1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ProfileSummaryInfo.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/IR/ValueMap.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/BuildLibCalls.h" 55 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 58 using namespace llvm; 59 using namespace llvm::PatternMatch; 60 61 #define DEBUG_TYPE "codegenprepare" 62 63 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 64 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 65 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 66 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 67 "sunken Cmps"); 68 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 69 "of sunken Casts"); 70 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 71 "computations were sunk"); 72 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 73 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 74 STATISTIC(NumAndsAdded, 75 "Number of and mask instructions added to form ext loads"); 76 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 77 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 78 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 79 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 80 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 81 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 82 83 static cl::opt<bool> DisableBranchOpts( 84 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 85 cl::desc("Disable branch optimizations in CodeGenPrepare")); 86 87 static cl::opt<bool> 88 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 89 cl::desc("Disable GC optimizations in CodeGenPrepare")); 90 91 static cl::opt<bool> DisableSelectToBranch( 92 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 93 cl::desc("Disable select to branch conversion.")); 94 95 static cl::opt<bool> AddrSinkUsingGEPs( 96 "addr-sink-using-gep", cl::Hidden, cl::init(false), 97 cl::desc("Address sinking in CGP using GEPs.")); 98 99 static cl::opt<bool> EnableAndCmpSinking( 100 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 101 cl::desc("Enable sinkinig and/cmp into branches.")); 102 103 static cl::opt<bool> DisableStoreExtract( 104 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 105 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 106 107 static cl::opt<bool> StressStoreExtract( 108 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 109 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 110 111 static cl::opt<bool> DisableExtLdPromotion( 112 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 113 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 114 "CodeGenPrepare")); 115 116 static cl::opt<bool> StressExtLdPromotion( 117 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 118 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 119 "optimization in CodeGenPrepare")); 120 121 static cl::opt<bool> DisablePreheaderProtect( 122 "disable-preheader-prot", cl::Hidden, cl::init(false), 123 cl::desc("Disable protection against removing loop preheaders")); 124 125 static cl::opt<bool> ProfileGuidedSectionPrefix( 126 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 127 cl::desc("Use profile info to add section prefix for hot/cold functions")); 128 129 static cl::opt<unsigned> FreqRatioToSkipMerge( 130 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 131 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 132 "(frequency of destination block) is greater than this ratio")); 133 134 namespace { 135 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 136 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 137 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 138 class TypePromotionTransaction; 139 140 class CodeGenPrepare : public FunctionPass { 141 const TargetMachine *TM; 142 const TargetLowering *TLI; 143 const TargetTransformInfo *TTI; 144 const TargetLibraryInfo *TLInfo; 145 const LoopInfo *LI; 146 std::unique_ptr<BlockFrequencyInfo> BFI; 147 std::unique_ptr<BranchProbabilityInfo> BPI; 148 149 /// As we scan instructions optimizing them, this is the next instruction 150 /// to optimize. Transforms that can invalidate this should update it. 151 BasicBlock::iterator CurInstIterator; 152 153 /// Keeps track of non-local addresses that have been sunk into a block. 154 /// This allows us to avoid inserting duplicate code for blocks with 155 /// multiple load/stores of the same address. 156 ValueMap<Value*, Value*> SunkAddrs; 157 158 /// Keeps track of all instructions inserted for the current function. 159 SetOfInstrs InsertedInsts; 160 /// Keeps track of the type of the related instruction before their 161 /// promotion for the current function. 162 InstrToOrigTy PromotedInsts; 163 164 /// True if CFG is modified in any way. 165 bool ModifiedDT; 166 167 /// True if optimizing for size. 168 bool OptSize; 169 170 /// DataLayout for the Function being processed. 171 const DataLayout *DL; 172 173 public: 174 static char ID; // Pass identification, replacement for typeid 175 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 176 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 177 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 178 } 179 bool runOnFunction(Function &F) override; 180 181 StringRef getPassName() const override { return "CodeGen Prepare"; } 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 // FIXME: When we can selectively preserve passes, preserve the domtree. 185 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 186 AU.addRequired<TargetLibraryInfoWrapperPass>(); 187 AU.addRequired<TargetTransformInfoWrapperPass>(); 188 AU.addRequired<LoopInfoWrapperPass>(); 189 } 190 191 private: 192 bool eliminateFallThrough(Function &F); 193 bool eliminateMostlyEmptyBlocks(Function &F); 194 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 195 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 196 void eliminateMostlyEmptyBlock(BasicBlock *BB); 197 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 198 bool isPreheader); 199 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 200 bool optimizeInst(Instruction *I, bool& ModifiedDT); 201 bool optimizeMemoryInst(Instruction *I, Value *Addr, 202 Type *AccessTy, unsigned AS); 203 bool optimizeInlineAsmInst(CallInst *CS); 204 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 205 bool moveExtToFormExtLoad(Instruction *&I); 206 bool optimizeExtUses(Instruction *I); 207 bool optimizeLoadExt(LoadInst *I); 208 bool optimizeSelectInst(SelectInst *SI); 209 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 210 bool optimizeSwitchInst(SwitchInst *CI); 211 bool optimizeExtractElementInst(Instruction *Inst); 212 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 213 bool placeDbgValues(Function &F); 214 bool sinkAndCmp(Function &F); 215 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 216 Instruction *&Inst, 217 const SmallVectorImpl<Instruction *> &Exts, 218 unsigned CreatedInstCost); 219 bool splitBranchCondition(Function &F); 220 bool simplifyOffsetableRelocate(Instruction &I); 221 void stripInvariantGroupMetadata(Instruction &I); 222 }; 223 } 224 225 char CodeGenPrepare::ID = 0; 226 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 227 "Optimize for code generation", false, false) 228 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 229 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 230 "Optimize for code generation", false, false) 231 232 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 233 return new CodeGenPrepare(TM); 234 } 235 236 bool CodeGenPrepare::runOnFunction(Function &F) { 237 if (skipFunction(F)) 238 return false; 239 240 DL = &F.getParent()->getDataLayout(); 241 242 bool EverMadeChange = false; 243 // Clear per function information. 244 InsertedInsts.clear(); 245 PromotedInsts.clear(); 246 BFI.reset(); 247 BPI.reset(); 248 249 ModifiedDT = false; 250 if (TM) 251 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 252 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 253 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 254 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 255 OptSize = F.optForSize(); 256 257 if (ProfileGuidedSectionPrefix) { 258 ProfileSummaryInfo *PSI = 259 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 260 if (PSI->isFunctionEntryHot(&F)) 261 F.setSectionPrefix(".hot"); 262 else if (PSI->isFunctionEntryCold(&F)) 263 F.setSectionPrefix(".cold"); 264 } 265 266 /// This optimization identifies DIV instructions that can be 267 /// profitably bypassed and carried out with a shorter, faster divide. 268 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 269 const DenseMap<unsigned int, unsigned int> &BypassWidths = 270 TLI->getBypassSlowDivWidths(); 271 BasicBlock* BB = &*F.begin(); 272 while (BB != nullptr) { 273 // bypassSlowDivision may create new BBs, but we don't want to reapply the 274 // optimization to those blocks. 275 BasicBlock* Next = BB->getNextNode(); 276 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 277 BB = Next; 278 } 279 } 280 281 // Eliminate blocks that contain only PHI nodes and an 282 // unconditional branch. 283 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 284 285 // llvm.dbg.value is far away from the value then iSel may not be able 286 // handle it properly. iSel will drop llvm.dbg.value if it can not 287 // find a node corresponding to the value. 288 EverMadeChange |= placeDbgValues(F); 289 290 // If there is a mask, compare against zero, and branch that can be combined 291 // into a single target instruction, push the mask and compare into branch 292 // users. Do this before OptimizeBlock -> OptimizeInst -> 293 // OptimizeCmpExpression, which perturbs the pattern being searched for. 294 if (!DisableBranchOpts) { 295 EverMadeChange |= sinkAndCmp(F); 296 EverMadeChange |= splitBranchCondition(F); 297 } 298 299 bool MadeChange = true; 300 while (MadeChange) { 301 MadeChange = false; 302 for (Function::iterator I = F.begin(); I != F.end(); ) { 303 BasicBlock *BB = &*I++; 304 bool ModifiedDTOnIteration = false; 305 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 306 307 // Restart BB iteration if the dominator tree of the Function was changed 308 if (ModifiedDTOnIteration) 309 break; 310 } 311 EverMadeChange |= MadeChange; 312 } 313 314 SunkAddrs.clear(); 315 316 if (!DisableBranchOpts) { 317 MadeChange = false; 318 SmallPtrSet<BasicBlock*, 8> WorkList; 319 for (BasicBlock &BB : F) { 320 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 321 MadeChange |= ConstantFoldTerminator(&BB, true); 322 if (!MadeChange) continue; 323 324 for (SmallVectorImpl<BasicBlock*>::iterator 325 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 326 if (pred_begin(*II) == pred_end(*II)) 327 WorkList.insert(*II); 328 } 329 330 // Delete the dead blocks and any of their dead successors. 331 MadeChange |= !WorkList.empty(); 332 while (!WorkList.empty()) { 333 BasicBlock *BB = *WorkList.begin(); 334 WorkList.erase(BB); 335 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 336 337 DeleteDeadBlock(BB); 338 339 for (SmallVectorImpl<BasicBlock*>::iterator 340 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 341 if (pred_begin(*II) == pred_end(*II)) 342 WorkList.insert(*II); 343 } 344 345 // Merge pairs of basic blocks with unconditional branches, connected by 346 // a single edge. 347 if (EverMadeChange || MadeChange) 348 MadeChange |= eliminateFallThrough(F); 349 350 EverMadeChange |= MadeChange; 351 } 352 353 if (!DisableGCOpts) { 354 SmallVector<Instruction *, 2> Statepoints; 355 for (BasicBlock &BB : F) 356 for (Instruction &I : BB) 357 if (isStatepoint(I)) 358 Statepoints.push_back(&I); 359 for (auto &I : Statepoints) 360 EverMadeChange |= simplifyOffsetableRelocate(*I); 361 } 362 363 return EverMadeChange; 364 } 365 366 /// Merge basic blocks which are connected by a single edge, where one of the 367 /// basic blocks has a single successor pointing to the other basic block, 368 /// which has a single predecessor. 369 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 370 bool Changed = false; 371 // Scan all of the blocks in the function, except for the entry block. 372 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 373 BasicBlock *BB = &*I++; 374 // If the destination block has a single pred, then this is a trivial 375 // edge, just collapse it. 376 BasicBlock *SinglePred = BB->getSinglePredecessor(); 377 378 // Don't merge if BB's address is taken. 379 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 380 381 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 382 if (Term && !Term->isConditional()) { 383 Changed = true; 384 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 385 // Remember if SinglePred was the entry block of the function. 386 // If so, we will need to move BB back to the entry position. 387 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 388 MergeBasicBlockIntoOnlyPred(BB, nullptr); 389 390 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 391 BB->moveBefore(&BB->getParent()->getEntryBlock()); 392 393 // We have erased a block. Update the iterator. 394 I = BB->getIterator(); 395 } 396 } 397 return Changed; 398 } 399 400 /// Find a destination block from BB if BB is mergeable empty block. 401 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 402 // If this block doesn't end with an uncond branch, ignore it. 403 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 404 if (!BI || !BI->isUnconditional()) 405 return nullptr; 406 407 // If the instruction before the branch (skipping debug info) isn't a phi 408 // node, then other stuff is happening here. 409 BasicBlock::iterator BBI = BI->getIterator(); 410 if (BBI != BB->begin()) { 411 --BBI; 412 while (isa<DbgInfoIntrinsic>(BBI)) { 413 if (BBI == BB->begin()) 414 break; 415 --BBI; 416 } 417 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 418 return nullptr; 419 } 420 421 // Do not break infinite loops. 422 BasicBlock *DestBB = BI->getSuccessor(0); 423 if (DestBB == BB) 424 return nullptr; 425 426 if (!canMergeBlocks(BB, DestBB)) 427 DestBB = nullptr; 428 429 return DestBB; 430 } 431 432 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 433 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 434 /// edges in ways that are non-optimal for isel. Start by eliminating these 435 /// blocks so we can split them the way we want them. 436 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 437 SmallPtrSet<BasicBlock *, 16> Preheaders; 438 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 439 while (!LoopList.empty()) { 440 Loop *L = LoopList.pop_back_val(); 441 LoopList.insert(LoopList.end(), L->begin(), L->end()); 442 if (BasicBlock *Preheader = L->getLoopPreheader()) 443 Preheaders.insert(Preheader); 444 } 445 446 bool MadeChange = false; 447 // Note that this intentionally skips the entry block. 448 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 449 BasicBlock *BB = &*I++; 450 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 451 if (!DestBB || 452 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 453 continue; 454 455 eliminateMostlyEmptyBlock(BB); 456 MadeChange = true; 457 } 458 return MadeChange; 459 } 460 461 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 462 BasicBlock *DestBB, 463 bool isPreheader) { 464 // Do not delete loop preheaders if doing so would create a critical edge. 465 // Loop preheaders can be good locations to spill registers. If the 466 // preheader is deleted and we create a critical edge, registers may be 467 // spilled in the loop body instead. 468 if (!DisablePreheaderProtect && isPreheader && 469 !(BB->getSinglePredecessor() && 470 BB->getSinglePredecessor()->getSingleSuccessor())) 471 return false; 472 473 // Try to skip merging if the unique predecessor of BB is terminated by a 474 // switch or indirect branch instruction, and BB is used as an incoming block 475 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 476 // add COPY instructions in the predecessor of BB instead of BB (if it is not 477 // merged). Note that the critical edge created by merging such blocks wont be 478 // split in MachineSink because the jump table is not analyzable. By keeping 479 // such empty block (BB), ISel will place COPY instructions in BB, not in the 480 // predecessor of BB. 481 BasicBlock *Pred = BB->getUniquePredecessor(); 482 if (!Pred || 483 !(isa<SwitchInst>(Pred->getTerminator()) || 484 isa<IndirectBrInst>(Pred->getTerminator()))) 485 return true; 486 487 if (BB->getTerminator() != BB->getFirstNonPHI()) 488 return true; 489 490 // We use a simple cost heuristic which determine skipping merging is 491 // profitable if the cost of skipping merging is less than the cost of 492 // merging : Cost(skipping merging) < Cost(merging BB), where the 493 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 494 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 495 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 496 // Freq(Pred) / Freq(BB) > 2. 497 // Note that if there are multiple empty blocks sharing the same incoming 498 // value for the PHIs in the DestBB, we consider them together. In such 499 // case, Cost(merging BB) will be the sum of their frequencies. 500 501 if (!isa<PHINode>(DestBB->begin())) 502 return true; 503 504 if (!BFI) { 505 BPI.reset(new BranchProbabilityInfo(*BB->getParent(), *LI)); 506 BFI.reset(new BlockFrequencyInfo(*BB->getParent(), *BPI, *LI)); 507 } 508 509 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 510 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 511 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 512 513 // Find all other incoming blocks from which incoming values of all PHIs in 514 // DestBB are the same as the ones from BB. 515 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 516 ++PI) { 517 BasicBlock *DestBBPred = *PI; 518 if (DestBBPred == BB) 519 continue; 520 521 bool HasAllSameValue = true; 522 BasicBlock::const_iterator DestBBI = DestBB->begin(); 523 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 524 if (DestPN->getIncomingValueForBlock(BB) != 525 DestPN->getIncomingValueForBlock(DestBBPred)) { 526 HasAllSameValue = false; 527 break; 528 } 529 } 530 if (HasAllSameValue) 531 SameIncomingValueBBs.insert(DestBBPred); 532 } 533 534 // See if all BB's incoming values are same as the value from Pred. In this 535 // case, no reason to skip merging because COPYs are expected to be place in 536 // Pred already. 537 if (SameIncomingValueBBs.count(Pred)) 538 return true; 539 540 for (auto SameValueBB : SameIncomingValueBBs) 541 if (SameValueBB->getUniquePredecessor() == Pred && 542 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 543 BBFreq += BFI->getBlockFreq(SameValueBB); 544 545 return PredFreq.getFrequency() <= 546 BBFreq.getFrequency() * FreqRatioToSkipMerge; 547 } 548 549 /// Return true if we can merge BB into DestBB if there is a single 550 /// unconditional branch between them, and BB contains no other non-phi 551 /// instructions. 552 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 553 const BasicBlock *DestBB) const { 554 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 555 // the successor. If there are more complex condition (e.g. preheaders), 556 // don't mess around with them. 557 BasicBlock::const_iterator BBI = BB->begin(); 558 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 559 for (const User *U : PN->users()) { 560 const Instruction *UI = cast<Instruction>(U); 561 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 562 return false; 563 // If User is inside DestBB block and it is a PHINode then check 564 // incoming value. If incoming value is not from BB then this is 565 // a complex condition (e.g. preheaders) we want to avoid here. 566 if (UI->getParent() == DestBB) { 567 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 568 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 569 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 570 if (Insn && Insn->getParent() == BB && 571 Insn->getParent() != UPN->getIncomingBlock(I)) 572 return false; 573 } 574 } 575 } 576 } 577 578 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 579 // and DestBB may have conflicting incoming values for the block. If so, we 580 // can't merge the block. 581 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 582 if (!DestBBPN) return true; // no conflict. 583 584 // Collect the preds of BB. 585 SmallPtrSet<const BasicBlock*, 16> BBPreds; 586 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 587 // It is faster to get preds from a PHI than with pred_iterator. 588 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 589 BBPreds.insert(BBPN->getIncomingBlock(i)); 590 } else { 591 BBPreds.insert(pred_begin(BB), pred_end(BB)); 592 } 593 594 // Walk the preds of DestBB. 595 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 596 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 597 if (BBPreds.count(Pred)) { // Common predecessor? 598 BBI = DestBB->begin(); 599 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 600 const Value *V1 = PN->getIncomingValueForBlock(Pred); 601 const Value *V2 = PN->getIncomingValueForBlock(BB); 602 603 // If V2 is a phi node in BB, look up what the mapped value will be. 604 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 605 if (V2PN->getParent() == BB) 606 V2 = V2PN->getIncomingValueForBlock(Pred); 607 608 // If there is a conflict, bail out. 609 if (V1 != V2) return false; 610 } 611 } 612 } 613 614 return true; 615 } 616 617 618 /// Eliminate a basic block that has only phi's and an unconditional branch in 619 /// it. 620 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 621 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 622 BasicBlock *DestBB = BI->getSuccessor(0); 623 624 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 625 626 // If the destination block has a single pred, then this is a trivial edge, 627 // just collapse it. 628 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 629 if (SinglePred != DestBB) { 630 // Remember if SinglePred was the entry block of the function. If so, we 631 // will need to move BB back to the entry position. 632 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 633 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 634 635 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 636 BB->moveBefore(&BB->getParent()->getEntryBlock()); 637 638 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 639 return; 640 } 641 } 642 643 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 644 // to handle the new incoming edges it is about to have. 645 PHINode *PN; 646 for (BasicBlock::iterator BBI = DestBB->begin(); 647 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 648 // Remove the incoming value for BB, and remember it. 649 Value *InVal = PN->removeIncomingValue(BB, false); 650 651 // Two options: either the InVal is a phi node defined in BB or it is some 652 // value that dominates BB. 653 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 654 if (InValPhi && InValPhi->getParent() == BB) { 655 // Add all of the input values of the input PHI as inputs of this phi. 656 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 657 PN->addIncoming(InValPhi->getIncomingValue(i), 658 InValPhi->getIncomingBlock(i)); 659 } else { 660 // Otherwise, add one instance of the dominating value for each edge that 661 // we will be adding. 662 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 663 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 664 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 665 } else { 666 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 667 PN->addIncoming(InVal, *PI); 668 } 669 } 670 } 671 672 // The PHIs are now updated, change everything that refers to BB to use 673 // DestBB and remove BB. 674 BB->replaceAllUsesWith(DestBB); 675 BB->eraseFromParent(); 676 ++NumBlocksElim; 677 678 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 679 } 680 681 // Computes a map of base pointer relocation instructions to corresponding 682 // derived pointer relocation instructions given a vector of all relocate calls 683 static void computeBaseDerivedRelocateMap( 684 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 685 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 686 &RelocateInstMap) { 687 // Collect information in two maps: one primarily for locating the base object 688 // while filling the second map; the second map is the final structure holding 689 // a mapping between Base and corresponding Derived relocate calls 690 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 691 for (auto *ThisRelocate : AllRelocateCalls) { 692 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 693 ThisRelocate->getDerivedPtrIndex()); 694 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 695 } 696 for (auto &Item : RelocateIdxMap) { 697 std::pair<unsigned, unsigned> Key = Item.first; 698 if (Key.first == Key.second) 699 // Base relocation: nothing to insert 700 continue; 701 702 GCRelocateInst *I = Item.second; 703 auto BaseKey = std::make_pair(Key.first, Key.first); 704 705 // We're iterating over RelocateIdxMap so we cannot modify it. 706 auto MaybeBase = RelocateIdxMap.find(BaseKey); 707 if (MaybeBase == RelocateIdxMap.end()) 708 // TODO: We might want to insert a new base object relocate and gep off 709 // that, if there are enough derived object relocates. 710 continue; 711 712 RelocateInstMap[MaybeBase->second].push_back(I); 713 } 714 } 715 716 // Accepts a GEP and extracts the operands into a vector provided they're all 717 // small integer constants 718 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 719 SmallVectorImpl<Value *> &OffsetV) { 720 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 721 // Only accept small constant integer operands 722 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 723 if (!Op || Op->getZExtValue() > 20) 724 return false; 725 } 726 727 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 728 OffsetV.push_back(GEP->getOperand(i)); 729 return true; 730 } 731 732 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 733 // replace, computes a replacement, and affects it. 734 static bool 735 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 736 const SmallVectorImpl<GCRelocateInst *> &Targets) { 737 bool MadeChange = false; 738 for (GCRelocateInst *ToReplace : Targets) { 739 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 740 "Not relocating a derived object of the original base object"); 741 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 742 // A duplicate relocate call. TODO: coalesce duplicates. 743 continue; 744 } 745 746 if (RelocatedBase->getParent() != ToReplace->getParent()) { 747 // Base and derived relocates are in different basic blocks. 