1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 DominatorTree *DT; 128 129 /// CurInstIterator - As we scan instructions optimizing them, this is the 130 /// next instruction to optimize. Xforms that can invalidate this should 131 /// update it. 132 BasicBlock::iterator CurInstIterator; 133 134 /// Keeps track of non-local addresses that have been sunk into a block. 135 /// This allows us to avoid inserting duplicate code for blocks with 136 /// multiple load/stores of the same address. 137 ValueMap<Value*, Value*> SunkAddrs; 138 139 /// Keeps track of all truncates inserted for the current function. 140 SetOfInstrs InsertedTruncsSet; 141 /// Keeps track of the type of the related instruction before their 142 /// promotion for the current function. 143 InstrToOrigTy PromotedInsts; 144 145 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 146 /// be updated. 147 bool ModifiedDT; 148 149 /// OptSize - True if optimizing for size. 150 bool OptSize; 151 152 public: 153 static char ID; // Pass identification, replacement for typeid 154 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 155 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 156 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 157 } 158 bool runOnFunction(Function &F) override; 159 160 const char *getPassName() const override { return "CodeGen Prepare"; } 161 162 void getAnalysisUsage(AnalysisUsage &AU) const override { 163 AU.addPreserved<DominatorTreeWrapperPass>(); 164 AU.addRequired<TargetLibraryInfoWrapperPass>(); 165 AU.addRequired<TargetTransformInfoWrapperPass>(); 166 } 167 168 private: 169 bool EliminateFallThrough(Function &F); 170 bool EliminateMostlyEmptyBlocks(Function &F); 171 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 172 void EliminateMostlyEmptyBlock(BasicBlock *BB); 173 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 174 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 175 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 176 bool OptimizeInlineAsmInst(CallInst *CS); 177 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 178 bool MoveExtToFormExtLoad(Instruction *&I); 179 bool OptimizeExtUses(Instruction *I); 180 bool OptimizeSelectInst(SelectInst *SI); 181 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 182 bool OptimizeExtractElementInst(Instruction *Inst); 183 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 184 bool PlaceDbgValues(Function &F); 185 bool sinkAndCmp(Function &F); 186 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 187 Instruction *&Inst, 188 const SmallVectorImpl<Instruction *> &Exts, 189 unsigned CreatedInst); 190 bool splitBranchCondition(Function &F); 191 bool simplifyOffsetableRelocate(Instruction &I); 192 }; 193 } 194 195 char CodeGenPrepare::ID = 0; 196 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 197 "Optimize for code generation", false, false) 198 199 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 200 return new CodeGenPrepare(TM); 201 } 202 203 bool CodeGenPrepare::runOnFunction(Function &F) { 204 if (skipOptnoneFunction(F)) 205 return false; 206 207 bool EverMadeChange = false; 208 // Clear per function information. 209 InsertedTruncsSet.clear(); 210 PromotedInsts.clear(); 211 212 ModifiedDT = false; 213 if (TM) 214 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 215 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 DominatorTreeWrapperPass *DTWP = 218 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 219 DT = DTWP ? &DTWP->getDomTree() : nullptr; 220 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); 221 222 /// This optimization identifies DIV instructions that can be 223 /// profitably bypassed and carried out with a shorter, faster divide. 224 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 225 const DenseMap<unsigned int, unsigned int> &BypassWidths = 226 TLI->getBypassSlowDivWidths(); 227 for (Function::iterator I = F.begin(); I != F.end(); I++) 228 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 229 } 230 231 // Eliminate blocks that contain only PHI nodes and an 232 // unconditional branch. 233 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 234 235 // llvm.dbg.value is far away from the value then iSel may not be able 236 // handle it properly. iSel will drop llvm.dbg.value if it can not 237 // find a node corresponding to the value. 238 EverMadeChange |= PlaceDbgValues(F); 239 240 // If there is a mask, compare against zero, and branch that can be combined 241 // into a single target instruction, push the mask and compare into branch 242 // users. Do this before OptimizeBlock -> OptimizeInst -> 243 // OptimizeCmpExpression, which perturbs the pattern being searched for. 244 if (!DisableBranchOpts) { 245 EverMadeChange |= sinkAndCmp(F); 246 EverMadeChange |= splitBranchCondition(F); 247 } 248 249 bool MadeChange = true; 250 while (MadeChange) { 251 MadeChange = false; 252 for (Function::iterator I = F.begin(); I != F.end(); ) { 253 BasicBlock *BB = I++; 254 bool ModifiedDTOnIteration = false; 255 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 256 257 // Restart BB iteration if the dominator tree of the Function was changed 258 ModifiedDT |= ModifiedDTOnIteration; 259 if (ModifiedDTOnIteration) 260 break; 261 } 262 EverMadeChange |= MadeChange; 263 } 264 265 SunkAddrs.clear(); 266 267 if (!DisableBranchOpts) { 268 MadeChange = false; 269 SmallPtrSet<BasicBlock*, 8> WorkList; 270 for (BasicBlock &BB : F) { 271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 272 MadeChange |= ConstantFoldTerminator(&BB, true); 273 if (!MadeChange) continue; 274 275 for (SmallVectorImpl<BasicBlock*>::iterator 276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 277 if (pred_begin(*II) == pred_end(*II)) 278 WorkList.insert(*II); 279 } 280 281 // Delete the dead blocks and any of their dead successors. 282 MadeChange |= !WorkList.empty(); 283 while (!WorkList.empty()) { 284 BasicBlock *BB = *WorkList.begin(); 285 WorkList.erase(BB); 286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 287 288 DeleteDeadBlock(BB); 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Merge pairs of basic blocks with unconditional branches, connected by 297 // a single edge. 298 if (EverMadeChange || MadeChange) 299 MadeChange |= EliminateFallThrough(F); 300 301 if (MadeChange) 302 ModifiedDT = true; 303 EverMadeChange |= MadeChange; 304 } 305 306 if (!DisableGCOpts) { 307 SmallVector<Instruction *, 2> Statepoints; 308 for (BasicBlock &BB : F) 309 for (Instruction &I : BB) 310 if (isStatepoint(I)) 311 Statepoints.push_back(&I); 312 for (auto &I : Statepoints) 313 EverMadeChange |= simplifyOffsetableRelocate(*I); 314 } 315 316 if (ModifiedDT && DT) 317 DT->recalculate(F); 318 319 return EverMadeChange; 320 } 321 322 /// EliminateFallThrough - Merge basic blocks which are connected 323 /// by a single edge, where one of the basic blocks has a single successor 324 /// pointing to the other basic block, which has a single predecessor. 325 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 326 bool Changed = false; 327 // Scan all of the blocks in the function, except for the entry block. 328 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 329 BasicBlock *BB = I++; 330 // If the destination block has a single pred, then this is a trivial 331 // edge, just collapse it. 332 BasicBlock *SinglePred = BB->getSinglePredecessor(); 333 334 // Don't merge if BB's address is taken. 335 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 336 337 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 338 if (Term && !Term->isConditional()) { 339 Changed = true; 340 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 341 // Remember if SinglePred was the entry block of the function. 342 // If so, we will need to move BB back to the entry position. 343 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 344 MergeBasicBlockIntoOnlyPred(BB, DT); 345 346 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 347 BB->moveBefore(&BB->getParent()->getEntryBlock()); 348 349 // We have erased a block. Update the iterator. 350 I = BB; 351 } 352 } 353 return Changed; 354 } 355 356 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 357 /// debug info directives, and an unconditional branch. Passes before isel 358 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 359 /// isel. Start by eliminating these blocks so we can split them the way we 360 /// want them. 361 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 362 bool MadeChange = false; 363 // Note that this intentionally skips the entry block. 364 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 365 BasicBlock *BB = I++; 366 367 // If this block doesn't end with an uncond branch, ignore it. 368 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 369 if (!BI || !BI->isUnconditional()) 370 continue; 371 372 // If the instruction before the branch (skipping debug info) isn't a phi 373 // node, then other stuff is happening here. 374 BasicBlock::iterator BBI = BI; 375 if (BBI != BB->begin()) { 376 --BBI; 377 while (isa<DbgInfoIntrinsic>(BBI)) { 378 if (BBI == BB->begin()) 379 break; 380 --BBI; 381 } 382 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 383 continue; 384 } 385 386 // Do not break infinite loops. 387 BasicBlock *DestBB = BI->getSuccessor(0); 388 if (DestBB == BB) 389 continue; 390 391 if (!CanMergeBlocks(BB, DestBB)) 392 continue; 393 394 EliminateMostlyEmptyBlock(BB); 395 MadeChange = true; 396 } 397 return MadeChange; 398 } 399 400 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 401 /// single uncond branch between them, and BB contains no other non-phi 402 /// instructions. 403 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 404 const BasicBlock *DestBB) const { 405 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 406 // the successor. If there are more complex condition (e.g. preheaders), 407 // don't mess around with them. 408 BasicBlock::const_iterator BBI = BB->begin(); 409 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 410 for (const User *U : PN->users()) { 411 const Instruction *UI = cast<Instruction>(U); 412 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 413 return false; 414 // If User is inside DestBB block and it is a PHINode then check 415 // incoming value. If incoming value is not from BB then this is 416 // a complex condition (e.g. preheaders) we want to avoid here. 417 if (UI->getParent() == DestBB) { 418 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 419 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 420 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 421 if (Insn && Insn->getParent() == BB && 422 Insn->getParent() != UPN->getIncomingBlock(I)) 423 return false; 424 } 425 } 426 } 427 } 428 429 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 430 // and DestBB may have conflicting incoming values for the block. If so, we 431 // can't merge the block. 432 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 433 if (!DestBBPN) return true; // no conflict. 434 435 // Collect the preds of BB. 436 SmallPtrSet<const BasicBlock*, 16> BBPreds; 437 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 438 // It is faster to get preds from a PHI than with pred_iterator. 439 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 440 BBPreds.insert(BBPN->getIncomingBlock(i)); 441 } else { 442 BBPreds.insert(pred_begin(BB), pred_end(BB)); 443 } 444 445 // Walk the preds of DestBB. 446 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 447 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 448 if (BBPreds.count(Pred)) { // Common predecessor? 449 BBI = DestBB->begin(); 450 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 451 const Value *V1 = PN->getIncomingValueForBlock(Pred); 452 const Value *V2 = PN->getIncomingValueForBlock(BB); 453 454 // If V2 is a phi node in BB, look up what the mapped value will be. 455 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 456 if (V2PN->getParent() == BB) 457 V2 = V2PN->getIncomingValueForBlock(Pred); 458 459 // If there is a conflict, bail out. 460 if (V1 != V2) return false; 461 } 462 } 463 } 464 465 return true; 466 } 467 468 469 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 470 /// an unconditional branch in it. 471 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 472 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 473 BasicBlock *DestBB = BI->getSuccessor(0); 474 475 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 476 477 // If the destination block has a single pred, then this is a trivial edge, 478 // just collapse it. 479 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 480 if (SinglePred != DestBB) { 481 // Remember if SinglePred was the entry block of the function. If so, we 482 // will need to move BB back to the entry position. 483 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 484 MergeBasicBlockIntoOnlyPred(DestBB, DT); 485 486 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 487 BB->moveBefore(&BB->getParent()->getEntryBlock()); 488 489 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 490 return; 491 } 492 } 493 494 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 495 // to handle the new incoming edges it is about to have. 496 PHINode *PN; 497 for (BasicBlock::iterator BBI = DestBB->begin(); 498 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 499 // Remove the incoming value for BB, and remember it. 500 Value *InVal = PN->removeIncomingValue(BB, false); 501 502 // Two options: either the InVal is a phi node defined in BB or it is some 503 // value that dominates BB. 504 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 505 if (InValPhi && InValPhi->getParent() == BB) { 506 // Add all of the input values of the input PHI as inputs of this phi. 507 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 508 PN->addIncoming(InValPhi->getIncomingValue(i), 509 InValPhi->getIncomingBlock(i)); 510 } else { 511 // Otherwise, add one instance of the dominating value for each edge that 512 // we will be adding. 513 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 514 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 515 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 516 } else { 517 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 518 PN->addIncoming(InVal, *PI); 519 } 520 } 521 } 522 523 // The PHIs are now updated, change everything that refers to BB to use 524 // DestBB and remove BB. 525 BB->replaceAllUsesWith(DestBB); 526 if (DT && !ModifiedDT) { 527 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 528 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 529 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 530 DT->changeImmediateDominator(DestBB, NewIDom); 531 DT->eraseNode(BB); 532 } 533 BB->eraseFromParent(); 534 ++NumBlocksElim; 535 536 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 537 } 538 539 // Computes a map of base pointer relocation instructions to corresponding 540 // derived pointer relocation instructions given a vector of all relocate calls 541 static void computeBaseDerivedRelocateMap( 542 const SmallVectorImpl<User *> &AllRelocateCalls, 543 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 544 RelocateInstMap) { 545 // Collect information in two maps: one primarily for locating the base object 546 // while filling the second map; the second map is the final structure holding 547 // a mapping between Base and corresponding Derived relocate calls 548 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 549 for (auto &U : AllRelocateCalls) { 550 GCRelocateOperands ThisRelocate(U); 551 IntrinsicInst *I = cast<IntrinsicInst>(U); 552 auto K = std::make_pair(ThisRelocate.basePtrIndex(), 553 ThisRelocate.derivedPtrIndex()); 554 RelocateIdxMap.insert(std::make_pair(K, I)); 555 } 556 for (auto &Item : RelocateIdxMap) { 557 std::pair<unsigned, unsigned> Key = Item.first; 558 if (Key.first == Key.second) 559 // Base relocation: nothing to insert 560 continue; 561 562 IntrinsicInst *I = Item.second; 563 auto BaseKey = std::make_pair(Key.first, Key.first); 564 565 // We're iterating over RelocateIdxMap so we cannot modify it. 566 auto MaybeBase = RelocateIdxMap.find(BaseKey); 567 if (MaybeBase == RelocateIdxMap.end()) 568 // TODO: We might want to insert a new base object relocate and gep off 569 // that, if there are enough derived object relocates. 570 continue; 571 572 RelocateInstMap[MaybeBase->second].push_back(I); 573 } 574 } 575 576 // Accepts a GEP and extracts the operands into a vector provided they're all 577 // small integer constants 578 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 579 SmallVectorImpl<Value *> &OffsetV) { 580 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 581 // Only accept small constant integer operands 582 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 583 if (!Op || Op->getZExtValue() > 20) 584 return false; 585 } 586 587 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 588 OffsetV.push_back(GEP->getOperand(i)); 589 return true; 590 } 591 592 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 593 // replace, computes a replacement, and affects it. 594 static bool 595 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 596 const SmallVectorImpl<IntrinsicInst *> &Targets) { 597 bool MadeChange = false; 598 for (auto &ToReplace : Targets) { 599 GCRelocateOperands MasterRelocate(RelocatedBase); 600 GCRelocateOperands ThisRelocate(ToReplace); 601 602 assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() && 603 "Not relocating a derived object of the original base object"); 604 if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) { 605 // A duplicate relocate call. TODO: coalesce duplicates. 606 continue; 607 } 608 609 Value *Base = ThisRelocate.basePtr(); 610 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr()); 611 if (!Derived || Derived->getPointerOperand() != Base) 612 continue; 613 614 SmallVector<Value *, 2> OffsetV; 615 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 616 continue; 617 618 // Create a Builder and replace the target callsite with a gep 619 IRBuilder<> Builder(ToReplace); 620 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 621 Value *Replacement = 622 Builder.CreateGEP(RelocatedBase, makeArrayRef(OffsetV)); 623 Instruction *ReplacementInst = cast<Instruction>(Replacement); 624 ReplacementInst->removeFromParent(); 625 ReplacementInst->insertAfter(RelocatedBase); 626 Replacement->takeName(ToReplace); 627 ToReplace->replaceAllUsesWith(Replacement); 628 ToReplace->eraseFromParent(); 629 630 MadeChange = true; 631 } 632 return MadeChange; 633 } 634 635 // Turns this: 636 // 637 // %base = ... 638 // %ptr = gep %base + 15 639 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 640 // %base' = relocate(%tok, i32 4, i32 4) 641 // %ptr' = relocate(%tok, i32 4, i32 5) 642 // %val = load %ptr' 643 // 644 // into this: 645 // 646 // %base = ... 647 // %ptr = gep %base + 15 648 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 649 // %base' = gc.relocate(%tok, i32 4, i32 4) 650 // %ptr' = gep %base' + 15 651 // %val = load %ptr' 652 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 653 bool MadeChange = false; 654 SmallVector<User *, 2> AllRelocateCalls; 655 656 for (auto *U : I.users()) 657 if (isGCRelocate(dyn_cast<Instruction>(U))) 658 // Collect all the relocate calls associated with a statepoint 659 AllRelocateCalls.push_back(U); 660 661 // We need atleast one base pointer relocation + one derived pointer 662 // relocation to mangle 663 if (AllRelocateCalls.size() < 2) 664 return false; 665 666 // RelocateInstMap is a mapping from the base relocate instruction to the 667 // corresponding derived relocate instructions 668 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 669 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 670 if (RelocateInstMap.empty()) 671 return false; 672 673 for (auto &Item : RelocateInstMap) 674 // Item.first is the RelocatedBase to offset against 675 // Item.second is the vector of Targets to replace 676 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 677 return MadeChange; 678 } 679 680 /// SinkCast - Sink the specified cast instruction into its user blocks 681 static bool SinkCast(CastInst *CI) { 682 BasicBlock *DefBB = CI->getParent(); 683 684 /// InsertedCasts - Only insert a cast in each block once. 685 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 686 687 bool MadeChange = false; 688 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 689 UI != E; ) { 690 Use &TheUse = UI.getUse(); 691 Instruction *User = cast<Instruction>(*UI); 692 693 // Figure out which BB this cast is used in. For PHI's this is the 694 // appropriate predecessor block. 