1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 enum ExtType { 227 ZeroExtension, // Zero extension has been seen. 228 SignExtension, // Sign extension has been seen. 229 BothExtension // This extension type is used if we saw sext after 230 // ZeroExtension had been set, or if we saw zext after 231 // SignExtension had been set. It makes the type 232 // information of a promoted instruction invalid. 233 }; 234 235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 238 using SExts = SmallVector<Instruction *, 16>; 239 using ValueToSExts = DenseMap<Value *, SExts>; 240 241 class TypePromotionTransaction; 242 243 class CodeGenPrepare : public FunctionPass { 244 const TargetMachine *TM = nullptr; 245 const TargetSubtargetInfo *SubtargetInfo; 246 const TargetLowering *TLI = nullptr; 247 const TargetRegisterInfo *TRI; 248 const TargetTransformInfo *TTI = nullptr; 249 const TargetLibraryInfo *TLInfo; 250 const LoopInfo *LI; 251 std::unique_ptr<BlockFrequencyInfo> BFI; 252 std::unique_ptr<BranchProbabilityInfo> BPI; 253 254 /// As we scan instructions optimizing them, this is the next instruction 255 /// to optimize. Transforms that can invalidate this should update it. 256 BasicBlock::iterator CurInstIterator; 257 258 /// Keeps track of non-local addresses that have been sunk into a block. 259 /// This allows us to avoid inserting duplicate code for blocks with 260 /// multiple load/stores of the same address. The usage of WeakTrackingVH 261 /// enables SunkAddrs to be treated as a cache whose entries can be 262 /// invalidated if a sunken address computation has been erased. 263 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 264 265 /// Keeps track of all instructions inserted for the current function. 266 SetOfInstrs InsertedInsts; 267 268 /// Keeps track of the type of the related instruction before their 269 /// promotion for the current function. 270 InstrToOrigTy PromotedInsts; 271 272 /// Keep track of instructions removed during promotion. 273 SetOfInstrs RemovedInsts; 274 275 /// Keep track of sext chains based on their initial value. 276 DenseMap<Value *, Instruction *> SeenChainsForSExt; 277 278 /// Keep track of GEPs accessing the same data structures such as structs or 279 /// arrays that are candidates to be split later because of their large 280 /// size. 281 MapVector< 282 AssertingVH<Value>, 283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 284 LargeOffsetGEPMap; 285 286 /// Keep track of new GEP base after splitting the GEPs having large offset. 287 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 288 289 /// Map serial numbers to Large offset GEPs. 290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 291 292 /// Keep track of SExt promoted. 293 ValueToSExts ValToSExtendedUses; 294 295 /// True if CFG is modified in any way. 296 bool ModifiedDT; 297 298 /// True if optimizing for size. 299 bool OptSize; 300 301 /// DataLayout for the Function being processed. 302 const DataLayout *DL = nullptr; 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 307 CodeGenPrepare() : FunctionPass(ID) { 308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 309 } 310 311 bool runOnFunction(Function &F) override; 312 313 StringRef getPassName() const override { return "CodeGen Prepare"; } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 // FIXME: When we can selectively preserve passes, preserve the domtree. 317 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 318 AU.addRequired<TargetLibraryInfoWrapperPass>(); 319 AU.addRequired<TargetTransformInfoWrapperPass>(); 320 AU.addRequired<LoopInfoWrapperPass>(); 321 } 322 323 private: 324 bool eliminateFallThrough(Function &F); 325 bool eliminateMostlyEmptyBlocks(Function &F); 326 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 327 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 328 void eliminateMostlyEmptyBlock(BasicBlock *BB); 329 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 330 bool isPreheader); 331 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 332 bool optimizeInst(Instruction *I, bool &ModifiedDT); 333 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 334 Type *AccessTy, unsigned AddrSpace); 335 bool optimizeInlineAsmInst(CallInst *CS); 336 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 337 bool optimizeExt(Instruction *&I); 338 bool optimizeExtUses(Instruction *I); 339 bool optimizeLoadExt(LoadInst *Load); 340 bool optimizeSelectInst(SelectInst *SI); 341 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 342 bool optimizeSwitchInst(SwitchInst *SI); 343 bool optimizeExtractElementInst(Instruction *Inst); 344 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 345 bool placeDbgValues(Function &F); 346 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 347 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 348 bool tryToPromoteExts(TypePromotionTransaction &TPT, 349 const SmallVectorImpl<Instruction *> &Exts, 350 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 351 unsigned CreatedInstsCost = 0); 352 bool mergeSExts(Function &F); 353 bool splitLargeGEPOffsets(); 354 bool performAddressTypePromotion( 355 Instruction *&Inst, 356 bool AllowPromotionWithoutCommonHeader, 357 bool HasPromoted, TypePromotionTransaction &TPT, 358 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 359 bool splitBranchCondition(Function &F); 360 bool simplifyOffsetableRelocate(Instruction &I); 361 }; 362 363 } // end anonymous namespace 364 365 char CodeGenPrepare::ID = 0; 366 367 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 368 "Optimize for code generation", false, false) 369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 370 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 371 "Optimize for code generation", false, false) 372 373 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 374 375 bool CodeGenPrepare::runOnFunction(Function &F) { 376 if (skipFunction(F)) 377 return false; 378 379 DL = &F.getParent()->getDataLayout(); 380 381 bool EverMadeChange = false; 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 386 ModifiedDT = false; 387 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 388 TM = &TPC->getTM<TargetMachine>(); 389 SubtargetInfo = TM->getSubtargetImpl(F); 390 TLI = SubtargetInfo->getTargetLowering(); 391 TRI = SubtargetInfo->getRegisterInfo(); 392 } 393 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 394 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 395 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 396 BPI.reset(new BranchProbabilityInfo(F, *LI)); 397 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 398 OptSize = F.optForSize(); 399 400 ProfileSummaryInfo *PSI = 401 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 402 if (ProfileGuidedSectionPrefix) { 403 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 404 F.setSectionPrefix(".hot"); 405 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 406 F.setSectionPrefix(".unlikely"); 407 } 408 409 /// This optimization identifies DIV instructions that can be 410 /// profitably bypassed and carried out with a shorter, faster divide. 411 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 412 TLI->isSlowDivBypassed()) { 413 const DenseMap<unsigned int, unsigned int> &BypassWidths = 414 TLI->getBypassSlowDivWidths(); 415 BasicBlock* BB = &*F.begin(); 416 while (BB != nullptr) { 417 // bypassSlowDivision may create new BBs, but we don't want to reapply the 418 // optimization to those blocks. 419 BasicBlock* Next = BB->getNextNode(); 420 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 421 BB = Next; 422 } 423 } 424 425 // Eliminate blocks that contain only PHI nodes and an 426 // unconditional branch. 427 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 428 429 if (!DisableBranchOpts) 430 EverMadeChange |= splitBranchCondition(F); 431 432 // Split some critical edges where one of the sources is an indirect branch, 433 // to help generate sane code for PHIs involving such edges. 434 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 435 436 bool MadeChange = true; 437 while (MadeChange) { 438 MadeChange = false; 439 SeenChainsForSExt.clear(); 440 ValToSExtendedUses.clear(); 441 RemovedInsts.clear(); 442 LargeOffsetGEPMap.clear(); 443 LargeOffsetGEPID.clear(); 444 for (Function::iterator I = F.begin(); I != F.end(); ) { 445 BasicBlock *BB = &*I++; 446 bool ModifiedDTOnIteration = false; 447 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 448 449 // Restart BB iteration if the dominator tree of the Function was changed 450 if (ModifiedDTOnIteration) 451 break; 452 } 453 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 454 MadeChange |= mergeSExts(F); 455 if (!LargeOffsetGEPMap.empty()) 456 MadeChange |= splitLargeGEPOffsets(); 457 458 // Really free removed instructions during promotion. 459 for (Instruction *I : RemovedInsts) 460 I->deleteValue(); 461 462 EverMadeChange |= MadeChange; 463 } 464 465 SunkAddrs.clear(); 466 467 if (!DisableBranchOpts) { 468 MadeChange = false; 469 // Use a set vector to get deterministic iteration order. The order the 470 // blocks are removed may affect whether or not PHI nodes in successors 471 // are removed. 472 SmallSetVector<BasicBlock*, 8> WorkList; 473 for (BasicBlock &BB : F) { 474 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 475 MadeChange |= ConstantFoldTerminator(&BB, true); 476 if (!MadeChange) continue; 477 478 for (SmallVectorImpl<BasicBlock*>::iterator 479 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 480 if (pred_begin(*II) == pred_end(*II)) 481 WorkList.insert(*II); 482 } 483 484 // Delete the dead blocks and any of their dead successors. 485 MadeChange |= !WorkList.empty(); 486 while (!WorkList.empty()) { 487 BasicBlock *BB = WorkList.pop_back_val(); 488 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 489 490 DeleteDeadBlock(BB); 491 492 for (SmallVectorImpl<BasicBlock*>::iterator 493 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 494 if (pred_begin(*II) == pred_end(*II)) 495 WorkList.insert(*II); 496 } 497 498 // Merge pairs of basic blocks with unconditional branches, connected by 499 // a single edge. 500 if (EverMadeChange || MadeChange) 501 MadeChange |= eliminateFallThrough(F); 502 503 EverMadeChange |= MadeChange; 504 } 505 506 if (!DisableGCOpts) { 507 SmallVector<Instruction *, 2> Statepoints; 508 for (BasicBlock &BB : F) 509 for (Instruction &I : BB) 510 if (isStatepoint(I)) 511 Statepoints.push_back(&I); 512 for (auto &I : Statepoints) 513 EverMadeChange |= simplifyOffsetableRelocate(*I); 514 } 515 516 // Do this last to clean up use-before-def scenarios introduced by other 517 // preparatory transforms. 518 EverMadeChange |= placeDbgValues(F); 519 520 return EverMadeChange; 521 } 522 523 /// Merge basic blocks which are connected by a single edge, where one of the 524 /// basic blocks has a single successor pointing to the other basic block, 525 /// which has a single predecessor. 526 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 527 bool Changed = false; 528 // Scan all of the blocks in the function, except for the entry block. 529 // Use a temporary array to avoid iterator being invalidated when 530 // deleting blocks. 531 SmallVector<WeakTrackingVH, 16> Blocks; 532 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 533 Blocks.push_back(&Block); 534 535 for (auto &Block : Blocks) { 536 auto *BB = cast_or_null<BasicBlock>(Block); 537 if (!BB) 538 continue; 539 // If the destination block has a single pred, then this is a trivial 540 // edge, just collapse it. 541 BasicBlock *SinglePred = BB->getSinglePredecessor(); 542 543 // Don't merge if BB's address is taken. 544 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 545 546 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 547 if (Term && !Term->isConditional()) { 548 Changed = true; 549 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 550 551 // Merge BB into SinglePred and delete it. 552 MergeBlockIntoPredecessor(BB); 553 } 554 } 555 return Changed; 556 } 557 558 /// Find a destination block from BB if BB is mergeable empty block. 559 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 560 // If this block doesn't end with an uncond branch, ignore it. 561 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 562 if (!BI || !BI->isUnconditional()) 563 return nullptr; 564 565 // If the instruction before the branch (skipping debug info) isn't a phi 566 // node, then other stuff is happening here. 567 BasicBlock::iterator BBI = BI->getIterator(); 568 if (BBI != BB->begin()) { 569 --BBI; 570 while (isa<DbgInfoIntrinsic>(BBI)) { 571 if (BBI == BB->begin()) 572 break; 573 --BBI; 574 } 575 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 576 return nullptr; 577 } 578 579 // Do not break infinite loops. 580 BasicBlock *DestBB = BI->getSuccessor(0); 581 if (DestBB == BB) 582 return nullptr; 583 584 if (!canMergeBlocks(BB, DestBB)) 585 DestBB = nullptr; 586 587 return DestBB; 588 } 589 590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 592 /// edges in ways that are non-optimal for isel. Start by eliminating these 593 /// blocks so we can split them the way we want them. 594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 595 SmallPtrSet<BasicBlock *, 16> Preheaders; 596 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 597 while (!LoopList.empty()) { 598 Loop *L = LoopList.pop_back_val(); 599 LoopList.insert(LoopList.end(), L->begin(), L->end()); 600 if (BasicBlock *Preheader = L->getLoopPreheader()) 601 Preheaders.insert(Preheader); 602 } 603 604 bool MadeChange = false; 605 // Copy blocks into a temporary array to avoid iterator invalidation issues 606 // as we remove them. 607 // Note that this intentionally skips the entry block. 608 SmallVector<WeakTrackingVH, 16> Blocks; 609 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 610 Blocks.push_back(&Block); 611 612 for (auto &Block : Blocks) { 613 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 614 if (!BB) 615 continue; 616 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 617 if (!DestBB || 618 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 619 continue; 620 621 eliminateMostlyEmptyBlock(BB); 622 MadeChange = true; 623 } 624 return MadeChange; 625 } 626 627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 628 BasicBlock *DestBB, 629 bool isPreheader) { 630 // Do not delete loop preheaders if doing so would create a critical edge. 631 // Loop preheaders can be good locations to spill registers. If the 632 // preheader is deleted and we create a critical edge, registers may be 633 // spilled in the loop body instead. 634 if (!DisablePreheaderProtect && isPreheader && 635 !(BB->getSinglePredecessor() && 636 BB->getSinglePredecessor()->getSingleSuccessor())) 637 return false; 638 639 // Try to skip merging if the unique predecessor of BB is terminated by a 640 // switch or indirect branch instruction, and BB is used as an incoming block 641 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 642 // add COPY instructions in the predecessor of BB instead of BB (if it is not 643 // merged). Note that the critical edge created by merging such blocks wont be 644 // split in MachineSink because the jump table is not analyzable. By keeping 645 // such empty block (BB), ISel will place COPY instructions in BB, not in the 646 // predecessor of BB. 647 BasicBlock *Pred = BB->getUniquePredecessor(); 648 if (!Pred || 649 !(isa<SwitchInst>(Pred->getTerminator()) || 650 isa<IndirectBrInst>(Pred->getTerminator()))) 651 return true; 652 653 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 654 return true; 655 656 // We use a simple cost heuristic which determine skipping merging is 657 // profitable if the cost of skipping merging is less than the cost of 658 // merging : Cost(skipping merging) < Cost(merging BB), where the 659 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 660 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 661 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 662 // Freq(Pred) / Freq(BB) > 2. 663 // Note that if there are multiple empty blocks sharing the same incoming 664 // value for the PHIs in the DestBB, we consider them together. In such 665 // case, Cost(merging BB) will be the sum of their frequencies. 666 667 if (!isa<PHINode>(DestBB->begin())) 668 return true; 669 670 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 671 672 // Find all other incoming blocks from which incoming values of all PHIs in 673 // DestBB are the same as the ones from BB. 674 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 675 ++PI) { 676 BasicBlock *DestBBPred = *PI; 677 if (DestBBPred == BB) 678 continue; 679 680 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 681 return DestPN.getIncomingValueForBlock(BB) == 682 DestPN.getIncomingValueForBlock(DestBBPred); 683 })) 684 SameIncomingValueBBs.insert(DestBBPred); 685 } 686 687 // See if all BB's incoming values are same as the value from Pred. In this 688 // case, no reason to skip merging because COPYs are expected to be place in 689 // Pred already. 690 if (SameIncomingValueBBs.count(Pred)) 691 return true; 692 693 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 694 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 695 696 for (auto SameValueBB : SameIncomingValueBBs) 697 if (SameValueBB->getUniquePredecessor() == Pred && 698 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 699 BBFreq += BFI->getBlockFreq(SameValueBB); 700 701 return PredFreq.getFrequency() <= 702 BBFreq.getFrequency() * FreqRatioToSkipMerge; 703 } 704 705 /// Return true if we can merge BB into DestBB if there is a single 706 /// unconditional branch between them, and BB contains no other non-phi 707 /// instructions. 708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 709 const BasicBlock *DestBB) const { 710 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 711 // the successor. If there are more complex condition (e.g. preheaders), 712 // don't mess around with them. 713 for (const PHINode &PN : BB->phis()) { 714 for (const User *U : PN.users()) { 715 const Instruction *UI = cast<Instruction>(U); 716 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 717 return false; 718 // If User is inside DestBB block and it is a PHINode then check 719 // incoming value. If incoming value is not from BB then this is 720 // a complex condition (e.g. preheaders) we want to avoid here. 721 if (UI->getParent() == DestBB) { 722 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 723 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 724 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 725 if (Insn && Insn->getParent() == BB && 726 Insn->getParent() != UPN->getIncomingBlock(I)) 727 return false; 728 } 729 } 730 } 731 } 732 733 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 734 // and DestBB may have conflicting incoming values for the block. If so, we 735 // can't merge the block. 736 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 737 if (!DestBBPN) return true; // no conflict. 738 739 // Collect the preds of BB. 740 SmallPtrSet<const BasicBlock*, 16> BBPreds; 741 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 742 // It is faster to get preds from a PHI than with pred_iterator. 743 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 744 BBPreds.insert(BBPN->getIncomingBlock(i)); 745 } else { 746 BBPreds.insert(pred_begin(BB), pred_end(BB)); 747 } 748 749 // Walk the preds of DestBB. 750 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 751 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 752 if (BBPreds.count(Pred)) { // Common predecessor? 753 for (const PHINode &PN : DestBB->phis()) { 754 const Value *V1 = PN.getIncomingValueForBlock(Pred); 755 const Value *V2 = PN.getIncomingValueForBlock(BB); 756 757 // If V2 is a phi node in BB, look up what the mapped value will be. 758 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 759 if (V2PN->getParent() == BB) 760 V2 = V2PN->getIncomingValueForBlock(Pred); 761 762 // If there is a conflict, bail out. 763 if (V1 != V2) return false; 764 } 765 } 766 } 767 768 return true; 769 } 770 771 /// Eliminate a basic block that has only phi's and an unconditional branch in 772 /// it. 773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 774 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 775 BasicBlock *DestBB = BI->getSuccessor(0); 776 777 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 778 << *BB << *DestBB); 779 780 // If the destination block has a single pred, then this is a trivial edge, 781 // just collapse it. 782 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 783 if (SinglePred != DestBB) { 784 assert(SinglePred == BB && 785 "Single predecessor not the same as predecessor"); 786 // Merge DestBB into SinglePred/BB and delete it. 787 MergeBlockIntoPredecessor(DestBB); 788 // Note: BB(=SinglePred) will not be deleted on this path. 789 // DestBB(=its single successor) is the one that was deleted. 790 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 791 return; 792 } 793 } 794 795 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 796 // to handle the new incoming edges it is about to have. 797 for (PHINode &PN : DestBB->phis()) { 798 // Remove the incoming value for BB, and remember it. 799 Value *InVal = PN.removeIncomingValue(BB, false); 800 801 // Two options: either the InVal is a phi node defined in BB or it is some 802 // value that dominates BB. 803 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 804 if (InValPhi && InValPhi->getParent() == BB) { 805 // Add all of the input values of the input PHI as inputs of this phi. 806 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 807 PN.addIncoming(InValPhi->getIncomingValue(i), 808 InValPhi->getIncomingBlock(i)); 809 } else { 810 // Otherwise, add one instance of the dominating value for each edge that 811 // we will be adding. 812 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 813 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 814 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 815 } else { 816 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 817 PN.addIncoming(InVal, *PI); 818 } 819 } 820 } 821 822 // The PHIs are now updated, change everything that refers to BB to use 823 // DestBB and remove BB. 824 BB->replaceAllUsesWith(DestBB); 825 BB->eraseFromParent(); 826 ++NumBlocksElim; 827 828 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 829 } 830 831 // Computes a map of base pointer relocation instructions to corresponding 832 // derived pointer relocation instructions given a vector of all relocate calls 833 static void computeBaseDerivedRelocateMap( 834 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 835 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 836 &RelocateInstMap) { 837 // Collect information in two maps: one primarily for locating the base object 838 // while filling the second map; the second map is the final structure holding 839 // a mapping between Base and corresponding Derived relocate calls 840 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 841 for (auto *ThisRelocate : AllRelocateCalls) { 842 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 843 ThisRelocate->getDerivedPtrIndex()); 844 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 845 } 846 for (auto &Item : RelocateIdxMap) { 847 std::pair<unsigned, unsigned> Key = Item.first; 848 if (Key.first == Key.second) 849 // Base relocation: nothing to insert 850 continue; 851 852 GCRelocateInst *I = Item.second; 853 auto BaseKey = std::make_pair(Key.first, Key.first); 854 855 // We're iterating over RelocateIdxMap so we cannot modify it. 856 auto MaybeBase = RelocateIdxMap.find(BaseKey); 857 if (MaybeBase == RelocateIdxMap.end()) 858 // TODO: We might want to insert a new base object relocate and gep off 859 // that, if there are enough derived object relocates. 860 continue; 861 862 RelocateInstMap[MaybeBase->second].push_back(I); 863 } 864 } 865 866 // Accepts a GEP and extracts the operands into a vector provided they're all 867 // small integer constants 868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 869 SmallVectorImpl<Value *> &OffsetV) { 870 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 871 // Only accept small constant integer operands 872 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 873 if (!Op || Op->getZExtValue() > 20) 874 return false; 875 } 876 877 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 878 OffsetV.push_back(GEP->getOperand(i)); 879 return true; 880 } 881 882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 883 // replace, computes a replacement, and affects it. 884 static bool 885 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 886 const SmallVectorImpl<GCRelocateInst *> &Targets) { 887 bool MadeChange = false; 888 // We must ensure the relocation of derived pointer is defined after 889 // relocation of base pointer. If we find a relocation corresponding to base 890 // defined earlier than relocation of base then we move relocation of base 891 // right before found relocation. We consider only relocation in the same 892 // basic block as relocation of base. Relocations from other basic block will 893 // be skipped by optimization and we do not care about them. 894 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 895 &*R != RelocatedBase; ++R) 896 if (auto RI = dyn_cast<GCRelocateInst>(R)) 897 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 898 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 899 RelocatedBase->moveBefore(RI); 900 break; 901 } 902 903 for (GCRelocateInst *ToReplace : Targets) { 904 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 905 "Not relocating a derived object of the original base object"); 906 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 907 // A duplicate relocate call. TODO: coalesce duplicates. 908 continue; 909 } 910 911 if (RelocatedBase->getParent() != ToReplace->getParent()) { 912 // Base and derived relocates are in different basic blocks. 913 // In this case transform is only valid when base dominates derived 914 // relocate. However it would be too expensive to check dominance 915 // for each such relocate, so we skip the whole transformation. 916 continue; 917 } 918 919 Value *Base = ToReplace->getBasePtr(); 920 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 921 if (!Derived || Derived->getPointerOperand() != Base) 922 continue; 923 924 SmallVector<Value *, 2> OffsetV; 925 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 926 continue; 927 928 // Create a Builder and replace the target callsite with a gep 929 assert(RelocatedBase->getNextNode() && 930 "Should always have one since it's not a terminator"); 931 932 // Insert after RelocatedBase 933 IRBuilder<> Builder(RelocatedBase->getNextNode()); 934 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 935 936 // If gc_relocate does not match the actual type, cast it to the right type. 937 // In theory, there must be a bitcast after gc_relocate if the type does not 938 // match, and we should reuse it to get the derived pointer. But it could be 939 // cases like this: 940 // bb1: 941 // ... 942 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 943 // br label %merge 944 // 945 // bb2: 946 // ... 947 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 948 // br label %merge 949 // 950 // merge: 951 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 952 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 953 // 954 // In this case, we can not find the bitcast any more. So we insert a new bitcast 955 // no matter there is already one or not. In this way, we can handle all cases, and 956 // the extra bitcast should be optimized away in later passes. 957 Value *ActualRelocatedBase = RelocatedBase; 958 if (RelocatedBase->getType() != Base->getType()) { 959 ActualRelocatedBase = 960 Builder.CreateBitCast(RelocatedBase, Base->getType()); 961 } 962 Value *Replacement = Builder.CreateGEP( 963 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 964 Replacement->takeName(ToReplace); 965 // If the newly generated derived pointer's type does not match the original derived 966 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 967 Value *ActualReplacement = Replacement; 968 if (Replacement->getType() != ToReplace->getType()) { 969 ActualReplacement = 970 Builder.CreateBitCast(Replacement, ToReplace->getType()); 971 } 972 ToReplace->replaceAllUsesWith(ActualReplacement); 973 ToReplace->eraseFromParent(); 974 975 MadeChange = true; 976 } 977 return MadeChange; 978 } 979 980 // Turns this: 981 // 982 // %base = ... 983 // %ptr = gep %base + 15 984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 985 // %base' = relocate(%tok, i32 4, i32 4) 986 // %ptr' = relocate(%tok, i32 4, i32 5) 987 // %val = load %ptr' 988 // 989 // into this: 990 // 991 // %base = ... 992 // %ptr = gep %base + 15 993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 994 // %base' = gc.relocate(%tok, i32 4, i32 4) 995 // %ptr' = gep %base' + 15 996 // %val = load %ptr' 997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 998 bool MadeChange = false; 999 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1000 1001 for (auto *U : I.users()) 1002 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1003 // Collect all the relocate calls associated with a statepoint 1004 AllRelocateCalls.push_back(Relocate); 1005 1006 // We need atleast one base pointer relocation + one derived pointer 1007 // relocation to mangle 1008 if (AllRelocateCalls.size() < 2) 1009 return false; 1010 1011 // RelocateInstMap is a mapping from the base relocate instruction to the 1012 // corresponding derived relocate instructions 1013 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1014 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1015 if (RelocateInstMap.empty()) 1016 return false; 1017 1018 for (auto &Item : RelocateInstMap) 1019 // Item.first is the RelocatedBase to offset against 1020 // Item.second is the vector of Targets to replace 1021 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1022 return MadeChange; 1023 } 1024 1025 /// SinkCast - Sink the specified cast instruction into its user blocks 1026 static bool SinkCast(CastInst *CI) { 1027 BasicBlock *DefBB = CI->getParent(); 1028 1029 /// InsertedCasts - Only insert a cast in each block once. 1030 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1031 1032 bool MadeChange = false; 1033 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1034 UI != E; ) { 1035 Use &TheUse = UI.getUse(); 1036 Instruction *User = cast<Instruction>(*UI); 1037 1038 // Figure out which BB this cast is used in. For PHI's this is the 1039 // appropriate predecessor block. 