748 // In this case transform is only valid when base dominates derived 749 // relocate. However it would be too expensive to check dominance 750 // for each such relocate, so we skip the whole transformation. 751 continue; 752 } 753 754 Value *Base = ToReplace->getBasePtr(); 755 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 756 if (!Derived || Derived->getPointerOperand() != Base) 757 continue; 758 759 SmallVector<Value *, 2> OffsetV; 760 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 761 continue; 762 763 // Create a Builder and replace the target callsite with a gep 764 assert(RelocatedBase->getNextNode() && 765 "Should always have one since it's not a terminator"); 766 767 // Insert after RelocatedBase 768 IRBuilder<> Builder(RelocatedBase->getNextNode()); 769 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 770 771 // If gc_relocate does not match the actual type, cast it to the right type. 772 // In theory, there must be a bitcast after gc_relocate if the type does not 773 // match, and we should reuse it to get the derived pointer. But it could be 774 // cases like this: 775 // bb1: 776 // ... 777 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 778 // br label %merge 779 // 780 // bb2: 781 // ... 782 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 783 // br label %merge 784 // 785 // merge: 786 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 787 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 788 // 789 // In this case, we can not find the bitcast any more. So we insert a new bitcast 790 // no matter there is already one or not. In this way, we can handle all cases, and 791 // the extra bitcast should be optimized away in later passes. 792 Value *ActualRelocatedBase = RelocatedBase; 793 if (RelocatedBase->getType() != Base->getType()) { 794 ActualRelocatedBase = 795 Builder.CreateBitCast(RelocatedBase, Base->getType()); 796 } 797 Value *Replacement = Builder.CreateGEP( 798 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 799 Replacement->takeName(ToReplace); 800 // If the newly generated derived pointer's type does not match the original derived 801 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 802 Value *ActualReplacement = Replacement; 803 if (Replacement->getType() != ToReplace->getType()) { 804 ActualReplacement = 805 Builder.CreateBitCast(Replacement, ToReplace->getType()); 806 } 807 ToReplace->replaceAllUsesWith(ActualReplacement); 808 ToReplace->eraseFromParent(); 809 810 MadeChange = true; 811 } 812 return MadeChange; 813 } 814 815 // Turns this: 816 // 817 // %base = ... 818 // %ptr = gep %base + 15 819 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 820 // %base' = relocate(%tok, i32 4, i32 4) 821 // %ptr' = relocate(%tok, i32 4, i32 5) 822 // %val = load %ptr' 823 // 824 // into this: 825 // 826 // %base = ... 827 // %ptr = gep %base + 15 828 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 829 // %base' = gc.relocate(%tok, i32 4, i32 4) 830 // %ptr' = gep %base' + 15 831 // %val = load %ptr' 832 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 833 bool MadeChange = false; 834 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 835 836 for (auto *U : I.users()) 837 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 838 // Collect all the relocate calls associated with a statepoint 839 AllRelocateCalls.push_back(Relocate); 840 841 // We need atleast one base pointer relocation + one derived pointer 842 // relocation to mangle 843 if (AllRelocateCalls.size() < 2) 844 return false; 845 846 // RelocateInstMap is a mapping from the base relocate instruction to the 847 // corresponding derived relocate instructions 848 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 849 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 850 if (RelocateInstMap.empty()) 851 return false; 852 853 for (auto &Item : RelocateInstMap) 854 // Item.first is the RelocatedBase to offset against 855 // Item.second is the vector of Targets to replace 856 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 857 return MadeChange; 858 } 859 860 /// SinkCast - Sink the specified cast instruction into its user blocks 861 static bool SinkCast(CastInst *CI) { 862 BasicBlock *DefBB = CI->getParent(); 863 864 /// InsertedCasts - Only insert a cast in each block once. 865 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 866 867 bool MadeChange = false; 868 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 869 UI != E; ) { 870 Use &TheUse = UI.getUse(); 871 Instruction *User = cast<Instruction>(*UI); 872 873 // Figure out which BB this cast is used in. For PHI's this is the 874 // appropriate predecessor block. 875 BasicBlock *UserBB = User->getParent(); 876 if (PHINode *PN = dyn_cast<PHINode>(User)) { 877 UserBB = PN->getIncomingBlock(TheUse); 878 } 879 880 // Preincrement use iterator so we don't invalidate it. 881 ++UI; 882 883 // The first insertion point of a block containing an EH pad is after the 884 // pad. If the pad is the user, we cannot sink the cast past the pad. 885 if (User->isEHPad()) 886 continue; 887 888 // If the block selected to receive the cast is an EH pad that does not 889 // allow non-PHI instructions before the terminator, we can't sink the 890 // cast. 891 if (UserBB->getTerminator()->isEHPad()) 892 continue; 893 894 // If this user is in the same block as the cast, don't change the cast. 895 if (UserBB == DefBB) continue; 896 897 // If we have already inserted a cast into this block, use it. 898 CastInst *&InsertedCast = InsertedCasts[UserBB]; 899 900 if (!InsertedCast) { 901 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 902 assert(InsertPt != UserBB->end()); 903 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 904 CI->getType(), "", &*InsertPt); 905 } 906 907 // Replace a use of the cast with a use of the new cast. 908 TheUse = InsertedCast; 909 MadeChange = true; 910 ++NumCastUses; 911 } 912 913 // If we removed all uses, nuke the cast. 914 if (CI->use_empty()) { 915 CI->eraseFromParent(); 916 MadeChange = true; 917 } 918 919 return MadeChange; 920 } 921 922 /// If the specified cast instruction is a noop copy (e.g. it's casting from 923 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 924 /// reduce the number of virtual registers that must be created and coalesced. 925 /// 926 /// Return true if any changes are made. 927 /// 928 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 929 const DataLayout &DL) { 930 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 931 // than sinking only nop casts, but is helpful on some platforms. 932 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 933 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 934 ASC->getDestAddressSpace())) 935 return false; 936 } 937 938 // If this is a noop copy, 939 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 940 EVT DstVT = TLI.getValueType(DL, CI->getType()); 941 942 // This is an fp<->int conversion? 943 if (SrcVT.isInteger() != DstVT.isInteger()) 944 return false; 945 946 // If this is an extension, it will be a zero or sign extension, which 947 // isn't a noop. 948 if (SrcVT.bitsLT(DstVT)) return false; 949 950 // If these values will be promoted, find out what they will be promoted 951 // to. This helps us consider truncates on PPC as noop copies when they 952 // are. 953 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 954 TargetLowering::TypePromoteInteger) 955 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 956 if (TLI.getTypeAction(CI->getContext(), DstVT) == 957 TargetLowering::TypePromoteInteger) 958 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 959 960 // If, after promotion, these are the same types, this is a noop copy. 961 if (SrcVT != DstVT) 962 return false; 963 964 return SinkCast(CI); 965 } 966 967 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 968 /// possible. 969 /// 970 /// Return true if any changes were made. 971 static bool CombineUAddWithOverflow(CmpInst *CI) { 972 Value *A, *B; 973 Instruction *AddI; 974 if (!match(CI, 975 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 976 return false; 977 978 Type *Ty = AddI->getType(); 979 if (!isa<IntegerType>(Ty)) 980 return false; 981 982 // We don't want to move around uses of condition values this late, so we we 983 // check if it is legal to create the call to the intrinsic in the basic 984 // block containing the icmp: 985 986 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 987 return false; 988 989 #ifndef NDEBUG 990 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 991 // for now: 992 if (AddI->hasOneUse()) 993 assert(*AddI->user_begin() == CI && "expected!"); 994 #endif 995 996 Module *M = CI->getModule(); 997 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 998 999 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1000 1001 auto *UAddWithOverflow = 1002 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1003 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1004 auto *Overflow = 1005 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1006 1007 CI->replaceAllUsesWith(Overflow); 1008 AddI->replaceAllUsesWith(UAdd); 1009 CI->eraseFromParent(); 1010 AddI->eraseFromParent(); 1011 return true; 1012 } 1013 1014 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1015 /// registers that must be created and coalesced. This is a clear win except on 1016 /// targets with multiple condition code registers (PowerPC), where it might 1017 /// lose; some adjustment may be wanted there. 1018 /// 1019 /// Return true if any changes are made. 1020 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1021 BasicBlock *DefBB = CI->getParent(); 1022 1023 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1024 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1025 return false; 1026 1027 // Only insert a cmp in each block once. 1028 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1029 1030 bool MadeChange = false; 1031 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1032 UI != E; ) { 1033 Use &TheUse = UI.getUse(); 1034 Instruction *User = cast<Instruction>(*UI); 1035 1036 // Preincrement use iterator so we don't invalidate it. 1037 ++UI; 1038 1039 // Don't bother for PHI nodes. 1040 if (isa<PHINode>(User)) 1041 continue; 1042 1043 // Figure out which BB this cmp is used in. 1044 BasicBlock *UserBB = User->getParent(); 1045 1046 // If this user is in the same block as the cmp, don't change the cmp. 1047 if (UserBB == DefBB) continue; 1048 1049 // If we have already inserted a cmp into this block, use it. 1050 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1051 1052 if (!InsertedCmp) { 1053 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1054 assert(InsertPt != UserBB->end()); 1055 InsertedCmp = 1056 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1057 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1058 // Propagate the debug info. 1059 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1060 } 1061 1062 // Replace a use of the cmp with a use of the new cmp. 1063 TheUse = InsertedCmp; 1064 MadeChange = true; 1065 ++NumCmpUses; 1066 } 1067 1068 // If we removed all uses, nuke the cmp. 1069 if (CI->use_empty()) { 1070 CI->eraseFromParent(); 1071 MadeChange = true; 1072 } 1073 1074 return MadeChange; 1075 } 1076 1077 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1078 if (SinkCmpExpression(CI, TLI)) 1079 return true; 1080 1081 if (CombineUAddWithOverflow(CI)) 1082 return true; 1083 1084 return false; 1085 } 1086 1087 /// Check if the candidates could be combined with a shift instruction, which 1088 /// includes: 1089 /// 1. Truncate instruction 1090 /// 2. And instruction and the imm is a mask of the low bits: 1091 /// imm & (imm+1) == 0 1092 static bool isExtractBitsCandidateUse(Instruction *User) { 1093 if (!isa<TruncInst>(User)) { 1094 if (User->getOpcode() != Instruction::And || 1095 !isa<ConstantInt>(User->getOperand(1))) 1096 return false; 1097 1098 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1099 1100 if ((Cimm & (Cimm + 1)).getBoolValue()) 1101 return false; 1102 } 1103 return true; 1104 } 1105 1106 /// Sink both shift and truncate instruction to the use of truncate's BB. 1107 static bool 1108 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1109 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1110 const TargetLowering &TLI, const DataLayout &DL) { 1111 BasicBlock *UserBB = User->getParent(); 1112 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1113 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1114 bool MadeChange = false; 1115 1116 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1117 TruncE = TruncI->user_end(); 1118 TruncUI != TruncE;) { 1119 1120 Use &TruncTheUse = TruncUI.getUse(); 1121 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1122 // Preincrement use iterator so we don't invalidate it. 1123 1124 ++TruncUI; 1125 1126 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1127 if (!ISDOpcode) 1128 continue; 1129 1130 // If the use is actually a legal node, there will not be an 1131 // implicit truncate. 1132 // FIXME: always querying the result type is just an 1133 // approximation; some nodes' legality is determined by the 1134 // operand or other means. There's no good way to find out though. 1135 if (TLI.isOperationLegalOrCustom( 1136 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1137 continue; 1138 1139 // Don't bother for PHI nodes. 1140 if (isa<PHINode>(TruncUser)) 1141 continue; 1142 1143 BasicBlock *TruncUserBB = TruncUser->getParent(); 1144 1145 if (UserBB == TruncUserBB) 1146 continue; 1147 1148 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1149 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1150 1151 if (!InsertedShift && !InsertedTrunc) { 1152 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1153 assert(InsertPt != TruncUserBB->end()); 1154 // Sink the shift 1155 if (ShiftI->getOpcode() == Instruction::AShr) 1156 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1157 "", &*InsertPt); 1158 else 1159 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1160 "", &*InsertPt); 1161 1162 // Sink the trunc 1163 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1164 TruncInsertPt++; 1165 assert(TruncInsertPt != TruncUserBB->end()); 1166 1167 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1168 TruncI->getType(), "", &*TruncInsertPt); 1169 1170 MadeChange = true; 1171 1172 TruncTheUse = InsertedTrunc; 1173 } 1174 } 1175 return MadeChange; 1176 } 1177 1178 /// Sink the shift *right* instruction into user blocks if the uses could 1179 /// potentially be combined with this shift instruction and generate BitExtract 1180 /// instruction. It will only be applied if the architecture supports BitExtract 1181 /// instruction. Here is an example: 1182 /// BB1: 1183 /// %x.extract.shift = lshr i64 %arg1, 32 1184 /// BB2: 1185 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1186 /// ==> 1187 /// 1188 /// BB2: 1189 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1190 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1191 /// 1192 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1193 /// instruction. 1194 /// Return true if any changes are made. 1195 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1196 const TargetLowering &TLI, 1197 const DataLayout &DL) { 1198 BasicBlock *DefBB = ShiftI->getParent(); 1199 1200 /// Only insert instructions in each block once. 1201 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1202 1203 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1204 1205 bool MadeChange = false; 1206 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1207 UI != E;) { 1208 Use &TheUse = UI.getUse(); 1209 Instruction *User = cast<Instruction>(*UI); 1210 // Preincrement use iterator so we don't invalidate it. 1211 ++UI; 1212 1213 // Don't bother for PHI nodes. 1214 if (isa<PHINode>(User)) 1215 continue; 1216 1217 if (!isExtractBitsCandidateUse(User)) 1218 continue; 1219 1220 BasicBlock *UserBB = User->getParent(); 1221 1222 if (UserBB == DefBB) { 1223 // If the shift and truncate instruction are in the same BB. The use of 1224 // the truncate(TruncUse) may still introduce another truncate if not 1225 // legal. In this case, we would like to sink both shift and truncate 1226 // instruction to the BB of TruncUse. 1227 // for example: 1228 // BB1: 1229 // i64 shift.result = lshr i64 opnd, imm 1230 // trunc.result = trunc shift.result to i16 1231 // 1232 // BB2: 1233 // ----> We will have an implicit truncate here if the architecture does 1234 // not have i16 compare. 1235 // cmp i16 trunc.result, opnd2 1236 // 1237 if (isa<TruncInst>(User) && shiftIsLegal 1238 // If the type of the truncate is legal, no trucate will be 1239 // introduced in other basic blocks. 1240 && 1241 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1242 MadeChange = 1243 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1244 1245 continue; 1246 } 1247 // If we have already inserted a shift into this block, use it. 1248 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1249 1250 if (!InsertedShift) { 1251 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1252 assert(InsertPt != UserBB->end()); 1253 1254 if (ShiftI->getOpcode() == Instruction::AShr) 1255 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1256 "", &*InsertPt); 1257 else 1258 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1259 "", &*InsertPt); 1260 1261 MadeChange = true; 1262 } 1263 1264 // Replace a use of the shift with a use of the new shift. 1265 TheUse = InsertedShift; 1266 } 1267 1268 // If we removed all uses, nuke the shift. 1269 if (ShiftI->use_empty()) 1270 ShiftI->eraseFromParent(); 1271 1272 return MadeChange; 1273 } 1274 1275 // Translate a masked load intrinsic like 1276 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1277 // <16 x i1> %mask, <16 x i32> %passthru) 1278 // to a chain of basic blocks, with loading element one-by-one if 1279 // the appropriate mask bit is set 1280 // 1281 // %1 = bitcast i8* %addr to i32* 1282 // %2 = extractelement <16 x i1> %mask, i32 0 1283 // %3 = icmp eq i1 %2, true 1284 // br i1 %3, label %cond.load, label %else 1285 // 1286 //cond.load: ; preds = %0 1287 // %4 = getelementptr i32* %1, i32 0 1288 // %5 = load i32* %4 1289 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1290 // br label %else 1291 // 1292 //else: ; preds = %0, %cond.load 1293 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1294 // %7 = extractelement <16 x i1> %mask, i32 1 1295 // %8 = icmp eq i1 %7, true 1296 // br i1 %8, label %cond.load1, label %else2 1297 // 1298 //cond.load1: ; preds = %else 1299 // %9 = getelementptr i32* %1, i32 1 1300 // %10 = load i32* %9 1301 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1302 // br label %else2 1303 // 1304 //else2: ; preds = %else, %cond.load1 1305 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1306 // %12 = extractelement <16 x i1> %mask, i32 2 1307 // %13 = icmp eq i1 %12, true 1308 // br i1 %13, label %cond.load4, label %else5 1309 // 1310 static void scalarizeMaskedLoad(CallInst *CI) { 1311 Value *Ptr = CI->getArgOperand(0); 1312 Value *Alignment = CI->getArgOperand(1); 1313 Value *Mask = CI->getArgOperand(2); 1314 Value *Src0 = CI->getArgOperand(3); 1315 1316 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1317 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1318 assert(VecType && "Unexpected return type of masked load intrinsic"); 1319 1320 Type *EltTy = CI->getType()->getVectorElementType(); 1321 1322 IRBuilder<> Builder(CI->getContext()); 1323 Instruction *InsertPt = CI; 1324 BasicBlock *IfBlock = CI->getParent(); 1325 BasicBlock *CondBlock = nullptr; 1326 BasicBlock *PrevIfBlock = CI->getParent(); 1327 1328 Builder.SetInsertPoint(InsertPt); 1329 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1330 1331 // Short-cut if the mask is all-true. 1332 bool IsAllOnesMask = isa<Constant>(Mask) && 1333 cast<Constant>(Mask)->isAllOnesValue(); 1334 1335 if (IsAllOnesMask) { 1336 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1337 CI->replaceAllUsesWith(NewI); 1338 CI->eraseFromParent(); 1339 return; 1340 } 1341 1342 // Adjust alignment for the scalar instruction. 1343 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1344 // Bitcast %addr fron i8* to EltTy* 1345 Type *NewPtrType = 1346 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1347 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1348 unsigned VectorWidth = VecType->getNumElements(); 1349 1350 Value *UndefVal = UndefValue::get(VecType); 1351 1352 // The result vector 1353 Value *VResult = UndefVal; 1354 1355 if (isa<ConstantVector>(Mask)) { 1356 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1357 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1358 continue; 1359 Value *Gep = 1360 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1361 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1362 VResult = Builder.CreateInsertElement(VResult, Load, 1363 Builder.getInt32(Idx)); 1364 } 1365 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1366 CI->replaceAllUsesWith(NewI); 1367 CI->eraseFromParent(); 1368 return; 1369 } 1370 1371 PHINode *Phi = nullptr; 1372 Value *PrevPhi = UndefVal; 1373 1374 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1375 1376 // Fill the "else" block, created in the previous iteration 1377 // 1378 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1379 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1380 // %to_load = icmp eq i1 %mask_1, true 1381 // br i1 %to_load, label %cond.load, label %else 1382 // 1383 if (Idx > 0) { 1384 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1385 Phi->addIncoming(VResult, CondBlock); 1386 Phi->addIncoming(PrevPhi, PrevIfBlock); 1387 PrevPhi = Phi; 1388 VResult = Phi; 1389 } 1390 1391 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1392 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1393 ConstantInt::get(Predicate->getType(), 1)); 1394 1395 // Create "cond" block 1396 // 1397 // %EltAddr = getelementptr i32* %1, i32 0 1398 // %Elt = load i32* %EltAddr 1399 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1400 // 1401 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1402 Builder.SetInsertPoint(InsertPt); 1403 1404 Value *Gep = 1405 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1406 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1407 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1408 1409 // Create "else" block, fill it in the next iteration 1410 BasicBlock *NewIfBlock = 1411 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1412 Builder.SetInsertPoint(InsertPt); 1413 Instruction *OldBr = IfBlock->getTerminator(); 1414 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1415 OldBr->eraseFromParent(); 1416 PrevIfBlock = IfBlock; 1417 IfBlock = NewIfBlock; 1418 } 1419 1420 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1421 Phi->addIncoming(VResult, CondBlock); 1422 Phi->addIncoming(PrevPhi, PrevIfBlock); 1423 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1424 CI->replaceAllUsesWith(NewI); 1425 CI->eraseFromParent(); 1426 } 1427 1428 // Translate a masked store intrinsic, like 1429 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1430 // <16 x i1> %mask) 1431 // to a chain of basic blocks, that stores element one-by-one if 1432 // the appropriate mask bit is set 1433 // 1434 // %1 = bitcast i8* %addr to i32* 1435 // %2 = extractelement <16 x i1> %mask, i32 0 1436 // %3 = icmp eq i1 %2, true 1437 // br i1 %3, label %cond.store, label %else 1438 // 1439 // cond.store: ; preds = %0 1440 // %4 = extractelement <16 x i32> %val, i32 0 1441 // %5 = getelementptr i32* %1, i32 0 1442 // store i32 %4, i32* %5 1443 // br label %else 1444 // 1445 // else: ; preds = %0, %cond.store 1446 // %6 = extractelement <16 x i1> %mask, i32 1 1447 // %7 = icmp eq i1 %6, true 1448 // br i1 %7, label %cond.store1, label %else2 1449 // 1450 // cond.store1: ; preds = %else 1451 // %8 = extractelement <16 x i32> %val, i32 1 1452 // %9 = getelementptr i32* %1, i32 1 1453 // store i32 %8, i32* %9 1454 // br label %else2 1455 // . . . 1456 static void scalarizeMaskedStore(CallInst *CI) { 1457 Value *Src = CI->getArgOperand(0); 1458 Value *Ptr = CI->getArgOperand(1); 1459 Value *Alignment = CI->getArgOperand(2); 1460 Value *Mask = CI->getArgOperand(3); 1461 1462 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1463 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1464 assert(VecType && "Unexpected data type in masked store intrinsic"); 1465 1466 Type *EltTy = VecType->getElementType(); 1467 1468 IRBuilder<> Builder(CI->getContext()); 1469 Instruction *InsertPt = CI; 1470 BasicBlock *IfBlock = CI->getParent(); 1471 Builder.SetInsertPoint(InsertPt); 1472 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1473 1474 // Short-cut if the mask is all-true. 1475 bool IsAllOnesMask = isa<Constant>(Mask) && 1476 cast<Constant>(Mask)->isAllOnesValue(); 1477 1478 if (IsAllOnesMask) { 1479 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1480 CI->eraseFromParent(); 1481 return; 1482 } 1483 1484 // Adjust alignment for the scalar instruction. 