695 BasicBlock *UserBB = User->getParent(); 696 if (PHINode *PN = dyn_cast<PHINode>(User)) { 697 UserBB = PN->getIncomingBlock(TheUse); 698 } 699 700 // Preincrement use iterator so we don't invalidate it. 701 ++UI; 702 703 // If this user is in the same block as the cast, don't change the cast. 704 if (UserBB == DefBB) continue; 705 706 // If we have already inserted a cast into this block, use it. 707 CastInst *&InsertedCast = InsertedCasts[UserBB]; 708 709 if (!InsertedCast) { 710 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 711 InsertedCast = 712 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 713 InsertPt); 714 MadeChange = true; 715 } 716 717 // Replace a use of the cast with a use of the new cast. 718 TheUse = InsertedCast; 719 ++NumCastUses; 720 } 721 722 // If we removed all uses, nuke the cast. 723 if (CI->use_empty()) { 724 CI->eraseFromParent(); 725 MadeChange = true; 726 } 727 728 return MadeChange; 729 } 730 731 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 732 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 733 /// sink it into user blocks to reduce the number of virtual 734 /// registers that must be created and coalesced. 735 /// 736 /// Return true if any changes are made. 737 /// 738 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 739 // If this is a noop copy, 740 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 741 EVT DstVT = TLI.getValueType(CI->getType()); 742 743 // This is an fp<->int conversion? 744 if (SrcVT.isInteger() != DstVT.isInteger()) 745 return false; 746 747 // If this is an extension, it will be a zero or sign extension, which 748 // isn't a noop. 749 if (SrcVT.bitsLT(DstVT)) return false; 750 751 // If these values will be promoted, find out what they will be promoted 752 // to. This helps us consider truncates on PPC as noop copies when they 753 // are. 754 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 755 TargetLowering::TypePromoteInteger) 756 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 757 if (TLI.getTypeAction(CI->getContext(), DstVT) == 758 TargetLowering::TypePromoteInteger) 759 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 760 761 // If, after promotion, these are the same types, this is a noop copy. 762 if (SrcVT != DstVT) 763 return false; 764 765 return SinkCast(CI); 766 } 767 768 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 769 /// the number of virtual registers that must be created and coalesced. This is 770 /// a clear win except on targets with multiple condition code registers 771 /// (PowerPC), where it might lose; some adjustment may be wanted there. 772 /// 773 /// Return true if any changes are made. 774 static bool OptimizeCmpExpression(CmpInst *CI) { 775 BasicBlock *DefBB = CI->getParent(); 776 777 /// InsertedCmp - Only insert a cmp in each block once. 778 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 779 780 bool MadeChange = false; 781 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 782 UI != E; ) { 783 Use &TheUse = UI.getUse(); 784 Instruction *User = cast<Instruction>(*UI); 785 786 // Preincrement use iterator so we don't invalidate it. 787 ++UI; 788 789 // Don't bother for PHI nodes. 790 if (isa<PHINode>(User)) 791 continue; 792 793 // Figure out which BB this cmp is used in. 794 BasicBlock *UserBB = User->getParent(); 795 796 // If this user is in the same block as the cmp, don't change the cmp. 797 if (UserBB == DefBB) continue; 798 799 // If we have already inserted a cmp into this block, use it. 800 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 801 802 if (!InsertedCmp) { 803 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 804 InsertedCmp = 805 CmpInst::Create(CI->getOpcode(), 806 CI->getPredicate(), CI->getOperand(0), 807 CI->getOperand(1), "", InsertPt); 808 MadeChange = true; 809 } 810 811 // Replace a use of the cmp with a use of the new cmp. 812 TheUse = InsertedCmp; 813 ++NumCmpUses; 814 } 815 816 // If we removed all uses, nuke the cmp. 817 if (CI->use_empty()) 818 CI->eraseFromParent(); 819 820 return MadeChange; 821 } 822 823 /// isExtractBitsCandidateUse - Check if the candidates could 824 /// be combined with shift instruction, which includes: 825 /// 1. Truncate instruction 826 /// 2. And instruction and the imm is a mask of the low bits: 827 /// imm & (imm+1) == 0 828 static bool isExtractBitsCandidateUse(Instruction *User) { 829 if (!isa<TruncInst>(User)) { 830 if (User->getOpcode() != Instruction::And || 831 !isa<ConstantInt>(User->getOperand(1))) 832 return false; 833 834 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 835 836 if ((Cimm & (Cimm + 1)).getBoolValue()) 837 return false; 838 } 839 return true; 840 } 841 842 /// SinkShiftAndTruncate - sink both shift and truncate instruction 843 /// to the use of truncate's BB. 844 static bool 845 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 846 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 847 const TargetLowering &TLI) { 848 BasicBlock *UserBB = User->getParent(); 849 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 850 TruncInst *TruncI = dyn_cast<TruncInst>(User); 851 bool MadeChange = false; 852 853 for (Value::user_iterator TruncUI = TruncI->user_begin(), 854 TruncE = TruncI->user_end(); 855 TruncUI != TruncE;) { 856 857 Use &TruncTheUse = TruncUI.getUse(); 858 Instruction *TruncUser = cast<Instruction>(*TruncUI); 859 // Preincrement use iterator so we don't invalidate it. 860 861 ++TruncUI; 862 863 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 864 if (!ISDOpcode) 865 continue; 866 867 // If the use is actually a legal node, there will not be an 868 // implicit truncate. 869 // FIXME: always querying the result type is just an 870 // approximation; some nodes' legality is determined by the 871 // operand or other means. There's no good way to find out though. 872 if (TLI.isOperationLegalOrCustom( 873 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 874 continue; 875 876 // Don't bother for PHI nodes. 877 if (isa<PHINode>(TruncUser)) 878 continue; 879 880 BasicBlock *TruncUserBB = TruncUser->getParent(); 881 882 if (UserBB == TruncUserBB) 883 continue; 884 885 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 886 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 887 888 if (!InsertedShift && !InsertedTrunc) { 889 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 890 // Sink the shift 891 if (ShiftI->getOpcode() == Instruction::AShr) 892 InsertedShift = 893 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 894 else 895 InsertedShift = 896 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 897 898 // Sink the trunc 899 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 900 TruncInsertPt++; 901 902 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 903 TruncI->getType(), "", TruncInsertPt); 904 905 MadeChange = true; 906 907 TruncTheUse = InsertedTrunc; 908 } 909 } 910 return MadeChange; 911 } 912 913 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 914 /// the uses could potentially be combined with this shift instruction and 915 /// generate BitExtract instruction. It will only be applied if the architecture 916 /// supports BitExtract instruction. Here is an example: 917 /// BB1: 918 /// %x.extract.shift = lshr i64 %arg1, 32 919 /// BB2: 920 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 921 /// ==> 922 /// 923 /// BB2: 924 /// %x.extract.shift.1 = lshr i64 %arg1, 32 925 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 926 /// 927 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 928 /// instruction. 929 /// Return true if any changes are made. 930 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 931 const TargetLowering &TLI) { 932 BasicBlock *DefBB = ShiftI->getParent(); 933 934 /// Only insert instructions in each block once. 935 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 936 937 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 938 939 bool MadeChange = false; 940 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 941 UI != E;) { 942 Use &TheUse = UI.getUse(); 943 Instruction *User = cast<Instruction>(*UI); 944 // Preincrement use iterator so we don't invalidate it. 945 ++UI; 946 947 // Don't bother for PHI nodes. 948 if (isa<PHINode>(User)) 949 continue; 950 951 if (!isExtractBitsCandidateUse(User)) 952 continue; 953 954 BasicBlock *UserBB = User->getParent(); 955 956 if (UserBB == DefBB) { 957 // If the shift and truncate instruction are in the same BB. The use of 958 // the truncate(TruncUse) may still introduce another truncate if not 959 // legal. In this case, we would like to sink both shift and truncate 960 // instruction to the BB of TruncUse. 961 // for example: 962 // BB1: 963 // i64 shift.result = lshr i64 opnd, imm 964 // trunc.result = trunc shift.result to i16 965 // 966 // BB2: 967 // ----> We will have an implicit truncate here if the architecture does 968 // not have i16 compare. 969 // cmp i16 trunc.result, opnd2 970 // 971 if (isa<TruncInst>(User) && shiftIsLegal 972 // If the type of the truncate is legal, no trucate will be 973 // introduced in other basic blocks. 974 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 975 MadeChange = 976 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 977 978 continue; 979 } 980 // If we have already inserted a shift into this block, use it. 981 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 982 983 if (!InsertedShift) { 984 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 985 986 if (ShiftI->getOpcode() == Instruction::AShr) 987 InsertedShift = 988 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 989 else 990 InsertedShift = 991 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 992 993 MadeChange = true; 994 } 995 996 // Replace a use of the shift with a use of the new shift. 997 TheUse = InsertedShift; 998 } 999 1000 // If we removed all uses, nuke the shift. 1001 if (ShiftI->use_empty()) 1002 ShiftI->eraseFromParent(); 1003 1004 return MadeChange; 1005 } 1006 1007 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1008 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1009 // <16 x i1> %mask, <16 x i32> %passthru) 1010 // to a chain of basic blocks, whith loading element one-by-one if 1011 // the appropriate mask bit is set 1012 // 1013 // %1 = bitcast i8* %addr to i32* 1014 // %2 = extractelement <16 x i1> %mask, i32 0 1015 // %3 = icmp eq i1 %2, true 1016 // br i1 %3, label %cond.load, label %else 1017 // 1018 //cond.load: ; preds = %0 1019 // %4 = getelementptr i32* %1, i32 0 1020 // %5 = load i32* %4 1021 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1022 // br label %else 1023 // 1024 //else: ; preds = %0, %cond.load 1025 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1026 // %7 = extractelement <16 x i1> %mask, i32 1 1027 // %8 = icmp eq i1 %7, true 1028 // br i1 %8, label %cond.load1, label %else2 1029 // 1030 //cond.load1: ; preds = %else 1031 // %9 = getelementptr i32* %1, i32 1 1032 // %10 = load i32* %9 1033 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1034 // br label %else2 1035 // 1036 //else2: ; preds = %else, %cond.load1 1037 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1038 // %12 = extractelement <16 x i1> %mask, i32 2 1039 // %13 = icmp eq i1 %12, true 1040 // br i1 %13, label %cond.load4, label %else5 1041 // 1042 static void ScalarizeMaskedLoad(CallInst *CI) { 1043 Value *Ptr = CI->getArgOperand(0); 1044 Value *Src0 = CI->getArgOperand(3); 1045 Value *Mask = CI->getArgOperand(2); 1046 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1047 Type *EltTy = VecType->getElementType(); 1048 1049 assert(VecType && "Unexpected return type of masked load intrinsic"); 1050 1051 IRBuilder<> Builder(CI->getContext()); 1052 Instruction *InsertPt = CI; 1053 BasicBlock *IfBlock = CI->getParent(); 1054 BasicBlock *CondBlock = nullptr; 1055 BasicBlock *PrevIfBlock = CI->getParent(); 1056 Builder.SetInsertPoint(InsertPt); 1057 1058 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1059 1060 // Bitcast %addr fron i8* to EltTy* 1061 Type *NewPtrType = 1062 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1063 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1064 Value *UndefVal = UndefValue::get(VecType); 1065 1066 // The result vector 1067 Value *VResult = UndefVal; 1068 1069 PHINode *Phi = nullptr; 1070 Value *PrevPhi = UndefVal; 1071 1072 unsigned VectorWidth = VecType->getNumElements(); 1073 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1074 1075 // Fill the "else" block, created in the previous iteration 1076 // 1077 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1078 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1079 // %to_load = icmp eq i1 %mask_1, true 1080 // br i1 %to_load, label %cond.load, label %else 1081 // 1082 if (Idx > 0) { 1083 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1084 Phi->addIncoming(VResult, CondBlock); 1085 Phi->addIncoming(PrevPhi, PrevIfBlock); 1086 PrevPhi = Phi; 1087 VResult = Phi; 1088 } 1089 1090 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1091 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1092 ConstantInt::get(Predicate->getType(), 1)); 1093 1094 // Create "cond" block 1095 // 1096 // %EltAddr = getelementptr i32* %1, i32 0 1097 // %Elt = load i32* %EltAddr 1098 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1099 // 1100 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1101 Builder.SetInsertPoint(InsertPt); 1102 1103 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1104 LoadInst* Load = Builder.CreateLoad(Gep, false); 1105 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1106 1107 // Create "else" block, fill it in the next iteration 1108 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1109 Builder.SetInsertPoint(InsertPt); 1110 Instruction *OldBr = IfBlock->getTerminator(); 1111 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1112 OldBr->eraseFromParent(); 1113 PrevIfBlock = IfBlock; 1114 IfBlock = NewIfBlock; 1115 } 1116 1117 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1118 Phi->addIncoming(VResult, CondBlock); 1119 Phi->addIncoming(PrevPhi, PrevIfBlock); 1120 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1121 CI->replaceAllUsesWith(NewI); 1122 CI->eraseFromParent(); 1123 } 1124 1125 // ScalarizeMaskedStore() translates masked store intrinsic, like 1126 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1127 // <16 x i1> %mask) 1128 // to a chain of basic blocks, that stores element one-by-one if 1129 // the appropriate mask bit is set 1130 // 1131 // %1 = bitcast i8* %addr to i32* 1132 // %2 = extractelement <16 x i1> %mask, i32 0 1133 // %3 = icmp eq i1 %2, true 1134 // br i1 %3, label %cond.store, label %else 1135 // 1136 // cond.store: ; preds = %0 1137 // %4 = extractelement <16 x i32> %val, i32 0 1138 // %5 = getelementptr i32* %1, i32 0 1139 // store i32 %4, i32* %5 1140 // br label %else 1141 // 1142 // else: ; preds = %0, %cond.store 1143 // %6 = extractelement <16 x i1> %mask, i32 1 1144 // %7 = icmp eq i1 %6, true 1145 // br i1 %7, label %cond.store1, label %else2 1146 // 1147 // cond.store1: ; preds = %else 1148 // %8 = extractelement <16 x i32> %val, i32 1 1149 // %9 = getelementptr i32* %1, i32 1 1150 // store i32 %8, i32* %9 1151 // br label %else2 1152 // . . . 1153 static void ScalarizeMaskedStore(CallInst *CI) { 1154 Value *Ptr = CI->getArgOperand(1); 1155 Value *Src = CI->getArgOperand(0); 1156 Value *Mask = CI->getArgOperand(3); 1157 1158 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1159 Type *EltTy = VecType->getElementType(); 1160 1161 assert(VecType && "Unexpected data type in masked store intrinsic"); 1162 1163 IRBuilder<> Builder(CI->getContext()); 1164 Instruction *InsertPt = CI; 1165 BasicBlock *IfBlock = CI->getParent(); 1166 Builder.SetInsertPoint(InsertPt); 1167 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1168 1169 // Bitcast %addr fron i8* to EltTy* 1170 Type *NewPtrType = 1171 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1172 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1173 1174 unsigned VectorWidth = VecType->getNumElements(); 1175 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1176 1177 // Fill the "else" block, created in the previous iteration 1178 // 1179 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1180 // %to_store = icmp eq i1 %mask_1, true 1181 // br i1 %to_load, label %cond.store, label %else 1182 // 1183 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1184 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1185 ConstantInt::get(Predicate->getType(), 1)); 1186 1187 // Create "cond" block 1188 // 1189 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1190 // %EltAddr = getelementptr i32* %1, i32 0 1191 // %store i32 %OneElt, i32* %EltAddr 1192 // 1193 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1194 Builder.SetInsertPoint(InsertPt); 1195 1196 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1197 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1198 Builder.CreateStore(OneElt, Gep); 1199 1200 // Create "else" block, fill it in the next iteration 1201 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1202 Builder.SetInsertPoint(InsertPt); 1203 Instruction *OldBr = IfBlock->getTerminator(); 1204 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1205 OldBr->eraseFromParent(); 1206 IfBlock = NewIfBlock; 1207 } 1208 CI->eraseFromParent(); 1209 } 1210 1211 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1212 BasicBlock *BB = CI->getParent(); 1213 1214 // Lower inline assembly if we can. 1215 // If we found an inline asm expession, and if the target knows how to 1216 // lower it to normal LLVM code, do so now. 1217 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1218 if (TLI->ExpandInlineAsm(CI)) { 1219 // Avoid invalidating the iterator. 1220 CurInstIterator = BB->begin(); 1221 // Avoid processing instructions out of order, which could cause 1222 // reuse before a value is defined. 1223 SunkAddrs.clear(); 1224 return true; 1225 } 1226 // Sink address computing for memory operands into the block. 1227 if (OptimizeInlineAsmInst(CI)) 1228 return true; 1229 } 1230 1231 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1232 if (II) { 1233 switch (II->getIntrinsicID()) { 1234 default: break; 1235 case Intrinsic::objectsize: { 1236 // Lower all uses of llvm.objectsize.* 1237 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1238 Type *ReturnTy = CI->getType(); 1239 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1240 1241 // Substituting this can cause recursive simplifications, which can 1242 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1243 // happens. 1244 WeakVH IterHandle(CurInstIterator); 1245 1246 replaceAndRecursivelySimplify(CI, RetVal, 1247 TLI ? TLI->getDataLayout() : nullptr, 1248 TLInfo, ModifiedDT ? nullptr : DT); 1249 1250 // If the iterator instruction was recursively deleted, start over at the 1251 // start of the block. 1252 if (IterHandle != CurInstIterator) { 1253 CurInstIterator = BB->begin(); 1254 SunkAddrs.clear(); 1255 } 1256 return true; 1257 } 1258 case Intrinsic::masked_load: { 1259 // Scalarize unsupported vector masked load 1260 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1261 ScalarizeMaskedLoad(CI); 1262 ModifiedDT = true; 1263 return true; 1264 } 1265 return false; 1266 } 1267 case Intrinsic::masked_store: { 1268 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1269 ScalarizeMaskedStore(CI); 1270 ModifiedDT = true; 1271 return true; 1272 } 1273 return false; 1274 } 1275 } 1276 1277 if (TLI) { 1278 SmallVector<Value*, 2> PtrOps; 1279 Type *AccessTy; 1280 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1281 while (!PtrOps.empty()) 1282 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1283 return true; 1284 } 1285 } 1286 1287 // From here on out we're working with named functions. 1288 if (!CI->getCalledFunction()) return false; 1289 1290 // We'll need DataLayout from here on out. 1291 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1292 if (!TD) return false; 1293 1294 // Lower all default uses of _chk calls. This is very similar 1295 // to what InstCombineCalls does, but here we are only lowering calls 1296 // to fortified library functions (e.g. __memcpy_chk) that have the default 1297 // "don't know" as the objectsize. Anything else should be left alone. 