1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<unsigned> FreqRatioToSkipMerge( 180 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 181 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 182 "(frequency of destination block) is greater than this ratio")); 183 184 static cl::opt<bool> ForceSplitStore( 185 "force-split-store", cl::Hidden, cl::init(false), 186 cl::desc("Force store splitting no matter what the target query says.")); 187 188 static cl::opt<bool> 189 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 190 cl::desc("Enable merging of redundant sexts when one is dominating" 191 " the other."), cl::init(true)); 192 193 static cl::opt<bool> DisableComplexAddrModes( 194 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 195 cl::desc("Disables combining addressing modes with different parts " 196 "in optimizeMemoryInst.")); 197 198 static cl::opt<bool> 199 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 200 cl::desc("Allow creation of Phis in Address sinking.")); 201 202 static cl::opt<bool> 203 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 204 cl::desc("Allow creation of selects in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseReg( 207 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseReg field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseGV( 211 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseGV field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineBaseOffs( 215 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineScaledReg( 219 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 221 222 static cl::opt<bool> 223 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 224 cl::init(true), 225 cl::desc("Enable splitting large offset of GEP.")); 226 227 static cl::opt<bool> EnableICMP_EQToICMP_ST( 228 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 229 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 230 231 namespace { 232 233 enum ExtType { 234 ZeroExtension, // Zero extension has been seen. 235 SignExtension, // Sign extension has been seen. 236 BothExtension // This extension type is used if we saw sext after 237 // ZeroExtension had been set, or if we saw zext after 238 // SignExtension had been set. It makes the type 239 // information of a promoted instruction invalid. 240 }; 241 242 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 243 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 244 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 245 using SExts = SmallVector<Instruction *, 16>; 246 using ValueToSExts = DenseMap<Value *, SExts>; 247 248 class TypePromotionTransaction; 249 250 class CodeGenPrepare : public FunctionPass { 251 const TargetMachine *TM = nullptr; 252 const TargetSubtargetInfo *SubtargetInfo; 253 const TargetLowering *TLI = nullptr; 254 const TargetRegisterInfo *TRI; 255 const TargetTransformInfo *TTI = nullptr; 256 const TargetLibraryInfo *TLInfo; 257 const LoopInfo *LI; 258 std::unique_ptr<BlockFrequencyInfo> BFI; 259 std::unique_ptr<BranchProbabilityInfo> BPI; 260 ProfileSummaryInfo *PSI; 261 262 /// As we scan instructions optimizing them, this is the next instruction 263 /// to optimize. Transforms that can invalidate this should update it. 264 BasicBlock::iterator CurInstIterator; 265 266 /// Keeps track of non-local addresses that have been sunk into a block. 267 /// This allows us to avoid inserting duplicate code for blocks with 268 /// multiple load/stores of the same address. The usage of WeakTrackingVH 269 /// enables SunkAddrs to be treated as a cache whose entries can be 270 /// invalidated if a sunken address computation has been erased. 271 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 272 273 /// Keeps track of all instructions inserted for the current function. 274 SetOfInstrs InsertedInsts; 275 276 /// Keeps track of the type of the related instruction before their 277 /// promotion for the current function. 278 InstrToOrigTy PromotedInsts; 279 280 /// Keep track of instructions removed during promotion. 281 SetOfInstrs RemovedInsts; 282 283 /// Keep track of sext chains based on their initial value. 284 DenseMap<Value *, Instruction *> SeenChainsForSExt; 285 286 /// Keep track of GEPs accessing the same data structures such as structs or 287 /// arrays that are candidates to be split later because of their large 288 /// size. 289 MapVector< 290 AssertingVH<Value>, 291 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 292 LargeOffsetGEPMap; 293 294 /// Keep track of new GEP base after splitting the GEPs having large offset. 295 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 296 297 /// Map serial numbers to Large offset GEPs. 298 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 299 300 /// Keep track of SExt promoted. 301 ValueToSExts ValToSExtendedUses; 302 303 /// True if the function has the OptSize attribute. 304 bool OptSize; 305 306 /// DataLayout for the Function being processed. 307 const DataLayout *DL = nullptr; 308 309 /// Building the dominator tree can be expensive, so we only build it 310 /// lazily and update it when required. 311 std::unique_ptr<DominatorTree> DT; 312 313 public: 314 static char ID; // Pass identification, replacement for typeid 315 316 CodeGenPrepare() : FunctionPass(ID) { 317 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 318 } 319 320 bool runOnFunction(Function &F) override; 321 322 StringRef getPassName() const override { return "CodeGen Prepare"; } 323 324 void getAnalysisUsage(AnalysisUsage &AU) const override { 325 // FIXME: When we can selectively preserve passes, preserve the domtree. 326 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 327 AU.addRequired<TargetLibraryInfoWrapperPass>(); 328 AU.addRequired<TargetTransformInfoWrapperPass>(); 329 AU.addRequired<LoopInfoWrapperPass>(); 330 } 331 332 private: 333 template <typename F> 334 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 335 // Substituting can cause recursive simplifications, which can invalidate 336 // our iterator. Use a WeakTrackingVH to hold onto it in case this 337 // happens. 338 Value *CurValue = &*CurInstIterator; 339 WeakTrackingVH IterHandle(CurValue); 340 341 f(); 342 343 // If the iterator instruction was recursively deleted, start over at the 344 // start of the block. 345 if (IterHandle != CurValue) { 346 CurInstIterator = BB->begin(); 347 SunkAddrs.clear(); 348 } 349 } 350 351 // Get the DominatorTree, building if necessary. 352 DominatorTree &getDT(Function &F) { 353 if (!DT) 354 DT = std::make_unique<DominatorTree>(F); 355 return *DT; 356 } 357 358 bool eliminateFallThrough(Function &F); 359 bool eliminateMostlyEmptyBlocks(Function &F); 360 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 361 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 362 void eliminateMostlyEmptyBlock(BasicBlock *BB); 363 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 364 bool isPreheader); 365 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 366 bool optimizeInst(Instruction *I, bool &ModifiedDT); 367 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 368 Type *AccessTy, unsigned AddrSpace); 369 bool optimizeInlineAsmInst(CallInst *CS); 370 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 371 bool optimizeExt(Instruction *&I); 372 bool optimizeExtUses(Instruction *I); 373 bool optimizeLoadExt(LoadInst *Load); 374 bool optimizeShiftInst(BinaryOperator *BO); 375 bool optimizeSelectInst(SelectInst *SI); 376 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 377 bool optimizeSwitchInst(SwitchInst *SI); 378 bool optimizeExtractElementInst(Instruction *Inst); 379 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 380 bool fixupDbgValue(Instruction *I); 381 bool placeDbgValues(Function &F); 382 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 383 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 384 bool tryToPromoteExts(TypePromotionTransaction &TPT, 385 const SmallVectorImpl<Instruction *> &Exts, 386 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 387 unsigned CreatedInstsCost = 0); 388 bool mergeSExts(Function &F); 389 bool splitLargeGEPOffsets(); 390 bool performAddressTypePromotion( 391 Instruction *&Inst, 392 bool AllowPromotionWithoutCommonHeader, 393 bool HasPromoted, TypePromotionTransaction &TPT, 394 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 395 bool splitBranchCondition(Function &F, bool &ModifiedDT); 396 bool simplifyOffsetableRelocate(Instruction &I); 397 398 bool tryToSinkFreeOperands(Instruction *I); 399 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 400 Intrinsic::ID IID); 401 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 402 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 403 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 404 }; 405 406 } // end anonymous namespace 407 408 char CodeGenPrepare::ID = 0; 409 410 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 411 "Optimize for code generation", false, false) 412 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 413 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 414 "Optimize for code generation", false, false) 415 416 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 417 418 bool CodeGenPrepare::runOnFunction(Function &F) { 419 if (skipFunction(F)) 420 return false; 421 422 DL = &F.getParent()->getDataLayout(); 423 424 bool EverMadeChange = false; 425 // Clear per function information. 426 InsertedInsts.clear(); 427 PromotedInsts.clear(); 428 429 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 430 TM = &TPC->getTM<TargetMachine>(); 431 SubtargetInfo = TM->getSubtargetImpl(F); 432 TLI = SubtargetInfo->getTargetLowering(); 433 TRI = SubtargetInfo->getRegisterInfo(); 434 } 435 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 436 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 437 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 438 BPI.reset(new BranchProbabilityInfo(F, *LI)); 439 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 440 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 441 OptSize = F.hasOptSize(); 442 if (ProfileGuidedSectionPrefix) { 443 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 444 F.setSectionPrefix(".hot"); 445 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".unlikely"); 447 } 448 449 /// This optimization identifies DIV instructions that can be 450 /// profitably bypassed and carried out with a shorter, faster divide. 451 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 452 TLI->isSlowDivBypassed()) { 453 const DenseMap<unsigned int, unsigned int> &BypassWidths = 454 TLI->getBypassSlowDivWidths(); 455 BasicBlock* BB = &*F.begin(); 456 while (BB != nullptr) { 457 // bypassSlowDivision may create new BBs, but we don't want to reapply the 458 // optimization to those blocks. 459 BasicBlock* Next = BB->getNextNode(); 460 // F.hasOptSize is already checked in the outer if statement. 461 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 462 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 463 BB = Next; 464 } 465 } 466 467 // Eliminate blocks that contain only PHI nodes and an 468 // unconditional branch. 469 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 470 471 bool ModifiedDT = false; 472 if (!DisableBranchOpts) 473 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 474 475 // Split some critical edges where one of the sources is an indirect branch, 476 // to help generate sane code for PHIs involving such edges. 477 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 478 479 bool MadeChange = true; 480 while (MadeChange) { 481 MadeChange = false; 482 DT.reset(); 483 for (Function::iterator I = F.begin(); I != F.end(); ) { 484 BasicBlock *BB = &*I++; 485 bool ModifiedDTOnIteration = false; 486 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 487 488 // Restart BB iteration if the dominator tree of the Function was changed 489 if (ModifiedDTOnIteration) 490 break; 491 } 492 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 493 MadeChange |= mergeSExts(F); 494 if (!LargeOffsetGEPMap.empty()) 495 MadeChange |= splitLargeGEPOffsets(); 496 497 // Really free removed instructions during promotion. 498 for (Instruction *I : RemovedInsts) 499 I->deleteValue(); 500 501 EverMadeChange |= MadeChange; 502 SeenChainsForSExt.clear(); 503 ValToSExtendedUses.clear(); 504 RemovedInsts.clear(); 505 LargeOffsetGEPMap.clear(); 506 LargeOffsetGEPID.clear(); 507 } 508 509 SunkAddrs.clear(); 510 511 if (!DisableBranchOpts) { 512 MadeChange = false; 513 // Use a set vector to get deterministic iteration order. The order the 514 // blocks are removed may affect whether or not PHI nodes in successors 515 // are removed. 516 SmallSetVector<BasicBlock*, 8> WorkList; 517 for (BasicBlock &BB : F) { 518 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 519 MadeChange |= ConstantFoldTerminator(&BB, true); 520 if (!MadeChange) continue; 521 522 for (SmallVectorImpl<BasicBlock*>::iterator 523 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 524 if (pred_begin(*II) == pred_end(*II)) 525 WorkList.insert(*II); 526 } 527 528 // Delete the dead blocks and any of their dead successors. 529 MadeChange |= !WorkList.empty(); 530 while (!WorkList.empty()) { 531 BasicBlock *BB = WorkList.pop_back_val(); 532 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 533 534 DeleteDeadBlock(BB); 535 536 for (SmallVectorImpl<BasicBlock*>::iterator 537 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 538 if (pred_begin(*II) == pred_end(*II)) 539 WorkList.insert(*II); 540 } 541 542 // Merge pairs of basic blocks with unconditional branches, connected by 543 // a single edge. 544 if (EverMadeChange || MadeChange) 545 MadeChange |= eliminateFallThrough(F); 546 547 EverMadeChange |= MadeChange; 548 } 549 550 if (!DisableGCOpts) { 551 SmallVector<Instruction *, 2> Statepoints; 552 for (BasicBlock &BB : F) 553 for (Instruction &I : BB) 554 if (isStatepoint(I)) 555 Statepoints.push_back(&I); 556 for (auto &I : Statepoints) 557 EverMadeChange |= simplifyOffsetableRelocate(*I); 558 } 559 560 // Do this last to clean up use-before-def scenarios introduced by other 561 // preparatory transforms. 562 EverMadeChange |= placeDbgValues(F); 563 564 return EverMadeChange; 565 } 566 567 /// Merge basic blocks which are connected by a single edge, where one of the 568 /// basic blocks has a single successor pointing to the other basic block, 569 /// which has a single predecessor. 570 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 571 bool Changed = false; 572 // Scan all of the blocks in the function, except for the entry block. 573 // Use a temporary array to avoid iterator being invalidated when 574 // deleting blocks. 575 SmallVector<WeakTrackingVH, 16> Blocks; 576 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 577 Blocks.push_back(&Block); 578 579 for (auto &Block : Blocks) { 580 auto *BB = cast_or_null<BasicBlock>(Block); 581 if (!BB) 582 continue; 583 // If the destination block has a single pred, then this is a trivial 584 // edge, just collapse it. 585 BasicBlock *SinglePred = BB->getSinglePredecessor(); 586 587 // Don't merge if BB's address is taken. 