1485 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1486 // Bitcast %addr fron i8* to EltTy* 1487 Type *NewPtrType = 1488 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1489 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1490 unsigned VectorWidth = VecType->getNumElements(); 1491 1492 if (isa<ConstantVector>(Mask)) { 1493 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1494 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1495 continue; 1496 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1497 Value *Gep = 1498 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1499 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1500 } 1501 CI->eraseFromParent(); 1502 return; 1503 } 1504 1505 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1506 1507 // Fill the "else" block, created in the previous iteration 1508 // 1509 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1510 // %to_store = icmp eq i1 %mask_1, true 1511 // br i1 %to_store, label %cond.store, label %else 1512 // 1513 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1514 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1515 ConstantInt::get(Predicate->getType(), 1)); 1516 1517 // Create "cond" block 1518 // 1519 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1520 // %EltAddr = getelementptr i32* %1, i32 0 1521 // %store i32 %OneElt, i32* %EltAddr 1522 // 1523 BasicBlock *CondBlock = 1524 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1525 Builder.SetInsertPoint(InsertPt); 1526 1527 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1528 Value *Gep = 1529 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1530 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1531 1532 // Create "else" block, fill it in the next iteration 1533 BasicBlock *NewIfBlock = 1534 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1535 Builder.SetInsertPoint(InsertPt); 1536 Instruction *OldBr = IfBlock->getTerminator(); 1537 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1538 OldBr->eraseFromParent(); 1539 IfBlock = NewIfBlock; 1540 } 1541 CI->eraseFromParent(); 1542 } 1543 1544 // Translate a masked gather intrinsic like 1545 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1546 // <16 x i1> %Mask, <16 x i32> %Src) 1547 // to a chain of basic blocks, with loading element one-by-one if 1548 // the appropriate mask bit is set 1549 // 1550 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1551 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1552 // % ToLoad0 = icmp eq i1 % Mask0, true 1553 // br i1 % ToLoad0, label %cond.load, label %else 1554 // 1555 // cond.load: 1556 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1557 // % Load0 = load i32, i32* % Ptr0, align 4 1558 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1559 // br label %else 1560 // 1561 // else: 1562 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1563 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1564 // % ToLoad1 = icmp eq i1 % Mask1, true 1565 // br i1 % ToLoad1, label %cond.load1, label %else2 1566 // 1567 // cond.load1: 1568 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1569 // % Load1 = load i32, i32* % Ptr1, align 4 1570 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1571 // br label %else2 1572 // . . . 1573 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1574 // ret <16 x i32> %Result 1575 static void scalarizeMaskedGather(CallInst *CI) { 1576 Value *Ptrs = CI->getArgOperand(0); 1577 Value *Alignment = CI->getArgOperand(1); 1578 Value *Mask = CI->getArgOperand(2); 1579 Value *Src0 = CI->getArgOperand(3); 1580 1581 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1582 1583 assert(VecType && "Unexpected return type of masked load intrinsic"); 1584 1585 IRBuilder<> Builder(CI->getContext()); 1586 Instruction *InsertPt = CI; 1587 BasicBlock *IfBlock = CI->getParent(); 1588 BasicBlock *CondBlock = nullptr; 1589 BasicBlock *PrevIfBlock = CI->getParent(); 1590 Builder.SetInsertPoint(InsertPt); 1591 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1592 1593 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1594 1595 Value *UndefVal = UndefValue::get(VecType); 1596 1597 // The result vector 1598 Value *VResult = UndefVal; 1599 unsigned VectorWidth = VecType->getNumElements(); 1600 1601 // Shorten the way if the mask is a vector of constants. 1602 bool IsConstMask = isa<ConstantVector>(Mask); 1603 1604 if (IsConstMask) { 1605 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1606 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1607 continue; 1608 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1609 "Ptr" + Twine(Idx)); 1610 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1611 "Load" + Twine(Idx)); 1612 VResult = Builder.CreateInsertElement(VResult, Load, 1613 Builder.getInt32(Idx), 1614 "Res" + Twine(Idx)); 1615 } 1616 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1617 CI->replaceAllUsesWith(NewI); 1618 CI->eraseFromParent(); 1619 return; 1620 } 1621 1622 PHINode *Phi = nullptr; 1623 Value *PrevPhi = UndefVal; 1624 1625 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1626 1627 // Fill the "else" block, created in the previous iteration 1628 // 1629 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1630 // %ToLoad1 = icmp eq i1 %Mask1, true 1631 // br i1 %ToLoad1, label %cond.load, label %else 1632 // 1633 if (Idx > 0) { 1634 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1635 Phi->addIncoming(VResult, CondBlock); 1636 Phi->addIncoming(PrevPhi, PrevIfBlock); 1637 PrevPhi = Phi; 1638 VResult = Phi; 1639 } 1640 1641 Value *Predicate = Builder.CreateExtractElement(Mask, 1642 Builder.getInt32(Idx), 1643 "Mask" + Twine(Idx)); 1644 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1645 ConstantInt::get(Predicate->getType(), 1), 1646 "ToLoad" + Twine(Idx)); 1647 1648 // Create "cond" block 1649 // 1650 // %EltAddr = getelementptr i32* %1, i32 0 1651 // %Elt = load i32* %EltAddr 1652 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1653 // 1654 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1655 Builder.SetInsertPoint(InsertPt); 1656 1657 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1658 "Ptr" + Twine(Idx)); 1659 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1660 "Load" + Twine(Idx)); 1661 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1662 "Res" + Twine(Idx)); 1663 1664 // Create "else" block, fill it in the next iteration 1665 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1666 Builder.SetInsertPoint(InsertPt); 1667 Instruction *OldBr = IfBlock->getTerminator(); 1668 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1669 OldBr->eraseFromParent(); 1670 PrevIfBlock = IfBlock; 1671 IfBlock = NewIfBlock; 1672 } 1673 1674 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1675 Phi->addIncoming(VResult, CondBlock); 1676 Phi->addIncoming(PrevPhi, PrevIfBlock); 1677 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1678 CI->replaceAllUsesWith(NewI); 1679 CI->eraseFromParent(); 1680 } 1681 1682 // Translate a masked scatter intrinsic, like 1683 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1684 // <16 x i1> %Mask) 1685 // to a chain of basic blocks, that stores element one-by-one if 1686 // the appropriate mask bit is set. 1687 // 1688 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1689 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1690 // % ToStore0 = icmp eq i1 % Mask0, true 1691 // br i1 %ToStore0, label %cond.store, label %else 1692 // 1693 // cond.store: 1694 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1695 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1696 // store i32 %Elt0, i32* % Ptr0, align 4 1697 // br label %else 1698 // 1699 // else: 1700 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1701 // % ToStore1 = icmp eq i1 % Mask1, true 1702 // br i1 % ToStore1, label %cond.store1, label %else2 1703 // 1704 // cond.store1: 1705 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1706 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1707 // store i32 % Elt1, i32* % Ptr1, align 4 1708 // br label %else2 1709 // . . . 1710 static void scalarizeMaskedScatter(CallInst *CI) { 1711 Value *Src = CI->getArgOperand(0); 1712 Value *Ptrs = CI->getArgOperand(1); 1713 Value *Alignment = CI->getArgOperand(2); 1714 Value *Mask = CI->getArgOperand(3); 1715 1716 assert(isa<VectorType>(Src->getType()) && 1717 "Unexpected data type in masked scatter intrinsic"); 1718 assert(isa<VectorType>(Ptrs->getType()) && 1719 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1720 "Vector of pointers is expected in masked scatter intrinsic"); 1721 1722 IRBuilder<> Builder(CI->getContext()); 1723 Instruction *InsertPt = CI; 1724 BasicBlock *IfBlock = CI->getParent(); 1725 Builder.SetInsertPoint(InsertPt); 1726 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1727 1728 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1729 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1730 1731 // Shorten the way if the mask is a vector of constants. 1732 bool IsConstMask = isa<ConstantVector>(Mask); 1733 1734 if (IsConstMask) { 1735 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1736 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1737 continue; 1738 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1739 "Elt" + Twine(Idx)); 1740 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1741 "Ptr" + Twine(Idx)); 1742 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1743 } 1744 CI->eraseFromParent(); 1745 return; 1746 } 1747 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1748 // Fill the "else" block, created in the previous iteration 1749 // 1750 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1751 // % ToStore = icmp eq i1 % Mask1, true 1752 // br i1 % ToStore, label %cond.store, label %else 1753 // 1754 Value *Predicate = Builder.CreateExtractElement(Mask, 1755 Builder.getInt32(Idx), 1756 "Mask" + Twine(Idx)); 1757 Value *Cmp = 1758 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1759 ConstantInt::get(Predicate->getType(), 1), 1760 "ToStore" + Twine(Idx)); 1761 1762 // Create "cond" block 1763 // 1764 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1765 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1766 // %store i32 % Elt1, i32* % Ptr1 1767 // 1768 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1769 Builder.SetInsertPoint(InsertPt); 1770 1771 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1772 "Elt" + Twine(Idx)); 1773 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1774 "Ptr" + Twine(Idx)); 1775 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1776 1777 // Create "else" block, fill it in the next iteration 1778 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1779 Builder.SetInsertPoint(InsertPt); 1780 Instruction *OldBr = IfBlock->getTerminator(); 1781 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1782 OldBr->eraseFromParent(); 1783 IfBlock = NewIfBlock; 1784 } 1785 CI->eraseFromParent(); 1786 } 1787 1788 /// If counting leading or trailing zeros is an expensive operation and a zero 1789 /// input is defined, add a check for zero to avoid calling the intrinsic. 1790 /// 1791 /// We want to transform: 1792 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1793 /// 1794 /// into: 1795 /// entry: 1796 /// %cmpz = icmp eq i64 %A, 0 1797 /// br i1 %cmpz, label %cond.end, label %cond.false 1798 /// cond.false: 1799 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1800 /// br label %cond.end 1801 /// cond.end: 1802 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1803 /// 1804 /// If the transform is performed, return true and set ModifiedDT to true. 1805 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1806 const TargetLowering *TLI, 1807 const DataLayout *DL, 1808 bool &ModifiedDT) { 1809 if (!TLI || !DL) 1810 return false; 1811 1812 // If a zero input is undefined, it doesn't make sense to despeculate that. 1813 if (match(CountZeros->getOperand(1), m_One())) 1814 return false; 1815 1816 // If it's cheap to speculate, there's nothing to do. 1817 auto IntrinsicID = CountZeros->getIntrinsicID(); 1818 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1819 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1820 return false; 1821 1822 // Only handle legal scalar cases. Anything else requires too much work. 1823 Type *Ty = CountZeros->getType(); 1824 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1825 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1826 return false; 1827 1828 // The intrinsic will be sunk behind a compare against zero and branch. 1829 BasicBlock *StartBlock = CountZeros->getParent(); 1830 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1831 1832 // Create another block after the count zero intrinsic. A PHI will be added 1833 // in this block to select the result of the intrinsic or the bit-width 1834 // constant if the input to the intrinsic is zero. 1835 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1836 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1837 1838 // Set up a builder to create a compare, conditional branch, and PHI. 1839 IRBuilder<> Builder(CountZeros->getContext()); 1840 Builder.SetInsertPoint(StartBlock->getTerminator()); 1841 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1842 1843 // Replace the unconditional branch that was created by the first split with 1844 // a compare against zero and a conditional branch. 1845 Value *Zero = Constant::getNullValue(Ty); 1846 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1847 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1848 StartBlock->getTerminator()->eraseFromParent(); 1849 1850 // Create a PHI in the end block to select either the output of the intrinsic 1851 // or the bit width of the operand. 1852 Builder.SetInsertPoint(&EndBlock->front()); 1853 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1854 CountZeros->replaceAllUsesWith(PN); 1855 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1856 PN->addIncoming(BitWidth, StartBlock); 1857 PN->addIncoming(CountZeros, CallBlock); 1858 1859 // We are explicitly handling the zero case, so we can set the intrinsic's 1860 // undefined zero argument to 'true'. This will also prevent reprocessing the 1861 // intrinsic; we only despeculate when a zero input is defined. 1862 CountZeros->setArgOperand(1, Builder.getTrue()); 1863 ModifiedDT = true; 1864 return true; 1865 } 1866 1867 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1868 BasicBlock *BB = CI->getParent(); 1869 1870 // Lower inline assembly if we can. 1871 // If we found an inline asm expession, and if the target knows how to 1872 // lower it to normal LLVM code, do so now. 1873 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1874 if (TLI->ExpandInlineAsm(CI)) { 1875 // Avoid invalidating the iterator. 1876 CurInstIterator = BB->begin(); 1877 // Avoid processing instructions out of order, which could cause 1878 // reuse before a value is defined. 1879 SunkAddrs.clear(); 1880 return true; 1881 } 1882 // Sink address computing for memory operands into the block. 1883 if (optimizeInlineAsmInst(CI)) 1884 return true; 1885 } 1886 1887 // Align the pointer arguments to this call if the target thinks it's a good 1888 // idea 1889 unsigned MinSize, PrefAlign; 1890 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1891 for (auto &Arg : CI->arg_operands()) { 1892 // We want to align both objects whose address is used directly and 1893 // objects whose address is used in casts and GEPs, though it only makes 1894 // sense for GEPs if the offset is a multiple of the desired alignment and 1895 // if size - offset meets the size threshold. 1896 if (!Arg->getType()->isPointerTy()) 1897 continue; 1898 APInt Offset(DL->getPointerSizeInBits( 1899 cast<PointerType>(Arg->getType())->getAddressSpace()), 1900 0); 1901 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1902 uint64_t Offset2 = Offset.getLimitedValue(); 1903 if ((Offset2 & (PrefAlign-1)) != 0) 1904 continue; 1905 AllocaInst *AI; 1906 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1907 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1908 AI->setAlignment(PrefAlign); 1909 // Global variables can only be aligned if they are defined in this 1910 // object (i.e. they are uniquely initialized in this object), and 1911 // over-aligning global variables that have an explicit section is 1912 // forbidden. 1913 GlobalVariable *GV; 1914 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1915 GV->getPointerAlignment(*DL) < PrefAlign && 1916 DL->getTypeAllocSize(GV->getValueType()) >= 1917 MinSize + Offset2) 1918 GV->setAlignment(PrefAlign); 1919 } 1920 // If this is a memcpy (or similar) then we may be able to improve the 1921 // alignment 1922 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1923 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1924 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1925 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1926 if (Align > MI->getAlignment()) 1927 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1928 } 1929 } 1930 1931 // If we have a cold call site, try to sink addressing computation into the 1932 // cold block. This interacts with our handling for loads and stores to 1933 // ensure that we can fold all uses of a potential addressing computation 1934 // into their uses. TODO: generalize this to work over profiling data 1935 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1936 for (auto &Arg : CI->arg_operands()) { 1937 if (!Arg->getType()->isPointerTy()) 1938 continue; 1939 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1940 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1941 } 1942 1943 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1944 if (II) { 1945 switch (II->getIntrinsicID()) { 1946 default: break; 1947 case Intrinsic::objectsize: { 1948 // Lower all uses of llvm.objectsize.* 1949 uint64_t Size; 1950 Type *ReturnTy = CI->getType(); 1951 Constant *RetVal = nullptr; 1952 ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1)); 1953 ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min; 1954 if (getObjectSize(II->getArgOperand(0), 1955 Size, *DL, TLInfo, false, Mode)) { 1956 RetVal = ConstantInt::get(ReturnTy, Size); 1957 } else { 1958 RetVal = ConstantInt::get(ReturnTy, 1959 Mode == ObjSizeMode::Min ? 0 : -1ULL); 1960 } 1961 // Substituting this can cause recursive simplifications, which can 1962 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1963 // happens. 1964 Value *CurValue = &*CurInstIterator; 1965 WeakVH IterHandle(CurValue); 1966 1967 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1968 1969 // If the iterator instruction was recursively deleted, start over at the 1970 // start of the block. 1971 if (IterHandle != CurValue) { 1972 CurInstIterator = BB->begin(); 1973 SunkAddrs.clear(); 1974 } 1975 return true; 1976 } 1977 case Intrinsic::masked_load: { 1978 // Scalarize unsupported vector masked load 1979 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1980 scalarizeMaskedLoad(CI); 1981 ModifiedDT = true; 1982 return true; 1983 } 1984 return false; 1985 } 1986 case Intrinsic::masked_store: { 1987 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1988 scalarizeMaskedStore(CI); 1989 ModifiedDT = true; 1990 return true; 1991 } 1992 return false; 1993 } 1994 case Intrinsic::masked_gather: { 1995 if (!TTI->isLegalMaskedGather(CI->getType())) { 1996 scalarizeMaskedGather(CI); 1997 ModifiedDT = true; 1998 return true; 1999 } 2000 return false; 2001 } 2002 case Intrinsic::masked_scatter: { 2003 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2004 scalarizeMaskedScatter(CI); 2005 ModifiedDT = true; 2006 return true; 2007 } 2008 return false; 2009 } 2010 case Intrinsic::aarch64_stlxr: 2011 case Intrinsic::aarch64_stxr: { 2012 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2013 if (!ExtVal || !ExtVal->hasOneUse() || 2014 ExtVal->getParent() == CI->getParent()) 2015 return false; 2016 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2017 ExtVal->moveBefore(CI); 2018 // Mark this instruction as "inserted by CGP", so that other 2019 // optimizations don't touch it. 2020 InsertedInsts.insert(ExtVal); 2021 return true; 2022 } 2023 case Intrinsic::invariant_group_barrier: 2024 II->replaceAllUsesWith(II->getArgOperand(0)); 2025 II->eraseFromParent(); 2026 return true; 2027 2028 case Intrinsic::cttz: 2029 case Intrinsic::ctlz: 2030 // If counting zeros is expensive, try to avoid it. 2031 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2032 } 2033 2034 if (TLI) { 2035 // Unknown address space. 2036 // TODO: Target hook to pick which address space the intrinsic cares 2037 // about? 2038 unsigned AddrSpace = ~0u; 2039 SmallVector<Value*, 2> PtrOps; 2040 Type *AccessTy; 2041 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 2042 while (!PtrOps.empty()) 2043 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 2044 return true; 2045 } 2046 } 2047 2048 // From here on out we're working with named functions. 2049 if (!CI->getCalledFunction()) return false; 2050 2051 // Lower all default uses of _chk calls. This is very similar 2052 // to what InstCombineCalls does, but here we are only lowering calls 2053 // to fortified library functions (e.g. __memcpy_chk) that have the default 2054 // "don't know" as the objectsize. Anything else should be left alone. 2055 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2056 if (Value *V = Simplifier.optimizeCall(CI)) { 2057 CI->replaceAllUsesWith(V); 2058 CI->eraseFromParent(); 2059 return true; 2060 } 2061 return false; 2062 } 2063 2064 /// Look for opportunities to duplicate return instructions to the predecessor 2065 /// to enable tail call optimizations. The case it is currently looking for is: 2066 /// @code 2067 /// bb0: 2068 /// %tmp0 = tail call i32 @f0() 2069 /// br label %return 2070 /// bb1: 2071 /// %tmp1 = tail call i32 @f1() 2072 /// br label %return 2073 /// bb2: 2074 /// %tmp2 = tail call i32 @f2() 2075 /// br label %return 2076 /// return: 2077 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2078 /// ret i32 %retval 2079 /// @endcode 2080 /// 2081 /// => 2082 /// 2083 /// @code 2084 /// bb0: 2085 /// %tmp0 = tail call i32 @f0() 2086 /// ret i32 %tmp0 2087 /// bb1: 2088 /// %tmp1 = tail call i32 @f1() 2089 /// ret i32 %tmp1 2090 /// bb2: 2091 /// %tmp2 = tail call i32 @f2() 2092 /// ret i32 %tmp2 2093 /// @endcode 2094 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2095 if (!TLI) 2096 return false; 2097 2098 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2099 if (!RetI) 2100 return false; 2101 2102 PHINode *PN = nullptr; 2103 BitCastInst *BCI = nullptr; 2104 Value *V = RetI->getReturnValue(); 2105 if (V) { 2106 BCI = dyn_cast<BitCastInst>(V); 2107 if (BCI) 2108 V = BCI->getOperand(0); 2109 2110 PN = dyn_cast<PHINode>(V); 2111 if (!PN) 2112 return false; 2113 } 2114 2115 if (PN && PN->getParent() != BB) 2116 return false; 2117 2118 // Make sure there are no instructions between the PHI and return, or that the 2119 // return is the first instruction in the block. 2120 if (PN) { 2121 BasicBlock::iterator BI = BB->begin(); 2122 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2123 if (&*BI == BCI) 2124 // Also skip over the bitcast. 2125 ++BI; 2126 if (&*BI != RetI) 2127 return false; 2128 } else { 2129 BasicBlock::iterator BI = BB->begin(); 2130 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2131 if (&*BI != RetI) 2132 return false; 2133 } 2134 2135 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2136 /// call. 2137 const Function *F = BB->getParent(); 2138 SmallVector<CallInst*, 4> TailCalls; 2139 if (PN) { 2140 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2141 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2142 // Make sure the phi value is indeed produced by the tail call. 2143 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2144 TLI->mayBeEmittedAsTailCall(CI) && 2145 attributesPermitTailCall(F, CI, RetI, *TLI)) 2146 TailCalls.push_back(CI); 2147 } 2148 } else { 2149 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2150 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2151 if (!VisitedBBs.insert(*PI).second) 2152 continue; 2153 2154 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2155 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2156 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2157 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2158 if (RI == RE) 2159 continue; 2160 2161 CallInst *CI = dyn_cast<CallInst>(&*RI); 2162 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2163 attributesPermitTailCall(F, CI, RetI, *TLI)) 2164 TailCalls.push_back(CI); 2165 } 2166 } 2167 2168 bool Changed = false; 2169 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2170 CallInst *CI = TailCalls[i]; 2171 CallSite CS(CI); 2172 2173 // Conservatively require the attributes of the call to match those of the 2174 // return. Ignore noalias because it doesn't affect the call sequence. 2175 AttributeSet CalleeAttrs = CS.getAttributes(); 2176 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2177 removeAttribute(Attribute::NoAlias) != 2178 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2179 removeAttribute(Attribute::NoAlias)) 2180 continue; 2181 2182 // Make sure the call instruction is followed by an unconditional branch to 2183 // the return block. 2184 BasicBlock *CallBB = CI->getParent(); 2185 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2186 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2187 continue; 2188 2189 // Duplicate the return into CallBB. 2190 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2191 ModifiedDT = Changed = true; 2192 ++NumRetsDup; 2193 } 2194 2195 // If we eliminated all predecessors of the block, delete the block now. 2196 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2197 BB->eraseFromParent(); 2198 2199 return Changed; 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // Memory Optimization 2204 //===----------------------------------------------------------------------===// 2205 2206 namespace { 2207 2208 /// This is an extended version of TargetLowering::AddrMode 2209 /// which holds actual Value*'s for register values. 2210 struct ExtAddrMode : public TargetLowering::AddrMode { 2211 Value *BaseReg; 2212 Value *ScaledReg; 2213 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2214 void print(raw_ostream &OS) const; 2215 void dump() const; 2216 2217 bool operator==(const ExtAddrMode& O) const { 2218 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2219 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2220 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2221 } 2222 }; 2223 2224 #ifndef NDEBUG 2225 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2226 AM.print(OS); 2227 return OS; 2228 } 2229 #endif 2230 2231 void ExtAddrMode::print(raw_ostream &OS) const { 2232 bool NeedPlus = false; 2233 OS << "["; 2234 if (BaseGV) { 2235 OS << (NeedPlus ? " + " : "") 2236 << "GV:"; 2237 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2238 NeedPlus = true; 2239 } 2240 2241 if (BaseOffs) { 2242 OS << (NeedPlus ? " + " : "") 2243 << BaseOffs; 2244 NeedPlus = true; 2245 } 2246 2247 if (BaseReg) { 2248 OS << (NeedPlus ? " + " : "") 2249 << "Base:"; 2250 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2251 NeedPlus = true; 2252 } 2253 if (Scale) { 2254 OS << (NeedPlus ? " + " : "") 2255 << Scale << "*"; 2256 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2257 } 2258 2259 OS << ']'; 2260 } 2261 2262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2263 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2264 print(dbgs()); 2265 dbgs() << '\n'; 2266 } 2267 #endif 2268 2269 /// \brief This class provides transaction based operation on the IR. 2270 /// Every change made through this class is recorded in the internal state and 2271 /// can be undone (rollback) until commit is called. 2272 class TypePromotionTransaction { 2273 2274 /// \brief This represents the common interface of the individual transaction. 2275 /// Each class implements the logic for doing one specific modification on 2276 /// the IR via the TypePromotionTransaction. 