1040 BasicBlock *UserBB = User->getParent(); 1041 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1042 UserBB = PN->getIncomingBlock(TheUse); 1043 } 1044 1045 // Preincrement use iterator so we don't invalidate it. 1046 ++UI; 1047 1048 // The first insertion point of a block containing an EH pad is after the 1049 // pad. If the pad is the user, we cannot sink the cast past the pad. 1050 if (User->isEHPad()) 1051 continue; 1052 1053 // If the block selected to receive the cast is an EH pad that does not 1054 // allow non-PHI instructions before the terminator, we can't sink the 1055 // cast. 1056 if (UserBB->getTerminator()->isEHPad()) 1057 continue; 1058 1059 // If this user is in the same block as the cast, don't change the cast. 1060 if (UserBB == DefBB) continue; 1061 1062 // If we have already inserted a cast into this block, use it. 1063 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1064 1065 if (!InsertedCast) { 1066 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1067 assert(InsertPt != UserBB->end()); 1068 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1069 CI->getType(), "", &*InsertPt); 1070 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1071 } 1072 1073 // Replace a use of the cast with a use of the new cast. 1074 TheUse = InsertedCast; 1075 MadeChange = true; 1076 ++NumCastUses; 1077 } 1078 1079 // If we removed all uses, nuke the cast. 1080 if (CI->use_empty()) { 1081 salvageDebugInfo(*CI); 1082 CI->eraseFromParent(); 1083 MadeChange = true; 1084 } 1085 1086 return MadeChange; 1087 } 1088 1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1091 /// reduce the number of virtual registers that must be created and coalesced. 1092 /// 1093 /// Return true if any changes are made. 1094 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1095 const DataLayout &DL) { 1096 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1097 // than sinking only nop casts, but is helpful on some platforms. 1098 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1099 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1100 ASC->getDestAddressSpace())) 1101 return false; 1102 } 1103 1104 // If this is a noop copy, 1105 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1106 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1107 1108 // This is an fp<->int conversion? 1109 if (SrcVT.isInteger() != DstVT.isInteger()) 1110 return false; 1111 1112 // If this is an extension, it will be a zero or sign extension, which 1113 // isn't a noop. 1114 if (SrcVT.bitsLT(DstVT)) return false; 1115 1116 // If these values will be promoted, find out what they will be promoted 1117 // to. This helps us consider truncates on PPC as noop copies when they 1118 // are. 1119 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1120 TargetLowering::TypePromoteInteger) 1121 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1122 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1123 TargetLowering::TypePromoteInteger) 1124 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1125 1126 // If, after promotion, these are the same types, this is a noop copy. 1127 if (SrcVT != DstVT) 1128 return false; 1129 1130 return SinkCast(CI); 1131 } 1132 1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1134 /// possible. 1135 /// 1136 /// Return true if any changes were made. 1137 static bool CombineUAddWithOverflow(CmpInst *CI) { 1138 Value *A, *B; 1139 Instruction *AddI; 1140 if (!match(CI, 1141 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1142 return false; 1143 1144 Type *Ty = AddI->getType(); 1145 if (!isa<IntegerType>(Ty)) 1146 return false; 1147 1148 // We don't want to move around uses of condition values this late, so we we 1149 // check if it is legal to create the call to the intrinsic in the basic 1150 // block containing the icmp: 1151 1152 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1153 return false; 1154 1155 #ifndef NDEBUG 1156 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1157 // for now: 1158 if (AddI->hasOneUse()) 1159 assert(*AddI->user_begin() == CI && "expected!"); 1160 #endif 1161 1162 Module *M = CI->getModule(); 1163 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1164 1165 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1166 1167 DebugLoc Loc = CI->getDebugLoc(); 1168 auto *UAddWithOverflow = 1169 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1170 UAddWithOverflow->setDebugLoc(Loc); 1171 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1172 UAdd->setDebugLoc(Loc); 1173 auto *Overflow = 1174 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1175 Overflow->setDebugLoc(Loc); 1176 1177 CI->replaceAllUsesWith(Overflow); 1178 AddI->replaceAllUsesWith(UAdd); 1179 CI->eraseFromParent(); 1180 AddI->eraseFromParent(); 1181 return true; 1182 } 1183 1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1185 /// registers that must be created and coalesced. This is a clear win except on 1186 /// targets with multiple condition code registers (PowerPC), where it might 1187 /// lose; some adjustment may be wanted there. 1188 /// 1189 /// Return true if any changes are made. 1190 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1191 BasicBlock *DefBB = CI->getParent(); 1192 1193 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1194 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1195 return false; 1196 1197 // Only insert a cmp in each block once. 1198 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1199 1200 bool MadeChange = false; 1201 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1202 UI != E; ) { 1203 Use &TheUse = UI.getUse(); 1204 Instruction *User = cast<Instruction>(*UI); 1205 1206 // Preincrement use iterator so we don't invalidate it. 1207 ++UI; 1208 1209 // Don't bother for PHI nodes. 1210 if (isa<PHINode>(User)) 1211 continue; 1212 1213 // Figure out which BB this cmp is used in. 1214 BasicBlock *UserBB = User->getParent(); 1215 1216 // If this user is in the same block as the cmp, don't change the cmp. 1217 if (UserBB == DefBB) continue; 1218 1219 // If we have already inserted a cmp into this block, use it. 1220 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1221 1222 if (!InsertedCmp) { 1223 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1224 assert(InsertPt != UserBB->end()); 1225 InsertedCmp = 1226 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1227 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1228 // Propagate the debug info. 1229 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1230 } 1231 1232 // Replace a use of the cmp with a use of the new cmp. 1233 TheUse = InsertedCmp; 1234 MadeChange = true; 1235 ++NumCmpUses; 1236 } 1237 1238 // If we removed all uses, nuke the cmp. 1239 if (CI->use_empty()) { 1240 CI->eraseFromParent(); 1241 MadeChange = true; 1242 } 1243 1244 return MadeChange; 1245 } 1246 1247 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1248 if (SinkCmpExpression(CI, TLI)) 1249 return true; 1250 1251 if (CombineUAddWithOverflow(CI)) 1252 return true; 1253 1254 return false; 1255 } 1256 1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1258 /// used in a compare to allow isel to generate better code for targets where 1259 /// this operation can be combined. 1260 /// 1261 /// Return true if any changes are made. 1262 static bool sinkAndCmp0Expression(Instruction *AndI, 1263 const TargetLowering &TLI, 1264 SetOfInstrs &InsertedInsts) { 1265 // Double-check that we're not trying to optimize an instruction that was 1266 // already optimized by some other part of this pass. 1267 assert(!InsertedInsts.count(AndI) && 1268 "Attempting to optimize already optimized and instruction"); 1269 (void) InsertedInsts; 1270 1271 // Nothing to do for single use in same basic block. 1272 if (AndI->hasOneUse() && 1273 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1274 return false; 1275 1276 // Try to avoid cases where sinking/duplicating is likely to increase register 1277 // pressure. 1278 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1279 !isa<ConstantInt>(AndI->getOperand(1)) && 1280 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1281 return false; 1282 1283 for (auto *U : AndI->users()) { 1284 Instruction *User = cast<Instruction>(U); 1285 1286 // Only sink for and mask feeding icmp with 0. 1287 if (!isa<ICmpInst>(User)) 1288 return false; 1289 1290 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1291 if (!CmpC || !CmpC->isZero()) 1292 return false; 1293 } 1294 1295 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1296 return false; 1297 1298 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1299 LLVM_DEBUG(AndI->getParent()->dump()); 1300 1301 // Push the 'and' into the same block as the icmp 0. There should only be 1302 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1303 // others, so we don't need to keep track of which BBs we insert into. 1304 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1305 UI != E; ) { 1306 Use &TheUse = UI.getUse(); 1307 Instruction *User = cast<Instruction>(*UI); 1308 1309 // Preincrement use iterator so we don't invalidate it. 1310 ++UI; 1311 1312 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1313 1314 // Keep the 'and' in the same place if the use is already in the same block. 1315 Instruction *InsertPt = 1316 User->getParent() == AndI->getParent() ? AndI : User; 1317 Instruction *InsertedAnd = 1318 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1319 AndI->getOperand(1), "", InsertPt); 1320 // Propagate the debug info. 1321 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1322 1323 // Replace a use of the 'and' with a use of the new 'and'. 1324 TheUse = InsertedAnd; 1325 ++NumAndUses; 1326 LLVM_DEBUG(User->getParent()->dump()); 1327 } 1328 1329 // We removed all uses, nuke the and. 1330 AndI->eraseFromParent(); 1331 return true; 1332 } 1333 1334 /// Check if the candidates could be combined with a shift instruction, which 1335 /// includes: 1336 /// 1. Truncate instruction 1337 /// 2. And instruction and the imm is a mask of the low bits: 1338 /// imm & (imm+1) == 0 1339 static bool isExtractBitsCandidateUse(Instruction *User) { 1340 if (!isa<TruncInst>(User)) { 1341 if (User->getOpcode() != Instruction::And || 1342 !isa<ConstantInt>(User->getOperand(1))) 1343 return false; 1344 1345 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1346 1347 if ((Cimm & (Cimm + 1)).getBoolValue()) 1348 return false; 1349 } 1350 return true; 1351 } 1352 1353 /// Sink both shift and truncate instruction to the use of truncate's BB. 1354 static bool 1355 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1356 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1357 const TargetLowering &TLI, const DataLayout &DL) { 1358 BasicBlock *UserBB = User->getParent(); 1359 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1360 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1361 bool MadeChange = false; 1362 1363 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1364 TruncE = TruncI->user_end(); 1365 TruncUI != TruncE;) { 1366 1367 Use &TruncTheUse = TruncUI.getUse(); 1368 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1369 // Preincrement use iterator so we don't invalidate it. 1370 1371 ++TruncUI; 1372 1373 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1374 if (!ISDOpcode) 1375 continue; 1376 1377 // If the use is actually a legal node, there will not be an 1378 // implicit truncate. 1379 // FIXME: always querying the result type is just an 1380 // approximation; some nodes' legality is determined by the 1381 // operand or other means. There's no good way to find out though. 1382 if (TLI.isOperationLegalOrCustom( 1383 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1384 continue; 1385 1386 // Don't bother for PHI nodes. 1387 if (isa<PHINode>(TruncUser)) 1388 continue; 1389 1390 BasicBlock *TruncUserBB = TruncUser->getParent(); 1391 1392 if (UserBB == TruncUserBB) 1393 continue; 1394 1395 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1396 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1397 1398 if (!InsertedShift && !InsertedTrunc) { 1399 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1400 assert(InsertPt != TruncUserBB->end()); 1401 // Sink the shift 1402 if (ShiftI->getOpcode() == Instruction::AShr) 1403 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1404 "", &*InsertPt); 1405 else 1406 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1407 "", &*InsertPt); 1408 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1409 1410 // Sink the trunc 1411 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1412 TruncInsertPt++; 1413 assert(TruncInsertPt != TruncUserBB->end()); 1414 1415 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1416 TruncI->getType(), "", &*TruncInsertPt); 1417 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1418 1419 MadeChange = true; 1420 1421 TruncTheUse = InsertedTrunc; 1422 } 1423 } 1424 return MadeChange; 1425 } 1426 1427 /// Sink the shift *right* instruction into user blocks if the uses could 1428 /// potentially be combined with this shift instruction and generate BitExtract 1429 /// instruction. It will only be applied if the architecture supports BitExtract 1430 /// instruction. Here is an example: 1431 /// BB1: 1432 /// %x.extract.shift = lshr i64 %arg1, 32 1433 /// BB2: 1434 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1435 /// ==> 1436 /// 1437 /// BB2: 1438 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1439 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1440 /// 1441 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1442 /// instruction. 1443 /// Return true if any changes are made. 1444 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1445 const TargetLowering &TLI, 1446 const DataLayout &DL) { 1447 BasicBlock *DefBB = ShiftI->getParent(); 1448 1449 /// Only insert instructions in each block once. 1450 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1451 1452 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1453 1454 bool MadeChange = false; 1455 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1456 UI != E;) { 1457 Use &TheUse = UI.getUse(); 1458 Instruction *User = cast<Instruction>(*UI); 1459 // Preincrement use iterator so we don't invalidate it. 1460 ++UI; 1461 1462 // Don't bother for PHI nodes. 1463 if (isa<PHINode>(User)) 1464 continue; 1465 1466 if (!isExtractBitsCandidateUse(User)) 1467 continue; 1468 1469 BasicBlock *UserBB = User->getParent(); 1470 1471 if (UserBB == DefBB) { 1472 // If the shift and truncate instruction are in the same BB. The use of 1473 // the truncate(TruncUse) may still introduce another truncate if not 1474 // legal. In this case, we would like to sink both shift and truncate 1475 // instruction to the BB of TruncUse. 1476 // for example: 1477 // BB1: 1478 // i64 shift.result = lshr i64 opnd, imm 1479 // trunc.result = trunc shift.result to i16 1480 // 1481 // BB2: 1482 // ----> We will have an implicit truncate here if the architecture does 1483 // not have i16 compare. 1484 // cmp i16 trunc.result, opnd2 1485 // 1486 if (isa<TruncInst>(User) && shiftIsLegal 1487 // If the type of the truncate is legal, no truncate will be 1488 // introduced in other basic blocks. 1489 && 1490 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1491 MadeChange = 1492 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1493 1494 continue; 1495 } 1496 // If we have already inserted a shift into this block, use it. 1497 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1498 1499 if (!InsertedShift) { 1500 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1501 assert(InsertPt != UserBB->end()); 1502 1503 if (ShiftI->getOpcode() == Instruction::AShr) 1504 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1505 "", &*InsertPt); 1506 else 1507 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1508 "", &*InsertPt); 1509 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1510 1511 MadeChange = true; 1512 } 1513 1514 // Replace a use of the shift with a use of the new shift. 1515 TheUse = InsertedShift; 1516 } 1517 1518 // If we removed all uses, nuke the shift. 1519 if (ShiftI->use_empty()) { 1520 salvageDebugInfo(*ShiftI); 1521 ShiftI->eraseFromParent(); 1522 } 1523 1524 return MadeChange; 1525 } 1526 1527 /// If counting leading or trailing zeros is an expensive operation and a zero 1528 /// input is defined, add a check for zero to avoid calling the intrinsic. 1529 /// 1530 /// We want to transform: 1531 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1532 /// 1533 /// into: 1534 /// entry: 1535 /// %cmpz = icmp eq i64 %A, 0 1536 /// br i1 %cmpz, label %cond.end, label %cond.false 1537 /// cond.false: 1538 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1539 /// br label %cond.end 1540 /// cond.end: 1541 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1542 /// 1543 /// If the transform is performed, return true and set ModifiedDT to true. 1544 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1545 const TargetLowering *TLI, 1546 const DataLayout *DL, 1547 bool &ModifiedDT) { 1548 if (!TLI || !DL) 1549 return false; 1550 1551 // If a zero input is undefined, it doesn't make sense to despeculate that. 1552 if (match(CountZeros->getOperand(1), m_One())) 1553 return false; 1554 1555 // If it's cheap to speculate, there's nothing to do. 1556 auto IntrinsicID = CountZeros->getIntrinsicID(); 1557 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1558 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1559 return false; 1560 1561 // Only handle legal scalar cases. Anything else requires too much work. 1562 Type *Ty = CountZeros->getType(); 1563 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1564 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1565 return false; 1566 1567 // The intrinsic will be sunk behind a compare against zero and branch. 1568 BasicBlock *StartBlock = CountZeros->getParent(); 1569 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1570 1571 // Create another block after the count zero intrinsic. A PHI will be added 1572 // in this block to select the result of the intrinsic or the bit-width 1573 // constant if the input to the intrinsic is zero. 1574 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1575 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1576 1577 // Set up a builder to create a compare, conditional branch, and PHI. 1578 IRBuilder<> Builder(CountZeros->getContext()); 1579 Builder.SetInsertPoint(StartBlock->getTerminator()); 1580 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1581 1582 // Replace the unconditional branch that was created by the first split with 1583 // a compare against zero and a conditional branch. 1584 Value *Zero = Constant::getNullValue(Ty); 1585 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1586 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1587 StartBlock->getTerminator()->eraseFromParent(); 1588 1589 // Create a PHI in the end block to select either the output of the intrinsic 1590 // or the bit width of the operand. 1591 Builder.SetInsertPoint(&EndBlock->front()); 1592 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1593 CountZeros->replaceAllUsesWith(PN); 1594 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1595 PN->addIncoming(BitWidth, StartBlock); 1596 PN->addIncoming(CountZeros, CallBlock); 1597 1598 // We are explicitly handling the zero case, so we can set the intrinsic's 1599 // undefined zero argument to 'true'. This will also prevent reprocessing the 1600 // intrinsic; we only despeculate when a zero input is defined. 1601 CountZeros->setArgOperand(1, Builder.getTrue()); 1602 ModifiedDT = true; 1603 return true; 1604 } 1605 1606 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1607 BasicBlock *BB = CI->getParent(); 1608 1609 // Lower inline assembly if we can. 1610 // If we found an inline asm expession, and if the target knows how to 1611 // lower it to normal LLVM code, do so now. 1612 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1613 if (TLI->ExpandInlineAsm(CI)) { 1614 // Avoid invalidating the iterator. 1615 CurInstIterator = BB->begin(); 1616 // Avoid processing instructions out of order, which could cause 1617 // reuse before a value is defined. 1618 SunkAddrs.clear(); 1619 return true; 1620 } 1621 // Sink address computing for memory operands into the block. 1622 if (optimizeInlineAsmInst(CI)) 1623 return true; 1624 } 1625 1626 // Align the pointer arguments to this call if the target thinks it's a good 1627 // idea 1628 unsigned MinSize, PrefAlign; 1629 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1630 for (auto &Arg : CI->arg_operands()) { 1631 // We want to align both objects whose address is used directly and 1632 // objects whose address is used in casts and GEPs, though it only makes 1633 // sense for GEPs if the offset is a multiple of the desired alignment and 1634 // if size - offset meets the size threshold. 1635 if (!Arg->getType()->isPointerTy()) 1636 continue; 1637 APInt Offset(DL->getIndexSizeInBits( 1638 cast<PointerType>(Arg->getType())->getAddressSpace()), 1639 0); 1640 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1641 uint64_t Offset2 = Offset.getLimitedValue(); 1642 if ((Offset2 & (PrefAlign-1)) != 0) 1643 continue; 1644 AllocaInst *AI; 1645 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1646 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1647 AI->setAlignment(PrefAlign); 1648 // Global variables can only be aligned if they are defined in this 1649 // object (i.e. they are uniquely initialized in this object), and 1650 // over-aligning global variables that have an explicit section is 1651 // forbidden. 1652 GlobalVariable *GV; 1653 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1654 GV->getPointerAlignment(*DL) < PrefAlign && 1655 DL->getTypeAllocSize(GV->getValueType()) >= 1656 MinSize + Offset2) 1657 GV->setAlignment(PrefAlign); 1658 } 1659 // If this is a memcpy (or similar) then we may be able to improve the 1660 // alignment 1661 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1662 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1663 if (DestAlign > MI->getDestAlignment()) 1664 MI->setDestAlignment(DestAlign); 1665 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1666 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1667 if (SrcAlign > MTI->getSourceAlignment()) 1668 MTI->setSourceAlignment(SrcAlign); 1669 } 1670 } 1671 } 1672 1673 // If we have a cold call site, try to sink addressing computation into the 1674 // cold block. This interacts with our handling for loads and stores to 1675 // ensure that we can fold all uses of a potential addressing computation 1676 // into their uses. TODO: generalize this to work over profiling data 1677 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1678 for (auto &Arg : CI->arg_operands()) { 1679 if (!Arg->getType()->isPointerTy()) 1680 continue; 1681 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1682 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1683 } 1684 1685 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1686 if (II) { 1687 switch (II->getIntrinsicID()) { 1688 default: break; 1689 case Intrinsic::objectsize: { 1690 // Lower all uses of llvm.objectsize.* 1691 ConstantInt *RetVal = 1692 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1693 // Substituting this can cause recursive simplifications, which can 1694 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1695 // this 1696 // happens. 1697 Value *CurValue = &*CurInstIterator; 1698 WeakTrackingVH IterHandle(CurValue); 1699 1700 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1701 1702 // If the iterator instruction was recursively deleted, start over at the 1703 // start of the block. 1704 if (IterHandle != CurValue) { 1705 CurInstIterator = BB->begin(); 1706 SunkAddrs.clear(); 1707 } 1708 return true; 1709 } 1710 case Intrinsic::aarch64_stlxr: 1711 case Intrinsic::aarch64_stxr: { 1712 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1713 if (!ExtVal || !ExtVal->hasOneUse() || 1714 ExtVal->getParent() == CI->getParent()) 1715 return false; 1716 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1717 ExtVal->moveBefore(CI); 1718 // Mark this instruction as "inserted by CGP", so that other 1719 // optimizations don't touch it. 1720 InsertedInsts.insert(ExtVal); 1721 return true; 1722 } 1723 case Intrinsic::launder_invariant_group: 1724 case Intrinsic::strip_invariant_group: 1725 II->replaceAllUsesWith(II->getArgOperand(0)); 1726 II->eraseFromParent(); 1727 return true; 1728 1729 case Intrinsic::cttz: 1730 case Intrinsic::ctlz: 1731 // If counting zeros is expensive, try to avoid it. 1732 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1733 } 1734 1735 if (TLI) { 1736 SmallVector<Value*, 2> PtrOps; 1737 Type *AccessTy; 1738 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1739 while (!PtrOps.empty()) { 1740 Value *PtrVal = PtrOps.pop_back_val(); 1741 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1742 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1743 return true; 1744 } 1745 } 1746 } 1747 1748 // From here on out we're working with named functions. 1749 if (!CI->getCalledFunction()) return false; 1750 1751 // Lower all default uses of _chk calls. This is very similar 1752 // to what InstCombineCalls does, but here we are only lowering calls 1753 // to fortified library functions (e.g. __memcpy_chk) that have the default 1754 // "don't know" as the objectsize. Anything else should be left alone. 1755 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1756 if (Value *V = Simplifier.optimizeCall(CI)) { 1757 CI->replaceAllUsesWith(V); 1758 CI->eraseFromParent(); 1759 return true; 1760 } 1761 1762 return false; 1763 } 1764 1765 /// Look for opportunities to duplicate return instructions to the predecessor 1766 /// to enable tail call optimizations. The case it is currently looking for is: 1767 /// @code 1768 /// bb0: 1769 /// %tmp0 = tail call i32 @f0() 1770 /// br label %return 1771 /// bb1: 1772 /// %tmp1 = tail call i32 @f1() 1773 /// br label %return 1774 /// bb2: 1775 /// %tmp2 = tail call i32 @f2() 1776 /// br label %return 1777 /// return: 1778 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1779 /// ret i32 %retval 1780 /// @endcode 1781 /// 1782 /// => 1783 /// 1784 /// @code 1785 /// bb0: 1786 /// %tmp0 = tail call i32 @f0() 1787 /// ret i32 %tmp0 1788 /// bb1: 1789 /// %tmp1 = tail call i32 @f1() 1790 /// ret i32 %tmp1 1791 /// bb2: 1792 /// %tmp2 = tail call i32 @f2() 1793 /// ret i32 %tmp2 1794 /// @endcode 1795 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1796 if (!TLI) 1797 return false; 1798 1799 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1800 if (!RetI) 1801 return false; 1802 1803 PHINode *PN = nullptr; 1804 BitCastInst *BCI = nullptr; 1805 Value *V = RetI->getReturnValue(); 1806 if (V) { 1807 BCI = dyn_cast<BitCastInst>(V); 1808 if (BCI) 1809 V = BCI->getOperand(0); 1810 1811 PN = dyn_cast<PHINode>(V); 1812 if (!PN) 1813 return false; 1814 } 1815 1816 if (PN && PN->getParent() != BB) 1817 return false; 1818 1819 // Make sure there are no instructions between the PHI and return, or that the 1820 // return is the first instruction in the block. 1821 if (PN) { 1822 BasicBlock::iterator BI = BB->begin(); 1823 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1824 if (&*BI == BCI) 1825 // Also skip over the bitcast. 1826 ++BI; 1827 if (&*BI != RetI) 1828 return false; 1829 } else { 1830 BasicBlock::iterator BI = BB->begin(); 1831 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1832 if (&*BI != RetI) 1833 return false; 1834 } 1835 1836 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1837 /// call. 1838 const Function *F = BB->getParent(); 1839 SmallVector<CallInst*, 4> TailCalls; 1840 if (PN) { 1841 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1842 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1843 // Make sure the phi value is indeed produced by the tail call. 1844 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1845 TLI->mayBeEmittedAsTailCall(CI) && 1846 attributesPermitTailCall(F, CI, RetI, *TLI)) 1847 TailCalls.push_back(CI); 1848 } 1849 } else { 1850 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1851 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1852 if (!VisitedBBs.insert(*PI).second) 1853 continue; 1854 1855 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1856 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1857 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1858 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1859 if (RI == RE) 1860 continue; 1861 1862 CallInst *CI = dyn_cast<CallInst>(&*RI); 1863 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1864 attributesPermitTailCall(F, CI, RetI, *TLI)) 1865 TailCalls.push_back(CI); 1866 } 1867 } 1868 1869 bool Changed = false; 1870 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1871 CallInst *CI = TailCalls[i]; 1872 CallSite CS(CI); 1873 1874 // Conservatively require the attributes of the call to match those of the 1875 // return. Ignore noalias because it doesn't affect the call sequence. 1876 AttributeList CalleeAttrs = CS.getAttributes(); 1877 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1878 .removeAttribute(Attribute::NoAlias) != 1879 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1880 .removeAttribute(Attribute::NoAlias)) 1881 continue; 1882 1883 // Make sure the call instruction is followed by an unconditional branch to 1884 // the return block. 1885 BasicBlock *CallBB = CI->getParent(); 1886 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1887 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1888 continue; 1889 1890 // Duplicate the return into CallBB. 1891 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1892 ModifiedDT = Changed = true; 1893 ++NumRetsDup; 1894 } 1895 1896 // If we eliminated all predecessors of the block, delete the block now. 1897 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1898 BB->eraseFromParent(); 1899 1900 return Changed; 1901 } 1902 1903 //===----------------------------------------------------------------------===// 1904 // Memory Optimization 1905 //===----------------------------------------------------------------------===// 1906 1907 namespace { 1908 1909 /// This is an extended version of TargetLowering::AddrMode 1910 /// which holds actual Value*'s for register values. 1911 struct ExtAddrMode : public TargetLowering::AddrMode { 1912 Value *BaseReg = nullptr; 1913 Value *ScaledReg = nullptr; 1914 Value *OriginalValue = nullptr; 1915 1916 enum FieldName { 1917 NoField = 0x00, 1918 BaseRegField = 0x01, 1919 BaseGVField = 0x02, 1920 BaseOffsField = 0x04, 1921 ScaledRegField = 0x08, 1922 ScaleField = 0x10, 1923 MultipleFields = 0xff 1924 }; 1925 1926 ExtAddrMode() = default; 1927 1928 void print(raw_ostream &OS) const; 1929 void dump() const; 1930 1931 FieldName compare(const ExtAddrMode &other) { 1932 // First check that the types are the same on each field, as differing types 1933 // is something we can't cope with later on. 1934 if (BaseReg && other.BaseReg && 1935 BaseReg->getType() != other.BaseReg->getType()) 1936 return MultipleFields; 1937 if (BaseGV && other.BaseGV && 1938 BaseGV->getType() != other.BaseGV->getType()) 1939 return MultipleFields; 1940 if (ScaledReg && other.ScaledReg && 1941 ScaledReg->getType() != other.ScaledReg->getType()) 1942 return MultipleFields; 1943 1944 // Check each field to see if it differs. 