588 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 589 590 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 591 if (Term && !Term->isConditional()) { 592 Changed = true; 593 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 594 595 // Merge BB into SinglePred and delete it. 596 MergeBlockIntoPredecessor(BB); 597 } 598 } 599 return Changed; 600 } 601 602 /// Find a destination block from BB if BB is mergeable empty block. 603 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 604 // If this block doesn't end with an uncond branch, ignore it. 605 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 606 if (!BI || !BI->isUnconditional()) 607 return nullptr; 608 609 // If the instruction before the branch (skipping debug info) isn't a phi 610 // node, then other stuff is happening here. 611 BasicBlock::iterator BBI = BI->getIterator(); 612 if (BBI != BB->begin()) { 613 --BBI; 614 while (isa<DbgInfoIntrinsic>(BBI)) { 615 if (BBI == BB->begin()) 616 break; 617 --BBI; 618 } 619 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 620 return nullptr; 621 } 622 623 // Do not break infinite loops. 624 BasicBlock *DestBB = BI->getSuccessor(0); 625 if (DestBB == BB) 626 return nullptr; 627 628 if (!canMergeBlocks(BB, DestBB)) 629 DestBB = nullptr; 630 631 return DestBB; 632 } 633 634 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 635 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 636 /// edges in ways that are non-optimal for isel. Start by eliminating these 637 /// blocks so we can split them the way we want them. 638 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 639 SmallPtrSet<BasicBlock *, 16> Preheaders; 640 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 641 while (!LoopList.empty()) { 642 Loop *L = LoopList.pop_back_val(); 643 LoopList.insert(LoopList.end(), L->begin(), L->end()); 644 if (BasicBlock *Preheader = L->getLoopPreheader()) 645 Preheaders.insert(Preheader); 646 } 647 648 bool MadeChange = false; 649 // Copy blocks into a temporary array to avoid iterator invalidation issues 650 // as we remove them. 651 // Note that this intentionally skips the entry block. 652 SmallVector<WeakTrackingVH, 16> Blocks; 653 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 654 Blocks.push_back(&Block); 655 656 for (auto &Block : Blocks) { 657 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 658 if (!BB) 659 continue; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Skip merging if the block's successor is also a successor to any callbr 684 // that leads to this block. 685 // FIXME: Is this really needed? Is this a correctness issue? 686 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 687 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 688 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 689 if (DestBB == CBI->getSuccessor(i)) 690 return false; 691 } 692 693 // Try to skip merging if the unique predecessor of BB is terminated by a 694 // switch or indirect branch instruction, and BB is used as an incoming block 695 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 696 // add COPY instructions in the predecessor of BB instead of BB (if it is not 697 // merged). Note that the critical edge created by merging such blocks wont be 698 // split in MachineSink because the jump table is not analyzable. By keeping 699 // such empty block (BB), ISel will place COPY instructions in BB, not in the 700 // predecessor of BB. 701 BasicBlock *Pred = BB->getUniquePredecessor(); 702 if (!Pred || 703 !(isa<SwitchInst>(Pred->getTerminator()) || 704 isa<IndirectBrInst>(Pred->getTerminator()))) 705 return true; 706 707 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 708 return true; 709 710 // We use a simple cost heuristic which determine skipping merging is 711 // profitable if the cost of skipping merging is less than the cost of 712 // merging : Cost(skipping merging) < Cost(merging BB), where the 713 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 714 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 715 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 716 // Freq(Pred) / Freq(BB) > 2. 717 // Note that if there are multiple empty blocks sharing the same incoming 718 // value for the PHIs in the DestBB, we consider them together. In such 719 // case, Cost(merging BB) will be the sum of their frequencies. 720 721 if (!isa<PHINode>(DestBB->begin())) 722 return true; 723 724 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 725 726 // Find all other incoming blocks from which incoming values of all PHIs in 727 // DestBB are the same as the ones from BB. 728 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 729 ++PI) { 730 BasicBlock *DestBBPred = *PI; 731 if (DestBBPred == BB) 732 continue; 733 734 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 735 return DestPN.getIncomingValueForBlock(BB) == 736 DestPN.getIncomingValueForBlock(DestBBPred); 737 })) 738 SameIncomingValueBBs.insert(DestBBPred); 739 } 740 741 // See if all BB's incoming values are same as the value from Pred. In this 742 // case, no reason to skip merging because COPYs are expected to be place in 743 // Pred already. 744 if (SameIncomingValueBBs.count(Pred)) 745 return true; 746 747 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 748 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 749 750 for (auto SameValueBB : SameIncomingValueBBs) 751 if (SameValueBB->getUniquePredecessor() == Pred && 752 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 753 BBFreq += BFI->getBlockFreq(SameValueBB); 754 755 return PredFreq.getFrequency() <= 756 BBFreq.getFrequency() * FreqRatioToSkipMerge; 757 } 758 759 /// Return true if we can merge BB into DestBB if there is a single 760 /// unconditional branch between them, and BB contains no other non-phi 761 /// instructions. 762 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 763 const BasicBlock *DestBB) const { 764 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 765 // the successor. If there are more complex condition (e.g. preheaders), 766 // don't mess around with them. 767 for (const PHINode &PN : BB->phis()) { 768 for (const User *U : PN.users()) { 769 const Instruction *UI = cast<Instruction>(U); 770 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 771 return false; 772 // If User is inside DestBB block and it is a PHINode then check 773 // incoming value. If incoming value is not from BB then this is 774 // a complex condition (e.g. preheaders) we want to avoid here. 775 if (UI->getParent() == DestBB) { 776 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 777 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 778 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 779 if (Insn && Insn->getParent() == BB && 780 Insn->getParent() != UPN->getIncomingBlock(I)) 781 return false; 782 } 783 } 784 } 785 } 786 787 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 788 // and DestBB may have conflicting incoming values for the block. If so, we 789 // can't merge the block. 790 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 791 if (!DestBBPN) return true; // no conflict. 792 793 // Collect the preds of BB. 794 SmallPtrSet<const BasicBlock*, 16> BBPreds; 795 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 796 // It is faster to get preds from a PHI than with pred_iterator. 797 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 798 BBPreds.insert(BBPN->getIncomingBlock(i)); 799 } else { 800 BBPreds.insert(pred_begin(BB), pred_end(BB)); 801 } 802 803 // Walk the preds of DestBB. 804 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 805 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 806 if (BBPreds.count(Pred)) { // Common predecessor? 807 for (const PHINode &PN : DestBB->phis()) { 808 const Value *V1 = PN.getIncomingValueForBlock(Pred); 809 const Value *V2 = PN.getIncomingValueForBlock(BB); 810 811 // If V2 is a phi node in BB, look up what the mapped value will be. 812 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 813 if (V2PN->getParent() == BB) 814 V2 = V2PN->getIncomingValueForBlock(Pred); 815 816 // If there is a conflict, bail out. 817 if (V1 != V2) return false; 818 } 819 } 820 } 821 822 return true; 823 } 824 825 /// Eliminate a basic block that has only phi's and an unconditional branch in 826 /// it. 827 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 828 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 829 BasicBlock *DestBB = BI->getSuccessor(0); 830 831 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 832 << *BB << *DestBB); 833 834 // If the destination block has a single pred, then this is a trivial edge, 835 // just collapse it. 836 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 837 if (SinglePred != DestBB) { 838 assert(SinglePred == BB && 839 "Single predecessor not the same as predecessor"); 840 // Merge DestBB into SinglePred/BB and delete it. 841 MergeBlockIntoPredecessor(DestBB); 842 // Note: BB(=SinglePred) will not be deleted on this path. 843 // DestBB(=its single successor) is the one that was deleted. 844 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 845 return; 846 } 847 } 848 849 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 850 // to handle the new incoming edges it is about to have. 851 for (PHINode &PN : DestBB->phis()) { 852 // Remove the incoming value for BB, and remember it. 853 Value *InVal = PN.removeIncomingValue(BB, false); 854 855 // Two options: either the InVal is a phi node defined in BB or it is some 856 // value that dominates BB. 857 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 858 if (InValPhi && InValPhi->getParent() == BB) { 859 // Add all of the input values of the input PHI as inputs of this phi. 860 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 861 PN.addIncoming(InValPhi->getIncomingValue(i), 862 InValPhi->getIncomingBlock(i)); 863 } else { 864 // Otherwise, add one instance of the dominating value for each edge that 865 // we will be adding. 866 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 867 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 868 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 869 } else { 870 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 871 PN.addIncoming(InVal, *PI); 872 } 873 } 874 } 875 876 // The PHIs are now updated, change everything that refers to BB to use 877 // DestBB and remove BB. 878 BB->replaceAllUsesWith(DestBB); 879 BB->eraseFromParent(); 880 ++NumBlocksElim; 881 882 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 883 } 884 885 // Computes a map of base pointer relocation instructions to corresponding 886 // derived pointer relocation instructions given a vector of all relocate calls 887 static void computeBaseDerivedRelocateMap( 888 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 889 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 890 &RelocateInstMap) { 891 // Collect information in two maps: one primarily for locating the base object 892 // while filling the second map; the second map is the final structure holding 893 // a mapping between Base and corresponding Derived relocate calls 894 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 895 for (auto *ThisRelocate : AllRelocateCalls) { 896 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 897 ThisRelocate->getDerivedPtrIndex()); 898 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 899 } 900 for (auto &Item : RelocateIdxMap) { 901 std::pair<unsigned, unsigned> Key = Item.first; 902 if (Key.first == Key.second) 903 // Base relocation: nothing to insert 904 continue; 905 906 GCRelocateInst *I = Item.second; 907 auto BaseKey = std::make_pair(Key.first, Key.first); 908 909 // We're iterating over RelocateIdxMap so we cannot modify it. 910 auto MaybeBase = RelocateIdxMap.find(BaseKey); 911 if (MaybeBase == RelocateIdxMap.end()) 912 // TODO: We might want to insert a new base object relocate and gep off 913 // that, if there are enough derived object relocates. 914 continue; 915 916 RelocateInstMap[MaybeBase->second].push_back(I); 917 } 918 } 919 920 // Accepts a GEP and extracts the operands into a vector provided they're all 921 // small integer constants 922 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 923 SmallVectorImpl<Value *> &OffsetV) { 924 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 925 // Only accept small constant integer operands 926 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 927 if (!Op || Op->getZExtValue() > 20) 928 return false; 929 } 930 931 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 932 OffsetV.push_back(GEP->getOperand(i)); 933 return true; 934 } 935 936 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 937 // replace, computes a replacement, and affects it. 938 static bool 939 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 940 const SmallVectorImpl<GCRelocateInst *> &Targets) { 941 bool MadeChange = false; 942 // We must ensure the relocation of derived pointer is defined after 943 // relocation of base pointer. If we find a relocation corresponding to base 944 // defined earlier than relocation of base then we move relocation of base 945 // right before found relocation. We consider only relocation in the same 946 // basic block as relocation of base. Relocations from other basic block will 947 // be skipped by optimization and we do not care about them. 948 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 949 &*R != RelocatedBase; ++R) 950 if (auto RI = dyn_cast<GCRelocateInst>(R)) 951 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 952 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 953 RelocatedBase->moveBefore(RI); 954 break; 955 } 956 957 for (GCRelocateInst *ToReplace : Targets) { 958 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 959 "Not relocating a derived object of the original base object"); 960 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 961 // A duplicate relocate call. TODO: coalesce duplicates. 962 continue; 963 } 964 965 if (RelocatedBase->getParent() != ToReplace->getParent()) { 966 // Base and derived relocates are in different basic blocks. 967 // In this case transform is only valid when base dominates derived 968 // relocate. However it would be too expensive to check dominance 969 // for each such relocate, so we skip the whole transformation. 970 continue; 971 } 972 973 Value *Base = ToReplace->getBasePtr(); 974 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 975 if (!Derived || Derived->getPointerOperand() != Base) 976 continue; 977 978 SmallVector<Value *, 2> OffsetV; 979 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 980 continue; 981 982 // Create a Builder and replace the target callsite with a gep 983 assert(RelocatedBase->getNextNode() && 984 "Should always have one since it's not a terminator"); 985 986 // Insert after RelocatedBase 987 IRBuilder<> Builder(RelocatedBase->getNextNode()); 988 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 989 990 // If gc_relocate does not match the actual type, cast it to the right type. 991 // In theory, there must be a bitcast after gc_relocate if the type does not 992 // match, and we should reuse it to get the derived pointer. But it could be 993 // cases like this: 994 // bb1: 995 // ... 