2277 class TypePromotionAction { 2278 protected: 2279 /// The Instruction modified. 2280 Instruction *Inst; 2281 2282 public: 2283 /// \brief Constructor of the action. 2284 /// The constructor performs the related action on the IR. 2285 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2286 2287 virtual ~TypePromotionAction() {} 2288 2289 /// \brief Undo the modification done by this action. 2290 /// When this method is called, the IR must be in the same state as it was 2291 /// before this action was applied. 2292 /// \pre Undoing the action works if and only if the IR is in the exact same 2293 /// state as it was directly after this action was applied. 2294 virtual void undo() = 0; 2295 2296 /// \brief Advocate every change made by this action. 2297 /// When the results on the IR of the action are to be kept, it is important 2298 /// to call this function, otherwise hidden information may be kept forever. 2299 virtual void commit() { 2300 // Nothing to be done, this action is not doing anything. 2301 } 2302 }; 2303 2304 /// \brief Utility to remember the position of an instruction. 2305 class InsertionHandler { 2306 /// Position of an instruction. 2307 /// Either an instruction: 2308 /// - Is the first in a basic block: BB is used. 2309 /// - Has a previous instructon: PrevInst is used. 2310 union { 2311 Instruction *PrevInst; 2312 BasicBlock *BB; 2313 } Point; 2314 /// Remember whether or not the instruction had a previous instruction. 2315 bool HasPrevInstruction; 2316 2317 public: 2318 /// \brief Record the position of \p Inst. 2319 InsertionHandler(Instruction *Inst) { 2320 BasicBlock::iterator It = Inst->getIterator(); 2321 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2322 if (HasPrevInstruction) 2323 Point.PrevInst = &*--It; 2324 else 2325 Point.BB = Inst->getParent(); 2326 } 2327 2328 /// \brief Insert \p Inst at the recorded position. 2329 void insert(Instruction *Inst) { 2330 if (HasPrevInstruction) { 2331 if (Inst->getParent()) 2332 Inst->removeFromParent(); 2333 Inst->insertAfter(Point.PrevInst); 2334 } else { 2335 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2336 if (Inst->getParent()) 2337 Inst->moveBefore(Position); 2338 else 2339 Inst->insertBefore(Position); 2340 } 2341 } 2342 }; 2343 2344 /// \brief Move an instruction before another. 2345 class InstructionMoveBefore : public TypePromotionAction { 2346 /// Original position of the instruction. 2347 InsertionHandler Position; 2348 2349 public: 2350 /// \brief Move \p Inst before \p Before. 2351 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2352 : TypePromotionAction(Inst), Position(Inst) { 2353 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2354 Inst->moveBefore(Before); 2355 } 2356 2357 /// \brief Move the instruction back to its original position. 2358 void undo() override { 2359 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2360 Position.insert(Inst); 2361 } 2362 }; 2363 2364 /// \brief Set the operand of an instruction with a new value. 2365 class OperandSetter : public TypePromotionAction { 2366 /// Original operand of the instruction. 2367 Value *Origin; 2368 /// Index of the modified instruction. 2369 unsigned Idx; 2370 2371 public: 2372 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2373 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2374 : TypePromotionAction(Inst), Idx(Idx) { 2375 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2376 << "for:" << *Inst << "\n" 2377 << "with:" << *NewVal << "\n"); 2378 Origin = Inst->getOperand(Idx); 2379 Inst->setOperand(Idx, NewVal); 2380 } 2381 2382 /// \brief Restore the original value of the instruction. 2383 void undo() override { 2384 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2385 << "for: " << *Inst << "\n" 2386 << "with: " << *Origin << "\n"); 2387 Inst->setOperand(Idx, Origin); 2388 } 2389 }; 2390 2391 /// \brief Hide the operands of an instruction. 2392 /// Do as if this instruction was not using any of its operands. 2393 class OperandsHider : public TypePromotionAction { 2394 /// The list of original operands. 2395 SmallVector<Value *, 4> OriginalValues; 2396 2397 public: 2398 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2399 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2400 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2401 unsigned NumOpnds = Inst->getNumOperands(); 2402 OriginalValues.reserve(NumOpnds); 2403 for (unsigned It = 0; It < NumOpnds; ++It) { 2404 // Save the current operand. 2405 Value *Val = Inst->getOperand(It); 2406 OriginalValues.push_back(Val); 2407 // Set a dummy one. 2408 // We could use OperandSetter here, but that would imply an overhead 2409 // that we are not willing to pay. 2410 Inst->setOperand(It, UndefValue::get(Val->getType())); 2411 } 2412 } 2413 2414 /// \brief Restore the original list of uses. 2415 void undo() override { 2416 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2417 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2418 Inst->setOperand(It, OriginalValues[It]); 2419 } 2420 }; 2421 2422 /// \brief Build a truncate instruction. 2423 class TruncBuilder : public TypePromotionAction { 2424 Value *Val; 2425 public: 2426 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2427 /// result. 2428 /// trunc Opnd to Ty. 2429 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2430 IRBuilder<> Builder(Opnd); 2431 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2432 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2433 } 2434 2435 /// \brief Get the built value. 2436 Value *getBuiltValue() { return Val; } 2437 2438 /// \brief Remove the built instruction. 2439 void undo() override { 2440 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2441 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2442 IVal->eraseFromParent(); 2443 } 2444 }; 2445 2446 /// \brief Build a sign extension instruction. 2447 class SExtBuilder : public TypePromotionAction { 2448 Value *Val; 2449 public: 2450 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2451 /// result. 2452 /// sext Opnd to Ty. 2453 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2454 : TypePromotionAction(InsertPt) { 2455 IRBuilder<> Builder(InsertPt); 2456 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2457 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2458 } 2459 2460 /// \brief Get the built value. 2461 Value *getBuiltValue() { return Val; } 2462 2463 /// \brief Remove the built instruction. 2464 void undo() override { 2465 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2466 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2467 IVal->eraseFromParent(); 2468 } 2469 }; 2470 2471 /// \brief Build a zero extension instruction. 2472 class ZExtBuilder : public TypePromotionAction { 2473 Value *Val; 2474 public: 2475 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2476 /// result. 2477 /// zext Opnd to Ty. 2478 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2479 : TypePromotionAction(InsertPt) { 2480 IRBuilder<> Builder(InsertPt); 2481 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2482 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2483 } 2484 2485 /// \brief Get the built value. 2486 Value *getBuiltValue() { return Val; } 2487 2488 /// \brief Remove the built instruction. 2489 void undo() override { 2490 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2491 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2492 IVal->eraseFromParent(); 2493 } 2494 }; 2495 2496 /// \brief Mutate an instruction to another type. 2497 class TypeMutator : public TypePromotionAction { 2498 /// Record the original type. 2499 Type *OrigTy; 2500 2501 public: 2502 /// \brief Mutate the type of \p Inst into \p NewTy. 2503 TypeMutator(Instruction *Inst, Type *NewTy) 2504 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2505 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2506 << "\n"); 2507 Inst->mutateType(NewTy); 2508 } 2509 2510 /// \brief Mutate the instruction back to its original type. 2511 void undo() override { 2512 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2513 << "\n"); 2514 Inst->mutateType(OrigTy); 2515 } 2516 }; 2517 2518 /// \brief Replace the uses of an instruction by another instruction. 2519 class UsesReplacer : public TypePromotionAction { 2520 /// Helper structure to keep track of the replaced uses. 2521 struct InstructionAndIdx { 2522 /// The instruction using the instruction. 2523 Instruction *Inst; 2524 /// The index where this instruction is used for Inst. 2525 unsigned Idx; 2526 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2527 : Inst(Inst), Idx(Idx) {} 2528 }; 2529 2530 /// Keep track of the original uses (pair Instruction, Index). 2531 SmallVector<InstructionAndIdx, 4> OriginalUses; 2532 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2533 2534 public: 2535 /// \brief Replace all the use of \p Inst by \p New. 2536 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2537 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2538 << "\n"); 2539 // Record the original uses. 2540 for (Use &U : Inst->uses()) { 2541 Instruction *UserI = cast<Instruction>(U.getUser()); 2542 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2543 } 2544 // Now, we can replace the uses. 2545 Inst->replaceAllUsesWith(New); 2546 } 2547 2548 /// \brief Reassign the original uses of Inst to Inst. 2549 void undo() override { 2550 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2551 for (use_iterator UseIt = OriginalUses.begin(), 2552 EndIt = OriginalUses.end(); 2553 UseIt != EndIt; ++UseIt) { 2554 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2555 } 2556 } 2557 }; 2558 2559 /// \brief Remove an instruction from the IR. 2560 class InstructionRemover : public TypePromotionAction { 2561 /// Original position of the instruction. 2562 InsertionHandler Inserter; 2563 /// Helper structure to hide all the link to the instruction. In other 2564 /// words, this helps to do as if the instruction was removed. 2565 OperandsHider Hider; 2566 /// Keep track of the uses replaced, if any. 2567 UsesReplacer *Replacer; 2568 2569 public: 2570 /// \brief Remove all reference of \p Inst and optinally replace all its 2571 /// uses with New. 2572 /// \pre If !Inst->use_empty(), then New != nullptr 2573 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2574 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2575 Replacer(nullptr) { 2576 if (New) 2577 Replacer = new UsesReplacer(Inst, New); 2578 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2579 Inst->removeFromParent(); 2580 } 2581 2582 ~InstructionRemover() override { delete Replacer; } 2583 2584 /// \brief Really remove the instruction. 2585 void commit() override { delete Inst; } 2586 2587 /// \brief Resurrect the instruction and reassign it to the proper uses if 2588 /// new value was provided when build this action. 2589 void undo() override { 2590 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2591 Inserter.insert(Inst); 2592 if (Replacer) 2593 Replacer->undo(); 2594 Hider.undo(); 2595 } 2596 }; 2597 2598 public: 2599 /// Restoration point. 2600 /// The restoration point is a pointer to an action instead of an iterator 2601 /// because the iterator may be invalidated but not the pointer. 2602 typedef const TypePromotionAction *ConstRestorationPt; 2603 /// Advocate every changes made in that transaction. 2604 void commit(); 2605 /// Undo all the changes made after the given point. 2606 void rollback(ConstRestorationPt Point); 2607 /// Get the current restoration point. 2608 ConstRestorationPt getRestorationPoint() const; 2609 2610 /// \name API for IR modification with state keeping to support rollback. 2611 /// @{ 2612 /// Same as Instruction::setOperand. 2613 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2614 /// Same as Instruction::eraseFromParent. 2615 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2616 /// Same as Value::replaceAllUsesWith. 2617 void replaceAllUsesWith(Instruction *Inst, Value *New); 2618 /// Same as Value::mutateType. 2619 void mutateType(Instruction *Inst, Type *NewTy); 2620 /// Same as IRBuilder::createTrunc. 2621 Value *createTrunc(Instruction *Opnd, Type *Ty); 2622 /// Same as IRBuilder::createSExt. 2623 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2624 /// Same as IRBuilder::createZExt. 2625 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2626 /// Same as Instruction::moveBefore. 2627 void moveBefore(Instruction *Inst, Instruction *Before); 2628 /// @} 2629 2630 private: 2631 /// The ordered list of actions made so far. 2632 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2633 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2634 }; 2635 2636 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2637 Value *NewVal) { 2638 Actions.push_back( 2639 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2640 } 2641 2642 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2643 Value *NewVal) { 2644 Actions.push_back( 2645 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2646 } 2647 2648 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2649 Value *New) { 2650 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2651 } 2652 2653 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2654 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2655 } 2656 2657 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2658 Type *Ty) { 2659 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2660 Value *Val = Ptr->getBuiltValue(); 2661 Actions.push_back(std::move(Ptr)); 2662 return Val; 2663 } 2664 2665 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2666 Value *Opnd, Type *Ty) { 2667 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2668 Value *Val = Ptr->getBuiltValue(); 2669 Actions.push_back(std::move(Ptr)); 2670 return Val; 2671 } 2672 2673 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2674 Value *Opnd, Type *Ty) { 2675 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2676 Value *Val = Ptr->getBuiltValue(); 2677 Actions.push_back(std::move(Ptr)); 2678 return Val; 2679 } 2680 2681 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2682 Instruction *Before) { 2683 Actions.push_back( 2684 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2685 } 2686 2687 TypePromotionTransaction::ConstRestorationPt 2688 TypePromotionTransaction::getRestorationPoint() const { 2689 return !Actions.empty() ? Actions.back().get() : nullptr; 2690 } 2691 2692 void TypePromotionTransaction::commit() { 2693 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2694 ++It) 2695 (*It)->commit(); 2696 Actions.clear(); 2697 } 2698 2699 void TypePromotionTransaction::rollback( 2700 TypePromotionTransaction::ConstRestorationPt Point) { 2701 while (!Actions.empty() && Point != Actions.back().get()) { 2702 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2703 Curr->undo(); 2704 } 2705 } 2706 2707 /// \brief A helper class for matching addressing modes. 2708 /// 2709 /// This encapsulates the logic for matching the target-legal addressing modes. 2710 class AddressingModeMatcher { 2711 SmallVectorImpl<Instruction*> &AddrModeInsts; 2712 const TargetMachine &TM; 2713 const TargetLowering &TLI; 2714 const DataLayout &DL; 2715 2716 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2717 /// the memory instruction that we're computing this address for. 2718 Type *AccessTy; 2719 unsigned AddrSpace; 2720 Instruction *MemoryInst; 2721 2722 /// This is the addressing mode that we're building up. This is 2723 /// part of the return value of this addressing mode matching stuff. 2724 ExtAddrMode &AddrMode; 2725 2726 /// The instructions inserted by other CodeGenPrepare optimizations. 2727 const SetOfInstrs &InsertedInsts; 2728 /// A map from the instructions to their type before promotion. 2729 InstrToOrigTy &PromotedInsts; 2730 /// The ongoing transaction where every action should be registered. 2731 TypePromotionTransaction &TPT; 2732 2733 /// This is set to true when we should not do profitability checks. 2734 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2735 bool IgnoreProfitability; 2736 2737 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2738 const TargetMachine &TM, Type *AT, unsigned AS, 2739 Instruction *MI, ExtAddrMode &AM, 2740 const SetOfInstrs &InsertedInsts, 2741 InstrToOrigTy &PromotedInsts, 2742 TypePromotionTransaction &TPT) 2743 : AddrModeInsts(AMI), TM(TM), 2744 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2745 ->getTargetLowering()), 2746 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2747 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2748 PromotedInsts(PromotedInsts), TPT(TPT) { 2749 IgnoreProfitability = false; 2750 } 2751 public: 2752 2753 /// Find the maximal addressing mode that a load/store of V can fold, 2754 /// give an access type of AccessTy. This returns a list of involved 2755 /// instructions in AddrModeInsts. 2756 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2757 /// optimizations. 2758 /// \p PromotedInsts maps the instructions to their type before promotion. 2759 /// \p The ongoing transaction where every action should be registered. 2760 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2761 Instruction *MemoryInst, 2762 SmallVectorImpl<Instruction*> &AddrModeInsts, 2763 const TargetMachine &TM, 2764 const SetOfInstrs &InsertedInsts, 2765 InstrToOrigTy &PromotedInsts, 2766 TypePromotionTransaction &TPT) { 2767 ExtAddrMode Result; 2768 2769 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2770 MemoryInst, Result, InsertedInsts, 2771 PromotedInsts, TPT).matchAddr(V, 0); 2772 (void)Success; assert(Success && "Couldn't select *anything*?"); 2773 return Result; 2774 } 2775 private: 2776 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2777 bool matchAddr(Value *V, unsigned Depth); 2778 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2779 bool *MovedAway = nullptr); 2780 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2781 ExtAddrMode &AMBefore, 2782 ExtAddrMode &AMAfter); 2783 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2784 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2785 Value *PromotedOperand) const; 2786 }; 2787 2788 /// Try adding ScaleReg*Scale to the current addressing mode. 2789 /// Return true and update AddrMode if this addr mode is legal for the target, 2790 /// false if not. 2791 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2792 unsigned Depth) { 2793 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2794 // mode. Just process that directly. 2795 if (Scale == 1) 2796 return matchAddr(ScaleReg, Depth); 2797 2798 // If the scale is 0, it takes nothing to add this. 2799 if (Scale == 0) 2800 return true; 2801 2802 // If we already have a scale of this value, we can add to it, otherwise, we 2803 // need an available scale field. 2804 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2805 return false; 2806 2807 ExtAddrMode TestAddrMode = AddrMode; 2808 2809 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2810 // [A+B + A*7] -> [B+A*8]. 2811 TestAddrMode.Scale += Scale; 2812 TestAddrMode.ScaledReg = ScaleReg; 2813 2814 // If the new address isn't legal, bail out. 2815 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2816 return false; 2817 2818 // It was legal, so commit it. 2819 AddrMode = TestAddrMode; 2820 2821 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2822 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2823 // X*Scale + C*Scale to addr mode. 2824 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2825 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2826 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2827 TestAddrMode.ScaledReg = AddLHS; 2828 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2829 2830 // If this addressing mode is legal, commit it and remember that we folded 2831 // this instruction. 2832 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2833 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2834 AddrMode = TestAddrMode; 2835 return true; 2836 } 2837 } 2838 2839 // Otherwise, not (x+c)*scale, just return what we have. 2840 return true; 2841 } 2842 2843 /// This is a little filter, which returns true if an addressing computation 2844 /// involving I might be folded into a load/store accessing it. 2845 /// This doesn't need to be perfect, but needs to accept at least 2846 /// the set of instructions that MatchOperationAddr can. 2847 static bool MightBeFoldableInst(Instruction *I) { 2848 switch (I->getOpcode()) { 2849 case Instruction::BitCast: 2850 case Instruction::AddrSpaceCast: 2851 // Don't touch identity bitcasts. 2852 if (I->getType() == I->getOperand(0)->getType()) 2853 return false; 2854 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2855 case Instruction::PtrToInt: 2856 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2857 return true; 2858 case Instruction::IntToPtr: 2859 // We know the input is intptr_t, so this is foldable. 2860 return true; 2861 case Instruction::Add: 2862 return true; 2863 case Instruction::Mul: 2864 case Instruction::Shl: 2865 // Can only handle X*C and X << C. 2866 return isa<ConstantInt>(I->getOperand(1)); 2867 case Instruction::GetElementPtr: 2868 return true; 2869 default: 2870 return false; 2871 } 2872 } 2873 2874 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2875 /// \note \p Val is assumed to be the product of some type promotion. 2876 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2877 /// to be legal, as the non-promoted value would have had the same state. 2878 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2879 const DataLayout &DL, Value *Val) { 2880 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2881 if (!PromotedInst) 2882 return false; 2883 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2884 // If the ISDOpcode is undefined, it was undefined before the promotion. 2885 if (!ISDOpcode) 2886 return true; 2887 // Otherwise, check if the promoted instruction is legal or not. 2888 return TLI.isOperationLegalOrCustom( 2889 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2890 } 2891 2892 /// \brief Hepler class to perform type promotion. 2893 class TypePromotionHelper { 2894 /// \brief Utility function to check whether or not a sign or zero extension 2895 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2896 /// either using the operands of \p Inst or promoting \p Inst. 2897 /// The type of the extension is defined by \p IsSExt. 2898 /// In other words, check if: 2899 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2900 /// #1 Promotion applies: 2901 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2902 /// #2 Operand reuses: 2903 /// ext opnd1 to ConsideredExtType. 2904 /// \p PromotedInsts maps the instructions to their type before promotion. 2905 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2906 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2907 2908 /// \brief Utility function to determine if \p OpIdx should be promoted when 2909 /// promoting \p Inst. 2910 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2911 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2912 } 2913 2914 /// \brief Utility function to promote the operand of \p Ext when this 2915 /// operand is a promotable trunc or sext or zext. 2916 /// \p PromotedInsts maps the instructions to their type before promotion. 2917 /// \p CreatedInstsCost[out] contains the cost of all instructions 2918 /// created to promote the operand of Ext. 2919 /// Newly added extensions are inserted in \p Exts. 2920 /// Newly added truncates are inserted in \p Truncs. 2921 /// Should never be called directly. 2922 /// \return The promoted value which is used instead of Ext. 2923 static Value *promoteOperandForTruncAndAnyExt( 2924 Instruction *Ext, TypePromotionTransaction &TPT, 2925 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2926 SmallVectorImpl<Instruction *> *Exts, 2927 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2928 2929 /// \brief Utility function to promote the operand of \p Ext when this 2930 /// operand is promotable and is not a supported trunc or sext. 2931 /// \p PromotedInsts maps the instructions to their type before promotion. 2932 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2933 /// created to promote the operand of Ext. 2934 /// Newly added extensions are inserted in \p Exts. 2935 /// Newly added truncates are inserted in \p Truncs. 2936 /// Should never be called directly. 2937 /// \return The promoted value which is used instead of Ext. 2938 static Value *promoteOperandForOther(Instruction *Ext, 2939 TypePromotionTransaction &TPT, 2940 InstrToOrigTy &PromotedInsts, 2941 unsigned &CreatedInstsCost, 2942 SmallVectorImpl<Instruction *> *Exts, 2943 SmallVectorImpl<Instruction *> *Truncs, 2944 const TargetLowering &TLI, bool IsSExt); 2945 2946 /// \see promoteOperandForOther. 2947 static Value *signExtendOperandForOther( 2948 Instruction *Ext, TypePromotionTransaction &TPT, 2949 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2950 SmallVectorImpl<Instruction *> *Exts, 2951 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2952 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2953 Exts, Truncs, TLI, true); 2954 } 2955 2956 /// \see promoteOperandForOther. 2957 static Value *zeroExtendOperandForOther( 2958 Instruction *Ext, TypePromotionTransaction &TPT, 2959 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2960 SmallVectorImpl<Instruction *> *Exts, 2961 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2962 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2963 Exts, Truncs, TLI, false); 2964 } 2965 2966 public: 2967 /// Type for the utility function that promotes the operand of Ext. 2968 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2969 InstrToOrigTy &PromotedInsts, 2970 unsigned &CreatedInstsCost, 2971 SmallVectorImpl<Instruction *> *Exts, 2972 SmallVectorImpl<Instruction *> *Truncs, 2973 const TargetLowering &TLI); 2974 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2975 /// action to promote the operand of \p Ext instead of using Ext. 2976 /// \return NULL if no promotable action is possible with the current 2977 /// sign extension. 2978 /// \p InsertedInsts keeps track of all the instructions inserted by the 2979 /// other CodeGenPrepare optimizations. This information is important 2980 /// because we do not want to promote these instructions as CodeGenPrepare 2981 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2982 /// \p PromotedInsts maps the instructions to their type before promotion. 