1945 unsigned Result = NoField; 1946 if (BaseReg != other.BaseReg) 1947 Result |= BaseRegField; 1948 if (BaseGV != other.BaseGV) 1949 Result |= BaseGVField; 1950 if (BaseOffs != other.BaseOffs) 1951 Result |= BaseOffsField; 1952 if (ScaledReg != other.ScaledReg) 1953 Result |= ScaledRegField; 1954 // Don't count 0 as being a different scale, because that actually means 1955 // unscaled (which will already be counted by having no ScaledReg). 1956 if (Scale && other.Scale && Scale != other.Scale) 1957 Result |= ScaleField; 1958 1959 if (countPopulation(Result) > 1) 1960 return MultipleFields; 1961 else 1962 return static_cast<FieldName>(Result); 1963 } 1964 1965 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1966 // with no offset. 1967 bool isTrivial() { 1968 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1969 // trivial if at most one of these terms is nonzero, except that BaseGV and 1970 // BaseReg both being zero actually means a null pointer value, which we 1971 // consider to be 'non-zero' here. 1972 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1973 } 1974 1975 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1976 switch (Field) { 1977 default: 1978 return nullptr; 1979 case BaseRegField: 1980 return BaseReg; 1981 case BaseGVField: 1982 return BaseGV; 1983 case ScaledRegField: 1984 return ScaledReg; 1985 case BaseOffsField: 1986 return ConstantInt::get(IntPtrTy, BaseOffs); 1987 } 1988 } 1989 1990 void SetCombinedField(FieldName Field, Value *V, 1991 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1992 switch (Field) { 1993 default: 1994 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1995 break; 1996 case ExtAddrMode::BaseRegField: 1997 BaseReg = V; 1998 break; 1999 case ExtAddrMode::BaseGVField: 2000 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2001 // in the BaseReg field. 2002 assert(BaseReg == nullptr); 2003 BaseReg = V; 2004 BaseGV = nullptr; 2005 break; 2006 case ExtAddrMode::ScaledRegField: 2007 ScaledReg = V; 2008 // If we have a mix of scaled and unscaled addrmodes then we want scale 2009 // to be the scale and not zero. 2010 if (!Scale) 2011 for (const ExtAddrMode &AM : AddrModes) 2012 if (AM.Scale) { 2013 Scale = AM.Scale; 2014 break; 2015 } 2016 break; 2017 case ExtAddrMode::BaseOffsField: 2018 // The offset is no longer a constant, so it goes in ScaledReg with a 2019 // scale of 1. 2020 assert(ScaledReg == nullptr); 2021 ScaledReg = V; 2022 Scale = 1; 2023 BaseOffs = 0; 2024 break; 2025 } 2026 } 2027 }; 2028 2029 } // end anonymous namespace 2030 2031 #ifndef NDEBUG 2032 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2033 AM.print(OS); 2034 return OS; 2035 } 2036 #endif 2037 2038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2039 void ExtAddrMode::print(raw_ostream &OS) const { 2040 bool NeedPlus = false; 2041 OS << "["; 2042 if (BaseGV) { 2043 OS << (NeedPlus ? " + " : "") 2044 << "GV:"; 2045 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2046 NeedPlus = true; 2047 } 2048 2049 if (BaseOffs) { 2050 OS << (NeedPlus ? " + " : "") 2051 << BaseOffs; 2052 NeedPlus = true; 2053 } 2054 2055 if (BaseReg) { 2056 OS << (NeedPlus ? " + " : "") 2057 << "Base:"; 2058 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2059 NeedPlus = true; 2060 } 2061 if (Scale) { 2062 OS << (NeedPlus ? " + " : "") 2063 << Scale << "*"; 2064 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2065 } 2066 2067 OS << ']'; 2068 } 2069 2070 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2071 print(dbgs()); 2072 dbgs() << '\n'; 2073 } 2074 #endif 2075 2076 namespace { 2077 2078 /// This class provides transaction based operation on the IR. 2079 /// Every change made through this class is recorded in the internal state and 2080 /// can be undone (rollback) until commit is called. 2081 class TypePromotionTransaction { 2082 /// This represents the common interface of the individual transaction. 2083 /// Each class implements the logic for doing one specific modification on 2084 /// the IR via the TypePromotionTransaction. 2085 class TypePromotionAction { 2086 protected: 2087 /// The Instruction modified. 2088 Instruction *Inst; 2089 2090 public: 2091 /// Constructor of the action. 2092 /// The constructor performs the related action on the IR. 2093 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2094 2095 virtual ~TypePromotionAction() = default; 2096 2097 /// Undo the modification done by this action. 2098 /// When this method is called, the IR must be in the same state as it was 2099 /// before this action was applied. 2100 /// \pre Undoing the action works if and only if the IR is in the exact same 2101 /// state as it was directly after this action was applied. 2102 virtual void undo() = 0; 2103 2104 /// Advocate every change made by this action. 2105 /// When the results on the IR of the action are to be kept, it is important 2106 /// to call this function, otherwise hidden information may be kept forever. 2107 virtual void commit() { 2108 // Nothing to be done, this action is not doing anything. 2109 } 2110 }; 2111 2112 /// Utility to remember the position of an instruction. 2113 class InsertionHandler { 2114 /// Position of an instruction. 2115 /// Either an instruction: 2116 /// - Is the first in a basic block: BB is used. 2117 /// - Has a previous instruction: PrevInst is used. 2118 union { 2119 Instruction *PrevInst; 2120 BasicBlock *BB; 2121 } Point; 2122 2123 /// Remember whether or not the instruction had a previous instruction. 2124 bool HasPrevInstruction; 2125 2126 public: 2127 /// Record the position of \p Inst. 2128 InsertionHandler(Instruction *Inst) { 2129 BasicBlock::iterator It = Inst->getIterator(); 2130 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2131 if (HasPrevInstruction) 2132 Point.PrevInst = &*--It; 2133 else 2134 Point.BB = Inst->getParent(); 2135 } 2136 2137 /// Insert \p Inst at the recorded position. 2138 void insert(Instruction *Inst) { 2139 if (HasPrevInstruction) { 2140 if (Inst->getParent()) 2141 Inst->removeFromParent(); 2142 Inst->insertAfter(Point.PrevInst); 2143 } else { 2144 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2145 if (Inst->getParent()) 2146 Inst->moveBefore(Position); 2147 else 2148 Inst->insertBefore(Position); 2149 } 2150 } 2151 }; 2152 2153 /// Move an instruction before another. 2154 class InstructionMoveBefore : public TypePromotionAction { 2155 /// Original position of the instruction. 2156 InsertionHandler Position; 2157 2158 public: 2159 /// Move \p Inst before \p Before. 2160 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2161 : TypePromotionAction(Inst), Position(Inst) { 2162 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2163 << "\n"); 2164 Inst->moveBefore(Before); 2165 } 2166 2167 /// Move the instruction back to its original position. 2168 void undo() override { 2169 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2170 Position.insert(Inst); 2171 } 2172 }; 2173 2174 /// Set the operand of an instruction with a new value. 2175 class OperandSetter : public TypePromotionAction { 2176 /// Original operand of the instruction. 2177 Value *Origin; 2178 2179 /// Index of the modified instruction. 2180 unsigned Idx; 2181 2182 public: 2183 /// Set \p Idx operand of \p Inst with \p NewVal. 2184 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2185 : TypePromotionAction(Inst), Idx(Idx) { 2186 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2187 << "for:" << *Inst << "\n" 2188 << "with:" << *NewVal << "\n"); 2189 Origin = Inst->getOperand(Idx); 2190 Inst->setOperand(Idx, NewVal); 2191 } 2192 2193 /// Restore the original value of the instruction. 2194 void undo() override { 2195 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2196 << "for: " << *Inst << "\n" 2197 << "with: " << *Origin << "\n"); 2198 Inst->setOperand(Idx, Origin); 2199 } 2200 }; 2201 2202 /// Hide the operands of an instruction. 2203 /// Do as if this instruction was not using any of its operands. 2204 class OperandsHider : public TypePromotionAction { 2205 /// The list of original operands. 2206 SmallVector<Value *, 4> OriginalValues; 2207 2208 public: 2209 /// Remove \p Inst from the uses of the operands of \p Inst. 2210 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2211 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2212 unsigned NumOpnds = Inst->getNumOperands(); 2213 OriginalValues.reserve(NumOpnds); 2214 for (unsigned It = 0; It < NumOpnds; ++It) { 2215 // Save the current operand. 2216 Value *Val = Inst->getOperand(It); 2217 OriginalValues.push_back(Val); 2218 // Set a dummy one. 2219 // We could use OperandSetter here, but that would imply an overhead 2220 // that we are not willing to pay. 2221 Inst->setOperand(It, UndefValue::get(Val->getType())); 2222 } 2223 } 2224 2225 /// Restore the original list of uses. 2226 void undo() override { 2227 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2228 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2229 Inst->setOperand(It, OriginalValues[It]); 2230 } 2231 }; 2232 2233 /// Build a truncate instruction. 2234 class TruncBuilder : public TypePromotionAction { 2235 Value *Val; 2236 2237 public: 2238 /// Build a truncate instruction of \p Opnd producing a \p Ty 2239 /// result. 2240 /// trunc Opnd to Ty. 2241 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2242 IRBuilder<> Builder(Opnd); 2243 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2244 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2245 } 2246 2247 /// Get the built value. 2248 Value *getBuiltValue() { return Val; } 2249 2250 /// Remove the built instruction. 2251 void undo() override { 2252 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2253 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2254 IVal->eraseFromParent(); 2255 } 2256 }; 2257 2258 /// Build a sign extension instruction. 2259 class SExtBuilder : public TypePromotionAction { 2260 Value *Val; 2261 2262 public: 2263 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2264 /// result. 2265 /// sext Opnd to Ty. 2266 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2267 : TypePromotionAction(InsertPt) { 2268 IRBuilder<> Builder(InsertPt); 2269 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2270 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2271 } 2272 2273 /// Get the built value. 2274 Value *getBuiltValue() { return Val; } 2275 2276 /// Remove the built instruction. 2277 void undo() override { 2278 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2279 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2280 IVal->eraseFromParent(); 2281 } 2282 }; 2283 2284 /// Build a zero extension instruction. 2285 class ZExtBuilder : public TypePromotionAction { 2286 Value *Val; 2287 2288 public: 2289 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2290 /// result. 2291 /// zext Opnd to Ty. 2292 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2293 : TypePromotionAction(InsertPt) { 2294 IRBuilder<> Builder(InsertPt); 2295 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2296 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2297 } 2298 2299 /// Get the built value. 2300 Value *getBuiltValue() { return Val; } 2301 2302 /// Remove the built instruction. 2303 void undo() override { 2304 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2305 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2306 IVal->eraseFromParent(); 2307 } 2308 }; 2309 2310 /// Mutate an instruction to another type. 2311 class TypeMutator : public TypePromotionAction { 2312 /// Record the original type. 2313 Type *OrigTy; 2314 2315 public: 2316 /// Mutate the type of \p Inst into \p NewTy. 2317 TypeMutator(Instruction *Inst, Type *NewTy) 2318 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2319 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2320 << "\n"); 2321 Inst->mutateType(NewTy); 2322 } 2323 2324 /// Mutate the instruction back to its original type. 2325 void undo() override { 2326 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2327 << "\n"); 2328 Inst->mutateType(OrigTy); 2329 } 2330 }; 2331 2332 /// Replace the uses of an instruction by another instruction. 2333 class UsesReplacer : public TypePromotionAction { 2334 /// Helper structure to keep track of the replaced uses. 2335 struct InstructionAndIdx { 2336 /// The instruction using the instruction. 2337 Instruction *Inst; 2338 2339 /// The index where this instruction is used for Inst. 2340 unsigned Idx; 2341 2342 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2343 : Inst(Inst), Idx(Idx) {} 2344 }; 2345 2346 /// Keep track of the original uses (pair Instruction, Index). 2347 SmallVector<InstructionAndIdx, 4> OriginalUses; 2348 2349 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2350 2351 public: 2352 /// Replace all the use of \p Inst by \p New. 2353 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2354 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2355 << "\n"); 2356 // Record the original uses. 2357 for (Use &U : Inst->uses()) { 2358 Instruction *UserI = cast<Instruction>(U.getUser()); 2359 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2360 } 2361 // Now, we can replace the uses. 2362 Inst->replaceAllUsesWith(New); 2363 } 2364 2365 /// Reassign the original uses of Inst to Inst. 2366 void undo() override { 2367 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2368 for (use_iterator UseIt = OriginalUses.begin(), 2369 EndIt = OriginalUses.end(); 2370 UseIt != EndIt; ++UseIt) { 2371 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2372 } 2373 } 2374 }; 2375 2376 /// Remove an instruction from the IR. 2377 class InstructionRemover : public TypePromotionAction { 2378 /// Original position of the instruction. 2379 InsertionHandler Inserter; 2380 2381 /// Helper structure to hide all the link to the instruction. In other 2382 /// words, this helps to do as if the instruction was removed. 2383 OperandsHider Hider; 2384 2385 /// Keep track of the uses replaced, if any. 2386 UsesReplacer *Replacer = nullptr; 2387 2388 /// Keep track of instructions removed. 2389 SetOfInstrs &RemovedInsts; 2390 2391 public: 2392 /// Remove all reference of \p Inst and optionally replace all its 2393 /// uses with New. 2394 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2395 /// \pre If !Inst->use_empty(), then New != nullptr 2396 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2397 Value *New = nullptr) 2398 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2399 RemovedInsts(RemovedInsts) { 2400 if (New) 2401 Replacer = new UsesReplacer(Inst, New); 2402 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2403 RemovedInsts.insert(Inst); 2404 /// The instructions removed here will be freed after completing 2405 /// optimizeBlock() for all blocks as we need to keep track of the 2406 /// removed instructions during promotion. 2407 Inst->removeFromParent(); 2408 } 2409 2410 ~InstructionRemover() override { delete Replacer; } 2411 2412 /// Resurrect the instruction and reassign it to the proper uses if 2413 /// new value was provided when build this action. 2414 void undo() override { 2415 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2416 Inserter.insert(Inst); 2417 if (Replacer) 2418 Replacer->undo(); 2419 Hider.undo(); 2420 RemovedInsts.erase(Inst); 2421 } 2422 }; 2423 2424 public: 2425 /// Restoration point. 2426 /// The restoration point is a pointer to an action instead of an iterator 2427 /// because the iterator may be invalidated but not the pointer. 2428 using ConstRestorationPt = const TypePromotionAction *; 2429 2430 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2431 : RemovedInsts(RemovedInsts) {} 2432 2433 /// Advocate every changes made in that transaction. 2434 void commit(); 2435 2436 /// Undo all the changes made after the given point. 2437 void rollback(ConstRestorationPt Point); 2438 2439 /// Get the current restoration point. 2440 ConstRestorationPt getRestorationPoint() const; 2441 2442 /// \name API for IR modification with state keeping to support rollback. 2443 /// @{ 2444 /// Same as Instruction::setOperand. 2445 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2446 2447 /// Same as Instruction::eraseFromParent. 2448 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2449 2450 /// Same as Value::replaceAllUsesWith. 2451 void replaceAllUsesWith(Instruction *Inst, Value *New); 2452 2453 /// Same as Value::mutateType. 2454 void mutateType(Instruction *Inst, Type *NewTy); 2455 2456 /// Same as IRBuilder::createTrunc. 2457 Value *createTrunc(Instruction *Opnd, Type *Ty); 2458 2459 /// Same as IRBuilder::createSExt. 2460 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2461 2462 /// Same as IRBuilder::createZExt. 2463 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2464 2465 /// Same as Instruction::moveBefore. 2466 void moveBefore(Instruction *Inst, Instruction *Before); 2467 /// @} 2468 2469 private: 2470 /// The ordered list of actions made so far. 2471 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2472 2473 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2474 2475 SetOfInstrs &RemovedInsts; 2476 }; 2477 2478 } // end anonymous namespace 2479 2480 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2481 Value *NewVal) { 2482 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2483 Inst, Idx, NewVal)); 2484 } 2485 2486 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2487 Value *NewVal) { 2488 Actions.push_back( 2489 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2490 Inst, RemovedInsts, NewVal)); 2491 } 2492 2493 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2494 Value *New) { 2495 Actions.push_back( 2496 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2497 } 2498 2499 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2500 Actions.push_back( 2501 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2502 } 2503 2504 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2505 Type *Ty) { 2506 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2507 Value *Val = Ptr->getBuiltValue(); 2508 Actions.push_back(std::move(Ptr)); 2509 return Val; 2510 } 2511 2512 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2513 Value *Opnd, Type *Ty) { 2514 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2515 Value *Val = Ptr->getBuiltValue(); 2516 Actions.push_back(std::move(Ptr)); 2517 return Val; 2518 } 2519 2520 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2521 Value *Opnd, Type *Ty) { 2522 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2523 Value *Val = Ptr->getBuiltValue(); 2524 Actions.push_back(std::move(Ptr)); 2525 return Val; 2526 } 2527 2528 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2529 Instruction *Before) { 2530 Actions.push_back( 2531 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2532 Inst, Before)); 2533 } 2534 2535 TypePromotionTransaction::ConstRestorationPt 2536 TypePromotionTransaction::getRestorationPoint() const { 2537 return !Actions.empty() ? Actions.back().get() : nullptr; 2538 } 2539 2540 void TypePromotionTransaction::commit() { 2541 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2542 ++It) 2543 (*It)->commit(); 2544 Actions.clear(); 2545 } 2546 2547 void TypePromotionTransaction::rollback( 2548 TypePromotionTransaction::ConstRestorationPt Point) { 2549 while (!Actions.empty() && Point != Actions.back().get()) { 2550 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2551 Curr->undo(); 2552 } 2553 } 2554 2555 namespace { 2556 2557 /// A helper class for matching addressing modes. 2558 /// 2559 /// This encapsulates the logic for matching the target-legal addressing modes. 2560 class AddressingModeMatcher { 2561 SmallVectorImpl<Instruction*> &AddrModeInsts; 2562 const TargetLowering &TLI; 2563 const TargetRegisterInfo &TRI; 2564 const DataLayout &DL; 2565 2566 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2567 /// the memory instruction that we're computing this address for. 2568 Type *AccessTy; 2569 unsigned AddrSpace; 2570 Instruction *MemoryInst; 2571 2572 /// This is the addressing mode that we're building up. This is 2573 /// part of the return value of this addressing mode matching stuff. 2574 ExtAddrMode &AddrMode; 2575 2576 /// The instructions inserted by other CodeGenPrepare optimizations. 2577 const SetOfInstrs &InsertedInsts; 2578 2579 /// A map from the instructions to their type before promotion. 2580 InstrToOrigTy &PromotedInsts; 2581 2582 /// The ongoing transaction where every action should be registered. 2583 TypePromotionTransaction &TPT; 2584 2585 // A GEP which has too large offset to be folded into the addressing mode. 2586 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2587 2588 /// This is set to true when we should not do profitability checks. 2589 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2590 bool IgnoreProfitability; 2591 2592 AddressingModeMatcher( 2593 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2594 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2595 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2596 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2597 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2598 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2599 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2600 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2601 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2602 IgnoreProfitability = false; 2603 } 2604 2605 public: 2606 /// Find the maximal addressing mode that a load/store of V can fold, 2607 /// give an access type of AccessTy. This returns a list of involved 2608 /// instructions in AddrModeInsts. 2609 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2610 /// optimizations. 2611 /// \p PromotedInsts maps the instructions to their type before promotion. 2612 /// \p The ongoing transaction where every action should be registered. 2613 static ExtAddrMode 2614 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2615 SmallVectorImpl<Instruction *> &AddrModeInsts, 2616 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2617 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2618 TypePromotionTransaction &TPT, 2619 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2620 ExtAddrMode Result; 2621 2622 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2623 MemoryInst, Result, InsertedInsts, 2624 PromotedInsts, TPT, LargeOffsetGEP) 2625 .matchAddr(V, 0); 2626 (void)Success; assert(Success && "Couldn't select *anything*?"); 2627 return Result; 2628 } 2629 2630 private: 2631 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2632 bool matchAddr(Value *Addr, unsigned Depth); 2633 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2634 bool *MovedAway = nullptr); 2635 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2636 ExtAddrMode &AMBefore, 2637 ExtAddrMode &AMAfter); 2638 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2639 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2640 Value *PromotedOperand) const; 2641 }; 2642 2643 /// Keep track of simplification of Phi nodes. 2644 /// Accept the set of all phi nodes and erase phi node from this set 2645 /// if it is simplified. 2646 class SimplificationTracker { 2647 DenseMap<Value *, Value *> Storage; 2648 const SimplifyQuery &SQ; 2649 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2650 // order when iterating over the set in MatchPhiSet. 2651 SmallSetVector<PHINode *, 32> AllPhiNodes; 2652 // Tracks newly created Select nodes. 2653 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2654 2655 public: 2656 SimplificationTracker(const SimplifyQuery &sq) 2657 : SQ(sq) {} 2658 2659 Value *Get(Value *V) { 2660 do { 2661 auto SV = Storage.find(V); 2662 if (SV == Storage.end()) 2663 return V; 2664 V = SV->second; 2665 } while (true); 2666 } 2667 2668 Value *Simplify(Value *Val) { 2669 SmallVector<Value *, 32> WorkList; 2670 SmallPtrSet<Value *, 32> Visited; 2671 WorkList.push_back(Val); 2672 while (!WorkList.empty()) { 2673 auto P = WorkList.pop_back_val(); 2674 if (!Visited.insert(P).second) 2675 continue; 2676 if (auto *PI = dyn_cast<Instruction>(P)) 2677 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2678 for (auto *U : PI->users()) 2679 WorkList.push_back(cast<Value>(U)); 2680 Put(PI, V); 2681 PI->replaceAllUsesWith(V); 2682 if (auto *PHI = dyn_cast<PHINode>(PI)) 2683 AllPhiNodes.remove(PHI); 2684 if (auto *Select = dyn_cast<SelectInst>(PI)) 2685 AllSelectNodes.erase(Select); 2686 PI->eraseFromParent(); 2687 } 2688 } 2689 return Get(Val); 2690 } 2691 2692 void Put(Value *From, Value *To) { 2693 Storage.insert({ From, To }); 2694 } 2695 2696 void ReplacePhi(PHINode *From, PHINode *To) { 2697 Value* OldReplacement = Get(From); 2698 while (OldReplacement != From) { 2699 From = To; 2700 To = dyn_cast<PHINode>(OldReplacement); 2701 OldReplacement = Get(From); 2702 } 2703 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2704 Put(From, To); 2705 From->replaceAllUsesWith(To); 2706 AllPhiNodes.remove(From); 2707 From->eraseFromParent(); 2708 } 2709 2710 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2711 2712 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2713 2714 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2715 2716 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2717 2718 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2719 2720 void destroyNewNodes(Type *CommonType) { 2721 // For safe erasing, replace the uses with dummy value first. 2722 auto Dummy = UndefValue::get(CommonType); 2723 for (auto I : AllPhiNodes) { 2724 I->replaceAllUsesWith(Dummy); 2725 I->eraseFromParent(); 2726 } 2727 AllPhiNodes.clear(); 2728 for (auto I : AllSelectNodes) { 2729 I->replaceAllUsesWith(Dummy); 2730 I->eraseFromParent(); 2731 } 2732 AllSelectNodes.clear(); 2733 } 2734 }; 2735 2736 /// A helper class for combining addressing modes. 2737 class AddressingModeCombiner { 2738 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2739 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2740 typedef std::pair<PHINode *, PHINode *> PHIPair; 2741 2742 private: 2743 /// The addressing modes we've collected. 2744 SmallVector<ExtAddrMode, 16> AddrModes; 2745 2746 /// The field in which the AddrModes differ, when we have more than one. 2747 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2748 2749 /// Are the AddrModes that we have all just equal to their original values? 2750 bool AllAddrModesTrivial = true; 2751 2752 /// Common Type for all different fields in addressing modes. 2753 Type *CommonType; 2754 2755 /// SimplifyQuery for simplifyInstruction utility. 2756 const SimplifyQuery &SQ; 2757 2758 /// Original Address. 2759 ValueInBB Original; 2760 2761 public: 2762 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2763 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2764 2765 /// Get the combined AddrMode 2766 const ExtAddrMode &getAddrMode() const { 2767 return AddrModes[0]; 2768 } 2769 2770 /// Add a new AddrMode if it's compatible with the AddrModes we already 2771 /// have. 2772 /// \return True iff we succeeded in doing so. 2773 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2774 // Take note of if we have any non-trivial AddrModes, as we need to detect 2775 // when all AddrModes are trivial as then we would introduce a phi or select 2776 // which just duplicates what's already there. 2777 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2778 2779 // If this is the first addrmode then everything is fine. 2780 if (AddrModes.empty()) { 2781 AddrModes.emplace_back(NewAddrMode); 2782 return true; 2783 } 2784 2785 // Figure out how different this is from the other address modes, which we 2786 // can do just by comparing against the first one given that we only care 2787 // about the cumulative difference. 2788 ExtAddrMode::FieldName ThisDifferentField = 2789 AddrModes[0].compare(NewAddrMode); 2790 if (DifferentField == ExtAddrMode::NoField) 2791 DifferentField = ThisDifferentField; 2792 else if (DifferentField != ThisDifferentField) 2793 DifferentField = ExtAddrMode::MultipleFields; 2794 2795 // If NewAddrMode differs in more than one dimension we cannot handle it. 2796 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2797 2798 // If Scale Field is different then we reject. 2799 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2800 2801 // We also must reject the case when base offset is different and 2802 // scale reg is not null, we cannot handle this case due to merge of 2803 // different offsets will be used as ScaleReg. 2804 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2805 !NewAddrMode.ScaledReg); 2806 2807 // We also must reject the case when GV is different and BaseReg installed 2808 // due to we want to use base reg as a merge of GV values. 2809 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2810 !NewAddrMode.HasBaseReg); 2811 2812 // Even if NewAddMode is the same we still need to collect it due to 2813 // original value is different. And later we will need all original values 2814 // as anchors during finding the common Phi node. 2815 if (CanHandle) 2816 AddrModes.emplace_back(NewAddrMode); 2817 else 2818 AddrModes.clear(); 2819 2820 return CanHandle; 2821 } 2822 2823 /// Combine the addressing modes we've collected into a single 2824 /// addressing mode. 2825 /// \return True iff we successfully combined them or we only had one so 2826 /// didn't need to combine them anyway. 2827 bool combineAddrModes() { 2828 // If we have no AddrModes then they can't be combined. 2829 if (AddrModes.size() == 0) 2830 return false; 2831 2832 // A single AddrMode can trivially be combined. 2833 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2834 return true; 2835 2836 // If the AddrModes we collected are all just equal to the value they are 2837 // derived from then combining them wouldn't do anything useful. 2838 if (AllAddrModesTrivial) 2839 return false; 2840 2841 if (!addrModeCombiningAllowed()) 2842 return false; 2843 2844 // Build a map between <original value, basic block where we saw it> to 2845 // value of base register. 2846 // Bail out if there is no common type. 2847 FoldAddrToValueMapping Map; 2848 if (!initializeMap(Map)) 2849 return false; 2850 2851 Value *CommonValue = findCommon(Map); 2852 if (CommonValue) 2853 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2854 return CommonValue != nullptr; 2855 } 2856 2857 private: 2858 /// Initialize Map with anchor values. For address seen in some BB 2859 /// we set the value of different field saw in this address. 2860 /// If address is not an instruction than basic block is set to null. 2861 /// At the same time we find a common type for different field we will 2862 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2863 /// Return false if there is no common type found. 