996 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 997 // br label %merge 998 // 999 // bb2: 1000 // ... 1001 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1002 // br label %merge 1003 // 1004 // merge: 1005 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1006 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1007 // 1008 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1009 // no matter there is already one or not. In this way, we can handle all cases, and 1010 // the extra bitcast should be optimized away in later passes. 1011 Value *ActualRelocatedBase = RelocatedBase; 1012 if (RelocatedBase->getType() != Base->getType()) { 1013 ActualRelocatedBase = 1014 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1015 } 1016 Value *Replacement = Builder.CreateGEP( 1017 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1018 Replacement->takeName(ToReplace); 1019 // If the newly generated derived pointer's type does not match the original derived 1020 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1021 Value *ActualReplacement = Replacement; 1022 if (Replacement->getType() != ToReplace->getType()) { 1023 ActualReplacement = 1024 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1025 } 1026 ToReplace->replaceAllUsesWith(ActualReplacement); 1027 ToReplace->eraseFromParent(); 1028 1029 MadeChange = true; 1030 } 1031 return MadeChange; 1032 } 1033 1034 // Turns this: 1035 // 1036 // %base = ... 1037 // %ptr = gep %base + 15 1038 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1039 // %base' = relocate(%tok, i32 4, i32 4) 1040 // %ptr' = relocate(%tok, i32 4, i32 5) 1041 // %val = load %ptr' 1042 // 1043 // into this: 1044 // 1045 // %base = ... 1046 // %ptr = gep %base + 15 1047 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1048 // %base' = gc.relocate(%tok, i32 4, i32 4) 1049 // %ptr' = gep %base' + 15 1050 // %val = load %ptr' 1051 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1052 bool MadeChange = false; 1053 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1054 1055 for (auto *U : I.users()) 1056 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1057 // Collect all the relocate calls associated with a statepoint 1058 AllRelocateCalls.push_back(Relocate); 1059 1060 // We need at least one base pointer relocation + one derived pointer 1061 // relocation to mangle 1062 if (AllRelocateCalls.size() < 2) 1063 return false; 1064 1065 // RelocateInstMap is a mapping from the base relocate instruction to the 1066 // corresponding derived relocate instructions 1067 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1068 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1069 if (RelocateInstMap.empty()) 1070 return false; 1071 1072 for (auto &Item : RelocateInstMap) 1073 // Item.first is the RelocatedBase to offset against 1074 // Item.second is the vector of Targets to replace 1075 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1076 return MadeChange; 1077 } 1078 1079 /// Sink the specified cast instruction into its user blocks. 1080 static bool SinkCast(CastInst *CI) { 1081 BasicBlock *DefBB = CI->getParent(); 1082 1083 /// InsertedCasts - Only insert a cast in each block once. 1084 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1085 1086 bool MadeChange = false; 1087 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1088 UI != E; ) { 1089 Use &TheUse = UI.getUse(); 1090 Instruction *User = cast<Instruction>(*UI); 1091 1092 // Figure out which BB this cast is used in. For PHI's this is the 1093 // appropriate predecessor block. 1094 BasicBlock *UserBB = User->getParent(); 1095 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1096 UserBB = PN->getIncomingBlock(TheUse); 1097 } 1098 1099 // Preincrement use iterator so we don't invalidate it. 1100 ++UI; 1101 1102 // The first insertion point of a block containing an EH pad is after the 1103 // pad. If the pad is the user, we cannot sink the cast past the pad. 1104 if (User->isEHPad()) 1105 continue; 1106 1107 // If the block selected to receive the cast is an EH pad that does not 1108 // allow non-PHI instructions before the terminator, we can't sink the 1109 // cast. 1110 if (UserBB->getTerminator()->isEHPad()) 1111 continue; 1112 1113 // If this user is in the same block as the cast, don't change the cast. 1114 if (UserBB == DefBB) continue; 1115 1116 // If we have already inserted a cast into this block, use it. 1117 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1118 1119 if (!InsertedCast) { 1120 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1121 assert(InsertPt != UserBB->end()); 1122 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1123 CI->getType(), "", &*InsertPt); 1124 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1125 } 1126 1127 // Replace a use of the cast with a use of the new cast. 1128 TheUse = InsertedCast; 1129 MadeChange = true; 1130 ++NumCastUses; 1131 } 1132 1133 // If we removed all uses, nuke the cast. 1134 if (CI->use_empty()) { 1135 salvageDebugInfo(*CI); 1136 CI->eraseFromParent(); 1137 MadeChange = true; 1138 } 1139 1140 return MadeChange; 1141 } 1142 1143 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1144 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1145 /// reduce the number of virtual registers that must be created and coalesced. 1146 /// 1147 /// Return true if any changes are made. 1148 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1149 const DataLayout &DL) { 1150 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1151 // than sinking only nop casts, but is helpful on some platforms. 1152 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1153 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1154 ASC->getDestAddressSpace())) 1155 return false; 1156 } 1157 1158 // If this is a noop copy, 1159 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1160 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1161 1162 // This is an fp<->int conversion? 1163 if (SrcVT.isInteger() != DstVT.isInteger()) 1164 return false; 1165 1166 // If this is an extension, it will be a zero or sign extension, which 1167 // isn't a noop. 1168 if (SrcVT.bitsLT(DstVT)) return false; 1169 1170 // If these values will be promoted, find out what they will be promoted 1171 // to. This helps us consider truncates on PPC as noop copies when they 1172 // are. 1173 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1174 TargetLowering::TypePromoteInteger) 1175 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1176 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1177 TargetLowering::TypePromoteInteger) 1178 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1179 1180 // If, after promotion, these are the same types, this is a noop copy. 1181 if (SrcVT != DstVT) 1182 return false; 1183 1184 return SinkCast(CI); 1185 } 1186 1187 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1188 CmpInst *Cmp, 1189 Intrinsic::ID IID) { 1190 if (BO->getParent() != Cmp->getParent()) { 1191 // We used to use a dominator tree here to allow multi-block optimization. 1192 // But that was problematic because: 1193 // 1. It could cause a perf regression by hoisting the math op into the 1194 // critical path. 1195 // 2. It could cause a perf regression by creating a value that was live 1196 // across multiple blocks and increasing register pressure. 1197 // 3. Use of a dominator tree could cause large compile-time regression. 1198 // This is because we recompute the DT on every change in the main CGP 1199 // run-loop. The recomputing is probably unnecessary in many cases, so if 1200 // that was fixed, using a DT here would be ok. 1201 return false; 1202 } 1203 1204 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1205 Value *Arg0 = BO->getOperand(0); 1206 Value *Arg1 = BO->getOperand(1); 1207 if (BO->getOpcode() == Instruction::Add && 1208 IID == Intrinsic::usub_with_overflow) { 1209 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1210 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1211 } 1212 1213 // Insert at the first instruction of the pair. 1214 Instruction *InsertPt = nullptr; 1215 for (Instruction &Iter : *Cmp->getParent()) { 1216 if (&Iter == BO || &Iter == Cmp) { 1217 InsertPt = &Iter; 1218 break; 1219 } 1220 } 1221 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1222 1223 IRBuilder<> Builder(InsertPt); 1224 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1225 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1226 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1227 BO->replaceAllUsesWith(Math); 1228 Cmp->replaceAllUsesWith(OV); 1229 BO->eraseFromParent(); 1230 Cmp->eraseFromParent(); 1231 return true; 1232 } 1233 1234 /// Match special-case patterns that check for unsigned add overflow. 1235 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1236 BinaryOperator *&Add) { 1237 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1238 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1239 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1240 1241 // We are not expecting non-canonical/degenerate code. Just bail out. 1242 if (isa<Constant>(A)) 1243 return false; 1244 1245 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1246 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1247 B = ConstantInt::get(B->getType(), 1); 1248 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1249 B = ConstantInt::get(B->getType(), -1); 1250 else 1251 return false; 1252 1253 // Check the users of the variable operand of the compare looking for an add 1254 // with the adjusted constant. 1255 for (User *U : A->users()) { 1256 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1257 Add = cast<BinaryOperator>(U); 1258 return true; 1259 } 1260 } 1261 return false; 1262 } 1263 1264 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1265 /// intrinsic. Return true if any changes were made. 1266 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1267 bool &ModifiedDT) { 1268 Value *A, *B; 1269 BinaryOperator *Add; 1270 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1271 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1272 return false; 1273 1274 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1275 TLI->getValueType(*DL, Add->getType()))) 1276 return false; 1277 1278 // We don't want to move around uses of condition values this late, so we 1279 // check if it is legal to create the call to the intrinsic in the basic 1280 // block containing the icmp. 1281 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1282 return false; 1283 1284 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1285 return false; 1286 1287 // Reset callers - do not crash by iterating over a dead instruction. 1288 ModifiedDT = true; 1289 return true; 1290 } 1291 1292 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1293 bool &ModifiedDT) { 1294 // We are not expecting non-canonical/degenerate code. Just bail out. 1295 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1296 if (isa<Constant>(A) && isa<Constant>(B)) 1297 return false; 1298 1299 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1300 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1301 if (Pred == ICmpInst::ICMP_UGT) { 1302 std::swap(A, B); 1303 Pred = ICmpInst::ICMP_ULT; 1304 } 1305 // Convert special-case: (A == 0) is the same as (A u< 1). 1306 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1307 B = ConstantInt::get(B->getType(), 1); 1308 Pred = ICmpInst::ICMP_ULT; 1309 } 1310 // Convert special-case: (A != 0) is the same as (0 u< A). 1311 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1312 std::swap(A, B); 1313 Pred = ICmpInst::ICMP_ULT; 1314 } 1315 if (Pred != ICmpInst::ICMP_ULT) 1316 return false; 1317 1318 // Walk the users of a variable operand of a compare looking for a subtract or 1319 // add with that same operand. Also match the 2nd operand of the compare to 1320 // the add/sub, but that may be a negated constant operand of an add. 1321 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1322 BinaryOperator *Sub = nullptr; 1323 for (User *U : CmpVariableOperand->users()) { 1324 // A - B, A u< B --> usubo(A, B) 1325 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 1330 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1331 const APInt *CmpC, *AddC; 1332 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1333 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1334 Sub = cast<BinaryOperator>(U); 1335 break; 1336 } 1337 } 1338 if (!Sub) 1339 return false; 1340 1341 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1342 TLI->getValueType(*DL, Sub->getType()))) 1343 return false; 1344 1345 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1346 return false; 1347 1348 // Reset callers - do not crash by iterating over a dead instruction. 1349 ModifiedDT = true; 1350 return true; 1351 } 1352 1353 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1354 /// registers that must be created and coalesced. This is a clear win except on 1355 /// targets with multiple condition code registers (PowerPC), where it might 1356 /// lose; some adjustment may be wanted there. 1357 /// 1358 /// Return true if any changes are made. 1359 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1360 if (TLI.hasMultipleConditionRegisters()) 1361 return false; 1362 1363 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1364 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1365 return false; 1366 1367 // Only insert a cmp in each block once. 1368 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1369 1370 bool MadeChange = false; 1371 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1372 UI != E; ) { 1373 Use &TheUse = UI.getUse(); 1374 Instruction *User = cast<Instruction>(*UI); 1375 1376 // Preincrement use iterator so we don't invalidate it. 1377 ++UI; 1378 1379 // Don't bother for PHI nodes. 1380 if (isa<PHINode>(User)) 1381 continue; 1382 1383 // Figure out which BB this cmp is used in. 1384 BasicBlock *UserBB = User->getParent(); 1385 BasicBlock *DefBB = Cmp->getParent(); 1386 1387 // If this user is in the same block as the cmp, don't change the cmp. 1388 if (UserBB == DefBB) continue; 1389 1390 // If we have already inserted a cmp into this block, use it. 1391 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1392 1393 if (!InsertedCmp) { 1394 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1395 assert(InsertPt != UserBB->end()); 1396 InsertedCmp = 1397 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1398 Cmp->getOperand(0), Cmp->getOperand(1), "", 1399 &*InsertPt); 1400 // Propagate the debug info. 1401 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1402 } 1403 1404 // Replace a use of the cmp with a use of the new cmp. 1405 TheUse = InsertedCmp; 1406 MadeChange = true; 1407 ++NumCmpUses; 1408 } 1409 1410 // If we removed all uses, nuke the cmp. 1411 if (Cmp->use_empty()) { 1412 Cmp->eraseFromParent(); 1413 MadeChange = true; 1414 } 1415 1416 return MadeChange; 1417 } 1418 1419 /// For pattern like: 1420 /// 1421 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1422 /// ... 