4580 if (ConstantOffset == 0 || 4581 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4582 // Check to see if we can fold the base pointer in too. 4583 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4584 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4585 AddrMode.InBounds = false; 4586 return true; 4587 } 4588 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4589 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4590 ConstantOffset > 0) { 4591 // Record GEPs with non-zero offsets as candidates for splitting in the 4592 // event that the offset cannot fit into the r+i addressing mode. 4593 // Simple and common case that only one GEP is used in calculating the 4594 // address for the memory access. 4595 Value *Base = AddrInst->getOperand(0); 4596 auto *BaseI = dyn_cast<Instruction>(Base); 4597 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4598 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4599 (BaseI && !isa<CastInst>(BaseI) && 4600 !isa<GetElementPtrInst>(BaseI))) { 4601 // Make sure the parent block allows inserting non-PHI instructions 4602 // before the terminator. 4603 BasicBlock *Parent = 4604 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4605 if (!Parent->getTerminator()->isEHPad()) 4606 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4607 } 4608 } 4609 AddrMode.BaseOffs -= ConstantOffset; 4610 return false; 4611 } 4612 4613 // Save the valid addressing mode in case we can't match. 4614 ExtAddrMode BackupAddrMode = AddrMode; 4615 unsigned OldSize = AddrModeInsts.size(); 4616 4617 // See if the scale and offset amount is valid for this target. 4618 AddrMode.BaseOffs += ConstantOffset; 4619 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4620 AddrMode.InBounds = false; 4621 4622 // Match the base operand of the GEP. 4623 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4624 // If it couldn't be matched, just stuff the value in a register. 4625 if (AddrMode.HasBaseReg) { 4626 AddrMode = BackupAddrMode; 4627 AddrModeInsts.resize(OldSize); 4628 return false; 4629 } 4630 AddrMode.HasBaseReg = true; 4631 AddrMode.BaseReg = AddrInst->getOperand(0); 4632 } 4633 4634 // Match the remaining variable portion of the GEP. 4635 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4636 Depth)) { 4637 // If it couldn't be matched, try stuffing the base into a register 4638 // instead of matching it, and retrying the match of the scale. 4639 AddrMode = BackupAddrMode; 4640 AddrModeInsts.resize(OldSize); 4641 if (AddrMode.HasBaseReg) 4642 return false; 4643 AddrMode.HasBaseReg = true; 4644 AddrMode.BaseReg = AddrInst->getOperand(0); 4645 AddrMode.BaseOffs += ConstantOffset; 4646 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4647 VariableScale, Depth)) { 4648 // If even that didn't work, bail. 4649 AddrMode = BackupAddrMode; 4650 AddrModeInsts.resize(OldSize); 4651 return false; 4652 } 4653 } 4654 4655 return true; 4656 } 4657 case Instruction::SExt: 4658 case Instruction::ZExt: { 4659 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4660 if (!Ext) 4661 return false; 4662 4663 // Try to move this ext out of the way of the addressing mode. 4664 // Ask for a method for doing so. 4665 TypePromotionHelper::Action TPH = 4666 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4667 if (!TPH) 4668 return false; 4669 4670 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4671 TPT.getRestorationPoint(); 4672 unsigned CreatedInstsCost = 0; 4673 unsigned ExtCost = !TLI.isExtFree(Ext); 4674 Value *PromotedOperand = 4675 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4676 // SExt has been moved away. 4677 // Thus either it will be rematched later in the recursive calls or it is 4678 // gone. Anyway, we must not fold it into the addressing mode at this point. 4679 // E.g., 4680 // op = add opnd, 1 4681 // idx = ext op 4682 // addr = gep base, idx 4683 // is now: 4684 // promotedOpnd = ext opnd <- no match here 4685 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4686 // addr = gep base, op <- match 4687 if (MovedAway) 4688 *MovedAway = true; 4689 4690 assert(PromotedOperand && 4691 "TypePromotionHelper should have filtered out those cases"); 4692 4693 ExtAddrMode BackupAddrMode = AddrMode; 4694 unsigned OldSize = AddrModeInsts.size(); 4695 4696 if (!matchAddr(PromotedOperand, Depth) || 4697 // The total of the new cost is equal to the cost of the created 4698 // instructions. 4699 // The total of the old cost is equal to the cost of the extension plus 4700 // what we have saved in the addressing mode. 4701 !isPromotionProfitable(CreatedInstsCost, 4702 ExtCost + (AddrModeInsts.size() - OldSize), 4703 PromotedOperand)) { 4704 AddrMode = BackupAddrMode; 4705 AddrModeInsts.resize(OldSize); 4706 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4707 TPT.rollback(LastKnownGood); 4708 return false; 4709 } 4710 return true; 4711 } 4712 } 4713 return false; 4714 } 4715 4716 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4717 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4718 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4719 /// for the target. 4720 /// 4721 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4722 // Start a transaction at this point that we will rollback if the matching 4723 // fails. 4724 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4725 TPT.getRestorationPoint(); 4726 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4727 if (CI->getValue().isSignedIntN(64)) { 4728 // Fold in immediates if legal for the target. 4729 AddrMode.BaseOffs += CI->getSExtValue(); 4730 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4731 return true; 4732 AddrMode.BaseOffs -= CI->getSExtValue(); 4733 } 4734 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4735 // If this is a global variable, try to fold it into the addressing mode. 4736 if (!AddrMode.BaseGV) { 4737 AddrMode.BaseGV = GV; 4738 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4739 return true; 4740 AddrMode.BaseGV = nullptr; 4741 } 4742 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4743 ExtAddrMode BackupAddrMode = AddrMode; 4744 unsigned OldSize = AddrModeInsts.size(); 4745 4746 // Check to see if it is possible to fold this operation. 4747 bool MovedAway = false; 4748 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4749 // This instruction may have been moved away. If so, there is nothing 4750 // to check here. 4751 if (MovedAway) 4752 return true; 4753 // Okay, it's possible to fold this. Check to see if it is actually 4754 // *profitable* to do so. We use a simple cost model to avoid increasing 4755 // register pressure too much. 4756 if (I->hasOneUse() || 4757 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4758 AddrModeInsts.push_back(I); 4759 return true; 4760 } 4761 4762 // It isn't profitable to do this, roll back. 4763 //cerr << "NOT FOLDING: " << *I; 4764 AddrMode = BackupAddrMode; 4765 AddrModeInsts.resize(OldSize); 4766 TPT.rollback(LastKnownGood); 4767 } 4768 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4769 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4770 return true; 4771 TPT.rollback(LastKnownGood); 4772 } else if (isa<ConstantPointerNull>(Addr)) { 4773 // Null pointer gets folded without affecting the addressing mode. 4774 return true; 4775 } 4776 4777 // Worse case, the target should support [reg] addressing modes. :) 4778 if (!AddrMode.HasBaseReg) { 4779 AddrMode.HasBaseReg = true; 4780 AddrMode.BaseReg = Addr; 4781 // Still check for legality in case the target supports [imm] but not [i+r]. 4782 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4783 return true; 4784 AddrMode.HasBaseReg = false; 4785 AddrMode.BaseReg = nullptr; 4786 } 4787 4788 // If the base register is already taken, see if we can do [r+r]. 4789 if (AddrMode.Scale == 0) { 4790 AddrMode.Scale = 1; 4791 AddrMode.ScaledReg = Addr; 4792 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4793 return true; 4794 AddrMode.Scale = 0; 4795 AddrMode.ScaledReg = nullptr; 4796 } 4797 // Couldn't match. 4798 TPT.rollback(LastKnownGood); 4799 return false; 4800 } 4801 4802 /// Check to see if all uses of OpVal by the specified inline asm call are due 4803 /// to memory operands. If so, return true, otherwise return false. 4804 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4805 const TargetLowering &TLI, 4806 const TargetRegisterInfo &TRI) { 4807 const Function *F = CI->getFunction(); 4808 TargetLowering::AsmOperandInfoVector TargetConstraints = 4809 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4810 4811 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4812 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4813 4814 // Compute the constraint code and ConstraintType to use. 4815 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4816 4817 // If this asm operand is our Value*, and if it isn't an indirect memory 4818 // operand, we can't fold it! 4819 if (OpInfo.CallOperandVal == OpVal && 4820 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4821 !OpInfo.isIndirect)) 4822 return false; 4823 } 4824 4825 return true; 4826 } 4827 4828 // Max number of memory uses to look at before aborting the search to conserve 4829 // compile time. 4830 static constexpr int MaxMemoryUsesToScan = 20; 4831 4832 /// Recursively walk all the uses of I until we find a memory use. 4833 /// If we find an obviously non-foldable instruction, return true. 4834 /// Add the ultimately found memory instructions to MemoryUses. 4835 static bool FindAllMemoryUses( 4836 Instruction *I, 4837 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4838 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4839 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4840 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4841 // If we already considered this instruction, we're done. 4842 if (!ConsideredInsts.insert(I).second) 4843 return false; 4844 4845 // If this is an obviously unfoldable instruction, bail out. 4846 if (!MightBeFoldableInst(I)) 4847 return true; 4848 4849 // Loop over all the uses, recursively processing them. 4850 for (Use &U : I->uses()) { 4851 // Conservatively return true if we're seeing a large number or a deep chain 4852 // of users. This avoids excessive compilation times in pathological cases. 4853 if (SeenInsts++ >= MaxMemoryUsesToScan) 4854 return true; 4855 4856 Instruction *UserI = cast<Instruction>(U.getUser()); 4857 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4858 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4859 continue; 4860 } 4861 4862 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4863 unsigned opNo = U.getOperandNo(); 4864 if (opNo != StoreInst::getPointerOperandIndex()) 4865 return true; // Storing addr, not into addr. 4866 MemoryUses.push_back(std::make_pair(SI, opNo)); 4867 continue; 4868 } 4869 4870 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4871 unsigned opNo = U.getOperandNo(); 4872 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4873 return true; // Storing addr, not into addr. 4874 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4875 continue; 4876 } 4877 4878 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4879 unsigned opNo = U.getOperandNo(); 4880 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4881 return true; // Storing addr, not into addr. 4882 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4883 continue; 4884 } 4885 4886 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4887 if (CI->hasFnAttr(Attribute::Cold)) { 4888 // If this is a cold call, we can sink the addressing calculation into 4889 // the cold path. See optimizeCallInst 4890 bool OptForSize = OptSize || 4891 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4892 if (!OptForSize) 4893 continue; 4894 } 4895 4896 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4897 if (!IA) return true; 4898 4899 // If this is a memory operand, we're cool, otherwise bail out. 4900 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4901 return true; 4902 continue; 4903 } 4904 4905 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4906 PSI, BFI, SeenInsts)) 4907 return true; 4908 } 4909 4910 return false; 4911 } 4912 4913 /// Return true if Val is already known to be live at the use site that we're 4914 /// folding it into. If so, there is no cost to include it in the addressing 4915 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4916 /// instruction already. 4917 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4918 Value *KnownLive2) { 4919 // If Val is either of the known-live values, we know it is live! 4920 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4921 return true; 4922 4923 // All values other than instructions and arguments (e.g. constants) are live. 4924 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4925 4926 // If Val is a constant sized alloca in the entry block, it is live, this is 4927 // true because it is just a reference to the stack/frame pointer, which is 4928 // live for the whole function. 4929 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4930 if (AI->isStaticAlloca()) 4931 return true; 4932 4933 // Check to see if this value is already used in the memory instruction's 4934 // block. If so, it's already live into the block at the very least, so we 4935 // can reasonably fold it. 4936 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4937 } 4938 4939 /// It is possible for the addressing mode of the machine to fold the specified 4940 /// instruction into a load or store that ultimately uses it. 4941 /// However, the specified instruction has multiple uses. 4942 /// Given this, it may actually increase register pressure to fold it 4943 /// into the load. For example, consider this code: 4944 /// 4945 /// X = ... 4946 /// Y = X+1 4947 /// use(Y) -> nonload/store 4948 /// Z = Y+1 4949 /// load Z 4950 /// 4951 /// In this case, Y has multiple uses, and can be folded into the load of Z 4952 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4953 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4954 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4955 /// number of computations either. 4956 /// 4957 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4958 /// X was live across 'load Z' for other reasons, we actually *would* want to 4959 /// fold the addressing mode in the Z case. This would make Y die earlier. 4960 bool AddressingModeMatcher:: 4961 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4962 ExtAddrMode &AMAfter) { 4963 if (IgnoreProfitability) return true; 4964 4965 // AMBefore is the addressing mode before this instruction was folded into it, 4966 // and AMAfter is the addressing mode after the instruction was folded. Get 4967 // the set of registers referenced by AMAfter and subtract out those 4968 // referenced by AMBefore: this is the set of values which folding in this 4969 // address extends the lifetime of. 4970 // 4971 // Note that there are only two potential values being referenced here, 4972 // BaseReg and ScaleReg (global addresses are always available, as are any 4973 // folded immediates). 4974 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4975 4976 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4977 // lifetime wasn't extended by adding this instruction. 4978 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4979 BaseReg = nullptr; 4980 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4981 ScaledReg = nullptr; 4982 4983 // If folding this instruction (and it's subexprs) didn't extend any live 4984 // ranges, we're ok with it. 4985 if (!BaseReg && !ScaledReg) 4986 return true; 4987 4988 // If all uses of this instruction can have the address mode sunk into them, 4989 // we can remove the addressing mode and effectively trade one live register 4990 // for another (at worst.) In this context, folding an addressing mode into 4991 // the use is just a particularly nice way of sinking it. 4992 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4993 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4994 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4995 PSI, BFI)) 4996 return false; // Has a non-memory, non-foldable use! 4997 4998 // Now that we know that all uses of this instruction are part of a chain of 4999 // computation involving only operations that could theoretically be folded 5000 // into a memory use, loop over each of these memory operation uses and see 5001 // if they could *actually* fold the instruction. The assumption is that 5002 // addressing modes are cheap and that duplicating the computation involved 5003 // many times is worthwhile, even on a fastpath. For sinking candidates 5004 // (i.e. cold call sites), this serves as a way to prevent excessive code 5005 // growth since most architectures have some reasonable small and fast way to 5006 // compute an effective address. (i.e LEA on x86) 5007 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5008 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5009 Instruction *User = MemoryUses[i].first; 5010 unsigned OpNo = MemoryUses[i].second; 5011 5012 // Get the access type of this use. If the use isn't a pointer, we don't 5013 // know what it accesses. 