1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/IR/ValueMap.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetLibraryInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/BuildLibCalls.h" 44 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "codegenprepare" 50 51 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 52 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 53 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 55 "sunken Cmps"); 56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 57 "of sunken Casts"); 58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 59 "computations were sunk"); 60 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 61 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 62 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 65 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 66 67 static cl::opt<bool> DisableBranchOpts( 68 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 69 cl::desc("Disable branch optimizations in CodeGenPrepare")); 70 71 static cl::opt<bool> DisableSelectToBranch( 72 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 73 cl::desc("Disable select to branch conversion.")); 74 75 static cl::opt<bool> AddrSinkUsingGEPs( 76 "addr-sink-using-gep", cl::Hidden, cl::init(false), 77 cl::desc("Address sinking in CGP using GEPs.")); 78 79 static cl::opt<bool> EnableAndCmpSinking( 80 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 81 cl::desc("Enable sinkinig and/cmp into branches.")); 82 83 namespace { 84 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 85 typedef DenseMap<Instruction *, Type *> InstrToOrigTy; 86 87 class CodeGenPrepare : public FunctionPass { 88 /// TLI - Keep a pointer of a TargetLowering to consult for determining 89 /// transformation profitability. 90 const TargetMachine *TM; 91 const TargetLowering *TLI; 92 const TargetLibraryInfo *TLInfo; 93 DominatorTree *DT; 94 95 /// CurInstIterator - As we scan instructions optimizing them, this is the 96 /// next instruction to optimize. Xforms that can invalidate this should 97 /// update it. 98 BasicBlock::iterator CurInstIterator; 99 100 /// Keeps track of non-local addresses that have been sunk into a block. 101 /// This allows us to avoid inserting duplicate code for blocks with 102 /// multiple load/stores of the same address. 103 ValueMap<Value*, Value*> SunkAddrs; 104 105 /// Keeps track of all truncates inserted for the current function. 106 SetOfInstrs InsertedTruncsSet; 107 /// Keeps track of the type of the related instruction before their 108 /// promotion for the current function. 109 InstrToOrigTy PromotedInsts; 110 111 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 112 /// be updated. 113 bool ModifiedDT; 114 115 /// OptSize - True if optimizing for size. 116 bool OptSize; 117 118 public: 119 static char ID; // Pass identification, replacement for typeid 120 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 121 : FunctionPass(ID), TM(TM), TLI(nullptr) { 122 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 123 } 124 bool runOnFunction(Function &F) override; 125 126 const char *getPassName() const override { return "CodeGen Prepare"; } 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override { 129 AU.addPreserved<DominatorTreeWrapperPass>(); 130 AU.addRequired<TargetLibraryInfo>(); 131 } 132 133 private: 134 bool EliminateFallThrough(Function &F); 135 bool EliminateMostlyEmptyBlocks(Function &F); 136 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 137 void EliminateMostlyEmptyBlock(BasicBlock *BB); 138 bool OptimizeBlock(BasicBlock &BB); 139 bool OptimizeInst(Instruction *I); 140 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 141 bool OptimizeInlineAsmInst(CallInst *CS); 142 bool OptimizeCallInst(CallInst *CI); 143 bool MoveExtToFormExtLoad(Instruction *I); 144 bool OptimizeExtUses(Instruction *I); 145 bool OptimizeSelectInst(SelectInst *SI); 146 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 147 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 148 bool PlaceDbgValues(Function &F); 149 bool sinkAndCmp(Function &F); 150 }; 151 } 152 153 char CodeGenPrepare::ID = 0; 154 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 155 "Optimize for code generation", false, false) 156 157 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 158 return new CodeGenPrepare(TM); 159 } 160 161 bool CodeGenPrepare::runOnFunction(Function &F) { 162 if (skipOptnoneFunction(F)) 163 return false; 164 165 bool EverMadeChange = false; 166 // Clear per function information. 167 InsertedTruncsSet.clear(); 168 PromotedInsts.clear(); 169 170 ModifiedDT = false; 171 if (TM) 172 TLI = TM->getSubtargetImpl()->getTargetLowering(); 173 TLInfo = &getAnalysis<TargetLibraryInfo>(); 174 DominatorTreeWrapperPass *DTWP = 175 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 176 DT = DTWP ? &DTWP->getDomTree() : nullptr; 177 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 178 Attribute::OptimizeForSize); 179 180 /// This optimization identifies DIV instructions that can be 181 /// profitably bypassed and carried out with a shorter, faster divide. 182 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 183 const DenseMap<unsigned int, unsigned int> &BypassWidths = 184 TLI->getBypassSlowDivWidths(); 185 for (Function::iterator I = F.begin(); I != F.end(); I++) 186 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 187 } 188 189 // Eliminate blocks that contain only PHI nodes and an 190 // unconditional branch. 191 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 192 193 // llvm.dbg.value is far away from the value then iSel may not be able 194 // handle it properly. iSel will drop llvm.dbg.value if it can not 195 // find a node corresponding to the value. 196 EverMadeChange |= PlaceDbgValues(F); 197 198 // If there is a mask, compare against zero, and branch that can be combined 199 // into a single target instruction, push the mask and compare into branch 200 // users. Do this before OptimizeBlock -> OptimizeInst -> 201 // OptimizeCmpExpression, which perturbs the pattern being searched for. 202 if (!DisableBranchOpts) 203 EverMadeChange |= sinkAndCmp(F); 204 205 bool MadeChange = true; 206 while (MadeChange) { 207 MadeChange = false; 208 for (Function::iterator I = F.begin(); I != F.end(); ) { 209 BasicBlock *BB = I++; 210 MadeChange |= OptimizeBlock(*BB); 211 } 212 EverMadeChange |= MadeChange; 213 } 214 215 SunkAddrs.clear(); 216 217 if (!DisableBranchOpts) { 218 MadeChange = false; 219 SmallPtrSet<BasicBlock*, 8> WorkList; 220 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 221 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 222 MadeChange |= ConstantFoldTerminator(BB, true); 223 if (!MadeChange) continue; 224 225 for (SmallVectorImpl<BasicBlock*>::iterator 226 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 227 if (pred_begin(*II) == pred_end(*II)) 228 WorkList.insert(*II); 229 } 230 231 // Delete the dead blocks and any of their dead successors. 232 MadeChange |= !WorkList.empty(); 233 while (!WorkList.empty()) { 234 BasicBlock *BB = *WorkList.begin(); 235 WorkList.erase(BB); 236 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 237 238 DeleteDeadBlock(BB); 239 240 for (SmallVectorImpl<BasicBlock*>::iterator 241 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 242 if (pred_begin(*II) == pred_end(*II)) 243 WorkList.insert(*II); 244 } 245 246 // Merge pairs of basic blocks with unconditional branches, connected by 247 // a single edge. 248 if (EverMadeChange || MadeChange) 249 MadeChange |= EliminateFallThrough(F); 250 251 if (MadeChange) 252 ModifiedDT = true; 253 EverMadeChange |= MadeChange; 254 } 255 256 if (ModifiedDT && DT) 257 DT->recalculate(F); 258 259 return EverMadeChange; 260 } 261 262 /// EliminateFallThrough - Merge basic blocks which are connected 263 /// by a single edge, where one of the basic blocks has a single successor 264 /// pointing to the other basic block, which has a single predecessor. 265 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 266 bool Changed = false; 267 // Scan all of the blocks in the function, except for the entry block. 268 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 269 BasicBlock *BB = I++; 270 // If the destination block has a single pred, then this is a trivial 271 // edge, just collapse it. 272 BasicBlock *SinglePred = BB->getSinglePredecessor(); 273 274 // Don't merge if BB's address is taken. 275 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 276 277 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 278 if (Term && !Term->isConditional()) { 279 Changed = true; 280 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 281 // Remember if SinglePred was the entry block of the function. 282 // If so, we will need to move BB back to the entry position. 283 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 284 MergeBasicBlockIntoOnlyPred(BB, this); 285 286 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 287 BB->moveBefore(&BB->getParent()->getEntryBlock()); 288 289 // We have erased a block. Update the iterator. 290 I = BB; 291 } 292 } 293 return Changed; 294 } 295 296 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 297 /// debug info directives, and an unconditional branch. Passes before isel 298 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 299 /// isel. Start by eliminating these blocks so we can split them the way we 300 /// want them. 301 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 302 bool MadeChange = false; 303 // Note that this intentionally skips the entry block. 304 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 305 BasicBlock *BB = I++; 306 307 // If this block doesn't end with an uncond branch, ignore it. 308 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 309 if (!BI || !BI->isUnconditional()) 310 continue; 311 312 // If the instruction before the branch (skipping debug info) isn't a phi 313 // node, then other stuff is happening here. 314 BasicBlock::iterator BBI = BI; 315 if (BBI != BB->begin()) { 316 --BBI; 317 while (isa<DbgInfoIntrinsic>(BBI)) { 318 if (BBI == BB->begin()) 319 break; 320 --BBI; 321 } 322 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 323 continue; 324 } 325 326 // Do not break infinite loops. 327 BasicBlock *DestBB = BI->getSuccessor(0); 328 if (DestBB == BB) 329 continue; 330 331 if (!CanMergeBlocks(BB, DestBB)) 332 continue; 333 334 EliminateMostlyEmptyBlock(BB); 335 MadeChange = true; 336 } 337 return MadeChange; 338 } 339 340 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 341 /// single uncond branch between them, and BB contains no other non-phi 342 /// instructions. 343 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 344 const BasicBlock *DestBB) const { 345 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 346 // the successor. If there are more complex condition (e.g. preheaders), 347 // don't mess around with them. 348 BasicBlock::const_iterator BBI = BB->begin(); 349 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 350 for (const User *U : PN->users()) { 351 const Instruction *UI = cast<Instruction>(U); 352 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 353 return false; 354 // If User is inside DestBB block and it is a PHINode then check 355 // incoming value. If incoming value is not from BB then this is 356 // a complex condition (e.g. preheaders) we want to avoid here. 357 if (UI->getParent() == DestBB) { 358 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 359 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 360 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 361 if (Insn && Insn->getParent() == BB && 362 Insn->getParent() != UPN->getIncomingBlock(I)) 363 return false; 364 } 365 } 366 } 367 } 368 369 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 370 // and DestBB may have conflicting incoming values for the block. If so, we 371 // can't merge the block. 372 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 373 if (!DestBBPN) return true; // no conflict. 374 375 // Collect the preds of BB. 376 SmallPtrSet<const BasicBlock*, 16> BBPreds; 377 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 378 // It is faster to get preds from a PHI than with pred_iterator. 379 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 380 BBPreds.insert(BBPN->getIncomingBlock(i)); 381 } else { 382 BBPreds.insert(pred_begin(BB), pred_end(BB)); 383 } 384 385 // Walk the preds of DestBB. 386 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 387 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 388 if (BBPreds.count(Pred)) { // Common predecessor? 389 BBI = DestBB->begin(); 390 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 391 const Value *V1 = PN->getIncomingValueForBlock(Pred); 392 const Value *V2 = PN->getIncomingValueForBlock(BB); 393 394 // If V2 is a phi node in BB, look up what the mapped value will be. 395 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 396 if (V2PN->getParent() == BB) 397 V2 = V2PN->getIncomingValueForBlock(Pred); 398 399 // If there is a conflict, bail out. 400 if (V1 != V2) return false; 401 } 402 } 403 } 404 405 return true; 406 } 407 408 409 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 410 /// an unconditional branch in it. 411 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 412 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 413 BasicBlock *DestBB = BI->getSuccessor(0); 414 415 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 416 417 // If the destination block has a single pred, then this is a trivial edge, 418 // just collapse it. 419 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 420 if (SinglePred != DestBB) { 421 // Remember if SinglePred was the entry block of the function. If so, we 422 // will need to move BB back to the entry position. 423 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 424 MergeBasicBlockIntoOnlyPred(DestBB, this); 425 426 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 427 BB->moveBefore(&BB->getParent()->getEntryBlock()); 428 429 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 430 return; 431 } 432 } 433 434 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 435 // to handle the new incoming edges it is about to have. 436 PHINode *PN; 437 for (BasicBlock::iterator BBI = DestBB->begin(); 438 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 439 // Remove the incoming value for BB, and remember it. 440 Value *InVal = PN->removeIncomingValue(BB, false); 441 442 // Two options: either the InVal is a phi node defined in BB or it is some 443 // value that dominates BB. 444 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 445 if (InValPhi && InValPhi->getParent() == BB) { 446 // Add all of the input values of the input PHI as inputs of this phi. 447 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 448 PN->addIncoming(InValPhi->getIncomingValue(i), 449 InValPhi->getIncomingBlock(i)); 450 } else { 451 // Otherwise, add one instance of the dominating value for each edge that 452 // we will be adding. 