1423 /// DomBB: 1424 /// ... 1425 /// br DomCond, TrueBB, CmpBB 1426 /// CmpBB: (with DomBB being the single predecessor) 1427 /// ... 1428 /// Cmp = icmp eq CmpOp0, CmpOp1 1429 /// ... 1430 /// 1431 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1432 /// different from lowering of icmp eq (PowerPC). This function try to convert 1433 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1434 /// After that, DomCond and Cmp can use the same comparison so reduce one 1435 /// comparison. 1436 /// 1437 /// Return true if any changes are made. 1438 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1439 const TargetLowering &TLI) { 1440 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1441 return false; 1442 1443 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1444 if (Pred != ICmpInst::ICMP_EQ) 1445 return false; 1446 1447 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1448 // icmp slt/sgt would introduce more redundant LLVM IR. 1449 for (User *U : Cmp->users()) { 1450 if (isa<BranchInst>(U)) 1451 continue; 1452 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1453 continue; 1454 return false; 1455 } 1456 1457 // This is a cheap/incomplete check for dominance - just match a single 1458 // predecessor with a conditional branch. 1459 BasicBlock *CmpBB = Cmp->getParent(); 1460 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1461 if (!DomBB) 1462 return false; 1463 1464 // We want to ensure that the only way control gets to the comparison of 1465 // interest is that a less/greater than comparison on the same operands is 1466 // false. 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return false; 1471 if (CmpBB != FalseBB) 1472 return false; 1473 1474 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1475 ICmpInst::Predicate DomPred; 1476 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1477 return false; 1478 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1479 return false; 1480 1481 // Convert the equality comparison to the opposite of the dominating 1482 // comparison and swap the direction for all branch/select users. 1483 // We have conceptually converted: 1484 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1485 // to 1486 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1487 // And similarly for branches. 1488 for (User *U : Cmp->users()) { 1489 if (auto *BI = dyn_cast<BranchInst>(U)) { 1490 assert(BI->isConditional() && "Must be conditional"); 1491 BI->swapSuccessors(); 1492 continue; 1493 } 1494 if (auto *SI = dyn_cast<SelectInst>(U)) { 1495 // Swap operands 1496 SI->swapValues(); 1497 SI->swapProfMetadata(); 1498 continue; 1499 } 1500 llvm_unreachable("Must be a branch or a select"); 1501 } 1502 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1503 return true; 1504 } 1505 1506 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1507 if (sinkCmpExpression(Cmp, *TLI)) 1508 return true; 1509 1510 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1511 return true; 1512 1513 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1514 return true; 1515 1516 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1517 return true; 1518 1519 return false; 1520 } 1521 1522 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1523 /// used in a compare to allow isel to generate better code for targets where 1524 /// this operation can be combined. 1525 /// 1526 /// Return true if any changes are made. 1527 static bool sinkAndCmp0Expression(Instruction *AndI, 1528 const TargetLowering &TLI, 1529 SetOfInstrs &InsertedInsts) { 1530 // Double-check that we're not trying to optimize an instruction that was 1531 // already optimized by some other part of this pass. 1532 assert(!InsertedInsts.count(AndI) && 1533 "Attempting to optimize already optimized and instruction"); 1534 (void) InsertedInsts; 1535 1536 // Nothing to do for single use in same basic block. 1537 if (AndI->hasOneUse() && 1538 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1539 return false; 1540 1541 // Try to avoid cases where sinking/duplicating is likely to increase register 1542 // pressure. 1543 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1544 !isa<ConstantInt>(AndI->getOperand(1)) && 1545 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1546 return false; 1547 1548 for (auto *U : AndI->users()) { 1549 Instruction *User = cast<Instruction>(U); 1550 1551 // Only sink 'and' feeding icmp with 0. 1552 if (!isa<ICmpInst>(User)) 1553 return false; 1554 1555 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1556 if (!CmpC || !CmpC->isZero()) 1557 return false; 1558 } 1559 1560 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1561 return false; 1562 1563 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1564 LLVM_DEBUG(AndI->getParent()->dump()); 1565 1566 // Push the 'and' into the same block as the icmp 0. There should only be 1567 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1568 // others, so we don't need to keep track of which BBs we insert into. 1569 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1570 UI != E; ) { 1571 Use &TheUse = UI.getUse(); 1572 Instruction *User = cast<Instruction>(*UI); 1573 1574 // Preincrement use iterator so we don't invalidate it. 1575 ++UI; 1576 1577 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1578 1579 // Keep the 'and' in the same place if the use is already in the same block. 1580 Instruction *InsertPt = 1581 User->getParent() == AndI->getParent() ? AndI : User; 1582 Instruction *InsertedAnd = 1583 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1584 AndI->getOperand(1), "", InsertPt); 1585 // Propagate the debug info. 1586 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1587 1588 // Replace a use of the 'and' with a use of the new 'and'. 1589 TheUse = InsertedAnd; 1590 ++NumAndUses; 1591 LLVM_DEBUG(User->getParent()->dump()); 1592 } 1593 1594 // We removed all uses, nuke the and. 1595 AndI->eraseFromParent(); 1596 return true; 1597 } 1598 1599 /// Check if the candidates could be combined with a shift instruction, which 1600 /// includes: 1601 /// 1. Truncate instruction 1602 /// 2. And instruction and the imm is a mask of the low bits: 1603 /// imm & (imm+1) == 0 1604 static bool isExtractBitsCandidateUse(Instruction *User) { 1605 if (!isa<TruncInst>(User)) { 1606 if (User->getOpcode() != Instruction::And || 1607 !isa<ConstantInt>(User->getOperand(1))) 1608 return false; 1609 1610 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1611 1612 if ((Cimm & (Cimm + 1)).getBoolValue()) 1613 return false; 1614 } 1615 return true; 1616 } 1617 1618 /// Sink both shift and truncate instruction to the use of truncate's BB. 1619 static bool 1620 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1621 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1622 const TargetLowering &TLI, const DataLayout &DL) { 1623 BasicBlock *UserBB = User->getParent(); 1624 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1625 auto *TruncI = cast<TruncInst>(User); 1626 bool MadeChange = false; 1627 1628 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1629 TruncE = TruncI->user_end(); 1630 TruncUI != TruncE;) { 1631 1632 Use &TruncTheUse = TruncUI.getUse(); 1633 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1634 // Preincrement use iterator so we don't invalidate it. 1635 1636 ++TruncUI; 1637 1638 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1639 if (!ISDOpcode) 1640 continue; 1641 1642 // If the use is actually a legal node, there will not be an 1643 // implicit truncate. 1644 // FIXME: always querying the result type is just an 1645 // approximation; some nodes' legality is determined by the 1646 // operand or other means. There's no good way to find out though. 1647 if (TLI.isOperationLegalOrCustom( 1648 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1649 continue; 1650 1651 // Don't bother for PHI nodes. 1652 if (isa<PHINode>(TruncUser)) 1653 continue; 1654 1655 BasicBlock *TruncUserBB = TruncUser->getParent(); 1656 1657 if (UserBB == TruncUserBB) 1658 continue; 1659 1660 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1661 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1662 1663 if (!InsertedShift && !InsertedTrunc) { 1664 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1665 assert(InsertPt != TruncUserBB->end()); 1666 // Sink the shift 1667 if (ShiftI->getOpcode() == Instruction::AShr) 1668 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1669 "", &*InsertPt); 1670 else 1671 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1674 1675 // Sink the trunc 1676 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1677 TruncInsertPt++; 1678 assert(TruncInsertPt != TruncUserBB->end()); 1679 1680 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1681 TruncI->getType(), "", &*TruncInsertPt); 1682 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1683 1684 MadeChange = true; 1685 1686 TruncTheUse = InsertedTrunc; 1687 } 1688 } 1689 return MadeChange; 1690 } 1691 1692 /// Sink the shift *right* instruction into user blocks if the uses could 1693 /// potentially be combined with this shift instruction and generate BitExtract 1694 /// instruction. It will only be applied if the architecture supports BitExtract 1695 /// instruction. Here is an example: 1696 /// BB1: 1697 /// %x.extract.shift = lshr i64 %arg1, 32 1698 /// BB2: 1699 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1700 /// ==> 1701 /// 1702 /// BB2: 1703 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1704 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1705 /// 1706 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1707 /// instruction. 1708 /// Return true if any changes are made. 1709 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1710 const TargetLowering &TLI, 1711 const DataLayout &DL) { 1712 BasicBlock *DefBB = ShiftI->getParent(); 1713 1714 /// Only insert instructions in each block once. 1715 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1716 1717 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1718 1719 bool MadeChange = false; 1720 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1721 UI != E;) { 1722 Use &TheUse = UI.getUse(); 1723 Instruction *User = cast<Instruction>(*UI); 1724 // Preincrement use iterator so we don't invalidate it. 1725 ++UI; 1726 1727 // Don't bother for PHI nodes. 1728 if (isa<PHINode>(User)) 1729 continue; 1730 1731 if (!isExtractBitsCandidateUse(User)) 1732 continue; 1733 1734 BasicBlock *UserBB = User->getParent(); 1735 1736 if (UserBB == DefBB) { 1737 // If the shift and truncate instruction are in the same BB. The use of 1738 // the truncate(TruncUse) may still introduce another truncate if not 1739 // legal. In this case, we would like to sink both shift and truncate 1740 // instruction to the BB of TruncUse. 1741 // for example: 1742 // BB1: 1743 // i64 shift.result = lshr i64 opnd, imm 1744 // trunc.result = trunc shift.result to i16 1745 // 1746 // BB2: 1747 // ----> We will have an implicit truncate here if the architecture does 1748 // not have i16 compare. 1749 // cmp i16 trunc.result, opnd2 1750 // 1751 if (isa<TruncInst>(User) && shiftIsLegal 1752 // If the type of the truncate is legal, no truncate will be 1753 // introduced in other basic blocks. 1754 && 1755 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1756 MadeChange = 1757 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1758 1759 continue; 1760 } 1761 // If we have already inserted a shift into this block, use it. 1762 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1763 1764 if (!InsertedShift) { 1765 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1766 assert(InsertPt != UserBB->end()); 1767 1768 if (ShiftI->getOpcode() == Instruction::AShr) 1769 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1770 "", &*InsertPt); 1771 else 1772 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1773 "", &*InsertPt); 1774 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1775 1776 MadeChange = true; 1777 } 1778 1779 // Replace a use of the shift with a use of the new shift. 1780 TheUse = InsertedShift; 1781 } 1782 1783 // If we removed all uses, or there are none, nuke the shift. 1784 if (ShiftI->use_empty()) { 1785 salvageDebugInfo(*ShiftI); 1786 ShiftI->eraseFromParent(); 1787 MadeChange = true; 1788 } 1789 1790 return MadeChange; 1791 } 1792 1793 /// If counting leading or trailing zeros is an expensive operation and a zero 1794 /// input is defined, add a check for zero to avoid calling the intrinsic. 1795 /// 1796 /// We want to transform: 1797 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1798 /// 1799 /// into: 1800 /// entry: 1801 /// %cmpz = icmp eq i64 %A, 0 1802 /// br i1 %cmpz, label %cond.end, label %cond.false 1803 /// cond.false: 1804 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1805 /// br label %cond.end 1806 /// cond.end: 1807 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1808 /// 1809 /// If the transform is performed, return true and set ModifiedDT to true. 1810 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1811 const TargetLowering *TLI, 1812 const DataLayout *DL, 1813 bool &ModifiedDT) { 1814 if (!TLI || !DL) 1815 return false; 1816 1817 // If a zero input is undefined, it doesn't make sense to despeculate that. 1818 if (match(CountZeros->getOperand(1), m_One())) 1819 return false; 1820 1821 // If it's cheap to speculate, there's nothing to do. 1822 auto IntrinsicID = CountZeros->getIntrinsicID(); 1823 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1824 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1825 return false; 1826 1827 // Only handle legal scalar cases. Anything else requires too much work. 1828 Type *Ty = CountZeros->getType(); 1829 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1830 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1831 return false; 1832 1833 // The intrinsic will be sunk behind a compare against zero and branch. 1834 BasicBlock *StartBlock = CountZeros->getParent(); 1835 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1836 1837 // Create another block after the count zero intrinsic. A PHI will be added 1838 // in this block to select the result of the intrinsic or the bit-width 1839 // constant if the input to the intrinsic is zero. 1840 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1841 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1842 1843 // Set up a builder to create a compare, conditional branch, and PHI. 1844 IRBuilder<> Builder(CountZeros->getContext()); 1845 Builder.SetInsertPoint(StartBlock->getTerminator()); 1846 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1847 1848 // Replace the unconditional branch that was created by the first split with 1849 // a compare against zero and a conditional branch. 1850 Value *Zero = Constant::getNullValue(Ty); 1851 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1852 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1853 StartBlock->getTerminator()->eraseFromParent(); 1854 1855 // Create a PHI in the end block to select either the output of the intrinsic 1856 // or the bit width of the operand. 