1298 FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true); 1299 if (Value *V = Simplifier.optimizeCall(CI)) { 1300 CI->replaceAllUsesWith(V); 1301 CI->eraseFromParent(); 1302 return true; 1303 } 1304 return false; 1305 } 1306 1307 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1308 /// instructions to the predecessor to enable tail call optimizations. The 1309 /// case it is currently looking for is: 1310 /// @code 1311 /// bb0: 1312 /// %tmp0 = tail call i32 @f0() 1313 /// br label %return 1314 /// bb1: 1315 /// %tmp1 = tail call i32 @f1() 1316 /// br label %return 1317 /// bb2: 1318 /// %tmp2 = tail call i32 @f2() 1319 /// br label %return 1320 /// return: 1321 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1322 /// ret i32 %retval 1323 /// @endcode 1324 /// 1325 /// => 1326 /// 1327 /// @code 1328 /// bb0: 1329 /// %tmp0 = tail call i32 @f0() 1330 /// ret i32 %tmp0 1331 /// bb1: 1332 /// %tmp1 = tail call i32 @f1() 1333 /// ret i32 %tmp1 1334 /// bb2: 1335 /// %tmp2 = tail call i32 @f2() 1336 /// ret i32 %tmp2 1337 /// @endcode 1338 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1339 if (!TLI) 1340 return false; 1341 1342 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1343 if (!RI) 1344 return false; 1345 1346 PHINode *PN = nullptr; 1347 BitCastInst *BCI = nullptr; 1348 Value *V = RI->getReturnValue(); 1349 if (V) { 1350 BCI = dyn_cast<BitCastInst>(V); 1351 if (BCI) 1352 V = BCI->getOperand(0); 1353 1354 PN = dyn_cast<PHINode>(V); 1355 if (!PN) 1356 return false; 1357 } 1358 1359 if (PN && PN->getParent() != BB) 1360 return false; 1361 1362 // It's not safe to eliminate the sign / zero extension of the return value. 1363 // See llvm::isInTailCallPosition(). 1364 const Function *F = BB->getParent(); 1365 AttributeSet CallerAttrs = F->getAttributes(); 1366 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1367 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1368 return false; 1369 1370 // Make sure there are no instructions between the PHI and return, or that the 1371 // return is the first instruction in the block. 1372 if (PN) { 1373 BasicBlock::iterator BI = BB->begin(); 1374 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1375 if (&*BI == BCI) 1376 // Also skip over the bitcast. 1377 ++BI; 1378 if (&*BI != RI) 1379 return false; 1380 } else { 1381 BasicBlock::iterator BI = BB->begin(); 1382 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1383 if (&*BI != RI) 1384 return false; 1385 } 1386 1387 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1388 /// call. 1389 SmallVector<CallInst*, 4> TailCalls; 1390 if (PN) { 1391 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1392 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1393 // Make sure the phi value is indeed produced by the tail call. 1394 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1395 TLI->mayBeEmittedAsTailCall(CI)) 1396 TailCalls.push_back(CI); 1397 } 1398 } else { 1399 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1400 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1401 if (!VisitedBBs.insert(*PI).second) 1402 continue; 1403 1404 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1405 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1406 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1407 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1408 if (RI == RE) 1409 continue; 1410 1411 CallInst *CI = dyn_cast<CallInst>(&*RI); 1412 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1413 TailCalls.push_back(CI); 1414 } 1415 } 1416 1417 bool Changed = false; 1418 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1419 CallInst *CI = TailCalls[i]; 1420 CallSite CS(CI); 1421 1422 // Conservatively require the attributes of the call to match those of the 1423 // return. Ignore noalias because it doesn't affect the call sequence. 1424 AttributeSet CalleeAttrs = CS.getAttributes(); 1425 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1426 removeAttribute(Attribute::NoAlias) != 1427 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1428 removeAttribute(Attribute::NoAlias)) 1429 continue; 1430 1431 // Make sure the call instruction is followed by an unconditional branch to 1432 // the return block. 1433 BasicBlock *CallBB = CI->getParent(); 1434 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1435 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1436 continue; 1437 1438 // Duplicate the return into CallBB. 1439 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1440 ModifiedDT = Changed = true; 1441 ++NumRetsDup; 1442 } 1443 1444 // If we eliminated all predecessors of the block, delete the block now. 1445 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1446 BB->eraseFromParent(); 1447 1448 return Changed; 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // Memory Optimization 1453 //===----------------------------------------------------------------------===// 1454 1455 namespace { 1456 1457 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1458 /// which holds actual Value*'s for register values. 1459 struct ExtAddrMode : public TargetLowering::AddrMode { 1460 Value *BaseReg; 1461 Value *ScaledReg; 1462 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1463 void print(raw_ostream &OS) const; 1464 void dump() const; 1465 1466 bool operator==(const ExtAddrMode& O) const { 1467 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1468 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1469 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1470 } 1471 }; 1472 1473 #ifndef NDEBUG 1474 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1475 AM.print(OS); 1476 return OS; 1477 } 1478 #endif 1479 1480 void ExtAddrMode::print(raw_ostream &OS) const { 1481 bool NeedPlus = false; 1482 OS << "["; 1483 if (BaseGV) { 1484 OS << (NeedPlus ? " + " : "") 1485 << "GV:"; 1486 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1487 NeedPlus = true; 1488 } 1489 1490 if (BaseOffs) { 1491 OS << (NeedPlus ? " + " : "") 1492 << BaseOffs; 1493 NeedPlus = true; 1494 } 1495 1496 if (BaseReg) { 1497 OS << (NeedPlus ? " + " : "") 1498 << "Base:"; 1499 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1500 NeedPlus = true; 1501 } 1502 if (Scale) { 1503 OS << (NeedPlus ? " + " : "") 1504 << Scale << "*"; 1505 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1506 } 1507 1508 OS << ']'; 1509 } 1510 1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1512 void ExtAddrMode::dump() const { 1513 print(dbgs()); 1514 dbgs() << '\n'; 1515 } 1516 #endif 1517 1518 /// \brief This class provides transaction based operation on the IR. 1519 /// Every change made through this class is recorded in the internal state and 1520 /// can be undone (rollback) until commit is called. 1521 class TypePromotionTransaction { 1522 1523 /// \brief This represents the common interface of the individual transaction. 1524 /// Each class implements the logic for doing one specific modification on 1525 /// the IR via the TypePromotionTransaction. 1526 class TypePromotionAction { 1527 protected: 1528 /// The Instruction modified. 1529 Instruction *Inst; 1530 1531 public: 1532 /// \brief Constructor of the action. 1533 /// The constructor performs the related action on the IR. 1534 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1535 1536 virtual ~TypePromotionAction() {} 1537 1538 /// \brief Undo the modification done by this action. 1539 /// When this method is called, the IR must be in the same state as it was 1540 /// before this action was applied. 1541 /// \pre Undoing the action works if and only if the IR is in the exact same 1542 /// state as it was directly after this action was applied. 1543 virtual void undo() = 0; 1544 1545 /// \brief Advocate every change made by this action. 1546 /// When the results on the IR of the action are to be kept, it is important 1547 /// to call this function, otherwise hidden information may be kept forever. 1548 virtual void commit() { 1549 // Nothing to be done, this action is not doing anything. 1550 } 1551 }; 1552 1553 /// \brief Utility to remember the position of an instruction. 1554 class InsertionHandler { 1555 /// Position of an instruction. 1556 /// Either an instruction: 1557 /// - Is the first in a basic block: BB is used. 1558 /// - Has a previous instructon: PrevInst is used. 1559 union { 1560 Instruction *PrevInst; 1561 BasicBlock *BB; 1562 } Point; 1563 /// Remember whether or not the instruction had a previous instruction. 1564 bool HasPrevInstruction; 1565 1566 public: 1567 /// \brief Record the position of \p Inst. 1568 InsertionHandler(Instruction *Inst) { 1569 BasicBlock::iterator It = Inst; 1570 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1571 if (HasPrevInstruction) 1572 Point.PrevInst = --It; 1573 else 1574 Point.BB = Inst->getParent(); 1575 } 1576 1577 /// \brief Insert \p Inst at the recorded position. 1578 void insert(Instruction *Inst) { 1579 if (HasPrevInstruction) { 1580 if (Inst->getParent()) 1581 Inst->removeFromParent(); 1582 Inst->insertAfter(Point.PrevInst); 1583 } else { 1584 Instruction *Position = Point.BB->getFirstInsertionPt(); 1585 if (Inst->getParent()) 1586 Inst->moveBefore(Position); 1587 else 1588 Inst->insertBefore(Position); 1589 } 1590 } 1591 }; 1592 1593 /// \brief Move an instruction before another. 1594 class InstructionMoveBefore : public TypePromotionAction { 1595 /// Original position of the instruction. 1596 InsertionHandler Position; 1597 1598 public: 1599 /// \brief Move \p Inst before \p Before. 1600 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1601 : TypePromotionAction(Inst), Position(Inst) { 1602 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1603 Inst->moveBefore(Before); 1604 } 1605 1606 /// \brief Move the instruction back to its original position. 1607 void undo() override { 1608 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1609 Position.insert(Inst); 1610 } 1611 }; 1612 1613 /// \brief Set the operand of an instruction with a new value. 1614 class OperandSetter : public TypePromotionAction { 1615 /// Original operand of the instruction. 1616 Value *Origin; 1617 /// Index of the modified instruction. 1618 unsigned Idx; 1619 1620 public: 1621 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1622 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1623 : TypePromotionAction(Inst), Idx(Idx) { 1624 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1625 << "for:" << *Inst << "\n" 1626 << "with:" << *NewVal << "\n"); 1627 Origin = Inst->getOperand(Idx); 1628 Inst->setOperand(Idx, NewVal); 1629 } 1630 1631 /// \brief Restore the original value of the instruction. 1632 void undo() override { 1633 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1634 << "for: " << *Inst << "\n" 1635 << "with: " << *Origin << "\n"); 1636 Inst->setOperand(Idx, Origin); 1637 } 1638 }; 1639 1640 /// \brief Hide the operands of an instruction. 1641 /// Do as if this instruction was not using any of its operands. 1642 class OperandsHider : public TypePromotionAction { 1643 /// The list of original operands. 1644 SmallVector<Value *, 4> OriginalValues; 1645 1646 public: 1647 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1648 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1649 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1650 unsigned NumOpnds = Inst->getNumOperands(); 1651 OriginalValues.reserve(NumOpnds); 1652 for (unsigned It = 0; It < NumOpnds; ++It) { 1653 // Save the current operand. 1654 Value *Val = Inst->getOperand(It); 1655 OriginalValues.push_back(Val); 1656 // Set a dummy one. 1657 // We could use OperandSetter here, but that would implied an overhead 1658 // that we are not willing to pay. 1659 Inst->setOperand(It, UndefValue::get(Val->getType())); 1660 } 1661 } 1662 1663 /// \brief Restore the original list of uses. 1664 void undo() override { 1665 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1666 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1667 Inst->setOperand(It, OriginalValues[It]); 1668 } 1669 }; 1670 1671 /// \brief Build a truncate instruction. 1672 class TruncBuilder : public TypePromotionAction { 1673 Value *Val; 1674 public: 1675 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1676 /// result. 1677 /// trunc Opnd to Ty. 1678 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1679 IRBuilder<> Builder(Opnd); 1680 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1681 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1682 } 1683 1684 /// \brief Get the built value. 1685 Value *getBuiltValue() { return Val; } 1686 1687 /// \brief Remove the built instruction. 1688 void undo() override { 1689 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1690 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1691 IVal->eraseFromParent(); 1692 } 1693 }; 1694 1695 /// \brief Build a sign extension instruction. 1696 class SExtBuilder : public TypePromotionAction { 1697 Value *Val; 1698 public: 1699 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1700 /// result. 1701 /// sext Opnd to Ty. 1702 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1703 : TypePromotionAction(InsertPt) { 1704 IRBuilder<> Builder(InsertPt); 1705 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1706 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1707 } 1708 1709 /// \brief Get the built value. 1710 Value *getBuiltValue() { return Val; } 1711 1712 /// \brief Remove the built instruction. 1713 void undo() override { 1714 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1715 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1716 IVal->eraseFromParent(); 1717 } 1718 }; 1719 1720 /// \brief Build a zero extension instruction. 1721 class ZExtBuilder : public TypePromotionAction { 1722 Value *Val; 1723 public: 1724 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1725 /// result. 1726 /// zext Opnd to Ty. 1727 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1728 : TypePromotionAction(InsertPt) { 1729 IRBuilder<> Builder(InsertPt); 1730 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1731 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1732 } 1733 1734 /// \brief Get the built value. 1735 Value *getBuiltValue() { return Val; } 1736 1737 /// \brief Remove the built instruction. 1738 void undo() override { 1739 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1740 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1741 IVal->eraseFromParent(); 1742 } 1743 }; 1744 1745 /// \brief Mutate an instruction to another type. 1746 class TypeMutator : public TypePromotionAction { 1747 /// Record the original type. 1748 Type *OrigTy; 1749 1750 public: 1751 /// \brief Mutate the type of \p Inst into \p NewTy. 1752 TypeMutator(Instruction *Inst, Type *NewTy) 1753 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1754 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1755 << "\n"); 1756 Inst->mutateType(NewTy); 1757 } 1758 1759 /// \brief Mutate the instruction back to its original type. 1760 void undo() override { 1761 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1762 << "\n"); 1763 Inst->mutateType(OrigTy); 1764 } 1765 }; 1766 1767 /// \brief Replace the uses of an instruction by another instruction. 1768 class UsesReplacer : public TypePromotionAction { 1769 /// Helper structure to keep track of the replaced uses. 1770 struct InstructionAndIdx { 1771 /// The instruction using the instruction. 1772 Instruction *Inst; 1773 /// The index where this instruction is used for Inst. 1774 unsigned Idx; 1775 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1776 : Inst(Inst), Idx(Idx) {} 1777 }; 1778 1779 /// Keep track of the original uses (pair Instruction, Index). 1780 SmallVector<InstructionAndIdx, 4> OriginalUses; 1781 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1782 1783 public: 1784 /// \brief Replace all the use of \p Inst by \p New. 1785 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1786 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1787 << "\n"); 1788 // Record the original uses. 1789 for (Use &U : Inst->uses()) { 1790 Instruction *UserI = cast<Instruction>(U.getUser()); 1791 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1792 } 1793 // Now, we can replace the uses. 1794 Inst->replaceAllUsesWith(New); 1795 } 1796 1797 /// \brief Reassign the original uses of Inst to Inst. 1798 void undo() override { 1799 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1800 for (use_iterator UseIt = OriginalUses.begin(), 1801 EndIt = OriginalUses.end(); 1802 UseIt != EndIt; ++UseIt) { 1803 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1804 } 1805 } 1806 }; 1807 1808 /// \brief Remove an instruction from the IR. 1809 class InstructionRemover : public TypePromotionAction { 1810 /// Original position of the instruction. 1811 InsertionHandler Inserter; 1812 /// Helper structure to hide all the link to the instruction. In other 1813 /// words, this helps to do as if the instruction was removed. 1814 OperandsHider Hider; 1815 /// Keep track of the uses replaced, if any. 1816 UsesReplacer *Replacer; 1817 1818 public: 1819 /// \brief Remove all reference of \p Inst and optinally replace all its 1820 /// uses with New. 1821 /// \pre If !Inst->use_empty(), then New != nullptr 1822 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1823 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1824 Replacer(nullptr) { 1825 if (New) 1826 Replacer = new UsesReplacer(Inst, New); 1827 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1828 Inst->removeFromParent(); 1829 } 1830 1831 ~InstructionRemover() { delete Replacer; } 1832 1833 /// \brief Really remove the instruction. 1834 void commit() override { delete Inst; } 1835 1836 /// \brief Resurrect the instruction and reassign it to the proper uses if 1837 /// new value was provided when build this action. 1838 void undo() override { 1839 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1840 Inserter.insert(Inst); 1841 if (Replacer) 1842 Replacer->undo(); 1843 Hider.undo(); 1844 } 1845 }; 1846 1847 public: 1848 /// Restoration point. 1849 /// The restoration point is a pointer to an action instead of an iterator 1850 /// because the iterator may be invalidated but not the pointer. 1851 typedef const TypePromotionAction *ConstRestorationPt; 1852 /// Advocate every changes made in that transaction. 1853 void commit(); 1854 /// Undo all the changes made after the given point. 1855 void rollback(ConstRestorationPt Point); 1856 /// Get the current restoration point. 1857 ConstRestorationPt getRestorationPoint() const; 1858 1859 /// \name API for IR modification with state keeping to support rollback. 1860 /// @{ 1861 /// Same as Instruction::setOperand. 1862 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1863 /// Same as Instruction::eraseFromParent. 1864 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1865 /// Same as Value::replaceAllUsesWith. 1866 void replaceAllUsesWith(Instruction *Inst, Value *New); 1867 /// Same as Value::mutateType. 1868 void mutateType(Instruction *Inst, Type *NewTy); 1869 /// Same as IRBuilder::createTrunc. 1870 Value *createTrunc(Instruction *Opnd, Type *Ty); 1871 /// Same as IRBuilder::createSExt. 1872 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1873 /// Same as IRBuilder::createZExt. 1874 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1875 /// Same as Instruction::moveBefore. 1876 void moveBefore(Instruction *Inst, Instruction *Before); 1877 /// @} 1878 1879 private: 1880 /// The ordered list of actions made so far. 1881 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1882 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1883 }; 1884 1885 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1886 Value *NewVal) { 1887 Actions.push_back( 1888 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1889 } 1890 1891 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1892 Value *NewVal) { 1893 Actions.push_back( 1894 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1895 } 1896 1897 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1898 Value *New) { 1899 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1900 } 1901 1902 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1903 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1904 } 1905 1906 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1907 Type *Ty) { 1908 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1909 Value *Val = Ptr->getBuiltValue(); 1910 Actions.push_back(std::move(Ptr)); 1911 return Val; 1912 } 1913 1914 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1915 Value *Opnd, Type *Ty) { 1916 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1917 Value *Val = Ptr->getBuiltValue(); 1918 Actions.push_back(std::move(Ptr)); 1919 return Val; 1920 } 1921 1922 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1923 Value *Opnd, Type *Ty) { 1924 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1925 Value *Val = Ptr->getBuiltValue(); 1926 Actions.push_back(std::move(Ptr)); 1927 return Val; 1928 } 1929 1930 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1931 Instruction *Before) { 1932 Actions.push_back( 1933 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1934 } 1935 1936 TypePromotionTransaction::ConstRestorationPt 1937 TypePromotionTransaction::getRestorationPoint() const { 1938 return !Actions.empty() ? Actions.back().get() : nullptr; 1939 } 1940 1941 void TypePromotionTransaction::commit() { 1942 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1943 ++It) 1944 (*It)->commit(); 1945 Actions.clear(); 1946 } 1947 1948 void TypePromotionTransaction::rollback( 1949 TypePromotionTransaction::ConstRestorationPt Point) { 1950 while (!Actions.empty() && Point != Actions.back().get()) { 1951 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1952 Curr->undo(); 1953 } 1954 } 1955 1956 /// \brief A helper class for matching addressing modes. 