2864 bool initializeMap(FoldAddrToValueMapping &Map) { 2865 // Keep track of keys where the value is null. We will need to replace it 2866 // with constant null when we know the common type. 2867 SmallVector<ValueInBB, 2> NullValue; 2868 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2869 for (auto &AM : AddrModes) { 2870 BasicBlock *BB = nullptr; 2871 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2872 BB = I->getParent(); 2873 2874 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2875 if (DV) { 2876 auto *Type = DV->getType(); 2877 if (CommonType && CommonType != Type) 2878 return false; 2879 CommonType = Type; 2880 Map[{ AM.OriginalValue, BB }] = DV; 2881 } else { 2882 NullValue.push_back({ AM.OriginalValue, BB }); 2883 } 2884 } 2885 assert(CommonType && "At least one non-null value must be!"); 2886 for (auto VIBB : NullValue) 2887 Map[VIBB] = Constant::getNullValue(CommonType); 2888 return true; 2889 } 2890 2891 /// We have mapping between value A and basic block where value A 2892 /// seen to other value B where B was a field in addressing mode represented 2893 /// by A. Also we have an original value C representing an address in some 2894 /// basic block. Traversing from C through phi and selects we ended up with 2895 /// A's in a map. This utility function tries to find a value V which is a 2896 /// field in addressing mode C and traversing through phi nodes and selects 2897 /// we will end up in corresponded values B in a map. 2898 /// The utility will create a new Phi/Selects if needed. 2899 // The simple example looks as follows: 2900 // BB1: 2901 // p1 = b1 + 40 2902 // br cond BB2, BB3 2903 // BB2: 2904 // p2 = b2 + 40 2905 // br BB3 2906 // BB3: 2907 // p = phi [p1, BB1], [p2, BB2] 2908 // v = load p 2909 // Map is 2910 // <p1, BB1> -> b1 2911 // <p2, BB2> -> b2 2912 // Request is 2913 // <p, BB3> -> ? 2914 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2915 Value *findCommon(FoldAddrToValueMapping &Map) { 2916 // Tracks the simplification of newly created phi nodes. The reason we use 2917 // this mapping is because we will add new created Phi nodes in AddrToBase. 2918 // Simplification of Phi nodes is recursive, so some Phi node may 2919 // be simplified after we added it to AddrToBase. 2920 // Using this mapping we can find the current value in AddrToBase. 2921 SimplificationTracker ST(SQ); 2922 2923 // First step, DFS to create PHI nodes for all intermediate blocks. 2924 // Also fill traverse order for the second step. 2925 SmallVector<ValueInBB, 32> TraverseOrder; 2926 InsertPlaceholders(Map, TraverseOrder, ST); 2927 2928 // Second Step, fill new nodes by merged values and simplify if possible. 2929 FillPlaceholders(Map, TraverseOrder, ST); 2930 2931 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2932 ST.destroyNewNodes(CommonType); 2933 return nullptr; 2934 } 2935 2936 // Now we'd like to match New Phi nodes to existed ones. 2937 unsigned PhiNotMatchedCount = 0; 2938 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2939 ST.destroyNewNodes(CommonType); 2940 return nullptr; 2941 } 2942 2943 auto *Result = ST.Get(Map.find(Original)->second); 2944 if (Result) { 2945 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2946 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2947 } 2948 return Result; 2949 } 2950 2951 /// Try to match PHI node to Candidate. 2952 /// Matcher tracks the matched Phi nodes. 2953 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2954 SmallSetVector<PHIPair, 8> &Matcher, 2955 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2956 SmallVector<PHIPair, 8> WorkList; 2957 Matcher.insert({ PHI, Candidate }); 2958 WorkList.push_back({ PHI, Candidate }); 2959 SmallSet<PHIPair, 8> Visited; 2960 while (!WorkList.empty()) { 2961 auto Item = WorkList.pop_back_val(); 2962 if (!Visited.insert(Item).second) 2963 continue; 2964 // We iterate over all incoming values to Phi to compare them. 2965 // If values are different and both of them Phi and the first one is a 2966 // Phi we added (subject to match) and both of them is in the same basic 2967 // block then we can match our pair if values match. So we state that 2968 // these values match and add it to work list to verify that. 2969 for (auto B : Item.first->blocks()) { 2970 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2971 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2972 if (FirstValue == SecondValue) 2973 continue; 2974 2975 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2976 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2977 2978 // One of them is not Phi or 2979 // The first one is not Phi node from the set we'd like to match or 2980 // Phi nodes from different basic blocks then 2981 // we will not be able to match. 2982 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2983 FirstPhi->getParent() != SecondPhi->getParent()) 2984 return false; 2985 2986 // If we already matched them then continue. 2987 if (Matcher.count({ FirstPhi, SecondPhi })) 2988 continue; 2989 // So the values are different and does not match. So we need them to 2990 // match. 2991 Matcher.insert({ FirstPhi, SecondPhi }); 2992 // But me must check it. 2993 WorkList.push_back({ FirstPhi, SecondPhi }); 2994 } 2995 } 2996 return true; 2997 } 2998 2999 /// For the given set of PHI nodes (in the SimplificationTracker) try 3000 /// to find their equivalents. 3001 /// Returns false if this matching fails and creation of new Phi is disabled. 3002 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3003 unsigned &PhiNotMatchedCount) { 3004 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 3005 // in a deterministic order below. 3006 SmallSetVector<PHIPair, 8> Matched; 3007 SmallPtrSet<PHINode *, 8> WillNotMatch; 3008 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 3009 while (PhiNodesToMatch.size()) { 3010 PHINode *PHI = *PhiNodesToMatch.begin(); 3011 3012 // Add us, if no Phi nodes in the basic block we do not match. 3013 WillNotMatch.clear(); 3014 WillNotMatch.insert(PHI); 3015 3016 // Traverse all Phis until we found equivalent or fail to do that. 3017 bool IsMatched = false; 3018 for (auto &P : PHI->getParent()->phis()) { 3019 if (&P == PHI) 3020 continue; 3021 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3022 break; 3023 // If it does not match, collect all Phi nodes from matcher. 3024 // if we end up with no match, them all these Phi nodes will not match 3025 // later. 3026 for (auto M : Matched) 3027 WillNotMatch.insert(M.first); 3028 Matched.clear(); 3029 } 3030 if (IsMatched) { 3031 // Replace all matched values and erase them. 3032 for (auto MV : Matched) 3033 ST.ReplacePhi(MV.first, MV.second); 3034 Matched.clear(); 3035 continue; 3036 } 3037 // If we are not allowed to create new nodes then bail out. 3038 if (!AllowNewPhiNodes) 3039 return false; 3040 // Just remove all seen values in matcher. They will not match anything. 3041 PhiNotMatchedCount += WillNotMatch.size(); 3042 for (auto *P : WillNotMatch) 3043 PhiNodesToMatch.remove(P); 3044 } 3045 return true; 3046 } 3047 /// Fill the placeholder with values from predecessors and simplify it. 3048 void FillPlaceholders(FoldAddrToValueMapping &Map, 3049 SmallVectorImpl<ValueInBB> &TraverseOrder, 3050 SimplificationTracker &ST) { 3051 while (!TraverseOrder.empty()) { 3052 auto Current = TraverseOrder.pop_back_val(); 3053 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3054 Value *CurrentValue = Current.first; 3055 BasicBlock *CurrentBlock = Current.second; 3056 Value *V = Map[Current]; 3057 3058 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3059 // CurrentValue also must be Select. 3060 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3061 auto *TrueValue = CurrentSelect->getTrueValue(); 3062 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3063 ? CurrentBlock 3064 : nullptr }; 3065 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3066 Select->setTrueValue(ST.Get(Map[TrueItem])); 3067 auto *FalseValue = CurrentSelect->getFalseValue(); 3068 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3069 ? CurrentBlock 3070 : nullptr }; 3071 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3072 Select->setFalseValue(ST.Get(Map[FalseItem])); 3073 } else { 3074 // Must be a Phi node then. 3075 PHINode *PHI = cast<PHINode>(V); 3076 // Fill the Phi node with values from predecessors. 3077 bool IsDefinedInThisBB = 3078 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3079 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3080 for (auto B : predecessors(CurrentBlock)) { 3081 Value *PV = IsDefinedInThisBB 3082 ? CurrentPhi->getIncomingValueForBlock(B) 3083 : CurrentValue; 3084 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3085 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3086 PHI->addIncoming(ST.Get(Map[item]), B); 3087 } 3088 } 3089 // Simplify if possible. 3090 Map[Current] = ST.Simplify(V); 3091 } 3092 } 3093 3094 /// Starting from value recursively iterates over predecessors up to known 3095 /// ending values represented in a map. For each traversed block inserts 3096 /// a placeholder Phi or Select. 3097 /// Reports all new created Phi/Select nodes by adding them to set. 3098 /// Also reports and order in what basic blocks have been traversed. 3099 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3100 SmallVectorImpl<ValueInBB> &TraverseOrder, 3101 SimplificationTracker &ST) { 3102 SmallVector<ValueInBB, 32> Worklist; 3103 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3104 "Address must be a Phi or Select node"); 3105 auto *Dummy = UndefValue::get(CommonType); 3106 Worklist.push_back(Original); 3107 while (!Worklist.empty()) { 3108 auto Current = Worklist.pop_back_val(); 3109 // If value is not an instruction it is something global, constant, 3110 // parameter and we can say that this value is observable in any block. 3111 // Set block to null to denote it. 3112 // Also please take into account that it is how we build anchors. 3113 if (!isa<Instruction>(Current.first)) 3114 Current.second = nullptr; 3115 // if it is already visited or it is an ending value then skip it. 3116 if (Map.find(Current) != Map.end()) 3117 continue; 3118 TraverseOrder.push_back(Current); 3119 3120 Value *CurrentValue = Current.first; 3121 BasicBlock *CurrentBlock = Current.second; 3122 // CurrentValue must be a Phi node or select. All others must be covered 3123 // by anchors. 3124 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3125 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3126 3127 unsigned PredCount = pred_size(CurrentBlock); 3128 // if Current Value is not defined in this basic block we are interested 3129 // in values in predecessors. 3130 if (!IsDefinedInThisBB) { 3131 assert(PredCount && "Unreachable block?!"); 3132 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3133 &CurrentBlock->front()); 3134 Map[Current] = PHI; 3135 ST.insertNewPhi(PHI); 3136 // Add all predecessors in work list. 3137 for (auto B : predecessors(CurrentBlock)) 3138 Worklist.push_back({ CurrentValue, B }); 3139 continue; 3140 } 3141 // Value is defined in this basic block. 3142 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3143 // Is it OK to get metadata from OrigSelect?! 3144 // Create a Select placeholder with dummy value. 3145 SelectInst *Select = 3146 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3147 OrigSelect->getName(), OrigSelect, OrigSelect); 3148 Map[Current] = Select; 3149 ST.insertNewSelect(Select); 3150 // We are interested in True and False value in this basic block. 3151 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3152 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3153 } else { 3154 // It must be a Phi node then. 3155 auto *CurrentPhi = cast<PHINode>(CurrentI); 3156 // Create new Phi node for merge of bases. 3157 assert(PredCount && "Unreachable block?!"); 3158 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3159 &CurrentBlock->front()); 3160 Map[Current] = PHI; 3161 ST.insertNewPhi(PHI); 3162 3163 // Add all predecessors in work list. 3164 for (auto B : predecessors(CurrentBlock)) 3165 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3166 } 3167 } 3168 } 3169 3170 bool addrModeCombiningAllowed() { 3171 if (DisableComplexAddrModes) 3172 return false; 3173 switch (DifferentField) { 3174 default: 3175 return false; 3176 case ExtAddrMode::BaseRegField: 3177 return AddrSinkCombineBaseReg; 3178 case ExtAddrMode::BaseGVField: 3179 return AddrSinkCombineBaseGV; 3180 case ExtAddrMode::BaseOffsField: 3181 return AddrSinkCombineBaseOffs; 3182 case ExtAddrMode::ScaledRegField: 3183 return AddrSinkCombineScaledReg; 3184 } 3185 } 3186 }; 3187 } // end anonymous namespace 3188 3189 /// Try adding ScaleReg*Scale to the current addressing mode. 3190 /// Return true and update AddrMode if this addr mode is legal for the target, 3191 /// false if not. 3192 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3193 unsigned Depth) { 3194 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3195 // mode. Just process that directly. 3196 if (Scale == 1) 3197 return matchAddr(ScaleReg, Depth); 3198 3199 // If the scale is 0, it takes nothing to add this. 3200 if (Scale == 0) 3201 return true; 3202 3203 // If we already have a scale of this value, we can add to it, otherwise, we 3204 // need an available scale field. 3205 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3206 return false; 3207 3208 ExtAddrMode TestAddrMode = AddrMode; 3209 3210 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3211 // [A+B + A*7] -> [B+A*8]. 3212 TestAddrMode.Scale += Scale; 3213 TestAddrMode.ScaledReg = ScaleReg; 3214 3215 // If the new address isn't legal, bail out. 3216 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3217 return false; 3218 3219 // It was legal, so commit it. 3220 AddrMode = TestAddrMode; 3221 3222 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3223 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3224 // X*Scale + C*Scale to addr mode. 3225 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3226 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3227 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3228 TestAddrMode.ScaledReg = AddLHS; 3229 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3230 3231 // If this addressing mode is legal, commit it and remember that we folded 3232 // this instruction. 3233 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3234 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3235 AddrMode = TestAddrMode; 3236 return true; 3237 } 3238 } 3239 3240 // Otherwise, not (x+c)*scale, just return what we have. 3241 return true; 3242 } 3243 3244 /// This is a little filter, which returns true if an addressing computation 3245 /// involving I might be folded into a load/store accessing it. 3246 /// This doesn't need to be perfect, but needs to accept at least 3247 /// the set of instructions that MatchOperationAddr can. 3248 static bool MightBeFoldableInst(Instruction *I) { 3249 switch (I->getOpcode()) { 3250 case Instruction::BitCast: 3251 case Instruction::AddrSpaceCast: 3252 // Don't touch identity bitcasts. 3253 if (I->getType() == I->getOperand(0)->getType()) 3254 return false; 3255 return I->getType()->isIntOrPtrTy(); 3256 case Instruction::PtrToInt: 3257 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3258 return true; 3259 case Instruction::IntToPtr: 3260 // We know the input is intptr_t, so this is foldable. 3261 return true; 3262 case Instruction::Add: 3263 return true; 3264 case Instruction::Mul: 3265 case Instruction::Shl: 3266 // Can only handle X*C and X << C. 3267 return isa<ConstantInt>(I->getOperand(1)); 3268 case Instruction::GetElementPtr: 3269 return true; 3270 default: 3271 return false; 3272 } 3273 } 3274 3275 /// Check whether or not \p Val is a legal instruction for \p TLI. 3276 /// \note \p Val is assumed to be the product of some type promotion. 3277 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3278 /// to be legal, as the non-promoted value would have had the same state. 3279 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3280 const DataLayout &DL, Value *Val) { 3281 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3282 if (!PromotedInst) 3283 return false; 3284 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3285 // If the ISDOpcode is undefined, it was undefined before the promotion. 3286 if (!ISDOpcode) 3287 return true; 3288 // Otherwise, check if the promoted instruction is legal or not. 3289 return TLI.isOperationLegalOrCustom( 3290 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3291 } 3292 3293 namespace { 3294 3295 /// Hepler class to perform type promotion. 3296 class TypePromotionHelper { 3297 /// Utility function to add a promoted instruction \p ExtOpnd to 3298 /// \p PromotedInsts and record the type of extension we have seen. 3299 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3300 Instruction *ExtOpnd, 3301 bool IsSExt) { 3302 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3303 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3304 if (It != PromotedInsts.end()) { 3305 // If the new extension is same as original, the information in 3306 // PromotedInsts[ExtOpnd] is still correct. 3307 if (It->second.getInt() == ExtTy) 3308 return; 3309 3310 // Now the new extension is different from old extension, we make 3311 // the type information invalid by setting extension type to 3312 // BothExtension. 3313 ExtTy = BothExtension; 3314 } 3315 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3316 } 3317 3318 /// Utility function to query the original type of instruction \p Opnd 3319 /// with a matched extension type. If the extension doesn't match, we 3320 /// cannot use the information we had on the original type. 3321 /// BothExtension doesn't match any extension type. 3322 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3323 Instruction *Opnd, 3324 bool IsSExt) { 3325 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3326 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3327 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3328 return It->second.getPointer(); 3329 return nullptr; 3330 } 3331 3332 /// Utility function to check whether or not a sign or zero extension 3333 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3334 /// either using the operands of \p Inst or promoting \p Inst. 3335 /// The type of the extension is defined by \p IsSExt. 3336 /// In other words, check if: 3337 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3338 /// #1 Promotion applies: 3339 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3340 /// #2 Operand reuses: 3341 /// ext opnd1 to ConsideredExtType. 3342 /// \p PromotedInsts maps the instructions to their type before promotion. 3343 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3344 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3345 3346 /// Utility function to determine if \p OpIdx should be promoted when 3347 /// promoting \p Inst. 3348 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3349 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3350 } 3351 3352 /// Utility function to promote the operand of \p Ext when this 3353 /// operand is a promotable trunc or sext or zext. 3354 /// \p PromotedInsts maps the instructions to their type before promotion. 3355 /// \p CreatedInstsCost[out] contains the cost of all instructions 3356 /// created to promote the operand of Ext. 3357 /// Newly added extensions are inserted in \p Exts. 3358 /// Newly added truncates are inserted in \p Truncs. 3359 /// Should never be called directly. 3360 /// \return The promoted value which is used instead of Ext. 3361 static Value *promoteOperandForTruncAndAnyExt( 3362 Instruction *Ext, TypePromotionTransaction &TPT, 3363 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3364 SmallVectorImpl<Instruction *> *Exts, 3365 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3366 3367 /// Utility function to promote the operand of \p Ext when this 3368 /// operand is promotable and is not a supported trunc or sext. 3369 /// \p PromotedInsts maps the instructions to their type before promotion. 3370 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3371 /// created to promote the operand of Ext. 3372 /// Newly added extensions are inserted in \p Exts. 3373 /// Newly added truncates are inserted in \p Truncs. 3374 /// Should never be called directly. 3375 /// \return The promoted value which is used instead of Ext. 3376 static Value *promoteOperandForOther(Instruction *Ext, 3377 TypePromotionTransaction &TPT, 3378 InstrToOrigTy &PromotedInsts, 3379 unsigned &CreatedInstsCost, 3380 SmallVectorImpl<Instruction *> *Exts, 3381 SmallVectorImpl<Instruction *> *Truncs, 3382 const TargetLowering &TLI, bool IsSExt); 3383 3384 /// \see promoteOperandForOther. 3385 static Value *signExtendOperandForOther( 3386 Instruction *Ext, TypePromotionTransaction &TPT, 3387 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3388 SmallVectorImpl<Instruction *> *Exts, 3389 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3390 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3391 Exts, Truncs, TLI, true); 3392 } 3393 3394 /// \see promoteOperandForOther. 3395 static Value *zeroExtendOperandForOther( 3396 Instruction *Ext, TypePromotionTransaction &TPT, 3397 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3398 SmallVectorImpl<Instruction *> *Exts, 3399 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3400 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3401 Exts, Truncs, TLI, false); 3402 } 3403 3404 public: 3405 /// Type for the utility function that promotes the operand of Ext. 3406 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3407 InstrToOrigTy &PromotedInsts, 3408 unsigned &CreatedInstsCost, 3409 SmallVectorImpl<Instruction *> *Exts, 3410 SmallVectorImpl<Instruction *> *Truncs, 3411 const TargetLowering &TLI); 3412 3413 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3414 /// action to promote the operand of \p Ext instead of using Ext. 3415 /// \return NULL if no promotable action is possible with the current 3416 /// sign extension. 3417 /// \p InsertedInsts keeps track of all the instructions inserted by the 3418 /// other CodeGenPrepare optimizations. This information is important 3419 /// because we do not want to promote these instructions as CodeGenPrepare 3420 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3421 /// \p PromotedInsts maps the instructions to their type before promotion. 3422 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3423 const TargetLowering &TLI, 3424 const InstrToOrigTy &PromotedInsts); 3425 }; 3426 3427 } // end anonymous namespace 3428 3429 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3430 Type *ConsideredExtType, 3431 const InstrToOrigTy &PromotedInsts, 3432 bool IsSExt) { 3433 // The promotion helper does not know how to deal with vector types yet. 3434 // To be able to fix that, we would need to fix the places where we 3435 // statically extend, e.g., constants and such. 3436 if (Inst->getType()->isVectorTy()) 3437 return false; 3438 3439 // We can always get through zext. 3440 if (isa<ZExtInst>(Inst)) 3441 return true; 3442 3443 // sext(sext) is ok too. 3444 if (IsSExt && isa<SExtInst>(Inst)) 3445 return true; 3446 3447 // We can get through binary operator, if it is legal. In other words, the 3448 // binary operator must have a nuw or nsw flag. 3449 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3450 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3451 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3452 (IsSExt && BinOp->hasNoSignedWrap()))) 3453 return true; 3454 3455 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3456 if ((Inst->getOpcode() == Instruction::And || 3457 Inst->getOpcode() == Instruction::Or)) 3458 return true; 3459 3460 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3461 if (Inst->getOpcode() == Instruction::Xor) { 3462 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3463 // Make sure it is not a NOT. 3464 if (Cst && !Cst->getValue().isAllOnesValue()) 3465 return true; 3466 } 3467 3468 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3469 // It may change a poisoned value into a regular value, like 3470 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3471 // poisoned value regular value 3472 // It should be OK since undef covers valid value. 3473 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3474 return true; 3475 3476 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3477 // It may change a poisoned value into a regular value, like 3478 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3479 // poisoned value regular value 3480 // It should be OK since undef covers valid value. 3481 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3482 const Instruction *ExtInst = 3483 dyn_cast<const Instruction>(*Inst->user_begin()); 3484 if (ExtInst->hasOneUse()) { 3485 const Instruction *AndInst = 3486 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3487 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3488 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3489 if (Cst && 3490 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3491 return true; 3492 } 3493 } 3494 } 3495 3496 // Check if we can do the following simplification. 3497 // ext(trunc(opnd)) --> ext(opnd) 3498 if (!isa<TruncInst>(Inst)) 3499 return false; 3500 3501 Value *OpndVal = Inst->getOperand(0); 3502 // Check if we can use this operand in the extension. 3503 // If the type is larger than the result type of the extension, we cannot. 3504 if (!OpndVal->getType()->isIntegerTy() || 3505 OpndVal->getType()->getIntegerBitWidth() > 3506 ConsideredExtType->getIntegerBitWidth()) 3507 return false; 3508 3509 // If the operand of the truncate is not an instruction, we will not have 3510 // any information on the dropped bits. 3511 // (Actually we could for constant but it is not worth the extra logic). 3512 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3513 if (!Opnd) 3514 return false; 3515 3516 // Check if the source of the type is narrow enough. 3517 // I.e., check that trunc just drops extended bits of the same kind of 3518 // the extension. 3519 // #1 get the type of the operand and check the kind of the extended bits. 3520 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3521 if (OpndType) 3522 ; 3523 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3524 OpndType = Opnd->getOperand(0)->getType(); 3525 else 3526 return false; 3527 3528 // #2 check that the truncate just drops extended bits. 3529 return Inst->getType()->getIntegerBitWidth() >= 3530 OpndType->getIntegerBitWidth(); 3531 } 3532 3533 TypePromotionHelper::Action TypePromotionHelper::getAction( 3534 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3535 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3536 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3537 "Unexpected instruction type"); 3538 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3539 Type *ExtTy = Ext->getType(); 3540 bool IsSExt = isa<SExtInst>(Ext); 3541 // If the operand of the extension is not an instruction, we cannot 3542 // get through. 3543 // If it, check we can get through. 3544 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3545 return nullptr; 3546 3547 // Do not promote if the operand has been added by codegenprepare. 3548 // Otherwise, it means we are undoing an optimization that is likely to be 3549 // redone, thus causing potential infinite loop. 3550 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3551 return nullptr; 3552 3553 // SExt or Trunc instructions. 3554 // Return the related handler. 3555 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3556 isa<ZExtInst>(ExtOpnd)) 3557 return promoteOperandForTruncAndAnyExt; 3558 3559 // Regular instruction. 3560 // Abort early if we will have to insert non-free instructions. 3561 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3562 return nullptr; 3563 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3564 } 3565 3566 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3567 Instruction *SExt, TypePromotionTransaction &TPT, 3568 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3569 SmallVectorImpl<Instruction *> *Exts, 3570 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3571 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3572 // get through it and this method should not be called. 3573 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3574 Value *ExtVal = SExt; 3575 bool HasMergedNonFreeExt = false; 3576 if (isa<ZExtInst>(SExtOpnd)) { 3577 // Replace s|zext(zext(opnd)) 3578 // => zext(opnd). 3579 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3580 Value *ZExt = 3581 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3582 TPT.replaceAllUsesWith(SExt, ZExt); 3583 TPT.eraseInstruction(SExt); 3584 ExtVal = ZExt; 3585 } else { 3586 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3587 // => z|sext(opnd). 3588 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3589 } 3590 CreatedInstsCost = 0; 3591 3592 // Remove dead code. 3593 if (SExtOpnd->use_empty()) 3594 TPT.eraseInstruction(SExtOpnd); 3595 3596 // Check if the extension is still needed. 3597 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3598 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3599 if (ExtInst) { 3600 if (Exts) 3601 Exts->push_back(ExtInst); 3602 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3603 } 3604 return ExtVal; 3605 } 3606 3607 // At this point we have: ext ty opnd to ty. 3608 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3609 Value *NextVal = ExtInst->getOperand(0); 3610 TPT.eraseInstruction(ExtInst, NextVal); 3611 return NextVal; 3612 } 3613 3614 Value *TypePromotionHelper::promoteOperandForOther( 3615 Instruction *Ext, TypePromotionTransaction &TPT, 3616 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3617 SmallVectorImpl<Instruction *> *Exts, 3618 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3619 bool IsSExt) { 3620 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3621 // get through it and this method should not be called. 3622 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3623 CreatedInstsCost = 0; 3624 if (!ExtOpnd->hasOneUse()) { 3625 // ExtOpnd will be promoted. 3626 // All its uses, but Ext, will need to use a truncated value of the 3627 // promoted version. 3628 // Create the truncate now. 3629 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3630 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3631 // Insert it just after the definition. 3632 ITrunc->moveAfter(ExtOpnd); 3633 if (Truncs) 3634 Truncs->push_back(ITrunc); 3635 } 3636 3637 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3638 // Restore the operand of Ext (which has been replaced by the previous call 3639 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3640 TPT.setOperand(Ext, 0, ExtOpnd); 3641 } 3642 3643 // Get through the Instruction: 3644 // 1. Update its type. 3645 // 2. Replace the uses of Ext by Inst. 3646 // 3. Extend each operand that needs to be extended. 3647 3648 // Remember the original type of the instruction before promotion. 3649 // This is useful to know that the high bits are sign extended bits. 3650 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3651 // Step #1. 