453 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 454 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 455 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 456 } else { 457 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 458 PN->addIncoming(InVal, *PI); 459 } 460 } 461 } 462 463 // The PHIs are now updated, change everything that refers to BB to use 464 // DestBB and remove BB. 465 BB->replaceAllUsesWith(DestBB); 466 if (DT && !ModifiedDT) { 467 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 468 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 469 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 470 DT->changeImmediateDominator(DestBB, NewIDom); 471 DT->eraseNode(BB); 472 } 473 BB->eraseFromParent(); 474 ++NumBlocksElim; 475 476 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 477 } 478 479 /// SinkCast - Sink the specified cast instruction into its user blocks 480 static bool SinkCast(CastInst *CI) { 481 BasicBlock *DefBB = CI->getParent(); 482 483 /// InsertedCasts - Only insert a cast in each block once. 484 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 485 486 bool MadeChange = false; 487 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 488 UI != E; ) { 489 Use &TheUse = UI.getUse(); 490 Instruction *User = cast<Instruction>(*UI); 491 492 // Figure out which BB this cast is used in. For PHI's this is the 493 // appropriate predecessor block. 494 BasicBlock *UserBB = User->getParent(); 495 if (PHINode *PN = dyn_cast<PHINode>(User)) { 496 UserBB = PN->getIncomingBlock(TheUse); 497 } 498 499 // Preincrement use iterator so we don't invalidate it. 500 ++UI; 501 502 // If this user is in the same block as the cast, don't change the cast. 503 if (UserBB == DefBB) continue; 504 505 // If we have already inserted a cast into this block, use it. 506 CastInst *&InsertedCast = InsertedCasts[UserBB]; 507 508 if (!InsertedCast) { 509 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 510 InsertedCast = 511 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 512 InsertPt); 513 MadeChange = true; 514 } 515 516 // Replace a use of the cast with a use of the new cast. 517 TheUse = InsertedCast; 518 ++NumCastUses; 519 } 520 521 // If we removed all uses, nuke the cast. 522 if (CI->use_empty()) { 523 CI->eraseFromParent(); 524 MadeChange = true; 525 } 526 527 return MadeChange; 528 } 529 530 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 531 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 532 /// sink it into user blocks to reduce the number of virtual 533 /// registers that must be created and coalesced. 534 /// 535 /// Return true if any changes are made. 536 /// 537 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 538 // If this is a noop copy, 539 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 540 EVT DstVT = TLI.getValueType(CI->getType()); 541 542 // This is an fp<->int conversion? 543 if (SrcVT.isInteger() != DstVT.isInteger()) 544 return false; 545 546 // If this is an extension, it will be a zero or sign extension, which 547 // isn't a noop. 548 if (SrcVT.bitsLT(DstVT)) return false; 549 550 // If these values will be promoted, find out what they will be promoted 551 // to. This helps us consider truncates on PPC as noop copies when they 552 // are. 553 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 554 TargetLowering::TypePromoteInteger) 555 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 556 if (TLI.getTypeAction(CI->getContext(), DstVT) == 557 TargetLowering::TypePromoteInteger) 558 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 559 560 // If, after promotion, these are the same types, this is a noop copy. 561 if (SrcVT != DstVT) 562 return false; 563 564 return SinkCast(CI); 565 } 566 567 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 568 /// the number of virtual registers that must be created and coalesced. This is 569 /// a clear win except on targets with multiple condition code registers 570 /// (PowerPC), where it might lose; some adjustment may be wanted there. 571 /// 572 /// Return true if any changes are made. 573 static bool OptimizeCmpExpression(CmpInst *CI) { 574 BasicBlock *DefBB = CI->getParent(); 575 576 /// InsertedCmp - Only insert a cmp in each block once. 577 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 578 579 bool MadeChange = false; 580 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 581 UI != E; ) { 582 Use &TheUse = UI.getUse(); 583 Instruction *User = cast<Instruction>(*UI); 584 585 // Preincrement use iterator so we don't invalidate it. 586 ++UI; 587 588 // Don't bother for PHI nodes. 589 if (isa<PHINode>(User)) 590 continue; 591 592 // Figure out which BB this cmp is used in. 593 BasicBlock *UserBB = User->getParent(); 594 595 // If this user is in the same block as the cmp, don't change the cmp. 596 if (UserBB == DefBB) continue; 597 598 // If we have already inserted a cmp into this block, use it. 599 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 600 601 if (!InsertedCmp) { 602 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 603 InsertedCmp = 604 CmpInst::Create(CI->getOpcode(), 605 CI->getPredicate(), CI->getOperand(0), 606 CI->getOperand(1), "", InsertPt); 607 MadeChange = true; 608 } 609 610 // Replace a use of the cmp with a use of the new cmp. 611 TheUse = InsertedCmp; 612 ++NumCmpUses; 613 } 614 615 // If we removed all uses, nuke the cmp. 616 if (CI->use_empty()) 617 CI->eraseFromParent(); 618 619 return MadeChange; 620 } 621 622 /// isExtractBitsCandidateUse - Check if the candidates could 623 /// be combined with shift instruction, which includes: 624 /// 1. Truncate instruction 625 /// 2. And instruction and the imm is a mask of the low bits: 626 /// imm & (imm+1) == 0 627 static bool isExtractBitsCandidateUse(Instruction *User) { 628 if (!isa<TruncInst>(User)) { 629 if (User->getOpcode() != Instruction::And || 630 !isa<ConstantInt>(User->getOperand(1))) 631 return false; 632 633 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 634 635 if ((Cimm & (Cimm + 1)).getBoolValue()) 636 return false; 637 } 638 return true; 639 } 640 641 /// SinkShiftAndTruncate - sink both shift and truncate instruction 642 /// to the use of truncate's BB. 643 static bool 644 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 645 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 646 const TargetLowering &TLI) { 647 BasicBlock *UserBB = User->getParent(); 648 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 649 TruncInst *TruncI = dyn_cast<TruncInst>(User); 650 bool MadeChange = false; 651 652 for (Value::user_iterator TruncUI = TruncI->user_begin(), 653 TruncE = TruncI->user_end(); 654 TruncUI != TruncE;) { 655 656 Use &TruncTheUse = TruncUI.getUse(); 657 Instruction *TruncUser = cast<Instruction>(*TruncUI); 658 // Preincrement use iterator so we don't invalidate it. 659 660 ++TruncUI; 661 662 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 663 if (!ISDOpcode) 664 continue; 665 666 // If the use is actually a legal node, there will not be an 667 // implicit truncate. 668 // FIXME: always querying the result type is just an 669 // approximation; some nodes' legality is determined by the 670 // operand or other means. There's no good way to find out though. 671 if (TLI.isOperationLegalOrCustom(ISDOpcode, 672 EVT::getEVT(TruncUser->getType(), true))) 673 continue; 674 675 // Don't bother for PHI nodes. 676 if (isa<PHINode>(TruncUser)) 677 continue; 678 679 BasicBlock *TruncUserBB = TruncUser->getParent(); 680 681 if (UserBB == TruncUserBB) 682 continue; 683 684 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 685 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 686 687 if (!InsertedShift && !InsertedTrunc) { 688 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 689 // Sink the shift 690 if (ShiftI->getOpcode() == Instruction::AShr) 691 InsertedShift = 692 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 693 else 694 InsertedShift = 695 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 696 697 // Sink the trunc 698 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 699 TruncInsertPt++; 700 701 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 702 TruncI->getType(), "", TruncInsertPt); 703 704 MadeChange = true; 705 706 TruncTheUse = InsertedTrunc; 707 } 708 } 709 return MadeChange; 710 } 711 712 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 713 /// the uses could potentially be combined with this shift instruction and 714 /// generate BitExtract instruction. It will only be applied if the architecture 715 /// supports BitExtract instruction. Here is an example: 716 /// BB1: 717 /// %x.extract.shift = lshr i64 %arg1, 32 718 /// BB2: 719 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 720 /// ==> 721 /// 722 /// BB2: 723 /// %x.extract.shift.1 = lshr i64 %arg1, 32 724 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 725 /// 726 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 727 /// instruction. 728 /// Return true if any changes are made. 729 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 730 const TargetLowering &TLI) { 731 BasicBlock *DefBB = ShiftI->getParent(); 732 733 /// Only insert instructions in each block once. 734 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 735 736 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 737 738 bool MadeChange = false; 739 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 740 UI != E;) { 741 Use &TheUse = UI.getUse(); 742 Instruction *User = cast<Instruction>(*UI); 743 // Preincrement use iterator so we don't invalidate it. 744 ++UI; 745 746 // Don't bother for PHI nodes. 747 if (isa<PHINode>(User)) 748 continue; 749 750 if (!isExtractBitsCandidateUse(User)) 751 continue; 752 753 BasicBlock *UserBB = User->getParent(); 754 755 if (UserBB == DefBB) { 756 // If the shift and truncate instruction are in the same BB. The use of 757 // the truncate(TruncUse) may still introduce another truncate if not 758 // legal. In this case, we would like to sink both shift and truncate 759 // instruction to the BB of TruncUse. 760 // for example: 761 // BB1: 762 // i64 shift.result = lshr i64 opnd, imm 763 // trunc.result = trunc shift.result to i16 764 // 765 // BB2: 766 // ----> We will have an implicit truncate here if the architecture does 767 // not have i16 compare. 768 // cmp i16 trunc.result, opnd2 769 // 770 if (isa<TruncInst>(User) && shiftIsLegal 771 // If the type of the truncate is legal, no trucate will be 772 // introduced in other basic blocks. 773 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 774 MadeChange = 775 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 776 777 continue; 778 } 779 // If we have already inserted a shift into this block, use it. 780 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 781 782 if (!InsertedShift) { 783 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 784 785 if (ShiftI->getOpcode() == Instruction::AShr) 786 InsertedShift = 787 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 788 else 789 InsertedShift = 790 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 791 792 MadeChange = true; 793 } 794 795 // Replace a use of the shift with a use of the new shift. 796 TheUse = InsertedShift; 797 } 798 799 // If we removed all uses, nuke the shift. 800 if (ShiftI->use_empty()) 801 ShiftI->eraseFromParent(); 802 803 return MadeChange; 804 } 805 806 namespace { 807 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { 808 protected: 809 void replaceCall(Value *With) override { 810 CI->replaceAllUsesWith(With); 811 CI->eraseFromParent(); 812 } 813 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override { 814 if (ConstantInt *SizeCI = 815 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) 816 return SizeCI->isAllOnesValue(); 817 return false; 818 } 819 }; 820 } // end anonymous namespace 821 822 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { 823 BasicBlock *BB = CI->getParent(); 824 825 // Lower inline assembly if we can. 826 // If we found an inline asm expession, and if the target knows how to 827 // lower it to normal LLVM code, do so now. 828 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 829 if (TLI->ExpandInlineAsm(CI)) { 830 // Avoid invalidating the iterator. 831 CurInstIterator = BB->begin(); 832 // Avoid processing instructions out of order, which could cause 833 // reuse before a value is defined. 834 SunkAddrs.clear(); 835 return true; 836 } 837 // Sink address computing for memory operands into the block. 838 if (OptimizeInlineAsmInst(CI)) 839 return true; 840 } 841 842 // Lower all uses of llvm.objectsize.* 843 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 844 if (II && II->getIntrinsicID() == Intrinsic::objectsize) { 845 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 846 Type *ReturnTy = CI->getType(); 847 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 848 849 // Substituting this can cause recursive simplifications, which can 850 // invalidate our iterator. Use a WeakVH to hold onto it in case this 851 // happens. 852 WeakVH IterHandle(CurInstIterator); 853 854 replaceAndRecursivelySimplify(CI, RetVal, 855 TLI ? TLI->getDataLayout() : nullptr, 856 TLInfo, ModifiedDT ? nullptr : DT); 857 858 // If the iterator instruction was recursively deleted, start over at the 859 // start of the block. 860 if (IterHandle != CurInstIterator) { 861 CurInstIterator = BB->begin(); 862 SunkAddrs.clear(); 863 } 864 return true; 865 } 866 867 if (II && TLI) { 868 SmallVector<Value*, 2> PtrOps; 869 Type *AccessTy; 870 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 871 while (!PtrOps.empty()) 872 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 873 return true; 874 } 875 876 // From here on out we're working with named functions. 877 if (!CI->getCalledFunction()) return false; 878 879 // We'll need DataLayout from here on out. 880 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 881 if (!TD) return false; 882 883 // Lower all default uses of _chk calls. This is very similar 884 // to what InstCombineCalls does, but here we are only lowering calls 885 // that have the default "don't know" as the objectsize. Anything else 886 // should be left alone. 887 CodeGenPrepareFortifiedLibCalls Simplifier; 888 return Simplifier.fold(CI, TD, TLInfo); 889 } 890 891 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 892 /// instructions to the predecessor to enable tail call optimizations. The 893 /// case it is currently looking for is: 894 /// @code 895 /// bb0: 896 /// %tmp0 = tail call i32 @f0() 897 /// br label %return 898 /// bb1: 899 /// %tmp1 = tail call i32 @f1() 900 /// br label %return 901 /// bb2: 902 /// %tmp2 = tail call i32 @f2() 903 /// br label %return 904 /// return: 905 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 906 /// ret i32 %retval 907 /// @endcode 908 /// 909 /// => 910 /// 911 /// @code 912 /// bb0: 913 /// %tmp0 = tail call i32 @f0() 914 /// ret i32 %tmp0 915 /// bb1: 916 /// %tmp1 = tail call i32 @f1() 917 /// ret i32 %tmp1 918 /// bb2: 919 /// %tmp2 = tail call i32 @f2() 920 /// ret i32 %tmp2 921 /// @endcode 922 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 923 if (!TLI) 924 return false; 925 926 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 927 if (!RI) 928 return false; 929 930 PHINode *PN = nullptr; 931 BitCastInst *BCI = nullptr; 932 Value *V = RI->getReturnValue(); 933 if (V) { 934 BCI = dyn_cast<BitCastInst>(V); 935 if (BCI) 936 V = BCI->getOperand(0); 937 938 PN = dyn_cast<PHINode>(V); 939 if (!PN) 940 return false; 941 } 942 943 if (PN && PN->getParent() != BB) 944 return false; 945 946 // It's not safe to eliminate the sign / zero extension of the return value. 