2983 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2984 const TargetLowering &TLI, 2985 const InstrToOrigTy &PromotedInsts); 2986 }; 2987 2988 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2989 Type *ConsideredExtType, 2990 const InstrToOrigTy &PromotedInsts, 2991 bool IsSExt) { 2992 // The promotion helper does not know how to deal with vector types yet. 2993 // To be able to fix that, we would need to fix the places where we 2994 // statically extend, e.g., constants and such. 2995 if (Inst->getType()->isVectorTy()) 2996 return false; 2997 2998 // We can always get through zext. 2999 if (isa<ZExtInst>(Inst)) 3000 return true; 3001 3002 // sext(sext) is ok too. 3003 if (IsSExt && isa<SExtInst>(Inst)) 3004 return true; 3005 3006 // We can get through binary operator, if it is legal. In other words, the 3007 // binary operator must have a nuw or nsw flag. 3008 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3009 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3010 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3011 (IsSExt && BinOp->hasNoSignedWrap()))) 3012 return true; 3013 3014 // Check if we can do the following simplification. 3015 // ext(trunc(opnd)) --> ext(opnd) 3016 if (!isa<TruncInst>(Inst)) 3017 return false; 3018 3019 Value *OpndVal = Inst->getOperand(0); 3020 // Check if we can use this operand in the extension. 3021 // If the type is larger than the result type of the extension, we cannot. 3022 if (!OpndVal->getType()->isIntegerTy() || 3023 OpndVal->getType()->getIntegerBitWidth() > 3024 ConsideredExtType->getIntegerBitWidth()) 3025 return false; 3026 3027 // If the operand of the truncate is not an instruction, we will not have 3028 // any information on the dropped bits. 3029 // (Actually we could for constant but it is not worth the extra logic). 3030 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3031 if (!Opnd) 3032 return false; 3033 3034 // Check if the source of the type is narrow enough. 3035 // I.e., check that trunc just drops extended bits of the same kind of 3036 // the extension. 3037 // #1 get the type of the operand and check the kind of the extended bits. 3038 const Type *OpndType; 3039 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3040 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3041 OpndType = It->second.getPointer(); 3042 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3043 OpndType = Opnd->getOperand(0)->getType(); 3044 else 3045 return false; 3046 3047 // #2 check that the truncate just drops extended bits. 3048 return Inst->getType()->getIntegerBitWidth() >= 3049 OpndType->getIntegerBitWidth(); 3050 } 3051 3052 TypePromotionHelper::Action TypePromotionHelper::getAction( 3053 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3054 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3055 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3056 "Unexpected instruction type"); 3057 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3058 Type *ExtTy = Ext->getType(); 3059 bool IsSExt = isa<SExtInst>(Ext); 3060 // If the operand of the extension is not an instruction, we cannot 3061 // get through. 3062 // If it, check we can get through. 3063 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3064 return nullptr; 3065 3066 // Do not promote if the operand has been added by codegenprepare. 3067 // Otherwise, it means we are undoing an optimization that is likely to be 3068 // redone, thus causing potential infinite loop. 3069 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3070 return nullptr; 3071 3072 // SExt or Trunc instructions. 3073 // Return the related handler. 3074 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3075 isa<ZExtInst>(ExtOpnd)) 3076 return promoteOperandForTruncAndAnyExt; 3077 3078 // Regular instruction. 3079 // Abort early if we will have to insert non-free instructions. 3080 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3081 return nullptr; 3082 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3083 } 3084 3085 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3086 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3087 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3088 SmallVectorImpl<Instruction *> *Exts, 3089 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3090 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3091 // get through it and this method should not be called. 3092 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3093 Value *ExtVal = SExt; 3094 bool HasMergedNonFreeExt = false; 3095 if (isa<ZExtInst>(SExtOpnd)) { 3096 // Replace s|zext(zext(opnd)) 3097 // => zext(opnd). 3098 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3099 Value *ZExt = 3100 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3101 TPT.replaceAllUsesWith(SExt, ZExt); 3102 TPT.eraseInstruction(SExt); 3103 ExtVal = ZExt; 3104 } else { 3105 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3106 // => z|sext(opnd). 3107 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3108 } 3109 CreatedInstsCost = 0; 3110 3111 // Remove dead code. 3112 if (SExtOpnd->use_empty()) 3113 TPT.eraseInstruction(SExtOpnd); 3114 3115 // Check if the extension is still needed. 3116 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3117 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3118 if (ExtInst) { 3119 if (Exts) 3120 Exts->push_back(ExtInst); 3121 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3122 } 3123 return ExtVal; 3124 } 3125 3126 // At this point we have: ext ty opnd to ty. 3127 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3128 Value *NextVal = ExtInst->getOperand(0); 3129 TPT.eraseInstruction(ExtInst, NextVal); 3130 return NextVal; 3131 } 3132 3133 Value *TypePromotionHelper::promoteOperandForOther( 3134 Instruction *Ext, TypePromotionTransaction &TPT, 3135 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3136 SmallVectorImpl<Instruction *> *Exts, 3137 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3138 bool IsSExt) { 3139 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3140 // get through it and this method should not be called. 3141 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3142 CreatedInstsCost = 0; 3143 if (!ExtOpnd->hasOneUse()) { 3144 // ExtOpnd will be promoted. 3145 // All its uses, but Ext, will need to use a truncated value of the 3146 // promoted version. 3147 // Create the truncate now. 3148 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3149 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3150 ITrunc->removeFromParent(); 3151 // Insert it just after the definition. 3152 ITrunc->insertAfter(ExtOpnd); 3153 if (Truncs) 3154 Truncs->push_back(ITrunc); 3155 } 3156 3157 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3158 // Restore the operand of Ext (which has been replaced by the previous call 3159 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3160 TPT.setOperand(Ext, 0, ExtOpnd); 3161 } 3162 3163 // Get through the Instruction: 3164 // 1. Update its type. 3165 // 2. Replace the uses of Ext by Inst. 3166 // 3. Extend each operand that needs to be extended. 3167 3168 // Remember the original type of the instruction before promotion. 3169 // This is useful to know that the high bits are sign extended bits. 3170 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3171 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3172 // Step #1. 3173 TPT.mutateType(ExtOpnd, Ext->getType()); 3174 // Step #2. 3175 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3176 // Step #3. 3177 Instruction *ExtForOpnd = Ext; 3178 3179 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3180 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3181 ++OpIdx) { 3182 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3183 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3184 !shouldExtOperand(ExtOpnd, OpIdx)) { 3185 DEBUG(dbgs() << "No need to propagate\n"); 3186 continue; 3187 } 3188 // Check if we can statically extend the operand. 3189 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3190 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3191 DEBUG(dbgs() << "Statically extend\n"); 3192 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3193 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3194 : Cst->getValue().zext(BitWidth); 3195 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3196 continue; 3197 } 3198 // UndefValue are typed, so we have to statically sign extend them. 3199 if (isa<UndefValue>(Opnd)) { 3200 DEBUG(dbgs() << "Statically extend\n"); 3201 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3202 continue; 3203 } 3204 3205 // Otherwise we have to explicity sign extend the operand. 3206 // Check if Ext was reused to extend an operand. 3207 if (!ExtForOpnd) { 3208 // If yes, create a new one. 3209 DEBUG(dbgs() << "More operands to ext\n"); 3210 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3211 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3212 if (!isa<Instruction>(ValForExtOpnd)) { 3213 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3214 continue; 3215 } 3216 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3217 } 3218 if (Exts) 3219 Exts->push_back(ExtForOpnd); 3220 TPT.setOperand(ExtForOpnd, 0, Opnd); 3221 3222 // Move the sign extension before the insertion point. 3223 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3224 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3225 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3226 // If more sext are required, new instructions will have to be created. 3227 ExtForOpnd = nullptr; 3228 } 3229 if (ExtForOpnd == Ext) { 3230 DEBUG(dbgs() << "Extension is useless now\n"); 3231 TPT.eraseInstruction(Ext); 3232 } 3233 return ExtOpnd; 3234 } 3235 3236 /// Check whether or not promoting an instruction to a wider type is profitable. 3237 /// \p NewCost gives the cost of extension instructions created by the 3238 /// promotion. 3239 /// \p OldCost gives the cost of extension instructions before the promotion 3240 /// plus the number of instructions that have been 3241 /// matched in the addressing mode the promotion. 3242 /// \p PromotedOperand is the value that has been promoted. 3243 /// \return True if the promotion is profitable, false otherwise. 3244 bool AddressingModeMatcher::isPromotionProfitable( 3245 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3246 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3247 // The cost of the new extensions is greater than the cost of the 3248 // old extension plus what we folded. 3249 // This is not profitable. 3250 if (NewCost > OldCost) 3251 return false; 3252 if (NewCost < OldCost) 3253 return true; 3254 // The promotion is neutral but it may help folding the sign extension in 3255 // loads for instance. 3256 // Check that we did not create an illegal instruction. 3257 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3258 } 3259 3260 /// Given an instruction or constant expr, see if we can fold the operation 3261 /// into the addressing mode. If so, update the addressing mode and return 3262 /// true, otherwise return false without modifying AddrMode. 3263 /// If \p MovedAway is not NULL, it contains the information of whether or 3264 /// not AddrInst has to be folded into the addressing mode on success. 3265 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3266 /// because it has been moved away. 3267 /// Thus AddrInst must not be added in the matched instructions. 3268 /// This state can happen when AddrInst is a sext, since it may be moved away. 3269 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3270 /// not be referenced anymore. 3271 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3272 unsigned Depth, 3273 bool *MovedAway) { 3274 // Avoid exponential behavior on extremely deep expression trees. 3275 if (Depth >= 5) return false; 3276 3277 // By default, all matched instructions stay in place. 3278 if (MovedAway) 3279 *MovedAway = false; 3280 3281 switch (Opcode) { 3282 case Instruction::PtrToInt: 3283 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3284 return matchAddr(AddrInst->getOperand(0), Depth); 3285 case Instruction::IntToPtr: { 3286 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3287 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3288 // This inttoptr is a no-op if the integer type is pointer sized. 3289 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3290 return matchAddr(AddrInst->getOperand(0), Depth); 3291 return false; 3292 } 3293 case Instruction::BitCast: 3294 // BitCast is always a noop, and we can handle it as long as it is 3295 // int->int or pointer->pointer (we don't want int<->fp or something). 3296 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3297 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3298 // Don't touch identity bitcasts. These were probably put here by LSR, 3299 // and we don't want to mess around with them. Assume it knows what it 3300 // is doing. 3301 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3302 return matchAddr(AddrInst->getOperand(0), Depth); 3303 return false; 3304 case Instruction::AddrSpaceCast: { 3305 unsigned SrcAS 3306 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3307 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3308 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3309 return matchAddr(AddrInst->getOperand(0), Depth); 3310 return false; 3311 } 3312 case Instruction::Add: { 3313 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3314 ExtAddrMode BackupAddrMode = AddrMode; 3315 unsigned OldSize = AddrModeInsts.size(); 3316 // Start a transaction at this point. 3317 // The LHS may match but not the RHS. 3318 // Therefore, we need a higher level restoration point to undo partially 3319 // matched operation. 3320 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3321 TPT.getRestorationPoint(); 3322 3323 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3324 matchAddr(AddrInst->getOperand(0), Depth+1)) 3325 return true; 3326 3327 // Restore the old addr mode info. 3328 AddrMode = BackupAddrMode; 3329 AddrModeInsts.resize(OldSize); 3330 TPT.rollback(LastKnownGood); 3331 3332 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3333 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3334 matchAddr(AddrInst->getOperand(1), Depth+1)) 3335 return true; 3336 3337 // Otherwise we definitely can't merge the ADD in. 3338 AddrMode = BackupAddrMode; 3339 AddrModeInsts.resize(OldSize); 3340 TPT.rollback(LastKnownGood); 3341 break; 3342 } 3343 //case Instruction::Or: 3344 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3345 //break; 3346 case Instruction::Mul: 3347 case Instruction::Shl: { 3348 // Can only handle X*C and X << C. 3349 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3350 if (!RHS) 3351 return false; 3352 int64_t Scale = RHS->getSExtValue(); 3353 if (Opcode == Instruction::Shl) 3354 Scale = 1LL << Scale; 3355 3356 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3357 } 3358 case Instruction::GetElementPtr: { 3359 // Scan the GEP. We check it if it contains constant offsets and at most 3360 // one variable offset. 3361 int VariableOperand = -1; 3362 unsigned VariableScale = 0; 3363 3364 int64_t ConstantOffset = 0; 3365 gep_type_iterator GTI = gep_type_begin(AddrInst); 3366 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3367 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3368 const StructLayout *SL = DL.getStructLayout(STy); 3369 unsigned Idx = 3370 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3371 ConstantOffset += SL->getElementOffset(Idx); 3372 } else { 3373 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3374 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3375 ConstantOffset += CI->getSExtValue()*TypeSize; 3376 } else if (TypeSize) { // Scales of zero don't do anything. 3377 // We only allow one variable index at the moment. 3378 if (VariableOperand != -1) 3379 return false; 3380 3381 // Remember the variable index. 3382 VariableOperand = i; 3383 VariableScale = TypeSize; 3384 } 3385 } 3386 } 3387 3388 // A common case is for the GEP to only do a constant offset. In this case, 3389 // just add it to the disp field and check validity. 3390 if (VariableOperand == -1) { 3391 AddrMode.BaseOffs += ConstantOffset; 3392 if (ConstantOffset == 0 || 3393 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3394 // Check to see if we can fold the base pointer in too. 3395 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3396 return true; 3397 } 3398 AddrMode.BaseOffs -= ConstantOffset; 3399 return false; 3400 } 3401 3402 // Save the valid addressing mode in case we can't match. 3403 ExtAddrMode BackupAddrMode = AddrMode; 3404 unsigned OldSize = AddrModeInsts.size(); 3405 3406 // See if the scale and offset amount is valid for this target. 3407 AddrMode.BaseOffs += ConstantOffset; 3408 3409 // Match the base operand of the GEP. 3410 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3411 // If it couldn't be matched, just stuff the value in a register. 3412 if (AddrMode.HasBaseReg) { 3413 AddrMode = BackupAddrMode; 3414 AddrModeInsts.resize(OldSize); 3415 return false; 3416 } 3417 AddrMode.HasBaseReg = true; 3418 AddrMode.BaseReg = AddrInst->getOperand(0); 3419 } 3420 3421 // Match the remaining variable portion of the GEP. 3422 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3423 Depth)) { 3424 // If it couldn't be matched, try stuffing the base into a register 3425 // instead of matching it, and retrying the match of the scale. 3426 AddrMode = BackupAddrMode; 3427 AddrModeInsts.resize(OldSize); 3428 if (AddrMode.HasBaseReg) 3429 return false; 3430 AddrMode.HasBaseReg = true; 3431 AddrMode.BaseReg = AddrInst->getOperand(0); 3432 AddrMode.BaseOffs += ConstantOffset; 3433 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3434 VariableScale, Depth)) { 3435 // If even that didn't work, bail. 3436 AddrMode = BackupAddrMode; 3437 AddrModeInsts.resize(OldSize); 3438 return false; 3439 } 3440 } 3441 3442 return true; 3443 } 3444 case Instruction::SExt: 3445 case Instruction::ZExt: { 3446 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3447 if (!Ext) 3448 return false; 3449 3450 // Try to move this ext out of the way of the addressing mode. 3451 // Ask for a method for doing so. 3452 TypePromotionHelper::Action TPH = 3453 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3454 if (!TPH) 3455 return false; 3456 3457 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3458 TPT.getRestorationPoint(); 3459 unsigned CreatedInstsCost = 0; 3460 unsigned ExtCost = !TLI.isExtFree(Ext); 3461 Value *PromotedOperand = 3462 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3463 // SExt has been moved away. 3464 // Thus either it will be rematched later in the recursive calls or it is 3465 // gone. Anyway, we must not fold it into the addressing mode at this point. 3466 // E.g., 3467 // op = add opnd, 1 3468 // idx = ext op 3469 // addr = gep base, idx 3470 // is now: 3471 // promotedOpnd = ext opnd <- no match here 3472 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3473 // addr = gep base, op <- match 3474 if (MovedAway) 3475 *MovedAway = true; 3476 3477 assert(PromotedOperand && 3478 "TypePromotionHelper should have filtered out those cases"); 3479 3480 ExtAddrMode BackupAddrMode = AddrMode; 3481 unsigned OldSize = AddrModeInsts.size(); 3482 3483 if (!matchAddr(PromotedOperand, Depth) || 3484 // The total of the new cost is equal to the cost of the created 3485 // instructions. 3486 // The total of the old cost is equal to the cost of the extension plus 3487 // what we have saved in the addressing mode. 3488 !isPromotionProfitable(CreatedInstsCost, 3489 ExtCost + (AddrModeInsts.size() - OldSize), 3490 PromotedOperand)) { 3491 AddrMode = BackupAddrMode; 3492 AddrModeInsts.resize(OldSize); 3493 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3494 TPT.rollback(LastKnownGood); 3495 return false; 3496 } 3497 return true; 3498 } 3499 } 3500 return false; 3501 } 3502 3503 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3504 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3505 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3506 /// for the target. 3507 /// 3508 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3509 // Start a transaction at this point that we will rollback if the matching 3510 // fails. 3511 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3512 TPT.getRestorationPoint(); 3513 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3514 // Fold in immediates if legal for the target. 3515 AddrMode.BaseOffs += CI->getSExtValue(); 3516 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3517 return true; 3518 AddrMode.BaseOffs -= CI->getSExtValue(); 3519 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3520 // If this is a global variable, try to fold it into the addressing mode. 3521 if (!AddrMode.BaseGV) { 3522 AddrMode.BaseGV = GV; 3523 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3524 return true; 3525 AddrMode.BaseGV = nullptr; 3526 } 3527 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3528 ExtAddrMode BackupAddrMode = AddrMode; 3529 unsigned OldSize = AddrModeInsts.size(); 3530 3531 // Check to see if it is possible to fold this operation. 3532 bool MovedAway = false; 3533 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3534 // This instruction may have been moved away. If so, there is nothing 3535 // to check here. 3536 if (MovedAway) 3537 return true; 3538 // Okay, it's possible to fold this. Check to see if it is actually 3539 // *profitable* to do so. We use a simple cost model to avoid increasing 3540 // register pressure too much. 3541 if (I->hasOneUse() || 3542 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3543 AddrModeInsts.push_back(I); 3544 return true; 3545 } 3546 3547 // It isn't profitable to do this, roll back. 3548 //cerr << "NOT FOLDING: " << *I; 3549 AddrMode = BackupAddrMode; 3550 AddrModeInsts.resize(OldSize); 3551 TPT.rollback(LastKnownGood); 3552 } 3553 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3554 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3555 return true; 3556 TPT.rollback(LastKnownGood); 3557 } else if (isa<ConstantPointerNull>(Addr)) { 3558 // Null pointer gets folded without affecting the addressing mode. 3559 return true; 3560 } 3561 3562 // Worse case, the target should support [reg] addressing modes. :) 3563 if (!AddrMode.HasBaseReg) { 3564 AddrMode.HasBaseReg = true; 3565 AddrMode.BaseReg = Addr; 3566 // Still check for legality in case the target supports [imm] but not [i+r]. 3567 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3568 return true; 3569 AddrMode.HasBaseReg = false; 3570 AddrMode.BaseReg = nullptr; 3571 } 3572 3573 // If the base register is already taken, see if we can do [r+r]. 3574 if (AddrMode.Scale == 0) { 3575 AddrMode.Scale = 1; 3576 AddrMode.ScaledReg = Addr; 3577 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3578 return true; 3579 AddrMode.Scale = 0; 3580 AddrMode.ScaledReg = nullptr; 3581 } 3582 // Couldn't match. 3583 TPT.rollback(LastKnownGood); 3584 return false; 3585 } 3586 3587 /// Check to see if all uses of OpVal by the specified inline asm call are due 3588 /// to memory operands. If so, return true, otherwise return false. 3589 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3590 const TargetMachine &TM) { 3591 const Function *F = CI->getParent()->getParent(); 3592 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3593 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3594 TargetLowering::AsmOperandInfoVector TargetConstraints = 3595 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3596 ImmutableCallSite(CI)); 3597 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3598 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3599 3600 // Compute the constraint code and ConstraintType to use. 3601 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3602 3603 // If this asm operand is our Value*, and if it isn't an indirect memory 3604 // operand, we can't fold it! 3605 if (OpInfo.CallOperandVal == OpVal && 3606 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3607 !OpInfo.isIndirect)) 3608 return false; 3609 } 3610 3611 return true; 3612 } 3613 3614 /// Recursively walk all the uses of I until we find a memory use. 3615 /// If we find an obviously non-foldable instruction, return true. 3616 /// Add the ultimately found memory instructions to MemoryUses. 3617 static bool FindAllMemoryUses( 3618 Instruction *I, 3619 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3620 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3621 // If we already considered this instruction, we're done. 3622 if (!ConsideredInsts.insert(I).second) 3623 return false; 3624 3625 // If this is an obviously unfoldable instruction, bail out. 3626 if (!MightBeFoldableInst(I)) 3627 return true; 3628 3629 const bool OptSize = I->getFunction()->optForSize(); 3630 3631 // Loop over all the uses, recursively processing them. 3632 for (Use &U : I->uses()) { 3633 Instruction *UserI = cast<Instruction>(U.getUser()); 3634 3635 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3636 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3637 continue; 3638 } 3639 3640 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3641 unsigned opNo = U.getOperandNo(); 3642 if (opNo == 0) return true; // Storing addr, not into addr. 3643 MemoryUses.push_back(std::make_pair(SI, opNo)); 3644 continue; 3645 } 3646 3647 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3648 // If this is a cold call, we can sink the addressing calculation into 3649 // the cold path. See optimizeCallInst 3650 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3651 continue; 3652 3653 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3654 if (!IA) return true; 3655 3656 // If this is a memory operand, we're cool, otherwise bail out. 3657 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3658 return true; 3659 continue; 3660 } 3661 3662 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3663 return true; 3664 } 3665 3666 return false; 3667 } 3668 3669 /// Return true if Val is already known to be live at the use site that we're 3670 /// folding it into. If so, there is no cost to include it in the addressing 3671 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3672 /// instruction already. 3673 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3674 Value *KnownLive2) { 3675 // If Val is either of the known-live values, we know it is live! 3676 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3677 return true; 3678 3679 // All values other than instructions and arguments (e.g. constants) are live. 3680 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3681 3682 // If Val is a constant sized alloca in the entry block, it is live, this is 3683 // true because it is just a reference to the stack/frame pointer, which is 3684 // live for the whole function. 