5014 Value *Address = User->getOperand(OpNo); 5015 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5016 if (!AddrTy) 5017 return false; 5018 Type *AddressAccessTy = AddrTy->getElementType(); 5019 unsigned AS = AddrTy->getAddressSpace(); 5020 5021 // Do a match against the root of this address, ignoring profitability. This 5022 // will tell us if the addressing mode for the memory operation will 5023 // *actually* cover the shared instruction. 5024 ExtAddrMode Result; 5025 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5026 0); 5027 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5028 TPT.getRestorationPoint(); 5029 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5030 AddressAccessTy, AS, MemoryInst, Result, 5031 InsertedInsts, PromotedInsts, TPT, 5032 LargeOffsetGEP, OptSize, PSI, BFI); 5033 Matcher.IgnoreProfitability = true; 5034 bool Success = Matcher.matchAddr(Address, 0); 5035 (void)Success; assert(Success && "Couldn't select *anything*?"); 5036 5037 // The match was to check the profitability, the changes made are not 5038 // part of the original matcher. Therefore, they should be dropped 5039 // otherwise the original matcher will not present the right state. 5040 TPT.rollback(LastKnownGood); 5041 5042 // If the match didn't cover I, then it won't be shared by it. 5043 if (!is_contained(MatchedAddrModeInsts, I)) 5044 return false; 5045 5046 MatchedAddrModeInsts.clear(); 5047 } 5048 5049 return true; 5050 } 5051 5052 /// Return true if the specified values are defined in a 5053 /// different basic block than BB. 5054 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5055 if (Instruction *I = dyn_cast<Instruction>(V)) 5056 return I->getParent() != BB; 5057 return false; 5058 } 5059 5060 /// Sink addressing mode computation immediate before MemoryInst if doing so 5061 /// can be done without increasing register pressure. The need for the 5062 /// register pressure constraint means this can end up being an all or nothing 5063 /// decision for all uses of the same addressing computation. 5064 /// 5065 /// Load and Store Instructions often have addressing modes that can do 5066 /// significant amounts of computation. As such, instruction selection will try 5067 /// to get the load or store to do as much computation as possible for the 5068 /// program. The problem is that isel can only see within a single block. As 5069 /// such, we sink as much legal addressing mode work into the block as possible. 5070 /// 5071 /// This method is used to optimize both load/store and inline asms with memory 5072 /// operands. It's also used to sink addressing computations feeding into cold 5073 /// call sites into their (cold) basic block. 5074 /// 5075 /// The motivation for handling sinking into cold blocks is that doing so can 5076 /// both enable other address mode sinking (by satisfying the register pressure 5077 /// constraint above), and reduce register pressure globally (by removing the 5078 /// addressing mode computation from the fast path entirely.). 5079 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5080 Type *AccessTy, unsigned AddrSpace) { 5081 Value *Repl = Addr; 5082 5083 // Try to collapse single-value PHI nodes. This is necessary to undo 5084 // unprofitable PRE transformations. 5085 SmallVector<Value*, 8> worklist; 5086 SmallPtrSet<Value*, 16> Visited; 5087 worklist.push_back(Addr); 5088 5089 // Use a worklist to iteratively look through PHI and select nodes, and 5090 // ensure that the addressing mode obtained from the non-PHI/select roots of 5091 // the graph are compatible. 5092 bool PhiOrSelectSeen = false; 5093 SmallVector<Instruction*, 16> AddrModeInsts; 5094 const SimplifyQuery SQ(*DL, TLInfo); 5095 AddressingModeCombiner AddrModes(SQ, Addr); 5096 TypePromotionTransaction TPT(RemovedInsts); 5097 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5098 TPT.getRestorationPoint(); 5099 while (!worklist.empty()) { 5100 Value *V = worklist.back(); 5101 worklist.pop_back(); 5102 5103 // We allow traversing cyclic Phi nodes. 5104 // In case of success after this loop we ensure that traversing through 5105 // Phi nodes ends up with all cases to compute address of the form 5106 // BaseGV + Base + Scale * Index + Offset 5107 // where Scale and Offset are constans and BaseGV, Base and Index 5108 // are exactly the same Values in all cases. 5109 // It means that BaseGV, Scale and Offset dominate our memory instruction 5110 // and have the same value as they had in address computation represented 5111 // as Phi. So we can safely sink address computation to memory instruction. 5112 if (!Visited.insert(V).second) 5113 continue; 5114 5115 // For a PHI node, push all of its incoming values. 5116 if (PHINode *P = dyn_cast<PHINode>(V)) { 5117 append_range(worklist, P->incoming_values()); 5118 PhiOrSelectSeen = true; 5119 continue; 5120 } 5121 // Similar for select. 5122 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5123 worklist.push_back(SI->getFalseValue()); 5124 worklist.push_back(SI->getTrueValue()); 5125 PhiOrSelectSeen = true; 5126 continue; 5127 } 5128 5129 // For non-PHIs, determine the addressing mode being computed. Note that 5130 // the result may differ depending on what other uses our candidate 5131 // addressing instructions might have. 5132 AddrModeInsts.clear(); 5133 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5134 0); 5135 // Defer the query (and possible computation of) the dom tree to point of 5136 // actual use. It's expected that most address matches don't actually need 5137 // the domtree. 5138 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5139 Function *F = MemoryInst->getParent()->getParent(); 5140 return this->getDT(*F); 5141 }; 5142 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5143 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5144 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5145 BFI.get()); 5146 5147 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5148 if (GEP && !NewGEPBases.count(GEP)) { 5149 // If splitting the underlying data structure can reduce the offset of a 5150 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5151 // previously split data structures. 5152 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5153 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5154 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5155 } 5156 5157 NewAddrMode.OriginalValue = V; 5158 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5159 break; 5160 } 5161 5162 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5163 // or we have multiple but either couldn't combine them or combining them 5164 // wouldn't do anything useful, bail out now. 5165 if (!AddrModes.combineAddrModes()) { 5166 TPT.rollback(LastKnownGood); 5167 return false; 5168 } 5169 bool Modified = TPT.commit(); 5170 5171 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5172 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5173 5174 // If all the instructions matched are already in this BB, don't do anything. 5175 // If we saw a Phi node then it is not local definitely, and if we saw a select 5176 // then we want to push the address calculation past it even if it's already 5177 // in this BB. 5178 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5179 return IsNonLocalValue(V, MemoryInst->getParent()); 5180 })) { 5181 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5182 << "\n"); 5183 return Modified; 5184 } 5185 5186 // Insert this computation right after this user. Since our caller is 5187 // scanning from the top of the BB to the bottom, reuse of the expr are 5188 // guaranteed to happen later. 5189 IRBuilder<> Builder(MemoryInst); 5190 5191 // Now that we determined the addressing expression we want to use and know 5192 // that we have to sink it into this block. Check to see if we have already 5193 // done this for some other load/store instr in this block. If so, reuse 5194 // the computation. Before attempting reuse, check if the address is valid 5195 // as it may have been erased. 5196 5197 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5198 5199 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5200 if (SunkAddr) { 5201 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5202 << " for " << *MemoryInst << "\n"); 5203 if (SunkAddr->getType() != Addr->getType()) 5204 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5205 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5206 SubtargetInfo->addrSinkUsingGEPs())) { 5207 // By default, we use the GEP-based method when AA is used later. This 5208 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5209 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5210 << " for " << *MemoryInst << "\n"); 5211 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5212 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5213 5214 // First, find the pointer. 5215 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5216 ResultPtr = AddrMode.BaseReg; 5217 AddrMode.BaseReg = nullptr; 5218 } 5219 5220 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5221 // We can't add more than one pointer together, nor can we scale a 5222 // pointer (both of which seem meaningless). 5223 if (ResultPtr || AddrMode.Scale != 1) 5224 return Modified; 5225 5226 ResultPtr = AddrMode.ScaledReg; 5227 AddrMode.Scale = 0; 5228 } 5229 5230 // It is only safe to sign extend the BaseReg if we know that the math 5231 // required to create it did not overflow before we extend it. Since 5232 // the original IR value was tossed in favor of a constant back when 5233 // the AddrMode was created we need to bail out gracefully if widths 5234 // do not match instead of extending it. 5235 // 5236 // (See below for code to add the scale.) 5237 if (AddrMode.Scale) { 5238 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5239 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5240 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5241 return Modified; 5242 } 5243 5244 if (AddrMode.BaseGV) { 5245 if (ResultPtr) 5246 return Modified; 5247 5248 ResultPtr = AddrMode.BaseGV; 5249 } 5250 5251 // If the real base value actually came from an inttoptr, then the matcher 5252 // will look through it and provide only the integer value. In that case, 5253 // use it here. 5254 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5255 if (!ResultPtr && AddrMode.BaseReg) { 5256 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5257 "sunkaddr"); 5258 AddrMode.BaseReg = nullptr; 5259 } else if (!ResultPtr && AddrMode.Scale == 1) { 5260 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5261 "sunkaddr"); 5262 AddrMode.Scale = 0; 5263 } 5264 } 5265 5266 if (!ResultPtr && 5267 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5268 SunkAddr = Constant::getNullValue(Addr->getType()); 5269 } else if (!ResultPtr) { 5270 return Modified; 5271 } else { 5272 Type *I8PtrTy = 5273 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5274 Type *I8Ty = Builder.getInt8Ty(); 5275 5276 // Start with the base register. Do this first so that subsequent address 5277 // matching finds it last, which will prevent it from trying to match it 5278 // as the scaled value in case it happens to be a mul. That would be 5279 // problematic if we've sunk a different mul for the scale, because then 5280 // we'd end up sinking both muls. 5281 if (AddrMode.BaseReg) { 5282 Value *V = AddrMode.BaseReg; 5283 if (V->getType() != IntPtrTy) 5284 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5285 5286 ResultIndex = V; 5287 } 5288 5289 // Add the scale value. 5290 if (AddrMode.Scale) { 5291 Value *V = AddrMode.ScaledReg; 5292 if (V->getType() == IntPtrTy) { 5293 // done. 5294 } else { 5295 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5296 cast<IntegerType>(V->getType())->getBitWidth() && 5297 "We can't transform if ScaledReg is too narrow"); 5298 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5299 } 5300 5301 if (AddrMode.Scale != 1) 5302 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5303 "sunkaddr"); 5304 if (ResultIndex) 5305 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5306 else 5307 ResultIndex = V; 5308 } 5309 5310 // Add in the Base Offset if present. 5311 if (AddrMode.BaseOffs) { 5312 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5313 if (ResultIndex) { 5314 // We need to add this separately from the scale above to help with 5315 // SDAG consecutive load/store merging. 5316 if (ResultPtr->getType() != I8PtrTy) 5317 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5318 ResultPtr = 5319 AddrMode.InBounds 5320 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5321 "sunkaddr") 5322 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5323 } 5324 5325 ResultIndex = V; 5326 } 5327 5328 if (!ResultIndex) { 5329 SunkAddr = ResultPtr; 5330 } else { 5331 if (ResultPtr->getType() != I8PtrTy) 5332 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5333 SunkAddr = 5334 AddrMode.InBounds 5335 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5336 "sunkaddr") 5337 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5338 } 5339 5340 if (SunkAddr->getType() != Addr->getType()) 5341 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5342 } 5343 } else { 5344 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5345 // non-integral pointers, so in that case bail out now. 5346 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5347 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5348 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5349 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5350 if (DL->isNonIntegralPointerType(Addr->getType()) || 5351 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5352 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5353 (AddrMode.BaseGV && 5354 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5355 return Modified; 5356 5357 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5358 << " for " << *MemoryInst << "\n"); 5359 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5360 Value *Result = nullptr; 5361 5362 // Start with the base register. Do this first so that subsequent address 5363 // matching finds it last, which will prevent it from trying to match it 5364 // as the scaled value in case it happens to be a mul. That would be 5365 // problematic if we've sunk a different mul for the scale, because then 5366 // we'd end up sinking both muls. 5367 if (AddrMode.BaseReg) { 5368 Value *V = AddrMode.BaseReg; 5369 if (V->getType()->isPointerTy()) 5370 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5371 if (V->getType() != IntPtrTy) 5372 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5373 Result = V; 5374 } 5375 5376 // Add the scale value. 5377 if (AddrMode.Scale) { 5378 Value *V = AddrMode.ScaledReg; 5379 if (V->getType() == IntPtrTy) { 5380 // done. 5381 } else if (V->getType()->isPointerTy()) { 5382 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5383 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5384 cast<IntegerType>(V->getType())->getBitWidth()) { 5385 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5386 } else { 5387 // It is only safe to sign extend the BaseReg if we know that the math 5388 // required to create it did not overflow before we extend it. Since 5389 // the original IR value was tossed in favor of a constant back when 5390 // the AddrMode was created we need to bail out gracefully if widths 5391 // do not match instead of extending it. 5392 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5393 if (I && (Result != AddrMode.BaseReg)) 5394 I->eraseFromParent(); 5395 return Modified; 5396 } 5397 if (AddrMode.Scale != 1) 5398 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5399 "sunkaddr"); 5400 if (Result) 5401 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5402 else 5403 Result = V; 5404 } 5405 5406 // Add in the BaseGV if present. 5407 if (AddrMode.BaseGV) { 5408 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5409 if (Result) 5410 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5411 else 5412 Result = V; 5413 } 5414 5415 // Add in the Base Offset if present. 