1957 /// 1958 /// This encapsulates the logic for matching the target-legal addressing modes. 1959 class AddressingModeMatcher { 1960 SmallVectorImpl<Instruction*> &AddrModeInsts; 1961 const TargetMachine &TM; 1962 const TargetLowering &TLI; 1963 1964 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1965 /// the memory instruction that we're computing this address for. 1966 Type *AccessTy; 1967 Instruction *MemoryInst; 1968 1969 /// AddrMode - This is the addressing mode that we're building up. This is 1970 /// part of the return value of this addressing mode matching stuff. 1971 ExtAddrMode &AddrMode; 1972 1973 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1974 const SetOfInstrs &InsertedTruncs; 1975 /// A map from the instructions to their type before promotion. 1976 InstrToOrigTy &PromotedInsts; 1977 /// The ongoing transaction where every action should be registered. 1978 TypePromotionTransaction &TPT; 1979 1980 /// IgnoreProfitability - This is set to true when we should not do 1981 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1982 /// always returns true. 1983 bool IgnoreProfitability; 1984 1985 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 1986 const TargetMachine &TM, Type *AT, Instruction *MI, 1987 ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs, 1988 InstrToOrigTy &PromotedInsts, 1989 TypePromotionTransaction &TPT) 1990 : AddrModeInsts(AMI), TM(TM), 1991 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 1992 ->getTargetLowering()), 1993 AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1994 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1995 IgnoreProfitability = false; 1996 } 1997 public: 1998 1999 /// Match - Find the maximal addressing mode that a load/store of V can fold, 2000 /// give an access type of AccessTy. This returns a list of involved 2001 /// instructions in AddrModeInsts. 2002 /// \p InsertedTruncs The truncate instruction inserted by other 2003 /// CodeGenPrepare 2004 /// optimizations. 2005 /// \p PromotedInsts maps the instructions to their type before promotion. 2006 /// \p The ongoing transaction where every action should be registered. 2007 static ExtAddrMode Match(Value *V, Type *AccessTy, 2008 Instruction *MemoryInst, 2009 SmallVectorImpl<Instruction*> &AddrModeInsts, 2010 const TargetMachine &TM, 2011 const SetOfInstrs &InsertedTruncs, 2012 InstrToOrigTy &PromotedInsts, 2013 TypePromotionTransaction &TPT) { 2014 ExtAddrMode Result; 2015 2016 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, 2017 MemoryInst, Result, InsertedTruncs, 2018 PromotedInsts, TPT).MatchAddr(V, 0); 2019 (void)Success; assert(Success && "Couldn't select *anything*?"); 2020 return Result; 2021 } 2022 private: 2023 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2024 bool MatchAddr(Value *V, unsigned Depth); 2025 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2026 bool *MovedAway = nullptr); 2027 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2028 ExtAddrMode &AMBefore, 2029 ExtAddrMode &AMAfter); 2030 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2031 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 2032 Value *PromotedOperand) const; 2033 }; 2034 2035 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2036 /// Return true and update AddrMode if this addr mode is legal for the target, 2037 /// false if not. 2038 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2039 unsigned Depth) { 2040 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2041 // mode. Just process that directly. 2042 if (Scale == 1) 2043 return MatchAddr(ScaleReg, Depth); 2044 2045 // If the scale is 0, it takes nothing to add this. 2046 if (Scale == 0) 2047 return true; 2048 2049 // If we already have a scale of this value, we can add to it, otherwise, we 2050 // need an available scale field. 2051 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2052 return false; 2053 2054 ExtAddrMode TestAddrMode = AddrMode; 2055 2056 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2057 // [A+B + A*7] -> [B+A*8]. 2058 TestAddrMode.Scale += Scale; 2059 TestAddrMode.ScaledReg = ScaleReg; 2060 2061 // If the new address isn't legal, bail out. 2062 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 2063 return false; 2064 2065 // It was legal, so commit it. 2066 AddrMode = TestAddrMode; 2067 2068 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2069 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2070 // X*Scale + C*Scale to addr mode. 2071 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2072 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2073 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2074 TestAddrMode.ScaledReg = AddLHS; 2075 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2076 2077 // If this addressing mode is legal, commit it and remember that we folded 2078 // this instruction. 2079 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 2080 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2081 AddrMode = TestAddrMode; 2082 return true; 2083 } 2084 } 2085 2086 // Otherwise, not (x+c)*scale, just return what we have. 2087 return true; 2088 } 2089 2090 /// MightBeFoldableInst - This is a little filter, which returns true if an 2091 /// addressing computation involving I might be folded into a load/store 2092 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2093 /// the set of instructions that MatchOperationAddr can. 2094 static bool MightBeFoldableInst(Instruction *I) { 2095 switch (I->getOpcode()) { 2096 case Instruction::BitCast: 2097 case Instruction::AddrSpaceCast: 2098 // Don't touch identity bitcasts. 2099 if (I->getType() == I->getOperand(0)->getType()) 2100 return false; 2101 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2102 case Instruction::PtrToInt: 2103 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2104 return true; 2105 case Instruction::IntToPtr: 2106 // We know the input is intptr_t, so this is foldable. 2107 return true; 2108 case Instruction::Add: 2109 return true; 2110 case Instruction::Mul: 2111 case Instruction::Shl: 2112 // Can only handle X*C and X << C. 2113 return isa<ConstantInt>(I->getOperand(1)); 2114 case Instruction::GetElementPtr: 2115 return true; 2116 default: 2117 return false; 2118 } 2119 } 2120 2121 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2122 /// \note \p Val is assumed to be the product of some type promotion. 2123 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2124 /// to be legal, as the non-promoted value would have had the same state. 2125 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 2126 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2127 if (!PromotedInst) 2128 return false; 2129 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2130 // If the ISDOpcode is undefined, it was undefined before the promotion. 2131 if (!ISDOpcode) 2132 return true; 2133 // Otherwise, check if the promoted instruction is legal or not. 2134 return TLI.isOperationLegalOrCustom( 2135 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 2136 } 2137 2138 /// \brief Hepler class to perform type promotion. 2139 class TypePromotionHelper { 2140 /// \brief Utility function to check whether or not a sign or zero extension 2141 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2142 /// either using the operands of \p Inst or promoting \p Inst. 2143 /// The type of the extension is defined by \p IsSExt. 2144 /// In other words, check if: 2145 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2146 /// #1 Promotion applies: 2147 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2148 /// #2 Operand reuses: 2149 /// ext opnd1 to ConsideredExtType. 2150 /// \p PromotedInsts maps the instructions to their type before promotion. 2151 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2152 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2153 2154 /// \brief Utility function to determine if \p OpIdx should be promoted when 2155 /// promoting \p Inst. 2156 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2157 if (isa<SelectInst>(Inst) && OpIdx == 0) 2158 return false; 2159 return true; 2160 } 2161 2162 /// \brief Utility function to promote the operand of \p Ext when this 2163 /// operand is a promotable trunc or sext or zext. 2164 /// \p PromotedInsts maps the instructions to their type before promotion. 2165 /// \p CreatedInsts[out] contains how many non-free instructions have been 2166 /// created to promote the operand of Ext. 2167 /// Newly added extensions are inserted in \p Exts. 2168 /// Newly added truncates are inserted in \p Truncs. 2169 /// Should never be called directly. 2170 /// \return The promoted value which is used instead of Ext. 2171 static Value *promoteOperandForTruncAndAnyExt( 2172 Instruction *Ext, TypePromotionTransaction &TPT, 2173 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2174 SmallVectorImpl<Instruction *> *Exts, 2175 SmallVectorImpl<Instruction *> *Truncs); 2176 2177 /// \brief Utility function to promote the operand of \p Ext when this 2178 /// operand is promotable and is not a supported trunc or sext. 2179 /// \p PromotedInsts maps the instructions to their type before promotion. 2180 /// \p CreatedInsts[out] contains how many non-free instructions have been 2181 /// created to promote the operand of Ext. 2182 /// Newly added extensions are inserted in \p Exts. 2183 /// Newly added truncates are inserted in \p Truncs. 2184 /// Should never be called directly. 2185 /// \return The promoted value which is used instead of Ext. 2186 static Value * 2187 promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2188 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2189 SmallVectorImpl<Instruction *> *Exts, 2190 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt); 2191 2192 /// \see promoteOperandForOther. 2193 static Value * 2194 signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2195 InstrToOrigTy &PromotedInsts, 2196 unsigned &CreatedInsts, 2197 SmallVectorImpl<Instruction *> *Exts, 2198 SmallVectorImpl<Instruction *> *Truncs) { 2199 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2200 Truncs, true); 2201 } 2202 2203 /// \see promoteOperandForOther. 2204 static Value * 2205 zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2206 InstrToOrigTy &PromotedInsts, 2207 unsigned &CreatedInsts, 2208 SmallVectorImpl<Instruction *> *Exts, 2209 SmallVectorImpl<Instruction *> *Truncs) { 2210 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2211 Truncs, false); 2212 } 2213 2214 public: 2215 /// Type for the utility function that promotes the operand of Ext. 2216 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2217 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2218 SmallVectorImpl<Instruction *> *Exts, 2219 SmallVectorImpl<Instruction *> *Truncs); 2220 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2221 /// action to promote the operand of \p Ext instead of using Ext. 2222 /// \return NULL if no promotable action is possible with the current 2223 /// sign extension. 2224 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2225 /// the others CodeGenPrepare optimizations. This information is important 2226 /// because we do not want to promote these instructions as CodeGenPrepare 2227 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2228 /// \p PromotedInsts maps the instructions to their type before promotion. 2229 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2230 const TargetLowering &TLI, 2231 const InstrToOrigTy &PromotedInsts); 2232 }; 2233 2234 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2235 Type *ConsideredExtType, 2236 const InstrToOrigTy &PromotedInsts, 2237 bool IsSExt) { 2238 // The promotion helper does not know how to deal with vector types yet. 2239 // To be able to fix that, we would need to fix the places where we 2240 // statically extend, e.g., constants and such. 2241 if (Inst->getType()->isVectorTy()) 2242 return false; 2243 2244 // We can always get through zext. 2245 if (isa<ZExtInst>(Inst)) 2246 return true; 2247 2248 // sext(sext) is ok too. 2249 if (IsSExt && isa<SExtInst>(Inst)) 2250 return true; 2251 2252 // We can get through binary operator, if it is legal. In other words, the 2253 // binary operator must have a nuw or nsw flag. 2254 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2255 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2256 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2257 (IsSExt && BinOp->hasNoSignedWrap()))) 2258 return true; 2259 2260 // Check if we can do the following simplification. 2261 // ext(trunc(opnd)) --> ext(opnd) 2262 if (!isa<TruncInst>(Inst)) 2263 return false; 2264 2265 Value *OpndVal = Inst->getOperand(0); 2266 // Check if we can use this operand in the extension. 2267 // If the type is larger than the result type of the extension, 2268 // we cannot. 2269 if (!OpndVal->getType()->isIntegerTy() || 2270 OpndVal->getType()->getIntegerBitWidth() > 2271 ConsideredExtType->getIntegerBitWidth()) 2272 return false; 2273 2274 // If the operand of the truncate is not an instruction, we will not have 2275 // any information on the dropped bits. 2276 // (Actually we could for constant but it is not worth the extra logic). 2277 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2278 if (!Opnd) 2279 return false; 2280 2281 // Check if the source of the type is narrow enough. 2282 // I.e., check that trunc just drops extended bits of the same kind of 2283 // the extension. 2284 // #1 get the type of the operand and check the kind of the extended bits. 2285 const Type *OpndType; 2286 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2287 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2288 OpndType = It->second.Ty; 2289 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2290 OpndType = Opnd->getOperand(0)->getType(); 2291 else 2292 return false; 2293 2294 // #2 check that the truncate just drop extended bits. 2295 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2296 return true; 2297 2298 return false; 2299 } 2300 2301 TypePromotionHelper::Action TypePromotionHelper::getAction( 2302 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2303 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2304 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2305 "Unexpected instruction type"); 2306 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2307 Type *ExtTy = Ext->getType(); 2308 bool IsSExt = isa<SExtInst>(Ext); 2309 // If the operand of the extension is not an instruction, we cannot 2310 // get through. 2311 // If it, check we can get through. 2312 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2313 return nullptr; 2314 2315 // Do not promote if the operand has been added by codegenprepare. 2316 // Otherwise, it means we are undoing an optimization that is likely to be 2317 // redone, thus causing potential infinite loop. 2318 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2319 return nullptr; 2320 2321 // SExt or Trunc instructions. 2322 // Return the related handler. 2323 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2324 isa<ZExtInst>(ExtOpnd)) 2325 return promoteOperandForTruncAndAnyExt; 2326 2327 // Regular instruction. 2328 // Abort early if we will have to insert non-free instructions. 2329 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2330 return nullptr; 2331 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2332 } 2333 2334 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2335 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2336 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2337 SmallVectorImpl<Instruction *> *Exts, 2338 SmallVectorImpl<Instruction *> *Truncs) { 2339 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2340 // get through it and this method should not be called. 2341 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2342 Value *ExtVal = SExt; 2343 if (isa<ZExtInst>(SExtOpnd)) { 2344 // Replace s|zext(zext(opnd)) 2345 // => zext(opnd). 2346 Value *ZExt = 2347 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2348 TPT.replaceAllUsesWith(SExt, ZExt); 2349 TPT.eraseInstruction(SExt); 2350 ExtVal = ZExt; 2351 } else { 2352 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2353 // => z|sext(opnd). 2354 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2355 } 2356 CreatedInsts = 0; 2357 2358 // Remove dead code. 2359 if (SExtOpnd->use_empty()) 2360 TPT.eraseInstruction(SExtOpnd); 2361 2362 // Check if the extension is still needed. 2363 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2364 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2365 if (ExtInst && Exts) 2366 Exts->push_back(ExtInst); 2367 return ExtVal; 2368 } 2369 2370 // At this point we have: ext ty opnd to ty. 2371 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2372 Value *NextVal = ExtInst->getOperand(0); 2373 TPT.eraseInstruction(ExtInst, NextVal); 2374 return NextVal; 2375 } 2376 2377 Value *TypePromotionHelper::promoteOperandForOther( 2378 Instruction *Ext, TypePromotionTransaction &TPT, 2379 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2380 SmallVectorImpl<Instruction *> *Exts, 2381 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) { 2382 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2383 // get through it and this method should not be called. 2384 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2385 CreatedInsts = 0; 2386 if (!ExtOpnd->hasOneUse()) { 2387 // ExtOpnd will be promoted. 2388 // All its uses, but Ext, will need to use a truncated value of the 2389 // promoted version. 2390 // Create the truncate now. 2391 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2392 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2393 ITrunc->removeFromParent(); 2394 // Insert it just after the definition. 2395 ITrunc->insertAfter(ExtOpnd); 2396 if (Truncs) 2397 Truncs->push_back(ITrunc); 2398 } 2399 2400 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2401 // Restore the operand of Ext (which has been replace by the previous call 2402 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2403 TPT.setOperand(Ext, 0, ExtOpnd); 2404 } 2405 2406 // Get through the Instruction: 2407 // 1. Update its type. 2408 // 2. Replace the uses of Ext by Inst. 2409 // 3. Extend each operand that needs to be extended. 2410 2411 // Remember the original type of the instruction before promotion. 2412 // This is useful to know that the high bits are sign extended bits. 2413 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2414 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2415 // Step #1. 2416 TPT.mutateType(ExtOpnd, Ext->getType()); 2417 // Step #2. 2418 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2419 // Step #3. 2420 Instruction *ExtForOpnd = Ext; 2421 2422 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2423 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2424 ++OpIdx) { 2425 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2426 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2427 !shouldExtOperand(ExtOpnd, OpIdx)) { 2428 DEBUG(dbgs() << "No need to propagate\n"); 2429 continue; 2430 } 2431 // Check if we can statically extend the operand. 