947 // See llvm::isInTailCallPosition(). 948 const Function *F = BB->getParent(); 949 AttributeSet CallerAttrs = F->getAttributes(); 950 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 951 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 952 return false; 953 954 // Make sure there are no instructions between the PHI and return, or that the 955 // return is the first instruction in the block. 956 if (PN) { 957 BasicBlock::iterator BI = BB->begin(); 958 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 959 if (&*BI == BCI) 960 // Also skip over the bitcast. 961 ++BI; 962 if (&*BI != RI) 963 return false; 964 } else { 965 BasicBlock::iterator BI = BB->begin(); 966 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 967 if (&*BI != RI) 968 return false; 969 } 970 971 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 972 /// call. 973 SmallVector<CallInst*, 4> TailCalls; 974 if (PN) { 975 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 976 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 977 // Make sure the phi value is indeed produced by the tail call. 978 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 979 TLI->mayBeEmittedAsTailCall(CI)) 980 TailCalls.push_back(CI); 981 } 982 } else { 983 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 984 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 985 if (!VisitedBBs.insert(*PI)) 986 continue; 987 988 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 989 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 990 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 991 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 992 if (RI == RE) 993 continue; 994 995 CallInst *CI = dyn_cast<CallInst>(&*RI); 996 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 997 TailCalls.push_back(CI); 998 } 999 } 1000 1001 bool Changed = false; 1002 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1003 CallInst *CI = TailCalls[i]; 1004 CallSite CS(CI); 1005 1006 // Conservatively require the attributes of the call to match those of the 1007 // return. Ignore noalias because it doesn't affect the call sequence. 1008 AttributeSet CalleeAttrs = CS.getAttributes(); 1009 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1010 removeAttribute(Attribute::NoAlias) != 1011 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1012 removeAttribute(Attribute::NoAlias)) 1013 continue; 1014 1015 // Make sure the call instruction is followed by an unconditional branch to 1016 // the return block. 1017 BasicBlock *CallBB = CI->getParent(); 1018 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1019 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1020 continue; 1021 1022 // Duplicate the return into CallBB. 1023 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1024 ModifiedDT = Changed = true; 1025 ++NumRetsDup; 1026 } 1027 1028 // If we eliminated all predecessors of the block, delete the block now. 1029 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1030 BB->eraseFromParent(); 1031 1032 return Changed; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Memory Optimization 1037 //===----------------------------------------------------------------------===// 1038 1039 namespace { 1040 1041 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1042 /// which holds actual Value*'s for register values. 1043 struct ExtAddrMode : public TargetLowering::AddrMode { 1044 Value *BaseReg; 1045 Value *ScaledReg; 1046 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1047 void print(raw_ostream &OS) const; 1048 void dump() const; 1049 1050 bool operator==(const ExtAddrMode& O) const { 1051 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1052 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1053 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1054 } 1055 }; 1056 1057 #ifndef NDEBUG 1058 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1059 AM.print(OS); 1060 return OS; 1061 } 1062 #endif 1063 1064 void ExtAddrMode::print(raw_ostream &OS) const { 1065 bool NeedPlus = false; 1066 OS << "["; 1067 if (BaseGV) { 1068 OS << (NeedPlus ? " + " : "") 1069 << "GV:"; 1070 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1071 NeedPlus = true; 1072 } 1073 1074 if (BaseOffs) { 1075 OS << (NeedPlus ? " + " : "") 1076 << BaseOffs; 1077 NeedPlus = true; 1078 } 1079 1080 if (BaseReg) { 1081 OS << (NeedPlus ? " + " : "") 1082 << "Base:"; 1083 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1084 NeedPlus = true; 1085 } 1086 if (Scale) { 1087 OS << (NeedPlus ? " + " : "") 1088 << Scale << "*"; 1089 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1090 } 1091 1092 OS << ']'; 1093 } 1094 1095 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1096 void ExtAddrMode::dump() const { 1097 print(dbgs()); 1098 dbgs() << '\n'; 1099 } 1100 #endif 1101 1102 /// \brief This class provides transaction based operation on the IR. 1103 /// Every change made through this class is recorded in the internal state and 1104 /// can be undone (rollback) until commit is called. 1105 class TypePromotionTransaction { 1106 1107 /// \brief This represents the common interface of the individual transaction. 1108 /// Each class implements the logic for doing one specific modification on 1109 /// the IR via the TypePromotionTransaction. 1110 class TypePromotionAction { 1111 protected: 1112 /// The Instruction modified. 1113 Instruction *Inst; 1114 1115 public: 1116 /// \brief Constructor of the action. 1117 /// The constructor performs the related action on the IR. 1118 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1119 1120 virtual ~TypePromotionAction() {} 1121 1122 /// \brief Undo the modification done by this action. 1123 /// When this method is called, the IR must be in the same state as it was 1124 /// before this action was applied. 1125 /// \pre Undoing the action works if and only if the IR is in the exact same 1126 /// state as it was directly after this action was applied. 1127 virtual void undo() = 0; 1128 1129 /// \brief Advocate every change made by this action. 1130 /// When the results on the IR of the action are to be kept, it is important 1131 /// to call this function, otherwise hidden information may be kept forever. 1132 virtual void commit() { 1133 // Nothing to be done, this action is not doing anything. 1134 } 1135 }; 1136 1137 /// \brief Utility to remember the position of an instruction. 1138 class InsertionHandler { 1139 /// Position of an instruction. 1140 /// Either an instruction: 1141 /// - Is the first in a basic block: BB is used. 1142 /// - Has a previous instructon: PrevInst is used. 1143 union { 1144 Instruction *PrevInst; 1145 BasicBlock *BB; 1146 } Point; 1147 /// Remember whether or not the instruction had a previous instruction. 1148 bool HasPrevInstruction; 1149 1150 public: 1151 /// \brief Record the position of \p Inst. 1152 InsertionHandler(Instruction *Inst) { 1153 BasicBlock::iterator It = Inst; 1154 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1155 if (HasPrevInstruction) 1156 Point.PrevInst = --It; 1157 else 1158 Point.BB = Inst->getParent(); 1159 } 1160 1161 /// \brief Insert \p Inst at the recorded position. 1162 void insert(Instruction *Inst) { 1163 if (HasPrevInstruction) { 1164 if (Inst->getParent()) 1165 Inst->removeFromParent(); 1166 Inst->insertAfter(Point.PrevInst); 1167 } else { 1168 Instruction *Position = Point.BB->getFirstInsertionPt(); 1169 if (Inst->getParent()) 1170 Inst->moveBefore(Position); 1171 else 1172 Inst->insertBefore(Position); 1173 } 1174 } 1175 }; 1176 1177 /// \brief Move an instruction before another. 1178 class InstructionMoveBefore : public TypePromotionAction { 1179 /// Original position of the instruction. 1180 InsertionHandler Position; 1181 1182 public: 1183 /// \brief Move \p Inst before \p Before. 1184 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1185 : TypePromotionAction(Inst), Position(Inst) { 1186 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1187 Inst->moveBefore(Before); 1188 } 1189 1190 /// \brief Move the instruction back to its original position. 1191 void undo() override { 1192 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1193 Position.insert(Inst); 1194 } 1195 }; 1196 1197 /// \brief Set the operand of an instruction with a new value. 1198 class OperandSetter : public TypePromotionAction { 1199 /// Original operand of the instruction. 1200 Value *Origin; 1201 /// Index of the modified instruction. 1202 unsigned Idx; 1203 1204 public: 1205 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1206 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1207 : TypePromotionAction(Inst), Idx(Idx) { 1208 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1209 << "for:" << *Inst << "\n" 1210 << "with:" << *NewVal << "\n"); 1211 Origin = Inst->getOperand(Idx); 1212 Inst->setOperand(Idx, NewVal); 1213 } 1214 1215 /// \brief Restore the original value of the instruction. 1216 void undo() override { 1217 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1218 << "for: " << *Inst << "\n" 1219 << "with: " << *Origin << "\n"); 1220 Inst->setOperand(Idx, Origin); 1221 } 1222 }; 1223 1224 /// \brief Hide the operands of an instruction. 1225 /// Do as if this instruction was not using any of its operands. 1226 class OperandsHider : public TypePromotionAction { 1227 /// The list of original operands. 1228 SmallVector<Value *, 4> OriginalValues; 1229 1230 public: 1231 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1232 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1233 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1234 unsigned NumOpnds = Inst->getNumOperands(); 1235 OriginalValues.reserve(NumOpnds); 1236 for (unsigned It = 0; It < NumOpnds; ++It) { 1237 // Save the current operand. 1238 Value *Val = Inst->getOperand(It); 1239 OriginalValues.push_back(Val); 1240 // Set a dummy one. 1241 // We could use OperandSetter here, but that would implied an overhead 1242 // that we are not willing to pay. 1243 Inst->setOperand(It, UndefValue::get(Val->getType())); 1244 } 1245 } 1246 1247 /// \brief Restore the original list of uses. 1248 void undo() override { 1249 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1250 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1251 Inst->setOperand(It, OriginalValues[It]); 1252 } 1253 }; 1254 1255 /// \brief Build a truncate instruction. 1256 class TruncBuilder : public TypePromotionAction { 1257 Value *Val; 1258 public: 1259 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1260 /// result. 1261 /// trunc Opnd to Ty. 1262 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1263 IRBuilder<> Builder(Opnd); 1264 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1265 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1266 } 1267 1268 /// \brief Get the built value. 1269 Value *getBuiltValue() { return Val; } 1270 1271 /// \brief Remove the built instruction. 1272 void undo() override { 1273 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1274 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1275 IVal->eraseFromParent(); 1276 } 1277 }; 1278 1279 /// \brief Build a sign extension instruction. 1280 class SExtBuilder : public TypePromotionAction { 1281 Value *Val; 1282 public: 1283 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1284 /// result. 1285 /// sext Opnd to Ty. 1286 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1287 : TypePromotionAction(InsertPt) { 1288 IRBuilder<> Builder(InsertPt); 1289 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1290 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1291 } 1292 1293 /// \brief Get the built value. 1294 Value *getBuiltValue() { return Val; } 1295 1296 /// \brief Remove the built instruction. 1297 void undo() override { 1298 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1299 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1300 IVal->eraseFromParent(); 1301 } 1302 }; 1303 1304 /// \brief Build a zero extension instruction. 1305 class ZExtBuilder : public TypePromotionAction { 1306 Value *Val; 1307 public: 1308 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1309 /// result. 1310 /// zext Opnd to Ty. 1311 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1312 : TypePromotionAction(InsertPt) { 1313 IRBuilder<> Builder(InsertPt); 1314 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1315 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1316 } 1317 1318 /// \brief Get the built value. 1319 Value *getBuiltValue() { return Val; } 1320 1321 /// \brief Remove the built instruction. 1322 void undo() override { 1323 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1324 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1325 IVal->eraseFromParent(); 1326 } 1327 }; 1328 1329 /// \brief Mutate an instruction to another type. 1330 class TypeMutator : public TypePromotionAction { 1331 /// Record the original type. 1332 Type *OrigTy; 1333 1334 public: 1335 /// \brief Mutate the type of \p Inst into \p NewTy. 1336 TypeMutator(Instruction *Inst, Type *NewTy) 1337 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1338 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1339 << "\n"); 1340 Inst->mutateType(NewTy); 1341 } 1342 1343 /// \brief Mutate the instruction back to its original type. 1344 void undo() override { 1345 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1346 << "\n"); 1347 Inst->mutateType(OrigTy); 1348 } 1349 }; 1350 1351 /// \brief Replace the uses of an instruction by another instruction. 1352 class UsesReplacer : public TypePromotionAction { 1353 /// Helper structure to keep track of the replaced uses. 1354 struct InstructionAndIdx { 1355 /// The instruction using the instruction. 1356 Instruction *Inst; 1357 /// The index where this instruction is used for Inst. 1358 unsigned Idx; 1359 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1360 : Inst(Inst), Idx(Idx) {} 1361 }; 1362 1363 /// Keep track of the original uses (pair Instruction, Index). 1364 SmallVector<InstructionAndIdx, 4> OriginalUses; 1365 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1366 1367 public: 1368 /// \brief Replace all the use of \p Inst by \p New. 1369 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1370 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1371 << "\n"); 1372 // Record the original uses. 1373 for (Use &U : Inst->uses()) { 1374 Instruction *UserI = cast<Instruction>(U.getUser()); 1375 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1376 } 1377 // Now, we can replace the uses. 1378 Inst->replaceAllUsesWith(New); 1379 } 1380 1381 /// \brief Reassign the original uses of Inst to Inst. 1382 void undo() override { 1383 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1384 for (use_iterator UseIt = OriginalUses.begin(), 1385 EndIt = OriginalUses.end(); 1386 UseIt != EndIt; ++UseIt) { 1387 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1388 } 1389 } 1390 }; 1391 1392 /// \brief Remove an instruction from the IR. 1393 class InstructionRemover : public TypePromotionAction { 1394 /// Original position of the instruction. 