5416 if (AddrMode.BaseOffs) { 5417 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5418 if (Result) 5419 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5420 else 5421 Result = V; 5422 } 5423 5424 if (!Result) 5425 SunkAddr = Constant::getNullValue(Addr->getType()); 5426 else 5427 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5428 } 5429 5430 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5431 // Store the newly computed address into the cache. In the case we reused a 5432 // value, this should be idempotent. 5433 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5434 5435 // If we have no uses, recursively delete the value and all dead instructions 5436 // using it. 5437 if (Repl->use_empty()) { 5438 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5439 RecursivelyDeleteTriviallyDeadInstructions( 5440 Repl, TLInfo, nullptr, 5441 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5442 }); 5443 } 5444 ++NumMemoryInsts; 5445 return true; 5446 } 5447 5448 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5449 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5450 /// only handle a 2 operand GEP in the same basic block or a splat constant 5451 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5452 /// index. 5453 /// 5454 /// If the existing GEP has a vector base pointer that is splat, we can look 5455 /// through the splat to find the scalar pointer. If we can't find a scalar 5456 /// pointer there's nothing we can do. 5457 /// 5458 /// If we have a GEP with more than 2 indices where the middle indices are all 5459 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5460 /// 5461 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5462 /// followed by a GEP with an all zeroes vector index. This will enable 5463 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5464 /// zero index. 5465 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5466 Value *Ptr) { 5467 Value *NewAddr; 5468 5469 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5470 // Don't optimize GEPs that don't have indices. 5471 if (!GEP->hasIndices()) 5472 return false; 5473 5474 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5475 // FIXME: We should support this by sinking the GEP. 5476 if (MemoryInst->getParent() != GEP->getParent()) 5477 return false; 5478 5479 SmallVector<Value *, 2> Ops(GEP->operands()); 5480 5481 bool RewriteGEP = false; 5482 5483 if (Ops[0]->getType()->isVectorTy()) { 5484 Ops[0] = getSplatValue(Ops[0]); 5485 if (!Ops[0]) 5486 return false; 5487 RewriteGEP = true; 5488 } 5489 5490 unsigned FinalIndex = Ops.size() - 1; 5491 5492 // Ensure all but the last index is 0. 5493 // FIXME: This isn't strictly required. All that's required is that they are 5494 // all scalars or splats. 5495 for (unsigned i = 1; i < FinalIndex; ++i) { 5496 auto *C = dyn_cast<Constant>(Ops[i]); 5497 if (!C) 5498 return false; 5499 if (isa<VectorType>(C->getType())) 5500 C = C->getSplatValue(); 5501 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5502 if (!CI || !CI->isZero()) 5503 return false; 5504 // Scalarize the index if needed. 5505 Ops[i] = CI; 5506 } 5507 5508 // Try to scalarize the final index. 5509 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5510 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5511 auto *C = dyn_cast<ConstantInt>(V); 5512 // Don't scalarize all zeros vector. 5513 if (!C || !C->isZero()) { 5514 Ops[FinalIndex] = V; 5515 RewriteGEP = true; 5516 } 5517 } 5518 } 5519 5520 // If we made any changes or the we have extra operands, we need to generate 5521 // new instructions. 5522 if (!RewriteGEP && Ops.size() == 2) 5523 return false; 5524 5525 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5526 5527 IRBuilder<> Builder(MemoryInst); 5528 5529 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5530 5531 // If the final index isn't a vector, emit a scalar GEP containing all ops 5532 // and a vector GEP with all zeroes final index. 5533 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5534 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5535 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5536 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5537 } else { 5538 Value *Base = Ops[0]; 5539 Value *Index = Ops[FinalIndex]; 5540 5541 // Create a scalar GEP if there are more than 2 operands. 5542 if (Ops.size() != 2) { 5543 // Replace the last index with 0. 5544 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5545 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5546 } 5547 5548 // Now create the GEP with scalar pointer and vector index. 5549 NewAddr = Builder.CreateGEP(Base, Index); 5550 } 5551 } else if (!isa<Constant>(Ptr)) { 5552 // Not a GEP, maybe its a splat and we can create a GEP to enable 5553 // SelectionDAGBuilder to use it as a uniform base. 5554 Value *V = getSplatValue(Ptr); 5555 if (!V) 5556 return false; 5557 5558 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5559 5560 IRBuilder<> Builder(MemoryInst); 5561 5562 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5563 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5564 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5565 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5566 } else { 5567 // Constant, SelectionDAGBuilder knows to check if its a splat. 5568 return false; 5569 } 5570 5571 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5572 5573 // If we have no uses, recursively delete the value and all dead instructions 5574 // using it. 5575 if (Ptr->use_empty()) 5576 RecursivelyDeleteTriviallyDeadInstructions( 5577 Ptr, TLInfo, nullptr, 5578 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5579 5580 return true; 5581 } 5582 5583 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5584 /// address computing into the block when possible / profitable. 5585 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5586 bool MadeChange = false; 5587 5588 const TargetRegisterInfo *TRI = 5589 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5590 TargetLowering::AsmOperandInfoVector TargetConstraints = 5591 TLI->ParseConstraints(*DL, TRI, *CS); 5592 unsigned ArgNo = 0; 5593 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5594 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5595 5596 // Compute the constraint code and ConstraintType to use. 5597 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5598 5599 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5600 OpInfo.isIndirect) { 5601 Value *OpVal = CS->getArgOperand(ArgNo++); 5602 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5603 } else if (OpInfo.Type == InlineAsm::isInput) 5604 ArgNo++; 5605 } 5606 5607 return MadeChange; 5608 } 5609 5610 /// Check if all the uses of \p Val are equivalent (or free) zero or 5611 /// sign extensions. 5612 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5613 assert(!Val->use_empty() && "Input must have at least one use"); 5614 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5615 bool IsSExt = isa<SExtInst>(FirstUser); 5616 Type *ExtTy = FirstUser->getType(); 5617 for (const User *U : Val->users()) { 5618 const Instruction *UI = cast<Instruction>(U); 5619 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5620 return false; 5621 Type *CurTy = UI->getType(); 5622 // Same input and output types: Same instruction after CSE. 5623 if (CurTy == ExtTy) 5624 continue; 5625 5626 // If IsSExt is true, we are in this situation: 5627 // a = Val 5628 // b = sext ty1 a to ty2 5629 // c = sext ty1 a to ty3 5630 // Assuming ty2 is shorter than ty3, this could be turned into: 5631 // a = Val 5632 // b = sext ty1 a to ty2 5633 // c = sext ty2 b to ty3 5634 // However, the last sext is not free. 5635 if (IsSExt) 5636 return false; 5637 5638 // This is a ZExt, maybe this is free to extend from one type to another. 5639 // In that case, we would not account for a different use. 5640 Type *NarrowTy; 5641 Type *LargeTy; 5642 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5643 CurTy->getScalarType()->getIntegerBitWidth()) { 5644 NarrowTy = CurTy; 5645 LargeTy = ExtTy; 5646 } else { 5647 NarrowTy = ExtTy; 5648 LargeTy = CurTy; 5649 } 5650 5651 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5652 return false; 5653 } 5654 // All uses are the same or can be derived from one another for free. 5655 return true; 5656 } 5657 5658 /// Try to speculatively promote extensions in \p Exts and continue 5659 /// promoting through newly promoted operands recursively as far as doing so is 5660 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5661 /// When some promotion happened, \p TPT contains the proper state to revert 5662 /// them. 5663 /// 5664 /// \return true if some promotion happened, false otherwise. 5665 bool CodeGenPrepare::tryToPromoteExts( 5666 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5667 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5668 unsigned CreatedInstsCost) { 5669 bool Promoted = false; 5670 5671 // Iterate over all the extensions to try to promote them. 5672 for (auto *I : Exts) { 5673 // Early check if we directly have ext(load). 5674 if (isa<LoadInst>(I->getOperand(0))) { 5675 ProfitablyMovedExts.push_back(I); 5676 continue; 5677 } 5678 5679 // Check whether or not we want to do any promotion. The reason we have 5680 // this check inside the for loop is to catch the case where an extension 5681 // is directly fed by a load because in such case the extension can be moved 5682 // up without any promotion on its operands. 5683 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5684 return false; 5685 5686 // Get the action to perform the promotion. 5687 TypePromotionHelper::Action TPH = 5688 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5689 // Check if we can promote. 5690 if (!TPH) { 5691 // Save the current extension as we cannot move up through its operand. 5692 ProfitablyMovedExts.push_back(I); 5693 continue; 5694 } 5695 5696 // Save the current state. 5697 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5698 TPT.getRestorationPoint(); 5699 SmallVector<Instruction *, 4> NewExts; 5700 unsigned NewCreatedInstsCost = 0; 5701 unsigned ExtCost = !TLI->isExtFree(I); 5702 // Promote. 5703 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5704 &NewExts, nullptr, *TLI); 5705 assert(PromotedVal && 5706 "TypePromotionHelper should have filtered out those cases"); 5707 5708 // We would be able to merge only one extension in a load. 5709 // Therefore, if we have more than 1 new extension we heuristically 5710 // cut this search path, because it means we degrade the code quality. 5711 // With exactly 2, the transformation is neutral, because we will merge 5712 // one extension but leave one. However, we optimistically keep going, 5713 // because the new extension may be removed too. 5714 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5715 // FIXME: It would be possible to propagate a negative value instead of 5716 // conservatively ceiling it to 0. 5717 TotalCreatedInstsCost = 5718 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5719 if (!StressExtLdPromotion && 5720 (TotalCreatedInstsCost > 1 || 5721 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5722 // This promotion is not profitable, rollback to the previous state, and 5723 // save the current extension in ProfitablyMovedExts as the latest 5724 // speculative promotion turned out to be unprofitable. 5725 TPT.rollback(LastKnownGood); 5726 ProfitablyMovedExts.push_back(I); 5727 continue; 5728 } 5729 // Continue promoting NewExts as far as doing so is profitable. 5730 SmallVector<Instruction *, 2> NewlyMovedExts; 5731 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5732 bool NewPromoted = false; 5733 for (auto *ExtInst : NewlyMovedExts) { 5734 Instruction *MovedExt = cast<Instruction>(ExtInst); 5735 Value *ExtOperand = MovedExt->getOperand(0); 5736 // If we have reached to a load, we need this extra profitability check 5737 // as it could potentially be merged into an ext(load). 5738 if (isa<LoadInst>(ExtOperand) && 5739 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5740 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5741 continue; 5742 5743 ProfitablyMovedExts.push_back(MovedExt); 5744 NewPromoted = true; 5745 } 5746 5747 // If none of speculative promotions for NewExts is profitable, rollback 5748 // and save the current extension (I) as the last profitable extension. 5749 if (!NewPromoted) { 5750 TPT.rollback(LastKnownGood); 5751 ProfitablyMovedExts.push_back(I); 5752 continue; 5753 } 5754 // The promotion is profitable. 5755 Promoted = true; 5756 } 5757 return Promoted; 5758 } 5759 5760 /// Merging redundant sexts when one is dominating the other. 5761 bool CodeGenPrepare::mergeSExts(Function &F) { 5762 bool Changed = false; 5763 for (auto &Entry : ValToSExtendedUses) { 5764 SExts &Insts = Entry.second; 5765 SExts CurPts; 5766 for (Instruction *Inst : Insts) { 5767 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5768 Inst->getOperand(0) != Entry.first) 5769 continue; 5770 bool inserted = false; 5771 for (auto &Pt : CurPts) { 5772 if (getDT(F).dominates(Inst, Pt)) { 5773 Pt->replaceAllUsesWith(Inst); 5774 RemovedInsts.insert(Pt); 5775 Pt->removeFromParent(); 5776 Pt = Inst; 5777 inserted = true; 5778 Changed = true; 5779 break; 5780 } 5781 if (!getDT(F).dominates(Pt, Inst)) 5782 // Give up if we need to merge in a common dominator as the 5783 // experiments show it is not profitable. 5784 continue; 5785 Inst->replaceAllUsesWith(Pt); 5786 RemovedInsts.insert(Inst); 5787 Inst->removeFromParent(); 5788 inserted = true; 5789 Changed = true; 5790 break; 5791 } 5792 if (!inserted) 5793 CurPts.push_back(Inst); 5794 } 5795 } 5796 return Changed; 5797 } 5798 5799 // Splitting large data structures so that the GEPs accessing them can have 5800 // smaller offsets so that they can be sunk to the same blocks as their users. 5801 // For example, a large struct starting from %base is split into two parts 5802 // where the second part starts from %new_base. 5803 // 5804 // Before: 5805 // BB0: 5806 // %base = 5807 // 5808 // BB1: 5809 // %gep0 = gep %base, off0 5810 // %gep1 = gep %base, off1 5811 // %gep2 = gep %base, off2 5812 // 5813 // BB2: 5814 // %load1 = load %gep0 5815 // %load2 = load %gep1 5816 // %load3 = load %gep2 5817 // 5818 // After: 5819 // BB0: 5820 // %base = 5821 // %new_base = gep %base, off0 5822 // 5823 // BB1: 5824 // %new_gep0 = %new_base 5825 // %new_gep1 = gep %new_base, off1 - off0 5826 // %new_gep2 = gep %new_base, off2 - off0 5827 // 5828 // BB2: 5829 // %load1 = load i32, i32* %new_gep0 5830 // %load2 = load i32, i32* %new_gep1 5831 // %load3 = load i32, i32* %new_gep2 5832 // 5833 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5834 // their offsets are smaller enough to fit into the addressing mode. 5835 bool CodeGenPrepare::splitLargeGEPOffsets() { 5836 bool Changed = false; 5837 for (auto &Entry : LargeOffsetGEPMap) { 5838 Value *OldBase = Entry.first; 5839 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5840 &LargeOffsetGEPs = Entry.second; 5841 auto compareGEPOffset = 5842 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5843 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5844 if (LHS.first == RHS.first) 5845 return false; 5846 if (LHS.second != RHS.second) 5847 return LHS.second < RHS.second; 5848 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5849 }; 5850 // Sorting all the GEPs of the same data structures based on the offsets. 5851 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5852 LargeOffsetGEPs.erase( 5853 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5854 LargeOffsetGEPs.end()); 5855 // Skip if all the GEPs have the same offsets. 5856 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5857 continue; 5858 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5859 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5860 Value *NewBaseGEP = nullptr; 5861 5862 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5863 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5864 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5865 int64_t Offset = LargeOffsetGEP->second; 5866 if (Offset != BaseOffset) { 5867 TargetLowering::AddrMode AddrMode; 5868 AddrMode.BaseOffs = Offset - BaseOffset; 5869 // The result type of the GEP might not be the type of the memory 5870 // access. 5871 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5872 GEP->getResultElementType(), 5873 GEP->getAddressSpace())) { 5874 // We need to create a new base if the offset to the current base is 5875 // too large to fit into the addressing mode. So, a very large struct 5876 // may be split into several parts. 5877 BaseGEP = GEP; 5878 BaseOffset = Offset; 5879 NewBaseGEP = nullptr; 5880 } 5881 } 5882 5883 // Generate a new GEP to replace the current one. 5884 LLVMContext &Ctx = GEP->getContext(); 5885 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5886 Type *I8PtrTy = 5887 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5888 Type *I8Ty = Type::getInt8Ty(Ctx); 5889 5890 if (!NewBaseGEP) { 5891 // Create a new base if we don't have one yet. Find the insertion 5892 // pointer for the new base first. 