1857 Builder.SetInsertPoint(&EndBlock->front()); 1858 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1859 CountZeros->replaceAllUsesWith(PN); 1860 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1861 PN->addIncoming(BitWidth, StartBlock); 1862 PN->addIncoming(CountZeros, CallBlock); 1863 1864 // We are explicitly handling the zero case, so we can set the intrinsic's 1865 // undefined zero argument to 'true'. This will also prevent reprocessing the 1866 // intrinsic; we only despeculate when a zero input is defined. 1867 CountZeros->setArgOperand(1, Builder.getTrue()); 1868 ModifiedDT = true; 1869 return true; 1870 } 1871 1872 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1873 BasicBlock *BB = CI->getParent(); 1874 1875 // Lower inline assembly if we can. 1876 // If we found an inline asm expession, and if the target knows how to 1877 // lower it to normal LLVM code, do so now. 1878 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1879 if (TLI->ExpandInlineAsm(CI)) { 1880 // Avoid invalidating the iterator. 1881 CurInstIterator = BB->begin(); 1882 // Avoid processing instructions out of order, which could cause 1883 // reuse before a value is defined. 1884 SunkAddrs.clear(); 1885 return true; 1886 } 1887 // Sink address computing for memory operands into the block. 1888 if (optimizeInlineAsmInst(CI)) 1889 return true; 1890 } 1891 1892 // Align the pointer arguments to this call if the target thinks it's a good 1893 // idea 1894 unsigned MinSize, PrefAlign; 1895 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1896 for (auto &Arg : CI->arg_operands()) { 1897 // We want to align both objects whose address is used directly and 1898 // objects whose address is used in casts and GEPs, though it only makes 1899 // sense for GEPs if the offset is a multiple of the desired alignment and 1900 // if size - offset meets the size threshold. 1901 if (!Arg->getType()->isPointerTy()) 1902 continue; 1903 APInt Offset(DL->getIndexSizeInBits( 1904 cast<PointerType>(Arg->getType())->getAddressSpace()), 1905 0); 1906 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1907 uint64_t Offset2 = Offset.getLimitedValue(); 1908 if ((Offset2 & (PrefAlign-1)) != 0) 1909 continue; 1910 AllocaInst *AI; 1911 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1912 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1913 AI->setAlignment(MaybeAlign(PrefAlign)); 1914 // Global variables can only be aligned if they are defined in this 1915 // object (i.e. they are uniquely initialized in this object), and 1916 // over-aligning global variables that have an explicit section is 1917 // forbidden. 1918 GlobalVariable *GV; 1919 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1920 GV->getPointerAlignment(*DL) < PrefAlign && 1921 DL->getTypeAllocSize(GV->getValueType()) >= 1922 MinSize + Offset2) 1923 GV->setAlignment(MaybeAlign(PrefAlign)); 1924 } 1925 // If this is a memcpy (or similar) then we may be able to improve the 1926 // alignment 1927 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1928 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1929 if (DestAlign > MI->getDestAlignment()) 1930 MI->setDestAlignment(DestAlign); 1931 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1932 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1933 if (SrcAlign > MTI->getSourceAlignment()) 1934 MTI->setSourceAlignment(SrcAlign); 1935 } 1936 } 1937 } 1938 1939 // If we have a cold call site, try to sink addressing computation into the 1940 // cold block. This interacts with our handling for loads and stores to 1941 // ensure that we can fold all uses of a potential addressing computation 1942 // into their uses. TODO: generalize this to work over profiling data 1943 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get()); 1944 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 1945 for (auto &Arg : CI->arg_operands()) { 1946 if (!Arg->getType()->isPointerTy()) 1947 continue; 1948 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1949 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1950 } 1951 1952 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1953 if (II) { 1954 switch (II->getIntrinsicID()) { 1955 default: break; 1956 case Intrinsic::experimental_widenable_condition: { 1957 // Give up on future widening oppurtunties so that we can fold away dead 1958 // paths and merge blocks before going into block-local instruction 1959 // selection. 1960 if (II->use_empty()) { 1961 II->eraseFromParent(); 1962 return true; 1963 } 1964 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1965 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1966 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1967 }); 1968 return true; 1969 } 1970 case Intrinsic::objectsize: 1971 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1972 case Intrinsic::is_constant: 1973 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1974 case Intrinsic::aarch64_stlxr: 1975 case Intrinsic::aarch64_stxr: { 1976 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1977 if (!ExtVal || !ExtVal->hasOneUse() || 1978 ExtVal->getParent() == CI->getParent()) 1979 return false; 1980 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1981 ExtVal->moveBefore(CI); 1982 // Mark this instruction as "inserted by CGP", so that other 1983 // optimizations don't touch it. 1984 InsertedInsts.insert(ExtVal); 1985 return true; 1986 } 1987 1988 case Intrinsic::launder_invariant_group: 1989 case Intrinsic::strip_invariant_group: { 1990 Value *ArgVal = II->getArgOperand(0); 1991 auto it = LargeOffsetGEPMap.find(II); 1992 if (it != LargeOffsetGEPMap.end()) { 1993 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1994 // Make sure not to have to deal with iterator invalidation 1995 // after possibly adding ArgVal to LargeOffsetGEPMap. 1996 auto GEPs = std::move(it->second); 1997 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1998 LargeOffsetGEPMap.erase(II); 1999 } 2000 2001 II->replaceAllUsesWith(ArgVal); 2002 II->eraseFromParent(); 2003 return true; 2004 } 2005 case Intrinsic::cttz: 2006 case Intrinsic::ctlz: 2007 // If counting zeros is expensive, try to avoid it. 2008 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2009 case Intrinsic::dbg_value: 2010 return fixupDbgValue(II); 2011 } 2012 2013 if (TLI) { 2014 SmallVector<Value*, 2> PtrOps; 2015 Type *AccessTy; 2016 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2017 while (!PtrOps.empty()) { 2018 Value *PtrVal = PtrOps.pop_back_val(); 2019 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2020 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2021 return true; 2022 } 2023 } 2024 } 2025 2026 // From here on out we're working with named functions. 2027 if (!CI->getCalledFunction()) return false; 2028 2029 // Lower all default uses of _chk calls. This is very similar 2030 // to what InstCombineCalls does, but here we are only lowering calls 2031 // to fortified library functions (e.g. __memcpy_chk) that have the default 2032 // "don't know" as the objectsize. Anything else should be left alone. 2033 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2034 if (Value *V = Simplifier.optimizeCall(CI)) { 2035 CI->replaceAllUsesWith(V); 2036 CI->eraseFromParent(); 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 /// Look for opportunities to duplicate return instructions to the predecessor 2044 /// to enable tail call optimizations. The case it is currently looking for is: 2045 /// @code 2046 /// bb0: 2047 /// %tmp0 = tail call i32 @f0() 2048 /// br label %return 2049 /// bb1: 2050 /// %tmp1 = tail call i32 @f1() 2051 /// br label %return 2052 /// bb2: 2053 /// %tmp2 = tail call i32 @f2() 2054 /// br label %return 2055 /// return: 2056 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2057 /// ret i32 %retval 2058 /// @endcode 2059 /// 2060 /// => 2061 /// 2062 /// @code 2063 /// bb0: 2064 /// %tmp0 = tail call i32 @f0() 2065 /// ret i32 %tmp0 2066 /// bb1: 2067 /// %tmp1 = tail call i32 @f1() 2068 /// ret i32 %tmp1 2069 /// bb2: 2070 /// %tmp2 = tail call i32 @f2() 2071 /// ret i32 %tmp2 2072 /// @endcode 2073 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2074 if (!TLI) 2075 return false; 2076 2077 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2078 if (!RetI) 2079 return false; 2080 2081 PHINode *PN = nullptr; 2082 BitCastInst *BCI = nullptr; 2083 Value *V = RetI->getReturnValue(); 2084 if (V) { 2085 BCI = dyn_cast<BitCastInst>(V); 2086 if (BCI) 2087 V = BCI->getOperand(0); 2088 2089 PN = dyn_cast<PHINode>(V); 2090 if (!PN) 2091 return false; 2092 } 2093 2094 if (PN && PN->getParent() != BB) 2095 return false; 2096 2097 // Make sure there are no instructions between the PHI and return, or that the 2098 // return is the first instruction in the block. 2099 if (PN) { 2100 BasicBlock::iterator BI = BB->begin(); 2101 // Skip over debug and the bitcast. 2102 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2103 if (&*BI != RetI) 2104 return false; 2105 } else { 2106 BasicBlock::iterator BI = BB->begin(); 2107 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2108 if (&*BI != RetI) 2109 return false; 2110 } 2111 2112 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2113 /// call. 2114 const Function *F = BB->getParent(); 2115 SmallVector<BasicBlock*, 4> TailCallBBs; 2116 if (PN) { 2117 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2118 // Look through bitcasts. 2119 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2120 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2121 BasicBlock *PredBB = PN->getIncomingBlock(I); 2122 // Make sure the phi value is indeed produced by the tail call. 2123 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2124 TLI->mayBeEmittedAsTailCall(CI) && 2125 attributesPermitTailCall(F, CI, RetI, *TLI)) 2126 TailCallBBs.push_back(PredBB); 2127 } 2128 } else { 2129 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2130 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2131 if (!VisitedBBs.insert(*PI).second) 2132 continue; 2133 2134 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2135 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2136 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2137 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2138 if (RI == RE) 2139 continue; 2140 2141 CallInst *CI = dyn_cast<CallInst>(&*RI); 2142 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2143 attributesPermitTailCall(F, CI, RetI, *TLI)) 2144 TailCallBBs.push_back(*PI); 2145 } 2146 } 2147 2148 bool Changed = false; 2149 for (auto const &TailCallBB : TailCallBBs) { 2150 // Make sure the call instruction is followed by an unconditional branch to 2151 // the return block. 2152 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2153 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2154 continue; 2155 2156 // Duplicate the return into TailCallBB. 2157 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2158 ModifiedDT = Changed = true; 2159 ++NumRetsDup; 2160 } 2161 2162 // If we eliminated all predecessors of the block, delete the block now. 2163 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2164 BB->eraseFromParent(); 2165 2166 return Changed; 2167 } 2168 2169 //===----------------------------------------------------------------------===// 2170 // Memory Optimization 2171 //===----------------------------------------------------------------------===// 2172 2173 namespace { 2174 2175 /// This is an extended version of TargetLowering::AddrMode 2176 /// which holds actual Value*'s for register values. 2177 struct ExtAddrMode : public TargetLowering::AddrMode { 2178 Value *BaseReg = nullptr; 2179 Value *ScaledReg = nullptr; 2180 Value *OriginalValue = nullptr; 2181 bool InBounds = true; 2182 2183 enum FieldName { 2184 NoField = 0x00, 2185 BaseRegField = 0x01, 2186 BaseGVField = 0x02, 2187 BaseOffsField = 0x04, 2188 ScaledRegField = 0x08, 2189 ScaleField = 0x10, 2190 MultipleFields = 0xff 2191 }; 2192 2193 2194 ExtAddrMode() = default; 2195 2196 void print(raw_ostream &OS) const; 2197 void dump() const; 2198 2199 FieldName compare(const ExtAddrMode &other) { 2200 // First check that the types are the same on each field, as differing types 2201 // is something we can't cope with later on. 2202 if (BaseReg && other.BaseReg && 2203 BaseReg->getType() != other.BaseReg->getType()) 2204 return MultipleFields; 2205 if (BaseGV && other.BaseGV && 2206 BaseGV->getType() != other.BaseGV->getType()) 2207 return MultipleFields; 2208 if (ScaledReg && other.ScaledReg && 2209 ScaledReg->getType() != other.ScaledReg->getType()) 2210 return MultipleFields; 2211 2212 // Conservatively reject 'inbounds' mismatches. 2213 if (InBounds != other.InBounds) 2214 return MultipleFields; 2215 2216 // Check each field to see if it differs. 2217 unsigned Result = NoField; 2218 if (BaseReg != other.BaseReg) 2219 Result |= BaseRegField; 2220 if (BaseGV != other.BaseGV) 2221 Result |= BaseGVField; 2222 if (BaseOffs != other.BaseOffs) 2223 Result |= BaseOffsField; 2224 if (ScaledReg != other.ScaledReg) 2225 Result |= ScaledRegField; 2226 // Don't count 0 as being a different scale, because that actually means 2227 // unscaled (which will already be counted by having no ScaledReg). 2228 if (Scale && other.Scale && Scale != other.Scale) 2229 Result |= ScaleField; 2230 2231 if (countPopulation(Result) > 1) 2232 return MultipleFields; 2233 else 2234 return static_cast<FieldName>(Result); 2235 } 2236 2237 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2238 // with no offset. 2239 bool isTrivial() { 2240 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2241 // trivial if at most one of these terms is nonzero, except that BaseGV and 2242 // BaseReg both being zero actually means a null pointer value, which we 2243 // consider to be 'non-zero' here. 2244 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2245 } 2246 2247 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2248 switch (Field) { 2249 default: 2250 return nullptr; 2251 case BaseRegField: 2252 return BaseReg; 2253 case BaseGVField: 2254 return BaseGV; 2255 case ScaledRegField: 2256 return ScaledReg; 2257 case BaseOffsField: 2258 return ConstantInt::get(IntPtrTy, BaseOffs); 2259 } 2260 } 2261 2262 void SetCombinedField(FieldName Field, Value *V, 2263 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2264 switch (Field) { 2265 default: 2266 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2267 break; 2268 case ExtAddrMode::BaseRegField: 2269 BaseReg = V; 2270 break; 2271 case ExtAddrMode::BaseGVField: 2272 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2273 // in the BaseReg field. 2274 assert(BaseReg == nullptr); 2275 BaseReg = V; 2276 BaseGV = nullptr; 2277 break; 2278 case ExtAddrMode::ScaledRegField: 2279 ScaledReg = V; 2280 // If we have a mix of scaled and unscaled addrmodes then we want scale 2281 // to be the scale and not zero. 2282 if (!Scale) 2283 for (const ExtAddrMode &AM : AddrModes) 2284 if (AM.Scale) { 2285 Scale = AM.Scale; 2286 break; 2287 } 2288 break; 2289 case ExtAddrMode::BaseOffsField: 2290 // The offset is no longer a constant, so it goes in ScaledReg with a 2291 // scale of 1. 