1395 InsertionHandler Inserter; 1396 /// Helper structure to hide all the link to the instruction. In other 1397 /// words, this helps to do as if the instruction was removed. 1398 OperandsHider Hider; 1399 /// Keep track of the uses replaced, if any. 1400 UsesReplacer *Replacer; 1401 1402 public: 1403 /// \brief Remove all reference of \p Inst and optinally replace all its 1404 /// uses with New. 1405 /// \pre If !Inst->use_empty(), then New != nullptr 1406 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1407 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1408 Replacer(nullptr) { 1409 if (New) 1410 Replacer = new UsesReplacer(Inst, New); 1411 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1412 Inst->removeFromParent(); 1413 } 1414 1415 ~InstructionRemover() { delete Replacer; } 1416 1417 /// \brief Really remove the instruction. 1418 void commit() override { delete Inst; } 1419 1420 /// \brief Resurrect the instruction and reassign it to the proper uses if 1421 /// new value was provided when build this action. 1422 void undo() override { 1423 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1424 Inserter.insert(Inst); 1425 if (Replacer) 1426 Replacer->undo(); 1427 Hider.undo(); 1428 } 1429 }; 1430 1431 public: 1432 /// Restoration point. 1433 /// The restoration point is a pointer to an action instead of an iterator 1434 /// because the iterator may be invalidated but not the pointer. 1435 typedef const TypePromotionAction *ConstRestorationPt; 1436 /// Advocate every changes made in that transaction. 1437 void commit(); 1438 /// Undo all the changes made after the given point. 1439 void rollback(ConstRestorationPt Point); 1440 /// Get the current restoration point. 1441 ConstRestorationPt getRestorationPoint() const; 1442 1443 /// \name API for IR modification with state keeping to support rollback. 1444 /// @{ 1445 /// Same as Instruction::setOperand. 1446 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1447 /// Same as Instruction::eraseFromParent. 1448 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1449 /// Same as Value::replaceAllUsesWith. 1450 void replaceAllUsesWith(Instruction *Inst, Value *New); 1451 /// Same as Value::mutateType. 1452 void mutateType(Instruction *Inst, Type *NewTy); 1453 /// Same as IRBuilder::createTrunc. 1454 Value *createTrunc(Instruction *Opnd, Type *Ty); 1455 /// Same as IRBuilder::createSExt. 1456 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1457 /// Same as IRBuilder::createZExt. 1458 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1459 /// Same as Instruction::moveBefore. 1460 void moveBefore(Instruction *Inst, Instruction *Before); 1461 /// @} 1462 1463 private: 1464 /// The ordered list of actions made so far. 1465 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1466 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1467 }; 1468 1469 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1470 Value *NewVal) { 1471 Actions.push_back( 1472 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1473 } 1474 1475 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1476 Value *NewVal) { 1477 Actions.push_back( 1478 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1479 } 1480 1481 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1482 Value *New) { 1483 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1484 } 1485 1486 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1487 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1488 } 1489 1490 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1491 Type *Ty) { 1492 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1493 Value *Val = Ptr->getBuiltValue(); 1494 Actions.push_back(std::move(Ptr)); 1495 return Val; 1496 } 1497 1498 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1499 Value *Opnd, Type *Ty) { 1500 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1501 Value *Val = Ptr->getBuiltValue(); 1502 Actions.push_back(std::move(Ptr)); 1503 return Val; 1504 } 1505 1506 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1507 Value *Opnd, Type *Ty) { 1508 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1509 Value *Val = Ptr->getBuiltValue(); 1510 Actions.push_back(std::move(Ptr)); 1511 return Val; 1512 } 1513 1514 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1515 Instruction *Before) { 1516 Actions.push_back( 1517 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1518 } 1519 1520 TypePromotionTransaction::ConstRestorationPt 1521 TypePromotionTransaction::getRestorationPoint() const { 1522 return !Actions.empty() ? Actions.back().get() : nullptr; 1523 } 1524 1525 void TypePromotionTransaction::commit() { 1526 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1527 ++It) 1528 (*It)->commit(); 1529 Actions.clear(); 1530 } 1531 1532 void TypePromotionTransaction::rollback( 1533 TypePromotionTransaction::ConstRestorationPt Point) { 1534 while (!Actions.empty() && Point != Actions.back().get()) { 1535 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1536 Curr->undo(); 1537 } 1538 } 1539 1540 /// \brief A helper class for matching addressing modes. 1541 /// 1542 /// This encapsulates the logic for matching the target-legal addressing modes. 1543 class AddressingModeMatcher { 1544 SmallVectorImpl<Instruction*> &AddrModeInsts; 1545 const TargetLowering &TLI; 1546 1547 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1548 /// the memory instruction that we're computing this address for. 1549 Type *AccessTy; 1550 Instruction *MemoryInst; 1551 1552 /// AddrMode - This is the addressing mode that we're building up. This is 1553 /// part of the return value of this addressing mode matching stuff. 1554 ExtAddrMode &AddrMode; 1555 1556 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1557 const SetOfInstrs &InsertedTruncs; 1558 /// A map from the instructions to their type before promotion. 1559 InstrToOrigTy &PromotedInsts; 1560 /// The ongoing transaction where every action should be registered. 1561 TypePromotionTransaction &TPT; 1562 1563 /// IgnoreProfitability - This is set to true when we should not do 1564 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1565 /// always returns true. 1566 bool IgnoreProfitability; 1567 1568 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1569 const TargetLowering &T, Type *AT, 1570 Instruction *MI, ExtAddrMode &AM, 1571 const SetOfInstrs &InsertedTruncs, 1572 InstrToOrigTy &PromotedInsts, 1573 TypePromotionTransaction &TPT) 1574 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1575 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1576 IgnoreProfitability = false; 1577 } 1578 public: 1579 1580 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1581 /// give an access type of AccessTy. This returns a list of involved 1582 /// instructions in AddrModeInsts. 1583 /// \p InsertedTruncs The truncate instruction inserted by other 1584 /// CodeGenPrepare 1585 /// optimizations. 1586 /// \p PromotedInsts maps the instructions to their type before promotion. 1587 /// \p The ongoing transaction where every action should be registered. 1588 static ExtAddrMode Match(Value *V, Type *AccessTy, 1589 Instruction *MemoryInst, 1590 SmallVectorImpl<Instruction*> &AddrModeInsts, 1591 const TargetLowering &TLI, 1592 const SetOfInstrs &InsertedTruncs, 1593 InstrToOrigTy &PromotedInsts, 1594 TypePromotionTransaction &TPT) { 1595 ExtAddrMode Result; 1596 1597 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 1598 MemoryInst, Result, InsertedTruncs, 1599 PromotedInsts, TPT).MatchAddr(V, 0); 1600 (void)Success; assert(Success && "Couldn't select *anything*?"); 1601 return Result; 1602 } 1603 private: 1604 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 1605 bool MatchAddr(Value *V, unsigned Depth); 1606 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 1607 bool *MovedAway = nullptr); 1608 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 1609 ExtAddrMode &AMBefore, 1610 ExtAddrMode &AMAfter); 1611 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 1612 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 1613 Value *PromotedOperand) const; 1614 }; 1615 1616 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 1617 /// Return true and update AddrMode if this addr mode is legal for the target, 1618 /// false if not. 1619 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 1620 unsigned Depth) { 1621 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 1622 // mode. Just process that directly. 1623 if (Scale == 1) 1624 return MatchAddr(ScaleReg, Depth); 1625 1626 // If the scale is 0, it takes nothing to add this. 1627 if (Scale == 0) 1628 return true; 1629 1630 // If we already have a scale of this value, we can add to it, otherwise, we 1631 // need an available scale field. 1632 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 1633 return false; 1634 1635 ExtAddrMode TestAddrMode = AddrMode; 1636 1637 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 1638 // [A+B + A*7] -> [B+A*8]. 1639 TestAddrMode.Scale += Scale; 1640 TestAddrMode.ScaledReg = ScaleReg; 1641 1642 // If the new address isn't legal, bail out. 1643 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 1644 return false; 1645 1646 // It was legal, so commit it. 1647 AddrMode = TestAddrMode; 1648 1649 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 1650 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 1651 // X*Scale + C*Scale to addr mode. 1652 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 1653 if (isa<Instruction>(ScaleReg) && // not a constant expr. 1654 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 1655 TestAddrMode.ScaledReg = AddLHS; 1656 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 1657 1658 // If this addressing mode is legal, commit it and remember that we folded 1659 // this instruction. 1660 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 1661 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 1662 AddrMode = TestAddrMode; 1663 return true; 1664 } 1665 } 1666 1667 // Otherwise, not (x+c)*scale, just return what we have. 1668 return true; 1669 } 1670 1671 /// MightBeFoldableInst - This is a little filter, which returns true if an 1672 /// addressing computation involving I might be folded into a load/store 1673 /// accessing it. This doesn't need to be perfect, but needs to accept at least 1674 /// the set of instructions that MatchOperationAddr can. 1675 static bool MightBeFoldableInst(Instruction *I) { 1676 switch (I->getOpcode()) { 1677 case Instruction::BitCast: 1678 case Instruction::AddrSpaceCast: 1679 // Don't touch identity bitcasts. 1680 if (I->getType() == I->getOperand(0)->getType()) 1681 return false; 1682 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 1683 case Instruction::PtrToInt: 1684 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1685 return true; 1686 case Instruction::IntToPtr: 1687 // We know the input is intptr_t, so this is foldable. 1688 return true; 1689 case Instruction::Add: 1690 return true; 1691 case Instruction::Mul: 1692 case Instruction::Shl: 1693 // Can only handle X*C and X << C. 1694 return isa<ConstantInt>(I->getOperand(1)); 1695 case Instruction::GetElementPtr: 1696 return true; 1697 default: 1698 return false; 1699 } 1700 } 1701 1702 /// \brief Hepler class to perform type promotion. 1703 class TypePromotionHelper { 1704 /// \brief Utility function to check whether or not a sign extension of 1705 /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either 1706 /// using the operands of \p Inst or promoting \p Inst. 1707 /// In other words, check if: 1708 /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType. 1709 /// #1 Promotion applies: 1710 /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...). 1711 /// #2 Operand reuses: 1712 /// sext opnd1 to ConsideredSExtType. 1713 /// \p PromotedInsts maps the instructions to their type before promotion. 1714 static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType, 1715 const InstrToOrigTy &PromotedInsts); 1716 1717 /// \brief Utility function to determine if \p OpIdx should be promoted when 1718 /// promoting \p Inst. 1719 static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) { 1720 if (isa<SelectInst>(Inst) && OpIdx == 0) 1721 return false; 1722 return true; 1723 } 1724 1725 /// \brief Utility function to promote the operand of \p SExt when this 1726 /// operand is a promotable trunc or sext or zext. 1727 /// \p PromotedInsts maps the instructions to their type before promotion. 1728 /// \p CreatedInsts[out] contains how many non-free instructions have been 1729 /// created to promote the operand of SExt. 1730 /// Should never be called directly. 1731 /// \return The promoted value which is used instead of SExt. 1732 static Value *promoteOperandForTruncAndAnyExt(Instruction *SExt, 1733 TypePromotionTransaction &TPT, 1734 InstrToOrigTy &PromotedInsts, 1735 unsigned &CreatedInsts); 1736 1737 /// \brief Utility function to promote the operand of \p SExt when this 1738 /// operand is promotable and is not a supported trunc or sext. 1739 /// \p PromotedInsts maps the instructions to their type before promotion. 1740 /// \p CreatedInsts[out] contains how many non-free instructions have been 1741 /// created to promote the operand of SExt. 1742 /// Should never be called directly. 1743 /// \return The promoted value which is used instead of SExt. 1744 static Value *promoteOperandForOther(Instruction *SExt, 1745 TypePromotionTransaction &TPT, 1746 InstrToOrigTy &PromotedInsts, 1747 unsigned &CreatedInsts); 1748 1749 public: 1750 /// Type for the utility function that promotes the operand of SExt. 1751 typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT, 1752 InstrToOrigTy &PromotedInsts, 1753 unsigned &CreatedInsts); 1754 /// \brief Given a sign extend instruction \p SExt, return the approriate 1755 /// action to promote the operand of \p SExt instead of using SExt. 1756 /// \return NULL if no promotable action is possible with the current 1757 /// sign extension. 1758 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 1759 /// the others CodeGenPrepare optimizations. This information is important 1760 /// because we do not want to promote these instructions as CodeGenPrepare 1761 /// will reinsert them later. Thus creating an infinite loop: create/remove. 1762 /// \p PromotedInsts maps the instructions to their type before promotion. 