5893 BasicBlock::iterator NewBaseInsertPt; 5894 BasicBlock *NewBaseInsertBB; 5895 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5896 // If the base of the struct is an instruction, the new base will be 5897 // inserted close to it. 5898 NewBaseInsertBB = BaseI->getParent(); 5899 if (isa<PHINode>(BaseI)) 5900 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5901 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5902 NewBaseInsertBB = 5903 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5904 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5905 } else 5906 NewBaseInsertPt = std::next(BaseI->getIterator()); 5907 } else { 5908 // If the current base is an argument or global value, the new base 5909 // will be inserted to the entry block. 5910 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5911 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5912 } 5913 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5914 // Create a new base. 5915 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5916 NewBaseGEP = OldBase; 5917 if (NewBaseGEP->getType() != I8PtrTy) 5918 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5919 NewBaseGEP = 5920 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5921 NewGEPBases.insert(NewBaseGEP); 5922 } 5923 5924 IRBuilder<> Builder(GEP); 5925 Value *NewGEP = NewBaseGEP; 5926 if (Offset == BaseOffset) { 5927 if (GEP->getType() != I8PtrTy) 5928 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5929 } else { 5930 // Calculate the new offset for the new GEP. 5931 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5932 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5933 5934 if (GEP->getType() != I8PtrTy) 5935 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5936 } 5937 GEP->replaceAllUsesWith(NewGEP); 5938 LargeOffsetGEPID.erase(GEP); 5939 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5940 GEP->eraseFromParent(); 5941 Changed = true; 5942 } 5943 } 5944 return Changed; 5945 } 5946 5947 bool CodeGenPrepare::optimizePhiType( 5948 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5949 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5950 // We are looking for a collection on interconnected phi nodes that together 5951 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5952 // are of the same type. Convert the whole set of nodes to the type of the 5953 // bitcast. 5954 Type *PhiTy = I->getType(); 5955 Type *ConvertTy = nullptr; 5956 if (Visited.count(I) || 5957 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5958 return false; 5959 5960 SmallVector<Instruction *, 4> Worklist; 5961 Worklist.push_back(cast<Instruction>(I)); 5962 SmallPtrSet<PHINode *, 4> PhiNodes; 5963 PhiNodes.insert(I); 5964 Visited.insert(I); 5965 SmallPtrSet<Instruction *, 4> Defs; 5966 SmallPtrSet<Instruction *, 4> Uses; 5967 // This works by adding extra bitcasts between load/stores and removing 5968 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5969 // we can get in the situation where we remove a bitcast in one iteration 5970 // just to add it again in the next. We need to ensure that at least one 5971 // bitcast we remove are anchored to something that will not change back. 5972 bool AnyAnchored = false; 5973 5974 while (!Worklist.empty()) { 5975 Instruction *II = Worklist.pop_back_val(); 5976 5977 if (auto *Phi = dyn_cast<PHINode>(II)) { 5978 // Handle Defs, which might also be PHI's 5979 for (Value *V : Phi->incoming_values()) { 5980 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5981 if (!PhiNodes.count(OpPhi)) { 5982 if (Visited.count(OpPhi)) 5983 return false; 5984 PhiNodes.insert(OpPhi); 5985 Visited.insert(OpPhi); 5986 Worklist.push_back(OpPhi); 5987 } 5988 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5989 if (!OpLoad->isSimple()) 5990 return false; 5991 if (!Defs.count(OpLoad)) { 5992 Defs.insert(OpLoad); 5993 Worklist.push_back(OpLoad); 5994 } 5995 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5996 if (!Defs.count(OpEx)) { 5997 Defs.insert(OpEx); 5998 Worklist.push_back(OpEx); 5999 } 6000 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6001 if (!ConvertTy) 6002 ConvertTy = OpBC->getOperand(0)->getType(); 6003 if (OpBC->getOperand(0)->getType() != ConvertTy) 6004 return false; 6005 if (!Defs.count(OpBC)) { 6006 Defs.insert(OpBC); 6007 Worklist.push_back(OpBC); 6008 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6009 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6010 } 6011 } else if (!isa<UndefValue>(V)) { 6012 return false; 6013 } 6014 } 6015 } 6016 6017 // Handle uses which might also be phi's 6018 for (User *V : II->users()) { 6019 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6020 if (!PhiNodes.count(OpPhi)) { 6021 if (Visited.count(OpPhi)) 6022 return false; 6023 PhiNodes.insert(OpPhi); 6024 Visited.insert(OpPhi); 6025 Worklist.push_back(OpPhi); 6026 } 6027 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6028 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6029 return false; 6030 Uses.insert(OpStore); 6031 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6032 if (!ConvertTy) 6033 ConvertTy = OpBC->getType(); 6034 if (OpBC->getType() != ConvertTy) 6035 return false; 6036 Uses.insert(OpBC); 6037 AnyAnchored |= 6038 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6039 } else { 6040 return false; 6041 } 6042 } 6043 } 6044 6045 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6046 return false; 6047 6048 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6049 << *ConvertTy << "\n"); 6050 6051 // Create all the new phi nodes of the new type, and bitcast any loads to the 6052 // correct type. 6053 ValueToValueMap ValMap; 6054 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6055 for (Instruction *D : Defs) { 6056 if (isa<BitCastInst>(D)) { 6057 ValMap[D] = D->getOperand(0); 6058 DeletedInstrs.insert(D); 6059 } else { 6060 ValMap[D] = 6061 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6062 } 6063 } 6064 for (PHINode *Phi : PhiNodes) 6065 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6066 Phi->getName() + ".tc", Phi); 6067 // Pipe together all the PhiNodes. 6068 for (PHINode *Phi : PhiNodes) { 6069 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6070 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6071 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6072 Phi->getIncomingBlock(i)); 6073 Visited.insert(NewPhi); 6074 } 6075 // And finally pipe up the stores and bitcasts 6076 for (Instruction *U : Uses) { 6077 if (isa<BitCastInst>(U)) { 6078 DeletedInstrs.insert(U); 6079 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6080 } else { 6081 U->setOperand(0, 6082 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6083 } 6084 } 6085 6086 // Save the removed phis to be deleted later. 6087 for (PHINode *Phi : PhiNodes) 6088 DeletedInstrs.insert(Phi); 6089 return true; 6090 } 6091 6092 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6093 if (!OptimizePhiTypes) 6094 return false; 6095 6096 bool Changed = false; 6097 SmallPtrSet<PHINode *, 4> Visited; 6098 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6099 6100 // Attempt to optimize all the phis in the functions to the correct type. 6101 for (auto &BB : F) 6102 for (auto &Phi : BB.phis()) 6103 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6104 6105 // Remove any old phi's that have been converted. 6106 for (auto *I : DeletedInstrs) { 6107 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6108 I->eraseFromParent(); 6109 } 6110 6111 return Changed; 6112 } 6113 6114 /// Return true, if an ext(load) can be formed from an extension in 6115 /// \p MovedExts. 6116 bool CodeGenPrepare::canFormExtLd( 6117 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6118 Instruction *&Inst, bool HasPromoted) { 6119 for (auto *MovedExtInst : MovedExts) { 6120 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6121 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6122 Inst = MovedExtInst; 6123 break; 6124 } 6125 } 6126 if (!LI) 6127 return false; 6128 6129 // If they're already in the same block, there's nothing to do. 6130 // Make the cheap checks first if we did not promote. 6131 // If we promoted, we need to check if it is indeed profitable. 6132 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6133 return false; 6134 6135 return TLI->isExtLoad(LI, Inst, *DL); 6136 } 6137 6138 /// Move a zext or sext fed by a load into the same basic block as the load, 6139 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6140 /// extend into the load. 6141 /// 6142 /// E.g., 6143 /// \code 6144 /// %ld = load i32* %addr 6145 /// %add = add nuw i32 %ld, 4 6146 /// %zext = zext i32 %add to i64 6147 // \endcode 6148 /// => 6149 /// \code 6150 /// %ld = load i32* %addr 6151 /// %zext = zext i32 %ld to i64 6152 /// %add = add nuw i64 %zext, 4 6153 /// \encode 6154 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6155 /// allow us to match zext(load i32*) to i64. 6156 /// 6157 /// Also, try to promote the computations used to obtain a sign extended 6158 /// value used into memory accesses. 6159 /// E.g., 6160 /// \code 6161 /// a = add nsw i32 b, 3 6162 /// d = sext i32 a to i64 6163 /// e = getelementptr ..., i64 d 6164 /// \endcode 6165 /// => 6166 /// \code 6167 /// f = sext i32 b to i64 6168 /// a = add nsw i64 f, 3 6169 /// e = getelementptr ..., i64 a 6170 /// \endcode 6171 /// 6172 /// \p Inst[in/out] the extension may be modified during the process if some 6173 /// promotions apply. 6174 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6175 bool AllowPromotionWithoutCommonHeader = false; 6176 /// See if it is an interesting sext operations for the address type 6177 /// promotion before trying to promote it, e.g., the ones with the right 6178 /// type and used in memory accesses. 6179 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6180 *Inst, AllowPromotionWithoutCommonHeader); 6181 TypePromotionTransaction TPT(RemovedInsts); 6182 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6183 TPT.getRestorationPoint(); 6184 SmallVector<Instruction *, 1> Exts; 6185 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6186 Exts.push_back(Inst); 6187 6188 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6189 6190 // Look for a load being extended. 6191 LoadInst *LI = nullptr; 6192 Instruction *ExtFedByLoad; 6193 6194 // Try to promote a chain of computation if it allows to form an extended 6195 // load. 6196 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6197 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6198 TPT.commit(); 6199 // Move the extend into the same block as the load. 6200 ExtFedByLoad->moveAfter(LI); 6201 ++NumExtsMoved; 6202 Inst = ExtFedByLoad; 6203 return true; 6204 } 6205 6206 // Continue promoting SExts if known as considerable depending on targets. 6207 if (ATPConsiderable && 6208 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6209 HasPromoted, TPT, SpeculativelyMovedExts)) 6210 return true; 6211 6212 TPT.rollback(LastKnownGood); 6213 return false; 6214 } 6215 6216 // Perform address type promotion if doing so is profitable. 6217 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6218 // instructions that sign extended the same initial value. However, if 6219 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6220 // extension is just profitable. 6221 bool CodeGenPrepare::performAddressTypePromotion( 6222 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6223 bool HasPromoted, TypePromotionTransaction &TPT, 6224 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6225 bool Promoted = false; 6226 SmallPtrSet<Instruction *, 1> UnhandledExts; 6227 bool AllSeenFirst = true; 6228 for (auto *I : SpeculativelyMovedExts) { 6229 Value *HeadOfChain = I->getOperand(0); 6230 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6231 SeenChainsForSExt.find(HeadOfChain); 6232 // If there is an unhandled SExt which has the same header, try to promote 6233 // it as well. 6234 if (AlreadySeen != SeenChainsForSExt.end()) { 6235 if (AlreadySeen->second != nullptr) 6236 UnhandledExts.insert(AlreadySeen->second); 6237 AllSeenFirst = false; 6238 } 6239 } 6240 6241 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6242 SpeculativelyMovedExts.size() == 1)) { 6243 TPT.commit(); 6244 if (HasPromoted) 6245 Promoted = true; 6246 for (auto *I : SpeculativelyMovedExts) { 6247 Value *HeadOfChain = I->getOperand(0); 6248 SeenChainsForSExt[HeadOfChain] = nullptr; 6249 ValToSExtendedUses[HeadOfChain].push_back(I); 6250 } 6251 // Update Inst as promotion happen. 6252 Inst = SpeculativelyMovedExts.pop_back_val(); 6253 } else { 6254 // This is the first chain visited from the header, keep the current chain 6255 // as unhandled. Defer to promote this until we encounter another SExt 6256 // chain derived from the same header. 6257 for (auto *I : SpeculativelyMovedExts) { 6258 Value *HeadOfChain = I->getOperand(0); 6259 SeenChainsForSExt[HeadOfChain] = Inst; 6260 } 6261 return false; 6262 } 6263 6264 if (!AllSeenFirst && !UnhandledExts.empty()) 6265 for (auto *VisitedSExt : UnhandledExts) { 6266 if (RemovedInsts.count(VisitedSExt)) 6267 continue; 6268 TypePromotionTransaction TPT(RemovedInsts); 6269 SmallVector<Instruction *, 1> Exts; 6270 SmallVector<Instruction *, 2> Chains; 6271 Exts.push_back(VisitedSExt); 6272 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6273 TPT.commit(); 6274 if (HasPromoted) 6275 Promoted = true; 6276 for (auto *I : Chains) { 6277 Value *HeadOfChain = I->getOperand(0); 6278 // Mark this as handled. 6279 SeenChainsForSExt[HeadOfChain] = nullptr; 6280 ValToSExtendedUses[HeadOfChain].push_back(I); 6281 } 6282 } 6283 return Promoted; 6284 } 6285 6286 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6287 BasicBlock *DefBB = I->getParent(); 6288 6289 // If the result of a {s|z}ext and its source are both live out, rewrite all 6290 // other uses of the source with result of extension. 6291 Value *Src = I->getOperand(0); 6292 if (Src->hasOneUse()) 6293 return false; 6294 6295 // Only do this xform if truncating is free. 6296 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6297 return false; 6298 6299 // Only safe to perform the optimization if the source is also defined in 6300 // this block. 6301 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6302 return false; 6303 6304 bool DefIsLiveOut = false; 6305 for (User *U : I->users()) { 6306 Instruction *UI = cast<Instruction>(U); 6307 6308 // Figure out which BB this ext is used in. 6309 BasicBlock *UserBB = UI->getParent(); 6310 if (UserBB == DefBB) continue; 6311 DefIsLiveOut = true; 6312 break; 6313 } 6314 if (!DefIsLiveOut) 6315 return false; 6316 6317 // Make sure none of the uses are PHI nodes. 6318 for (User *U : Src->users()) { 6319 Instruction *UI = cast<Instruction>(U); 6320 BasicBlock *UserBB = UI->getParent(); 6321 if (UserBB == DefBB) continue; 6322 // Be conservative. We don't want this xform to end up introducing 6323 // reloads just before load / store instructions. 6324 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6325 return false; 6326 } 6327 6328 // InsertedTruncs - Only insert one trunc in each block once. 6329 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6330 6331 bool MadeChange = false; 6332 for (Use &U : Src->uses()) { 6333 Instruction *User = cast<Instruction>(U.getUser()); 6334 6335 // Figure out which BB this ext is used in. 6336 BasicBlock *UserBB = User->getParent(); 6337 if (UserBB == DefBB) continue; 6338 6339 // Both src and def are live in this block. Rewrite the use. 6340 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6341 6342 if (!InsertedTrunc) { 6343 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6344 assert(InsertPt != UserBB->end()); 6345 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6346 InsertedInsts.insert(InsertedTrunc); 6347 } 6348 6349 // Replace a use of the {s|z}ext source with a use of the result. 6350 U = InsertedTrunc; 6351 ++NumExtUses; 6352 MadeChange = true; 6353 } 6354 6355 return MadeChange; 6356 } 6357 6358 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6359 // just after the load if the target can fold this into one extload instruction, 6360 // with the hope of eliminating some of the other later "and" instructions using 6361 // the loaded value. "and"s that are made trivially redundant by the insertion 6362 // of the new "and" are removed by this function, while others (e.g. those whose 6363 // path from the load goes through a phi) are left for isel to potentially 6364 // remove. 6365 // 6366 // For example: 6367 // 6368 // b0: 6369 // x = load i32 6370 // ... 