2432 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2433 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2434 DEBUG(dbgs() << "Statically extend\n"); 2435 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2436 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2437 : Cst->getValue().zext(BitWidth); 2438 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2439 continue; 2440 } 2441 // UndefValue are typed, so we have to statically sign extend them. 2442 if (isa<UndefValue>(Opnd)) { 2443 DEBUG(dbgs() << "Statically extend\n"); 2444 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2445 continue; 2446 } 2447 2448 // Otherwise we have to explicity sign extend the operand. 2449 // Check if Ext was reused to extend an operand. 2450 if (!ExtForOpnd) { 2451 // If yes, create a new one. 2452 DEBUG(dbgs() << "More operands to ext\n"); 2453 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2454 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2455 if (!isa<Instruction>(ValForExtOpnd)) { 2456 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2457 continue; 2458 } 2459 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2460 ++CreatedInsts; 2461 } 2462 if (Exts) 2463 Exts->push_back(ExtForOpnd); 2464 TPT.setOperand(ExtForOpnd, 0, Opnd); 2465 2466 // Move the sign extension before the insertion point. 2467 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2468 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2469 // If more sext are required, new instructions will have to be created. 2470 ExtForOpnd = nullptr; 2471 } 2472 if (ExtForOpnd == Ext) { 2473 DEBUG(dbgs() << "Extension is useless now\n"); 2474 TPT.eraseInstruction(Ext); 2475 } 2476 return ExtOpnd; 2477 } 2478 2479 /// IsPromotionProfitable - Check whether or not promoting an instruction 2480 /// to a wider type was profitable. 2481 /// \p MatchedSize gives the number of instructions that have been matched 2482 /// in the addressing mode after the promotion was applied. 2483 /// \p SizeWithPromotion gives the number of created instructions for 2484 /// the promotion plus the number of instructions that have been 2485 /// matched in the addressing mode before the promotion. 2486 /// \p PromotedOperand is the value that has been promoted. 2487 /// \return True if the promotion is profitable, false otherwise. 2488 bool 2489 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 2490 unsigned SizeWithPromotion, 2491 Value *PromotedOperand) const { 2492 // We folded less instructions than what we created to promote the operand. 2493 // This is not profitable. 2494 if (MatchedSize < SizeWithPromotion) 2495 return false; 2496 if (MatchedSize > SizeWithPromotion) 2497 return true; 2498 // The promotion is neutral but it may help folding the sign extension in 2499 // loads for instance. 2500 // Check that we did not create an illegal instruction. 2501 return isPromotedInstructionLegal(TLI, PromotedOperand); 2502 } 2503 2504 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2505 /// fold the operation into the addressing mode. If so, update the addressing 2506 /// mode and return true, otherwise return false without modifying AddrMode. 2507 /// If \p MovedAway is not NULL, it contains the information of whether or 2508 /// not AddrInst has to be folded into the addressing mode on success. 2509 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2510 /// because it has been moved away. 2511 /// Thus AddrInst must not be added in the matched instructions. 2512 /// This state can happen when AddrInst is a sext, since it may be moved away. 2513 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2514 /// not be referenced anymore. 2515 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2516 unsigned Depth, 2517 bool *MovedAway) { 2518 // Avoid exponential behavior on extremely deep expression trees. 2519 if (Depth >= 5) return false; 2520 2521 // By default, all matched instructions stay in place. 2522 if (MovedAway) 2523 *MovedAway = false; 2524 2525 switch (Opcode) { 2526 case Instruction::PtrToInt: 2527 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2528 return MatchAddr(AddrInst->getOperand(0), Depth); 2529 case Instruction::IntToPtr: 2530 // This inttoptr is a no-op if the integer type is pointer sized. 2531 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2532 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2533 return MatchAddr(AddrInst->getOperand(0), Depth); 2534 return false; 2535 case Instruction::BitCast: 2536 case Instruction::AddrSpaceCast: 2537 // BitCast is always a noop, and we can handle it as long as it is 2538 // int->int or pointer->pointer (we don't want int<->fp or something). 2539 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2540 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2541 // Don't touch identity bitcasts. These were probably put here by LSR, 2542 // and we don't want to mess around with them. Assume it knows what it 2543 // is doing. 2544 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2545 return MatchAddr(AddrInst->getOperand(0), Depth); 2546 return false; 2547 case Instruction::Add: { 2548 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2549 ExtAddrMode BackupAddrMode = AddrMode; 2550 unsigned OldSize = AddrModeInsts.size(); 2551 // Start a transaction at this point. 2552 // The LHS may match but not the RHS. 2553 // Therefore, we need a higher level restoration point to undo partially 2554 // matched operation. 2555 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2556 TPT.getRestorationPoint(); 2557 2558 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2559 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2560 return true; 2561 2562 // Restore the old addr mode info. 2563 AddrMode = BackupAddrMode; 2564 AddrModeInsts.resize(OldSize); 2565 TPT.rollback(LastKnownGood); 2566 2567 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2568 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2569 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2570 return true; 2571 2572 // Otherwise we definitely can't merge the ADD in. 2573 AddrMode = BackupAddrMode; 2574 AddrModeInsts.resize(OldSize); 2575 TPT.rollback(LastKnownGood); 2576 break; 2577 } 2578 //case Instruction::Or: 2579 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2580 //break; 2581 case Instruction::Mul: 2582 case Instruction::Shl: { 2583 // Can only handle X*C and X << C. 2584 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2585 if (!RHS) 2586 return false; 2587 int64_t Scale = RHS->getSExtValue(); 2588 if (Opcode == Instruction::Shl) 2589 Scale = 1LL << Scale; 2590 2591 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2592 } 2593 case Instruction::GetElementPtr: { 2594 // Scan the GEP. We check it if it contains constant offsets and at most 2595 // one variable offset. 2596 int VariableOperand = -1; 2597 unsigned VariableScale = 0; 2598 2599 int64_t ConstantOffset = 0; 2600 const DataLayout *TD = TLI.getDataLayout(); 2601 gep_type_iterator GTI = gep_type_begin(AddrInst); 2602 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2603 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2604 const StructLayout *SL = TD->getStructLayout(STy); 2605 unsigned Idx = 2606 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2607 ConstantOffset += SL->getElementOffset(Idx); 2608 } else { 2609 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2610 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2611 ConstantOffset += CI->getSExtValue()*TypeSize; 2612 } else if (TypeSize) { // Scales of zero don't do anything. 2613 // We only allow one variable index at the moment. 2614 if (VariableOperand != -1) 2615 return false; 2616 2617 // Remember the variable index. 2618 VariableOperand = i; 2619 VariableScale = TypeSize; 2620 } 2621 } 2622 } 2623 2624 // A common case is for the GEP to only do a constant offset. In this case, 2625 // just add it to the disp field and check validity. 2626 if (VariableOperand == -1) { 2627 AddrMode.BaseOffs += ConstantOffset; 2628 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2629 // Check to see if we can fold the base pointer in too. 2630 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2631 return true; 2632 } 2633 AddrMode.BaseOffs -= ConstantOffset; 2634 return false; 2635 } 2636 2637 // Save the valid addressing mode in case we can't match. 2638 ExtAddrMode BackupAddrMode = AddrMode; 2639 unsigned OldSize = AddrModeInsts.size(); 2640 2641 // See if the scale and offset amount is valid for this target. 2642 AddrMode.BaseOffs += ConstantOffset; 2643 2644 // Match the base operand of the GEP. 2645 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2646 // If it couldn't be matched, just stuff the value in a register. 2647 if (AddrMode.HasBaseReg) { 2648 AddrMode = BackupAddrMode; 2649 AddrModeInsts.resize(OldSize); 2650 return false; 2651 } 2652 AddrMode.HasBaseReg = true; 2653 AddrMode.BaseReg = AddrInst->getOperand(0); 2654 } 2655 2656 // Match the remaining variable portion of the GEP. 2657 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2658 Depth)) { 2659 // If it couldn't be matched, try stuffing the base into a register 2660 // instead of matching it, and retrying the match of the scale. 2661 AddrMode = BackupAddrMode; 2662 AddrModeInsts.resize(OldSize); 2663 if (AddrMode.HasBaseReg) 2664 return false; 2665 AddrMode.HasBaseReg = true; 2666 AddrMode.BaseReg = AddrInst->getOperand(0); 2667 AddrMode.BaseOffs += ConstantOffset; 2668 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2669 VariableScale, Depth)) { 2670 // If even that didn't work, bail. 2671 AddrMode = BackupAddrMode; 2672 AddrModeInsts.resize(OldSize); 2673 return false; 2674 } 2675 } 2676 2677 return true; 2678 } 2679 case Instruction::SExt: 2680 case Instruction::ZExt: { 2681 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2682 if (!Ext) 2683 return false; 2684 2685 // Try to move this ext out of the way of the addressing mode. 2686 // Ask for a method for doing so. 2687 TypePromotionHelper::Action TPH = 2688 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2689 if (!TPH) 2690 return false; 2691 2692 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2693 TPT.getRestorationPoint(); 2694 unsigned CreatedInsts = 0; 2695 Value *PromotedOperand = 2696 TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); 2697 // SExt has been moved away. 2698 // Thus either it will be rematched later in the recursive calls or it is 2699 // gone. Anyway, we must not fold it into the addressing mode at this point. 2700 // E.g., 2701 // op = add opnd, 1 2702 // idx = ext op 2703 // addr = gep base, idx 2704 // is now: 2705 // promotedOpnd = ext opnd <- no match here 2706 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2707 // addr = gep base, op <- match 2708 if (MovedAway) 2709 *MovedAway = true; 2710 2711 assert(PromotedOperand && 2712 "TypePromotionHelper should have filtered out those cases"); 2713 2714 ExtAddrMode BackupAddrMode = AddrMode; 2715 unsigned OldSize = AddrModeInsts.size(); 2716 2717 if (!MatchAddr(PromotedOperand, Depth) || 2718 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2719 PromotedOperand)) { 2720 AddrMode = BackupAddrMode; 2721 AddrModeInsts.resize(OldSize); 2722 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2723 TPT.rollback(LastKnownGood); 2724 return false; 2725 } 2726 return true; 2727 } 2728 } 2729 return false; 2730 } 2731 2732 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2733 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2734 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2735 /// or intptr_t for the target. 2736 /// 2737 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2738 // Start a transaction at this point that we will rollback if the matching 2739 // fails. 2740 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2741 TPT.getRestorationPoint(); 2742 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2743 // Fold in immediates if legal for the target. 2744 AddrMode.BaseOffs += CI->getSExtValue(); 2745 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2746 return true; 2747 AddrMode.BaseOffs -= CI->getSExtValue(); 2748 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2749 // If this is a global variable, try to fold it into the addressing mode. 2750 if (!AddrMode.BaseGV) { 2751 AddrMode.BaseGV = GV; 2752 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2753 return true; 2754 AddrMode.BaseGV = nullptr; 2755 } 2756 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2757 ExtAddrMode BackupAddrMode = AddrMode; 2758 unsigned OldSize = AddrModeInsts.size(); 2759 2760 // Check to see if it is possible to fold this operation. 2761 bool MovedAway = false; 2762 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2763 // This instruction may have been move away. If so, there is nothing 2764 // to check here. 2765 if (MovedAway) 2766 return true; 2767 // Okay, it's possible to fold this. Check to see if it is actually 2768 // *profitable* to do so. We use a simple cost model to avoid increasing 2769 // register pressure too much. 2770 if (I->hasOneUse() || 2771 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2772 AddrModeInsts.push_back(I); 2773 return true; 2774 } 2775 2776 // It isn't profitable to do this, roll back. 2777 //cerr << "NOT FOLDING: " << *I; 2778 AddrMode = BackupAddrMode; 2779 AddrModeInsts.resize(OldSize); 2780 TPT.rollback(LastKnownGood); 2781 } 2782 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2783 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2784 return true; 2785 TPT.rollback(LastKnownGood); 2786 } else if (isa<ConstantPointerNull>(Addr)) { 2787 // Null pointer gets folded without affecting the addressing mode. 2788 return true; 2789 } 2790 2791 // Worse case, the target should support [reg] addressing modes. :) 2792 if (!AddrMode.HasBaseReg) { 2793 AddrMode.HasBaseReg = true; 2794 AddrMode.BaseReg = Addr; 2795 // Still check for legality in case the target supports [imm] but not [i+r]. 2796 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2797 return true; 2798 AddrMode.HasBaseReg = false; 2799 AddrMode.BaseReg = nullptr; 2800 } 2801 2802 // If the base register is already taken, see if we can do [r+r]. 2803 if (AddrMode.Scale == 0) { 2804 AddrMode.Scale = 1; 2805 AddrMode.ScaledReg = Addr; 2806 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2807 return true; 2808 AddrMode.Scale = 0; 2809 AddrMode.ScaledReg = nullptr; 2810 } 2811 // Couldn't match. 2812 TPT.rollback(LastKnownGood); 2813 return false; 2814 } 2815 2816 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2817 /// inline asm call are due to memory operands. If so, return true, otherwise 2818 /// return false. 2819 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2820 const TargetMachine &TM) { 2821 const Function *F = CI->getParent()->getParent(); 2822 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2823 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2824 TargetLowering::AsmOperandInfoVector TargetConstraints = 2825 TLI->ParseConstraints(TRI, ImmutableCallSite(CI)); 2826 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2827 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2828 2829 // Compute the constraint code and ConstraintType to use. 2830 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2831 2832 // If this asm operand is our Value*, and if it isn't an indirect memory 2833 // operand, we can't fold it! 2834 if (OpInfo.CallOperandVal == OpVal && 2835 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2836 !OpInfo.isIndirect)) 2837 return false; 2838 } 2839 2840 return true; 2841 } 2842 2843 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2844 /// memory use. If we find an obviously non-foldable instruction, return true. 2845 /// Add the ultimately found memory instructions to MemoryUses. 2846 static bool FindAllMemoryUses( 2847 Instruction *I, 2848 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 2849 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 2850 // If we already considered this instruction, we're done. 2851 if (!ConsideredInsts.insert(I).second) 2852 return false; 2853 2854 // If this is an obviously unfoldable instruction, bail out. 2855 if (!MightBeFoldableInst(I)) 2856 return true; 2857 2858 // Loop over all the uses, recursively processing them. 2859 for (Use &U : I->uses()) { 2860 Instruction *UserI = cast<Instruction>(U.getUser()); 2861 2862 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2863 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2864 continue; 2865 } 2866 2867 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2868 unsigned opNo = U.getOperandNo(); 2869 if (opNo == 0) return true; // Storing addr, not into addr. 2870 MemoryUses.push_back(std::make_pair(SI, opNo)); 2871 continue; 2872 } 2873 2874 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2875 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2876 if (!IA) return true; 2877 2878 // If this is a memory operand, we're cool, otherwise bail out. 2879 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 2880 return true; 2881 continue; 2882 } 2883 2884 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 2885 return true; 2886 } 2887 2888 return false; 2889 } 2890 2891 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2892 /// the use site that we're folding it into. If so, there is no cost to 2893 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2894 /// that we know are live at the instruction already. 2895 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2896 Value *KnownLive2) { 2897 // If Val is either of the known-live values, we know it is live! 2898 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2899 return true; 2900 2901 // All values other than instructions and arguments (e.g. constants) are live. 2902 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2903 2904 // If Val is a constant sized alloca in the entry block, it is live, this is 2905 // true because it is just a reference to the stack/frame pointer, which is 2906 // live for the whole function. 2907 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2908 if (AI->isStaticAlloca()) 2909 return true; 2910 2911 // Check to see if this value is already used in the memory instruction's 2912 // block. If so, it's already live into the block at the very least, so we 2913 // can reasonably fold it. 2914 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2915 } 2916 2917 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2918 /// mode of the machine to fold the specified instruction into a load or store 2919 /// that ultimately uses it. However, the specified instruction has multiple 2920 /// uses. Given this, it may actually increase register pressure to fold it 2921 /// into the load. For example, consider this code: 2922 /// 2923 /// X = ... 2924 /// Y = X+1 2925 /// use(Y) -> nonload/store 2926 /// Z = Y+1 2927 /// load Z 2928 /// 2929 /// In this case, Y has multiple uses, and can be folded into the load of Z 2930 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2931 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2932 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2933 /// number of computations either. 2934 /// 2935 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2936 /// X was live across 'load Z' for other reasons, we actually *would* want to 2937 /// fold the addressing mode in the Z case. This would make Y die earlier. 2938 bool AddressingModeMatcher:: 2939 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2940 ExtAddrMode &AMAfter) { 2941 if (IgnoreProfitability) return true; 2942 2943 // AMBefore is the addressing mode before this instruction was folded into it, 2944 // and AMAfter is the addressing mode after the instruction was folded. Get 2945 // the set of registers referenced by AMAfter and subtract out those 2946 // referenced by AMBefore: this is the set of values which folding in this 2947 // address extends the lifetime of. 2948 // 2949 // Note that there are only two potential values being referenced here, 2950 // BaseReg and ScaleReg (global addresses are always available, as are any 2951 // folded immediates). 2952 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2953 2954 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2955 // lifetime wasn't extended by adding this instruction. 