2292 assert(ScaledReg == nullptr); 2293 ScaledReg = V; 2294 Scale = 1; 2295 BaseOffs = 0; 2296 break; 2297 } 2298 } 2299 }; 2300 2301 } // end anonymous namespace 2302 2303 #ifndef NDEBUG 2304 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2305 AM.print(OS); 2306 return OS; 2307 } 2308 #endif 2309 2310 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2311 void ExtAddrMode::print(raw_ostream &OS) const { 2312 bool NeedPlus = false; 2313 OS << "["; 2314 if (InBounds) 2315 OS << "inbounds "; 2316 if (BaseGV) { 2317 OS << (NeedPlus ? " + " : "") 2318 << "GV:"; 2319 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2320 NeedPlus = true; 2321 } 2322 2323 if (BaseOffs) { 2324 OS << (NeedPlus ? " + " : "") 2325 << BaseOffs; 2326 NeedPlus = true; 2327 } 2328 2329 if (BaseReg) { 2330 OS << (NeedPlus ? " + " : "") 2331 << "Base:"; 2332 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2333 NeedPlus = true; 2334 } 2335 if (Scale) { 2336 OS << (NeedPlus ? " + " : "") 2337 << Scale << "*"; 2338 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2339 } 2340 2341 OS << ']'; 2342 } 2343 2344 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2345 print(dbgs()); 2346 dbgs() << '\n'; 2347 } 2348 #endif 2349 2350 namespace { 2351 2352 /// This class provides transaction based operation on the IR. 2353 /// Every change made through this class is recorded in the internal state and 2354 /// can be undone (rollback) until commit is called. 2355 class TypePromotionTransaction { 2356 /// This represents the common interface of the individual transaction. 2357 /// Each class implements the logic for doing one specific modification on 2358 /// the IR via the TypePromotionTransaction. 2359 class TypePromotionAction { 2360 protected: 2361 /// The Instruction modified. 2362 Instruction *Inst; 2363 2364 public: 2365 /// Constructor of the action. 2366 /// The constructor performs the related action on the IR. 2367 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2368 2369 virtual ~TypePromotionAction() = default; 2370 2371 /// Undo the modification done by this action. 2372 /// When this method is called, the IR must be in the same state as it was 2373 /// before this action was applied. 2374 /// \pre Undoing the action works if and only if the IR is in the exact same 2375 /// state as it was directly after this action was applied. 2376 virtual void undo() = 0; 2377 2378 /// Advocate every change made by this action. 2379 /// When the results on the IR of the action are to be kept, it is important 2380 /// to call this function, otherwise hidden information may be kept forever. 2381 virtual void commit() { 2382 // Nothing to be done, this action is not doing anything. 2383 } 2384 }; 2385 2386 /// Utility to remember the position of an instruction. 2387 class InsertionHandler { 2388 /// Position of an instruction. 2389 /// Either an instruction: 2390 /// - Is the first in a basic block: BB is used. 2391 /// - Has a previous instruction: PrevInst is used. 2392 union { 2393 Instruction *PrevInst; 2394 BasicBlock *BB; 2395 } Point; 2396 2397 /// Remember whether or not the instruction had a previous instruction. 2398 bool HasPrevInstruction; 2399 2400 public: 2401 /// Record the position of \p Inst. 2402 InsertionHandler(Instruction *Inst) { 2403 BasicBlock::iterator It = Inst->getIterator(); 2404 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2405 if (HasPrevInstruction) 2406 Point.PrevInst = &*--It; 2407 else 2408 Point.BB = Inst->getParent(); 2409 } 2410 2411 /// Insert \p Inst at the recorded position. 2412 void insert(Instruction *Inst) { 2413 if (HasPrevInstruction) { 2414 if (Inst->getParent()) 2415 Inst->removeFromParent(); 2416 Inst->insertAfter(Point.PrevInst); 2417 } else { 2418 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2419 if (Inst->getParent()) 2420 Inst->moveBefore(Position); 2421 else 2422 Inst->insertBefore(Position); 2423 } 2424 } 2425 }; 2426 2427 /// Move an instruction before another. 2428 class InstructionMoveBefore : public TypePromotionAction { 2429 /// Original position of the instruction. 2430 InsertionHandler Position; 2431 2432 public: 2433 /// Move \p Inst before \p Before. 2434 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2435 : TypePromotionAction(Inst), Position(Inst) { 2436 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2437 << "\n"); 2438 Inst->moveBefore(Before); 2439 } 2440 2441 /// Move the instruction back to its original position. 2442 void undo() override { 2443 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2444 Position.insert(Inst); 2445 } 2446 }; 2447 2448 /// Set the operand of an instruction with a new value. 2449 class OperandSetter : public TypePromotionAction { 2450 /// Original operand of the instruction. 2451 Value *Origin; 2452 2453 /// Index of the modified instruction. 2454 unsigned Idx; 2455 2456 public: 2457 /// Set \p Idx operand of \p Inst with \p NewVal. 2458 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2459 : TypePromotionAction(Inst), Idx(Idx) { 2460 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2461 << "for:" << *Inst << "\n" 2462 << "with:" << *NewVal << "\n"); 2463 Origin = Inst->getOperand(Idx); 2464 Inst->setOperand(Idx, NewVal); 2465 } 2466 2467 /// Restore the original value of the instruction. 2468 void undo() override { 2469 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2470 << "for: " << *Inst << "\n" 2471 << "with: " << *Origin << "\n"); 2472 Inst->setOperand(Idx, Origin); 2473 } 2474 }; 2475 2476 /// Hide the operands of an instruction. 2477 /// Do as if this instruction was not using any of its operands. 2478 class OperandsHider : public TypePromotionAction { 2479 /// The list of original operands. 2480 SmallVector<Value *, 4> OriginalValues; 2481 2482 public: 2483 /// Remove \p Inst from the uses of the operands of \p Inst. 2484 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2485 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2486 unsigned NumOpnds = Inst->getNumOperands(); 2487 OriginalValues.reserve(NumOpnds); 2488 for (unsigned It = 0; It < NumOpnds; ++It) { 2489 // Save the current operand. 2490 Value *Val = Inst->getOperand(It); 2491 OriginalValues.push_back(Val); 2492 // Set a dummy one. 2493 // We could use OperandSetter here, but that would imply an overhead 2494 // that we are not willing to pay. 2495 Inst->setOperand(It, UndefValue::get(Val->getType())); 2496 } 2497 } 2498 2499 /// Restore the original list of uses. 2500 void undo() override { 2501 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2502 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2503 Inst->setOperand(It, OriginalValues[It]); 2504 } 2505 }; 2506 2507 /// Build a truncate instruction. 2508 class TruncBuilder : public TypePromotionAction { 2509 Value *Val; 2510 2511 public: 2512 /// Build a truncate instruction of \p Opnd producing a \p Ty 2513 /// result. 2514 /// trunc Opnd to Ty. 2515 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2516 IRBuilder<> Builder(Opnd); 2517 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2518 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2519 } 2520 2521 /// Get the built value. 2522 Value *getBuiltValue() { return Val; } 2523 2524 /// Remove the built instruction. 2525 void undo() override { 2526 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2527 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2528 IVal->eraseFromParent(); 2529 } 2530 }; 2531 2532 /// Build a sign extension instruction. 2533 class SExtBuilder : public TypePromotionAction { 2534 Value *Val; 2535 2536 public: 2537 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2538 /// result. 2539 /// sext Opnd to Ty. 2540 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2541 : TypePromotionAction(InsertPt) { 2542 IRBuilder<> Builder(InsertPt); 2543 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2544 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2545 } 2546 2547 /// Get the built value. 2548 Value *getBuiltValue() { return Val; } 2549 2550 /// Remove the built instruction. 2551 void undo() override { 2552 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2553 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2554 IVal->eraseFromParent(); 2555 } 2556 }; 2557 2558 /// Build a zero extension instruction. 2559 class ZExtBuilder : public TypePromotionAction { 2560 Value *Val; 2561 2562 public: 2563 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2564 /// result. 2565 /// zext Opnd to Ty. 2566 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2567 : TypePromotionAction(InsertPt) { 2568 IRBuilder<> Builder(InsertPt); 2569 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2570 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2571 } 2572 2573 /// Get the built value. 2574 Value *getBuiltValue() { return Val; } 2575 2576 /// Remove the built instruction. 2577 void undo() override { 2578 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2579 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2580 IVal->eraseFromParent(); 2581 } 2582 }; 2583 2584 /// Mutate an instruction to another type. 2585 class TypeMutator : public TypePromotionAction { 2586 /// Record the original type. 2587 Type *OrigTy; 2588 2589 public: 2590 /// Mutate the type of \p Inst into \p NewTy. 2591 TypeMutator(Instruction *Inst, Type *NewTy) 2592 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2593 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2594 << "\n"); 2595 Inst->mutateType(NewTy); 2596 } 2597 2598 /// Mutate the instruction back to its original type. 2599 void undo() override { 2600 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2601 << "\n"); 2602 Inst->mutateType(OrigTy); 2603 } 2604 }; 2605 2606 /// Replace the uses of an instruction by another instruction. 2607 class UsesReplacer : public TypePromotionAction { 2608 /// Helper structure to keep track of the replaced uses. 2609 struct InstructionAndIdx { 2610 /// The instruction using the instruction. 2611 Instruction *Inst; 2612 2613 /// The index where this instruction is used for Inst. 2614 unsigned Idx; 2615 2616 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2617 : Inst(Inst), Idx(Idx) {} 2618 }; 2619 2620 /// Keep track of the original uses (pair Instruction, Index). 2621 SmallVector<InstructionAndIdx, 4> OriginalUses; 2622 /// Keep track of the debug users. 2623 SmallVector<DbgValueInst *, 1> DbgValues; 2624 2625 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2626 2627 public: 2628 /// Replace all the use of \p Inst by \p New. 2629 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2630 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2631 << "\n"); 2632 // Record the original uses. 2633 for (Use &U : Inst->uses()) { 2634 Instruction *UserI = cast<Instruction>(U.getUser()); 2635 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2636 } 2637 // Record the debug uses separately. They are not in the instruction's 2638 // use list, but they are replaced by RAUW. 2639 findDbgValues(DbgValues, Inst); 2640 2641 // Now, we can replace the uses. 2642 Inst->replaceAllUsesWith(New); 2643 } 2644 2645 /// Reassign the original uses of Inst to Inst. 2646 void undo() override { 2647 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2648 for (use_iterator UseIt = OriginalUses.begin(), 2649 EndIt = OriginalUses.end(); 2650 UseIt != EndIt; ++UseIt) { 2651 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2652 } 2653 // RAUW has replaced all original uses with references to the new value, 2654 // including the debug uses. Since we are undoing the replacements, 2655 // the original debug uses must also be reinstated to maintain the 2656 // correctness and utility of debug value instructions. 2657 for (auto *DVI: DbgValues) { 2658 LLVMContext &Ctx = Inst->getType()->getContext(); 2659 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2660 DVI->setOperand(0, MV); 2661 } 2662 } 2663 }; 2664 2665 /// Remove an instruction from the IR. 2666 class InstructionRemover : public TypePromotionAction { 2667 /// Original position of the instruction. 2668 InsertionHandler Inserter; 2669 2670 /// Helper structure to hide all the link to the instruction. In other 2671 /// words, this helps to do as if the instruction was removed. 2672 OperandsHider Hider; 2673 2674 /// Keep track of the uses replaced, if any. 2675 UsesReplacer *Replacer = nullptr; 2676 2677 /// Keep track of instructions removed. 2678 SetOfInstrs &RemovedInsts; 2679 2680 public: 2681 /// Remove all reference of \p Inst and optionally replace all its 2682 /// uses with New. 2683 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2684 /// \pre If !Inst->use_empty(), then New != nullptr 2685 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2686 Value *New = nullptr) 2687 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2688 RemovedInsts(RemovedInsts) { 2689 if (New) 2690 Replacer = new UsesReplacer(Inst, New); 2691 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2692 RemovedInsts.insert(Inst); 2693 /// The instructions removed here will be freed after completing 2694 /// optimizeBlock() for all blocks as we need to keep track of the 2695 /// removed instructions during promotion. 2696 Inst->removeFromParent(); 2697 } 2698 2699 ~InstructionRemover() override { delete Replacer; } 2700 2701 /// Resurrect the instruction and reassign it to the proper uses if 2702 /// new value was provided when build this action. 2703 void undo() override { 2704 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2705 Inserter.insert(Inst); 2706 if (Replacer) 2707 Replacer->undo(); 2708 Hider.undo(); 2709 RemovedInsts.erase(Inst); 2710 } 2711 }; 2712 2713 public: 2714 /// Restoration point. 2715 /// The restoration point is a pointer to an action instead of an iterator 2716 /// because the iterator may be invalidated but not the pointer. 2717 using ConstRestorationPt = const TypePromotionAction *; 2718 2719 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2720 : RemovedInsts(RemovedInsts) {} 2721 2722 /// Advocate every changes made in that transaction. 2723 void commit(); 2724 2725 /// Undo all the changes made after the given point. 2726 void rollback(ConstRestorationPt Point); 2727 2728 /// Get the current restoration point. 2729 ConstRestorationPt getRestorationPoint() const; 2730 2731 /// \name API for IR modification with state keeping to support rollback. 2732 /// @{ 2733 /// Same as Instruction::setOperand. 2734 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2735 2736 /// Same as Instruction::eraseFromParent. 2737 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2738 2739 /// Same as Value::replaceAllUsesWith. 2740 void replaceAllUsesWith(Instruction *Inst, Value *New); 2741 2742 /// Same as Value::mutateType. 2743 void mutateType(Instruction *Inst, Type *NewTy); 2744 2745 /// Same as IRBuilder::createTrunc. 2746 Value *createTrunc(Instruction *Opnd, Type *Ty); 2747 2748 /// Same as IRBuilder::createSExt. 