3652 TPT.mutateType(ExtOpnd, Ext->getType()); 3653 // Step #2. 3654 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3655 // Step #3. 3656 Instruction *ExtForOpnd = Ext; 3657 3658 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3659 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3660 ++OpIdx) { 3661 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3662 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3663 !shouldExtOperand(ExtOpnd, OpIdx)) { 3664 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3665 continue; 3666 } 3667 // Check if we can statically extend the operand. 3668 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3669 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3670 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3671 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3672 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3673 : Cst->getValue().zext(BitWidth); 3674 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3675 continue; 3676 } 3677 // UndefValue are typed, so we have to statically sign extend them. 3678 if (isa<UndefValue>(Opnd)) { 3679 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3680 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3681 continue; 3682 } 3683 3684 // Otherwise we have to explicitly sign extend the operand. 3685 // Check if Ext was reused to extend an operand. 3686 if (!ExtForOpnd) { 3687 // If yes, create a new one. 3688 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3689 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3690 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3691 if (!isa<Instruction>(ValForExtOpnd)) { 3692 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3693 continue; 3694 } 3695 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3696 } 3697 if (Exts) 3698 Exts->push_back(ExtForOpnd); 3699 TPT.setOperand(ExtForOpnd, 0, Opnd); 3700 3701 // Move the sign extension before the insertion point. 3702 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3703 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3704 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3705 // If more sext are required, new instructions will have to be created. 3706 ExtForOpnd = nullptr; 3707 } 3708 if (ExtForOpnd == Ext) { 3709 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3710 TPT.eraseInstruction(Ext); 3711 } 3712 return ExtOpnd; 3713 } 3714 3715 /// Check whether or not promoting an instruction to a wider type is profitable. 3716 /// \p NewCost gives the cost of extension instructions created by the 3717 /// promotion. 3718 /// \p OldCost gives the cost of extension instructions before the promotion 3719 /// plus the number of instructions that have been 3720 /// matched in the addressing mode the promotion. 3721 /// \p PromotedOperand is the value that has been promoted. 3722 /// \return True if the promotion is profitable, false otherwise. 3723 bool AddressingModeMatcher::isPromotionProfitable( 3724 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3725 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3726 << '\n'); 3727 // The cost of the new extensions is greater than the cost of the 3728 // old extension plus what we folded. 3729 // This is not profitable. 3730 if (NewCost > OldCost) 3731 return false; 3732 if (NewCost < OldCost) 3733 return true; 3734 // The promotion is neutral but it may help folding the sign extension in 3735 // loads for instance. 3736 // Check that we did not create an illegal instruction. 3737 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3738 } 3739 3740 /// Given an instruction or constant expr, see if we can fold the operation 3741 /// into the addressing mode. If so, update the addressing mode and return 3742 /// true, otherwise return false without modifying AddrMode. 3743 /// If \p MovedAway is not NULL, it contains the information of whether or 3744 /// not AddrInst has to be folded into the addressing mode on success. 3745 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3746 /// because it has been moved away. 3747 /// Thus AddrInst must not be added in the matched instructions. 3748 /// This state can happen when AddrInst is a sext, since it may be moved away. 3749 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3750 /// not be referenced anymore. 3751 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3752 unsigned Depth, 3753 bool *MovedAway) { 3754 // Avoid exponential behavior on extremely deep expression trees. 3755 if (Depth >= 5) return false; 3756 3757 // By default, all matched instructions stay in place. 3758 if (MovedAway) 3759 *MovedAway = false; 3760 3761 switch (Opcode) { 3762 case Instruction::PtrToInt: 3763 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3764 return matchAddr(AddrInst->getOperand(0), Depth); 3765 case Instruction::IntToPtr: { 3766 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3767 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3768 // This inttoptr is a no-op if the integer type is pointer sized. 3769 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3770 return matchAddr(AddrInst->getOperand(0), Depth); 3771 return false; 3772 } 3773 case Instruction::BitCast: 3774 // BitCast is always a noop, and we can handle it as long as it is 3775 // int->int or pointer->pointer (we don't want int<->fp or something). 3776 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3777 // Don't touch identity bitcasts. These were probably put here by LSR, 3778 // and we don't want to mess around with them. Assume it knows what it 3779 // is doing. 3780 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3781 return matchAddr(AddrInst->getOperand(0), Depth); 3782 return false; 3783 case Instruction::AddrSpaceCast: { 3784 unsigned SrcAS 3785 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3786 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3787 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3788 return matchAddr(AddrInst->getOperand(0), Depth); 3789 return false; 3790 } 3791 case Instruction::Add: { 3792 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3793 ExtAddrMode BackupAddrMode = AddrMode; 3794 unsigned OldSize = AddrModeInsts.size(); 3795 // Start a transaction at this point. 3796 // The LHS may match but not the RHS. 3797 // Therefore, we need a higher level restoration point to undo partially 3798 // matched operation. 3799 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3800 TPT.getRestorationPoint(); 3801 3802 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3803 matchAddr(AddrInst->getOperand(0), Depth+1)) 3804 return true; 3805 3806 // Restore the old addr mode info. 3807 AddrMode = BackupAddrMode; 3808 AddrModeInsts.resize(OldSize); 3809 TPT.rollback(LastKnownGood); 3810 3811 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3812 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3813 matchAddr(AddrInst->getOperand(1), Depth+1)) 3814 return true; 3815 3816 // Otherwise we definitely can't merge the ADD in. 3817 AddrMode = BackupAddrMode; 3818 AddrModeInsts.resize(OldSize); 3819 TPT.rollback(LastKnownGood); 3820 break; 3821 } 3822 //case Instruction::Or: 3823 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3824 //break; 3825 case Instruction::Mul: 3826 case Instruction::Shl: { 3827 // Can only handle X*C and X << C. 3828 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3829 if (!RHS || RHS->getBitWidth() > 64) 3830 return false; 3831 int64_t Scale = RHS->getSExtValue(); 3832 if (Opcode == Instruction::Shl) 3833 Scale = 1LL << Scale; 3834 3835 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3836 } 3837 case Instruction::GetElementPtr: { 3838 // Scan the GEP. We check it if it contains constant offsets and at most 3839 // one variable offset. 3840 int VariableOperand = -1; 3841 unsigned VariableScale = 0; 3842 3843 int64_t ConstantOffset = 0; 3844 gep_type_iterator GTI = gep_type_begin(AddrInst); 3845 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3846 if (StructType *STy = GTI.getStructTypeOrNull()) { 3847 const StructLayout *SL = DL.getStructLayout(STy); 3848 unsigned Idx = 3849 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3850 ConstantOffset += SL->getElementOffset(Idx); 3851 } else { 3852 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3853 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3854 const APInt &CVal = CI->getValue(); 3855 if (CVal.getMinSignedBits() <= 64) { 3856 ConstantOffset += CVal.getSExtValue() * TypeSize; 3857 continue; 3858 } 3859 } 3860 if (TypeSize) { // Scales of zero don't do anything. 3861 // We only allow one variable index at the moment. 3862 if (VariableOperand != -1) 3863 return false; 3864 3865 // Remember the variable index. 3866 VariableOperand = i; 3867 VariableScale = TypeSize; 3868 } 3869 } 3870 } 3871 3872 // A common case is for the GEP to only do a constant offset. In this case, 3873 // just add it to the disp field and check validity. 3874 if (VariableOperand == -1) { 3875 AddrMode.BaseOffs += ConstantOffset; 3876 if (ConstantOffset == 0 || 3877 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3878 // Check to see if we can fold the base pointer in too. 3879 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3880 return true; 3881 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3882 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3883 ConstantOffset > 0) { 3884 // Record GEPs with non-zero offsets as candidates for splitting in the 3885 // event that the offset cannot fit into the r+i addressing mode. 3886 // Simple and common case that only one GEP is used in calculating the 3887 // address for the memory access. 3888 Value *Base = AddrInst->getOperand(0); 3889 auto *BaseI = dyn_cast<Instruction>(Base); 3890 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3891 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3892 (BaseI && !isa<CastInst>(BaseI) && 3893 !isa<GetElementPtrInst>(BaseI))) { 3894 // If the base is an instruction, make sure the GEP is not in the same 3895 // basic block as the base. If the base is an argument or global 3896 // value, make sure the GEP is not in the entry block. Otherwise, 3897 // instruction selection can undo the split. Also make sure the 3898 // parent block allows inserting non-PHI instructions before the 3899 // terminator. 3900 BasicBlock *Parent = 3901 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3902 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3903 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3904 } 3905 } 3906 AddrMode.BaseOffs -= ConstantOffset; 3907 return false; 3908 } 3909 3910 // Save the valid addressing mode in case we can't match. 3911 ExtAddrMode BackupAddrMode = AddrMode; 3912 unsigned OldSize = AddrModeInsts.size(); 3913 3914 // See if the scale and offset amount is valid for this target. 3915 AddrMode.BaseOffs += ConstantOffset; 3916 3917 // Match the base operand of the GEP. 3918 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3919 // If it couldn't be matched, just stuff the value in a register. 3920 if (AddrMode.HasBaseReg) { 3921 AddrMode = BackupAddrMode; 3922 AddrModeInsts.resize(OldSize); 3923 return false; 3924 } 3925 AddrMode.HasBaseReg = true; 3926 AddrMode.BaseReg = AddrInst->getOperand(0); 3927 } 3928 3929 // Match the remaining variable portion of the GEP. 3930 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3931 Depth)) { 3932 // If it couldn't be matched, try stuffing the base into a register 3933 // instead of matching it, and retrying the match of the scale. 3934 AddrMode = BackupAddrMode; 3935 AddrModeInsts.resize(OldSize); 3936 if (AddrMode.HasBaseReg) 3937 return false; 3938 AddrMode.HasBaseReg = true; 3939 AddrMode.BaseReg = AddrInst->getOperand(0); 3940 AddrMode.BaseOffs += ConstantOffset; 3941 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3942 VariableScale, Depth)) { 3943 // If even that didn't work, bail. 3944 AddrMode = BackupAddrMode; 3945 AddrModeInsts.resize(OldSize); 3946 return false; 3947 } 3948 } 3949 3950 return true; 3951 } 3952 case Instruction::SExt: 3953 case Instruction::ZExt: { 3954 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3955 if (!Ext) 3956 return false; 3957 3958 // Try to move this ext out of the way of the addressing mode. 3959 // Ask for a method for doing so. 3960 TypePromotionHelper::Action TPH = 3961 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3962 if (!TPH) 3963 return false; 3964 3965 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3966 TPT.getRestorationPoint(); 3967 unsigned CreatedInstsCost = 0; 3968 unsigned ExtCost = !TLI.isExtFree(Ext); 3969 Value *PromotedOperand = 3970 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3971 // SExt has been moved away. 3972 // Thus either it will be rematched later in the recursive calls or it is 3973 // gone. Anyway, we must not fold it into the addressing mode at this point. 3974 // E.g., 3975 // op = add opnd, 1 3976 // idx = ext op 3977 // addr = gep base, idx 3978 // is now: 3979 // promotedOpnd = ext opnd <- no match here 3980 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3981 // addr = gep base, op <- match 3982 if (MovedAway) 3983 *MovedAway = true; 3984 3985 assert(PromotedOperand && 3986 "TypePromotionHelper should have filtered out those cases"); 3987 3988 ExtAddrMode BackupAddrMode = AddrMode; 3989 unsigned OldSize = AddrModeInsts.size(); 3990 3991 if (!matchAddr(PromotedOperand, Depth) || 3992 // The total of the new cost is equal to the cost of the created 3993 // instructions. 3994 // The total of the old cost is equal to the cost of the extension plus 3995 // what we have saved in the addressing mode. 3996 !isPromotionProfitable(CreatedInstsCost, 3997 ExtCost + (AddrModeInsts.size() - OldSize), 3998 PromotedOperand)) { 3999 AddrMode = BackupAddrMode; 4000 AddrModeInsts.resize(OldSize); 4001 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4002 TPT.rollback(LastKnownGood); 4003 return false; 4004 } 4005 return true; 4006 } 4007 } 4008 return false; 4009 } 4010 4011 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4012 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4013 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4014 /// for the target. 4015 /// 4016 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4017 // Start a transaction at this point that we will rollback if the matching 4018 // fails. 4019 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4020 TPT.getRestorationPoint(); 4021 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4022 // Fold in immediates if legal for the target. 4023 AddrMode.BaseOffs += CI->getSExtValue(); 4024 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4025 return true; 4026 AddrMode.BaseOffs -= CI->getSExtValue(); 4027 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4028 // If this is a global variable, try to fold it into the addressing mode. 4029 if (!AddrMode.BaseGV) { 4030 AddrMode.BaseGV = GV; 4031 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4032 return true; 4033 AddrMode.BaseGV = nullptr; 4034 } 4035 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4036 ExtAddrMode BackupAddrMode = AddrMode; 4037 unsigned OldSize = AddrModeInsts.size(); 4038 4039 // Check to see if it is possible to fold this operation. 4040 bool MovedAway = false; 4041 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4042 // This instruction may have been moved away. If so, there is nothing 4043 // to check here. 4044 if (MovedAway) 4045 return true; 4046 // Okay, it's possible to fold this. Check to see if it is actually 4047 // *profitable* to do so. We use a simple cost model to avoid increasing 4048 // register pressure too much. 4049 if (I->hasOneUse() || 4050 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4051 AddrModeInsts.push_back(I); 4052 return true; 4053 } 4054 4055 // It isn't profitable to do this, roll back. 4056 //cerr << "NOT FOLDING: " << *I; 4057 AddrMode = BackupAddrMode; 4058 AddrModeInsts.resize(OldSize); 4059 TPT.rollback(LastKnownGood); 4060 } 4061 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4062 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4063 return true; 4064 TPT.rollback(LastKnownGood); 4065 } else if (isa<ConstantPointerNull>(Addr)) { 4066 // Null pointer gets folded without affecting the addressing mode. 4067 return true; 4068 } 4069 4070 // Worse case, the target should support [reg] addressing modes. :) 4071 if (!AddrMode.HasBaseReg) { 4072 AddrMode.HasBaseReg = true; 4073 AddrMode.BaseReg = Addr; 4074 // Still check for legality in case the target supports [imm] but not [i+r]. 4075 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4076 return true; 4077 AddrMode.HasBaseReg = false; 4078 AddrMode.BaseReg = nullptr; 4079 } 4080 4081 // If the base register is already taken, see if we can do [r+r]. 4082 if (AddrMode.Scale == 0) { 4083 AddrMode.Scale = 1; 4084 AddrMode.ScaledReg = Addr; 4085 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4086 return true; 4087 AddrMode.Scale = 0; 4088 AddrMode.ScaledReg = nullptr; 4089 } 4090 // Couldn't match. 4091 TPT.rollback(LastKnownGood); 4092 return false; 4093 } 4094 4095 /// Check to see if all uses of OpVal by the specified inline asm call are due 4096 /// to memory operands. If so, return true, otherwise return false. 4097 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4098 const TargetLowering &TLI, 4099 const TargetRegisterInfo &TRI) { 4100 const Function *F = CI->getFunction(); 4101 TargetLowering::AsmOperandInfoVector TargetConstraints = 4102 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4103 ImmutableCallSite(CI)); 4104 4105 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4106 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4107 4108 // Compute the constraint code and ConstraintType to use. 4109 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4110 4111 // If this asm operand is our Value*, and if it isn't an indirect memory 4112 // operand, we can't fold it! 4113 if (OpInfo.CallOperandVal == OpVal && 4114 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4115 !OpInfo.isIndirect)) 4116 return false; 4117 } 4118 4119 return true; 4120 } 4121 4122 // Max number of memory uses to look at before aborting the search to conserve 4123 // compile time. 4124 static constexpr int MaxMemoryUsesToScan = 20; 4125 4126 /// Recursively walk all the uses of I until we find a memory use. 4127 /// If we find an obviously non-foldable instruction, return true. 4128 /// Add the ultimately found memory instructions to MemoryUses. 4129 static bool FindAllMemoryUses( 4130 Instruction *I, 4131 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4132 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4133 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4134 // If we already considered this instruction, we're done. 4135 if (!ConsideredInsts.insert(I).second) 4136 return false; 4137 4138 // If this is an obviously unfoldable instruction, bail out. 4139 if (!MightBeFoldableInst(I)) 4140 return true; 4141 4142 const bool OptSize = I->getFunction()->optForSize(); 4143 4144 // Loop over all the uses, recursively processing them. 4145 for (Use &U : I->uses()) { 4146 // Conservatively return true if we're seeing a large number or a deep chain 4147 // of users. This avoids excessive compilation times in pathological cases. 4148 if (SeenInsts++ >= MaxMemoryUsesToScan) 4149 return true; 4150 4151 Instruction *UserI = cast<Instruction>(U.getUser()); 4152 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4153 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4154 continue; 4155 } 4156 4157 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4158 unsigned opNo = U.getOperandNo(); 4159 if (opNo != StoreInst::getPointerOperandIndex()) 4160 return true; // Storing addr, not into addr. 4161 MemoryUses.push_back(std::make_pair(SI, opNo)); 4162 continue; 4163 } 4164 4165 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4166 unsigned opNo = U.getOperandNo(); 4167 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4168 return true; // Storing addr, not into addr. 4169 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4170 continue; 4171 } 4172 4173 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4174 unsigned opNo = U.getOperandNo(); 4175 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4176 return true; // Storing addr, not into addr. 4177 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4178 continue; 4179 } 4180 4181 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4182 // If this is a cold call, we can sink the addressing calculation into 4183 // the cold path. See optimizeCallInst 4184 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4185 continue; 4186 4187 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4188 if (!IA) return true; 4189 4190 // If this is a memory operand, we're cool, otherwise bail out. 4191 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4192 return true; 4193 continue; 4194 } 4195 4196 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4197 SeenInsts)) 4198 return true; 4199 } 4200 4201 return false; 4202 } 4203 4204 /// Return true if Val is already known to be live at the use site that we're 4205 /// folding it into. If so, there is no cost to include it in the addressing 4206 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4207 /// instruction already. 4208 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4209 Value *KnownLive2) { 4210 // If Val is either of the known-live values, we know it is live! 4211 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4212 return true; 4213 4214 // All values other than instructions and arguments (e.g. constants) are live. 4215 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4216 4217 // If Val is a constant sized alloca in the entry block, it is live, this is 4218 // true because it is just a reference to the stack/frame pointer, which is 4219 // live for the whole function. 4220 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4221 if (AI->isStaticAlloca()) 4222 return true; 4223 4224 // Check to see if this value is already used in the memory instruction's 4225 // block. If so, it's already live into the block at the very least, so we 4226 // can reasonably fold it. 4227 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4228 } 4229 4230 /// It is possible for the addressing mode of the machine to fold the specified 4231 /// instruction into a load or store that ultimately uses it. 4232 /// However, the specified instruction has multiple uses. 4233 /// Given this, it may actually increase register pressure to fold it 4234 /// into the load. For example, consider this code: 4235 /// 4236 /// X = ... 4237 /// Y = X+1 4238 /// use(Y) -> nonload/store 4239 /// Z = Y+1 4240 /// load Z 4241 /// 4242 /// In this case, Y has multiple uses, and can be folded into the load of Z 4243 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4244 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4245 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4246 /// number of computations either. 4247 /// 4248 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4249 /// X was live across 'load Z' for other reasons, we actually *would* want to 4250 /// fold the addressing mode in the Z case. This would make Y die earlier. 4251 bool AddressingModeMatcher:: 4252 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4253 ExtAddrMode &AMAfter) { 4254 if (IgnoreProfitability) return true; 4255 4256 // AMBefore is the addressing mode before this instruction was folded into it, 4257 // and AMAfter is the addressing mode after the instruction was folded. Get 4258 // the set of registers referenced by AMAfter and subtract out those 4259 // referenced by AMBefore: this is the set of values which folding in this 4260 // address extends the lifetime of. 4261 // 4262 // Note that there are only two potential values being referenced here, 4263 // BaseReg and ScaleReg (global addresses are always available, as are any 4264 // folded immediates). 4265 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4266 4267 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4268 // lifetime wasn't extended by adding this instruction. 4269 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4270 BaseReg = nullptr; 4271 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4272 ScaledReg = nullptr; 4273 4274 // If folding this instruction (and it's subexprs) didn't extend any live 4275 // ranges, we're ok with it. 4276 if (!BaseReg && !ScaledReg) 4277 return true; 4278 4279 // If all uses of this instruction can have the address mode sunk into them, 4280 // we can remove the addressing mode and effectively trade one live register 4281 // for another (at worst.) In this context, folding an addressing mode into 4282 // the use is just a particularly nice way of sinking it. 4283 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4284 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4285 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4286 return false; // Has a non-memory, non-foldable use! 4287 4288 // Now that we know that all uses of this instruction are part of a chain of 4289 // computation involving only operations that could theoretically be folded 4290 // into a memory use, loop over each of these memory operation uses and see 4291 // if they could *actually* fold the instruction. The assumption is that 4292 // addressing modes are cheap and that duplicating the computation involved 4293 // many times is worthwhile, even on a fastpath. For sinking candidates 4294 // (i.e. cold call sites), this serves as a way to prevent excessive code 4295 // growth since most architectures have some reasonable small and fast way to 4296 // compute an effective address. (i.e LEA on x86) 4297 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4298 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4299 Instruction *User = MemoryUses[i].first; 4300 unsigned OpNo = MemoryUses[i].second; 4301 4302 // Get the access type of this use. If the use isn't a pointer, we don't 4303 // know what it accesses. 4304 Value *Address = User->getOperand(OpNo); 4305 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4306 if (!AddrTy) 4307 return false; 4308 Type *AddressAccessTy = AddrTy->getElementType(); 4309 unsigned AS = AddrTy->getAddressSpace(); 4310 4311 // Do a match against the root of this address, ignoring profitability. This 4312 // will tell us if the addressing mode for the memory operation will 4313 // *actually* cover the shared instruction. 4314 ExtAddrMode Result; 4315 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4316 0); 4317 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4318 TPT.getRestorationPoint(); 4319 AddressingModeMatcher Matcher( 4320 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4321 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4322 Matcher.IgnoreProfitability = true; 4323 bool Success = Matcher.matchAddr(Address, 0); 4324 (void)Success; assert(Success && "Couldn't select *anything*?"); 4325 4326 // The match was to check the profitability, the changes made are not 4327 // part of the original matcher. Therefore, they should be dropped 4328 // otherwise the original matcher will not present the right state. 4329 TPT.rollback(LastKnownGood); 4330 4331 // If the match didn't cover I, then it won't be shared by it. 4332 if (!is_contained(MatchedAddrModeInsts, I)) 4333 return false; 4334 4335 MatchedAddrModeInsts.clear(); 4336 } 4337 4338 return true; 4339 } 4340 4341 /// Return true if the specified values are defined in a 4342 /// different basic block than BB. 4343 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4344 if (Instruction *I = dyn_cast<Instruction>(V)) 4345 return I->getParent() != BB; 4346 return false; 4347 } 4348 4349 /// Sink addressing mode computation immediate before MemoryInst if doing so 4350 /// can be done without increasing register pressure. The need for the 4351 /// register pressure constraint means this can end up being an all or nothing 4352 /// decision for all uses of the same addressing computation. 4353 /// 4354 /// Load and Store Instructions often have addressing modes that can do 4355 /// significant amounts of computation. As such, instruction selection will try 4356 /// to get the load or store to do as much computation as possible for the 4357 /// program. The problem is that isel can only see within a single block. As 4358 /// such, we sink as much legal addressing mode work into the block as possible. 4359 /// 4360 /// This method is used to optimize both load/store and inline asms with memory 4361 /// operands. It's also used to sink addressing computations feeding into cold 4362 /// call sites into their (cold) basic block. 4363 /// 4364 /// The motivation for handling sinking into cold blocks is that doing so can 4365 /// both enable other address mode sinking (by satisfying the register pressure 4366 /// constraint above), and reduce register pressure globally (by removing the 4367 /// addressing mode computation from the fast path entirely.). 4368 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4369 Type *AccessTy, unsigned AddrSpace) { 4370 Value *Repl = Addr; 4371 4372 // Try to collapse single-value PHI nodes. This is necessary to undo 4373 // unprofitable PRE transformations. 4374 SmallVector<Value*, 8> worklist; 4375 SmallPtrSet<Value*, 16> Visited; 4376 worklist.push_back(Addr); 4377 4378 // Use a worklist to iteratively look through PHI and select nodes, and 4379 // ensure that the addressing mode obtained from the non-PHI/select roots of 4380 // the graph are compatible. 4381 bool PhiOrSelectSeen = false; 4382 SmallVector<Instruction*, 16> AddrModeInsts; 4383 const SimplifyQuery SQ(*DL, TLInfo); 4384 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4385 TypePromotionTransaction TPT(RemovedInsts); 4386 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4387 TPT.getRestorationPoint(); 4388 while (!worklist.empty()) { 4389 Value *V = worklist.back(); 4390 worklist.pop_back(); 4391 4392 // We allow traversing cyclic Phi nodes. 4393 // In case of success after this loop we ensure that traversing through 4394 // Phi nodes ends up with all cases to compute address of the form 4395 // BaseGV + Base + Scale * Index + Offset 4396 // where Scale and Offset are constans and BaseGV, Base and Index 4397 // are exactly the same Values in all cases. 4398 // It means that BaseGV, Scale and Offset dominate our memory instruction 4399 // and have the same value as they had in address computation represented 4400 // as Phi. So we can safely sink address computation to memory instruction. 4401 if (!Visited.insert(V).second) 4402 continue; 4403 4404 // For a PHI node, push all of its incoming values. 4405 if (PHINode *P = dyn_cast<PHINode>(V)) { 4406 for (Value *IncValue : P->incoming_values()) 4407 worklist.push_back(IncValue); 4408 PhiOrSelectSeen = true; 4409 continue; 4410 } 4411 // Similar for select. 