2956 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2957 BaseReg = nullptr; 2958 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2959 ScaledReg = nullptr; 2960 2961 // If folding this instruction (and it's subexprs) didn't extend any live 2962 // ranges, we're ok with it. 2963 if (!BaseReg && !ScaledReg) 2964 return true; 2965 2966 // If all uses of this instruction are ultimately load/store/inlineasm's, 2967 // check to see if their addressing modes will include this instruction. If 2968 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2969 // uses. 2970 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2971 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2972 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 2973 return false; // Has a non-memory, non-foldable use! 2974 2975 // Now that we know that all uses of this instruction are part of a chain of 2976 // computation involving only operations that could theoretically be folded 2977 // into a memory use, loop over each of these uses and see if they could 2978 // *actually* fold the instruction. 2979 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2980 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2981 Instruction *User = MemoryUses[i].first; 2982 unsigned OpNo = MemoryUses[i].second; 2983 2984 // Get the access type of this use. If the use isn't a pointer, we don't 2985 // know what it accesses. 2986 Value *Address = User->getOperand(OpNo); 2987 if (!Address->getType()->isPointerTy()) 2988 return false; 2989 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2990 2991 // Do a match against the root of this address, ignoring profitability. This 2992 // will tell us if the addressing mode for the memory operation will 2993 // *actually* cover the shared instruction. 2994 ExtAddrMode Result; 2995 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2996 TPT.getRestorationPoint(); 2997 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, 2998 MemoryInst, Result, InsertedTruncs, 2999 PromotedInsts, TPT); 3000 Matcher.IgnoreProfitability = true; 3001 bool Success = Matcher.MatchAddr(Address, 0); 3002 (void)Success; assert(Success && "Couldn't select *anything*?"); 3003 3004 // The match was to check the profitability, the changes made are not 3005 // part of the original matcher. Therefore, they should be dropped 3006 // otherwise the original matcher will not present the right state. 3007 TPT.rollback(LastKnownGood); 3008 3009 // If the match didn't cover I, then it won't be shared by it. 3010 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3011 I) == MatchedAddrModeInsts.end()) 3012 return false; 3013 3014 MatchedAddrModeInsts.clear(); 3015 } 3016 3017 return true; 3018 } 3019 3020 } // end anonymous namespace 3021 3022 /// IsNonLocalValue - Return true if the specified values are defined in a 3023 /// different basic block than BB. 3024 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3025 if (Instruction *I = dyn_cast<Instruction>(V)) 3026 return I->getParent() != BB; 3027 return false; 3028 } 3029 3030 /// OptimizeMemoryInst - Load and Store Instructions often have 3031 /// addressing modes that can do significant amounts of computation. As such, 3032 /// instruction selection will try to get the load or store to do as much 3033 /// computation as possible for the program. The problem is that isel can only 3034 /// see within a single block. As such, we sink as much legal addressing mode 3035 /// stuff into the block as possible. 3036 /// 3037 /// This method is used to optimize both load/store and inline asms with memory 3038 /// operands. 3039 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3040 Type *AccessTy) { 3041 Value *Repl = Addr; 3042 3043 // Try to collapse single-value PHI nodes. This is necessary to undo 3044 // unprofitable PRE transformations. 3045 SmallVector<Value*, 8> worklist; 3046 SmallPtrSet<Value*, 16> Visited; 3047 worklist.push_back(Addr); 3048 3049 // Use a worklist to iteratively look through PHI nodes, and ensure that 3050 // the addressing mode obtained from the non-PHI roots of the graph 3051 // are equivalent. 3052 Value *Consensus = nullptr; 3053 unsigned NumUsesConsensus = 0; 3054 bool IsNumUsesConsensusValid = false; 3055 SmallVector<Instruction*, 16> AddrModeInsts; 3056 ExtAddrMode AddrMode; 3057 TypePromotionTransaction TPT; 3058 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3059 TPT.getRestorationPoint(); 3060 while (!worklist.empty()) { 3061 Value *V = worklist.back(); 3062 worklist.pop_back(); 3063 3064 // Break use-def graph loops. 3065 if (!Visited.insert(V).second) { 3066 Consensus = nullptr; 3067 break; 3068 } 3069 3070 // For a PHI node, push all of its incoming values. 3071 if (PHINode *P = dyn_cast<PHINode>(V)) { 3072 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 3073 worklist.push_back(P->getIncomingValue(i)); 3074 continue; 3075 } 3076 3077 // For non-PHIs, determine the addressing mode being computed. 3078 SmallVector<Instruction*, 16> NewAddrModeInsts; 3079 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3080 V, AccessTy, MemoryInst, NewAddrModeInsts, *TM, InsertedTruncsSet, 3081 PromotedInsts, TPT); 3082 3083 // This check is broken into two cases with very similar code to avoid using 3084 // getNumUses() as much as possible. Some values have a lot of uses, so 3085 // calling getNumUses() unconditionally caused a significant compile-time 3086 // regression. 3087 if (!Consensus) { 3088 Consensus = V; 3089 AddrMode = NewAddrMode; 3090 AddrModeInsts = NewAddrModeInsts; 3091 continue; 3092 } else if (NewAddrMode == AddrMode) { 3093 if (!IsNumUsesConsensusValid) { 3094 NumUsesConsensus = Consensus->getNumUses(); 3095 IsNumUsesConsensusValid = true; 3096 } 3097 3098 // Ensure that the obtained addressing mode is equivalent to that obtained 3099 // for all other roots of the PHI traversal. Also, when choosing one 3100 // such root as representative, select the one with the most uses in order 3101 // to keep the cost modeling heuristics in AddressingModeMatcher 3102 // applicable. 3103 unsigned NumUses = V->getNumUses(); 3104 if (NumUses > NumUsesConsensus) { 3105 Consensus = V; 3106 NumUsesConsensus = NumUses; 3107 AddrModeInsts = NewAddrModeInsts; 3108 } 3109 continue; 3110 } 3111 3112 Consensus = nullptr; 3113 break; 3114 } 3115 3116 // If the addressing mode couldn't be determined, or if multiple different 3117 // ones were determined, bail out now. 3118 if (!Consensus) { 3119 TPT.rollback(LastKnownGood); 3120 return false; 3121 } 3122 TPT.commit(); 3123 3124 // Check to see if any of the instructions supersumed by this addr mode are 3125 // non-local to I's BB. 3126 bool AnyNonLocal = false; 3127 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3128 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3129 AnyNonLocal = true; 3130 break; 3131 } 3132 } 3133 3134 // If all the instructions matched are already in this BB, don't do anything. 3135 if (!AnyNonLocal) { 3136 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3137 return false; 3138 } 3139 3140 // Insert this computation right after this user. Since our caller is 3141 // scanning from the top of the BB to the bottom, reuse of the expr are 3142 // guaranteed to happen later. 3143 IRBuilder<> Builder(MemoryInst); 3144 3145 // Now that we determined the addressing expression we want to use and know 3146 // that we have to sink it into this block. Check to see if we have already 3147 // done this for some other load/store instr in this block. If so, reuse the 3148 // computation. 3149 Value *&SunkAddr = SunkAddrs[Addr]; 3150 if (SunkAddr) { 3151 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3152 << *MemoryInst << "\n"); 3153 if (SunkAddr->getType() != Addr->getType()) 3154 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3155 } else if (AddrSinkUsingGEPs || 3156 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3157 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3158 ->useAA())) { 3159 // By default, we use the GEP-based method when AA is used later. This 3160 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3161 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3162 << *MemoryInst << "\n"); 3163 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3164 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3165 3166 // First, find the pointer. 3167 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3168 ResultPtr = AddrMode.BaseReg; 3169 AddrMode.BaseReg = nullptr; 3170 } 3171 3172 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3173 // We can't add more than one pointer together, nor can we scale a 3174 // pointer (both of which seem meaningless). 3175 if (ResultPtr || AddrMode.Scale != 1) 3176 return false; 3177 3178 ResultPtr = AddrMode.ScaledReg; 3179 AddrMode.Scale = 0; 3180 } 3181 3182 if (AddrMode.BaseGV) { 3183 if (ResultPtr) 3184 return false; 3185 3186 ResultPtr = AddrMode.BaseGV; 3187 } 3188 3189 // If the real base value actually came from an inttoptr, then the matcher 3190 // will look through it and provide only the integer value. In that case, 3191 // use it here. 3192 if (!ResultPtr && AddrMode.BaseReg) { 3193 ResultPtr = 3194 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3195 AddrMode.BaseReg = nullptr; 3196 } else if (!ResultPtr && AddrMode.Scale == 1) { 3197 ResultPtr = 3198 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3199 AddrMode.Scale = 0; 3200 } 3201 3202 if (!ResultPtr && 3203 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3204 SunkAddr = Constant::getNullValue(Addr->getType()); 3205 } else if (!ResultPtr) { 3206 return false; 3207 } else { 3208 Type *I8PtrTy = 3209 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3210 3211 // Start with the base register. Do this first so that subsequent address 3212 // matching finds it last, which will prevent it from trying to match it 3213 // as the scaled value in case it happens to be a mul. That would be 3214 // problematic if we've sunk a different mul for the scale, because then 3215 // we'd end up sinking both muls. 3216 if (AddrMode.BaseReg) { 3217 Value *V = AddrMode.BaseReg; 3218 if (V->getType() != IntPtrTy) 3219 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3220 3221 ResultIndex = V; 3222 } 3223 3224 // Add the scale value. 3225 if (AddrMode.Scale) { 3226 Value *V = AddrMode.ScaledReg; 3227 if (V->getType() == IntPtrTy) { 3228 // done. 3229 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3230 cast<IntegerType>(V->getType())->getBitWidth()) { 3231 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3232 } else { 3233 // It is only safe to sign extend the BaseReg if we know that the math 3234 // required to create it did not overflow before we extend it. Since 3235 // the original IR value was tossed in favor of a constant back when 3236 // the AddrMode was created we need to bail out gracefully if widths 3237 // do not match instead of extending it. 3238 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3239 if (I && (ResultIndex != AddrMode.BaseReg)) 3240 I->eraseFromParent(); 3241 return false; 3242 } 3243 3244 if (AddrMode.Scale != 1) 3245 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3246 "sunkaddr"); 3247 if (ResultIndex) 3248 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3249 else 3250 ResultIndex = V; 3251 } 3252 3253 // Add in the Base Offset if present. 3254 if (AddrMode.BaseOffs) { 3255 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3256 if (ResultIndex) { 3257 // We need to add this separately from the scale above to help with 3258 // SDAG consecutive load/store merging. 3259 if (ResultPtr->getType() != I8PtrTy) 3260 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3261 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3262 } 3263 3264 ResultIndex = V; 3265 } 3266 3267 if (!ResultIndex) { 3268 SunkAddr = ResultPtr; 3269 } else { 3270 if (ResultPtr->getType() != I8PtrTy) 3271 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3272 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3273 } 3274 3275 if (SunkAddr->getType() != Addr->getType()) 3276 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3277 } 3278 } else { 3279 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3280 << *MemoryInst << "\n"); 3281 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3282 Value *Result = nullptr; 3283 3284 // Start with the base register. Do this first so that subsequent address 3285 // matching finds it last, which will prevent it from trying to match it 3286 // as the scaled value in case it happens to be a mul. That would be 3287 // problematic if we've sunk a different mul for the scale, because then 3288 // we'd end up sinking both muls. 3289 if (AddrMode.BaseReg) { 3290 Value *V = AddrMode.BaseReg; 3291 if (V->getType()->isPointerTy()) 3292 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3293 if (V->getType() != IntPtrTy) 3294 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3295 Result = V; 3296 } 3297 3298 // Add the scale value. 3299 if (AddrMode.Scale) { 3300 Value *V = AddrMode.ScaledReg; 3301 if (V->getType() == IntPtrTy) { 3302 // done. 3303 } else if (V->getType()->isPointerTy()) { 3304 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3305 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3306 cast<IntegerType>(V->getType())->getBitWidth()) { 3307 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3308 } else { 3309 // It is only safe to sign extend the BaseReg if we know that the math 3310 // required to create it did not overflow before we extend it. Since 3311 // the original IR value was tossed in favor of a constant back when 3312 // the AddrMode was created we need to bail out gracefully if widths 3313 // do not match instead of extending it. 3314 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3315 if (I && (Result != AddrMode.BaseReg)) 3316 I->eraseFromParent(); 3317 return false; 3318 } 3319 if (AddrMode.Scale != 1) 3320 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3321 "sunkaddr"); 3322 if (Result) 3323 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3324 else 3325 Result = V; 3326 } 3327 3328 // Add in the BaseGV if present. 3329 if (AddrMode.BaseGV) { 3330 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3331 if (Result) 3332 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3333 else 3334 Result = V; 3335 } 3336 3337 // Add in the Base Offset if present. 3338 if (AddrMode.BaseOffs) { 3339 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3340 if (Result) 3341 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3342 else 3343 Result = V; 3344 } 3345 3346 if (!Result) 3347 SunkAddr = Constant::getNullValue(Addr->getType()); 3348 else 3349 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3350 } 3351 3352 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3353 3354 // If we have no uses, recursively delete the value and all dead instructions 3355 // using it. 3356 if (Repl->use_empty()) { 3357 // This can cause recursive deletion, which can invalidate our iterator. 3358 // Use a WeakVH to hold onto it in case this happens. 3359 WeakVH IterHandle(CurInstIterator); 3360 BasicBlock *BB = CurInstIterator->getParent(); 3361 3362 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3363 3364 if (IterHandle != CurInstIterator) { 3365 // If the iterator instruction was recursively deleted, start over at the 3366 // start of the block. 3367 CurInstIterator = BB->begin(); 3368 SunkAddrs.clear(); 3369 } 3370 } 3371 ++NumMemoryInsts; 3372 return true; 3373 } 3374 3375 /// OptimizeInlineAsmInst - If there are any memory operands, use 3376 /// OptimizeMemoryInst to sink their address computing into the block when 3377 /// possible / profitable. 3378 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3379 bool MadeChange = false; 3380 3381 const TargetRegisterInfo *TRI = 3382 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3383 TargetLowering::AsmOperandInfoVector 3384 TargetConstraints = TLI->ParseConstraints(TRI, CS); 3385 unsigned ArgNo = 0; 3386 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3387 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3388 3389 // Compute the constraint code and ConstraintType to use. 3390 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3391 3392 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3393 OpInfo.isIndirect) { 3394 Value *OpVal = CS->getArgOperand(ArgNo++); 3395 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3396 } else if (OpInfo.Type == InlineAsm::isInput) 3397 ArgNo++; 3398 } 3399 3400 return MadeChange; 3401 } 3402 3403 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3404 /// sign extensions. 3405 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3406 assert(!Inst->use_empty() && "Input must have at least one use"); 3407 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3408 bool IsSExt = isa<SExtInst>(FirstUser); 3409 Type *ExtTy = FirstUser->getType(); 3410 for (const User *U : Inst->users()) { 3411 const Instruction *UI = cast<Instruction>(U); 3412 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3413 return false; 3414 Type *CurTy = UI->getType(); 3415 // Same input and output types: Same instruction after CSE. 3416 if (CurTy == ExtTy) 3417 continue; 3418 3419 // If IsSExt is true, we are in this situation: 3420 // a = Inst 3421 // b = sext ty1 a to ty2 3422 // c = sext ty1 a to ty3 3423 // Assuming ty2 is shorter than ty3, this could be turned into: 3424 // a = Inst 3425 // b = sext ty1 a to ty2 3426 // c = sext ty2 b to ty3 3427 // However, the last sext is not free. 3428 if (IsSExt) 3429 return false; 3430 3431 // This is a ZExt, maybe this is free to extend from one type to another. 3432 // In that case, we would not account for a different use. 3433 Type *NarrowTy; 3434 Type *LargeTy; 3435 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3436 CurTy->getScalarType()->getIntegerBitWidth()) { 3437 NarrowTy = CurTy; 3438 LargeTy = ExtTy; 3439 } else { 3440 NarrowTy = ExtTy; 3441 LargeTy = CurTy; 3442 } 3443 3444 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3445 return false; 3446 } 3447 // All uses are the same or can be derived from one another for free. 3448 return true; 3449 } 3450 3451 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3452 /// load instruction. 3453 /// If an ext(load) can be formed, it is returned via \p LI for the load 3454 /// and \p Inst for the extension. 3455 /// Otherwise LI == nullptr and Inst == nullptr. 3456 /// When some promotion happened, \p TPT contains the proper state to 3457 /// revert them. 3458 /// 3459 /// \return true when promoting was necessary to expose the ext(load) 3460 /// opportunity, false otherwise. 3461 /// 3462 /// Example: 3463 /// \code 3464 /// %ld = load i32* %addr 3465 /// %add = add nuw i32 %ld, 4 3466 /// %zext = zext i32 %add to i64 3467 /// \endcode 3468 /// => 3469 /// \code 3470 /// %ld = load i32* %addr 3471 /// %zext = zext i32 %ld to i64 3472 /// %add = add nuw i64 %zext, 4 3473 /// \encode 3474 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3475 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3476 LoadInst *&LI, Instruction *&Inst, 3477 const SmallVectorImpl<Instruction *> &Exts, 3478 unsigned CreatedInsts = 0) { 3479 // Iterate over all the extensions to see if one form an ext(load). 3480 for (auto I : Exts) { 3481 // Check if we directly have ext(load). 3482 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3483 Inst = I; 3484 // No promotion happened here. 3485 return false; 3486 } 3487 // Check whether or not we want to do any promotion. 3488 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3489 continue; 3490 // Get the action to perform the promotion. 3491 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3492 I, InsertedTruncsSet, *TLI, PromotedInsts); 3493 // Check if we can promote. 3494 if (!TPH) 3495 continue; 3496 // Save the current state. 3497 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3498 TPT.getRestorationPoint(); 3499 SmallVector<Instruction *, 4> NewExts; 3500 unsigned NewCreatedInsts = 0; 3501 // Promote. 3502 Value *PromotedVal = 3503 TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); 3504 assert(PromotedVal && 3505 "TypePromotionHelper should have filtered out those cases"); 3506 3507 // We would be able to merge only one extension in a load. 3508 // Therefore, if we have more than 1 new extension we heuristically 3509 // cut this search path, because it means we degrade the code quality. 3510 // With exactly 2, the transformation is neutral, because we will merge 3511 // one extension but leave one. However, we optimistically keep going, 3512 // because the new extension may be removed too. 3513 unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; 3514 if (!StressExtLdPromotion && 3515 (TotalCreatedInsts > 1 || 3516 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3517 // The promotion is not profitable, rollback to the previous state. 3518 TPT.rollback(LastKnownGood); 3519 continue; 3520 } 3521 // The promotion is profitable. 