2749 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2750 2751 /// Same as IRBuilder::createZExt. 2752 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2753 2754 /// Same as Instruction::moveBefore. 2755 void moveBefore(Instruction *Inst, Instruction *Before); 2756 /// @} 2757 2758 private: 2759 /// The ordered list of actions made so far. 2760 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2761 2762 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2763 2764 SetOfInstrs &RemovedInsts; 2765 }; 2766 2767 } // end anonymous namespace 2768 2769 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2770 Value *NewVal) { 2771 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2772 Inst, Idx, NewVal)); 2773 } 2774 2775 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2776 Value *NewVal) { 2777 Actions.push_back( 2778 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2779 Inst, RemovedInsts, NewVal)); 2780 } 2781 2782 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2783 Value *New) { 2784 Actions.push_back( 2785 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2786 } 2787 2788 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2789 Actions.push_back( 2790 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2791 } 2792 2793 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2794 Type *Ty) { 2795 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2796 Value *Val = Ptr->getBuiltValue(); 2797 Actions.push_back(std::move(Ptr)); 2798 return Val; 2799 } 2800 2801 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2802 Value *Opnd, Type *Ty) { 2803 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2804 Value *Val = Ptr->getBuiltValue(); 2805 Actions.push_back(std::move(Ptr)); 2806 return Val; 2807 } 2808 2809 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2810 Value *Opnd, Type *Ty) { 2811 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2812 Value *Val = Ptr->getBuiltValue(); 2813 Actions.push_back(std::move(Ptr)); 2814 return Val; 2815 } 2816 2817 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2818 Instruction *Before) { 2819 Actions.push_back( 2820 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2821 Inst, Before)); 2822 } 2823 2824 TypePromotionTransaction::ConstRestorationPt 2825 TypePromotionTransaction::getRestorationPoint() const { 2826 return !Actions.empty() ? Actions.back().get() : nullptr; 2827 } 2828 2829 void TypePromotionTransaction::commit() { 2830 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2831 ++It) 2832 (*It)->commit(); 2833 Actions.clear(); 2834 } 2835 2836 void TypePromotionTransaction::rollback( 2837 TypePromotionTransaction::ConstRestorationPt Point) { 2838 while (!Actions.empty() && Point != Actions.back().get()) { 2839 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2840 Curr->undo(); 2841 } 2842 } 2843 2844 namespace { 2845 2846 /// A helper class for matching addressing modes. 2847 /// 2848 /// This encapsulates the logic for matching the target-legal addressing modes. 2849 class AddressingModeMatcher { 2850 SmallVectorImpl<Instruction*> &AddrModeInsts; 2851 const TargetLowering &TLI; 2852 const TargetRegisterInfo &TRI; 2853 const DataLayout &DL; 2854 2855 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2856 /// the memory instruction that we're computing this address for. 2857 Type *AccessTy; 2858 unsigned AddrSpace; 2859 Instruction *MemoryInst; 2860 2861 /// This is the addressing mode that we're building up. This is 2862 /// part of the return value of this addressing mode matching stuff. 2863 ExtAddrMode &AddrMode; 2864 2865 /// The instructions inserted by other CodeGenPrepare optimizations. 2866 const SetOfInstrs &InsertedInsts; 2867 2868 /// A map from the instructions to their type before promotion. 2869 InstrToOrigTy &PromotedInsts; 2870 2871 /// The ongoing transaction where every action should be registered. 2872 TypePromotionTransaction &TPT; 2873 2874 // A GEP which has too large offset to be folded into the addressing mode. 2875 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2876 2877 /// This is set to true when we should not do profitability checks. 2878 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2879 bool IgnoreProfitability; 2880 2881 /// True if we are optimizing for size. 2882 bool OptSize; 2883 2884 ProfileSummaryInfo *PSI; 2885 BlockFrequencyInfo *BFI; 2886 2887 AddressingModeMatcher( 2888 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2889 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2890 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2891 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2892 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2893 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2894 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2895 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2896 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2897 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2898 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2899 IgnoreProfitability = false; 2900 } 2901 2902 public: 2903 /// Find the maximal addressing mode that a load/store of V can fold, 2904 /// give an access type of AccessTy. This returns a list of involved 2905 /// instructions in AddrModeInsts. 2906 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2907 /// optimizations. 2908 /// \p PromotedInsts maps the instructions to their type before promotion. 2909 /// \p The ongoing transaction where every action should be registered. 2910 static ExtAddrMode 2911 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2912 SmallVectorImpl<Instruction *> &AddrModeInsts, 2913 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2914 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2915 TypePromotionTransaction &TPT, 2916 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2917 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2918 ExtAddrMode Result; 2919 2920 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2921 MemoryInst, Result, InsertedInsts, 2922 PromotedInsts, TPT, LargeOffsetGEP, 2923 OptSize, PSI, BFI) 2924 .matchAddr(V, 0); 2925 (void)Success; assert(Success && "Couldn't select *anything*?"); 2926 return Result; 2927 } 2928 2929 private: 2930 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2931 bool matchAddr(Value *Addr, unsigned Depth); 2932 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2933 bool *MovedAway = nullptr); 2934 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2935 ExtAddrMode &AMBefore, 2936 ExtAddrMode &AMAfter); 2937 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2938 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2939 Value *PromotedOperand) const; 2940 }; 2941 2942 class PhiNodeSet; 2943 2944 /// An iterator for PhiNodeSet. 2945 class PhiNodeSetIterator { 2946 PhiNodeSet * const Set; 2947 size_t CurrentIndex = 0; 2948 2949 public: 2950 /// The constructor. Start should point to either a valid element, or be equal 2951 /// to the size of the underlying SmallVector of the PhiNodeSet. 2952 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2953 PHINode * operator*() const; 2954 PhiNodeSetIterator& operator++(); 2955 bool operator==(const PhiNodeSetIterator &RHS) const; 2956 bool operator!=(const PhiNodeSetIterator &RHS) const; 2957 }; 2958 2959 /// Keeps a set of PHINodes. 2960 /// 2961 /// This is a minimal set implementation for a specific use case: 2962 /// It is very fast when there are very few elements, but also provides good 2963 /// performance when there are many. It is similar to SmallPtrSet, but also 2964 /// provides iteration by insertion order, which is deterministic and stable 2965 /// across runs. It is also similar to SmallSetVector, but provides removing 2966 /// elements in O(1) time. This is achieved by not actually removing the element 2967 /// from the underlying vector, so comes at the cost of using more memory, but 2968 /// that is fine, since PhiNodeSets are used as short lived objects. 2969 class PhiNodeSet { 2970 friend class PhiNodeSetIterator; 2971 2972 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2973 using iterator = PhiNodeSetIterator; 2974 2975 /// Keeps the elements in the order of their insertion in the underlying 2976 /// vector. To achieve constant time removal, it never deletes any element. 2977 SmallVector<PHINode *, 32> NodeList; 2978 2979 /// Keeps the elements in the underlying set implementation. This (and not the 2980 /// NodeList defined above) is the source of truth on whether an element 2981 /// is actually in the collection. 2982 MapType NodeMap; 2983 2984 /// Points to the first valid (not deleted) element when the set is not empty 2985 /// and the value is not zero. Equals to the size of the underlying vector 2986 /// when the set is empty. When the value is 0, as in the beginning, the 2987 /// first element may or may not be valid. 2988 size_t FirstValidElement = 0; 2989 2990 public: 2991 /// Inserts a new element to the collection. 2992 /// \returns true if the element is actually added, i.e. was not in the 2993 /// collection before the operation. 2994 bool insert(PHINode *Ptr) { 2995 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2996 NodeList.push_back(Ptr); 2997 return true; 2998 } 2999 return false; 3000 } 3001 3002 /// Removes the element from the collection. 3003 /// \returns whether the element is actually removed, i.e. was in the 3004 /// collection before the operation. 3005 bool erase(PHINode *Ptr) { 3006 auto it = NodeMap.find(Ptr); 3007 if (it != NodeMap.end()) { 3008 NodeMap.erase(Ptr); 3009 SkipRemovedElements(FirstValidElement); 3010 return true; 3011 } 3012 return false; 3013 } 3014 3015 /// Removes all elements and clears the collection. 3016 void clear() { 3017 NodeMap.clear(); 3018 NodeList.clear(); 3019 FirstValidElement = 0; 3020 } 3021 3022 /// \returns an iterator that will iterate the elements in the order of 3023 /// insertion. 3024 iterator begin() { 3025 if (FirstValidElement == 0) 3026 SkipRemovedElements(FirstValidElement); 3027 return PhiNodeSetIterator(this, FirstValidElement); 3028 } 3029 3030 /// \returns an iterator that points to the end of the collection. 3031 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3032 3033 /// Returns the number of elements in the collection. 3034 size_t size() const { 3035 return NodeMap.size(); 3036 } 3037 3038 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3039 size_t count(PHINode *Ptr) const { 3040 return NodeMap.count(Ptr); 3041 } 3042 3043 private: 3044 /// Updates the CurrentIndex so that it will point to a valid element. 3045 /// 3046 /// If the element of NodeList at CurrentIndex is valid, it does not 3047 /// change it. If there are no more valid elements, it updates CurrentIndex 3048 /// to point to the end of the NodeList. 3049 void SkipRemovedElements(size_t &CurrentIndex) { 3050 while (CurrentIndex < NodeList.size()) { 3051 auto it = NodeMap.find(NodeList[CurrentIndex]); 3052 // If the element has been deleted and added again later, NodeMap will 3053 // point to a different index, so CurrentIndex will still be invalid. 3054 if (it != NodeMap.end() && it->second == CurrentIndex) 3055 break; 3056 ++CurrentIndex; 3057 } 3058 } 3059 }; 3060 3061 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3062 : Set(Set), CurrentIndex(Start) {} 3063 3064 PHINode * PhiNodeSetIterator::operator*() const { 3065 assert(CurrentIndex < Set->NodeList.size() && 3066 "PhiNodeSet access out of range"); 3067 return Set->NodeList[CurrentIndex]; 3068 } 3069 3070 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3071 assert(CurrentIndex < Set->NodeList.size() && 3072 "PhiNodeSet access out of range"); 3073 ++CurrentIndex; 3074 Set->SkipRemovedElements(CurrentIndex); 3075 return *this; 3076 } 3077 3078 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3079 return CurrentIndex == RHS.CurrentIndex; 3080 } 3081 3082 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3083 return !((*this) == RHS); 3084 } 3085 3086 /// Keep track of simplification of Phi nodes. 3087 /// Accept the set of all phi nodes and erase phi node from this set 3088 /// if it is simplified. 3089 class SimplificationTracker { 3090 DenseMap<Value *, Value *> Storage; 3091 const SimplifyQuery &SQ; 3092 // Tracks newly created Phi nodes. The elements are iterated by insertion 3093 // order. 3094 PhiNodeSet AllPhiNodes; 3095 // Tracks newly created Select nodes. 3096 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3097 3098 public: 3099 SimplificationTracker(const SimplifyQuery &sq) 3100 : SQ(sq) {} 3101 3102 Value *Get(Value *V) { 3103 do { 3104 auto SV = Storage.find(V); 3105 if (SV == Storage.end()) 3106 return V; 3107 V = SV->second; 3108 } while (true); 3109 } 3110 3111 Value *Simplify(Value *Val) { 3112 SmallVector<Value *, 32> WorkList; 3113 SmallPtrSet<Value *, 32> Visited; 3114 WorkList.push_back(Val); 3115 while (!WorkList.empty()) { 3116 auto P = WorkList.pop_back_val(); 3117 if (!Visited.insert(P).second) 3118 continue; 3119 if (auto *PI = dyn_cast<Instruction>(P)) 3120 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3121 for (auto *U : PI->users()) 3122 WorkList.push_back(cast<Value>(U)); 3123 Put(PI, V); 3124 PI->replaceAllUsesWith(V); 3125 if (auto *PHI = dyn_cast<PHINode>(PI)) 3126 AllPhiNodes.erase(PHI); 3127 if (auto *Select = dyn_cast<SelectInst>(PI)) 3128 AllSelectNodes.erase(Select); 3129 PI->eraseFromParent(); 3130 } 3131 } 3132 return Get(Val); 3133 } 3134 3135 void Put(Value *From, Value *To) { 3136 Storage.insert({ From, To }); 3137 } 3138 3139 void ReplacePhi(PHINode *From, PHINode *To) { 3140 Value* OldReplacement = Get(From); 3141 while (OldReplacement != From) { 3142 From = To; 3143 To = dyn_cast<PHINode>(OldReplacement); 3144 OldReplacement = Get(From); 3145 } 3146 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3147 Put(From, To); 3148 From->replaceAllUsesWith(To); 3149 AllPhiNodes.erase(From); 3150 From->eraseFromParent(); 3151 } 3152 3153 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3154 3155 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3156 3157 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3158 3159 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3160 3161 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3162 3163 void destroyNewNodes(Type *CommonType) { 3164 // For safe erasing, replace the uses with dummy value first. 3165 auto Dummy = UndefValue::get(CommonType); 3166 for (auto I : AllPhiNodes) { 3167 I->replaceAllUsesWith(Dummy); 3168 I->eraseFromParent(); 3169 } 3170 AllPhiNodes.clear(); 3171 for (auto I : AllSelectNodes) { 3172 I->replaceAllUsesWith(Dummy); 3173 I->eraseFromParent(); 3174 } 3175 AllSelectNodes.clear(); 3176 } 3177 }; 3178 3179 /// A helper class for combining addressing modes. 3180 class AddressingModeCombiner { 3181 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3182 typedef std::pair<PHINode *, PHINode *> PHIPair; 3183 3184 private: 3185 /// The addressing modes we've collected. 