1763 static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1764 const TargetLowering &TLI, 1765 const InstrToOrigTy &PromotedInsts); 1766 }; 1767 1768 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 1769 Type *ConsideredSExtType, 1770 const InstrToOrigTy &PromotedInsts) { 1771 // We can always get through sext or zext. 1772 if (isa<SExtInst>(Inst) || isa<ZExtInst>(Inst)) 1773 return true; 1774 1775 // We can get through binary operator, if it is legal. In other words, the 1776 // binary operator must have a nuw or nsw flag. 1777 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 1778 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 1779 (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap())) 1780 return true; 1781 1782 // Check if we can do the following simplification. 1783 // sext(trunc(sext)) --> sext 1784 if (!isa<TruncInst>(Inst)) 1785 return false; 1786 1787 Value *OpndVal = Inst->getOperand(0); 1788 // Check if we can use this operand in the sext. 1789 // If the type is larger than the result type of the sign extension, 1790 // we cannot. 1791 if (OpndVal->getType()->getIntegerBitWidth() > 1792 ConsideredSExtType->getIntegerBitWidth()) 1793 return false; 1794 1795 // If the operand of the truncate is not an instruction, we will not have 1796 // any information on the dropped bits. 1797 // (Actually we could for constant but it is not worth the extra logic). 1798 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 1799 if (!Opnd) 1800 return false; 1801 1802 // Check if the source of the type is narrow enough. 1803 // I.e., check that trunc just drops sign extended bits. 1804 // #1 get the type of the operand. 1805 const Type *OpndType; 1806 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 1807 if (It != PromotedInsts.end()) 1808 OpndType = It->second; 1809 else if (isa<SExtInst>(Opnd)) 1810 OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType(); 1811 else 1812 return false; 1813 1814 // #2 check that the truncate just drop sign extended bits. 1815 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 1816 return true; 1817 1818 return false; 1819 } 1820 1821 TypePromotionHelper::Action TypePromotionHelper::getAction( 1822 Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1823 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 1824 Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0)); 1825 Type *SExtTy = SExt->getType(); 1826 // If the operand of the sign extension is not an instruction, we cannot 1827 // get through. 1828 // If it, check we can get through. 1829 if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts)) 1830 return nullptr; 1831 1832 // Do not promote if the operand has been added by codegenprepare. 1833 // Otherwise, it means we are undoing an optimization that is likely to be 1834 // redone, thus causing potential infinite loop. 1835 if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd)) 1836 return nullptr; 1837 1838 // SExt or Trunc instructions. 1839 // Return the related handler. 1840 if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd) || 1841 isa<ZExtInst>(SExtOpnd)) 1842 return promoteOperandForTruncAndAnyExt; 1843 1844 // Regular instruction. 1845 // Abort early if we will have to insert non-free instructions. 1846 if (!SExtOpnd->hasOneUse() && 1847 !TLI.isTruncateFree(SExtTy, SExtOpnd->getType())) 1848 return nullptr; 1849 return promoteOperandForOther; 1850 } 1851 1852 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 1853 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 1854 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) { 1855 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1856 // get through it and this method should not be called. 1857 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1858 Value *ExtVal = SExt; 1859 if (isa<ZExtInst>(SExtOpnd)) { 1860 // Replace sext(zext(opnd)) 1861 // => zext(opnd). 1862 Value *ZExt = 1863 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 1864 TPT.replaceAllUsesWith(SExt, ZExt); 1865 TPT.eraseInstruction(SExt); 1866 ExtVal = ZExt; 1867 } else { 1868 // Replace sext(trunc(opnd)) or sext(sext(opnd)) 1869 // => sext(opnd). 1870 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 1871 } 1872 CreatedInsts = 0; 1873 1874 // Remove dead code. 1875 if (SExtOpnd->use_empty()) 1876 TPT.eraseInstruction(SExtOpnd); 1877 1878 // Check if the extension is still needed. 1879 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 1880 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) 1881 return ExtVal; 1882 1883 // At this point we have: ext ty opnd to ty. 1884 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 1885 Value *NextVal = ExtInst->getOperand(0); 1886 TPT.eraseInstruction(ExtInst, NextVal); 1887 return NextVal; 1888 } 1889 1890 Value * 1891 TypePromotionHelper::promoteOperandForOther(Instruction *SExt, 1892 TypePromotionTransaction &TPT, 1893 InstrToOrigTy &PromotedInsts, 1894 unsigned &CreatedInsts) { 1895 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1896 // get through it and this method should not be called. 1897 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1898 CreatedInsts = 0; 1899 if (!SExtOpnd->hasOneUse()) { 1900 // SExtOpnd will be promoted. 1901 // All its uses, but SExt, will need to use a truncated value of the 1902 // promoted version. 1903 // Create the truncate now. 1904 Value *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType()); 1905 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 1906 ITrunc->removeFromParent(); 1907 // Insert it just after the definition. 1908 ITrunc->insertAfter(SExtOpnd); 1909 } 1910 1911 TPT.replaceAllUsesWith(SExtOpnd, Trunc); 1912 // Restore the operand of SExt (which has been replace by the previous call 1913 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 1914 TPT.setOperand(SExt, 0, SExtOpnd); 1915 } 1916 1917 // Get through the Instruction: 1918 // 1. Update its type. 1919 // 2. Replace the uses of SExt by Inst. 1920 // 3. Sign extend each operand that needs to be sign extended. 1921 1922 // Remember the original type of the instruction before promotion. 1923 // This is useful to know that the high bits are sign extended bits. 1924 PromotedInsts.insert( 1925 std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType())); 1926 // Step #1. 1927 TPT.mutateType(SExtOpnd, SExt->getType()); 1928 // Step #2. 1929 TPT.replaceAllUsesWith(SExt, SExtOpnd); 1930 // Step #3. 1931 Instruction *SExtForOpnd = SExt; 1932 1933 DEBUG(dbgs() << "Propagate SExt to operands\n"); 1934 for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 1935 ++OpIdx) { 1936 DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n'); 1937 if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() || 1938 !shouldSExtOperand(SExtOpnd, OpIdx)) { 1939 DEBUG(dbgs() << "No need to propagate\n"); 1940 continue; 1941 } 1942 // Check if we can statically sign extend the operand. 1943 Value *Opnd = SExtOpnd->getOperand(OpIdx); 1944 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 1945 DEBUG(dbgs() << "Statically sign extend\n"); 1946 TPT.setOperand( 1947 SExtOpnd, OpIdx, 1948 ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue())); 1949 continue; 1950 } 1951 // UndefValue are typed, so we have to statically sign extend them. 1952 if (isa<UndefValue>(Opnd)) { 1953 DEBUG(dbgs() << "Statically sign extend\n"); 1954 TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType())); 1955 continue; 1956 } 1957 1958 // Otherwise we have to explicity sign extend the operand. 1959 // Check if SExt was reused to sign extend an operand. 1960 if (!SExtForOpnd) { 1961 // If yes, create a new one. 1962 DEBUG(dbgs() << "More operands to sext\n"); 1963 SExtForOpnd = 1964 cast<Instruction>(TPT.createSExt(SExt, Opnd, SExt->getType())); 1965 ++CreatedInsts; 1966 } 1967 1968 TPT.setOperand(SExtForOpnd, 0, Opnd); 1969 1970 // Move the sign extension before the insertion point. 1971 TPT.moveBefore(SExtForOpnd, SExtOpnd); 1972 TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd); 1973 // If more sext are required, new instructions will have to be created. 1974 SExtForOpnd = nullptr; 1975 } 1976 if (SExtForOpnd == SExt) { 1977 DEBUG(dbgs() << "Sign extension is useless now\n"); 1978 TPT.eraseInstruction(SExt); 1979 } 1980 return SExtOpnd; 1981 } 1982 1983 /// IsPromotionProfitable - Check whether or not promoting an instruction 1984 /// to a wider type was profitable. 1985 /// \p MatchedSize gives the number of instructions that have been matched 1986 /// in the addressing mode after the promotion was applied. 1987 /// \p SizeWithPromotion gives the number of created instructions for 1988 /// the promotion plus the number of instructions that have been 1989 /// matched in the addressing mode before the promotion. 1990 /// \p PromotedOperand is the value that has been promoted. 1991 /// \return True if the promotion is profitable, false otherwise. 1992 bool 1993 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 1994 unsigned SizeWithPromotion, 1995 Value *PromotedOperand) const { 1996 // We folded less instructions than what we created to promote the operand. 1997 // This is not profitable. 1998 if (MatchedSize < SizeWithPromotion) 1999 return false; 2000 if (MatchedSize > SizeWithPromotion) 2001 return true; 2002 // The promotion is neutral but it may help folding the sign extension in 2003 // loads for instance. 2004 // Check that we did not create an illegal instruction. 2005 Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand); 2006 if (!PromotedInst) 2007 return false; 2008 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2009 // If the ISDOpcode is undefined, it was undefined before the promotion. 2010 if (!ISDOpcode) 2011 return true; 2012 // Otherwise, check if the promoted instruction is legal or not. 2013 return TLI.isOperationLegalOrCustom(ISDOpcode, 2014 EVT::getEVT(PromotedInst->getType())); 2015 } 2016 2017 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2018 /// fold the operation into the addressing mode. If so, update the addressing 2019 /// mode and return true, otherwise return false without modifying AddrMode. 2020 /// If \p MovedAway is not NULL, it contains the information of whether or 2021 /// not AddrInst has to be folded into the addressing mode on success. 2022 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2023 /// because it has been moved away. 2024 /// Thus AddrInst must not be added in the matched instructions. 2025 /// This state can happen when AddrInst is a sext, since it may be moved away. 2026 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2027 /// not be referenced anymore. 2028 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2029 unsigned Depth, 2030 bool *MovedAway) { 2031 // Avoid exponential behavior on extremely deep expression trees. 2032 if (Depth >= 5) return false; 2033 2034 // By default, all matched instructions stay in place. 2035 if (MovedAway) 2036 *MovedAway = false; 2037 2038 switch (Opcode) { 2039 case Instruction::PtrToInt: 2040 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2041 return MatchAddr(AddrInst->getOperand(0), Depth); 2042 case Instruction::IntToPtr: 2043 // This inttoptr is a no-op if the integer type is pointer sized. 2044 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2045 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2046 return MatchAddr(AddrInst->getOperand(0), Depth); 2047 return false; 2048 case Instruction::BitCast: 2049 case Instruction::AddrSpaceCast: 2050 // BitCast is always a noop, and we can handle it as long as it is 2051 // int->int or pointer->pointer (we don't want int<->fp or something). 2052 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2053 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2054 // Don't touch identity bitcasts. These were probably put here by LSR, 2055 // and we don't want to mess around with them. Assume it knows what it 2056 // is doing. 2057 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2058 return MatchAddr(AddrInst->getOperand(0), Depth); 2059 return false; 2060 case Instruction::Add: { 2061 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2062 ExtAddrMode BackupAddrMode = AddrMode; 2063 unsigned OldSize = AddrModeInsts.size(); 2064 // Start a transaction at this point. 2065 // The LHS may match but not the RHS. 2066 // Therefore, we need a higher level restoration point to undo partially 2067 // matched operation. 2068 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2069 TPT.getRestorationPoint(); 2070 2071 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2072 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2073 return true; 2074 2075 // Restore the old addr mode info. 2076 AddrMode = BackupAddrMode; 2077 AddrModeInsts.resize(OldSize); 2078 TPT.rollback(LastKnownGood); 2079 2080 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2081 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2082 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2083 return true; 2084 2085 // Otherwise we definitely can't merge the ADD in. 2086 AddrMode = BackupAddrMode; 2087 AddrModeInsts.resize(OldSize); 2088 TPT.rollback(LastKnownGood); 2089 break; 2090 } 2091 //case Instruction::Or: 2092 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2093 //break; 2094 case Instruction::Mul: 2095 case Instruction::Shl: { 2096 // Can only handle X*C and X << C. 2097 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2098 if (!RHS) 2099 return false; 2100 int64_t Scale = RHS->getSExtValue(); 2101 if (Opcode == Instruction::Shl) 2102 Scale = 1LL << Scale; 2103 2104 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2105 } 2106 case Instruction::GetElementPtr: { 2107 // Scan the GEP. We check it if it contains constant offsets and at most 2108 // one variable offset. 2109 int VariableOperand = -1; 2110 unsigned VariableScale = 0; 2111 2112 int64_t ConstantOffset = 0; 2113 const DataLayout *TD = TLI.getDataLayout(); 2114 gep_type_iterator GTI = gep_type_begin(AddrInst); 2115 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2116 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2117 const StructLayout *SL = TD->getStructLayout(STy); 2118 unsigned Idx = 2119 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2120 ConstantOffset += SL->getElementOffset(Idx); 2121 } else { 2122 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2123 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2124 ConstantOffset += CI->getSExtValue()*TypeSize; 2125 } else if (TypeSize) { // Scales of zero don't do anything. 2126 // We only allow one variable index at the moment. 2127 if (VariableOperand != -1) 2128 return false; 2129 2130 // Remember the variable index. 2131 VariableOperand = i; 2132 VariableScale = TypeSize; 2133 } 2134 } 2135 } 2136 2137 // A common case is for the GEP to only do a constant offset. In this case, 2138 // just add it to the disp field and check validity. 2139 if (VariableOperand == -1) { 2140 AddrMode.BaseOffs += ConstantOffset; 2141 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2142 // Check to see if we can fold the base pointer in too. 2143 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2144 return true; 2145 } 2146 AddrMode.BaseOffs -= ConstantOffset; 2147 return false; 2148 } 2149 2150 // Save the valid addressing mode in case we can't match. 