3685 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3686 if (AI->isStaticAlloca()) 3687 return true; 3688 3689 // Check to see if this value is already used in the memory instruction's 3690 // block. If so, it's already live into the block at the very least, so we 3691 // can reasonably fold it. 3692 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3693 } 3694 3695 /// It is possible for the addressing mode of the machine to fold the specified 3696 /// instruction into a load or store that ultimately uses it. 3697 /// However, the specified instruction has multiple uses. 3698 /// Given this, it may actually increase register pressure to fold it 3699 /// into the load. For example, consider this code: 3700 /// 3701 /// X = ... 3702 /// Y = X+1 3703 /// use(Y) -> nonload/store 3704 /// Z = Y+1 3705 /// load Z 3706 /// 3707 /// In this case, Y has multiple uses, and can be folded into the load of Z 3708 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3709 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3710 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3711 /// number of computations either. 3712 /// 3713 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3714 /// X was live across 'load Z' for other reasons, we actually *would* want to 3715 /// fold the addressing mode in the Z case. This would make Y die earlier. 3716 bool AddressingModeMatcher:: 3717 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3718 ExtAddrMode &AMAfter) { 3719 if (IgnoreProfitability) return true; 3720 3721 // AMBefore is the addressing mode before this instruction was folded into it, 3722 // and AMAfter is the addressing mode after the instruction was folded. Get 3723 // the set of registers referenced by AMAfter and subtract out those 3724 // referenced by AMBefore: this is the set of values which folding in this 3725 // address extends the lifetime of. 3726 // 3727 // Note that there are only two potential values being referenced here, 3728 // BaseReg and ScaleReg (global addresses are always available, as are any 3729 // folded immediates). 3730 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3731 3732 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3733 // lifetime wasn't extended by adding this instruction. 3734 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3735 BaseReg = nullptr; 3736 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3737 ScaledReg = nullptr; 3738 3739 // If folding this instruction (and it's subexprs) didn't extend any live 3740 // ranges, we're ok with it. 3741 if (!BaseReg && !ScaledReg) 3742 return true; 3743 3744 // If all uses of this instruction can have the address mode sunk into them, 3745 // we can remove the addressing mode and effectively trade one live register 3746 // for another (at worst.) In this context, folding an addressing mode into 3747 // the use is just a particularly nice way of sinking it. 3748 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3749 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3750 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3751 return false; // Has a non-memory, non-foldable use! 3752 3753 // Now that we know that all uses of this instruction are part of a chain of 3754 // computation involving only operations that could theoretically be folded 3755 // into a memory use, loop over each of these memory operation uses and see 3756 // if they could *actually* fold the instruction. The assumption is that 3757 // addressing modes are cheap and that duplicating the computation involved 3758 // many times is worthwhile, even on a fastpath. For sinking candidates 3759 // (i.e. cold call sites), this serves as a way to prevent excessive code 3760 // growth since most architectures have some reasonable small and fast way to 3761 // compute an effective address. (i.e LEA on x86) 3762 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3763 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3764 Instruction *User = MemoryUses[i].first; 3765 unsigned OpNo = MemoryUses[i].second; 3766 3767 // Get the access type of this use. If the use isn't a pointer, we don't 3768 // know what it accesses. 3769 Value *Address = User->getOperand(OpNo); 3770 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3771 if (!AddrTy) 3772 return false; 3773 Type *AddressAccessTy = AddrTy->getElementType(); 3774 unsigned AS = AddrTy->getAddressSpace(); 3775 3776 // Do a match against the root of this address, ignoring profitability. This 3777 // will tell us if the addressing mode for the memory operation will 3778 // *actually* cover the shared instruction. 3779 ExtAddrMode Result; 3780 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3781 TPT.getRestorationPoint(); 3782 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3783 MemoryInst, Result, InsertedInsts, 3784 PromotedInsts, TPT); 3785 Matcher.IgnoreProfitability = true; 3786 bool Success = Matcher.matchAddr(Address, 0); 3787 (void)Success; assert(Success && "Couldn't select *anything*?"); 3788 3789 // The match was to check the profitability, the changes made are not 3790 // part of the original matcher. Therefore, they should be dropped 3791 // otherwise the original matcher will not present the right state. 3792 TPT.rollback(LastKnownGood); 3793 3794 // If the match didn't cover I, then it won't be shared by it. 3795 if (!is_contained(MatchedAddrModeInsts, I)) 3796 return false; 3797 3798 MatchedAddrModeInsts.clear(); 3799 } 3800 3801 return true; 3802 } 3803 3804 } // end anonymous namespace 3805 3806 /// Return true if the specified values are defined in a 3807 /// different basic block than BB. 3808 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3809 if (Instruction *I = dyn_cast<Instruction>(V)) 3810 return I->getParent() != BB; 3811 return false; 3812 } 3813 3814 /// Sink addressing mode computation immediate before MemoryInst if doing so 3815 /// can be done without increasing register pressure. The need for the 3816 /// register pressure constraint means this can end up being an all or nothing 3817 /// decision for all uses of the same addressing computation. 3818 /// 3819 /// Load and Store Instructions often have addressing modes that can do 3820 /// significant amounts of computation. As such, instruction selection will try 3821 /// to get the load or store to do as much computation as possible for the 3822 /// program. The problem is that isel can only see within a single block. As 3823 /// such, we sink as much legal addressing mode work into the block as possible. 3824 /// 3825 /// This method is used to optimize both load/store and inline asms with memory 3826 /// operands. It's also used to sink addressing computations feeding into cold 3827 /// call sites into their (cold) basic block. 3828 /// 3829 /// The motivation for handling sinking into cold blocks is that doing so can 3830 /// both enable other address mode sinking (by satisfying the register pressure 3831 /// constraint above), and reduce register pressure globally (by removing the 3832 /// addressing mode computation from the fast path entirely.). 3833 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3834 Type *AccessTy, unsigned AddrSpace) { 3835 Value *Repl = Addr; 3836 3837 // Try to collapse single-value PHI nodes. This is necessary to undo 3838 // unprofitable PRE transformations. 3839 SmallVector<Value*, 8> worklist; 3840 SmallPtrSet<Value*, 16> Visited; 3841 worklist.push_back(Addr); 3842 3843 // Use a worklist to iteratively look through PHI nodes, and ensure that 3844 // the addressing mode obtained from the non-PHI roots of the graph 3845 // are equivalent. 3846 Value *Consensus = nullptr; 3847 unsigned NumUsesConsensus = 0; 3848 bool IsNumUsesConsensusValid = false; 3849 SmallVector<Instruction*, 16> AddrModeInsts; 3850 ExtAddrMode AddrMode; 3851 TypePromotionTransaction TPT; 3852 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3853 TPT.getRestorationPoint(); 3854 while (!worklist.empty()) { 3855 Value *V = worklist.back(); 3856 worklist.pop_back(); 3857 3858 // Break use-def graph loops. 3859 if (!Visited.insert(V).second) { 3860 Consensus = nullptr; 3861 break; 3862 } 3863 3864 // For a PHI node, push all of its incoming values. 3865 if (PHINode *P = dyn_cast<PHINode>(V)) { 3866 for (Value *IncValue : P->incoming_values()) 3867 worklist.push_back(IncValue); 3868 continue; 3869 } 3870 3871 // For non-PHIs, determine the addressing mode being computed. Note that 3872 // the result may differ depending on what other uses our candidate 3873 // addressing instructions might have. 3874 SmallVector<Instruction*, 16> NewAddrModeInsts; 3875 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3876 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3877 InsertedInsts, PromotedInsts, TPT); 3878 3879 // This check is broken into two cases with very similar code to avoid using 3880 // getNumUses() as much as possible. Some values have a lot of uses, so 3881 // calling getNumUses() unconditionally caused a significant compile-time 3882 // regression. 3883 if (!Consensus) { 3884 Consensus = V; 3885 AddrMode = NewAddrMode; 3886 AddrModeInsts = NewAddrModeInsts; 3887 continue; 3888 } else if (NewAddrMode == AddrMode) { 3889 if (!IsNumUsesConsensusValid) { 3890 NumUsesConsensus = Consensus->getNumUses(); 3891 IsNumUsesConsensusValid = true; 3892 } 3893 3894 // Ensure that the obtained addressing mode is equivalent to that obtained 3895 // for all other roots of the PHI traversal. Also, when choosing one 3896 // such root as representative, select the one with the most uses in order 3897 // to keep the cost modeling heuristics in AddressingModeMatcher 3898 // applicable. 3899 unsigned NumUses = V->getNumUses(); 3900 if (NumUses > NumUsesConsensus) { 3901 Consensus = V; 3902 NumUsesConsensus = NumUses; 3903 AddrModeInsts = NewAddrModeInsts; 3904 } 3905 continue; 3906 } 3907 3908 Consensus = nullptr; 3909 break; 3910 } 3911 3912 // If the addressing mode couldn't be determined, or if multiple different 3913 // ones were determined, bail out now. 3914 if (!Consensus) { 3915 TPT.rollback(LastKnownGood); 3916 return false; 3917 } 3918 TPT.commit(); 3919 3920 // If all the instructions matched are already in this BB, don't do anything. 3921 if (none_of(AddrModeInsts, [&](Value *V) { 3922 return IsNonLocalValue(V, MemoryInst->getParent()); 3923 })) { 3924 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3925 return false; 3926 } 3927 3928 // Insert this computation right after this user. Since our caller is 3929 // scanning from the top of the BB to the bottom, reuse of the expr are 3930 // guaranteed to happen later. 3931 IRBuilder<> Builder(MemoryInst); 3932 3933 // Now that we determined the addressing expression we want to use and know 3934 // that we have to sink it into this block. Check to see if we have already 3935 // done this for some other load/store instr in this block. If so, reuse the 3936 // computation. 3937 Value *&SunkAddr = SunkAddrs[Addr]; 3938 if (SunkAddr) { 3939 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3940 << *MemoryInst << "\n"); 3941 if (SunkAddr->getType() != Addr->getType()) 3942 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3943 } else if (AddrSinkUsingGEPs || 3944 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3945 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3946 ->useAA())) { 3947 // By default, we use the GEP-based method when AA is used later. This 3948 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3949 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3950 << *MemoryInst << "\n"); 3951 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3952 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3953 3954 // First, find the pointer. 3955 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3956 ResultPtr = AddrMode.BaseReg; 3957 AddrMode.BaseReg = nullptr; 3958 } 3959 3960 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3961 // We can't add more than one pointer together, nor can we scale a 3962 // pointer (both of which seem meaningless). 3963 if (ResultPtr || AddrMode.Scale != 1) 3964 return false; 3965 3966 ResultPtr = AddrMode.ScaledReg; 3967 AddrMode.Scale = 0; 3968 } 3969 3970 if (AddrMode.BaseGV) { 3971 if (ResultPtr) 3972 return false; 3973 3974 ResultPtr = AddrMode.BaseGV; 3975 } 3976 3977 // If the real base value actually came from an inttoptr, then the matcher 3978 // will look through it and provide only the integer value. In that case, 3979 // use it here. 3980 if (!ResultPtr && AddrMode.BaseReg) { 3981 ResultPtr = 3982 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3983 AddrMode.BaseReg = nullptr; 3984 } else if (!ResultPtr && AddrMode.Scale == 1) { 3985 ResultPtr = 3986 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3987 AddrMode.Scale = 0; 3988 } 3989 3990 if (!ResultPtr && 3991 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3992 SunkAddr = Constant::getNullValue(Addr->getType()); 3993 } else if (!ResultPtr) { 3994 return false; 3995 } else { 3996 Type *I8PtrTy = 3997 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3998 Type *I8Ty = Builder.getInt8Ty(); 3999 4000 // Start with the base register. Do this first so that subsequent address 4001 // matching finds it last, which will prevent it from trying to match it 4002 // as the scaled value in case it happens to be a mul. That would be 4003 // problematic if we've sunk a different mul for the scale, because then 4004 // we'd end up sinking both muls. 4005 if (AddrMode.BaseReg) { 4006 Value *V = AddrMode.BaseReg; 4007 if (V->getType() != IntPtrTy) 4008 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4009 4010 ResultIndex = V; 4011 } 4012 4013 // Add the scale value. 4014 if (AddrMode.Scale) { 4015 Value *V = AddrMode.ScaledReg; 4016 if (V->getType() == IntPtrTy) { 4017 // done. 4018 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4019 cast<IntegerType>(V->getType())->getBitWidth()) { 4020 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4021 } else { 4022 // It is only safe to sign extend the BaseReg if we know that the math 4023 // required to create it did not overflow before we extend it. Since 4024 // the original IR value was tossed in favor of a constant back when 4025 // the AddrMode was created we need to bail out gracefully if widths 4026 // do not match instead of extending it. 4027 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4028 if (I && (ResultIndex != AddrMode.BaseReg)) 4029 I->eraseFromParent(); 4030 return false; 4031 } 4032 4033 if (AddrMode.Scale != 1) 4034 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4035 "sunkaddr"); 4036 if (ResultIndex) 4037 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4038 else 4039 ResultIndex = V; 4040 } 4041 4042 // Add in the Base Offset if present. 4043 if (AddrMode.BaseOffs) { 4044 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4045 if (ResultIndex) { 4046 // We need to add this separately from the scale above to help with 4047 // SDAG consecutive load/store merging. 4048 if (ResultPtr->getType() != I8PtrTy) 4049 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4050 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4051 } 4052 4053 ResultIndex = V; 4054 } 4055 4056 if (!ResultIndex) { 4057 SunkAddr = ResultPtr; 4058 } else { 4059 if (ResultPtr->getType() != I8PtrTy) 4060 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4061 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4062 } 4063 4064 if (SunkAddr->getType() != Addr->getType()) 4065 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 4066 } 4067 } else { 4068 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4069 << *MemoryInst << "\n"); 4070 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4071 Value *Result = nullptr; 4072 4073 // Start with the base register. Do this first so that subsequent address 4074 // matching finds it last, which will prevent it from trying to match it 4075 // as the scaled value in case it happens to be a mul. That would be 4076 // problematic if we've sunk a different mul for the scale, because then 4077 // we'd end up sinking both muls. 4078 if (AddrMode.BaseReg) { 4079 Value *V = AddrMode.BaseReg; 4080 if (V->getType()->isPointerTy()) 4081 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4082 if (V->getType() != IntPtrTy) 4083 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4084 Result = V; 4085 } 4086 4087 // Add the scale value. 4088 if (AddrMode.Scale) { 4089 Value *V = AddrMode.ScaledReg; 4090 if (V->getType() == IntPtrTy) { 4091 // done. 4092 } else if (V->getType()->isPointerTy()) { 4093 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4094 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4095 cast<IntegerType>(V->getType())->getBitWidth()) { 4096 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4097 } else { 4098 // It is only safe to sign extend the BaseReg if we know that the math 4099 // required to create it did not overflow before we extend it. Since 4100 // the original IR value was tossed in favor of a constant back when 4101 // the AddrMode was created we need to bail out gracefully if widths 4102 // do not match instead of extending it. 4103 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4104 if (I && (Result != AddrMode.BaseReg)) 4105 I->eraseFromParent(); 4106 return false; 4107 } 4108 if (AddrMode.Scale != 1) 4109 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4110 "sunkaddr"); 4111 if (Result) 4112 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4113 else 4114 Result = V; 4115 } 4116 4117 // Add in the BaseGV if present. 4118 if (AddrMode.BaseGV) { 4119 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4120 if (Result) 4121 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4122 else 4123 Result = V; 4124 } 4125 4126 // Add in the Base Offset if present. 4127 if (AddrMode.BaseOffs) { 4128 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4129 if (Result) 4130 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4131 else 4132 Result = V; 4133 } 4134 4135 if (!Result) 4136 SunkAddr = Constant::getNullValue(Addr->getType()); 4137 else 4138 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4139 } 4140 4141 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4142 4143 // If we have no uses, recursively delete the value and all dead instructions 4144 // using it. 4145 if (Repl->use_empty()) { 4146 // This can cause recursive deletion, which can invalidate our iterator. 4147 // Use a WeakVH to hold onto it in case this happens. 4148 Value *CurValue = &*CurInstIterator; 4149 WeakVH IterHandle(CurValue); 4150 BasicBlock *BB = CurInstIterator->getParent(); 4151 4152 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4153 4154 if (IterHandle != CurValue) { 4155 // If the iterator instruction was recursively deleted, start over at the 4156 // start of the block. 4157 CurInstIterator = BB->begin(); 4158 SunkAddrs.clear(); 4159 } 4160 } 4161 ++NumMemoryInsts; 4162 return true; 4163 } 4164 4165 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4166 /// address computing into the block when possible / profitable. 4167 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4168 bool MadeChange = false; 4169 4170 const TargetRegisterInfo *TRI = 4171 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4172 TargetLowering::AsmOperandInfoVector TargetConstraints = 4173 TLI->ParseConstraints(*DL, TRI, CS); 4174 unsigned ArgNo = 0; 4175 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4176 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4177 4178 // Compute the constraint code and ConstraintType to use. 4179 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4180 4181 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4182 OpInfo.isIndirect) { 4183 Value *OpVal = CS->getArgOperand(ArgNo++); 4184 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4185 } else if (OpInfo.Type == InlineAsm::isInput) 4186 ArgNo++; 4187 } 4188 4189 return MadeChange; 4190 } 4191 4192 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4193 /// sign extensions. 4194 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4195 assert(!Inst->use_empty() && "Input must have at least one use"); 4196 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4197 bool IsSExt = isa<SExtInst>(FirstUser); 4198 Type *ExtTy = FirstUser->getType(); 4199 for (const User *U : Inst->users()) { 4200 const Instruction *UI = cast<Instruction>(U); 4201 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4202 return false; 4203 Type *CurTy = UI->getType(); 4204 // Same input and output types: Same instruction after CSE. 4205 if (CurTy == ExtTy) 4206 continue; 4207 4208 // If IsSExt is true, we are in this situation: 4209 // a = Inst 4210 // b = sext ty1 a to ty2 4211 // c = sext ty1 a to ty3 4212 // Assuming ty2 is shorter than ty3, this could be turned into: 4213 // a = Inst 4214 // b = sext ty1 a to ty2 4215 // c = sext ty2 b to ty3 4216 // However, the last sext is not free. 4217 if (IsSExt) 4218 return false; 4219 4220 // This is a ZExt, maybe this is free to extend from one type to another. 4221 // In that case, we would not account for a different use. 4222 Type *NarrowTy; 4223 Type *LargeTy; 4224 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4225 CurTy->getScalarType()->getIntegerBitWidth()) { 4226 NarrowTy = CurTy; 4227 LargeTy = ExtTy; 4228 } else { 4229 NarrowTy = ExtTy; 4230 LargeTy = CurTy; 4231 } 4232 4233 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4234 return false; 4235 } 4236 // All uses are the same or can be derived from one another for free. 4237 return true; 4238 } 4239 4240 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4241 /// load instruction. 4242 /// If an ext(load) can be formed, it is returned via \p LI for the load 4243 /// and \p Inst for the extension. 4244 /// Otherwise LI == nullptr and Inst == nullptr. 4245 /// When some promotion happened, \p TPT contains the proper state to 4246 /// revert them. 4247 /// 4248 /// \return true when promoting was necessary to expose the ext(load) 4249 /// opportunity, false otherwise. 4250 /// 4251 /// Example: 4252 /// \code 4253 /// %ld = load i32* %addr 4254 /// %add = add nuw i32 %ld, 4 4255 /// %zext = zext i32 %add to i64 4256 /// \endcode 4257 /// => 4258 /// \code 4259 /// %ld = load i32* %addr 4260 /// %zext = zext i32 %ld to i64 4261 /// %add = add nuw i64 %zext, 4 4262 /// \encode 4263 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4264 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4265 LoadInst *&LI, Instruction *&Inst, 4266 const SmallVectorImpl<Instruction *> &Exts, 4267 unsigned CreatedInstsCost = 0) { 4268 // Iterate over all the extensions to see if one form an ext(load). 4269 for (auto I : Exts) { 4270 // Check if we directly have ext(load). 4271 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4272 Inst = I; 4273 // No promotion happened here. 4274 return false; 4275 } 4276 // Check whether or not we want to do any promotion. 4277 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4278 continue; 4279 // Get the action to perform the promotion. 4280 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4281 I, InsertedInsts, *TLI, PromotedInsts); 4282 // Check if we can promote. 4283 if (!TPH) 4284 continue; 4285 // Save the current state. 4286 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4287 TPT.getRestorationPoint(); 4288 SmallVector<Instruction *, 4> NewExts; 4289 unsigned NewCreatedInstsCost = 0; 4290 unsigned ExtCost = !TLI->isExtFree(I); 4291 // Promote. 4292 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4293 &NewExts, nullptr, *TLI); 4294 assert(PromotedVal && 4295 "TypePromotionHelper should have filtered out those cases"); 4296 4297 // We would be able to merge only one extension in a load. 4298 // Therefore, if we have more than 1 new extension we heuristically 4299 // cut this search path, because it means we degrade the code quality. 4300 // With exactly 2, the transformation is neutral, because we will merge 4301 // one extension but leave one. However, we optimistically keep going, 4302 // because the new extension may be removed too. 4303 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4304 TotalCreatedInstsCost -= ExtCost; 4305 if (!StressExtLdPromotion && 4306 (TotalCreatedInstsCost > 1 || 4307 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4308 // The promotion is not profitable, rollback to the previous state. 4309 TPT.rollback(LastKnownGood); 4310 continue; 4311 } 4312 // The promotion is profitable. 4313 // Check if it exposes an ext(load). 4314 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4315 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4316 // If we have created a new extension, i.e., now we have two 4317 // extensions. We must make sure one of them is merged with 4318 // the load, otherwise we may degrade the code quality. 4319 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4320 // Promotion happened. 4321 return true; 4322 // If this does not help to expose an ext(load) then, rollback. 4323 TPT.rollback(LastKnownGood); 4324 } 4325 // None of the extension can form an ext(load). 4326 LI = nullptr; 4327 Inst = nullptr; 4328 return false; 4329 } 4330 4331 /// Move a zext or sext fed by a load into the same basic block as the load, 4332 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4333 /// extend into the load. 4334 /// \p I[in/out] the extension may be modified during the process if some 4335 /// promotions apply. 4336 /// 4337 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4338 // ExtLoad formation infrastructure requires TLI to be effective. 4339 if (!TLI) 4340 return false; 4341 4342 // Try to promote a chain of computation if it allows to form 4343 // an extended load. 4344 TypePromotionTransaction TPT; 4345 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4346 TPT.getRestorationPoint(); 4347 SmallVector<Instruction *, 1> Exts; 4348 Exts.push_back(I); 4349 // Look for a load being extended. 4350 LoadInst *LI = nullptr; 4351 Instruction *OldExt = I; 4352 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4353 if (!LI || !I) { 4354 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4355 "the code must remain the same"); 4356 I = OldExt; 4357 return false; 4358 } 4359 4360 // If they're already in the same block, there's nothing to do. 4361 // Make the cheap checks first if we did not promote. 4362 // If we promoted, we need to check if it is indeed profitable. 4363 if (!HasPromoted && LI->getParent() == I->getParent()) 4364 return false; 4365 4366 EVT VT = TLI->getValueType(*DL, I->getType()); 4367 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4368 4369 // If the load has other users and the truncate is not free, this probably 4370 // isn't worthwhile. 