6371 // b1: 6372 // y = and x, 0xff 6373 // z = use y 6374 // 6375 // becomes: 6376 // 6377 // b0: 6378 // x = load i32 6379 // x' = and x, 0xff 6380 // ... 6381 // b1: 6382 // z = use x' 6383 // 6384 // whereas: 6385 // 6386 // b0: 6387 // x1 = load i32 6388 // ... 6389 // b1: 6390 // x2 = load i32 6391 // ... 6392 // b2: 6393 // x = phi x1, x2 6394 // y = and x, 0xff 6395 // 6396 // becomes (after a call to optimizeLoadExt for each load): 6397 // 6398 // b0: 6399 // x1 = load i32 6400 // x1' = and x1, 0xff 6401 // ... 6402 // b1: 6403 // x2 = load i32 6404 // x2' = and x2, 0xff 6405 // ... 6406 // b2: 6407 // x = phi x1', x2' 6408 // y = and x, 0xff 6409 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6410 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6411 return false; 6412 6413 // Skip loads we've already transformed. 6414 if (Load->hasOneUse() && 6415 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6416 return false; 6417 6418 // Look at all uses of Load, looking through phis, to determine how many bits 6419 // of the loaded value are needed. 6420 SmallVector<Instruction *, 8> WorkList; 6421 SmallPtrSet<Instruction *, 16> Visited; 6422 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6423 for (auto *U : Load->users()) 6424 WorkList.push_back(cast<Instruction>(U)); 6425 6426 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6427 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6428 APInt DemandBits(BitWidth, 0); 6429 APInt WidestAndBits(BitWidth, 0); 6430 6431 while (!WorkList.empty()) { 6432 Instruction *I = WorkList.back(); 6433 WorkList.pop_back(); 6434 6435 // Break use-def graph loops. 6436 if (!Visited.insert(I).second) 6437 continue; 6438 6439 // For a PHI node, push all of its users. 6440 if (auto *Phi = dyn_cast<PHINode>(I)) { 6441 for (auto *U : Phi->users()) 6442 WorkList.push_back(cast<Instruction>(U)); 6443 continue; 6444 } 6445 6446 switch (I->getOpcode()) { 6447 case Instruction::And: { 6448 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6449 if (!AndC) 6450 return false; 6451 APInt AndBits = AndC->getValue(); 6452 DemandBits |= AndBits; 6453 // Keep track of the widest and mask we see. 6454 if (AndBits.ugt(WidestAndBits)) 6455 WidestAndBits = AndBits; 6456 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6457 AndsToMaybeRemove.push_back(I); 6458 break; 6459 } 6460 6461 case Instruction::Shl: { 6462 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6463 if (!ShlC) 6464 return false; 6465 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6466 DemandBits.setLowBits(BitWidth - ShiftAmt); 6467 break; 6468 } 6469 6470 case Instruction::Trunc: { 6471 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6472 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6473 DemandBits.setLowBits(TruncBitWidth); 6474 break; 6475 } 6476 6477 default: 6478 return false; 6479 } 6480 } 6481 6482 uint32_t ActiveBits = DemandBits.getActiveBits(); 6483 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6484 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6485 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6486 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6487 // followed by an AND. 6488 // TODO: Look into removing this restriction by fixing backends to either 6489 // return false for isLoadExtLegal for i1 or have them select this pattern to 6490 // a single instruction. 6491 // 6492 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6493 // mask, since these are the only ands that will be removed by isel. 6494 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6495 WidestAndBits != DemandBits) 6496 return false; 6497 6498 LLVMContext &Ctx = Load->getType()->getContext(); 6499 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6500 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6501 6502 // Reject cases that won't be matched as extloads. 6503 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6504 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6505 return false; 6506 6507 IRBuilder<> Builder(Load->getNextNode()); 6508 auto *NewAnd = cast<Instruction>( 6509 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6510 // Mark this instruction as "inserted by CGP", so that other 6511 // optimizations don't touch it. 6512 InsertedInsts.insert(NewAnd); 6513 6514 // Replace all uses of load with new and (except for the use of load in the 6515 // new and itself). 6516 Load->replaceAllUsesWith(NewAnd); 6517 NewAnd->setOperand(0, Load); 6518 6519 // Remove any and instructions that are now redundant. 6520 for (auto *And : AndsToMaybeRemove) 6521 // Check that the and mask is the same as the one we decided to put on the 6522 // new and. 6523 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6524 And->replaceAllUsesWith(NewAnd); 6525 if (&*CurInstIterator == And) 6526 CurInstIterator = std::next(And->getIterator()); 6527 And->eraseFromParent(); 6528 ++NumAndUses; 6529 } 6530 6531 ++NumAndsAdded; 6532 return true; 6533 } 6534 6535 /// Check if V (an operand of a select instruction) is an expensive instruction 6536 /// that is only used once. 6537 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6538 auto *I = dyn_cast<Instruction>(V); 6539 // If it's safe to speculatively execute, then it should not have side 6540 // effects; therefore, it's safe to sink and possibly *not* execute. 6541 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6542 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6543 TargetTransformInfo::TCC_Expensive; 6544 } 6545 6546 /// Returns true if a SelectInst should be turned into an explicit branch. 6547 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6548 const TargetLowering *TLI, 6549 SelectInst *SI) { 6550 // If even a predictable select is cheap, then a branch can't be cheaper. 6551 if (!TLI->isPredictableSelectExpensive()) 6552 return false; 6553 6554 // FIXME: This should use the same heuristics as IfConversion to determine 6555 // whether a select is better represented as a branch. 6556 6557 // If metadata tells us that the select condition is obviously predictable, 6558 // then we want to replace the select with a branch. 6559 uint64_t TrueWeight, FalseWeight; 6560 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6561 uint64_t Max = std::max(TrueWeight, FalseWeight); 6562 uint64_t Sum = TrueWeight + FalseWeight; 6563 if (Sum != 0) { 6564 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6565 if (Probability > TLI->getPredictableBranchThreshold()) 6566 return true; 6567 } 6568 } 6569 6570 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6571 6572 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6573 // comparison condition. If the compare has more than one use, there's 6574 // probably another cmov or setcc around, so it's not worth emitting a branch. 6575 if (!Cmp || !Cmp->hasOneUse()) 6576 return false; 6577 6578 // If either operand of the select is expensive and only needed on one side 6579 // of the select, we should form a branch. 6580 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6581 sinkSelectOperand(TTI, SI->getFalseValue())) 6582 return true; 6583 6584 return false; 6585 } 6586 6587 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6588 /// false value of \p SI. If the true/false value of \p SI is defined by any 6589 /// select instructions in \p Selects, look through the defining select 6590 /// instruction until the true/false value is not defined in \p Selects. 6591 static Value *getTrueOrFalseValue( 6592 SelectInst *SI, bool isTrue, 6593 const SmallPtrSet<const Instruction *, 2> &Selects) { 6594 Value *V = nullptr; 6595 6596 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6597 DefSI = dyn_cast<SelectInst>(V)) { 6598 assert(DefSI->getCondition() == SI->getCondition() && 6599 "The condition of DefSI does not match with SI"); 6600 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6601 } 6602 6603 assert(V && "Failed to get select true/false value"); 6604 return V; 6605 } 6606 6607 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6608 assert(Shift->isShift() && "Expected a shift"); 6609 6610 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6611 // general vector shifts, and (3) the shift amount is a select-of-splatted 6612 // values, hoist the shifts before the select: 6613 // shift Op0, (select Cond, TVal, FVal) --> 6614 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6615 // 6616 // This is inverting a generic IR transform when we know that the cost of a 6617 // general vector shift is more than the cost of 2 shift-by-scalars. 6618 // We can't do this effectively in SDAG because we may not be able to 6619 // determine if the select operands are splats from within a basic block. 6620 Type *Ty = Shift->getType(); 6621 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6622 return false; 6623 Value *Cond, *TVal, *FVal; 6624 if (!match(Shift->getOperand(1), 6625 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6626 return false; 6627 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6628 return false; 6629 6630 IRBuilder<> Builder(Shift); 6631 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6632 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6633 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6634 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6635 Shift->replaceAllUsesWith(NewSel); 6636 Shift->eraseFromParent(); 6637 return true; 6638 } 6639 6640 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6641 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6642 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6643 "Expected a funnel shift"); 6644 6645 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6646 // than general vector shifts, and (3) the shift amount is select-of-splatted 6647 // values, hoist the funnel shifts before the select: 6648 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6649 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6650 // 6651 // This is inverting a generic IR transform when we know that the cost of a 6652 // general vector shift is more than the cost of 2 shift-by-scalars. 6653 // We can't do this effectively in SDAG because we may not be able to 6654 // determine if the select operands are splats from within a basic block. 6655 Type *Ty = Fsh->getType(); 6656 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6657 return false; 6658 Value *Cond, *TVal, *FVal; 6659 if (!match(Fsh->getOperand(2), 6660 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6661 return false; 6662 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6663 return false; 6664 6665 IRBuilder<> Builder(Fsh); 6666 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6667 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6668 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6669 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6670 Fsh->replaceAllUsesWith(NewSel); 6671 Fsh->eraseFromParent(); 6672 return true; 6673 } 6674 6675 /// If we have a SelectInst that will likely profit from branch prediction, 6676 /// turn it into a branch. 6677 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6678 if (DisableSelectToBranch) 6679 return false; 6680 6681 // Find all consecutive select instructions that share the same condition. 6682 SmallVector<SelectInst *, 2> ASI; 6683 ASI.push_back(SI); 6684 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6685 It != SI->getParent()->end(); ++It) { 6686 SelectInst *I = dyn_cast<SelectInst>(&*It); 6687 if (I && SI->getCondition() == I->getCondition()) { 6688 ASI.push_back(I); 6689 } else { 6690 break; 6691 } 6692 } 6693 6694 SelectInst *LastSI = ASI.back(); 6695 // Increment the current iterator to skip all the rest of select instructions 6696 // because they will be either "not lowered" or "all lowered" to branch. 6697 CurInstIterator = std::next(LastSI->getIterator()); 6698 6699 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6700 6701 // Can we convert the 'select' to CF ? 6702 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6703 return false; 6704 6705 TargetLowering::SelectSupportKind SelectKind; 6706 if (VectorCond) 6707 SelectKind = TargetLowering::VectorMaskSelect; 6708 else if (SI->getType()->isVectorTy()) 6709 SelectKind = TargetLowering::ScalarCondVectorVal; 6710 else 6711 SelectKind = TargetLowering::ScalarValSelect; 6712 6713 if (TLI->isSelectSupported(SelectKind) && 6714 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6715 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6716 return false; 6717 6718 // The DominatorTree needs to be rebuilt by any consumers after this 6719 // transformation. We simply reset here rather than setting the ModifiedDT 6720 // flag to avoid restarting the function walk in runOnFunction for each 6721 // select optimized. 6722 DT.reset(); 6723 6724 // Transform a sequence like this: 6725 // start: 6726 // %cmp = cmp uge i32 %a, %b 6727 // %sel = select i1 %cmp, i32 %c, i32 %d 6728 // 6729 // Into: 6730 // start: 6731 // %cmp = cmp uge i32 %a, %b 6732 // %cmp.frozen = freeze %cmp 6733 // br i1 %cmp.frozen, label %select.true, label %select.false 6734 // select.true: 6735 // br label %select.end 6736 // select.false: 6737 // br label %select.end 6738 // select.end: 6739 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6740 // 6741 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6742 // In addition, we may sink instructions that produce %c or %d from 6743 // the entry block into the destination(s) of the new branch. 6744 // If the true or false blocks do not contain a sunken instruction, that 6745 // block and its branch may be optimized away. In that case, one side of the 6746 // first branch will point directly to select.end, and the corresponding PHI 6747 // predecessor block will be the start block. 6748 6749 // First, we split the block containing the select into 2 blocks. 6750 BasicBlock *StartBlock = SI->getParent(); 6751 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6752 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6753 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6754 6755 // Delete the unconditional branch that was just created by the split. 6756 StartBlock->getTerminator()->eraseFromParent(); 6757 6758 // These are the new basic blocks for the conditional branch. 6759 // At least one will become an actual new basic block. 6760 BasicBlock *TrueBlock = nullptr; 6761 BasicBlock *FalseBlock = nullptr; 6762 BranchInst *TrueBranch = nullptr; 6763 BranchInst *FalseBranch = nullptr; 6764 6765 // Sink expensive instructions into the conditional blocks to avoid executing 6766 // them speculatively. 6767 for (SelectInst *SI : ASI) { 6768 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6769 if (TrueBlock == nullptr) { 6770 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6771 EndBlock->getParent(), EndBlock); 6772 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6773 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6774 } 6775 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6776 TrueInst->moveBefore(TrueBranch); 6777 } 6778 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6779 if (FalseBlock == nullptr) { 6780 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6781 EndBlock->getParent(), EndBlock); 6782 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6783 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6784 } 6785 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6786 FalseInst->moveBefore(FalseBranch); 6787 } 6788 } 6789 6790 // If there was nothing to sink, then arbitrarily choose the 'false' side 6791 // for a new input value to the PHI. 6792 if (TrueBlock == FalseBlock) { 6793 assert(TrueBlock == nullptr && 6794 "Unexpected basic block transform while optimizing select"); 6795 6796 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6797 EndBlock->getParent(), EndBlock); 6798 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6799 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6800 } 6801 6802 // Insert the real conditional branch based on the original condition. 6803 // If we did not create a new block for one of the 'true' or 'false' paths 6804 // of the condition, it means that side of the branch goes to the end block 6805 // directly and the path originates from the start block from the point of 6806 // view of the new PHI. 6807 BasicBlock *TT, *FT; 6808 if (TrueBlock == nullptr) { 6809 TT = EndBlock; 6810 FT = FalseBlock; 6811 TrueBlock = StartBlock; 6812 } else if (FalseBlock == nullptr) { 6813 TT = TrueBlock; 6814 FT = EndBlock; 6815 FalseBlock = StartBlock; 6816 } else { 6817 TT = TrueBlock; 6818 FT = FalseBlock; 6819 } 6820 IRBuilder<> IB(SI); 6821 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6822 IB.CreateCondBr(CondFr, TT, FT, SI); 6823 6824 SmallPtrSet<const Instruction *, 2> INS; 6825 INS.insert(ASI.begin(), ASI.end()); 6826 // Use reverse iterator because later select may use the value of the 6827 // earlier select, and we need to propagate value through earlier select 6828 // to get the PHI operand. 