4412 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4413 worklist.push_back(SI->getFalseValue()); 4414 worklist.push_back(SI->getTrueValue()); 4415 PhiOrSelectSeen = true; 4416 continue; 4417 } 4418 4419 // For non-PHIs, determine the addressing mode being computed. Note that 4420 // the result may differ depending on what other uses our candidate 4421 // addressing instructions might have. 4422 AddrModeInsts.clear(); 4423 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4424 0); 4425 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4426 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4427 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4428 4429 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4430 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4431 !NewGEPBases.count(GEP)) { 4432 // If splitting the underlying data structure can reduce the offset of a 4433 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4434 // previously split data structures. 4435 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4436 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4437 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4438 } 4439 4440 NewAddrMode.OriginalValue = V; 4441 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4442 break; 4443 } 4444 4445 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4446 // or we have multiple but either couldn't combine them or combining them 4447 // wouldn't do anything useful, bail out now. 4448 if (!AddrModes.combineAddrModes()) { 4449 TPT.rollback(LastKnownGood); 4450 return false; 4451 } 4452 TPT.commit(); 4453 4454 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4455 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4456 4457 // If all the instructions matched are already in this BB, don't do anything. 4458 // If we saw a Phi node then it is not local definitely, and if we saw a select 4459 // then we want to push the address calculation past it even if it's already 4460 // in this BB. 4461 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4462 return IsNonLocalValue(V, MemoryInst->getParent()); 4463 })) { 4464 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4465 << "\n"); 4466 return false; 4467 } 4468 4469 // Insert this computation right after this user. Since our caller is 4470 // scanning from the top of the BB to the bottom, reuse of the expr are 4471 // guaranteed to happen later. 4472 IRBuilder<> Builder(MemoryInst); 4473 4474 // Now that we determined the addressing expression we want to use and know 4475 // that we have to sink it into this block. Check to see if we have already 4476 // done this for some other load/store instr in this block. If so, reuse 4477 // the computation. Before attempting reuse, check if the address is valid 4478 // as it may have been erased. 4479 4480 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4481 4482 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4483 if (SunkAddr) { 4484 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4485 << " for " << *MemoryInst << "\n"); 4486 if (SunkAddr->getType() != Addr->getType()) 4487 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4488 } else if (AddrSinkUsingGEPs || 4489 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4490 // By default, we use the GEP-based method when AA is used later. This 4491 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4492 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4493 << " for " << *MemoryInst << "\n"); 4494 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4495 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4496 4497 // First, find the pointer. 4498 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4499 ResultPtr = AddrMode.BaseReg; 4500 AddrMode.BaseReg = nullptr; 4501 } 4502 4503 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4504 // We can't add more than one pointer together, nor can we scale a 4505 // pointer (both of which seem meaningless). 4506 if (ResultPtr || AddrMode.Scale != 1) 4507 return false; 4508 4509 ResultPtr = AddrMode.ScaledReg; 4510 AddrMode.Scale = 0; 4511 } 4512 4513 // It is only safe to sign extend the BaseReg if we know that the math 4514 // required to create it did not overflow before we extend it. Since 4515 // the original IR value was tossed in favor of a constant back when 4516 // the AddrMode was created we need to bail out gracefully if widths 4517 // do not match instead of extending it. 4518 // 4519 // (See below for code to add the scale.) 4520 if (AddrMode.Scale) { 4521 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4522 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4523 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4524 return false; 4525 } 4526 4527 if (AddrMode.BaseGV) { 4528 if (ResultPtr) 4529 return false; 4530 4531 ResultPtr = AddrMode.BaseGV; 4532 } 4533 4534 // If the real base value actually came from an inttoptr, then the matcher 4535 // will look through it and provide only the integer value. In that case, 4536 // use it here. 4537 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4538 if (!ResultPtr && AddrMode.BaseReg) { 4539 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4540 "sunkaddr"); 4541 AddrMode.BaseReg = nullptr; 4542 } else if (!ResultPtr && AddrMode.Scale == 1) { 4543 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4544 "sunkaddr"); 4545 AddrMode.Scale = 0; 4546 } 4547 } 4548 4549 if (!ResultPtr && 4550 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4551 SunkAddr = Constant::getNullValue(Addr->getType()); 4552 } else if (!ResultPtr) { 4553 return false; 4554 } else { 4555 Type *I8PtrTy = 4556 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4557 Type *I8Ty = Builder.getInt8Ty(); 4558 4559 // Start with the base register. Do this first so that subsequent address 4560 // matching finds it last, which will prevent it from trying to match it 4561 // as the scaled value in case it happens to be a mul. That would be 4562 // problematic if we've sunk a different mul for the scale, because then 4563 // we'd end up sinking both muls. 4564 if (AddrMode.BaseReg) { 4565 Value *V = AddrMode.BaseReg; 4566 if (V->getType() != IntPtrTy) 4567 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4568 4569 ResultIndex = V; 4570 } 4571 4572 // Add the scale value. 4573 if (AddrMode.Scale) { 4574 Value *V = AddrMode.ScaledReg; 4575 if (V->getType() == IntPtrTy) { 4576 // done. 4577 } else { 4578 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4579 cast<IntegerType>(V->getType())->getBitWidth() && 4580 "We can't transform if ScaledReg is too narrow"); 4581 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4582 } 4583 4584 if (AddrMode.Scale != 1) 4585 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4586 "sunkaddr"); 4587 if (ResultIndex) 4588 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4589 else 4590 ResultIndex = V; 4591 } 4592 4593 // Add in the Base Offset if present. 4594 if (AddrMode.BaseOffs) { 4595 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4596 if (ResultIndex) { 4597 // We need to add this separately from the scale above to help with 4598 // SDAG consecutive load/store merging. 4599 if (ResultPtr->getType() != I8PtrTy) 4600 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4601 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4602 } 4603 4604 ResultIndex = V; 4605 } 4606 4607 if (!ResultIndex) { 4608 SunkAddr = ResultPtr; 4609 } else { 4610 if (ResultPtr->getType() != I8PtrTy) 4611 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4612 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4613 } 4614 4615 if (SunkAddr->getType() != Addr->getType()) 4616 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4617 } 4618 } else { 4619 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4620 // non-integral pointers, so in that case bail out now. 4621 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4622 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4623 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4624 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4625 if (DL->isNonIntegralPointerType(Addr->getType()) || 4626 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4627 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4628 (AddrMode.BaseGV && 4629 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4630 return false; 4631 4632 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4633 << " for " << *MemoryInst << "\n"); 4634 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4635 Value *Result = nullptr; 4636 4637 // Start with the base register. Do this first so that subsequent address 4638 // matching finds it last, which will prevent it from trying to match it 4639 // as the scaled value in case it happens to be a mul. That would be 4640 // problematic if we've sunk a different mul for the scale, because then 4641 // we'd end up sinking both muls. 4642 if (AddrMode.BaseReg) { 4643 Value *V = AddrMode.BaseReg; 4644 if (V->getType()->isPointerTy()) 4645 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4646 if (V->getType() != IntPtrTy) 4647 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4648 Result = V; 4649 } 4650 4651 // Add the scale value. 4652 if (AddrMode.Scale) { 4653 Value *V = AddrMode.ScaledReg; 4654 if (V->getType() == IntPtrTy) { 4655 // done. 4656 } else if (V->getType()->isPointerTy()) { 4657 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4658 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4659 cast<IntegerType>(V->getType())->getBitWidth()) { 4660 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4661 } else { 4662 // It is only safe to sign extend the BaseReg if we know that the math 4663 // required to create it did not overflow before we extend it. Since 4664 // the original IR value was tossed in favor of a constant back when 4665 // the AddrMode was created we need to bail out gracefully if widths 4666 // do not match instead of extending it. 4667 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4668 if (I && (Result != AddrMode.BaseReg)) 4669 I->eraseFromParent(); 4670 return false; 4671 } 4672 if (AddrMode.Scale != 1) 4673 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4674 "sunkaddr"); 4675 if (Result) 4676 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4677 else 4678 Result = V; 4679 } 4680 4681 // Add in the BaseGV if present. 4682 if (AddrMode.BaseGV) { 4683 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4684 if (Result) 4685 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4686 else 4687 Result = V; 4688 } 4689 4690 // Add in the Base Offset if present. 4691 if (AddrMode.BaseOffs) { 4692 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4693 if (Result) 4694 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4695 else 4696 Result = V; 4697 } 4698 4699 if (!Result) 4700 SunkAddr = Constant::getNullValue(Addr->getType()); 4701 else 4702 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4703 } 4704 4705 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4706 // Store the newly computed address into the cache. In the case we reused a 4707 // value, this should be idempotent. 4708 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4709 4710 // If we have no uses, recursively delete the value and all dead instructions 4711 // using it. 4712 if (Repl->use_empty()) { 4713 // This can cause recursive deletion, which can invalidate our iterator. 4714 // Use a WeakTrackingVH to hold onto it in case this happens. 4715 Value *CurValue = &*CurInstIterator; 4716 WeakTrackingVH IterHandle(CurValue); 4717 BasicBlock *BB = CurInstIterator->getParent(); 4718 4719 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4720 4721 if (IterHandle != CurValue) { 4722 // If the iterator instruction was recursively deleted, start over at the 4723 // start of the block. 4724 CurInstIterator = BB->begin(); 4725 SunkAddrs.clear(); 4726 } 4727 } 4728 ++NumMemoryInsts; 4729 return true; 4730 } 4731 4732 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4733 /// address computing into the block when possible / profitable. 4734 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4735 bool MadeChange = false; 4736 4737 const TargetRegisterInfo *TRI = 4738 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4739 TargetLowering::AsmOperandInfoVector TargetConstraints = 4740 TLI->ParseConstraints(*DL, TRI, CS); 4741 unsigned ArgNo = 0; 4742 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4743 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4744 4745 // Compute the constraint code and ConstraintType to use. 4746 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4747 4748 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4749 OpInfo.isIndirect) { 4750 Value *OpVal = CS->getArgOperand(ArgNo++); 4751 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4752 } else if (OpInfo.Type == InlineAsm::isInput) 4753 ArgNo++; 4754 } 4755 4756 return MadeChange; 4757 } 4758 4759 /// Check if all the uses of \p Val are equivalent (or free) zero or 4760 /// sign extensions. 4761 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4762 assert(!Val->use_empty() && "Input must have at least one use"); 4763 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4764 bool IsSExt = isa<SExtInst>(FirstUser); 4765 Type *ExtTy = FirstUser->getType(); 4766 for (const User *U : Val->users()) { 4767 const Instruction *UI = cast<Instruction>(U); 4768 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4769 return false; 4770 Type *CurTy = UI->getType(); 4771 // Same input and output types: Same instruction after CSE. 4772 if (CurTy == ExtTy) 4773 continue; 4774 4775 // If IsSExt is true, we are in this situation: 4776 // a = Val 4777 // b = sext ty1 a to ty2 4778 // c = sext ty1 a to ty3 4779 // Assuming ty2 is shorter than ty3, this could be turned into: 4780 // a = Val 4781 // b = sext ty1 a to ty2 4782 // c = sext ty2 b to ty3 4783 // However, the last sext is not free. 4784 if (IsSExt) 4785 return false; 4786 4787 // This is a ZExt, maybe this is free to extend from one type to another. 4788 // In that case, we would not account for a different use. 4789 Type *NarrowTy; 4790 Type *LargeTy; 4791 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4792 CurTy->getScalarType()->getIntegerBitWidth()) { 4793 NarrowTy = CurTy; 4794 LargeTy = ExtTy; 4795 } else { 4796 NarrowTy = ExtTy; 4797 LargeTy = CurTy; 4798 } 4799 4800 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4801 return false; 4802 } 4803 // All uses are the same or can be derived from one another for free. 4804 return true; 4805 } 4806 4807 /// Try to speculatively promote extensions in \p Exts and continue 4808 /// promoting through newly promoted operands recursively as far as doing so is 4809 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4810 /// When some promotion happened, \p TPT contains the proper state to revert 4811 /// them. 4812 /// 4813 /// \return true if some promotion happened, false otherwise. 4814 bool CodeGenPrepare::tryToPromoteExts( 4815 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4816 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4817 unsigned CreatedInstsCost) { 4818 bool Promoted = false; 4819 4820 // Iterate over all the extensions to try to promote them. 4821 for (auto I : Exts) { 4822 // Early check if we directly have ext(load). 4823 if (isa<LoadInst>(I->getOperand(0))) { 4824 ProfitablyMovedExts.push_back(I); 4825 continue; 4826 } 4827 4828 // Check whether or not we want to do any promotion. The reason we have 4829 // this check inside the for loop is to catch the case where an extension 4830 // is directly fed by a load because in such case the extension can be moved 4831 // up without any promotion on its operands. 4832 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4833 return false; 4834 4835 // Get the action to perform the promotion. 4836 TypePromotionHelper::Action TPH = 4837 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4838 // Check if we can promote. 4839 if (!TPH) { 4840 // Save the current extension as we cannot move up through its operand. 4841 ProfitablyMovedExts.push_back(I); 4842 continue; 4843 } 4844 4845 // Save the current state. 4846 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4847 TPT.getRestorationPoint(); 4848 SmallVector<Instruction *, 4> NewExts; 4849 unsigned NewCreatedInstsCost = 0; 4850 unsigned ExtCost = !TLI->isExtFree(I); 4851 // Promote. 4852 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4853 &NewExts, nullptr, *TLI); 4854 assert(PromotedVal && 4855 "TypePromotionHelper should have filtered out those cases"); 4856 4857 // We would be able to merge only one extension in a load. 4858 // Therefore, if we have more than 1 new extension we heuristically 4859 // cut this search path, because it means we degrade the code quality. 4860 // With exactly 2, the transformation is neutral, because we will merge 4861 // one extension but leave one. However, we optimistically keep going, 4862 // because the new extension may be removed too. 4863 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4864 // FIXME: It would be possible to propagate a negative value instead of 4865 // conservatively ceiling it to 0. 4866 TotalCreatedInstsCost = 4867 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4868 if (!StressExtLdPromotion && 4869 (TotalCreatedInstsCost > 1 || 4870 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4871 // This promotion is not profitable, rollback to the previous state, and 4872 // save the current extension in ProfitablyMovedExts as the latest 4873 // speculative promotion turned out to be unprofitable. 4874 TPT.rollback(LastKnownGood); 4875 ProfitablyMovedExts.push_back(I); 4876 continue; 4877 } 4878 // Continue promoting NewExts as far as doing so is profitable. 4879 SmallVector<Instruction *, 2> NewlyMovedExts; 4880 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4881 bool NewPromoted = false; 4882 for (auto ExtInst : NewlyMovedExts) { 4883 Instruction *MovedExt = cast<Instruction>(ExtInst); 4884 Value *ExtOperand = MovedExt->getOperand(0); 4885 // If we have reached to a load, we need this extra profitability check 4886 // as it could potentially be merged into an ext(load). 4887 if (isa<LoadInst>(ExtOperand) && 4888 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4889 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4890 continue; 4891 4892 ProfitablyMovedExts.push_back(MovedExt); 4893 NewPromoted = true; 4894 } 4895 4896 // If none of speculative promotions for NewExts is profitable, rollback 4897 // and save the current extension (I) as the last profitable extension. 4898 if (!NewPromoted) { 4899 TPT.rollback(LastKnownGood); 4900 ProfitablyMovedExts.push_back(I); 4901 continue; 4902 } 4903 // The promotion is profitable. 4904 Promoted = true; 4905 } 4906 return Promoted; 4907 } 4908 4909 /// Merging redundant sexts when one is dominating the other. 4910 bool CodeGenPrepare::mergeSExts(Function &F) { 4911 DominatorTree DT(F); 4912 bool Changed = false; 4913 for (auto &Entry : ValToSExtendedUses) { 4914 SExts &Insts = Entry.second; 4915 SExts CurPts; 4916 for (Instruction *Inst : Insts) { 4917 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4918 Inst->getOperand(0) != Entry.first) 4919 continue; 4920 bool inserted = false; 4921 for (auto &Pt : CurPts) { 4922 if (DT.dominates(Inst, Pt)) { 4923 Pt->replaceAllUsesWith(Inst); 4924 RemovedInsts.insert(Pt); 4925 Pt->removeFromParent(); 4926 Pt = Inst; 4927 inserted = true; 4928 Changed = true; 4929 break; 4930 } 4931 if (!DT.dominates(Pt, Inst)) 4932 // Give up if we need to merge in a common dominator as the 4933 // experiments show it is not profitable. 4934 continue; 4935 Inst->replaceAllUsesWith(Pt); 4936 RemovedInsts.insert(Inst); 4937 Inst->removeFromParent(); 4938 inserted = true; 4939 Changed = true; 4940 break; 4941 } 4942 if (!inserted) 4943 CurPts.push_back(Inst); 4944 } 4945 } 4946 return Changed; 4947 } 4948 4949 // Spliting large data structures so that the GEPs accessing them can have 4950 // smaller offsets so that they can be sunk to the same blocks as their users. 4951 // For example, a large struct starting from %base is splitted into two parts 4952 // where the second part starts from %new_base. 4953 // 4954 // Before: 4955 // BB0: 4956 // %base = 4957 // 4958 // BB1: 4959 // %gep0 = gep %base, off0 4960 // %gep1 = gep %base, off1 4961 // %gep2 = gep %base, off2 4962 // 4963 // BB2: 4964 // %load1 = load %gep0 4965 // %load2 = load %gep1 4966 // %load3 = load %gep2 4967 // 4968 // After: 4969 // BB0: 4970 // %base = 4971 // %new_base = gep %base, off0 4972 // 4973 // BB1: 4974 // %new_gep0 = %new_base 4975 // %new_gep1 = gep %new_base, off1 - off0 4976 // %new_gep2 = gep %new_base, off2 - off0 4977 // 4978 // BB2: 4979 // %load1 = load i32, i32* %new_gep0 4980 // %load2 = load i32, i32* %new_gep1 4981 // %load3 = load i32, i32* %new_gep2 4982 // 4983 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4984 // their offsets are smaller enough to fit into the addressing mode. 4985 bool CodeGenPrepare::splitLargeGEPOffsets() { 4986 bool Changed = false; 4987 for (auto &Entry : LargeOffsetGEPMap) { 4988 Value *OldBase = Entry.first; 4989 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4990 &LargeOffsetGEPs = Entry.second; 4991 auto compareGEPOffset = 4992 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4993 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4994 if (LHS.first == RHS.first) 4995 return false; 4996 if (LHS.second != RHS.second) 4997 return LHS.second < RHS.second; 4998 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4999 }; 5000 // Sorting all the GEPs of the same data structures based on the offsets. 5001 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 5002 compareGEPOffset); 5003 LargeOffsetGEPs.erase( 5004 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5005 LargeOffsetGEPs.end()); 5006 // Skip if all the GEPs have the same offsets. 5007 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5008 continue; 5009 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5010 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5011 Value *NewBaseGEP = nullptr; 5012 5013 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5014 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5015 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5016 int64_t Offset = LargeOffsetGEP->second; 5017 if (Offset != BaseOffset) { 5018 TargetLowering::AddrMode AddrMode; 5019 AddrMode.BaseOffs = Offset - BaseOffset; 5020 // The result type of the GEP might not be the type of the memory 5021 // access. 5022 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5023 GEP->getResultElementType(), 5024 GEP->getAddressSpace())) { 5025 // We need to create a new base if the offset to the current base is 5026 // too large to fit into the addressing mode. So, a very large struct 5027 // may be splitted into several parts. 5028 BaseGEP = GEP; 5029 BaseOffset = Offset; 5030 NewBaseGEP = nullptr; 5031 } 5032 } 5033 5034 // Generate a new GEP to replace the current one. 5035 IRBuilder<> Builder(GEP); 5036 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5037 Type *I8PtrTy = 5038 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 5039 Type *I8Ty = Builder.getInt8Ty(); 5040 5041 if (!NewBaseGEP) { 5042 // Create a new base if we don't have one yet. Find the insertion 5043 // pointer for the new base first. 5044 BasicBlock::iterator NewBaseInsertPt; 5045 BasicBlock *NewBaseInsertBB; 5046 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5047 // If the base of the struct is an instruction, the new base will be 5048 // inserted close to it. 5049 NewBaseInsertBB = BaseI->getParent(); 5050 if (isa<PHINode>(BaseI)) 5051 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5052 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5053 NewBaseInsertBB = 5054 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5055 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5056 } else 5057 NewBaseInsertPt = std::next(BaseI->getIterator()); 5058 } else { 5059 // If the current base is an argument or global value, the new base 5060 // will be inserted to the entry block. 5061 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5062 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5063 } 5064 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5065 // Create a new base. 5066 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5067 NewBaseGEP = OldBase; 5068 if (NewBaseGEP->getType() != I8PtrTy) 5069 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5070 NewBaseGEP = 5071 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5072 NewGEPBases.insert(NewBaseGEP); 5073 } 5074 5075 Value *NewGEP = NewBaseGEP; 5076 if (Offset == BaseOffset) { 5077 if (GEP->getType() != I8PtrTy) 5078 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5079 } else { 5080 // Calculate the new offset for the new GEP. 5081 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5082 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5083 5084 if (GEP->getType() != I8PtrTy) 5085 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5086 } 5087 GEP->replaceAllUsesWith(NewGEP); 5088 LargeOffsetGEPID.erase(GEP); 5089 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5090 GEP->eraseFromParent(); 5091 Changed = true; 5092 } 5093 } 5094 return Changed; 5095 } 5096 5097 /// Return true, if an ext(load) can be formed from an extension in 5098 /// \p MovedExts. 5099 bool CodeGenPrepare::canFormExtLd( 5100 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5101 Instruction *&Inst, bool HasPromoted) { 5102 for (auto *MovedExtInst : MovedExts) { 5103 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5104 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5105 Inst = MovedExtInst; 5106 break; 5107 } 5108 } 5109 if (!LI) 5110 return false; 5111 5112 // If they're already in the same block, there's nothing to do. 5113 // Make the cheap checks first if we did not promote. 5114 // If we promoted, we need to check if it is indeed profitable. 5115 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5116 return false; 5117 5118 return TLI->isExtLoad(LI, Inst, *DL); 5119 } 5120 5121 /// Move a zext or sext fed by a load into the same basic block as the load, 5122 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5123 /// extend into the load. 5124 /// 5125 /// E.g., 5126 /// \code 5127 /// %ld = load i32* %addr 5128 /// %add = add nuw i32 %ld, 4 5129 /// %zext = zext i32 %add to i64 5130 // \endcode 5131 /// => 5132 /// \code 5133 /// %ld = load i32* %addr 5134 /// %zext = zext i32 %ld to i64 5135 /// %add = add nuw i64 %zext, 4 5136 /// \encode 5137 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5138 /// allow us to match zext(load i32*) to i64. 5139 /// 5140 /// Also, try to promote the computations used to obtain a sign extended 5141 /// value used into memory accesses. 5142 /// E.g., 5143 /// \code 5144 /// a = add nsw i32 b, 3 5145 /// d = sext i32 a to i64 5146 /// e = getelementptr ..., i64 d 5147 /// \endcode 5148 /// => 5149 /// \code 5150 /// f = sext i32 b to i64 5151 /// a = add nsw i64 f, 3 5152 /// e = getelementptr ..., i64 a 5153 /// \endcode 5154 /// 5155 /// \p Inst[in/out] the extension may be modified during the process if some 5156 /// promotions apply. 5157 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5158 // ExtLoad formation and address type promotion infrastructure requires TLI to 5159 // be effective. 5160 if (!TLI) 5161 return false; 5162 5163 bool AllowPromotionWithoutCommonHeader = false; 5164 /// See if it is an interesting sext operations for the address type 5165 /// promotion before trying to promote it, e.g., the ones with the right 5166 /// type and used in memory accesses. 5167 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5168 *Inst, AllowPromotionWithoutCommonHeader); 5169 TypePromotionTransaction TPT(RemovedInsts); 5170 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5171 TPT.getRestorationPoint(); 5172 SmallVector<Instruction *, 1> Exts; 5173 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5174 Exts.push_back(Inst); 5175 5176 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5177 5178 // Look for a load being extended. 5179 LoadInst *LI = nullptr; 5180 Instruction *ExtFedByLoad; 5181 5182 // Try to promote a chain of computation if it allows to form an extended 5183 // load. 5184 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5185 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5186 TPT.commit(); 5187 // Move the extend into the same block as the load 5188 ExtFedByLoad->moveAfter(LI); 5189 // CGP does not check if the zext would be speculatively executed when moved 5190 // to the same basic block as the load. Preserving its original location 5191 // would pessimize the debugging experience, as well as negatively impact 5192 // the quality of sample pgo. We don't want to use "line 0" as that has a 5193 // size cost in the line-table section and logically the zext can be seen as 5194 // part of the load. Therefore we conservatively reuse the same debug 5195 // location for the load and the zext. 5196 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5197 ++NumExtsMoved; 5198 Inst = ExtFedByLoad; 5199 return true; 5200 } 5201 5202 // Continue promoting SExts if known as considerable depending on targets. 5203 if (ATPConsiderable && 5204 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5205 HasPromoted, TPT, SpeculativelyMovedExts)) 5206 return true; 5207 5208 TPT.rollback(LastKnownGood); 5209 return false; 5210 } 5211 5212 // Perform address type promotion if doing so is profitable. 5213 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5214 // instructions that sign extended the same initial value. However, if 5215 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5216 // extension is just profitable. 5217 bool CodeGenPrepare::performAddressTypePromotion( 5218 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5219 bool HasPromoted, TypePromotionTransaction &TPT, 5220 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5221 bool Promoted = false; 5222 SmallPtrSet<Instruction *, 1> UnhandledExts; 5223 bool AllSeenFirst = true; 5224 for (auto I : SpeculativelyMovedExts) { 5225 Value *HeadOfChain = I->getOperand(0); 5226 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5227 SeenChainsForSExt.find(HeadOfChain); 5228 // If there is an unhandled SExt which has the same header, try to promote 5229 // it as well. 5230 if (AlreadySeen != SeenChainsForSExt.end()) { 5231 if (AlreadySeen->second != nullptr) 5232 UnhandledExts.insert(AlreadySeen->second); 5233 AllSeenFirst = false; 5234 } 5235 } 5236 5237 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5238 SpeculativelyMovedExts.size() == 1)) { 5239 TPT.commit(); 5240 if (HasPromoted) 5241 Promoted = true; 5242 for (auto I : SpeculativelyMovedExts) { 5243 Value *HeadOfChain = I->getOperand(0); 5244 SeenChainsForSExt[HeadOfChain] = nullptr; 5245 ValToSExtendedUses[HeadOfChain].push_back(I); 5246 } 5247 // Update Inst as promotion happen. 