2151 ExtAddrMode BackupAddrMode = AddrMode; 2152 unsigned OldSize = AddrModeInsts.size(); 2153 2154 // See if the scale and offset amount is valid for this target. 2155 AddrMode.BaseOffs += ConstantOffset; 2156 2157 // Match the base operand of the GEP. 2158 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2159 // If it couldn't be matched, just stuff the value in a register. 2160 if (AddrMode.HasBaseReg) { 2161 AddrMode = BackupAddrMode; 2162 AddrModeInsts.resize(OldSize); 2163 return false; 2164 } 2165 AddrMode.HasBaseReg = true; 2166 AddrMode.BaseReg = AddrInst->getOperand(0); 2167 } 2168 2169 // Match the remaining variable portion of the GEP. 2170 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2171 Depth)) { 2172 // If it couldn't be matched, try stuffing the base into a register 2173 // instead of matching it, and retrying the match of the scale. 2174 AddrMode = BackupAddrMode; 2175 AddrModeInsts.resize(OldSize); 2176 if (AddrMode.HasBaseReg) 2177 return false; 2178 AddrMode.HasBaseReg = true; 2179 AddrMode.BaseReg = AddrInst->getOperand(0); 2180 AddrMode.BaseOffs += ConstantOffset; 2181 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2182 VariableScale, Depth)) { 2183 // If even that didn't work, bail. 2184 AddrMode = BackupAddrMode; 2185 AddrModeInsts.resize(OldSize); 2186 return false; 2187 } 2188 } 2189 2190 return true; 2191 } 2192 case Instruction::SExt: { 2193 Instruction *SExt = dyn_cast<Instruction>(AddrInst); 2194 if (!SExt) 2195 return false; 2196 2197 // Try to move this sext out of the way of the addressing mode. 2198 // Ask for a method for doing so. 2199 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 2200 SExt, InsertedTruncs, TLI, PromotedInsts); 2201 if (!TPH) 2202 return false; 2203 2204 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2205 TPT.getRestorationPoint(); 2206 unsigned CreatedInsts = 0; 2207 Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts); 2208 // SExt has been moved away. 2209 // Thus either it will be rematched later in the recursive calls or it is 2210 // gone. Anyway, we must not fold it into the addressing mode at this point. 2211 // E.g., 2212 // op = add opnd, 1 2213 // idx = sext op 2214 // addr = gep base, idx 2215 // is now: 2216 // promotedOpnd = sext opnd <- no match here 2217 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2218 // addr = gep base, op <- match 2219 if (MovedAway) 2220 *MovedAway = true; 2221 2222 assert(PromotedOperand && 2223 "TypePromotionHelper should have filtered out those cases"); 2224 2225 ExtAddrMode BackupAddrMode = AddrMode; 2226 unsigned OldSize = AddrModeInsts.size(); 2227 2228 if (!MatchAddr(PromotedOperand, Depth) || 2229 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2230 PromotedOperand)) { 2231 AddrMode = BackupAddrMode; 2232 AddrModeInsts.resize(OldSize); 2233 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2234 TPT.rollback(LastKnownGood); 2235 return false; 2236 } 2237 return true; 2238 } 2239 } 2240 return false; 2241 } 2242 2243 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2244 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2245 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2246 /// or intptr_t for the target. 2247 /// 2248 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2249 // Start a transaction at this point that we will rollback if the matching 2250 // fails. 2251 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2252 TPT.getRestorationPoint(); 2253 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2254 // Fold in immediates if legal for the target. 2255 AddrMode.BaseOffs += CI->getSExtValue(); 2256 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2257 return true; 2258 AddrMode.BaseOffs -= CI->getSExtValue(); 2259 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2260 // If this is a global variable, try to fold it into the addressing mode. 2261 if (!AddrMode.BaseGV) { 2262 AddrMode.BaseGV = GV; 2263 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2264 return true; 2265 AddrMode.BaseGV = nullptr; 2266 } 2267 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2268 ExtAddrMode BackupAddrMode = AddrMode; 2269 unsigned OldSize = AddrModeInsts.size(); 2270 2271 // Check to see if it is possible to fold this operation. 2272 bool MovedAway = false; 2273 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2274 // This instruction may have been move away. If so, there is nothing 2275 // to check here. 2276 if (MovedAway) 2277 return true; 2278 // Okay, it's possible to fold this. Check to see if it is actually 2279 // *profitable* to do so. We use a simple cost model to avoid increasing 2280 // register pressure too much. 2281 if (I->hasOneUse() || 2282 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2283 AddrModeInsts.push_back(I); 2284 return true; 2285 } 2286 2287 // It isn't profitable to do this, roll back. 2288 //cerr << "NOT FOLDING: " << *I; 2289 AddrMode = BackupAddrMode; 2290 AddrModeInsts.resize(OldSize); 2291 TPT.rollback(LastKnownGood); 2292 } 2293 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2294 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2295 return true; 2296 TPT.rollback(LastKnownGood); 2297 } else if (isa<ConstantPointerNull>(Addr)) { 2298 // Null pointer gets folded without affecting the addressing mode. 2299 return true; 2300 } 2301 2302 // Worse case, the target should support [reg] addressing modes. :) 2303 if (!AddrMode.HasBaseReg) { 2304 AddrMode.HasBaseReg = true; 2305 AddrMode.BaseReg = Addr; 2306 // Still check for legality in case the target supports [imm] but not [i+r]. 2307 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2308 return true; 2309 AddrMode.HasBaseReg = false; 2310 AddrMode.BaseReg = nullptr; 2311 } 2312 2313 // If the base register is already taken, see if we can do [r+r]. 2314 if (AddrMode.Scale == 0) { 2315 AddrMode.Scale = 1; 2316 AddrMode.ScaledReg = Addr; 2317 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2318 return true; 2319 AddrMode.Scale = 0; 2320 AddrMode.ScaledReg = nullptr; 2321 } 2322 // Couldn't match. 2323 TPT.rollback(LastKnownGood); 2324 return false; 2325 } 2326 2327 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2328 /// inline asm call are due to memory operands. If so, return true, otherwise 2329 /// return false. 2330 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2331 const TargetLowering &TLI) { 2332 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2333 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2334 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2335 2336 // Compute the constraint code and ConstraintType to use. 2337 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2338 2339 // If this asm operand is our Value*, and if it isn't an indirect memory 2340 // operand, we can't fold it! 2341 if (OpInfo.CallOperandVal == OpVal && 2342 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2343 !OpInfo.isIndirect)) 2344 return false; 2345 } 2346 2347 return true; 2348 } 2349 2350 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2351 /// memory use. If we find an obviously non-foldable instruction, return true. 2352 /// Add the ultimately found memory instructions to MemoryUses. 2353 static bool FindAllMemoryUses(Instruction *I, 2354 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2355 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2356 const TargetLowering &TLI) { 2357 // If we already considered this instruction, we're done. 2358 if (!ConsideredInsts.insert(I)) 2359 return false; 2360 2361 // If this is an obviously unfoldable instruction, bail out. 2362 if (!MightBeFoldableInst(I)) 2363 return true; 2364 2365 // Loop over all the uses, recursively processing them. 2366 for (Use &U : I->uses()) { 2367 Instruction *UserI = cast<Instruction>(U.getUser()); 2368 2369 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2370 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2371 continue; 2372 } 2373 2374 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2375 unsigned opNo = U.getOperandNo(); 2376 if (opNo == 0) return true; // Storing addr, not into addr. 2377 MemoryUses.push_back(std::make_pair(SI, opNo)); 2378 continue; 2379 } 2380 2381 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2382 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2383 if (!IA) return true; 2384 2385 // If this is a memory operand, we're cool, otherwise bail out. 2386 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2387 return true; 2388 continue; 2389 } 2390 2391 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2392 return true; 2393 } 2394 2395 return false; 2396 } 2397 2398 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2399 /// the use site that we're folding it into. If so, there is no cost to 2400 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2401 /// that we know are live at the instruction already. 2402 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2403 Value *KnownLive2) { 2404 // If Val is either of the known-live values, we know it is live! 2405 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2406 return true; 2407 2408 // All values other than instructions and arguments (e.g. constants) are live. 2409 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2410 2411 // If Val is a constant sized alloca in the entry block, it is live, this is 2412 // true because it is just a reference to the stack/frame pointer, which is 2413 // live for the whole function. 2414 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2415 if (AI->isStaticAlloca()) 2416 return true; 2417 2418 // Check to see if this value is already used in the memory instruction's 2419 // block. If so, it's already live into the block at the very least, so we 2420 // can reasonably fold it. 2421 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2422 } 2423 2424 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2425 /// mode of the machine to fold the specified instruction into a load or store 2426 /// that ultimately uses it. However, the specified instruction has multiple 2427 /// uses. Given this, it may actually increase register pressure to fold it 2428 /// into the load. For example, consider this code: 2429 /// 2430 /// X = ... 2431 /// Y = X+1 2432 /// use(Y) -> nonload/store 2433 /// Z = Y+1 2434 /// load Z 2435 /// 2436 /// In this case, Y has multiple uses, and can be folded into the load of Z 2437 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2438 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2439 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2440 /// number of computations either. 2441 /// 2442 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2443 /// X was live across 'load Z' for other reasons, we actually *would* want to 2444 /// fold the addressing mode in the Z case. This would make Y die earlier. 2445 bool AddressingModeMatcher:: 2446 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2447 ExtAddrMode &AMAfter) { 2448 if (IgnoreProfitability) return true; 2449 2450 // AMBefore is the addressing mode before this instruction was folded into it, 2451 // and AMAfter is the addressing mode after the instruction was folded. Get 2452 // the set of registers referenced by AMAfter and subtract out those 2453 // referenced by AMBefore: this is the set of values which folding in this 2454 // address extends the lifetime of. 2455 // 2456 // Note that there are only two potential values being referenced here, 2457 // BaseReg and ScaleReg (global addresses are always available, as are any 2458 // folded immediates). 2459 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2460 2461 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2462 // lifetime wasn't extended by adding this instruction. 2463 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2464 BaseReg = nullptr; 2465 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2466 ScaledReg = nullptr; 2467 2468 // If folding this instruction (and it's subexprs) didn't extend any live 2469 // ranges, we're ok with it. 2470 if (!BaseReg && !ScaledReg) 2471 return true; 2472 2473 // If all uses of this instruction are ultimately load/store/inlineasm's, 2474 // check to see if their addressing modes will include this instruction. If 2475 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2476 // uses. 2477 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2478 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2479 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2480 return false; // Has a non-memory, non-foldable use! 2481 2482 // Now that we know that all uses of this instruction are part of a chain of 2483 // computation involving only operations that could theoretically be folded 2484 // into a memory use, loop over each of these uses and see if they could 2485 // *actually* fold the instruction. 2486 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2487 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2488 Instruction *User = MemoryUses[i].first; 2489 unsigned OpNo = MemoryUses[i].second; 2490 2491 // Get the access type of this use. If the use isn't a pointer, we don't 2492 // know what it accesses. 2493 Value *Address = User->getOperand(OpNo); 2494 if (!Address->getType()->isPointerTy()) 2495 return false; 2496 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2497 2498 // Do a match against the root of this address, ignoring profitability. This 2499 // will tell us if the addressing mode for the memory operation will 2500 // *actually* cover the shared instruction. 2501 ExtAddrMode Result; 2502 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2503 TPT.getRestorationPoint(); 2504 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2505 MemoryInst, Result, InsertedTruncs, 2506 PromotedInsts, TPT); 2507 Matcher.IgnoreProfitability = true; 2508 bool Success = Matcher.MatchAddr(Address, 0); 2509 (void)Success; assert(Success && "Couldn't select *anything*?"); 2510 2511 // The match was to check the profitability, the changes made are not 2512 // part of the original matcher. Therefore, they should be dropped 2513 // otherwise the original matcher will not present the right state. 2514 TPT.rollback(LastKnownGood); 2515 2516 // If the match didn't cover I, then it won't be shared by it. 2517 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 2518 I) == MatchedAddrModeInsts.end()) 2519 return false; 2520 2521 MatchedAddrModeInsts.clear(); 2522 } 2523 2524 return true; 2525 } 2526 2527 } // end anonymous namespace 2528 2529 /// IsNonLocalValue - Return true if the specified values are defined in a 2530 /// different basic block than BB. 2531 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 2532 if (Instruction *I = dyn_cast<Instruction>(V)) 2533 return I->getParent() != BB; 2534 return false; 2535 } 2536 2537 /// OptimizeMemoryInst - Load and Store Instructions often have 2538 /// addressing modes that can do significant amounts of computation. As such, 2539 /// instruction selection will try to get the load or store to do as much 2540 /// computation as possible for the program. The problem is that isel can only 2541 /// see within a single block. As such, we sink as much legal addressing mode 2542 /// stuff into the block as possible. 