6829 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6830 SelectInst *SI = *It; 6831 // The select itself is replaced with a PHI Node. 6832 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6833 PN->takeName(SI); 6834 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6835 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6836 PN->setDebugLoc(SI->getDebugLoc()); 6837 6838 SI->replaceAllUsesWith(PN); 6839 SI->eraseFromParent(); 6840 INS.erase(SI); 6841 ++NumSelectsExpanded; 6842 } 6843 6844 // Instruct OptimizeBlock to skip to the next block. 6845 CurInstIterator = StartBlock->end(); 6846 return true; 6847 } 6848 6849 /// Some targets only accept certain types for splat inputs. For example a VDUP 6850 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6851 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6852 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6853 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6854 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6855 m_Undef(), m_ZeroMask()))) 6856 return false; 6857 Type *NewType = TLI->shouldConvertSplatType(SVI); 6858 if (!NewType) 6859 return false; 6860 6861 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6862 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6863 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6864 "Expected a type of the same size!"); 6865 auto *NewVecType = 6866 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6867 6868 // Create a bitcast (shuffle (insert (bitcast(..)))) 6869 IRBuilder<> Builder(SVI->getContext()); 6870 Builder.SetInsertPoint(SVI); 6871 Value *BC1 = Builder.CreateBitCast( 6872 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6873 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6874 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6875 6876 SVI->replaceAllUsesWith(BC2); 6877 RecursivelyDeleteTriviallyDeadInstructions( 6878 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6879 6880 // Also hoist the bitcast up to its operand if it they are not in the same 6881 // block. 6882 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6883 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6884 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6885 !Op->isTerminator() && !Op->isEHPad()) 6886 BCI->moveAfter(Op); 6887 6888 return true; 6889 } 6890 6891 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6892 // If the operands of I can be folded into a target instruction together with 6893 // I, duplicate and sink them. 6894 SmallVector<Use *, 4> OpsToSink; 6895 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6896 return false; 6897 6898 // OpsToSink can contain multiple uses in a use chain (e.g. 6899 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6900 // uses must come first, so we process the ops in reverse order so as to not 6901 // create invalid IR. 6902 BasicBlock *TargetBB = I->getParent(); 6903 bool Changed = false; 6904 SmallVector<Use *, 4> ToReplace; 6905 for (Use *U : reverse(OpsToSink)) { 6906 auto *UI = cast<Instruction>(U->get()); 6907 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6908 continue; 6909 ToReplace.push_back(U); 6910 } 6911 6912 SetVector<Instruction *> MaybeDead; 6913 DenseMap<Instruction *, Instruction *> NewInstructions; 6914 Instruction *InsertPoint = I; 6915 for (Use *U : ToReplace) { 6916 auto *UI = cast<Instruction>(U->get()); 6917 Instruction *NI = UI->clone(); 6918 NewInstructions[UI] = NI; 6919 MaybeDead.insert(UI); 6920 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6921 NI->insertBefore(InsertPoint); 6922 InsertPoint = NI; 6923 InsertedInsts.insert(NI); 6924 6925 // Update the use for the new instruction, making sure that we update the 6926 // sunk instruction uses, if it is part of a chain that has already been 6927 // sunk. 6928 Instruction *OldI = cast<Instruction>(U->getUser()); 6929 if (NewInstructions.count(OldI)) 6930 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6931 else 6932 U->set(NI); 6933 Changed = true; 6934 } 6935 6936 // Remove instructions that are dead after sinking. 6937 for (auto *I : MaybeDead) { 6938 if (!I->hasNUsesOrMore(1)) { 6939 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6940 I->eraseFromParent(); 6941 } 6942 } 6943 6944 return Changed; 6945 } 6946 6947 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6948 Value *Cond = SI->getCondition(); 6949 Type *OldType = Cond->getType(); 6950 LLVMContext &Context = Cond->getContext(); 6951 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6952 unsigned RegWidth = RegType.getSizeInBits(); 6953 6954 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6955 return false; 6956 6957 // If the register width is greater than the type width, expand the condition 6958 // of the switch instruction and each case constant to the width of the 6959 // register. By widening the type of the switch condition, subsequent 6960 // comparisons (for case comparisons) will not need to be extended to the 6961 // preferred register width, so we will potentially eliminate N-1 extends, 6962 // where N is the number of cases in the switch. 6963 auto *NewType = Type::getIntNTy(Context, RegWidth); 6964 6965 // Zero-extend the switch condition and case constants unless the switch 6966 // condition is a function argument that is already being sign-extended. 6967 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6968 // everything instead. 6969 Instruction::CastOps ExtType = Instruction::ZExt; 6970 if (auto *Arg = dyn_cast<Argument>(Cond)) 6971 if (Arg->hasSExtAttr()) 6972 ExtType = Instruction::SExt; 6973 6974 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6975 ExtInst->insertBefore(SI); 6976 ExtInst->setDebugLoc(SI->getDebugLoc()); 6977 SI->setCondition(ExtInst); 6978 for (auto Case : SI->cases()) { 6979 APInt NarrowConst = Case.getCaseValue()->getValue(); 6980 APInt WideConst = (ExtType == Instruction::ZExt) ? 6981 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6982 Case.setValue(ConstantInt::get(Context, WideConst)); 6983 } 6984 6985 return true; 6986 } 6987 6988 6989 namespace { 6990 6991 /// Helper class to promote a scalar operation to a vector one. 6992 /// This class is used to move downward extractelement transition. 6993 /// E.g., 6994 /// a = vector_op <2 x i32> 6995 /// b = extractelement <2 x i32> a, i32 0 6996 /// c = scalar_op b 6997 /// store c 6998 /// 6999 /// => 7000 /// a = vector_op <2 x i32> 7001 /// c = vector_op a (equivalent to scalar_op on the related lane) 7002 /// * d = extractelement <2 x i32> c, i32 0 7003 /// * store d 7004 /// Assuming both extractelement and store can be combine, we get rid of the 7005 /// transition. 7006 class VectorPromoteHelper { 7007 /// DataLayout associated with the current module. 7008 const DataLayout &DL; 7009 7010 /// Used to perform some checks on the legality of vector operations. 7011 const TargetLowering &TLI; 7012 7013 /// Used to estimated the cost of the promoted chain. 7014 const TargetTransformInfo &TTI; 7015 7016 /// The transition being moved downwards. 7017 Instruction *Transition; 7018 7019 /// The sequence of instructions to be promoted. 7020 SmallVector<Instruction *, 4> InstsToBePromoted; 7021 7022 /// Cost of combining a store and an extract. 7023 unsigned StoreExtractCombineCost; 7024 7025 /// Instruction that will be combined with the transition. 7026 Instruction *CombineInst = nullptr; 7027 7028 /// The instruction that represents the current end of the transition. 7029 /// Since we are faking the promotion until we reach the end of the chain 7030 /// of computation, we need a way to get the current end of the transition. 7031 Instruction *getEndOfTransition() const { 7032 if (InstsToBePromoted.empty()) 7033 return Transition; 7034 return InstsToBePromoted.back(); 7035 } 7036 7037 /// Return the index of the original value in the transition. 7038 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7039 /// c, is at index 0. 7040 unsigned getTransitionOriginalValueIdx() const { 7041 assert(isa<ExtractElementInst>(Transition) && 7042 "Other kind of transitions are not supported yet"); 7043 return 0; 7044 } 7045 7046 /// Return the index of the index in the transition. 7047 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7048 /// is at index 1. 7049 unsigned getTransitionIdx() const { 7050 assert(isa<ExtractElementInst>(Transition) && 7051 "Other kind of transitions are not supported yet"); 7052 return 1; 7053 } 7054 7055 /// Get the type of the transition. 7056 /// This is the type of the original value. 7057 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7058 /// transition is <2 x i32>. 7059 Type *getTransitionType() const { 7060 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7061 } 7062 7063 /// Promote \p ToBePromoted by moving \p Def downward through. 7064 /// I.e., we have the following sequence: 7065 /// Def = Transition <ty1> a to <ty2> 7066 /// b = ToBePromoted <ty2> Def, ... 7067 /// => 7068 /// b = ToBePromoted <ty1> a, ... 7069 /// Def = Transition <ty1> ToBePromoted to <ty2> 7070 void promoteImpl(Instruction *ToBePromoted); 7071 7072 /// Check whether or not it is profitable to promote all the 7073 /// instructions enqueued to be promoted. 7074 bool isProfitableToPromote() { 7075 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7076 unsigned Index = isa<ConstantInt>(ValIdx) 7077 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7078 : -1; 7079 Type *PromotedType = getTransitionType(); 7080 7081 StoreInst *ST = cast<StoreInst>(CombineInst); 7082 unsigned AS = ST->getPointerAddressSpace(); 7083 // Check if this store is supported. 7084 if (!TLI.allowsMisalignedMemoryAccesses( 7085 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7086 ST->getAlign())) { 7087 // If this is not supported, there is no way we can combine 7088 // the extract with the store. 7089 return false; 7090 } 7091 7092 // The scalar chain of computation has to pay for the transition 7093 // scalar to vector. 7094 // The vector chain has to account for the combining cost. 7095 InstructionCost ScalarCost = 7096 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7097 InstructionCost VectorCost = StoreExtractCombineCost; 7098 enum TargetTransformInfo::TargetCostKind CostKind = 7099 TargetTransformInfo::TCK_RecipThroughput; 7100 for (const auto &Inst : InstsToBePromoted) { 7101 // Compute the cost. 7102 // By construction, all instructions being promoted are arithmetic ones. 7103 // Moreover, one argument is a constant that can be viewed as a splat 7104 // constant. 7105 Value *Arg0 = Inst->getOperand(0); 7106 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7107 isa<ConstantFP>(Arg0); 7108 TargetTransformInfo::OperandValueKind Arg0OVK = 7109 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7110 : TargetTransformInfo::OK_AnyValue; 7111 TargetTransformInfo::OperandValueKind Arg1OVK = 7112 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7113 : TargetTransformInfo::OK_AnyValue; 7114 ScalarCost += TTI.getArithmeticInstrCost( 7115 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7116 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7117 CostKind, 7118 Arg0OVK, Arg1OVK); 7119 } 7120 LLVM_DEBUG( 7121 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7122 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7123 return ScalarCost > VectorCost; 7124 } 7125 7126 /// Generate a constant vector with \p Val with the same 7127 /// number of elements as the transition. 7128 /// \p UseSplat defines whether or not \p Val should be replicated 7129 /// across the whole vector. 7130 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7131 /// otherwise we generate a vector with as many undef as possible: 7132 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7133 /// used at the index of the extract. 7134 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7135 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7136 if (!UseSplat) { 7137 // If we cannot determine where the constant must be, we have to 7138 // use a splat constant. 7139 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7140 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7141 ExtractIdx = CstVal->getSExtValue(); 7142 else 7143 UseSplat = true; 7144 } 7145 7146 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7147 if (UseSplat) 7148 return ConstantVector::getSplat(EC, Val); 7149 7150 if (!EC.isScalable()) { 7151 SmallVector<Constant *, 4> ConstVec; 7152 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7153 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7154 if (Idx == ExtractIdx) 7155 ConstVec.push_back(Val); 7156 else 7157 ConstVec.push_back(UndefVal); 7158 } 7159 return ConstantVector::get(ConstVec); 7160 } else 7161 llvm_unreachable( 7162 "Generate scalable vector for non-splat is unimplemented"); 7163 } 7164 7165 /// Check if promoting to a vector type an operand at \p OperandIdx 7166 /// in \p Use can trigger undefined behavior. 7167 static bool canCauseUndefinedBehavior(const Instruction *Use, 7168 unsigned OperandIdx) { 7169 // This is not safe to introduce undef when the operand is on 7170 // the right hand side of a division-like instruction. 7171 if (OperandIdx != 1) 7172 return false; 7173 switch (Use->getOpcode()) { 7174 default: 7175 return false; 7176 case Instruction::SDiv: 7177 case Instruction::UDiv: 7178 case Instruction::SRem: 7179 case Instruction::URem: 7180 return true; 7181 case Instruction::FDiv: 7182 case Instruction::FRem: 7183 return !Use->hasNoNaNs(); 7184 } 7185 llvm_unreachable(nullptr); 7186 } 7187 7188 public: 7189 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7190 const TargetTransformInfo &TTI, Instruction *Transition, 7191 unsigned CombineCost) 7192 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7193 StoreExtractCombineCost(CombineCost) { 7194 assert(Transition && "Do not know how to promote null"); 7195 } 7196 7197 /// Check if we can promote \p ToBePromoted to \p Type. 7198 bool canPromote(const Instruction *ToBePromoted) const { 7199 // We could support CastInst too. 7200 return isa<BinaryOperator>(ToBePromoted); 7201 } 7202 7203 /// Check if it is profitable to promote \p ToBePromoted 7204 /// by moving downward the transition through. 7205 bool shouldPromote(const Instruction *ToBePromoted) const { 7206 // Promote only if all the operands can be statically expanded. 7207 // Indeed, we do not want to introduce any new kind of transitions. 7208 for (const Use &U : ToBePromoted->operands()) { 7209 const Value *Val = U.get(); 7210 if (Val == getEndOfTransition()) { 7211 // If the use is a division and the transition is on the rhs, 7212 // we cannot promote the operation, otherwise we may create a 7213 // division by zero. 7214 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7215 return false; 7216 continue; 7217 } 7218 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7219 !isa<ConstantFP>(Val)) 7220 return false; 7221 } 7222 // Check that the resulting operation is legal. 7223 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7224 if (!ISDOpcode) 7225 return false; 7226 return StressStoreExtract || 7227 TLI.isOperationLegalOrCustom( 7228 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7229 } 7230 7231 /// Check whether or not \p Use can be combined 7232 /// with the transition. 7233 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7234 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7235 7236 /// Record \p ToBePromoted as part of the chain to be promoted. 7237 void enqueueForPromotion(Instruction *ToBePromoted) { 7238 InstsToBePromoted.push_back(ToBePromoted); 7239 } 7240 7241 /// Set the instruction that will be combined with the transition. 7242 void recordCombineInstruction(Instruction *ToBeCombined) { 7243 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7244 CombineInst = ToBeCombined; 7245 } 7246 7247 /// Promote all the instructions enqueued for promotion if it is 7248 /// is profitable. 7249 /// \return True if the promotion happened, false otherwise. 7250 bool promote() { 7251 // Check if there is something to promote. 7252 // Right now, if we do not have anything to combine with, 7253 // we assume the promotion is not profitable. 7254 if (InstsToBePromoted.empty() || !CombineInst) 7255 return false; 7256 7257 // Check cost. 7258 if (!StressStoreExtract && !isProfitableToPromote()) 7259 return false; 7260 7261 // Promote. 