4371 if (!LI->hasOneUse() && 4372 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4373 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4374 I = OldExt; 4375 TPT.rollback(LastKnownGood); 4376 return false; 4377 } 4378 4379 // Check whether the target supports casts folded into loads. 4380 unsigned LType; 4381 if (isa<ZExtInst>(I)) 4382 LType = ISD::ZEXTLOAD; 4383 else { 4384 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4385 LType = ISD::SEXTLOAD; 4386 } 4387 if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4388 I = OldExt; 4389 TPT.rollback(LastKnownGood); 4390 return false; 4391 } 4392 4393 // Move the extend into the same block as the load, so that SelectionDAG 4394 // can fold it. 4395 TPT.commit(); 4396 I->removeFromParent(); 4397 I->insertAfter(LI); 4398 // CGP does not check if the zext would be speculatively executed when moved 4399 // to the same basic block as the load. Preserving its original location would 4400 // pessimize the debugging experience, as well as negatively impact the 4401 // quality of sample pgo. We don't want to use "line 0" as that has a 4402 // size cost in the line-table section and logically the zext can be seen as 4403 // part of the load. Therefore we conservatively reuse the same debug location 4404 // for the load and the zext. 4405 I->setDebugLoc(LI->getDebugLoc()); 4406 ++NumExtsMoved; 4407 return true; 4408 } 4409 4410 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4411 BasicBlock *DefBB = I->getParent(); 4412 4413 // If the result of a {s|z}ext and its source are both live out, rewrite all 4414 // other uses of the source with result of extension. 4415 Value *Src = I->getOperand(0); 4416 if (Src->hasOneUse()) 4417 return false; 4418 4419 // Only do this xform if truncating is free. 4420 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4421 return false; 4422 4423 // Only safe to perform the optimization if the source is also defined in 4424 // this block. 4425 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4426 return false; 4427 4428 bool DefIsLiveOut = false; 4429 for (User *U : I->users()) { 4430 Instruction *UI = cast<Instruction>(U); 4431 4432 // Figure out which BB this ext is used in. 4433 BasicBlock *UserBB = UI->getParent(); 4434 if (UserBB == DefBB) continue; 4435 DefIsLiveOut = true; 4436 break; 4437 } 4438 if (!DefIsLiveOut) 4439 return false; 4440 4441 // Make sure none of the uses are PHI nodes. 4442 for (User *U : Src->users()) { 4443 Instruction *UI = cast<Instruction>(U); 4444 BasicBlock *UserBB = UI->getParent(); 4445 if (UserBB == DefBB) continue; 4446 // Be conservative. We don't want this xform to end up introducing 4447 // reloads just before load / store instructions. 4448 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4449 return false; 4450 } 4451 4452 // InsertedTruncs - Only insert one trunc in each block once. 4453 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4454 4455 bool MadeChange = false; 4456 for (Use &U : Src->uses()) { 4457 Instruction *User = cast<Instruction>(U.getUser()); 4458 4459 // Figure out which BB this ext is used in. 4460 BasicBlock *UserBB = User->getParent(); 4461 if (UserBB == DefBB) continue; 4462 4463 // Both src and def are live in this block. Rewrite the use. 4464 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4465 4466 if (!InsertedTrunc) { 4467 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4468 assert(InsertPt != UserBB->end()); 4469 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4470 InsertedInsts.insert(InsertedTrunc); 4471 } 4472 4473 // Replace a use of the {s|z}ext source with a use of the result. 4474 U = InsertedTrunc; 4475 ++NumExtUses; 4476 MadeChange = true; 4477 } 4478 4479 return MadeChange; 4480 } 4481 4482 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4483 // just after the load if the target can fold this into one extload instruction, 4484 // with the hope of eliminating some of the other later "and" instructions using 4485 // the loaded value. "and"s that are made trivially redundant by the insertion 4486 // of the new "and" are removed by this function, while others (e.g. those whose 4487 // path from the load goes through a phi) are left for isel to potentially 4488 // remove. 4489 // 4490 // For example: 4491 // 4492 // b0: 4493 // x = load i32 4494 // ... 4495 // b1: 4496 // y = and x, 0xff 4497 // z = use y 4498 // 4499 // becomes: 4500 // 4501 // b0: 4502 // x = load i32 4503 // x' = and x, 0xff 4504 // ... 4505 // b1: 4506 // z = use x' 4507 // 4508 // whereas: 4509 // 4510 // b0: 4511 // x1 = load i32 4512 // ... 4513 // b1: 4514 // x2 = load i32 4515 // ... 4516 // b2: 4517 // x = phi x1, x2 4518 // y = and x, 0xff 4519 // 4520 // becomes (after a call to optimizeLoadExt for each load): 4521 // 4522 // b0: 4523 // x1 = load i32 4524 // x1' = and x1, 0xff 4525 // ... 4526 // b1: 4527 // x2 = load i32 4528 // x2' = and x2, 0xff 4529 // ... 4530 // b2: 4531 // x = phi x1', x2' 4532 // y = and x, 0xff 4533 // 4534 4535 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4536 4537 if (!Load->isSimple() || 4538 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4539 return false; 4540 4541 // Skip loads we've already transformed or have no reason to transform. 4542 if (Load->hasOneUse()) { 4543 User *LoadUser = *Load->user_begin(); 4544 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4545 !dyn_cast<PHINode>(LoadUser)) 4546 return false; 4547 } 4548 4549 // Look at all uses of Load, looking through phis, to determine how many bits 4550 // of the loaded value are needed. 4551 SmallVector<Instruction *, 8> WorkList; 4552 SmallPtrSet<Instruction *, 16> Visited; 4553 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4554 for (auto *U : Load->users()) 4555 WorkList.push_back(cast<Instruction>(U)); 4556 4557 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4558 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4559 APInt DemandBits(BitWidth, 0); 4560 APInt WidestAndBits(BitWidth, 0); 4561 4562 while (!WorkList.empty()) { 4563 Instruction *I = WorkList.back(); 4564 WorkList.pop_back(); 4565 4566 // Break use-def graph loops. 4567 if (!Visited.insert(I).second) 4568 continue; 4569 4570 // For a PHI node, push all of its users. 4571 if (auto *Phi = dyn_cast<PHINode>(I)) { 4572 for (auto *U : Phi->users()) 4573 WorkList.push_back(cast<Instruction>(U)); 4574 continue; 4575 } 4576 4577 switch (I->getOpcode()) { 4578 case llvm::Instruction::And: { 4579 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4580 if (!AndC) 4581 return false; 4582 APInt AndBits = AndC->getValue(); 4583 DemandBits |= AndBits; 4584 // Keep track of the widest and mask we see. 4585 if (AndBits.ugt(WidestAndBits)) 4586 WidestAndBits = AndBits; 4587 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4588 AndsToMaybeRemove.push_back(I); 4589 break; 4590 } 4591 4592 case llvm::Instruction::Shl: { 4593 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4594 if (!ShlC) 4595 return false; 4596 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4597 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4598 DemandBits |= ShlDemandBits; 4599 break; 4600 } 4601 4602 case llvm::Instruction::Trunc: { 4603 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4604 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4605 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4606 DemandBits |= TruncBits; 4607 break; 4608 } 4609 4610 default: 4611 return false; 4612 } 4613 } 4614 4615 uint32_t ActiveBits = DemandBits.getActiveBits(); 4616 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4617 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4618 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4619 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4620 // followed by an AND. 4621 // TODO: Look into removing this restriction by fixing backends to either 4622 // return false for isLoadExtLegal for i1 or have them select this pattern to 4623 // a single instruction. 4624 // 4625 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4626 // mask, since these are the only ands that will be removed by isel. 4627 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4628 WidestAndBits != DemandBits) 4629 return false; 4630 4631 LLVMContext &Ctx = Load->getType()->getContext(); 4632 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4633 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4634 4635 // Reject cases that won't be matched as extloads. 4636 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4637 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4638 return false; 4639 4640 IRBuilder<> Builder(Load->getNextNode()); 4641 auto *NewAnd = dyn_cast<Instruction>( 4642 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4643 4644 // Replace all uses of load with new and (except for the use of load in the 4645 // new and itself). 4646 Load->replaceAllUsesWith(NewAnd); 4647 NewAnd->setOperand(0, Load); 4648 4649 // Remove any and instructions that are now redundant. 4650 for (auto *And : AndsToMaybeRemove) 4651 // Check that the and mask is the same as the one we decided to put on the 4652 // new and. 4653 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4654 And->replaceAllUsesWith(NewAnd); 4655 if (&*CurInstIterator == And) 4656 CurInstIterator = std::next(And->getIterator()); 4657 And->eraseFromParent(); 4658 ++NumAndUses; 4659 } 4660 4661 ++NumAndsAdded; 4662 return true; 4663 } 4664 4665 /// Check if V (an operand of a select instruction) is an expensive instruction 4666 /// that is only used once. 4667 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4668 auto *I = dyn_cast<Instruction>(V); 4669 // If it's safe to speculatively execute, then it should not have side 4670 // effects; therefore, it's safe to sink and possibly *not* execute. 4671 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4672 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4673 } 4674 4675 /// Returns true if a SelectInst should be turned into an explicit branch. 4676 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4677 const TargetLowering *TLI, 4678 SelectInst *SI) { 4679 // If even a predictable select is cheap, then a branch can't be cheaper. 4680 if (!TLI->isPredictableSelectExpensive()) 4681 return false; 4682 4683 // FIXME: This should use the same heuristics as IfConversion to determine 4684 // whether a select is better represented as a branch. 4685 4686 // If metadata tells us that the select condition is obviously predictable, 4687 // then we want to replace the select with a branch. 4688 uint64_t TrueWeight, FalseWeight; 4689 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4690 uint64_t Max = std::max(TrueWeight, FalseWeight); 4691 uint64_t Sum = TrueWeight + FalseWeight; 4692 if (Sum != 0) { 4693 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4694 if (Probability > TLI->getPredictableBranchThreshold()) 4695 return true; 4696 } 4697 } 4698 4699 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4700 4701 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4702 // comparison condition. If the compare has more than one use, there's 4703 // probably another cmov or setcc around, so it's not worth emitting a branch. 4704 if (!Cmp || !Cmp->hasOneUse()) 4705 return false; 4706 4707 // If either operand of the select is expensive and only needed on one side 4708 // of the select, we should form a branch. 4709 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4710 sinkSelectOperand(TTI, SI->getFalseValue())) 4711 return true; 4712 4713 return false; 4714 } 4715 4716 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4717 /// false value of \p SI. If the true/false value of \p SI is defined by any 4718 /// select instructions in \p Selects, look through the defining select 4719 /// instruction until the true/false value is not defined in \p Selects. 4720 static Value *getTrueOrFalseValue( 4721 SelectInst *SI, bool isTrue, 4722 const SmallPtrSet<const Instruction *, 2> &Selects) { 4723 Value *V; 4724 4725 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4726 DefSI = dyn_cast<SelectInst>(V)) { 4727 assert(DefSI->getCondition() == SI->getCondition() && 4728 "The condition of DefSI does not match with SI"); 4729 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4730 } 4731 return V; 4732 } 4733 4734 /// If we have a SelectInst that will likely profit from branch prediction, 4735 /// turn it into a branch. 4736 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4737 // Find all consecutive select instructions that share the same condition. 4738 SmallVector<SelectInst *, 2> ASI; 4739 ASI.push_back(SI); 4740 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4741 It != SI->getParent()->end(); ++It) { 4742 SelectInst *I = dyn_cast<SelectInst>(&*It); 4743 if (I && SI->getCondition() == I->getCondition()) { 4744 ASI.push_back(I); 4745 } else { 4746 break; 4747 } 4748 } 4749 4750 SelectInst *LastSI = ASI.back(); 4751 // Increment the current iterator to skip all the rest of select instructions 4752 // because they will be either "not lowered" or "all lowered" to branch. 4753 CurInstIterator = std::next(LastSI->getIterator()); 4754 4755 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4756 4757 // Can we convert the 'select' to CF ? 4758 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4759 SI->getMetadata(LLVMContext::MD_unpredictable)) 4760 return false; 4761 4762 TargetLowering::SelectSupportKind SelectKind; 4763 if (VectorCond) 4764 SelectKind = TargetLowering::VectorMaskSelect; 4765 else if (SI->getType()->isVectorTy()) 4766 SelectKind = TargetLowering::ScalarCondVectorVal; 4767 else 4768 SelectKind = TargetLowering::ScalarValSelect; 4769 4770 if (TLI->isSelectSupported(SelectKind) && 4771 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4772 return false; 4773 4774 ModifiedDT = true; 4775 4776 // Transform a sequence like this: 4777 // start: 4778 // %cmp = cmp uge i32 %a, %b 4779 // %sel = select i1 %cmp, i32 %c, i32 %d 4780 // 4781 // Into: 4782 // start: 4783 // %cmp = cmp uge i32 %a, %b 4784 // br i1 %cmp, label %select.true, label %select.false 4785 // select.true: 4786 // br label %select.end 4787 // select.false: 4788 // br label %select.end 4789 // select.end: 4790 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4791 // 4792 // In addition, we may sink instructions that produce %c or %d from 4793 // the entry block into the destination(s) of the new branch. 4794 // If the true or false blocks do not contain a sunken instruction, that 4795 // block and its branch may be optimized away. In that case, one side of the 4796 // first branch will point directly to select.end, and the corresponding PHI 4797 // predecessor block will be the start block. 4798 4799 // First, we split the block containing the select into 2 blocks. 4800 BasicBlock *StartBlock = SI->getParent(); 4801 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4802 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4803 4804 // Delete the unconditional branch that was just created by the split. 4805 StartBlock->getTerminator()->eraseFromParent(); 4806 4807 // These are the new basic blocks for the conditional branch. 4808 // At least one will become an actual new basic block. 4809 BasicBlock *TrueBlock = nullptr; 4810 BasicBlock *FalseBlock = nullptr; 4811 BranchInst *TrueBranch = nullptr; 4812 BranchInst *FalseBranch = nullptr; 4813 4814 // Sink expensive instructions into the conditional blocks to avoid executing 4815 // them speculatively. 4816 for (SelectInst *SI : ASI) { 4817 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4818 if (TrueBlock == nullptr) { 4819 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4820 EndBlock->getParent(), EndBlock); 4821 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4822 } 4823 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4824 TrueInst->moveBefore(TrueBranch); 4825 } 4826 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4827 if (FalseBlock == nullptr) { 4828 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4829 EndBlock->getParent(), EndBlock); 4830 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4831 } 4832 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4833 FalseInst->moveBefore(FalseBranch); 4834 } 4835 } 4836 4837 // If there was nothing to sink, then arbitrarily choose the 'false' side 4838 // for a new input value to the PHI. 4839 if (TrueBlock == FalseBlock) { 4840 assert(TrueBlock == nullptr && 4841 "Unexpected basic block transform while optimizing select"); 4842 4843 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4844 EndBlock->getParent(), EndBlock); 4845 BranchInst::Create(EndBlock, FalseBlock); 4846 } 4847 4848 // Insert the real conditional branch based on the original condition. 4849 // If we did not create a new block for one of the 'true' or 'false' paths 4850 // of the condition, it means that side of the branch goes to the end block 4851 // directly and the path originates from the start block from the point of 4852 // view of the new PHI. 4853 BasicBlock *TT, *FT; 4854 if (TrueBlock == nullptr) { 4855 TT = EndBlock; 4856 FT = FalseBlock; 4857 TrueBlock = StartBlock; 4858 } else if (FalseBlock == nullptr) { 4859 TT = TrueBlock; 4860 FT = EndBlock; 4861 FalseBlock = StartBlock; 4862 } else { 4863 TT = TrueBlock; 4864 FT = FalseBlock; 4865 } 4866 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4867 4868 SmallPtrSet<const Instruction *, 2> INS; 4869 INS.insert(ASI.begin(), ASI.end()); 4870 // Use reverse iterator because later select may use the value of the 4871 // earlier select, and we need to propagate value through earlier select 4872 // to get the PHI operand. 4873 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4874 SelectInst *SI = *It; 4875 // The select itself is replaced with a PHI Node. 4876 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4877 PN->takeName(SI); 4878 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4879 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4880 4881 SI->replaceAllUsesWith(PN); 4882 SI->eraseFromParent(); 4883 INS.erase(SI); 4884 ++NumSelectsExpanded; 4885 } 4886 4887 // Instruct OptimizeBlock to skip to the next block. 4888 CurInstIterator = StartBlock->end(); 4889 return true; 4890 } 4891 4892 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4893 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4894 int SplatElem = -1; 4895 for (unsigned i = 0; i < Mask.size(); ++i) { 4896 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4897 return false; 4898 SplatElem = Mask[i]; 4899 } 4900 4901 return true; 4902 } 4903 4904 /// Some targets have expensive vector shifts if the lanes aren't all the same 4905 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4906 /// it's often worth sinking a shufflevector splat down to its use so that 4907 /// codegen can spot all lanes are identical. 4908 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4909 BasicBlock *DefBB = SVI->getParent(); 4910 4911 // Only do this xform if variable vector shifts are particularly expensive. 4912 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4913 return false; 4914 4915 // We only expect better codegen by sinking a shuffle if we can recognise a 4916 // constant splat. 4917 if (!isBroadcastShuffle(SVI)) 4918 return false; 4919 4920 // InsertedShuffles - Only insert a shuffle in each block once. 4921 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4922 4923 bool MadeChange = false; 4924 for (User *U : SVI->users()) { 4925 Instruction *UI = cast<Instruction>(U); 4926 4927 // Figure out which BB this ext is used in. 4928 BasicBlock *UserBB = UI->getParent(); 4929 if (UserBB == DefBB) continue; 4930 4931 // For now only apply this when the splat is used by a shift instruction. 4932 if (!UI->isShift()) continue; 4933 4934 // Everything checks out, sink the shuffle if the user's block doesn't 4935 // already have a copy. 4936 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4937 4938 if (!InsertedShuffle) { 4939 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4940 assert(InsertPt != UserBB->end()); 4941 InsertedShuffle = 4942 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4943 SVI->getOperand(2), "", &*InsertPt); 4944 } 4945 4946 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4947 MadeChange = true; 4948 } 4949 4950 // If we removed all uses, nuke the shuffle. 4951 if (SVI->use_empty()) { 4952 SVI->eraseFromParent(); 4953 MadeChange = true; 4954 } 4955 4956 return MadeChange; 4957 } 4958 4959 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4960 if (!TLI || !DL) 4961 return false; 4962 4963 Value *Cond = SI->getCondition(); 4964 Type *OldType = Cond->getType(); 4965 LLVMContext &Context = Cond->getContext(); 4966 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4967 unsigned RegWidth = RegType.getSizeInBits(); 4968 4969 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4970 return false; 4971 4972 // If the register width is greater than the type width, expand the condition 4973 // of the switch instruction and each case constant to the width of the 4974 // register. By widening the type of the switch condition, subsequent 4975 // comparisons (for case comparisons) will not need to be extended to the 4976 // preferred register width, so we will potentially eliminate N-1 extends, 4977 // where N is the number of cases in the switch. 4978 auto *NewType = Type::getIntNTy(Context, RegWidth); 4979 4980 // Zero-extend the switch condition and case constants unless the switch 4981 // condition is a function argument that is already being sign-extended. 4982 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4983 // everything instead. 4984 Instruction::CastOps ExtType = Instruction::ZExt; 4985 if (auto *Arg = dyn_cast<Argument>(Cond)) 4986 if (Arg->hasSExtAttr()) 4987 ExtType = Instruction::SExt; 4988 4989 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4990 ExtInst->insertBefore(SI); 4991 SI->setCondition(ExtInst); 4992 for (SwitchInst::CaseIt Case : SI->cases()) { 4993 APInt NarrowConst = Case.getCaseValue()->getValue(); 4994 APInt WideConst = (ExtType == Instruction::ZExt) ? 4995 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4996 Case.setValue(ConstantInt::get(Context, WideConst)); 4997 } 4998 4999 return true; 5000 } 5001 5002 namespace { 5003 /// \brief Helper class to promote a scalar operation to a vector one. 5004 /// This class is used to move downward extractelement transition. 5005 /// E.g., 5006 /// a = vector_op <2 x i32> 5007 /// b = extractelement <2 x i32> a, i32 0 5008 /// c = scalar_op b 5009 /// store c 5010 /// 5011 /// => 5012 /// a = vector_op <2 x i32> 5013 /// c = vector_op a (equivalent to scalar_op on the related lane) 5014 /// * d = extractelement <2 x i32> c, i32 0 5015 /// * store d 5016 /// Assuming both extractelement and store can be combine, we get rid of the 5017 /// transition. 5018 class VectorPromoteHelper { 5019 /// DataLayout associated with the current module. 5020 const DataLayout &DL; 5021 5022 /// Used to perform some checks on the legality of vector operations. 5023 const TargetLowering &TLI; 5024 5025 /// Used to estimated the cost of the promoted chain. 5026 const TargetTransformInfo &TTI; 5027 5028 /// The transition being moved downwards. 5029 Instruction *Transition; 5030 /// The sequence of instructions to be promoted. 5031 SmallVector<Instruction *, 4> InstsToBePromoted; 5032 /// Cost of combining a store and an extract. 5033 unsigned StoreExtractCombineCost; 5034 /// Instruction that will be combined with the transition. 5035 Instruction *CombineInst; 5036 5037 /// \brief The instruction that represents the current end of the transition. 5038 /// Since we are faking the promotion until we reach the end of the chain 5039 /// of computation, we need a way to get the current end of the transition. 5040 Instruction *getEndOfTransition() const { 5041 if (InstsToBePromoted.empty()) 5042 return Transition; 5043 return InstsToBePromoted.back(); 5044 } 5045 5046 /// \brief Return the index of the original value in the transition. 5047 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5048 /// c, is at index 0. 5049 unsigned getTransitionOriginalValueIdx() const { 5050 assert(isa<ExtractElementInst>(Transition) && 5051 "Other kind of transitions are not supported yet"); 5052 return 0; 5053 } 5054 5055 /// \brief Return the index of the index in the transition. 5056 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5057 /// is at index 1. 5058 unsigned getTransitionIdx() const { 5059 assert(isa<ExtractElementInst>(Transition) && 5060 "Other kind of transitions are not supported yet"); 5061 return 1; 5062 } 5063 5064 /// \brief Get the type of the transition. 5065 /// This is the type of the original value. 5066 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5067 /// transition is <2 x i32>. 5068 Type *getTransitionType() const { 5069 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5070 } 5071 5072 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5073 /// I.e., we have the following sequence: 5074 /// Def = Transition <ty1> a to <ty2> 5075 /// b = ToBePromoted <ty2> Def, ... 5076 /// => 5077 /// b = ToBePromoted <ty1> a, ... 5078 /// Def = Transition <ty1> ToBePromoted to <ty2> 5079 void promoteImpl(Instruction *ToBePromoted); 5080 5081 /// \brief Check whether or not it is profitable to promote all the 5082 /// instructions enqueued to be promoted. 5083 bool isProfitableToPromote() { 5084 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5085 unsigned Index = isa<ConstantInt>(ValIdx) 5086 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5087 : -1; 5088 Type *PromotedType = getTransitionType(); 5089 5090 StoreInst *ST = cast<StoreInst>(CombineInst); 5091 unsigned AS = ST->getPointerAddressSpace(); 5092 unsigned Align = ST->getAlignment(); 5093 // Check if this store is supported. 5094 if (!TLI.allowsMisalignedMemoryAccesses( 5095 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5096 Align)) { 5097 // If this is not supported, there is no way we can combine 5098 // the extract with the store. 5099 return false; 5100 } 5101 5102 // The scalar chain of computation has to pay for the transition 5103 // scalar to vector. 5104 // The vector chain has to account for the combining cost. 5105 uint64_t ScalarCost = 5106 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5107 uint64_t VectorCost = StoreExtractCombineCost; 5108 for (const auto &Inst : InstsToBePromoted) { 5109 // Compute the cost. 5110 // By construction, all instructions being promoted are arithmetic ones. 5111 // Moreover, one argument is a constant that can be viewed as a splat 5112 // constant. 