3522 // Check if it exposes an ext(load). 3523 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); 3524 if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || 3525 // If we have created a new extension, i.e., now we have two 3526 // extensions. We must make sure one of them is merged with 3527 // the load, otherwise we may degrade the code quality. 3528 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3529 // Promotion happened. 3530 return true; 3531 // If this does not help to expose an ext(load) then, rollback. 3532 TPT.rollback(LastKnownGood); 3533 } 3534 // None of the extension can form an ext(load). 3535 LI = nullptr; 3536 Inst = nullptr; 3537 return false; 3538 } 3539 3540 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3541 /// basic block as the load, unless conditions are unfavorable. This allows 3542 /// SelectionDAG to fold the extend into the load. 3543 /// \p I[in/out] the extension may be modified during the process if some 3544 /// promotions apply. 3545 /// 3546 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3547 // Try to promote a chain of computation if it allows to form 3548 // an extended load. 3549 TypePromotionTransaction TPT; 3550 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3551 TPT.getRestorationPoint(); 3552 SmallVector<Instruction *, 1> Exts; 3553 Exts.push_back(I); 3554 // Look for a load being extended. 3555 LoadInst *LI = nullptr; 3556 Instruction *OldExt = I; 3557 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3558 if (!LI || !I) { 3559 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3560 "the code must remain the same"); 3561 I = OldExt; 3562 return false; 3563 } 3564 3565 // If they're already in the same block, there's nothing to do. 3566 // Make the cheap checks first if we did not promote. 3567 // If we promoted, we need to check if it is indeed profitable. 3568 if (!HasPromoted && LI->getParent() == I->getParent()) 3569 return false; 3570 3571 EVT VT = TLI->getValueType(I->getType()); 3572 EVT LoadVT = TLI->getValueType(LI->getType()); 3573 3574 // If the load has other users and the truncate is not free, this probably 3575 // isn't worthwhile. 3576 if (!LI->hasOneUse() && TLI && 3577 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3578 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3579 I = OldExt; 3580 TPT.rollback(LastKnownGood); 3581 return false; 3582 } 3583 3584 // Check whether the target supports casts folded into loads. 3585 unsigned LType; 3586 if (isa<ZExtInst>(I)) 3587 LType = ISD::ZEXTLOAD; 3588 else { 3589 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3590 LType = ISD::SEXTLOAD; 3591 } 3592 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3593 I = OldExt; 3594 TPT.rollback(LastKnownGood); 3595 return false; 3596 } 3597 3598 // Move the extend into the same block as the load, so that SelectionDAG 3599 // can fold it. 3600 TPT.commit(); 3601 I->removeFromParent(); 3602 I->insertAfter(LI); 3603 ++NumExtsMoved; 3604 return true; 3605 } 3606 3607 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3608 BasicBlock *DefBB = I->getParent(); 3609 3610 // If the result of a {s|z}ext and its source are both live out, rewrite all 3611 // other uses of the source with result of extension. 3612 Value *Src = I->getOperand(0); 3613 if (Src->hasOneUse()) 3614 return false; 3615 3616 // Only do this xform if truncating is free. 3617 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3618 return false; 3619 3620 // Only safe to perform the optimization if the source is also defined in 3621 // this block. 3622 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3623 return false; 3624 3625 bool DefIsLiveOut = false; 3626 for (User *U : I->users()) { 3627 Instruction *UI = cast<Instruction>(U); 3628 3629 // Figure out which BB this ext is used in. 3630 BasicBlock *UserBB = UI->getParent(); 3631 if (UserBB == DefBB) continue; 3632 DefIsLiveOut = true; 3633 break; 3634 } 3635 if (!DefIsLiveOut) 3636 return false; 3637 3638 // Make sure none of the uses are PHI nodes. 3639 for (User *U : Src->users()) { 3640 Instruction *UI = cast<Instruction>(U); 3641 BasicBlock *UserBB = UI->getParent(); 3642 if (UserBB == DefBB) continue; 3643 // Be conservative. We don't want this xform to end up introducing 3644 // reloads just before load / store instructions. 3645 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3646 return false; 3647 } 3648 3649 // InsertedTruncs - Only insert one trunc in each block once. 3650 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3651 3652 bool MadeChange = false; 3653 for (Use &U : Src->uses()) { 3654 Instruction *User = cast<Instruction>(U.getUser()); 3655 3656 // Figure out which BB this ext is used in. 3657 BasicBlock *UserBB = User->getParent(); 3658 if (UserBB == DefBB) continue; 3659 3660 // Both src and def are live in this block. Rewrite the use. 3661 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3662 3663 if (!InsertedTrunc) { 3664 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3665 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3666 InsertedTruncsSet.insert(InsertedTrunc); 3667 } 3668 3669 // Replace a use of the {s|z}ext source with a use of the result. 3670 U = InsertedTrunc; 3671 ++NumExtUses; 3672 MadeChange = true; 3673 } 3674 3675 return MadeChange; 3676 } 3677 3678 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3679 /// turned into an explicit branch. 3680 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3681 // FIXME: This should use the same heuristics as IfConversion to determine 3682 // whether a select is better represented as a branch. This requires that 3683 // branch probability metadata is preserved for the select, which is not the 3684 // case currently. 3685 3686 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3687 3688 // If the branch is predicted right, an out of order CPU can avoid blocking on 3689 // the compare. Emit cmovs on compares with a memory operand as branches to 3690 // avoid stalls on the load from memory. If the compare has more than one use 3691 // there's probably another cmov or setcc around so it's not worth emitting a 3692 // branch. 3693 if (!Cmp) 3694 return false; 3695 3696 Value *CmpOp0 = Cmp->getOperand(0); 3697 Value *CmpOp1 = Cmp->getOperand(1); 3698 3699 // We check that the memory operand has one use to avoid uses of the loaded 3700 // value directly after the compare, making branches unprofitable. 3701 return Cmp->hasOneUse() && 3702 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3703 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3704 } 3705 3706 3707 /// If we have a SelectInst that will likely profit from branch prediction, 3708 /// turn it into a branch. 3709 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3710 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3711 3712 // Can we convert the 'select' to CF ? 3713 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3714 return false; 3715 3716 TargetLowering::SelectSupportKind SelectKind; 3717 if (VectorCond) 3718 SelectKind = TargetLowering::VectorMaskSelect; 3719 else if (SI->getType()->isVectorTy()) 3720 SelectKind = TargetLowering::ScalarCondVectorVal; 3721 else 3722 SelectKind = TargetLowering::ScalarValSelect; 3723 3724 // Do we have efficient codegen support for this kind of 'selects' ? 3725 if (TLI->isSelectSupported(SelectKind)) { 3726 // We have efficient codegen support for the select instruction. 3727 // Check if it is profitable to keep this 'select'. 3728 if (!TLI->isPredictableSelectExpensive() || 3729 !isFormingBranchFromSelectProfitable(SI)) 3730 return false; 3731 } 3732 3733 ModifiedDT = true; 3734 3735 // First, we split the block containing the select into 2 blocks. 3736 BasicBlock *StartBlock = SI->getParent(); 3737 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3738 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3739 3740 // Create a new block serving as the landing pad for the branch. 3741 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3742 NextBlock->getParent(), NextBlock); 3743 3744 // Move the unconditional branch from the block with the select in it into our 3745 // landing pad block. 3746 StartBlock->getTerminator()->eraseFromParent(); 3747 BranchInst::Create(NextBlock, SmallBlock); 3748 3749 // Insert the real conditional branch based on the original condition. 3750 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3751 3752 // The select itself is replaced with a PHI Node. 3753 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3754 PN->takeName(SI); 3755 PN->addIncoming(SI->getTrueValue(), StartBlock); 3756 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3757 SI->replaceAllUsesWith(PN); 3758 SI->eraseFromParent(); 3759 3760 // Instruct OptimizeBlock to skip to the next block. 3761 CurInstIterator = StartBlock->end(); 3762 ++NumSelectsExpanded; 3763 return true; 3764 } 3765 3766 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3767 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3768 int SplatElem = -1; 3769 for (unsigned i = 0; i < Mask.size(); ++i) { 3770 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3771 return false; 3772 SplatElem = Mask[i]; 3773 } 3774 3775 return true; 3776 } 3777 3778 /// Some targets have expensive vector shifts if the lanes aren't all the same 3779 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3780 /// it's often worth sinking a shufflevector splat down to its use so that 3781 /// codegen can spot all lanes are identical. 3782 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3783 BasicBlock *DefBB = SVI->getParent(); 3784 3785 // Only do this xform if variable vector shifts are particularly expensive. 3786 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3787 return false; 3788 3789 // We only expect better codegen by sinking a shuffle if we can recognise a 3790 // constant splat. 3791 if (!isBroadcastShuffle(SVI)) 3792 return false; 3793 3794 // InsertedShuffles - Only insert a shuffle in each block once. 3795 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3796 3797 bool MadeChange = false; 3798 for (User *U : SVI->users()) { 3799 Instruction *UI = cast<Instruction>(U); 3800 3801 // Figure out which BB this ext is used in. 3802 BasicBlock *UserBB = UI->getParent(); 3803 if (UserBB == DefBB) continue; 3804 3805 // For now only apply this when the splat is used by a shift instruction. 3806 if (!UI->isShift()) continue; 3807 3808 // Everything checks out, sink the shuffle if the user's block doesn't 3809 // already have a copy. 3810 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3811 3812 if (!InsertedShuffle) { 3813 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3814 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3815 SVI->getOperand(1), 3816 SVI->getOperand(2), "", InsertPt); 3817 } 3818 3819 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3820 MadeChange = true; 3821 } 3822 3823 // If we removed all uses, nuke the shuffle. 3824 if (SVI->use_empty()) { 3825 SVI->eraseFromParent(); 3826 MadeChange = true; 3827 } 3828 3829 return MadeChange; 3830 } 3831 3832 namespace { 3833 /// \brief Helper class to promote a scalar operation to a vector one. 3834 /// This class is used to move downward extractelement transition. 3835 /// E.g., 3836 /// a = vector_op <2 x i32> 3837 /// b = extractelement <2 x i32> a, i32 0 3838 /// c = scalar_op b 3839 /// store c 3840 /// 3841 /// => 3842 /// a = vector_op <2 x i32> 3843 /// c = vector_op a (equivalent to scalar_op on the related lane) 3844 /// * d = extractelement <2 x i32> c, i32 0 3845 /// * store d 3846 /// Assuming both extractelement and store can be combine, we get rid of the 3847 /// transition. 3848 class VectorPromoteHelper { 3849 /// Used to perform some checks on the legality of vector operations. 3850 const TargetLowering &TLI; 3851 3852 /// Used to estimated the cost of the promoted chain. 3853 const TargetTransformInfo &TTI; 3854 3855 /// The transition being moved downwards. 3856 Instruction *Transition; 3857 /// The sequence of instructions to be promoted. 3858 SmallVector<Instruction *, 4> InstsToBePromoted; 3859 /// Cost of combining a store and an extract. 3860 unsigned StoreExtractCombineCost; 3861 /// Instruction that will be combined with the transition. 3862 Instruction *CombineInst; 3863 3864 /// \brief The instruction that represents the current end of the transition. 3865 /// Since we are faking the promotion until we reach the end of the chain 3866 /// of computation, we need a way to get the current end of the transition. 3867 Instruction *getEndOfTransition() const { 3868 if (InstsToBePromoted.empty()) 3869 return Transition; 3870 return InstsToBePromoted.back(); 3871 } 3872 3873 /// \brief Return the index of the original value in the transition. 3874 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3875 /// c, is at index 0. 3876 unsigned getTransitionOriginalValueIdx() const { 3877 assert(isa<ExtractElementInst>(Transition) && 3878 "Other kind of transitions are not supported yet"); 3879 return 0; 3880 } 3881 3882 /// \brief Return the index of the index in the transition. 3883 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3884 /// is at index 1. 3885 unsigned getTransitionIdx() const { 3886 assert(isa<ExtractElementInst>(Transition) && 3887 "Other kind of transitions are not supported yet"); 3888 return 1; 3889 } 3890 3891 /// \brief Get the type of the transition. 3892 /// This is the type of the original value. 3893 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3894 /// transition is <2 x i32>. 3895 Type *getTransitionType() const { 3896 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3897 } 3898 3899 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3900 /// I.e., we have the following sequence: 3901 /// Def = Transition <ty1> a to <ty2> 3902 /// b = ToBePromoted <ty2> Def, ... 3903 /// => 3904 /// b = ToBePromoted <ty1> a, ... 3905 /// Def = Transition <ty1> ToBePromoted to <ty2> 3906 void promoteImpl(Instruction *ToBePromoted); 3907 3908 /// \brief Check whether or not it is profitable to promote all the 3909 /// instructions enqueued to be promoted. 3910 bool isProfitableToPromote() { 3911 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3912 unsigned Index = isa<ConstantInt>(ValIdx) 3913 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3914 : -1; 3915 Type *PromotedType = getTransitionType(); 3916 3917 StoreInst *ST = cast<StoreInst>(CombineInst); 3918 unsigned AS = ST->getPointerAddressSpace(); 3919 unsigned Align = ST->getAlignment(); 3920 // Check if this store is supported. 3921 if (!TLI.allowsMisalignedMemoryAccesses( 3922 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3923 // If this is not supported, there is no way we can combine 3924 // the extract with the store. 3925 return false; 3926 } 3927 3928 // The scalar chain of computation has to pay for the transition 3929 // scalar to vector. 3930 // The vector chain has to account for the combining cost. 3931 uint64_t ScalarCost = 3932 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3933 uint64_t VectorCost = StoreExtractCombineCost; 3934 for (const auto &Inst : InstsToBePromoted) { 3935 // Compute the cost. 3936 // By construction, all instructions being promoted are arithmetic ones. 3937 // Moreover, one argument is a constant that can be viewed as a splat 3938 // constant. 3939 Value *Arg0 = Inst->getOperand(0); 3940 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3941 isa<ConstantFP>(Arg0); 3942 TargetTransformInfo::OperandValueKind Arg0OVK = 3943 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3944 : TargetTransformInfo::OK_AnyValue; 3945 TargetTransformInfo::OperandValueKind Arg1OVK = 3946 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3947 : TargetTransformInfo::OK_AnyValue; 3948 ScalarCost += TTI.getArithmeticInstrCost( 3949 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3950 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3951 Arg0OVK, Arg1OVK); 3952 } 3953 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3954 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3955 return ScalarCost > VectorCost; 3956 } 3957 3958 /// \brief Generate a constant vector with \p Val with the same 3959 /// number of elements as the transition. 3960 /// \p UseSplat defines whether or not \p Val should be replicated 3961 /// accross the whole vector. 3962 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3963 /// otherwise we generate a vector with as many undef as possible: 3964 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3965 /// used at the index of the extract. 3966 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3967 unsigned ExtractIdx = UINT_MAX; 3968 if (!UseSplat) { 3969 // If we cannot determine where the constant must be, we have to 3970 // use a splat constant. 3971 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 3972 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 3973 ExtractIdx = CstVal->getSExtValue(); 3974 else 3975 UseSplat = true; 3976 } 3977 3978 unsigned End = getTransitionType()->getVectorNumElements(); 3979 if (UseSplat) 3980 return ConstantVector::getSplat(End, Val); 3981 3982 SmallVector<Constant *, 4> ConstVec; 3983 UndefValue *UndefVal = UndefValue::get(Val->getType()); 3984 for (unsigned Idx = 0; Idx != End; ++Idx) { 3985 if (Idx == ExtractIdx) 3986 ConstVec.push_back(Val); 3987 else 3988 ConstVec.push_back(UndefVal); 3989 } 3990 return ConstantVector::get(ConstVec); 3991 } 3992 3993 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 3994 /// in \p Use can trigger undefined behavior. 3995 static bool canCauseUndefinedBehavior(const Instruction *Use, 3996 unsigned OperandIdx) { 3997 // This is not safe to introduce undef when the operand is on 3998 // the right hand side of a division-like instruction. 3999 if (OperandIdx != 1) 4000 return false; 4001 switch (Use->getOpcode()) { 4002 default: 4003 return false; 4004 case Instruction::SDiv: 4005 case Instruction::UDiv: 4006 case Instruction::SRem: 4007 case Instruction::URem: 4008 return true; 4009 case Instruction::FDiv: 4010 case Instruction::FRem: 4011 return !Use->hasNoNaNs(); 4012 } 4013 llvm_unreachable(nullptr); 4014 } 4015 4016 public: 4017 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 4018 Instruction *Transition, unsigned CombineCost) 4019 : TLI(TLI), TTI(TTI), Transition(Transition), 4020 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4021 assert(Transition && "Do not know how to promote null"); 4022 } 4023 4024 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4025 bool canPromote(const Instruction *ToBePromoted) const { 4026 // We could support CastInst too. 4027 return isa<BinaryOperator>(ToBePromoted); 4028 } 4029 4030 /// \brief Check if it is profitable to promote \p ToBePromoted 4031 /// by moving downward the transition through. 4032 bool shouldPromote(const Instruction *ToBePromoted) const { 4033 // Promote only if all the operands can be statically expanded. 4034 // Indeed, we do not want to introduce any new kind of transitions. 4035 for (const Use &U : ToBePromoted->operands()) { 4036 const Value *Val = U.get(); 4037 if (Val == getEndOfTransition()) { 4038 // If the use is a division and the transition is on the rhs, 4039 // we cannot promote the operation, otherwise we may create a 4040 // division by zero. 4041 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4042 return false; 4043 continue; 4044 } 4045 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4046 !isa<ConstantFP>(Val)) 4047 return false; 4048 } 4049 // Check that the resulting operation is legal. 4050 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4051 if (!ISDOpcode) 4052 return false; 4053 return StressStoreExtract || 4054 TLI.isOperationLegalOrCustom( 4055 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 4056 } 4057 4058 /// \brief Check whether or not \p Use can be combined 4059 /// with the transition. 4060 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4061 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4062 4063 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4064 void enqueueForPromotion(Instruction *ToBePromoted) { 4065 InstsToBePromoted.push_back(ToBePromoted); 4066 } 4067 4068 /// \brief Set the instruction that will be combined with the transition. 4069 void recordCombineInstruction(Instruction *ToBeCombined) { 4070 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4071 CombineInst = ToBeCombined; 4072 } 4073 4074 /// \brief Promote all the instructions enqueued for promotion if it is 4075 /// is profitable. 