7262 for (auto &ToBePromoted : InstsToBePromoted) 7263 promoteImpl(ToBePromoted); 7264 InstsToBePromoted.clear(); 7265 return true; 7266 } 7267 }; 7268 7269 } // end anonymous namespace 7270 7271 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7272 // At this point, we know that all the operands of ToBePromoted but Def 7273 // can be statically promoted. 7274 // For Def, we need to use its parameter in ToBePromoted: 7275 // b = ToBePromoted ty1 a 7276 // Def = Transition ty1 b to ty2 7277 // Move the transition down. 7278 // 1. Replace all uses of the promoted operation by the transition. 7279 // = ... b => = ... Def. 7280 assert(ToBePromoted->getType() == Transition->getType() && 7281 "The type of the result of the transition does not match " 7282 "the final type"); 7283 ToBePromoted->replaceAllUsesWith(Transition); 7284 // 2. Update the type of the uses. 7285 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7286 Type *TransitionTy = getTransitionType(); 7287 ToBePromoted->mutateType(TransitionTy); 7288 // 3. Update all the operands of the promoted operation with promoted 7289 // operands. 7290 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7291 for (Use &U : ToBePromoted->operands()) { 7292 Value *Val = U.get(); 7293 Value *NewVal = nullptr; 7294 if (Val == Transition) 7295 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7296 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7297 isa<ConstantFP>(Val)) { 7298 // Use a splat constant if it is not safe to use undef. 7299 NewVal = getConstantVector( 7300 cast<Constant>(Val), 7301 isa<UndefValue>(Val) || 7302 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7303 } else 7304 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7305 "this?"); 7306 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7307 } 7308 Transition->moveAfter(ToBePromoted); 7309 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7310 } 7311 7312 /// Some targets can do store(extractelement) with one instruction. 7313 /// Try to push the extractelement towards the stores when the target 7314 /// has this feature and this is profitable. 7315 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7316 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7317 if (DisableStoreExtract || 7318 (!StressStoreExtract && 7319 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7320 Inst->getOperand(1), CombineCost))) 7321 return false; 7322 7323 // At this point we know that Inst is a vector to scalar transition. 7324 // Try to move it down the def-use chain, until: 7325 // - We can combine the transition with its single use 7326 // => we got rid of the transition. 7327 // - We escape the current basic block 7328 // => we would need to check that we are moving it at a cheaper place and 7329 // we do not do that for now. 7330 BasicBlock *Parent = Inst->getParent(); 7331 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7332 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7333 // If the transition has more than one use, assume this is not going to be 7334 // beneficial. 7335 while (Inst->hasOneUse()) { 7336 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7337 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7338 7339 if (ToBePromoted->getParent() != Parent) { 7340 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7341 << ToBePromoted->getParent()->getName() 7342 << ") than the transition (" << Parent->getName() 7343 << ").\n"); 7344 return false; 7345 } 7346 7347 if (VPH.canCombine(ToBePromoted)) { 7348 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7349 << "will be combined with: " << *ToBePromoted << '\n'); 7350 VPH.recordCombineInstruction(ToBePromoted); 7351 bool Changed = VPH.promote(); 7352 NumStoreExtractExposed += Changed; 7353 return Changed; 7354 } 7355 7356 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7357 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7358 return false; 7359 7360 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7361 7362 VPH.enqueueForPromotion(ToBePromoted); 7363 Inst = ToBePromoted; 7364 } 7365 return false; 7366 } 7367 7368 /// For the instruction sequence of store below, F and I values 7369 /// are bundled together as an i64 value before being stored into memory. 7370 /// Sometimes it is more efficient to generate separate stores for F and I, 7371 /// which can remove the bitwise instructions or sink them to colder places. 7372 /// 7373 /// (store (or (zext (bitcast F to i32) to i64), 7374 /// (shl (zext I to i64), 32)), addr) --> 7375 /// (store F, addr) and (store I, addr+4) 7376 /// 7377 /// Similarly, splitting for other merged store can also be beneficial, like: 7378 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7379 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7380 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7381 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7382 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7383 /// 7384 /// We allow each target to determine specifically which kind of splitting is 7385 /// supported. 7386 /// 7387 /// The store patterns are commonly seen from the simple code snippet below 7388 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7389 /// void goo(const std::pair<int, float> &); 7390 /// hoo() { 7391 /// ... 7392 /// goo(std::make_pair(tmp, ftmp)); 7393 /// ... 7394 /// } 7395 /// 7396 /// Although we already have similar splitting in DAG Combine, we duplicate 7397 /// it in CodeGenPrepare to catch the case in which pattern is across 7398 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7399 /// during code expansion. 7400 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7401 const TargetLowering &TLI) { 7402 // Handle simple but common cases only. 7403 Type *StoreType = SI.getValueOperand()->getType(); 7404 7405 // The code below assumes shifting a value by <number of bits>, 7406 // whereas scalable vectors would have to be shifted by 7407 // <2log(vscale) + number of bits> in order to store the 7408 // low/high parts. Bailing out for now. 7409 if (isa<ScalableVectorType>(StoreType)) 7410 return false; 7411 7412 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7413 DL.getTypeSizeInBits(StoreType) == 0) 7414 return false; 7415 7416 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7417 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7418 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7419 return false; 7420 7421 // Don't split the store if it is volatile. 7422 if (SI.isVolatile()) 7423 return false; 7424 7425 // Match the following patterns: 7426 // (store (or (zext LValue to i64), 7427 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7428 // or 7429 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7430 // (zext LValue to i64), 7431 // Expect both operands of OR and the first operand of SHL have only 7432 // one use. 7433 Value *LValue, *HValue; 7434 if (!match(SI.getValueOperand(), 7435 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7436 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7437 m_SpecificInt(HalfValBitSize)))))) 7438 return false; 7439 7440 // Check LValue and HValue are int with size less or equal than 32. 7441 if (!LValue->getType()->isIntegerTy() || 7442 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7443 !HValue->getType()->isIntegerTy() || 7444 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7445 return false; 7446 7447 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7448 // as the input of target query. 7449 auto *LBC = dyn_cast<BitCastInst>(LValue); 7450 auto *HBC = dyn_cast<BitCastInst>(HValue); 7451 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7452 : EVT::getEVT(LValue->getType()); 7453 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7454 : EVT::getEVT(HValue->getType()); 7455 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7456 return false; 7457 7458 // Start to split store. 7459 IRBuilder<> Builder(SI.getContext()); 7460 Builder.SetInsertPoint(&SI); 7461 7462 // If LValue/HValue is a bitcast in another BB, create a new one in current 7463 // BB so it may be merged with the splitted stores by dag combiner. 7464 if (LBC && LBC->getParent() != SI.getParent()) 7465 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7466 if (HBC && HBC->getParent() != SI.getParent()) 7467 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7468 7469 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7470 auto CreateSplitStore = [&](Value *V, bool Upper) { 7471 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7472 Value *Addr = Builder.CreateBitCast( 7473 SI.getOperand(1), 7474 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7475 Align Alignment = SI.getAlign(); 7476 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7477 if (IsOffsetStore) { 7478 Addr = Builder.CreateGEP( 7479 SplitStoreType, Addr, 7480 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7481 7482 // When splitting the store in half, naturally one half will retain the 7483 // alignment of the original wider store, regardless of whether it was 7484 // over-aligned or not, while the other will require adjustment. 7485 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7486 } 7487 Builder.CreateAlignedStore(V, Addr, Alignment); 7488 }; 7489 7490 CreateSplitStore(LValue, false); 7491 CreateSplitStore(HValue, true); 7492 7493 // Delete the old store. 7494 SI.eraseFromParent(); 7495 return true; 7496 } 7497 7498 // Return true if the GEP has two operands, the first operand is of a sequential 7499 // type, and the second operand is a constant. 7500 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7501 gep_type_iterator I = gep_type_begin(*GEP); 7502 return GEP->getNumOperands() == 2 && 7503 I.isSequential() && 7504 isa<ConstantInt>(GEP->getOperand(1)); 7505 } 7506 7507 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7508 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7509 // reducing liveness interference across those edges benefits global register 7510 // allocation. Currently handles only certain cases. 7511 // 7512 // For example, unmerge %GEPI and %UGEPI as below. 7513 // 7514 // ---------- BEFORE ---------- 7515 // SrcBlock: 7516 // ... 7517 // %GEPIOp = ... 7518 // ... 7519 // %GEPI = gep %GEPIOp, Idx 7520 // ... 7521 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7522 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7523 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7524 // %UGEPI) 7525 // 7526 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7527 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7528 // ... 7529 // 7530 // DstBi: 7531 // ... 7532 // %UGEPI = gep %GEPIOp, UIdx 7533 // ... 7534 // --------------------------- 7535 // 7536 // ---------- AFTER ---------- 7537 // SrcBlock: 7538 // ... (same as above) 7539 // (* %GEPI is still alive on the indirectbr edges) 7540 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7541 // unmerging) 7542 // ... 7543 // 7544 // DstBi: 7545 // ... 7546 // %UGEPI = gep %GEPI, (UIdx-Idx) 7547 // ... 7548 // --------------------------- 7549 // 7550 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7551 // no longer alive on them. 7552 // 7553 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7554 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7555 // not to disable further simplications and optimizations as a result of GEP 7556 // merging. 7557 // 7558 // Note this unmerging may increase the length of the data flow critical path 7559 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7560 // between the register pressure and the length of data-flow critical 7561 // path. Restricting this to the uncommon IndirectBr case would minimize the 7562 // impact of potentially longer critical path, if any, and the impact on compile 7563 // time. 7564 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7565 const TargetTransformInfo *TTI) { 7566 BasicBlock *SrcBlock = GEPI->getParent(); 7567 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7568 // (non-IndirectBr) cases exit early here. 7569 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7570 return false; 7571 // Check that GEPI is a simple gep with a single constant index. 7572 if (!GEPSequentialConstIndexed(GEPI)) 7573 return false; 7574 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7575 // Check that GEPI is a cheap one. 7576 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7577 TargetTransformInfo::TCK_SizeAndLatency) 7578 > TargetTransformInfo::TCC_Basic) 7579 return false; 7580 Value *GEPIOp = GEPI->getOperand(0); 7581 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7582 if (!isa<Instruction>(GEPIOp)) 7583 return false; 7584 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7585 if (GEPIOpI->getParent() != SrcBlock) 7586 return false; 7587 // Check that GEP is used outside the block, meaning it's alive on the 7588 // IndirectBr edge(s). 7589 if (find_if(GEPI->users(), [&](User *Usr) { 7590 if (auto *I = dyn_cast<Instruction>(Usr)) { 7591 if (I->getParent() != SrcBlock) { 7592 return true; 7593 } 7594 } 7595 return false; 7596 }) == GEPI->users().end()) 7597 return false; 7598 // The second elements of the GEP chains to be unmerged. 7599 std::vector<GetElementPtrInst *> UGEPIs; 7600 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7601 // on IndirectBr edges. 7602 for (User *Usr : GEPIOp->users()) { 7603 if (Usr == GEPI) continue; 7604 // Check if Usr is an Instruction. If not, give up. 7605 if (!isa<Instruction>(Usr)) 7606 return false; 7607 auto *UI = cast<Instruction>(Usr); 7608 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7609 if (UI->getParent() == SrcBlock) 7610 continue; 7611 // Check if Usr is a GEP. If not, give up. 7612 if (!isa<GetElementPtrInst>(Usr)) 7613 return false; 7614 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7615 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7616 // the pointer operand to it. If so, record it in the vector. If not, give 7617 // up. 7618 if (!GEPSequentialConstIndexed(UGEPI)) 7619 return false; 7620 if (UGEPI->getOperand(0) != GEPIOp) 7621 return false; 7622 if (GEPIIdx->getType() != 7623 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7624 return false; 7625 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7626 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7627 TargetTransformInfo::TCK_SizeAndLatency) 7628 > TargetTransformInfo::TCC_Basic) 7629 return false; 7630 UGEPIs.push_back(UGEPI); 7631 } 7632 if (UGEPIs.size() == 0) 7633 return false; 7634 // Check the materializing cost of (Uidx-Idx). 7635 for (GetElementPtrInst *UGEPI : UGEPIs) { 7636 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7637 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7638 unsigned ImmCost = 7639 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7640 TargetTransformInfo::TCK_SizeAndLatency); 7641 if (ImmCost > TargetTransformInfo::TCC_Basic) 7642 return false; 7643 } 7644 // Now unmerge between GEPI and UGEPIs. 7645 for (GetElementPtrInst *UGEPI : UGEPIs) { 7646 UGEPI->setOperand(0, GEPI); 7647 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7648 Constant *NewUGEPIIdx = 7649 ConstantInt::get(GEPIIdx->getType(), 7650 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7651 UGEPI->setOperand(1, NewUGEPIIdx); 7652 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7653 // inbounds to avoid UB. 7654 if (!GEPI->isInBounds()) { 7655 UGEPI->setIsInBounds(false); 7656 } 7657 } 7658 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7659 // alive on IndirectBr edges). 