5113 Value *Arg0 = Inst->getOperand(0); 5114 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5115 isa<ConstantFP>(Arg0); 5116 TargetTransformInfo::OperandValueKind Arg0OVK = 5117 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5118 : TargetTransformInfo::OK_AnyValue; 5119 TargetTransformInfo::OperandValueKind Arg1OVK = 5120 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5121 : TargetTransformInfo::OK_AnyValue; 5122 ScalarCost += TTI.getArithmeticInstrCost( 5123 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5124 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5125 Arg0OVK, Arg1OVK); 5126 } 5127 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5128 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5129 return ScalarCost > VectorCost; 5130 } 5131 5132 /// \brief Generate a constant vector with \p Val with the same 5133 /// number of elements as the transition. 5134 /// \p UseSplat defines whether or not \p Val should be replicated 5135 /// across the whole vector. 5136 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5137 /// otherwise we generate a vector with as many undef as possible: 5138 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5139 /// used at the index of the extract. 5140 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5141 unsigned ExtractIdx = UINT_MAX; 5142 if (!UseSplat) { 5143 // If we cannot determine where the constant must be, we have to 5144 // use a splat constant. 5145 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5146 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5147 ExtractIdx = CstVal->getSExtValue(); 5148 else 5149 UseSplat = true; 5150 } 5151 5152 unsigned End = getTransitionType()->getVectorNumElements(); 5153 if (UseSplat) 5154 return ConstantVector::getSplat(End, Val); 5155 5156 SmallVector<Constant *, 4> ConstVec; 5157 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5158 for (unsigned Idx = 0; Idx != End; ++Idx) { 5159 if (Idx == ExtractIdx) 5160 ConstVec.push_back(Val); 5161 else 5162 ConstVec.push_back(UndefVal); 5163 } 5164 return ConstantVector::get(ConstVec); 5165 } 5166 5167 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5168 /// in \p Use can trigger undefined behavior. 5169 static bool canCauseUndefinedBehavior(const Instruction *Use, 5170 unsigned OperandIdx) { 5171 // This is not safe to introduce undef when the operand is on 5172 // the right hand side of a division-like instruction. 5173 if (OperandIdx != 1) 5174 return false; 5175 switch (Use->getOpcode()) { 5176 default: 5177 return false; 5178 case Instruction::SDiv: 5179 case Instruction::UDiv: 5180 case Instruction::SRem: 5181 case Instruction::URem: 5182 return true; 5183 case Instruction::FDiv: 5184 case Instruction::FRem: 5185 return !Use->hasNoNaNs(); 5186 } 5187 llvm_unreachable(nullptr); 5188 } 5189 5190 public: 5191 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5192 const TargetTransformInfo &TTI, Instruction *Transition, 5193 unsigned CombineCost) 5194 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5195 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5196 assert(Transition && "Do not know how to promote null"); 5197 } 5198 5199 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5200 bool canPromote(const Instruction *ToBePromoted) const { 5201 // We could support CastInst too. 5202 return isa<BinaryOperator>(ToBePromoted); 5203 } 5204 5205 /// \brief Check if it is profitable to promote \p ToBePromoted 5206 /// by moving downward the transition through. 5207 bool shouldPromote(const Instruction *ToBePromoted) const { 5208 // Promote only if all the operands can be statically expanded. 5209 // Indeed, we do not want to introduce any new kind of transitions. 5210 for (const Use &U : ToBePromoted->operands()) { 5211 const Value *Val = U.get(); 5212 if (Val == getEndOfTransition()) { 5213 // If the use is a division and the transition is on the rhs, 5214 // we cannot promote the operation, otherwise we may create a 5215 // division by zero. 5216 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5217 return false; 5218 continue; 5219 } 5220 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5221 !isa<ConstantFP>(Val)) 5222 return false; 5223 } 5224 // Check that the resulting operation is legal. 5225 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5226 if (!ISDOpcode) 5227 return false; 5228 return StressStoreExtract || 5229 TLI.isOperationLegalOrCustom( 5230 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5231 } 5232 5233 /// \brief Check whether or not \p Use can be combined 5234 /// with the transition. 5235 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5236 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5237 5238 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5239 void enqueueForPromotion(Instruction *ToBePromoted) { 5240 InstsToBePromoted.push_back(ToBePromoted); 5241 } 5242 5243 /// \brief Set the instruction that will be combined with the transition. 5244 void recordCombineInstruction(Instruction *ToBeCombined) { 5245 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5246 CombineInst = ToBeCombined; 5247 } 5248 5249 /// \brief Promote all the instructions enqueued for promotion if it is 5250 /// is profitable. 5251 /// \return True if the promotion happened, false otherwise. 5252 bool promote() { 5253 // Check if there is something to promote. 5254 // Right now, if we do not have anything to combine with, 5255 // we assume the promotion is not profitable. 5256 if (InstsToBePromoted.empty() || !CombineInst) 5257 return false; 5258 5259 // Check cost. 5260 if (!StressStoreExtract && !isProfitableToPromote()) 5261 return false; 5262 5263 // Promote. 5264 for (auto &ToBePromoted : InstsToBePromoted) 5265 promoteImpl(ToBePromoted); 5266 InstsToBePromoted.clear(); 5267 return true; 5268 } 5269 }; 5270 } // End of anonymous namespace. 5271 5272 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5273 // At this point, we know that all the operands of ToBePromoted but Def 5274 // can be statically promoted. 5275 // For Def, we need to use its parameter in ToBePromoted: 5276 // b = ToBePromoted ty1 a 5277 // Def = Transition ty1 b to ty2 5278 // Move the transition down. 5279 // 1. Replace all uses of the promoted operation by the transition. 5280 // = ... b => = ... Def. 5281 assert(ToBePromoted->getType() == Transition->getType() && 5282 "The type of the result of the transition does not match " 5283 "the final type"); 5284 ToBePromoted->replaceAllUsesWith(Transition); 5285 // 2. Update the type of the uses. 5286 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5287 Type *TransitionTy = getTransitionType(); 5288 ToBePromoted->mutateType(TransitionTy); 5289 // 3. Update all the operands of the promoted operation with promoted 5290 // operands. 5291 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5292 for (Use &U : ToBePromoted->operands()) { 5293 Value *Val = U.get(); 5294 Value *NewVal = nullptr; 5295 if (Val == Transition) 5296 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5297 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5298 isa<ConstantFP>(Val)) { 5299 // Use a splat constant if it is not safe to use undef. 5300 NewVal = getConstantVector( 5301 cast<Constant>(Val), 5302 isa<UndefValue>(Val) || 5303 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5304 } else 5305 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5306 "this?"); 5307 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5308 } 5309 Transition->removeFromParent(); 5310 Transition->insertAfter(ToBePromoted); 5311 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5312 } 5313 5314 /// Some targets can do store(extractelement) with one instruction. 5315 /// Try to push the extractelement towards the stores when the target 5316 /// has this feature and this is profitable. 5317 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5318 unsigned CombineCost = UINT_MAX; 5319 if (DisableStoreExtract || !TLI || 5320 (!StressStoreExtract && 5321 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5322 Inst->getOperand(1), CombineCost))) 5323 return false; 5324 5325 // At this point we know that Inst is a vector to scalar transition. 5326 // Try to move it down the def-use chain, until: 5327 // - We can combine the transition with its single use 5328 // => we got rid of the transition. 5329 // - We escape the current basic block 5330 // => we would need to check that we are moving it at a cheaper place and 5331 // we do not do that for now. 5332 BasicBlock *Parent = Inst->getParent(); 5333 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5334 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5335 // If the transition has more than one use, assume this is not going to be 5336 // beneficial. 5337 while (Inst->hasOneUse()) { 5338 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5339 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5340 5341 if (ToBePromoted->getParent() != Parent) { 5342 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5343 << ToBePromoted->getParent()->getName() 5344 << ") than the transition (" << Parent->getName() << ").\n"); 5345 return false; 5346 } 5347 5348 if (VPH.canCombine(ToBePromoted)) { 5349 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5350 << "will be combined with: " << *ToBePromoted << '\n'); 5351 VPH.recordCombineInstruction(ToBePromoted); 5352 bool Changed = VPH.promote(); 5353 NumStoreExtractExposed += Changed; 5354 return Changed; 5355 } 5356 5357 DEBUG(dbgs() << "Try promoting.\n"); 5358 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5359 return false; 5360 5361 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5362 5363 VPH.enqueueForPromotion(ToBePromoted); 5364 Inst = ToBePromoted; 5365 } 5366 return false; 5367 } 5368 5369 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5370 // Bail out if we inserted the instruction to prevent optimizations from 5371 // stepping on each other's toes. 5372 if (InsertedInsts.count(I)) 5373 return false; 5374 5375 if (PHINode *P = dyn_cast<PHINode>(I)) { 5376 // It is possible for very late stage optimizations (such as SimplifyCFG) 5377 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5378 // trivial PHI, go ahead and zap it here. 5379 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5380 P->replaceAllUsesWith(V); 5381 P->eraseFromParent(); 5382 ++NumPHIsElim; 5383 return true; 5384 } 5385 return false; 5386 } 5387 5388 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5389 // If the source of the cast is a constant, then this should have 5390 // already been constant folded. The only reason NOT to constant fold 5391 // it is if something (e.g. LSR) was careful to place the constant 5392 // evaluation in a block other than then one that uses it (e.g. to hoist 5393 // the address of globals out of a loop). If this is the case, we don't 5394 // want to forward-subst the cast. 5395 if (isa<Constant>(CI->getOperand(0))) 5396 return false; 5397 5398 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5399 return true; 5400 5401 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5402 /// Sink a zext or sext into its user blocks if the target type doesn't 5403 /// fit in one register 5404 if (TLI && 5405 TLI->getTypeAction(CI->getContext(), 5406 TLI->getValueType(*DL, CI->getType())) == 5407 TargetLowering::TypeExpandInteger) { 5408 return SinkCast(CI); 5409 } else { 5410 bool MadeChange = moveExtToFormExtLoad(I); 5411 return MadeChange | optimizeExtUses(I); 5412 } 5413 } 5414 return false; 5415 } 5416 5417 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5418 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5419 return OptimizeCmpExpression(CI, TLI); 5420 5421 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5422 stripInvariantGroupMetadata(*LI); 5423 if (TLI) { 5424 bool Modified = optimizeLoadExt(LI); 5425 unsigned AS = LI->getPointerAddressSpace(); 5426 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5427 return Modified; 5428 } 5429 return false; 5430 } 5431 5432 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5433 stripInvariantGroupMetadata(*SI); 5434 if (TLI) { 5435 unsigned AS = SI->getPointerAddressSpace(); 5436 return optimizeMemoryInst(I, SI->getOperand(1), 5437 SI->getOperand(0)->getType(), AS); 5438 } 5439 return false; 5440 } 5441 5442 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5443 5444 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5445 BinOp->getOpcode() == Instruction::LShr)) { 5446 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5447 if (TLI && CI && TLI->hasExtractBitsInsn()) 5448 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5449 5450 return false; 5451 } 5452 5453 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5454 if (GEPI->hasAllZeroIndices()) { 5455 /// The GEP operand must be a pointer, so must its result -> BitCast 5456 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5457 GEPI->getName(), GEPI); 5458 GEPI->replaceAllUsesWith(NC); 5459 GEPI->eraseFromParent(); 5460 ++NumGEPsElim; 5461 optimizeInst(NC, ModifiedDT); 5462 return true; 5463 } 5464 return false; 5465 } 5466 5467 if (CallInst *CI = dyn_cast<CallInst>(I)) 5468 return optimizeCallInst(CI, ModifiedDT); 5469 5470 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5471 return optimizeSelectInst(SI); 5472 5473 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5474 return optimizeShuffleVectorInst(SVI); 5475 5476 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5477 return optimizeSwitchInst(Switch); 5478 5479 if (isa<ExtractElementInst>(I)) 5480 return optimizeExtractElementInst(I); 5481 5482 return false; 5483 } 5484 5485 /// Given an OR instruction, check to see if this is a bitreverse 5486 /// idiom. If so, insert the new intrinsic and return true. 5487 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5488 const TargetLowering &TLI) { 5489 if (!I.getType()->isIntegerTy() || 5490 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5491 TLI.getValueType(DL, I.getType(), true))) 5492 return false; 5493 5494 SmallVector<Instruction*, 4> Insts; 5495 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5496 return false; 5497 Instruction *LastInst = Insts.back(); 5498 I.replaceAllUsesWith(LastInst); 5499 RecursivelyDeleteTriviallyDeadInstructions(&I); 5500 return true; 5501 } 5502 5503 // In this pass we look for GEP and cast instructions that are used 5504 // across basic blocks and rewrite them to improve basic-block-at-a-time 5505 // selection. 5506 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5507 SunkAddrs.clear(); 5508 bool MadeChange = false; 5509 5510 CurInstIterator = BB.begin(); 5511 while (CurInstIterator != BB.end()) { 5512 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5513 if (ModifiedDT) 5514 return true; 5515 } 5516 5517 bool MadeBitReverse = true; 5518 while (TLI && MadeBitReverse) { 5519 MadeBitReverse = false; 5520 for (auto &I : reverse(BB)) { 5521 if (makeBitReverse(I, *DL, *TLI)) { 5522 MadeBitReverse = MadeChange = true; 5523 ModifiedDT = true; 5524 break; 5525 } 5526 } 5527 } 5528 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5529 5530 return MadeChange; 5531 } 5532 5533 // llvm.dbg.value is far away from the value then iSel may not be able 5534 // handle it properly. iSel will drop llvm.dbg.value if it can not 5535 // find a node corresponding to the value. 5536 bool CodeGenPrepare::placeDbgValues(Function &F) { 5537 bool MadeChange = false; 5538 for (BasicBlock &BB : F) { 5539 Instruction *PrevNonDbgInst = nullptr; 5540 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5541 Instruction *Insn = &*BI++; 5542 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5543 // Leave dbg.values that refer to an alloca alone. These 5544 // instrinsics describe the address of a variable (= the alloca) 5545 // being taken. They should not be moved next to the alloca 5546 // (and to the beginning of the scope), but rather stay close to 5547 // where said address is used. 5548 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5549 PrevNonDbgInst = Insn; 5550 continue; 5551 } 5552 5553 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5554 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5555 // If VI is a phi in a block with an EHPad terminator, we can't insert 5556 // after it. 5557 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5558 continue; 5559 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5560 DVI->removeFromParent(); 5561 if (isa<PHINode>(VI)) 5562 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5563 else 5564 DVI->insertAfter(VI); 5565 MadeChange = true; 5566 ++NumDbgValueMoved; 5567 } 5568 } 5569 } 5570 return MadeChange; 5571 } 5572 5573 // If there is a sequence that branches based on comparing a single bit 5574 // against zero that can be combined into a single instruction, and the 5575 // target supports folding these into a single instruction, sink the 5576 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5577 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5578 // searched for. 5579 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5580 if (!EnableAndCmpSinking) 5581 return false; 5582 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5583 return false; 5584 bool MadeChange = false; 5585 for (BasicBlock &BB : F) { 5586 // Does this BB end with the following? 5587 // %andVal = and %val, #single-bit-set 5588 // %icmpVal = icmp %andResult, 0 5589 // br i1 %cmpVal label %dest1, label %dest2" 5590 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5591 if (!Brcc || !Brcc->isConditional()) 5592 continue; 5593 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5594 if (!Cmp || Cmp->getParent() != &BB) 5595 continue; 5596 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5597 if (!Zero || !Zero->isZero()) 5598 continue; 5599 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5600 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5601 continue; 5602 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5603 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5604 continue; 5605 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5606 5607 // Push the "and; icmp" for any users that are conditional branches. 5608 // Since there can only be one branch use per BB, we don't need to keep 5609 // track of which BBs we insert into. 5610 for (Use &TheUse : Cmp->uses()) { 5611 // Find brcc use. 5612 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5613 if (!BrccUser || !BrccUser->isConditional()) 5614 continue; 5615 BasicBlock *UserBB = BrccUser->getParent(); 5616 if (UserBB == &BB) continue; 5617 DEBUG(dbgs() << "found Brcc use\n"); 5618 5619 // Sink the "and; icmp" to use. 5620 MadeChange = true; 5621 BinaryOperator *NewAnd = 5622 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5623 BrccUser); 5624 CmpInst *NewCmp = 5625 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5626 "", BrccUser); 5627 TheUse = NewCmp; 5628 ++NumAndCmpsMoved; 5629 DEBUG(BrccUser->getParent()->dump()); 5630 } 5631 } 5632 return MadeChange; 5633 } 5634 5635 /// \brief Scale down both weights to fit into uint32_t. 5636 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5637 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5638 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5639 NewTrue = NewTrue / Scale; 5640 NewFalse = NewFalse / Scale; 5641 } 5642 5643 /// \brief Some targets prefer to split a conditional branch like: 5644 /// \code 5645 /// %0 = icmp ne i32 %a, 0 5646 /// %1 = icmp ne i32 %b, 0 5647 /// %or.cond = or i1 %0, %1 5648 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5649 /// \endcode 5650 /// into multiple branch instructions like: 5651 /// \code 5652 /// bb1: 5653 /// %0 = icmp ne i32 %a, 0 5654 /// br i1 %0, label %TrueBB, label %bb2 5655 /// bb2: 5656 /// %1 = icmp ne i32 %b, 0 5657 /// br i1 %1, label %TrueBB, label %FalseBB 5658 /// \endcode 5659 /// This usually allows instruction selection to do even further optimizations 5660 /// and combine the compare with the branch instruction. Currently this is 5661 /// applied for targets which have "cheap" jump instructions. 5662 /// 5663 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5664 /// 5665 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5666 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5667 return false; 5668 5669 bool MadeChange = false; 5670 for (auto &BB : F) { 5671 // Does this BB end with the following? 5672 // %cond1 = icmp|fcmp|binary instruction ... 5673 // %cond2 = icmp|fcmp|binary instruction ... 5674 // %cond.or = or|and i1 %cond1, cond2 5675 // br i1 %cond.or label %dest1, label %dest2" 5676 BinaryOperator *LogicOp; 5677 BasicBlock *TBB, *FBB; 5678 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5679 continue; 5680 5681 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5682 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5683 continue; 5684 5685 unsigned Opc; 5686 Value *Cond1, *Cond2; 5687 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5688 m_OneUse(m_Value(Cond2))))) 5689 Opc = Instruction::And; 5690 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5691 m_OneUse(m_Value(Cond2))))) 5692 Opc = Instruction::Or; 5693 else 5694 continue; 5695 5696 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5697 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5698 continue; 5699 5700 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5701 5702 // Create a new BB. 5703 auto TmpBB = 5704 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5705 BB.getParent(), BB.getNextNode()); 5706 5707 // Update original basic block by using the first condition directly by the 5708 // branch instruction and removing the no longer needed and/or instruction. 5709 Br1->setCondition(Cond1); 5710 LogicOp->eraseFromParent(); 5711 5712 // Depending on the conditon we have to either replace the true or the false 5713 // successor of the original branch instruction. 5714 if (Opc == Instruction::And) 5715 Br1->setSuccessor(0, TmpBB); 5716 else 5717 Br1->setSuccessor(1, TmpBB); 5718 5719 // Fill in the new basic block. 5720 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5721 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5722 I->removeFromParent(); 5723 I->insertBefore(Br2); 5724 } 5725 5726 // Update PHI nodes in both successors. The original BB needs to be 5727 // replaced in one succesor's PHI nodes, because the branch comes now from 5728 // the newly generated BB (NewBB). In the other successor we need to add one 5729 // incoming edge to the PHI nodes, because both branch instructions target 5730 // now the same successor. Depending on the original branch condition 5731 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5732 // we perform the correct update for the PHI nodes. 5733 // This doesn't change the successor order of the just created branch 5734 // instruction (or any other instruction). 5735 if (Opc == Instruction::Or) 5736 std::swap(TBB, FBB); 5737 5738 // Replace the old BB with the new BB. 5739 for (auto &I : *TBB) { 5740 PHINode *PN = dyn_cast<PHINode>(&I); 5741 if (!PN) 5742 break; 5743 int i; 5744 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5745 PN->setIncomingBlock(i, TmpBB); 5746 } 5747 5748 // Add another incoming edge form the new BB. 5749 for (auto &I : *FBB) { 5750 PHINode *PN = dyn_cast<PHINode>(&I); 5751 if (!PN) 5752 break; 5753 auto *Val = PN->getIncomingValueForBlock(&BB); 5754 PN->addIncoming(Val, TmpBB); 5755 } 5756 5757 // Update the branch weights (from SelectionDAGBuilder:: 5758 // FindMergedConditions). 5759 if (Opc == Instruction::Or) { 5760 // Codegen X | Y as: 5761 // BB1: 5762 // jmp_if_X TBB 5763 // jmp TmpBB 5764 // TmpBB: 5765 // jmp_if_Y TBB 5766 // jmp FBB 5767 // 5768 5769 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5770 // The requirement is that 5771 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5772 // = TrueProb for orignal BB. 5773 // Assuming the orignal weights are A and B, one choice is to set BB1's 5774 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5775 // assumes that 5776 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5777 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5778 // TmpBB, but the math is more complicated. 5779 uint64_t TrueWeight, FalseWeight; 5780 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5781 uint64_t NewTrueWeight = TrueWeight; 5782 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5783 scaleWeights(NewTrueWeight, NewFalseWeight); 5784 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5785 .createBranchWeights(TrueWeight, FalseWeight)); 5786 5787 NewTrueWeight = TrueWeight; 5788 NewFalseWeight = 2 * FalseWeight; 5789 scaleWeights(NewTrueWeight, NewFalseWeight); 5790 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5791 .createBranchWeights(TrueWeight, FalseWeight)); 5792 } 5793 } else { 5794 // Codegen X & Y as: 5795 // BB1: 5796 // jmp_if_X TmpBB 5797 // jmp FBB 5798 // TmpBB: 5799 // jmp_if_Y TBB 5800 // jmp FBB 5801 // 5802 // This requires creation of TmpBB after CurBB. 5803 5804 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5805 // The requirement is that 5806 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5807 // = FalseProb for orignal BB. 5808 // Assuming the orignal weights are A and B, one choice is to set BB1's 5809 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5810 // assumes that 5811 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5812 uint64_t TrueWeight, FalseWeight; 5813 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5814 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5815 uint64_t NewFalseWeight = FalseWeight; 5816 scaleWeights(NewTrueWeight, NewFalseWeight); 5817 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5818 .createBranchWeights(TrueWeight, FalseWeight)); 5819 5820 NewTrueWeight = 2 * TrueWeight; 5821 NewFalseWeight = FalseWeight; 5822 scaleWeights(NewTrueWeight, NewFalseWeight); 5823 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5824 .createBranchWeights(TrueWeight, FalseWeight)); 5825 } 5826 } 5827 5828 // Note: No point in getting fancy here, since the DT info is never 5829 // available to CodeGenPrepare. 5830 ModifiedDT = true; 5831 5832 MadeChange = true; 5833 5834 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5835 TmpBB->dump()); 5836 } 5837 return MadeChange; 5838 } 5839 5840 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5841 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5842 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5843 } 5844