4076 /// \return True if the promotion happened, false otherwise. 4077 bool promote() { 4078 // Check if there is something to promote. 4079 // Right now, if we do not have anything to combine with, 4080 // we assume the promotion is not profitable. 4081 if (InstsToBePromoted.empty() || !CombineInst) 4082 return false; 4083 4084 // Check cost. 4085 if (!StressStoreExtract && !isProfitableToPromote()) 4086 return false; 4087 4088 // Promote. 4089 for (auto &ToBePromoted : InstsToBePromoted) 4090 promoteImpl(ToBePromoted); 4091 InstsToBePromoted.clear(); 4092 return true; 4093 } 4094 }; 4095 } // End of anonymous namespace. 4096 4097 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4098 // At this point, we know that all the operands of ToBePromoted but Def 4099 // can be statically promoted. 4100 // For Def, we need to use its parameter in ToBePromoted: 4101 // b = ToBePromoted ty1 a 4102 // Def = Transition ty1 b to ty2 4103 // Move the transition down. 4104 // 1. Replace all uses of the promoted operation by the transition. 4105 // = ... b => = ... Def. 4106 assert(ToBePromoted->getType() == Transition->getType() && 4107 "The type of the result of the transition does not match " 4108 "the final type"); 4109 ToBePromoted->replaceAllUsesWith(Transition); 4110 // 2. Update the type of the uses. 4111 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4112 Type *TransitionTy = getTransitionType(); 4113 ToBePromoted->mutateType(TransitionTy); 4114 // 3. Update all the operands of the promoted operation with promoted 4115 // operands. 4116 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4117 for (Use &U : ToBePromoted->operands()) { 4118 Value *Val = U.get(); 4119 Value *NewVal = nullptr; 4120 if (Val == Transition) 4121 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4122 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4123 isa<ConstantFP>(Val)) { 4124 // Use a splat constant if it is not safe to use undef. 4125 NewVal = getConstantVector( 4126 cast<Constant>(Val), 4127 isa<UndefValue>(Val) || 4128 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4129 } else 4130 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4131 "this?"); 4132 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4133 } 4134 Transition->removeFromParent(); 4135 Transition->insertAfter(ToBePromoted); 4136 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4137 } 4138 4139 /// Some targets can do store(extractelement) with one instruction. 4140 /// Try to push the extractelement towards the stores when the target 4141 /// has this feature and this is profitable. 4142 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4143 unsigned CombineCost = UINT_MAX; 4144 if (DisableStoreExtract || !TLI || 4145 (!StressStoreExtract && 4146 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4147 Inst->getOperand(1), CombineCost))) 4148 return false; 4149 4150 // At this point we know that Inst is a vector to scalar transition. 4151 // Try to move it down the def-use chain, until: 4152 // - We can combine the transition with its single use 4153 // => we got rid of the transition. 4154 // - We escape the current basic block 4155 // => we would need to check that we are moving it at a cheaper place and 4156 // we do not do that for now. 4157 BasicBlock *Parent = Inst->getParent(); 4158 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4159 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4160 // If the transition has more than one use, assume this is not going to be 4161 // beneficial. 4162 while (Inst->hasOneUse()) { 4163 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4164 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4165 4166 if (ToBePromoted->getParent() != Parent) { 4167 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4168 << ToBePromoted->getParent()->getName() 4169 << ") than the transition (" << Parent->getName() << ").\n"); 4170 return false; 4171 } 4172 4173 if (VPH.canCombine(ToBePromoted)) { 4174 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4175 << "will be combined with: " << *ToBePromoted << '\n'); 4176 VPH.recordCombineInstruction(ToBePromoted); 4177 bool Changed = VPH.promote(); 4178 NumStoreExtractExposed += Changed; 4179 return Changed; 4180 } 4181 4182 DEBUG(dbgs() << "Try promoting.\n"); 4183 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4184 return false; 4185 4186 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4187 4188 VPH.enqueueForPromotion(ToBePromoted); 4189 Inst = ToBePromoted; 4190 } 4191 return false; 4192 } 4193 4194 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4195 if (PHINode *P = dyn_cast<PHINode>(I)) { 4196 // It is possible for very late stage optimizations (such as SimplifyCFG) 4197 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4198 // trivial PHI, go ahead and zap it here. 4199 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 4200 TLInfo, DT)) { 4201 P->replaceAllUsesWith(V); 4202 P->eraseFromParent(); 4203 ++NumPHIsElim; 4204 return true; 4205 } 4206 return false; 4207 } 4208 4209 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4210 // If the source of the cast is a constant, then this should have 4211 // already been constant folded. The only reason NOT to constant fold 4212 // it is if something (e.g. LSR) was careful to place the constant 4213 // evaluation in a block other than then one that uses it (e.g. to hoist 4214 // the address of globals out of a loop). If this is the case, we don't 4215 // want to forward-subst the cast. 4216 if (isa<Constant>(CI->getOperand(0))) 4217 return false; 4218 4219 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4220 return true; 4221 4222 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4223 /// Sink a zext or sext into its user blocks if the target type doesn't 4224 /// fit in one register 4225 if (TLI && TLI->getTypeAction(CI->getContext(), 4226 TLI->getValueType(CI->getType())) == 4227 TargetLowering::TypeExpandInteger) { 4228 return SinkCast(CI); 4229 } else { 4230 bool MadeChange = MoveExtToFormExtLoad(I); 4231 return MadeChange | OptimizeExtUses(I); 4232 } 4233 } 4234 return false; 4235 } 4236 4237 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4238 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4239 return OptimizeCmpExpression(CI); 4240 4241 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4242 if (TLI) 4243 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4244 return false; 4245 } 4246 4247 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4248 if (TLI) 4249 return OptimizeMemoryInst(I, SI->getOperand(1), 4250 SI->getOperand(0)->getType()); 4251 return false; 4252 } 4253 4254 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4255 4256 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4257 BinOp->getOpcode() == Instruction::LShr)) { 4258 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4259 if (TLI && CI && TLI->hasExtractBitsInsn()) 4260 return OptimizeExtractBits(BinOp, CI, *TLI); 4261 4262 return false; 4263 } 4264 4265 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4266 if (GEPI->hasAllZeroIndices()) { 4267 /// The GEP operand must be a pointer, so must its result -> BitCast 4268 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4269 GEPI->getName(), GEPI); 4270 GEPI->replaceAllUsesWith(NC); 4271 GEPI->eraseFromParent(); 4272 ++NumGEPsElim; 4273 OptimizeInst(NC, ModifiedDT); 4274 return true; 4275 } 4276 return false; 4277 } 4278 4279 if (CallInst *CI = dyn_cast<CallInst>(I)) 4280 return OptimizeCallInst(CI, ModifiedDT); 4281 4282 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4283 return OptimizeSelectInst(SI); 4284 4285 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4286 return OptimizeShuffleVectorInst(SVI); 4287 4288 if (isa<ExtractElementInst>(I)) 4289 return OptimizeExtractElementInst(I); 4290 4291 return false; 4292 } 4293 4294 // In this pass we look for GEP and cast instructions that are used 4295 // across basic blocks and rewrite them to improve basic-block-at-a-time 4296 // selection. 4297 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4298 SunkAddrs.clear(); 4299 bool MadeChange = false; 4300 4301 CurInstIterator = BB.begin(); 4302 while (CurInstIterator != BB.end()) { 4303 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4304 if (ModifiedDT) 4305 return true; 4306 } 4307 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4308 4309 return MadeChange; 4310 } 4311 4312 // llvm.dbg.value is far away from the value then iSel may not be able 4313 // handle it properly. iSel will drop llvm.dbg.value if it can not 4314 // find a node corresponding to the value. 4315 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4316 bool MadeChange = false; 4317 for (BasicBlock &BB : F) { 4318 Instruction *PrevNonDbgInst = nullptr; 4319 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4320 Instruction *Insn = BI++; 4321 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4322 // Leave dbg.values that refer to an alloca alone. These 4323 // instrinsics describe the address of a variable (= the alloca) 4324 // being taken. They should not be moved next to the alloca 4325 // (and to the beginning of the scope), but rather stay close to 4326 // where said address is used. 4327 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4328 PrevNonDbgInst = Insn; 4329 continue; 4330 } 4331 4332 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4333 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4334 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4335 DVI->removeFromParent(); 4336 if (isa<PHINode>(VI)) 4337 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4338 else 4339 DVI->insertAfter(VI); 4340 MadeChange = true; 4341 ++NumDbgValueMoved; 4342 } 4343 } 4344 } 4345 return MadeChange; 4346 } 4347 4348 // If there is a sequence that branches based on comparing a single bit 4349 // against zero that can be combined into a single instruction, and the 4350 // target supports folding these into a single instruction, sink the 4351 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4352 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4353 // searched for. 4354 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4355 if (!EnableAndCmpSinking) 4356 return false; 4357 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4358 return false; 4359 bool MadeChange = false; 4360 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4361 BasicBlock *BB = I++; 4362 4363 // Does this BB end with the following? 4364 // %andVal = and %val, #single-bit-set 4365 // %icmpVal = icmp %andResult, 0 4366 // br i1 %cmpVal label %dest1, label %dest2" 4367 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4368 if (!Brcc || !Brcc->isConditional()) 4369 continue; 4370 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4371 if (!Cmp || Cmp->getParent() != BB) 4372 continue; 4373 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4374 if (!Zero || !Zero->isZero()) 4375 continue; 4376 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4377 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4378 continue; 4379 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4380 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4381 continue; 4382 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4383 4384 // Push the "and; icmp" for any users that are conditional branches. 4385 // Since there can only be one branch use per BB, we don't need to keep 4386 // track of which BBs we insert into. 4387 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4388 UI != E; ) { 4389 Use &TheUse = *UI; 4390 // Find brcc use. 4391 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4392 ++UI; 4393 if (!BrccUser || !BrccUser->isConditional()) 4394 continue; 4395 BasicBlock *UserBB = BrccUser->getParent(); 4396 if (UserBB == BB) continue; 4397 DEBUG(dbgs() << "found Brcc use\n"); 4398 4399 // Sink the "and; icmp" to use. 4400 MadeChange = true; 4401 BinaryOperator *NewAnd = 4402 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4403 BrccUser); 4404 CmpInst *NewCmp = 4405 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4406 "", BrccUser); 4407 TheUse = NewCmp; 4408 ++NumAndCmpsMoved; 4409 DEBUG(BrccUser->getParent()->dump()); 4410 } 4411 } 4412 return MadeChange; 4413 } 4414 4415 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4416 /// success, or returns false if no or invalid metadata was found. 4417 static bool extractBranchMetadata(BranchInst *BI, 4418 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4419 assert(BI->isConditional() && 4420 "Looking for probabilities on unconditional branch?"); 4421 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4422 if (!ProfileData || ProfileData->getNumOperands() != 3) 4423 return false; 4424 4425 const auto *CITrue = 4426 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4427 const auto *CIFalse = 4428 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4429 if (!CITrue || !CIFalse) 4430 return false; 4431 4432 ProbTrue = CITrue->getValue().getZExtValue(); 4433 ProbFalse = CIFalse->getValue().getZExtValue(); 4434 4435 return true; 4436 } 4437 4438 /// \brief Scale down both weights to fit into uint32_t. 4439 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4440 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4441 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4442 NewTrue = NewTrue / Scale; 4443 NewFalse = NewFalse / Scale; 4444 } 4445 4446 /// \brief Some targets prefer to split a conditional branch like: 4447 /// \code 4448 /// %0 = icmp ne i32 %a, 0 4449 /// %1 = icmp ne i32 %b, 0 4450 /// %or.cond = or i1 %0, %1 4451 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4452 /// \endcode 4453 /// into multiple branch instructions like: 4454 /// \code 4455 /// bb1: 4456 /// %0 = icmp ne i32 %a, 0 4457 /// br i1 %0, label %TrueBB, label %bb2 4458 /// bb2: 4459 /// %1 = icmp ne i32 %b, 0 4460 /// br i1 %1, label %TrueBB, label %FalseBB 4461 /// \endcode 4462 /// This usually allows instruction selection to do even further optimizations 4463 /// and combine the compare with the branch instruction. Currently this is 4464 /// applied for targets which have "cheap" jump instructions. 4465 /// 4466 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4467 /// 4468 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4469 if (!TM || TM->Options.EnableFastISel != true || 4470 !TLI || TLI->isJumpExpensive()) 4471 return false; 4472 4473 bool MadeChange = false; 4474 for (auto &BB : F) { 4475 // Does this BB end with the following? 4476 // %cond1 = icmp|fcmp|binary instruction ... 4477 // %cond2 = icmp|fcmp|binary instruction ... 4478 // %cond.or = or|and i1 %cond1, cond2 4479 // br i1 %cond.or label %dest1, label %dest2" 4480 BinaryOperator *LogicOp; 4481 BasicBlock *TBB, *FBB; 4482 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4483 continue; 4484 4485 unsigned Opc; 4486 Value *Cond1, *Cond2; 4487 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4488 m_OneUse(m_Value(Cond2))))) 4489 Opc = Instruction::And; 4490 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4491 m_OneUse(m_Value(Cond2))))) 4492 Opc = Instruction::Or; 4493 else 4494 continue; 4495 4496 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4497 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4498 continue; 4499 4500 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4501 4502 // Create a new BB. 4503 auto *InsertBefore = std::next(Function::iterator(BB)) 4504 .getNodePtrUnchecked(); 4505 auto TmpBB = BasicBlock::Create(BB.getContext(), 4506 BB.getName() + ".cond.split", 4507 BB.getParent(), InsertBefore); 4508 4509 // Update original basic block by using the first condition directly by the 4510 // branch instruction and removing the no longer needed and/or instruction. 4511 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4512 Br1->setCondition(Cond1); 4513 LogicOp->eraseFromParent(); 4514 4515 // Depending on the conditon we have to either replace the true or the false 4516 // successor of the original branch instruction. 4517 if (Opc == Instruction::And) 4518 Br1->setSuccessor(0, TmpBB); 4519 else 4520 Br1->setSuccessor(1, TmpBB); 4521 4522 // Fill in the new basic block. 4523 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4524 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4525 I->removeFromParent(); 4526 I->insertBefore(Br2); 4527 } 4528 4529 // Update PHI nodes in both successors. The original BB needs to be 4530 // replaced in one succesor's PHI nodes, because the branch comes now from 4531 // the newly generated BB (NewBB). In the other successor we need to add one 4532 // incoming edge to the PHI nodes, because both branch instructions target 4533 // now the same successor. Depending on the original branch condition 4534 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4535 // we perfrom the correct update for the PHI nodes. 4536 // This doesn't change the successor order of the just created branch 4537 // instruction (or any other instruction). 4538 if (Opc == Instruction::Or) 4539 std::swap(TBB, FBB); 4540 4541 // Replace the old BB with the new BB. 4542 for (auto &I : *TBB) { 4543 PHINode *PN = dyn_cast<PHINode>(&I); 4544 if (!PN) 4545 break; 4546 int i; 4547 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4548 PN->setIncomingBlock(i, TmpBB); 4549 } 4550 4551 // Add another incoming edge form the new BB. 4552 for (auto &I : *FBB) { 4553 PHINode *PN = dyn_cast<PHINode>(&I); 4554 if (!PN) 4555 break; 4556 auto *Val = PN->getIncomingValueForBlock(&BB); 4557 PN->addIncoming(Val, TmpBB); 4558 } 4559 4560 // Update the branch weights (from SelectionDAGBuilder:: 4561 // FindMergedConditions). 4562 if (Opc == Instruction::Or) { 4563 // Codegen X | Y as: 4564 // BB1: 4565 // jmp_if_X TBB 4566 // jmp TmpBB 4567 // TmpBB: 4568 // jmp_if_Y TBB 4569 // jmp FBB 4570 // 4571 4572 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4573 // The requirement is that 4574 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4575 // = TrueProb for orignal BB. 4576 // Assuming the orignal weights are A and B, one choice is to set BB1's 4577 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4578 // assumes that 4579 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4580 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4581 // TmpBB, but the math is more complicated. 4582 uint64_t TrueWeight, FalseWeight; 4583 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4584 uint64_t NewTrueWeight = TrueWeight; 4585 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4586 scaleWeights(NewTrueWeight, NewFalseWeight); 4587 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4588 .createBranchWeights(TrueWeight, FalseWeight)); 4589 4590 NewTrueWeight = TrueWeight; 4591 NewFalseWeight = 2 * FalseWeight; 4592 scaleWeights(NewTrueWeight, NewFalseWeight); 4593 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4594 .createBranchWeights(TrueWeight, FalseWeight)); 4595 } 4596 } else { 4597 // Codegen X & Y as: 4598 // BB1: 4599 // jmp_if_X TmpBB 4600 // jmp FBB 4601 // TmpBB: 4602 // jmp_if_Y TBB 4603 // jmp FBB 4604 // 4605 // This requires creation of TmpBB after CurBB. 4606 4607 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4608 // The requirement is that 4609 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4610 // = FalseProb for orignal BB. 4611 // Assuming the orignal weights are A and B, one choice is to set BB1's 4612 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4613 // assumes that 4614 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4615 uint64_t TrueWeight, FalseWeight; 4616 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4617 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4618 uint64_t NewFalseWeight = FalseWeight; 4619 scaleWeights(NewTrueWeight, NewFalseWeight); 4620 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4621 .createBranchWeights(TrueWeight, FalseWeight)); 4622 4623 NewTrueWeight = 2 * TrueWeight; 4624 NewFalseWeight = FalseWeight; 4625 scaleWeights(NewTrueWeight, NewFalseWeight); 4626 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4627 .createBranchWeights(TrueWeight, FalseWeight)); 4628 } 4629 } 4630 4631 // Request DOM Tree update. 4632 // Note: No point in getting fancy here, since the DT info is never 4633 // available to CodeGenPrepare and the existing update code is broken 4634 // anyways. 4635 ModifiedDT = true; 4636 4637 MadeChange = true; 4638 4639 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4640 TmpBB->dump()); 4641 } 4642 return MadeChange; 4643 } 4644