7660 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7661 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7662 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7663 return true; 7664 } 7665 7666 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7667 // Bail out if we inserted the instruction to prevent optimizations from 7668 // stepping on each other's toes. 7669 if (InsertedInsts.count(I)) 7670 return false; 7671 7672 // TODO: Move into the switch on opcode below here. 7673 if (PHINode *P = dyn_cast<PHINode>(I)) { 7674 // It is possible for very late stage optimizations (such as SimplifyCFG) 7675 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7676 // trivial PHI, go ahead and zap it here. 7677 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7678 LargeOffsetGEPMap.erase(P); 7679 P->replaceAllUsesWith(V); 7680 P->eraseFromParent(); 7681 ++NumPHIsElim; 7682 return true; 7683 } 7684 return false; 7685 } 7686 7687 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7688 // If the source of the cast is a constant, then this should have 7689 // already been constant folded. The only reason NOT to constant fold 7690 // it is if something (e.g. LSR) was careful to place the constant 7691 // evaluation in a block other than then one that uses it (e.g. to hoist 7692 // the address of globals out of a loop). If this is the case, we don't 7693 // want to forward-subst the cast. 7694 if (isa<Constant>(CI->getOperand(0))) 7695 return false; 7696 7697 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7698 return true; 7699 7700 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7701 /// Sink a zext or sext into its user blocks if the target type doesn't 7702 /// fit in one register 7703 if (TLI->getTypeAction(CI->getContext(), 7704 TLI->getValueType(*DL, CI->getType())) == 7705 TargetLowering::TypeExpandInteger) { 7706 return SinkCast(CI); 7707 } else { 7708 bool MadeChange = optimizeExt(I); 7709 return MadeChange | optimizeExtUses(I); 7710 } 7711 } 7712 return false; 7713 } 7714 7715 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7716 if (optimizeCmp(Cmp, ModifiedDT)) 7717 return true; 7718 7719 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7720 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7721 bool Modified = optimizeLoadExt(LI); 7722 unsigned AS = LI->getPointerAddressSpace(); 7723 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7724 return Modified; 7725 } 7726 7727 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7728 if (splitMergedValStore(*SI, *DL, *TLI)) 7729 return true; 7730 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7731 unsigned AS = SI->getPointerAddressSpace(); 7732 return optimizeMemoryInst(I, SI->getOperand(1), 7733 SI->getOperand(0)->getType(), AS); 7734 } 7735 7736 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7737 unsigned AS = RMW->getPointerAddressSpace(); 7738 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7739 RMW->getType(), AS); 7740 } 7741 7742 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7743 unsigned AS = CmpX->getPointerAddressSpace(); 7744 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7745 CmpX->getCompareOperand()->getType(), AS); 7746 } 7747 7748 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7749 7750 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7751 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7752 7753 // TODO: Move this into the switch on opcode - it handles shifts already. 7754 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7755 BinOp->getOpcode() == Instruction::LShr)) { 7756 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7757 if (CI && TLI->hasExtractBitsInsn()) 7758 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7759 return true; 7760 } 7761 7762 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7763 if (GEPI->hasAllZeroIndices()) { 7764 /// The GEP operand must be a pointer, so must its result -> BitCast 7765 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7766 GEPI->getName(), GEPI); 7767 NC->setDebugLoc(GEPI->getDebugLoc()); 7768 GEPI->replaceAllUsesWith(NC); 7769 GEPI->eraseFromParent(); 7770 ++NumGEPsElim; 7771 optimizeInst(NC, ModifiedDT); 7772 return true; 7773 } 7774 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7775 return true; 7776 } 7777 return false; 7778 } 7779 7780 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7781 // freeze(icmp a, const)) -> icmp (freeze a), const 7782 // This helps generate efficient conditional jumps. 7783 Instruction *CmpI = nullptr; 7784 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7785 CmpI = II; 7786 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7787 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7788 7789 if (CmpI && CmpI->hasOneUse()) { 7790 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7791 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7792 isa<ConstantPointerNull>(Op0); 7793 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7794 isa<ConstantPointerNull>(Op1); 7795 if (Const0 || Const1) { 7796 if (!Const0 || !Const1) { 7797 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7798 F->takeName(FI); 7799 CmpI->setOperand(Const0 ? 1 : 0, F); 7800 } 7801 FI->replaceAllUsesWith(CmpI); 7802 FI->eraseFromParent(); 7803 return true; 7804 } 7805 } 7806 return false; 7807 } 7808 7809 if (tryToSinkFreeOperands(I)) 7810 return true; 7811 7812 switch (I->getOpcode()) { 7813 case Instruction::Shl: 7814 case Instruction::LShr: 7815 case Instruction::AShr: 7816 return optimizeShiftInst(cast<BinaryOperator>(I)); 7817 case Instruction::Call: 7818 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7819 case Instruction::Select: 7820 return optimizeSelectInst(cast<SelectInst>(I)); 7821 case Instruction::ShuffleVector: 7822 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7823 case Instruction::Switch: 7824 return optimizeSwitchInst(cast<SwitchInst>(I)); 7825 case Instruction::ExtractElement: 7826 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7827 } 7828 7829 return false; 7830 } 7831 7832 /// Given an OR instruction, check to see if this is a bitreverse 7833 /// idiom. If so, insert the new intrinsic and return true. 7834 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7835 if (!I.getType()->isIntegerTy() || 7836 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7837 TLI->getValueType(*DL, I.getType(), true))) 7838 return false; 7839 7840 SmallVector<Instruction*, 4> Insts; 7841 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7842 return false; 7843 Instruction *LastInst = Insts.back(); 7844 I.replaceAllUsesWith(LastInst); 7845 RecursivelyDeleteTriviallyDeadInstructions( 7846 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7847 return true; 7848 } 7849 7850 // In this pass we look for GEP and cast instructions that are used 7851 // across basic blocks and rewrite them to improve basic-block-at-a-time 7852 // selection. 7853 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7854 SunkAddrs.clear(); 7855 bool MadeChange = false; 7856 7857 CurInstIterator = BB.begin(); 7858 while (CurInstIterator != BB.end()) { 7859 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7860 if (ModifiedDT) 7861 return true; 7862 } 7863 7864 bool MadeBitReverse = true; 7865 while (MadeBitReverse) { 7866 MadeBitReverse = false; 7867 for (auto &I : reverse(BB)) { 7868 if (makeBitReverse(I)) { 7869 MadeBitReverse = MadeChange = true; 7870 break; 7871 } 7872 } 7873 } 7874 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7875 7876 return MadeChange; 7877 } 7878 7879 // Some CGP optimizations may move or alter what's computed in a block. Check 7880 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7881 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7882 assert(isa<DbgValueInst>(I)); 7883 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7884 7885 // Does this dbg.value refer to a sunk address calculation? 7886 bool AnyChange = false; 7887 for (Value *Location : DVI.getValues()) { 7888 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7889 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7890 if (SunkAddr) { 7891 // Point dbg.value at locally computed address, which should give the best 7892 // opportunity to be accurately lowered. This update may change the type 7893 // of pointer being referred to; however this makes no difference to 7894 // debugging information, and we can't generate bitcasts that may affect 7895 // codegen. 7896 DVI.replaceVariableLocationOp(Location, SunkAddr); 7897 AnyChange = true; 7898 } 7899 } 7900 return AnyChange; 7901 } 7902 7903 // A llvm.dbg.value may be using a value before its definition, due to 7904 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7905 // them by moving the dbg.value to immediately after the value definition. 7906 // FIXME: Ideally this should never be necessary, and this has the potential 7907 // to re-order dbg.value intrinsics. 7908 bool CodeGenPrepare::placeDbgValues(Function &F) { 7909 bool MadeChange = false; 7910 DominatorTree DT(F); 7911 7912 for (BasicBlock &BB : F) { 7913 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7914 Instruction *Insn = &*BI++; 7915 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7916 if (!DVI) 7917 continue; 7918 7919 SmallVector<Instruction *, 4> VIs; 7920 for (Value *V : DVI->getValues()) 7921 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 7922 VIs.push_back(VI); 7923 7924 // This DVI may depend on multiple instructions, complicating any 7925 // potential sink. This block takes the defensive approach, opting to 7926 // "undef" the DVI if it has more than one instruction and any of them do 7927 // not dominate DVI. 7928 for (Instruction *VI : VIs) { 7929 if (VI->isTerminator()) 7930 continue; 7931 7932 // If VI is a phi in a block with an EHPad terminator, we can't insert 7933 // after it. 7934 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7935 continue; 7936 7937 // If the defining instruction dominates the dbg.value, we do not need 7938 // to move the dbg.value. 7939 if (DT.dominates(VI, DVI)) 7940 continue; 7941 7942 // If we depend on multiple instructions and any of them doesn't 7943 // dominate this DVI, we probably can't salvage it: moving it to 7944 // after any of the instructions could cause us to lose the others. 7945 if (VIs.size() > 1) { 7946 LLVM_DEBUG( 7947 dbgs() 7948 << "Unable to find valid location for Debug Value, undefing:\n" 7949 << *DVI); 7950 DVI->setUndef(); 7951 break; 7952 } 7953 7954 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7955 << *DVI << ' ' << *VI); 7956 DVI->removeFromParent(); 7957 if (isa<PHINode>(VI)) 7958 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7959 else 7960 DVI->insertAfter(VI); 7961 MadeChange = true; 7962 ++NumDbgValueMoved; 7963 } 7964 } 7965 } 7966 return MadeChange; 7967 } 7968 7969 /// Scale down both weights to fit into uint32_t. 7970 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7971 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7972 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7973 NewTrue = NewTrue / Scale; 7974 NewFalse = NewFalse / Scale; 7975 } 7976 7977 /// Some targets prefer to split a conditional branch like: 7978 /// \code 7979 /// %0 = icmp ne i32 %a, 0 7980 /// %1 = icmp ne i32 %b, 0 7981 /// %or.cond = or i1 %0, %1 7982 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7983 /// \endcode 7984 /// into multiple branch instructions like: 7985 /// \code 7986 /// bb1: 7987 /// %0 = icmp ne i32 %a, 0 7988 /// br i1 %0, label %TrueBB, label %bb2 7989 /// bb2: 7990 /// %1 = icmp ne i32 %b, 0 7991 /// br i1 %1, label %TrueBB, label %FalseBB 7992 /// \endcode 7993 /// This usually allows instruction selection to do even further optimizations 7994 /// and combine the compare with the branch instruction. Currently this is 7995 /// applied for targets which have "cheap" jump instructions. 7996 /// 7997 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7998 /// 7999 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8000 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8001 return false; 8002 8003 bool MadeChange = false; 8004 for (auto &BB : F) { 8005 // Does this BB end with the following? 8006 // %cond1 = icmp|fcmp|binary instruction ... 8007 // %cond2 = icmp|fcmp|binary instruction ... 8008 // %cond.or = or|and i1 %cond1, cond2 8009 // br i1 %cond.or label %dest1, label %dest2" 8010 Instruction *LogicOp; 8011 BasicBlock *TBB, *FBB; 8012 if (!match(BB.getTerminator(), 8013 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8014 continue; 8015 8016 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8017 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8018 continue; 8019 8020 // The merging of mostly empty BB can cause a degenerate branch. 8021 if (TBB == FBB) 8022 continue; 8023 8024 unsigned Opc; 8025 Value *Cond1, *Cond2; 8026 if (match(LogicOp, 8027 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8028 Opc = Instruction::And; 8029 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8030 m_OneUse(m_Value(Cond2))))) 8031 Opc = Instruction::Or; 8032 else 8033 continue; 8034 8035 auto IsGoodCond = [](Value *Cond) { 8036 return match( 8037 Cond, 8038 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8039 m_LogicalOr(m_Value(), m_Value())))); 8040 }; 8041 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8042 continue; 8043 8044 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8045 8046 // Create a new BB. 8047 auto *TmpBB = 8048 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8049 BB.getParent(), BB.getNextNode()); 8050 8051 // Update original basic block by using the first condition directly by the 8052 // branch instruction and removing the no longer needed and/or instruction. 8053 Br1->setCondition(Cond1); 8054 LogicOp->eraseFromParent(); 8055 8056 // Depending on the condition we have to either replace the true or the 8057 // false successor of the original branch instruction. 8058 if (Opc == Instruction::And) 8059 Br1->setSuccessor(0, TmpBB); 8060 else 8061 Br1->setSuccessor(1, TmpBB); 8062 8063 // Fill in the new basic block. 8064 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8065 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8066 I->removeFromParent(); 8067 I->insertBefore(Br2); 8068 } 8069 8070 // Update PHI nodes in both successors. The original BB needs to be 8071 // replaced in one successor's PHI nodes, because the branch comes now from 8072 // the newly generated BB (NewBB). In the other successor we need to add one 8073 // incoming edge to the PHI nodes, because both branch instructions target 8074 // now the same successor. Depending on the original branch condition 8075 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8076 // we perform the correct update for the PHI nodes. 8077 // This doesn't change the successor order of the just created branch 8078 // instruction (or any other instruction). 8079 if (Opc == Instruction::Or) 8080 std::swap(TBB, FBB); 8081 8082 // Replace the old BB with the new BB. 8083 TBB->replacePhiUsesWith(&BB, TmpBB); 8084 8085 // Add another incoming edge form the new BB. 8086 for (PHINode &PN : FBB->phis()) { 8087 auto *Val = PN.getIncomingValueForBlock(&BB); 8088 PN.addIncoming(Val, TmpBB); 8089 } 8090 8091 // Update the branch weights (from SelectionDAGBuilder:: 8092 // FindMergedConditions). 8093 if (Opc == Instruction::Or) { 8094 // Codegen X | Y as: 8095 // BB1: 8096 // jmp_if_X TBB 8097 // jmp TmpBB 8098 // TmpBB: 8099 // jmp_if_Y TBB 8100 // jmp FBB 8101 // 8102 8103 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8104 // The requirement is that 8105 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8106 // = TrueProb for original BB. 8107 // Assuming the original weights are A and B, one choice is to set BB1's 8108 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8109 // assumes that 8110 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8111 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8112 // TmpBB, but the math is more complicated. 8113 uint64_t TrueWeight, FalseWeight; 8114 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8115 uint64_t NewTrueWeight = TrueWeight; 8116 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8117 scaleWeights(NewTrueWeight, NewFalseWeight); 8118 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8119 .createBranchWeights(TrueWeight, FalseWeight)); 8120 8121 NewTrueWeight = TrueWeight; 8122 NewFalseWeight = 2 * FalseWeight; 8123 scaleWeights(NewTrueWeight, NewFalseWeight); 8124 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8125 .createBranchWeights(TrueWeight, FalseWeight)); 8126 } 8127 } else { 8128 // Codegen X & Y as: 8129 // BB1: 8130 // jmp_if_X TmpBB 8131 // jmp FBB 8132 // TmpBB: 8133 // jmp_if_Y TBB 8134 // jmp FBB 8135 // 8136 // This requires creation of TmpBB after CurBB. 8137 8138 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8139 // The requirement is that 8140 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8141 // = FalseProb for original BB. 8142 // Assuming the original weights are A and B, one choice is to set BB1's 8143 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8144 // assumes that 8145 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8146 uint64_t TrueWeight, FalseWeight; 8147 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8148 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8149 uint64_t NewFalseWeight = FalseWeight; 8150 scaleWeights(NewTrueWeight, NewFalseWeight); 8151 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8152 .createBranchWeights(TrueWeight, FalseWeight)); 8153 8154 NewTrueWeight = 2 * TrueWeight; 8155 NewFalseWeight = FalseWeight; 8156 scaleWeights(NewTrueWeight, NewFalseWeight); 8157 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8158 .createBranchWeights(TrueWeight, FalseWeight)); 8159 } 8160 } 8161 8162 ModifiedDT = true; 8163 MadeChange = true; 8164 8165 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8166 TmpBB->dump()); 8167 } 8168 return MadeChange; 8169 } 8170