5248 Inst = SpeculativelyMovedExts.pop_back_val(); 5249 } else { 5250 // This is the first chain visited from the header, keep the current chain 5251 // as unhandled. Defer to promote this until we encounter another SExt 5252 // chain derived from the same header. 5253 for (auto I : SpeculativelyMovedExts) { 5254 Value *HeadOfChain = I->getOperand(0); 5255 SeenChainsForSExt[HeadOfChain] = Inst; 5256 } 5257 return false; 5258 } 5259 5260 if (!AllSeenFirst && !UnhandledExts.empty()) 5261 for (auto VisitedSExt : UnhandledExts) { 5262 if (RemovedInsts.count(VisitedSExt)) 5263 continue; 5264 TypePromotionTransaction TPT(RemovedInsts); 5265 SmallVector<Instruction *, 1> Exts; 5266 SmallVector<Instruction *, 2> Chains; 5267 Exts.push_back(VisitedSExt); 5268 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5269 TPT.commit(); 5270 if (HasPromoted) 5271 Promoted = true; 5272 for (auto I : Chains) { 5273 Value *HeadOfChain = I->getOperand(0); 5274 // Mark this as handled. 5275 SeenChainsForSExt[HeadOfChain] = nullptr; 5276 ValToSExtendedUses[HeadOfChain].push_back(I); 5277 } 5278 } 5279 return Promoted; 5280 } 5281 5282 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5283 BasicBlock *DefBB = I->getParent(); 5284 5285 // If the result of a {s|z}ext and its source are both live out, rewrite all 5286 // other uses of the source with result of extension. 5287 Value *Src = I->getOperand(0); 5288 if (Src->hasOneUse()) 5289 return false; 5290 5291 // Only do this xform if truncating is free. 5292 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5293 return false; 5294 5295 // Only safe to perform the optimization if the source is also defined in 5296 // this block. 5297 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5298 return false; 5299 5300 bool DefIsLiveOut = false; 5301 for (User *U : I->users()) { 5302 Instruction *UI = cast<Instruction>(U); 5303 5304 // Figure out which BB this ext is used in. 5305 BasicBlock *UserBB = UI->getParent(); 5306 if (UserBB == DefBB) continue; 5307 DefIsLiveOut = true; 5308 break; 5309 } 5310 if (!DefIsLiveOut) 5311 return false; 5312 5313 // Make sure none of the uses are PHI nodes. 5314 for (User *U : Src->users()) { 5315 Instruction *UI = cast<Instruction>(U); 5316 BasicBlock *UserBB = UI->getParent(); 5317 if (UserBB == DefBB) continue; 5318 // Be conservative. We don't want this xform to end up introducing 5319 // reloads just before load / store instructions. 5320 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5321 return false; 5322 } 5323 5324 // InsertedTruncs - Only insert one trunc in each block once. 5325 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5326 5327 bool MadeChange = false; 5328 for (Use &U : Src->uses()) { 5329 Instruction *User = cast<Instruction>(U.getUser()); 5330 5331 // Figure out which BB this ext is used in. 5332 BasicBlock *UserBB = User->getParent(); 5333 if (UserBB == DefBB) continue; 5334 5335 // Both src and def are live in this block. Rewrite the use. 5336 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5337 5338 if (!InsertedTrunc) { 5339 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5340 assert(InsertPt != UserBB->end()); 5341 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5342 InsertedInsts.insert(InsertedTrunc); 5343 } 5344 5345 // Replace a use of the {s|z}ext source with a use of the result. 5346 U = InsertedTrunc; 5347 ++NumExtUses; 5348 MadeChange = true; 5349 } 5350 5351 return MadeChange; 5352 } 5353 5354 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5355 // just after the load if the target can fold this into one extload instruction, 5356 // with the hope of eliminating some of the other later "and" instructions using 5357 // the loaded value. "and"s that are made trivially redundant by the insertion 5358 // of the new "and" are removed by this function, while others (e.g. those whose 5359 // path from the load goes through a phi) are left for isel to potentially 5360 // remove. 5361 // 5362 // For example: 5363 // 5364 // b0: 5365 // x = load i32 5366 // ... 5367 // b1: 5368 // y = and x, 0xff 5369 // z = use y 5370 // 5371 // becomes: 5372 // 5373 // b0: 5374 // x = load i32 5375 // x' = and x, 0xff 5376 // ... 5377 // b1: 5378 // z = use x' 5379 // 5380 // whereas: 5381 // 5382 // b0: 5383 // x1 = load i32 5384 // ... 5385 // b1: 5386 // x2 = load i32 5387 // ... 5388 // b2: 5389 // x = phi x1, x2 5390 // y = and x, 0xff 5391 // 5392 // becomes (after a call to optimizeLoadExt for each load): 5393 // 5394 // b0: 5395 // x1 = load i32 5396 // x1' = and x1, 0xff 5397 // ... 5398 // b1: 5399 // x2 = load i32 5400 // x2' = and x2, 0xff 5401 // ... 5402 // b2: 5403 // x = phi x1', x2' 5404 // y = and x, 0xff 5405 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5406 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5407 return false; 5408 5409 // Skip loads we've already transformed. 5410 if (Load->hasOneUse() && 5411 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5412 return false; 5413 5414 // Look at all uses of Load, looking through phis, to determine how many bits 5415 // of the loaded value are needed. 5416 SmallVector<Instruction *, 8> WorkList; 5417 SmallPtrSet<Instruction *, 16> Visited; 5418 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5419 for (auto *U : Load->users()) 5420 WorkList.push_back(cast<Instruction>(U)); 5421 5422 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5423 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5424 APInt DemandBits(BitWidth, 0); 5425 APInt WidestAndBits(BitWidth, 0); 5426 5427 while (!WorkList.empty()) { 5428 Instruction *I = WorkList.back(); 5429 WorkList.pop_back(); 5430 5431 // Break use-def graph loops. 5432 if (!Visited.insert(I).second) 5433 continue; 5434 5435 // For a PHI node, push all of its users. 5436 if (auto *Phi = dyn_cast<PHINode>(I)) { 5437 for (auto *U : Phi->users()) 5438 WorkList.push_back(cast<Instruction>(U)); 5439 continue; 5440 } 5441 5442 switch (I->getOpcode()) { 5443 case Instruction::And: { 5444 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5445 if (!AndC) 5446 return false; 5447 APInt AndBits = AndC->getValue(); 5448 DemandBits |= AndBits; 5449 // Keep track of the widest and mask we see. 5450 if (AndBits.ugt(WidestAndBits)) 5451 WidestAndBits = AndBits; 5452 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5453 AndsToMaybeRemove.push_back(I); 5454 break; 5455 } 5456 5457 case Instruction::Shl: { 5458 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5459 if (!ShlC) 5460 return false; 5461 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5462 DemandBits.setLowBits(BitWidth - ShiftAmt); 5463 break; 5464 } 5465 5466 case Instruction::Trunc: { 5467 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5468 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5469 DemandBits.setLowBits(TruncBitWidth); 5470 break; 5471 } 5472 5473 default: 5474 return false; 5475 } 5476 } 5477 5478 uint32_t ActiveBits = DemandBits.getActiveBits(); 5479 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5480 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5481 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5482 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5483 // followed by an AND. 5484 // TODO: Look into removing this restriction by fixing backends to either 5485 // return false for isLoadExtLegal for i1 or have them select this pattern to 5486 // a single instruction. 5487 // 5488 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5489 // mask, since these are the only ands that will be removed by isel. 5490 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5491 WidestAndBits != DemandBits) 5492 return false; 5493 5494 LLVMContext &Ctx = Load->getType()->getContext(); 5495 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5496 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5497 5498 // Reject cases that won't be matched as extloads. 5499 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5500 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5501 return false; 5502 5503 IRBuilder<> Builder(Load->getNextNode()); 5504 auto *NewAnd = dyn_cast<Instruction>( 5505 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5506 // Mark this instruction as "inserted by CGP", so that other 5507 // optimizations don't touch it. 5508 InsertedInsts.insert(NewAnd); 5509 5510 // Replace all uses of load with new and (except for the use of load in the 5511 // new and itself). 5512 Load->replaceAllUsesWith(NewAnd); 5513 NewAnd->setOperand(0, Load); 5514 5515 // Remove any and instructions that are now redundant. 5516 for (auto *And : AndsToMaybeRemove) 5517 // Check that the and mask is the same as the one we decided to put on the 5518 // new and. 5519 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5520 And->replaceAllUsesWith(NewAnd); 5521 if (&*CurInstIterator == And) 5522 CurInstIterator = std::next(And->getIterator()); 5523 And->eraseFromParent(); 5524 ++NumAndUses; 5525 } 5526 5527 ++NumAndsAdded; 5528 return true; 5529 } 5530 5531 /// Check if V (an operand of a select instruction) is an expensive instruction 5532 /// that is only used once. 5533 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5534 auto *I = dyn_cast<Instruction>(V); 5535 // If it's safe to speculatively execute, then it should not have side 5536 // effects; therefore, it's safe to sink and possibly *not* execute. 5537 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5538 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5539 } 5540 5541 /// Returns true if a SelectInst should be turned into an explicit branch. 5542 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5543 const TargetLowering *TLI, 5544 SelectInst *SI) { 5545 // If even a predictable select is cheap, then a branch can't be cheaper. 5546 if (!TLI->isPredictableSelectExpensive()) 5547 return false; 5548 5549 // FIXME: This should use the same heuristics as IfConversion to determine 5550 // whether a select is better represented as a branch. 5551 5552 // If metadata tells us that the select condition is obviously predictable, 5553 // then we want to replace the select with a branch. 5554 uint64_t TrueWeight, FalseWeight; 5555 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5556 uint64_t Max = std::max(TrueWeight, FalseWeight); 5557 uint64_t Sum = TrueWeight + FalseWeight; 5558 if (Sum != 0) { 5559 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5560 if (Probability > TLI->getPredictableBranchThreshold()) 5561 return true; 5562 } 5563 } 5564 5565 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5566 5567 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5568 // comparison condition. If the compare has more than one use, there's 5569 // probably another cmov or setcc around, so it's not worth emitting a branch. 5570 if (!Cmp || !Cmp->hasOneUse()) 5571 return false; 5572 5573 // If either operand of the select is expensive and only needed on one side 5574 // of the select, we should form a branch. 5575 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5576 sinkSelectOperand(TTI, SI->getFalseValue())) 5577 return true; 5578 5579 return false; 5580 } 5581 5582 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5583 /// false value of \p SI. If the true/false value of \p SI is defined by any 5584 /// select instructions in \p Selects, look through the defining select 5585 /// instruction until the true/false value is not defined in \p Selects. 5586 static Value *getTrueOrFalseValue( 5587 SelectInst *SI, bool isTrue, 5588 const SmallPtrSet<const Instruction *, 2> &Selects) { 5589 Value *V; 5590 5591 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5592 DefSI = dyn_cast<SelectInst>(V)) { 5593 assert(DefSI->getCondition() == SI->getCondition() && 5594 "The condition of DefSI does not match with SI"); 5595 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5596 } 5597 return V; 5598 } 5599 5600 /// If we have a SelectInst that will likely profit from branch prediction, 5601 /// turn it into a branch. 5602 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5603 // If branch conversion isn't desirable, exit early. 5604 if (DisableSelectToBranch || OptSize || !TLI) 5605 return false; 5606 5607 // Find all consecutive select instructions that share the same condition. 5608 SmallVector<SelectInst *, 2> ASI; 5609 ASI.push_back(SI); 5610 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5611 It != SI->getParent()->end(); ++It) { 5612 SelectInst *I = dyn_cast<SelectInst>(&*It); 5613 if (I && SI->getCondition() == I->getCondition()) { 5614 ASI.push_back(I); 5615 } else { 5616 break; 5617 } 5618 } 5619 5620 SelectInst *LastSI = ASI.back(); 5621 // Increment the current iterator to skip all the rest of select instructions 5622 // because they will be either "not lowered" or "all lowered" to branch. 5623 CurInstIterator = std::next(LastSI->getIterator()); 5624 5625 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5626 5627 // Can we convert the 'select' to CF ? 5628 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5629 return false; 5630 5631 TargetLowering::SelectSupportKind SelectKind; 5632 if (VectorCond) 5633 SelectKind = TargetLowering::VectorMaskSelect; 5634 else if (SI->getType()->isVectorTy()) 5635 SelectKind = TargetLowering::ScalarCondVectorVal; 5636 else 5637 SelectKind = TargetLowering::ScalarValSelect; 5638 5639 if (TLI->isSelectSupported(SelectKind) && 5640 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5641 return false; 5642 5643 ModifiedDT = true; 5644 5645 // Transform a sequence like this: 5646 // start: 5647 // %cmp = cmp uge i32 %a, %b 5648 // %sel = select i1 %cmp, i32 %c, i32 %d 5649 // 5650 // Into: 5651 // start: 5652 // %cmp = cmp uge i32 %a, %b 5653 // br i1 %cmp, label %select.true, label %select.false 5654 // select.true: 5655 // br label %select.end 5656 // select.false: 5657 // br label %select.end 5658 // select.end: 5659 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5660 // 5661 // In addition, we may sink instructions that produce %c or %d from 5662 // the entry block into the destination(s) of the new branch. 5663 // If the true or false blocks do not contain a sunken instruction, that 5664 // block and its branch may be optimized away. In that case, one side of the 5665 // first branch will point directly to select.end, and the corresponding PHI 5666 // predecessor block will be the start block. 5667 5668 // First, we split the block containing the select into 2 blocks. 5669 BasicBlock *StartBlock = SI->getParent(); 5670 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5671 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5672 5673 // Delete the unconditional branch that was just created by the split. 5674 StartBlock->getTerminator()->eraseFromParent(); 5675 5676 // These are the new basic blocks for the conditional branch. 5677 // At least one will become an actual new basic block. 5678 BasicBlock *TrueBlock = nullptr; 5679 BasicBlock *FalseBlock = nullptr; 5680 BranchInst *TrueBranch = nullptr; 5681 BranchInst *FalseBranch = nullptr; 5682 5683 // Sink expensive instructions into the conditional blocks to avoid executing 5684 // them speculatively. 5685 for (SelectInst *SI : ASI) { 5686 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5687 if (TrueBlock == nullptr) { 5688 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5689 EndBlock->getParent(), EndBlock); 5690 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5691 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5692 } 5693 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5694 TrueInst->moveBefore(TrueBranch); 5695 } 5696 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5697 if (FalseBlock == nullptr) { 5698 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5699 EndBlock->getParent(), EndBlock); 5700 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5701 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5702 } 5703 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5704 FalseInst->moveBefore(FalseBranch); 5705 } 5706 } 5707 5708 // If there was nothing to sink, then arbitrarily choose the 'false' side 5709 // for a new input value to the PHI. 5710 if (TrueBlock == FalseBlock) { 5711 assert(TrueBlock == nullptr && 5712 "Unexpected basic block transform while optimizing select"); 5713 5714 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5715 EndBlock->getParent(), EndBlock); 5716 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5717 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5718 } 5719 5720 // Insert the real conditional branch based on the original condition. 5721 // If we did not create a new block for one of the 'true' or 'false' paths 5722 // of the condition, it means that side of the branch goes to the end block 5723 // directly and the path originates from the start block from the point of 5724 // view of the new PHI. 5725 BasicBlock *TT, *FT; 5726 if (TrueBlock == nullptr) { 5727 TT = EndBlock; 5728 FT = FalseBlock; 5729 TrueBlock = StartBlock; 5730 } else if (FalseBlock == nullptr) { 5731 TT = TrueBlock; 5732 FT = EndBlock; 5733 FalseBlock = StartBlock; 5734 } else { 5735 TT = TrueBlock; 5736 FT = FalseBlock; 5737 } 5738 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5739 5740 SmallPtrSet<const Instruction *, 2> INS; 5741 INS.insert(ASI.begin(), ASI.end()); 5742 // Use reverse iterator because later select may use the value of the 5743 // earlier select, and we need to propagate value through earlier select 5744 // to get the PHI operand. 5745 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5746 SelectInst *SI = *It; 5747 // The select itself is replaced with a PHI Node. 5748 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5749 PN->takeName(SI); 5750 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5751 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5752 PN->setDebugLoc(SI->getDebugLoc()); 5753 5754 SI->replaceAllUsesWith(PN); 5755 SI->eraseFromParent(); 5756 INS.erase(SI); 5757 ++NumSelectsExpanded; 5758 } 5759 5760 // Instruct OptimizeBlock to skip to the next block. 5761 CurInstIterator = StartBlock->end(); 5762 return true; 5763 } 5764 5765 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5766 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5767 int SplatElem = -1; 5768 for (unsigned i = 0; i < Mask.size(); ++i) { 5769 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5770 return false; 5771 SplatElem = Mask[i]; 5772 } 5773 5774 return true; 5775 } 5776 5777 /// Some targets have expensive vector shifts if the lanes aren't all the same 5778 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5779 /// it's often worth sinking a shufflevector splat down to its use so that 5780 /// codegen can spot all lanes are identical. 5781 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5782 BasicBlock *DefBB = SVI->getParent(); 5783 5784 // Only do this xform if variable vector shifts are particularly expensive. 5785 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5786 return false; 5787 5788 // We only expect better codegen by sinking a shuffle if we can recognise a 5789 // constant splat. 5790 if (!isBroadcastShuffle(SVI)) 5791 return false; 5792 5793 // InsertedShuffles - Only insert a shuffle in each block once. 5794 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5795 5796 bool MadeChange = false; 5797 for (User *U : SVI->users()) { 5798 Instruction *UI = cast<Instruction>(U); 5799 5800 // Figure out which BB this ext is used in. 5801 BasicBlock *UserBB = UI->getParent(); 5802 if (UserBB == DefBB) continue; 5803 5804 // For now only apply this when the splat is used by a shift instruction. 5805 if (!UI->isShift()) continue; 5806 5807 // Everything checks out, sink the shuffle if the user's block doesn't 5808 // already have a copy. 5809 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5810 5811 if (!InsertedShuffle) { 5812 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5813 assert(InsertPt != UserBB->end()); 5814 InsertedShuffle = 5815 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5816 SVI->getOperand(2), "", &*InsertPt); 5817 } 5818 5819 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5820 MadeChange = true; 5821 } 5822 5823 // If we removed all uses, nuke the shuffle. 5824 if (SVI->use_empty()) { 5825 SVI->eraseFromParent(); 5826 MadeChange = true; 5827 } 5828 5829 return MadeChange; 5830 } 5831 5832 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5833 if (!TLI || !DL) 5834 return false; 5835 5836 Value *Cond = SI->getCondition(); 5837 Type *OldType = Cond->getType(); 5838 LLVMContext &Context = Cond->getContext(); 5839 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5840 unsigned RegWidth = RegType.getSizeInBits(); 5841 5842 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5843 return false; 5844 5845 // If the register width is greater than the type width, expand the condition 5846 // of the switch instruction and each case constant to the width of the 5847 // register. By widening the type of the switch condition, subsequent 5848 // comparisons (for case comparisons) will not need to be extended to the 5849 // preferred register width, so we will potentially eliminate N-1 extends, 5850 // where N is the number of cases in the switch. 5851 auto *NewType = Type::getIntNTy(Context, RegWidth); 5852 5853 // Zero-extend the switch condition and case constants unless the switch 5854 // condition is a function argument that is already being sign-extended. 5855 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5856 // everything instead. 5857 Instruction::CastOps ExtType = Instruction::ZExt; 5858 if (auto *Arg = dyn_cast<Argument>(Cond)) 5859 if (Arg->hasSExtAttr()) 5860 ExtType = Instruction::SExt; 5861 5862 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5863 ExtInst->insertBefore(SI); 5864 ExtInst->setDebugLoc(SI->getDebugLoc()); 5865 SI->setCondition(ExtInst); 5866 for (auto Case : SI->cases()) { 5867 APInt NarrowConst = Case.getCaseValue()->getValue(); 5868 APInt WideConst = (ExtType == Instruction::ZExt) ? 5869 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5870 Case.setValue(ConstantInt::get(Context, WideConst)); 5871 } 5872 5873 return true; 5874 } 5875 5876 5877 namespace { 5878 5879 /// Helper class to promote a scalar operation to a vector one. 5880 /// This class is used to move downward extractelement transition. 5881 /// E.g., 5882 /// a = vector_op <2 x i32> 5883 /// b = extractelement <2 x i32> a, i32 0 5884 /// c = scalar_op b 5885 /// store c 5886 /// 5887 /// => 5888 /// a = vector_op <2 x i32> 5889 /// c = vector_op a (equivalent to scalar_op on the related lane) 5890 /// * d = extractelement <2 x i32> c, i32 0 5891 /// * store d 5892 /// Assuming both extractelement and store can be combine, we get rid of the 5893 /// transition. 5894 class VectorPromoteHelper { 5895 /// DataLayout associated with the current module. 5896 const DataLayout &DL; 5897 5898 /// Used to perform some checks on the legality of vector operations. 5899 const TargetLowering &TLI; 5900 5901 /// Used to estimated the cost of the promoted chain. 5902 const TargetTransformInfo &TTI; 5903 5904 /// The transition being moved downwards. 5905 Instruction *Transition; 5906 5907 /// The sequence of instructions to be promoted. 5908 SmallVector<Instruction *, 4> InstsToBePromoted; 5909 5910 /// Cost of combining a store and an extract. 5911 unsigned StoreExtractCombineCost; 5912 5913 /// Instruction that will be combined with the transition. 5914 Instruction *CombineInst = nullptr; 5915 5916 /// The instruction that represents the current end of the transition. 5917 /// Since we are faking the promotion until we reach the end of the chain 5918 /// of computation, we need a way to get the current end of the transition. 5919 Instruction *getEndOfTransition() const { 5920 if (InstsToBePromoted.empty()) 5921 return Transition; 5922 return InstsToBePromoted.back(); 5923 } 5924 5925 /// Return the index of the original value in the transition. 5926 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5927 /// c, is at index 0. 5928 unsigned getTransitionOriginalValueIdx() const { 5929 assert(isa<ExtractElementInst>(Transition) && 5930 "Other kind of transitions are not supported yet"); 5931 return 0; 5932 } 5933 5934 /// Return the index of the index in the transition. 5935 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5936 /// is at index 1. 5937 unsigned getTransitionIdx() const { 5938 assert(isa<ExtractElementInst>(Transition) && 5939 "Other kind of transitions are not supported yet"); 5940 return 1; 5941 } 5942 5943 /// Get the type of the transition. 5944 /// This is the type of the original value. 5945 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5946 /// transition is <2 x i32>. 5947 Type *getTransitionType() const { 5948 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5949 } 5950 5951 /// Promote \p ToBePromoted by moving \p Def downward through. 5952 /// I.e., we have the following sequence: 5953 /// Def = Transition <ty1> a to <ty2> 5954 /// b = ToBePromoted <ty2> Def, ... 5955 /// => 5956 /// b = ToBePromoted <ty1> a, ... 5957 /// Def = Transition <ty1> ToBePromoted to <ty2> 5958 void promoteImpl(Instruction *ToBePromoted); 5959 5960 /// Check whether or not it is profitable to promote all the 5961 /// instructions enqueued to be promoted. 5962 bool isProfitableToPromote() { 5963 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5964 unsigned Index = isa<ConstantInt>(ValIdx) 5965 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5966 : -1; 5967 Type *PromotedType = getTransitionType(); 5968 5969 StoreInst *ST = cast<StoreInst>(CombineInst); 5970 unsigned AS = ST->getPointerAddressSpace(); 5971 unsigned Align = ST->getAlignment(); 5972 // Check if this store is supported. 5973 if (!TLI.allowsMisalignedMemoryAccesses( 5974 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5975 Align)) { 5976 // If this is not supported, there is no way we can combine 5977 // the extract with the store. 5978 return false; 5979 } 5980 5981 // The scalar chain of computation has to pay for the transition 5982 // scalar to vector. 5983 // The vector chain has to account for the combining cost. 5984 uint64_t ScalarCost = 5985 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5986 uint64_t VectorCost = StoreExtractCombineCost; 5987 for (const auto &Inst : InstsToBePromoted) { 5988 // Compute the cost. 5989 // By construction, all instructions being promoted are arithmetic ones. 5990 // Moreover, one argument is a constant that can be viewed as a splat 5991 // constant. 5992 Value *Arg0 = Inst->getOperand(0); 5993 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5994 isa<ConstantFP>(Arg0); 5995 TargetTransformInfo::OperandValueKind Arg0OVK = 5996 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5997 : TargetTransformInfo::OK_AnyValue; 5998 TargetTransformInfo::OperandValueKind Arg1OVK = 5999 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6000 : TargetTransformInfo::OK_AnyValue; 6001 ScalarCost += TTI.getArithmeticInstrCost( 6002 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6003 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6004 Arg0OVK, Arg1OVK); 6005 } 6006 LLVM_DEBUG( 6007 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6008 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6009 return ScalarCost > VectorCost; 6010 } 6011 6012 /// Generate a constant vector with \p Val with the same 6013 /// number of elements as the transition. 6014 /// \p UseSplat defines whether or not \p Val should be replicated 6015 /// across the whole vector. 6016 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6017 /// otherwise we generate a vector with as many undef as possible: 6018 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6019 /// used at the index of the extract. 6020 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6021 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6022 if (!UseSplat) { 6023 // If we cannot determine where the constant must be, we have to 6024 // use a splat constant. 6025 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6026 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6027 ExtractIdx = CstVal->getSExtValue(); 6028 else 6029 UseSplat = true; 6030 } 6031 6032 unsigned End = getTransitionType()->getVectorNumElements(); 6033 if (UseSplat) 6034 return ConstantVector::getSplat(End, Val); 6035 6036 SmallVector<Constant *, 4> ConstVec; 6037 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6038 for (unsigned Idx = 0; Idx != End; ++Idx) { 6039 if (Idx == ExtractIdx) 6040 ConstVec.push_back(Val); 6041 else 6042 ConstVec.push_back(UndefVal); 6043 } 6044 return ConstantVector::get(ConstVec); 6045 } 6046 6047 /// Check if promoting to a vector type an operand at \p OperandIdx 6048 /// in \p Use can trigger undefined behavior. 6049 static bool canCauseUndefinedBehavior(const Instruction *Use, 6050 unsigned OperandIdx) { 6051 // This is not safe to introduce undef when the operand is on 6052 // the right hand side of a division-like instruction. 6053 if (OperandIdx != 1) 6054 return false; 6055 switch (Use->getOpcode()) { 6056 default: 6057 return false; 6058 case Instruction::SDiv: 6059 case Instruction::UDiv: 6060 case Instruction::SRem: 6061 case Instruction::URem: 6062 return true; 6063 case Instruction::FDiv: 6064 case Instruction::FRem: 6065 return !Use->hasNoNaNs(); 6066 } 6067 llvm_unreachable(nullptr); 6068 } 6069 6070 public: 6071 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6072 const TargetTransformInfo &TTI, Instruction *Transition, 6073 unsigned CombineCost) 6074 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6075 StoreExtractCombineCost(CombineCost) { 6076 assert(Transition && "Do not know how to promote null"); 6077 } 6078 6079 /// Check if we can promote \p ToBePromoted to \p Type. 6080 bool canPromote(const Instruction *ToBePromoted) const { 6081 // We could support CastInst too. 6082 return isa<BinaryOperator>(ToBePromoted); 6083 } 6084 6085 /// Check if it is profitable to promote \p ToBePromoted 6086 /// by moving downward the transition through. 6087 bool shouldPromote(const Instruction *ToBePromoted) const { 6088 // Promote only if all the operands can be statically expanded. 6089 // Indeed, we do not want to introduce any new kind of transitions. 6090 for (const Use &U : ToBePromoted->operands()) { 6091 const Value *Val = U.get(); 6092 if (Val == getEndOfTransition()) { 6093 // If the use is a division and the transition is on the rhs, 6094 // we cannot promote the operation, otherwise we may create a 6095 // division by zero. 6096 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6097 return false; 6098 continue; 6099 } 6100 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6101 !isa<ConstantFP>(Val)) 6102 return false; 6103 } 6104 // Check that the resulting operation is legal. 