2543 /// 2544 /// This method is used to optimize both load/store and inline asms with memory 2545 /// operands. 2546 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 2547 Type *AccessTy) { 2548 Value *Repl = Addr; 2549 2550 // Try to collapse single-value PHI nodes. This is necessary to undo 2551 // unprofitable PRE transformations. 2552 SmallVector<Value*, 8> worklist; 2553 SmallPtrSet<Value*, 16> Visited; 2554 worklist.push_back(Addr); 2555 2556 // Use a worklist to iteratively look through PHI nodes, and ensure that 2557 // the addressing mode obtained from the non-PHI roots of the graph 2558 // are equivalent. 2559 Value *Consensus = nullptr; 2560 unsigned NumUsesConsensus = 0; 2561 bool IsNumUsesConsensusValid = false; 2562 SmallVector<Instruction*, 16> AddrModeInsts; 2563 ExtAddrMode AddrMode; 2564 TypePromotionTransaction TPT; 2565 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2566 TPT.getRestorationPoint(); 2567 while (!worklist.empty()) { 2568 Value *V = worklist.back(); 2569 worklist.pop_back(); 2570 2571 // Break use-def graph loops. 2572 if (!Visited.insert(V)) { 2573 Consensus = nullptr; 2574 break; 2575 } 2576 2577 // For a PHI node, push all of its incoming values. 2578 if (PHINode *P = dyn_cast<PHINode>(V)) { 2579 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 2580 worklist.push_back(P->getIncomingValue(i)); 2581 continue; 2582 } 2583 2584 // For non-PHIs, determine the addressing mode being computed. 2585 SmallVector<Instruction*, 16> NewAddrModeInsts; 2586 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 2587 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 2588 PromotedInsts, TPT); 2589 2590 // This check is broken into two cases with very similar code to avoid using 2591 // getNumUses() as much as possible. Some values have a lot of uses, so 2592 // calling getNumUses() unconditionally caused a significant compile-time 2593 // regression. 2594 if (!Consensus) { 2595 Consensus = V; 2596 AddrMode = NewAddrMode; 2597 AddrModeInsts = NewAddrModeInsts; 2598 continue; 2599 } else if (NewAddrMode == AddrMode) { 2600 if (!IsNumUsesConsensusValid) { 2601 NumUsesConsensus = Consensus->getNumUses(); 2602 IsNumUsesConsensusValid = true; 2603 } 2604 2605 // Ensure that the obtained addressing mode is equivalent to that obtained 2606 // for all other roots of the PHI traversal. Also, when choosing one 2607 // such root as representative, select the one with the most uses in order 2608 // to keep the cost modeling heuristics in AddressingModeMatcher 2609 // applicable. 2610 unsigned NumUses = V->getNumUses(); 2611 if (NumUses > NumUsesConsensus) { 2612 Consensus = V; 2613 NumUsesConsensus = NumUses; 2614 AddrModeInsts = NewAddrModeInsts; 2615 } 2616 continue; 2617 } 2618 2619 Consensus = nullptr; 2620 break; 2621 } 2622 2623 // If the addressing mode couldn't be determined, or if multiple different 2624 // ones were determined, bail out now. 2625 if (!Consensus) { 2626 TPT.rollback(LastKnownGood); 2627 return false; 2628 } 2629 TPT.commit(); 2630 2631 // Check to see if any of the instructions supersumed by this addr mode are 2632 // non-local to I's BB. 2633 bool AnyNonLocal = false; 2634 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 2635 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 2636 AnyNonLocal = true; 2637 break; 2638 } 2639 } 2640 2641 // If all the instructions matched are already in this BB, don't do anything. 2642 if (!AnyNonLocal) { 2643 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 2644 return false; 2645 } 2646 2647 // Insert this computation right after this user. Since our caller is 2648 // scanning from the top of the BB to the bottom, reuse of the expr are 2649 // guaranteed to happen later. 2650 IRBuilder<> Builder(MemoryInst); 2651 2652 // Now that we determined the addressing expression we want to use and know 2653 // that we have to sink it into this block. Check to see if we have already 2654 // done this for some other load/store instr in this block. If so, reuse the 2655 // computation. 2656 Value *&SunkAddr = SunkAddrs[Addr]; 2657 if (SunkAddr) { 2658 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 2659 << *MemoryInst << "\n"); 2660 if (SunkAddr->getType() != Addr->getType()) 2661 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2662 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 2663 TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) { 2664 // By default, we use the GEP-based method when AA is used later. This 2665 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 2666 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2667 << *MemoryInst << "\n"); 2668 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2669 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 2670 2671 // First, find the pointer. 2672 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 2673 ResultPtr = AddrMode.BaseReg; 2674 AddrMode.BaseReg = nullptr; 2675 } 2676 2677 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 2678 // We can't add more than one pointer together, nor can we scale a 2679 // pointer (both of which seem meaningless). 2680 if (ResultPtr || AddrMode.Scale != 1) 2681 return false; 2682 2683 ResultPtr = AddrMode.ScaledReg; 2684 AddrMode.Scale = 0; 2685 } 2686 2687 if (AddrMode.BaseGV) { 2688 if (ResultPtr) 2689 return false; 2690 2691 ResultPtr = AddrMode.BaseGV; 2692 } 2693 2694 // If the real base value actually came from an inttoptr, then the matcher 2695 // will look through it and provide only the integer value. In that case, 2696 // use it here. 2697 if (!ResultPtr && AddrMode.BaseReg) { 2698 ResultPtr = 2699 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 2700 AddrMode.BaseReg = nullptr; 2701 } else if (!ResultPtr && AddrMode.Scale == 1) { 2702 ResultPtr = 2703 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 2704 AddrMode.Scale = 0; 2705 } 2706 2707 if (!ResultPtr && 2708 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 2709 SunkAddr = Constant::getNullValue(Addr->getType()); 2710 } else if (!ResultPtr) { 2711 return false; 2712 } else { 2713 Type *I8PtrTy = 2714 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 2715 2716 // Start with the base register. Do this first so that subsequent address 2717 // matching finds it last, which will prevent it from trying to match it 2718 // as the scaled value in case it happens to be a mul. That would be 2719 // problematic if we've sunk a different mul for the scale, because then 2720 // we'd end up sinking both muls. 2721 if (AddrMode.BaseReg) { 2722 Value *V = AddrMode.BaseReg; 2723 if (V->getType() != IntPtrTy) 2724 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2725 2726 ResultIndex = V; 2727 } 2728 2729 // Add the scale value. 2730 if (AddrMode.Scale) { 2731 Value *V = AddrMode.ScaledReg; 2732 if (V->getType() == IntPtrTy) { 2733 // done. 2734 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2735 cast<IntegerType>(V->getType())->getBitWidth()) { 2736 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2737 } else { 2738 // It is only safe to sign extend the BaseReg if we know that the math 2739 // required to create it did not overflow before we extend it. Since 2740 // the original IR value was tossed in favor of a constant back when 2741 // the AddrMode was created we need to bail out gracefully if widths 2742 // do not match instead of extending it. 2743 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 2744 if (I && (ResultIndex != AddrMode.BaseReg)) 2745 I->eraseFromParent(); 2746 return false; 2747 } 2748 2749 if (AddrMode.Scale != 1) 2750 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2751 "sunkaddr"); 2752 if (ResultIndex) 2753 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 2754 else 2755 ResultIndex = V; 2756 } 2757 2758 // Add in the Base Offset if present. 2759 if (AddrMode.BaseOffs) { 2760 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2761 if (ResultIndex) { 2762 // We need to add this separately from the scale above to help with 2763 // SDAG consecutive load/store merging. 2764 if (ResultPtr->getType() != I8PtrTy) 2765 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2766 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2767 } 2768 2769 ResultIndex = V; 2770 } 2771 2772 if (!ResultIndex) { 2773 SunkAddr = ResultPtr; 2774 } else { 2775 if (ResultPtr->getType() != I8PtrTy) 2776 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2777 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2778 } 2779 2780 if (SunkAddr->getType() != Addr->getType()) 2781 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2782 } 2783 } else { 2784 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2785 << *MemoryInst << "\n"); 2786 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2787 Value *Result = nullptr; 2788 2789 // Start with the base register. Do this first so that subsequent address 2790 // matching finds it last, which will prevent it from trying to match it 2791 // as the scaled value in case it happens to be a mul. That would be 2792 // problematic if we've sunk a different mul for the scale, because then 2793 // we'd end up sinking both muls. 2794 if (AddrMode.BaseReg) { 2795 Value *V = AddrMode.BaseReg; 2796 if (V->getType()->isPointerTy()) 2797 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2798 if (V->getType() != IntPtrTy) 2799 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2800 Result = V; 2801 } 2802 2803 // Add the scale value. 2804 if (AddrMode.Scale) { 2805 Value *V = AddrMode.ScaledReg; 2806 if (V->getType() == IntPtrTy) { 2807 // done. 2808 } else if (V->getType()->isPointerTy()) { 2809 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2810 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2811 cast<IntegerType>(V->getType())->getBitWidth()) { 2812 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2813 } else { 2814 // It is only safe to sign extend the BaseReg if we know that the math 2815 // required to create it did not overflow before we extend it. Since 2816 // the original IR value was tossed in favor of a constant back when 2817 // the AddrMode was created we need to bail out gracefully if widths 2818 // do not match instead of extending it. 2819 Instruction *I = dyn_cast_or_null<Instruction>(Result); 2820 if (I && (Result != AddrMode.BaseReg)) 2821 I->eraseFromParent(); 2822 return false; 2823 } 2824 if (AddrMode.Scale != 1) 2825 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2826 "sunkaddr"); 2827 if (Result) 2828 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2829 else 2830 Result = V; 2831 } 2832 2833 // Add in the BaseGV if present. 2834 if (AddrMode.BaseGV) { 2835 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 2836 if (Result) 2837 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2838 else 2839 Result = V; 2840 } 2841 2842 // Add in the Base Offset if present. 2843 if (AddrMode.BaseOffs) { 2844 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2845 if (Result) 2846 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2847 else 2848 Result = V; 2849 } 2850 2851 if (!Result) 2852 SunkAddr = Constant::getNullValue(Addr->getType()); 2853 else 2854 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 2855 } 2856 2857 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 2858 2859 // If we have no uses, recursively delete the value and all dead instructions 2860 // using it. 2861 if (Repl->use_empty()) { 2862 // This can cause recursive deletion, which can invalidate our iterator. 2863 // Use a WeakVH to hold onto it in case this happens. 2864 WeakVH IterHandle(CurInstIterator); 2865 BasicBlock *BB = CurInstIterator->getParent(); 2866 2867 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 2868 2869 if (IterHandle != CurInstIterator) { 2870 // If the iterator instruction was recursively deleted, start over at the 2871 // start of the block. 2872 CurInstIterator = BB->begin(); 2873 SunkAddrs.clear(); 2874 } 2875 } 2876 ++NumMemoryInsts; 2877 return true; 2878 } 2879 2880 /// OptimizeInlineAsmInst - If there are any memory operands, use 2881 /// OptimizeMemoryInst to sink their address computing into the block when 2882 /// possible / profitable. 2883 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 2884 bool MadeChange = false; 2885 2886 TargetLowering::AsmOperandInfoVector 2887 TargetConstraints = TLI->ParseConstraints(CS); 2888 unsigned ArgNo = 0; 2889 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2890 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2891 2892 // Compute the constraint code and ConstraintType to use. 2893 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2894 2895 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 2896 OpInfo.isIndirect) { 2897 Value *OpVal = CS->getArgOperand(ArgNo++); 2898 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 2899 } else if (OpInfo.Type == InlineAsm::isInput) 2900 ArgNo++; 2901 } 2902 2903 return MadeChange; 2904 } 2905 2906 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 2907 /// basic block as the load, unless conditions are unfavorable. This allows 2908 /// SelectionDAG to fold the extend into the load. 2909 /// 2910 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { 2911 // Look for a load being extended. 2912 LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); 2913 if (!LI) return false; 2914 2915 // If they're already in the same block, there's nothing to do. 2916 if (LI->getParent() == I->getParent()) 2917 return false; 2918 2919 // If the load has other users and the truncate is not free, this probably 2920 // isn't worthwhile. 2921 if (!LI->hasOneUse() && 2922 TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || 2923 !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && 2924 !TLI->isTruncateFree(I->getType(), LI->getType())) 2925 return false; 2926 2927 // Check whether the target supports casts folded into loads. 2928 unsigned LType; 2929 if (isa<ZExtInst>(I)) 2930 LType = ISD::ZEXTLOAD; 2931 else { 2932 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 2933 LType = ISD::SEXTLOAD; 2934 } 2935 if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) 2936 return false; 2937 2938 // Move the extend into the same block as the load, so that SelectionDAG 2939 // can fold it. 2940 I->removeFromParent(); 2941 I->insertAfter(LI); 2942 ++NumExtsMoved; 2943 return true; 2944 } 2945 2946 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 2947 BasicBlock *DefBB = I->getParent(); 2948 2949 // If the result of a {s|z}ext and its source are both live out, rewrite all 2950 // other uses of the source with result of extension. 2951 Value *Src = I->getOperand(0); 2952 if (Src->hasOneUse()) 2953 return false; 2954 2955 // Only do this xform if truncating is free. 2956 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 2957 return false; 2958 2959 // Only safe to perform the optimization if the source is also defined in 2960 // this block. 