6105 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6106 if (!ISDOpcode) 6107 return false; 6108 return StressStoreExtract || 6109 TLI.isOperationLegalOrCustom( 6110 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6111 } 6112 6113 /// Check whether or not \p Use can be combined 6114 /// with the transition. 6115 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6116 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6117 6118 /// Record \p ToBePromoted as part of the chain to be promoted. 6119 void enqueueForPromotion(Instruction *ToBePromoted) { 6120 InstsToBePromoted.push_back(ToBePromoted); 6121 } 6122 6123 /// Set the instruction that will be combined with the transition. 6124 void recordCombineInstruction(Instruction *ToBeCombined) { 6125 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6126 CombineInst = ToBeCombined; 6127 } 6128 6129 /// Promote all the instructions enqueued for promotion if it is 6130 /// is profitable. 6131 /// \return True if the promotion happened, false otherwise. 6132 bool promote() { 6133 // Check if there is something to promote. 6134 // Right now, if we do not have anything to combine with, 6135 // we assume the promotion is not profitable. 6136 if (InstsToBePromoted.empty() || !CombineInst) 6137 return false; 6138 6139 // Check cost. 6140 if (!StressStoreExtract && !isProfitableToPromote()) 6141 return false; 6142 6143 // Promote. 6144 for (auto &ToBePromoted : InstsToBePromoted) 6145 promoteImpl(ToBePromoted); 6146 InstsToBePromoted.clear(); 6147 return true; 6148 } 6149 }; 6150 6151 } // end anonymous namespace 6152 6153 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6154 // At this point, we know that all the operands of ToBePromoted but Def 6155 // can be statically promoted. 6156 // For Def, we need to use its parameter in ToBePromoted: 6157 // b = ToBePromoted ty1 a 6158 // Def = Transition ty1 b to ty2 6159 // Move the transition down. 6160 // 1. Replace all uses of the promoted operation by the transition. 6161 // = ... b => = ... Def. 6162 assert(ToBePromoted->getType() == Transition->getType() && 6163 "The type of the result of the transition does not match " 6164 "the final type"); 6165 ToBePromoted->replaceAllUsesWith(Transition); 6166 // 2. Update the type of the uses. 6167 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6168 Type *TransitionTy = getTransitionType(); 6169 ToBePromoted->mutateType(TransitionTy); 6170 // 3. Update all the operands of the promoted operation with promoted 6171 // operands. 6172 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6173 for (Use &U : ToBePromoted->operands()) { 6174 Value *Val = U.get(); 6175 Value *NewVal = nullptr; 6176 if (Val == Transition) 6177 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6178 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6179 isa<ConstantFP>(Val)) { 6180 // Use a splat constant if it is not safe to use undef. 6181 NewVal = getConstantVector( 6182 cast<Constant>(Val), 6183 isa<UndefValue>(Val) || 6184 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6185 } else 6186 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6187 "this?"); 6188 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6189 } 6190 Transition->moveAfter(ToBePromoted); 6191 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6192 } 6193 6194 /// Some targets can do store(extractelement) with one instruction. 6195 /// Try to push the extractelement towards the stores when the target 6196 /// has this feature and this is profitable. 6197 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6198 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6199 if (DisableStoreExtract || !TLI || 6200 (!StressStoreExtract && 6201 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6202 Inst->getOperand(1), CombineCost))) 6203 return false; 6204 6205 // At this point we know that Inst is a vector to scalar transition. 6206 // Try to move it down the def-use chain, until: 6207 // - We can combine the transition with its single use 6208 // => we got rid of the transition. 6209 // - We escape the current basic block 6210 // => we would need to check that we are moving it at a cheaper place and 6211 // we do not do that for now. 6212 BasicBlock *Parent = Inst->getParent(); 6213 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6214 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6215 // If the transition has more than one use, assume this is not going to be 6216 // beneficial. 6217 while (Inst->hasOneUse()) { 6218 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6219 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6220 6221 if (ToBePromoted->getParent() != Parent) { 6222 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6223 << ToBePromoted->getParent()->getName() 6224 << ") than the transition (" << Parent->getName() 6225 << ").\n"); 6226 return false; 6227 } 6228 6229 if (VPH.canCombine(ToBePromoted)) { 6230 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6231 << "will be combined with: " << *ToBePromoted << '\n'); 6232 VPH.recordCombineInstruction(ToBePromoted); 6233 bool Changed = VPH.promote(); 6234 NumStoreExtractExposed += Changed; 6235 return Changed; 6236 } 6237 6238 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6239 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6240 return false; 6241 6242 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6243 6244 VPH.enqueueForPromotion(ToBePromoted); 6245 Inst = ToBePromoted; 6246 } 6247 return false; 6248 } 6249 6250 /// For the instruction sequence of store below, F and I values 6251 /// are bundled together as an i64 value before being stored into memory. 6252 /// Sometimes it is more efficient to generate separate stores for F and I, 6253 /// which can remove the bitwise instructions or sink them to colder places. 6254 /// 6255 /// (store (or (zext (bitcast F to i32) to i64), 6256 /// (shl (zext I to i64), 32)), addr) --> 6257 /// (store F, addr) and (store I, addr+4) 6258 /// 6259 /// Similarly, splitting for other merged store can also be beneficial, like: 6260 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6261 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6262 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6263 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6264 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6265 /// 6266 /// We allow each target to determine specifically which kind of splitting is 6267 /// supported. 6268 /// 6269 /// The store patterns are commonly seen from the simple code snippet below 6270 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6271 /// void goo(const std::pair<int, float> &); 6272 /// hoo() { 6273 /// ... 6274 /// goo(std::make_pair(tmp, ftmp)); 6275 /// ... 6276 /// } 6277 /// 6278 /// Although we already have similar splitting in DAG Combine, we duplicate 6279 /// it in CodeGenPrepare to catch the case in which pattern is across 6280 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6281 /// during code expansion. 6282 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6283 const TargetLowering &TLI) { 6284 // Handle simple but common cases only. 6285 Type *StoreType = SI.getValueOperand()->getType(); 6286 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6287 DL.getTypeSizeInBits(StoreType) == 0) 6288 return false; 6289 6290 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6291 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6292 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6293 DL.getTypeSizeInBits(SplitStoreType)) 6294 return false; 6295 6296 // Match the following patterns: 6297 // (store (or (zext LValue to i64), 6298 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6299 // or 6300 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6301 // (zext LValue to i64), 6302 // Expect both operands of OR and the first operand of SHL have only 6303 // one use. 6304 Value *LValue, *HValue; 6305 if (!match(SI.getValueOperand(), 6306 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6307 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6308 m_SpecificInt(HalfValBitSize)))))) 6309 return false; 6310 6311 // Check LValue and HValue are int with size less or equal than 32. 6312 if (!LValue->getType()->isIntegerTy() || 6313 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6314 !HValue->getType()->isIntegerTy() || 6315 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6316 return false; 6317 6318 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6319 // as the input of target query. 6320 auto *LBC = dyn_cast<BitCastInst>(LValue); 6321 auto *HBC = dyn_cast<BitCastInst>(HValue); 6322 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6323 : EVT::getEVT(LValue->getType()); 6324 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6325 : EVT::getEVT(HValue->getType()); 6326 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6327 return false; 6328 6329 // Start to split store. 6330 IRBuilder<> Builder(SI.getContext()); 6331 Builder.SetInsertPoint(&SI); 6332 6333 // If LValue/HValue is a bitcast in another BB, create a new one in current 6334 // BB so it may be merged with the splitted stores by dag combiner. 6335 if (LBC && LBC->getParent() != SI.getParent()) 6336 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6337 if (HBC && HBC->getParent() != SI.getParent()) 6338 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6339 6340 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6341 auto CreateSplitStore = [&](Value *V, bool Upper) { 6342 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6343 Value *Addr = Builder.CreateBitCast( 6344 SI.getOperand(1), 6345 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6346 if ((IsLE && Upper) || (!IsLE && !Upper)) 6347 Addr = Builder.CreateGEP( 6348 SplitStoreType, Addr, 6349 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6350 Builder.CreateAlignedStore( 6351 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6352 }; 6353 6354 CreateSplitStore(LValue, false); 6355 CreateSplitStore(HValue, true); 6356 6357 // Delete the old store. 6358 SI.eraseFromParent(); 6359 return true; 6360 } 6361 6362 // Return true if the GEP has two operands, the first operand is of a sequential 6363 // type, and the second operand is a constant. 6364 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6365 gep_type_iterator I = gep_type_begin(*GEP); 6366 return GEP->getNumOperands() == 2 && 6367 I.isSequential() && 6368 isa<ConstantInt>(GEP->getOperand(1)); 6369 } 6370 6371 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6372 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6373 // reducing liveness interference across those edges benefits global register 6374 // allocation. Currently handles only certain cases. 6375 // 6376 // For example, unmerge %GEPI and %UGEPI as below. 6377 // 6378 // ---------- BEFORE ---------- 6379 // SrcBlock: 6380 // ... 6381 // %GEPIOp = ... 6382 // ... 6383 // %GEPI = gep %GEPIOp, Idx 6384 // ... 6385 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6386 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6387 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6388 // %UGEPI) 6389 // 6390 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6391 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6392 // ... 6393 // 6394 // DstBi: 6395 // ... 6396 // %UGEPI = gep %GEPIOp, UIdx 6397 // ... 6398 // --------------------------- 6399 // 6400 // ---------- AFTER ---------- 6401 // SrcBlock: 6402 // ... (same as above) 6403 // (* %GEPI is still alive on the indirectbr edges) 6404 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6405 // unmerging) 6406 // ... 6407 // 6408 // DstBi: 6409 // ... 6410 // %UGEPI = gep %GEPI, (UIdx-Idx) 6411 // ... 6412 // --------------------------- 6413 // 6414 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6415 // no longer alive on them. 6416 // 6417 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6418 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6419 // not to disable further simplications and optimizations as a result of GEP 6420 // merging. 6421 // 6422 // Note this unmerging may increase the length of the data flow critical path 6423 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6424 // between the register pressure and the length of data-flow critical 6425 // path. Restricting this to the uncommon IndirectBr case would minimize the 6426 // impact of potentially longer critical path, if any, and the impact on compile 6427 // time. 6428 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6429 const TargetTransformInfo *TTI) { 6430 BasicBlock *SrcBlock = GEPI->getParent(); 6431 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6432 // (non-IndirectBr) cases exit early here. 6433 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6434 return false; 6435 // Check that GEPI is a simple gep with a single constant index. 6436 if (!GEPSequentialConstIndexed(GEPI)) 6437 return false; 6438 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6439 // Check that GEPI is a cheap one. 6440 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6441 > TargetTransformInfo::TCC_Basic) 6442 return false; 6443 Value *GEPIOp = GEPI->getOperand(0); 6444 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6445 if (!isa<Instruction>(GEPIOp)) 6446 return false; 6447 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6448 if (GEPIOpI->getParent() != SrcBlock) 6449 return false; 6450 // Check that GEP is used outside the block, meaning it's alive on the 6451 // IndirectBr edge(s). 6452 if (find_if(GEPI->users(), [&](User *Usr) { 6453 if (auto *I = dyn_cast<Instruction>(Usr)) { 6454 if (I->getParent() != SrcBlock) { 6455 return true; 6456 } 6457 } 6458 return false; 6459 }) == GEPI->users().end()) 6460 return false; 6461 // The second elements of the GEP chains to be unmerged. 6462 std::vector<GetElementPtrInst *> UGEPIs; 6463 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6464 // on IndirectBr edges. 6465 for (User *Usr : GEPIOp->users()) { 6466 if (Usr == GEPI) continue; 6467 // Check if Usr is an Instruction. If not, give up. 6468 if (!isa<Instruction>(Usr)) 6469 return false; 6470 auto *UI = cast<Instruction>(Usr); 6471 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6472 if (UI->getParent() == SrcBlock) 6473 continue; 6474 // Check if Usr is a GEP. If not, give up. 6475 if (!isa<GetElementPtrInst>(Usr)) 6476 return false; 6477 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6478 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6479 // the pointer operand to it. If so, record it in the vector. If not, give 6480 // up. 6481 if (!GEPSequentialConstIndexed(UGEPI)) 6482 return false; 6483 if (UGEPI->getOperand(0) != GEPIOp) 6484 return false; 6485 if (GEPIIdx->getType() != 6486 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6487 return false; 6488 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6489 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6490 > TargetTransformInfo::TCC_Basic) 6491 return false; 6492 UGEPIs.push_back(UGEPI); 6493 } 6494 if (UGEPIs.size() == 0) 6495 return false; 6496 // Check the materializing cost of (Uidx-Idx). 6497 for (GetElementPtrInst *UGEPI : UGEPIs) { 6498 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6499 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6500 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6501 if (ImmCost > TargetTransformInfo::TCC_Basic) 6502 return false; 6503 } 6504 // Now unmerge between GEPI and UGEPIs. 6505 for (GetElementPtrInst *UGEPI : UGEPIs) { 6506 UGEPI->setOperand(0, GEPI); 6507 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6508 Constant *NewUGEPIIdx = 6509 ConstantInt::get(GEPIIdx->getType(), 6510 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6511 UGEPI->setOperand(1, NewUGEPIIdx); 6512 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6513 // inbounds to avoid UB. 6514 if (!GEPI->isInBounds()) { 6515 UGEPI->setIsInBounds(false); 6516 } 6517 } 6518 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6519 // alive on IndirectBr edges). 6520 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6521 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6522 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6523 return true; 6524 } 6525 6526 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6527 // Bail out if we inserted the instruction to prevent optimizations from 6528 // stepping on each other's toes. 6529 if (InsertedInsts.count(I)) 6530 return false; 6531 6532 if (PHINode *P = dyn_cast<PHINode>(I)) { 6533 // It is possible for very late stage optimizations (such as SimplifyCFG) 6534 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6535 // trivial PHI, go ahead and zap it here. 6536 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6537 P->replaceAllUsesWith(V); 6538 P->eraseFromParent(); 6539 ++NumPHIsElim; 6540 return true; 6541 } 6542 return false; 6543 } 6544 6545 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6546 // If the source of the cast is a constant, then this should have 6547 // already been constant folded. The only reason NOT to constant fold 6548 // it is if something (e.g. LSR) was careful to place the constant 6549 // evaluation in a block other than then one that uses it (e.g. to hoist 6550 // the address of globals out of a loop). If this is the case, we don't 6551 // want to forward-subst the cast. 6552 if (isa<Constant>(CI->getOperand(0))) 6553 return false; 6554 6555 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6556 return true; 6557 6558 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6559 /// Sink a zext or sext into its user blocks if the target type doesn't 6560 /// fit in one register 6561 if (TLI && 6562 TLI->getTypeAction(CI->getContext(), 6563 TLI->getValueType(*DL, CI->getType())) == 6564 TargetLowering::TypeExpandInteger) { 6565 return SinkCast(CI); 6566 } else { 6567 bool MadeChange = optimizeExt(I); 6568 return MadeChange | optimizeExtUses(I); 6569 } 6570 } 6571 return false; 6572 } 6573 6574 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6575 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6576 return OptimizeCmpExpression(CI, TLI); 6577 6578 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6579 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6580 if (TLI) { 6581 bool Modified = optimizeLoadExt(LI); 6582 unsigned AS = LI->getPointerAddressSpace(); 6583 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6584 return Modified; 6585 } 6586 return false; 6587 } 6588 6589 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6590 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6591 return true; 6592 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6593 if (TLI) { 6594 unsigned AS = SI->getPointerAddressSpace(); 6595 return optimizeMemoryInst(I, SI->getOperand(1), 6596 SI->getOperand(0)->getType(), AS); 6597 } 6598 return false; 6599 } 6600 6601 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6602 unsigned AS = RMW->getPointerAddressSpace(); 6603 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6604 RMW->getType(), AS); 6605 } 6606 6607 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6608 unsigned AS = CmpX->getPointerAddressSpace(); 6609 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6610 CmpX->getCompareOperand()->getType(), AS); 6611 } 6612 6613 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6614 6615 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6616 EnableAndCmpSinking && TLI) 6617 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6618 6619 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6620 BinOp->getOpcode() == Instruction::LShr)) { 6621 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6622 if (TLI && CI && TLI->hasExtractBitsInsn()) 6623 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6624 6625 return false; 6626 } 6627 6628 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6629 if (GEPI->hasAllZeroIndices()) { 6630 /// The GEP operand must be a pointer, so must its result -> BitCast 6631 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6632 GEPI->getName(), GEPI); 6633 NC->setDebugLoc(GEPI->getDebugLoc()); 6634 GEPI->replaceAllUsesWith(NC); 6635 GEPI->eraseFromParent(); 6636 ++NumGEPsElim; 6637 optimizeInst(NC, ModifiedDT); 6638 return true; 6639 } 6640 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6641 return true; 6642 } 6643 return false; 6644 } 6645 6646 if (CallInst *CI = dyn_cast<CallInst>(I)) 6647 return optimizeCallInst(CI, ModifiedDT); 6648 6649 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6650 return optimizeSelectInst(SI); 6651 6652 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6653 return optimizeShuffleVectorInst(SVI); 6654 6655 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6656 return optimizeSwitchInst(Switch); 6657 6658 if (isa<ExtractElementInst>(I)) 6659 return optimizeExtractElementInst(I); 6660 6661 return false; 6662 } 6663 6664 /// Given an OR instruction, check to see if this is a bitreverse 6665 /// idiom. If so, insert the new intrinsic and return true. 6666 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6667 const TargetLowering &TLI) { 6668 if (!I.getType()->isIntegerTy() || 6669 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6670 TLI.getValueType(DL, I.getType(), true))) 6671 return false; 6672 6673 SmallVector<Instruction*, 4> Insts; 6674 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6675 return false; 6676 Instruction *LastInst = Insts.back(); 6677 I.replaceAllUsesWith(LastInst); 6678 RecursivelyDeleteTriviallyDeadInstructions(&I); 6679 return true; 6680 } 6681 6682 // In this pass we look for GEP and cast instructions that are used 6683 // across basic blocks and rewrite them to improve basic-block-at-a-time 6684 // selection. 6685 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6686 SunkAddrs.clear(); 6687 bool MadeChange = false; 6688 6689 CurInstIterator = BB.begin(); 6690 while (CurInstIterator != BB.end()) { 6691 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6692 if (ModifiedDT) 6693 return true; 6694 } 6695 6696 bool MadeBitReverse = true; 6697 while (TLI && MadeBitReverse) { 6698 MadeBitReverse = false; 6699 for (auto &I : reverse(BB)) { 6700 if (makeBitReverse(I, *DL, *TLI)) { 6701 MadeBitReverse = MadeChange = true; 6702 ModifiedDT = true; 6703 break; 6704 } 6705 } 6706 } 6707 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6708 6709 return MadeChange; 6710 } 6711 6712 // llvm.dbg.value is far away from the value then iSel may not be able 6713 // handle it properly. iSel will drop llvm.dbg.value if it can not 6714 // find a node corresponding to the value. 6715 bool CodeGenPrepare::placeDbgValues(Function &F) { 6716 bool MadeChange = false; 6717 for (BasicBlock &BB : F) { 6718 Instruction *PrevNonDbgInst = nullptr; 6719 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6720 Instruction *Insn = &*BI++; 6721 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6722 // Leave dbg.values that refer to an alloca alone. These 6723 // intrinsics describe the address of a variable (= the alloca) 6724 // being taken. They should not be moved next to the alloca 6725 // (and to the beginning of the scope), but rather stay close to 6726 // where said address is used. 6727 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6728 PrevNonDbgInst = Insn; 6729 continue; 6730 } 6731 6732 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6733 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6734 // If VI is a phi in a block with an EHPad terminator, we can't insert 6735 // after it. 6736 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6737 continue; 6738 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6739 << *DVI << ' ' << *VI); 6740 DVI->removeFromParent(); 6741 if (isa<PHINode>(VI)) 6742 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6743 else 6744 DVI->insertAfter(VI); 6745 MadeChange = true; 6746 ++NumDbgValueMoved; 6747 } 6748 } 6749 } 6750 return MadeChange; 6751 } 6752 6753 /// Scale down both weights to fit into uint32_t. 6754 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6755 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6756 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6757 NewTrue = NewTrue / Scale; 6758 NewFalse = NewFalse / Scale; 6759 } 6760 6761 /// Some targets prefer to split a conditional branch like: 6762 /// \code 6763 /// %0 = icmp ne i32 %a, 0 6764 /// %1 = icmp ne i32 %b, 0 6765 /// %or.cond = or i1 %0, %1 6766 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6767 /// \endcode 6768 /// into multiple branch instructions like: 6769 /// \code 6770 /// bb1: 6771 /// %0 = icmp ne i32 %a, 0 6772 /// br i1 %0, label %TrueBB, label %bb2 6773 /// bb2: 6774 /// %1 = icmp ne i32 %b, 0 6775 /// br i1 %1, label %TrueBB, label %FalseBB 6776 /// \endcode 6777 /// This usually allows instruction selection to do even further optimizations 6778 /// and combine the compare with the branch instruction. Currently this is 6779 /// applied for targets which have "cheap" jump instructions. 6780 /// 6781 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6782 /// 6783 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6784 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6785 return false; 6786 6787 bool MadeChange = false; 6788 for (auto &BB : F) { 6789 // Does this BB end with the following? 6790 // %cond1 = icmp|fcmp|binary instruction ... 6791 // %cond2 = icmp|fcmp|binary instruction ... 6792 // %cond.or = or|and i1 %cond1, cond2 6793 // br i1 %cond.or label %dest1, label %dest2" 6794 BinaryOperator *LogicOp; 6795 BasicBlock *TBB, *FBB; 6796 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6797 continue; 6798 6799 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6800 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6801 continue; 6802 6803 unsigned Opc; 6804 Value *Cond1, *Cond2; 6805 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6806 m_OneUse(m_Value(Cond2))))) 6807 Opc = Instruction::And; 6808 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6809 m_OneUse(m_Value(Cond2))))) 6810 Opc = Instruction::Or; 6811 else 6812 continue; 6813 6814 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6815 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6816 continue; 6817 6818 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6819 6820 // Create a new BB. 6821 auto TmpBB = 6822 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6823 BB.getParent(), BB.getNextNode()); 6824 6825 // Update original basic block by using the first condition directly by the 6826 // branch instruction and removing the no longer needed and/or instruction. 6827 Br1->setCondition(Cond1); 6828 LogicOp->eraseFromParent(); 6829 6830 // Depending on the condition we have to either replace the true or the 6831 // false successor of the original branch instruction. 6832 if (Opc == Instruction::And) 6833 Br1->setSuccessor(0, TmpBB); 6834 else 6835 Br1->setSuccessor(1, TmpBB); 6836 6837 // Fill in the new basic block. 6838 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6839 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6840 I->removeFromParent(); 6841 I->insertBefore(Br2); 6842 } 6843 6844 // Update PHI nodes in both successors. The original BB needs to be 6845 // replaced in one successor's PHI nodes, because the branch comes now from 6846 // the newly generated BB (NewBB). In the other successor we need to add one 6847 // incoming edge to the PHI nodes, because both branch instructions target 6848 // now the same successor. Depending on the original branch condition 6849 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6850 // we perform the correct update for the PHI nodes. 6851 // This doesn't change the successor order of the just created branch 6852 // instruction (or any other instruction). 6853 if (Opc == Instruction::Or) 6854 std::swap(TBB, FBB); 6855 6856 // Replace the old BB with the new BB. 6857 for (PHINode &PN : TBB->phis()) { 6858 int i; 6859 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6860 PN.setIncomingBlock(i, TmpBB); 6861 } 6862 6863 // Add another incoming edge form the new BB. 6864 for (PHINode &PN : FBB->phis()) { 6865 auto *Val = PN.getIncomingValueForBlock(&BB); 6866 PN.addIncoming(Val, TmpBB); 6867 } 6868 6869 // Update the branch weights (from SelectionDAGBuilder:: 6870 // FindMergedConditions). 6871 if (Opc == Instruction::Or) { 6872 // Codegen X | Y as: 6873 // BB1: 6874 // jmp_if_X TBB 6875 // jmp TmpBB 6876 // TmpBB: 6877 // jmp_if_Y TBB 6878 // jmp FBB 6879 // 6880 6881 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6882 // The requirement is that 6883 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6884 // = TrueProb for original BB. 6885 // Assuming the original weights are A and B, one choice is to set BB1's 6886 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6887 // assumes that 6888 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6889 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6890 // TmpBB, but the math is more complicated. 6891 uint64_t TrueWeight, FalseWeight; 6892 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6893 uint64_t NewTrueWeight = TrueWeight; 6894 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6895 scaleWeights(NewTrueWeight, NewFalseWeight); 6896 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6897 .createBranchWeights(TrueWeight, FalseWeight)); 6898 6899 NewTrueWeight = TrueWeight; 6900 NewFalseWeight = 2 * FalseWeight; 6901 scaleWeights(NewTrueWeight, NewFalseWeight); 6902 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6903 .createBranchWeights(TrueWeight, FalseWeight)); 6904 } 6905 } else { 6906 // Codegen X & Y as: 6907 // BB1: 6908 // jmp_if_X TmpBB 6909 // jmp FBB 6910 // TmpBB: 6911 // jmp_if_Y TBB 6912 // jmp FBB 6913 // 6914 // This requires creation of TmpBB after CurBB. 6915 6916 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6917 // The requirement is that 6918 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6919 // = FalseProb for original BB. 6920 // Assuming the original weights are A and B, one choice is to set BB1's 6921 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6922 // assumes that 6923 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6924 uint64_t TrueWeight, FalseWeight; 6925 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6926 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6927 uint64_t NewFalseWeight = FalseWeight; 6928 scaleWeights(NewTrueWeight, NewFalseWeight); 6929 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6930 .createBranchWeights(TrueWeight, FalseWeight)); 6931 6932 NewTrueWeight = 2 * TrueWeight; 6933 NewFalseWeight = FalseWeight; 6934 scaleWeights(NewTrueWeight, NewFalseWeight); 6935 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6936 .createBranchWeights(TrueWeight, FalseWeight)); 6937 } 6938 } 6939 6940 // Note: No point in getting fancy here, since the DT info is never 6941 // available to CodeGenPrepare. 6942 ModifiedDT = true; 6943 6944 MadeChange = true; 6945 6946 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6947 TmpBB->dump()); 6948 } 6949 return MadeChange; 6950 } 6951