2961 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 2962 return false; 2963 2964 bool DefIsLiveOut = false; 2965 for (User *U : I->users()) { 2966 Instruction *UI = cast<Instruction>(U); 2967 2968 // Figure out which BB this ext is used in. 2969 BasicBlock *UserBB = UI->getParent(); 2970 if (UserBB == DefBB) continue; 2971 DefIsLiveOut = true; 2972 break; 2973 } 2974 if (!DefIsLiveOut) 2975 return false; 2976 2977 // Make sure none of the uses are PHI nodes. 2978 for (User *U : Src->users()) { 2979 Instruction *UI = cast<Instruction>(U); 2980 BasicBlock *UserBB = UI->getParent(); 2981 if (UserBB == DefBB) continue; 2982 // Be conservative. We don't want this xform to end up introducing 2983 // reloads just before load / store instructions. 2984 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 2985 return false; 2986 } 2987 2988 // InsertedTruncs - Only insert one trunc in each block once. 2989 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 2990 2991 bool MadeChange = false; 2992 for (Use &U : Src->uses()) { 2993 Instruction *User = cast<Instruction>(U.getUser()); 2994 2995 // Figure out which BB this ext is used in. 2996 BasicBlock *UserBB = User->getParent(); 2997 if (UserBB == DefBB) continue; 2998 2999 // Both src and def are live in this block. Rewrite the use. 3000 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3001 3002 if (!InsertedTrunc) { 3003 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3004 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3005 InsertedTruncsSet.insert(InsertedTrunc); 3006 } 3007 3008 // Replace a use of the {s|z}ext source with a use of the result. 3009 U = InsertedTrunc; 3010 ++NumExtUses; 3011 MadeChange = true; 3012 } 3013 3014 return MadeChange; 3015 } 3016 3017 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3018 /// turned into an explicit branch. 3019 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3020 // FIXME: This should use the same heuristics as IfConversion to determine 3021 // whether a select is better represented as a branch. This requires that 3022 // branch probability metadata is preserved for the select, which is not the 3023 // case currently. 3024 3025 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3026 3027 // If the branch is predicted right, an out of order CPU can avoid blocking on 3028 // the compare. Emit cmovs on compares with a memory operand as branches to 3029 // avoid stalls on the load from memory. If the compare has more than one use 3030 // there's probably another cmov or setcc around so it's not worth emitting a 3031 // branch. 3032 if (!Cmp) 3033 return false; 3034 3035 Value *CmpOp0 = Cmp->getOperand(0); 3036 Value *CmpOp1 = Cmp->getOperand(1); 3037 3038 // We check that the memory operand has one use to avoid uses of the loaded 3039 // value directly after the compare, making branches unprofitable. 3040 return Cmp->hasOneUse() && 3041 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3042 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3043 } 3044 3045 3046 /// If we have a SelectInst that will likely profit from branch prediction, 3047 /// turn it into a branch. 3048 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3049 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3050 3051 // Can we convert the 'select' to CF ? 3052 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3053 return false; 3054 3055 TargetLowering::SelectSupportKind SelectKind; 3056 if (VectorCond) 3057 SelectKind = TargetLowering::VectorMaskSelect; 3058 else if (SI->getType()->isVectorTy()) 3059 SelectKind = TargetLowering::ScalarCondVectorVal; 3060 else 3061 SelectKind = TargetLowering::ScalarValSelect; 3062 3063 // Do we have efficient codegen support for this kind of 'selects' ? 3064 if (TLI->isSelectSupported(SelectKind)) { 3065 // We have efficient codegen support for the select instruction. 3066 // Check if it is profitable to keep this 'select'. 3067 if (!TLI->isPredictableSelectExpensive() || 3068 !isFormingBranchFromSelectProfitable(SI)) 3069 return false; 3070 } 3071 3072 ModifiedDT = true; 3073 3074 // First, we split the block containing the select into 2 blocks. 3075 BasicBlock *StartBlock = SI->getParent(); 3076 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3077 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3078 3079 // Create a new block serving as the landing pad for the branch. 3080 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3081 NextBlock->getParent(), NextBlock); 3082 3083 // Move the unconditional branch from the block with the select in it into our 3084 // landing pad block. 3085 StartBlock->getTerminator()->eraseFromParent(); 3086 BranchInst::Create(NextBlock, SmallBlock); 3087 3088 // Insert the real conditional branch based on the original condition. 3089 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3090 3091 // The select itself is replaced with a PHI Node. 3092 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3093 PN->takeName(SI); 3094 PN->addIncoming(SI->getTrueValue(), StartBlock); 3095 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3096 SI->replaceAllUsesWith(PN); 3097 SI->eraseFromParent(); 3098 3099 // Instruct OptimizeBlock to skip to the next block. 3100 CurInstIterator = StartBlock->end(); 3101 ++NumSelectsExpanded; 3102 return true; 3103 } 3104 3105 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3106 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3107 int SplatElem = -1; 3108 for (unsigned i = 0; i < Mask.size(); ++i) { 3109 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3110 return false; 3111 SplatElem = Mask[i]; 3112 } 3113 3114 return true; 3115 } 3116 3117 /// Some targets have expensive vector shifts if the lanes aren't all the same 3118 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3119 /// it's often worth sinking a shufflevector splat down to its use so that 3120 /// codegen can spot all lanes are identical. 3121 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3122 BasicBlock *DefBB = SVI->getParent(); 3123 3124 // Only do this xform if variable vector shifts are particularly expensive. 3125 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3126 return false; 3127 3128 // We only expect better codegen by sinking a shuffle if we can recognise a 3129 // constant splat. 3130 if (!isBroadcastShuffle(SVI)) 3131 return false; 3132 3133 // InsertedShuffles - Only insert a shuffle in each block once. 3134 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3135 3136 bool MadeChange = false; 3137 for (User *U : SVI->users()) { 3138 Instruction *UI = cast<Instruction>(U); 3139 3140 // Figure out which BB this ext is used in. 3141 BasicBlock *UserBB = UI->getParent(); 3142 if (UserBB == DefBB) continue; 3143 3144 // For now only apply this when the splat is used by a shift instruction. 3145 if (!UI->isShift()) continue; 3146 3147 // Everything checks out, sink the shuffle if the user's block doesn't 3148 // already have a copy. 3149 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3150 3151 if (!InsertedShuffle) { 3152 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3153 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3154 SVI->getOperand(1), 3155 SVI->getOperand(2), "", InsertPt); 3156 } 3157 3158 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3159 MadeChange = true; 3160 } 3161 3162 // If we removed all uses, nuke the shuffle. 3163 if (SVI->use_empty()) { 3164 SVI->eraseFromParent(); 3165 MadeChange = true; 3166 } 3167 3168 return MadeChange; 3169 } 3170 3171 bool CodeGenPrepare::OptimizeInst(Instruction *I) { 3172 if (PHINode *P = dyn_cast<PHINode>(I)) { 3173 // It is possible for very late stage optimizations (such as SimplifyCFG) 3174 // to introduce PHI nodes too late to be cleaned up. If we detect such a 3175 // trivial PHI, go ahead and zap it here. 3176 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 3177 TLInfo, DT)) { 3178 P->replaceAllUsesWith(V); 3179 P->eraseFromParent(); 3180 ++NumPHIsElim; 3181 return true; 3182 } 3183 return false; 3184 } 3185 3186 if (CastInst *CI = dyn_cast<CastInst>(I)) { 3187 // If the source of the cast is a constant, then this should have 3188 // already been constant folded. The only reason NOT to constant fold 3189 // it is if something (e.g. LSR) was careful to place the constant 3190 // evaluation in a block other than then one that uses it (e.g. to hoist 3191 // the address of globals out of a loop). If this is the case, we don't 3192 // want to forward-subst the cast. 3193 if (isa<Constant>(CI->getOperand(0))) 3194 return false; 3195 3196 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 3197 return true; 3198 3199 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 3200 /// Sink a zext or sext into its user blocks if the target type doesn't 3201 /// fit in one register 3202 if (TLI && TLI->getTypeAction(CI->getContext(), 3203 TLI->getValueType(CI->getType())) == 3204 TargetLowering::TypeExpandInteger) { 3205 return SinkCast(CI); 3206 } else { 3207 bool MadeChange = MoveExtToFormExtLoad(I); 3208 return MadeChange | OptimizeExtUses(I); 3209 } 3210 } 3211 return false; 3212 } 3213 3214 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 3215 if (!TLI || !TLI->hasMultipleConditionRegisters()) 3216 return OptimizeCmpExpression(CI); 3217 3218 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3219 if (TLI) 3220 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 3221 return false; 3222 } 3223 3224 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3225 if (TLI) 3226 return OptimizeMemoryInst(I, SI->getOperand(1), 3227 SI->getOperand(0)->getType()); 3228 return false; 3229 } 3230 3231 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 3232 3233 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 3234 BinOp->getOpcode() == Instruction::LShr)) { 3235 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 3236 if (TLI && CI && TLI->hasExtractBitsInsn()) 3237 return OptimizeExtractBits(BinOp, CI, *TLI); 3238 3239 return false; 3240 } 3241 3242 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 3243 if (GEPI->hasAllZeroIndices()) { 3244 /// The GEP operand must be a pointer, so must its result -> BitCast 3245 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 3246 GEPI->getName(), GEPI); 3247 GEPI->replaceAllUsesWith(NC); 3248 GEPI->eraseFromParent(); 3249 ++NumGEPsElim; 3250 OptimizeInst(NC); 3251 return true; 3252 } 3253 return false; 3254 } 3255 3256 if (CallInst *CI = dyn_cast<CallInst>(I)) 3257 return OptimizeCallInst(CI); 3258 3259 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 3260 return OptimizeSelectInst(SI); 3261 3262 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 3263 return OptimizeShuffleVectorInst(SVI); 3264 3265 return false; 3266 } 3267 3268 // In this pass we look for GEP and cast instructions that are used 3269 // across basic blocks and rewrite them to improve basic-block-at-a-time 3270 // selection. 3271 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { 3272 SunkAddrs.clear(); 3273 bool MadeChange = false; 3274 3275 CurInstIterator = BB.begin(); 3276 while (CurInstIterator != BB.end()) 3277 MadeChange |= OptimizeInst(CurInstIterator++); 3278 3279 MadeChange |= DupRetToEnableTailCallOpts(&BB); 3280 3281 return MadeChange; 3282 } 3283 3284 // llvm.dbg.value is far away from the value then iSel may not be able 3285 // handle it properly. iSel will drop llvm.dbg.value if it can not 3286 // find a node corresponding to the value. 3287 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 3288 bool MadeChange = false; 3289 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 3290 Instruction *PrevNonDbgInst = nullptr; 3291 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { 3292 Instruction *Insn = BI; ++BI; 3293 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 3294 // Leave dbg.values that refer to an alloca alone. These 3295 // instrinsics describe the address of a variable (= the alloca) 3296 // being taken. They should not be moved next to the alloca 3297 // (and to the beginning of the scope), but rather stay close to 3298 // where said address is used. 3299 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 3300 PrevNonDbgInst = Insn; 3301 continue; 3302 } 3303 3304 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 3305 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 3306 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 3307 DVI->removeFromParent(); 3308 if (isa<PHINode>(VI)) 3309 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 3310 else 3311 DVI->insertAfter(VI); 3312 MadeChange = true; 3313 ++NumDbgValueMoved; 3314 } 3315 } 3316 } 3317 return MadeChange; 3318 } 3319 3320 // If there is a sequence that branches based on comparing a single bit 3321 // against zero that can be combined into a single instruction, and the 3322 // target supports folding these into a single instruction, sink the 3323 // mask and compare into the branch uses. Do this before OptimizeBlock -> 3324 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 3325 // searched for. 3326 bool CodeGenPrepare::sinkAndCmp(Function &F) { 3327 if (!EnableAndCmpSinking) 3328 return false; 3329 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 3330 return false; 3331 bool MadeChange = false; 3332 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 3333 BasicBlock *BB = I++; 3334 3335 // Does this BB end with the following? 3336 // %andVal = and %val, #single-bit-set 3337 // %icmpVal = icmp %andResult, 0 3338 // br i1 %cmpVal label %dest1, label %dest2" 3339 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 3340 if (!Brcc || !Brcc->isConditional()) 3341 continue; 3342 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 3343 if (!Cmp || Cmp->getParent() != BB) 3344 continue; 3345 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 3346 if (!Zero || !Zero->isZero()) 3347 continue; 3348 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 3349 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 3350 continue; 3351 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 3352 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 3353 continue; 3354 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 3355 3356 // Push the "and; icmp" for any users that are conditional branches. 3357 // Since there can only be one branch use per BB, we don't need to keep 3358 // track of which BBs we insert into. 3359 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 3360 UI != E; ) { 3361 Use &TheUse = *UI; 3362 // Find brcc use. 3363 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 3364 ++UI; 3365 if (!BrccUser || !BrccUser->isConditional()) 3366 continue; 3367 BasicBlock *UserBB = BrccUser->getParent(); 3368 if (UserBB == BB) continue; 3369 DEBUG(dbgs() << "found Brcc use\n"); 3370 3371 // Sink the "and; icmp" to use. 3372 MadeChange = true; 3373 BinaryOperator *NewAnd = 3374 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 3375 BrccUser); 3376 CmpInst *NewCmp = 3377 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 3378 "", BrccUser); 3379 TheUse = NewCmp; 3380 ++NumAndCmpsMoved; 3381 DEBUG(BrccUser->getParent()->dump()); 3382 } 3383 } 3384 return MadeChange; 3385 } 3386