3186 SmallVector<ExtAddrMode, 16> AddrModes; 3187 3188 /// The field in which the AddrModes differ, when we have more than one. 3189 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3190 3191 /// Are the AddrModes that we have all just equal to their original values? 3192 bool AllAddrModesTrivial = true; 3193 3194 /// Common Type for all different fields in addressing modes. 3195 Type *CommonType; 3196 3197 /// SimplifyQuery for simplifyInstruction utility. 3198 const SimplifyQuery &SQ; 3199 3200 /// Original Address. 3201 Value *Original; 3202 3203 public: 3204 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3205 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3206 3207 /// Get the combined AddrMode 3208 const ExtAddrMode &getAddrMode() const { 3209 return AddrModes[0]; 3210 } 3211 3212 /// Add a new AddrMode if it's compatible with the AddrModes we already 3213 /// have. 3214 /// \return True iff we succeeded in doing so. 3215 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3216 // Take note of if we have any non-trivial AddrModes, as we need to detect 3217 // when all AddrModes are trivial as then we would introduce a phi or select 3218 // which just duplicates what's already there. 3219 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3220 3221 // If this is the first addrmode then everything is fine. 3222 if (AddrModes.empty()) { 3223 AddrModes.emplace_back(NewAddrMode); 3224 return true; 3225 } 3226 3227 // Figure out how different this is from the other address modes, which we 3228 // can do just by comparing against the first one given that we only care 3229 // about the cumulative difference. 3230 ExtAddrMode::FieldName ThisDifferentField = 3231 AddrModes[0].compare(NewAddrMode); 3232 if (DifferentField == ExtAddrMode::NoField) 3233 DifferentField = ThisDifferentField; 3234 else if (DifferentField != ThisDifferentField) 3235 DifferentField = ExtAddrMode::MultipleFields; 3236 3237 // If NewAddrMode differs in more than one dimension we cannot handle it. 3238 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3239 3240 // If Scale Field is different then we reject. 3241 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3242 3243 // We also must reject the case when base offset is different and 3244 // scale reg is not null, we cannot handle this case due to merge of 3245 // different offsets will be used as ScaleReg. 3246 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3247 !NewAddrMode.ScaledReg); 3248 3249 // We also must reject the case when GV is different and BaseReg installed 3250 // due to we want to use base reg as a merge of GV values. 3251 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3252 !NewAddrMode.HasBaseReg); 3253 3254 // Even if NewAddMode is the same we still need to collect it due to 3255 // original value is different. And later we will need all original values 3256 // as anchors during finding the common Phi node. 3257 if (CanHandle) 3258 AddrModes.emplace_back(NewAddrMode); 3259 else 3260 AddrModes.clear(); 3261 3262 return CanHandle; 3263 } 3264 3265 /// Combine the addressing modes we've collected into a single 3266 /// addressing mode. 3267 /// \return True iff we successfully combined them or we only had one so 3268 /// didn't need to combine them anyway. 3269 bool combineAddrModes() { 3270 // If we have no AddrModes then they can't be combined. 3271 if (AddrModes.size() == 0) 3272 return false; 3273 3274 // A single AddrMode can trivially be combined. 3275 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3276 return true; 3277 3278 // If the AddrModes we collected are all just equal to the value they are 3279 // derived from then combining them wouldn't do anything useful. 3280 if (AllAddrModesTrivial) 3281 return false; 3282 3283 if (!addrModeCombiningAllowed()) 3284 return false; 3285 3286 // Build a map between <original value, basic block where we saw it> to 3287 // value of base register. 3288 // Bail out if there is no common type. 3289 FoldAddrToValueMapping Map; 3290 if (!initializeMap(Map)) 3291 return false; 3292 3293 Value *CommonValue = findCommon(Map); 3294 if (CommonValue) 3295 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3296 return CommonValue != nullptr; 3297 } 3298 3299 private: 3300 /// Initialize Map with anchor values. For address seen 3301 /// we set the value of different field saw in this address. 3302 /// At the same time we find a common type for different field we will 3303 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3304 /// Return false if there is no common type found. 3305 bool initializeMap(FoldAddrToValueMapping &Map) { 3306 // Keep track of keys where the value is null. We will need to replace it 3307 // with constant null when we know the common type. 3308 SmallVector<Value *, 2> NullValue; 3309 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3310 for (auto &AM : AddrModes) { 3311 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3312 if (DV) { 3313 auto *Type = DV->getType(); 3314 if (CommonType && CommonType != Type) 3315 return false; 3316 CommonType = Type; 3317 Map[AM.OriginalValue] = DV; 3318 } else { 3319 NullValue.push_back(AM.OriginalValue); 3320 } 3321 } 3322 assert(CommonType && "At least one non-null value must be!"); 3323 for (auto *V : NullValue) 3324 Map[V] = Constant::getNullValue(CommonType); 3325 return true; 3326 } 3327 3328 /// We have mapping between value A and other value B where B was a field in 3329 /// addressing mode represented by A. Also we have an original value C 3330 /// representing an address we start with. Traversing from C through phi and 3331 /// selects we ended up with A's in a map. This utility function tries to find 3332 /// a value V which is a field in addressing mode C and traversing through phi 3333 /// nodes and selects we will end up in corresponded values B in a map. 3334 /// The utility will create a new Phi/Selects if needed. 3335 // The simple example looks as follows: 3336 // BB1: 3337 // p1 = b1 + 40 3338 // br cond BB2, BB3 3339 // BB2: 3340 // p2 = b2 + 40 3341 // br BB3 3342 // BB3: 3343 // p = phi [p1, BB1], [p2, BB2] 3344 // v = load p 3345 // Map is 3346 // p1 -> b1 3347 // p2 -> b2 3348 // Request is 3349 // p -> ? 3350 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3351 Value *findCommon(FoldAddrToValueMapping &Map) { 3352 // Tracks the simplification of newly created phi nodes. The reason we use 3353 // this mapping is because we will add new created Phi nodes in AddrToBase. 3354 // Simplification of Phi nodes is recursive, so some Phi node may 3355 // be simplified after we added it to AddrToBase. In reality this 3356 // simplification is possible only if original phi/selects were not 3357 // simplified yet. 3358 // Using this mapping we can find the current value in AddrToBase. 3359 SimplificationTracker ST(SQ); 3360 3361 // First step, DFS to create PHI nodes for all intermediate blocks. 3362 // Also fill traverse order for the second step. 3363 SmallVector<Value *, 32> TraverseOrder; 3364 InsertPlaceholders(Map, TraverseOrder, ST); 3365 3366 // Second Step, fill new nodes by merged values and simplify if possible. 3367 FillPlaceholders(Map, TraverseOrder, ST); 3368 3369 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3370 ST.destroyNewNodes(CommonType); 3371 return nullptr; 3372 } 3373 3374 // Now we'd like to match New Phi nodes to existed ones. 3375 unsigned PhiNotMatchedCount = 0; 3376 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3377 ST.destroyNewNodes(CommonType); 3378 return nullptr; 3379 } 3380 3381 auto *Result = ST.Get(Map.find(Original)->second); 3382 if (Result) { 3383 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3384 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3385 } 3386 return Result; 3387 } 3388 3389 /// Try to match PHI node to Candidate. 3390 /// Matcher tracks the matched Phi nodes. 3391 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3392 SmallSetVector<PHIPair, 8> &Matcher, 3393 PhiNodeSet &PhiNodesToMatch) { 3394 SmallVector<PHIPair, 8> WorkList; 3395 Matcher.insert({ PHI, Candidate }); 3396 SmallSet<PHINode *, 8> MatchedPHIs; 3397 MatchedPHIs.insert(PHI); 3398 WorkList.push_back({ PHI, Candidate }); 3399 SmallSet<PHIPair, 8> Visited; 3400 while (!WorkList.empty()) { 3401 auto Item = WorkList.pop_back_val(); 3402 if (!Visited.insert(Item).second) 3403 continue; 3404 // We iterate over all incoming values to Phi to compare them. 3405 // If values are different and both of them Phi and the first one is a 3406 // Phi we added (subject to match) and both of them is in the same basic 3407 // block then we can match our pair if values match. So we state that 3408 // these values match and add it to work list to verify that. 3409 for (auto B : Item.first->blocks()) { 3410 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3411 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3412 if (FirstValue == SecondValue) 3413 continue; 3414 3415 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3416 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3417 3418 // One of them is not Phi or 3419 // The first one is not Phi node from the set we'd like to match or 3420 // Phi nodes from different basic blocks then 3421 // we will not be able to match. 3422 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3423 FirstPhi->getParent() != SecondPhi->getParent()) 3424 return false; 3425 3426 // If we already matched them then continue. 3427 if (Matcher.count({ FirstPhi, SecondPhi })) 3428 continue; 3429 // So the values are different and does not match. So we need them to 3430 // match. (But we register no more than one match per PHI node, so that 3431 // we won't later try to replace them twice.) 3432 if (MatchedPHIs.insert(FirstPhi).second) 3433 Matcher.insert({ FirstPhi, SecondPhi }); 3434 // But me must check it. 3435 WorkList.push_back({ FirstPhi, SecondPhi }); 3436 } 3437 } 3438 return true; 3439 } 3440 3441 /// For the given set of PHI nodes (in the SimplificationTracker) try 3442 /// to find their equivalents. 3443 /// Returns false if this matching fails and creation of new Phi is disabled. 3444 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3445 unsigned &PhiNotMatchedCount) { 3446 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3447 // order, so the replacements (ReplacePhi) are also done in a deterministic 3448 // order. 3449 SmallSetVector<PHIPair, 8> Matched; 3450 SmallPtrSet<PHINode *, 8> WillNotMatch; 3451 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3452 while (PhiNodesToMatch.size()) { 3453 PHINode *PHI = *PhiNodesToMatch.begin(); 3454 3455 // Add us, if no Phi nodes in the basic block we do not match. 3456 WillNotMatch.clear(); 3457 WillNotMatch.insert(PHI); 3458 3459 // Traverse all Phis until we found equivalent or fail to do that. 3460 bool IsMatched = false; 3461 for (auto &P : PHI->getParent()->phis()) { 3462 if (&P == PHI) 3463 continue; 3464 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3465 break; 3466 // If it does not match, collect all Phi nodes from matcher. 3467 // if we end up with no match, them all these Phi nodes will not match 3468 // later. 3469 for (auto M : Matched) 3470 WillNotMatch.insert(M.first); 3471 Matched.clear(); 3472 } 3473 if (IsMatched) { 3474 // Replace all matched values and erase them. 3475 for (auto MV : Matched) 3476 ST.ReplacePhi(MV.first, MV.second); 3477 Matched.clear(); 3478 continue; 3479 } 3480 // If we are not allowed to create new nodes then bail out. 3481 if (!AllowNewPhiNodes) 3482 return false; 3483 // Just remove all seen values in matcher. They will not match anything. 3484 PhiNotMatchedCount += WillNotMatch.size(); 3485 for (auto *P : WillNotMatch) 3486 PhiNodesToMatch.erase(P); 3487 } 3488 return true; 3489 } 3490 /// Fill the placeholders with values from predecessors and simplify them. 3491 void FillPlaceholders(FoldAddrToValueMapping &Map, 3492 SmallVectorImpl<Value *> &TraverseOrder, 3493 SimplificationTracker &ST) { 3494 while (!TraverseOrder.empty()) { 3495 Value *Current = TraverseOrder.pop_back_val(); 3496 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3497 Value *V = Map[Current]; 3498 3499 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3500 // CurrentValue also must be Select. 3501 auto *CurrentSelect = cast<SelectInst>(Current); 3502 auto *TrueValue = CurrentSelect->getTrueValue(); 3503 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3504 Select->setTrueValue(ST.Get(Map[TrueValue])); 3505 auto *FalseValue = CurrentSelect->getFalseValue(); 3506 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3507 Select->setFalseValue(ST.Get(Map[FalseValue])); 3508 } else { 3509 // Must be a Phi node then. 3510 auto *PHI = cast<PHINode>(V); 3511 // Fill the Phi node with values from predecessors. 3512 for (auto B : predecessors(PHI->getParent())) { 3513 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3514 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3515 PHI->addIncoming(ST.Get(Map[PV]), B); 3516 } 3517 } 3518 Map[Current] = ST.Simplify(V); 3519 } 3520 } 3521 3522 /// Starting from original value recursively iterates over def-use chain up to 3523 /// known ending values represented in a map. For each traversed phi/select 3524 /// inserts a placeholder Phi or Select. 3525 /// Reports all new created Phi/Select nodes by adding them to set. 3526 /// Also reports and order in what values have been traversed. 3527 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3528 SmallVectorImpl<Value *> &TraverseOrder, 3529 SimplificationTracker &ST) { 3530 SmallVector<Value *, 32> Worklist; 3531 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3532 "Address must be a Phi or Select node"); 3533 auto *Dummy = UndefValue::get(CommonType); 3534 Worklist.push_back(Original); 3535 while (!Worklist.empty()) { 3536 Value *Current = Worklist.pop_back_val(); 3537 // if it is already visited or it is an ending value then skip it. 3538 if (Map.find(Current) != Map.end()) 3539 continue; 3540 TraverseOrder.push_back(Current); 3541 3542 // CurrentValue must be a Phi node or select. All others must be covered 3543 // by anchors. 3544 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3545 // Is it OK to get metadata from OrigSelect?! 3546 // Create a Select placeholder with dummy value. 3547 SelectInst *Select = SelectInst::Create( 3548 CurrentSelect->getCondition(), Dummy, Dummy, 3549 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3550 Map[Current] = Select; 3551 ST.insertNewSelect(Select); 3552 // We are interested in True and False values. 3553 Worklist.push_back(CurrentSelect->getTrueValue()); 3554 Worklist.push_back(CurrentSelect->getFalseValue()); 3555 } else { 3556 // It must be a Phi node then. 3557 PHINode *CurrentPhi = cast<PHINode>(Current); 3558 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3559 PHINode *PHI = 3560 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3561 Map[Current] = PHI; 3562 ST.insertNewPhi(PHI); 3563 for (Value *P : CurrentPhi->incoming_values()) 3564 Worklist.push_back(P); 3565 } 3566 } 3567 } 3568 3569 bool addrModeCombiningAllowed() { 3570 if (DisableComplexAddrModes) 3571 return false; 3572 switch (DifferentField) { 3573 default: 3574 return false; 3575 case ExtAddrMode::BaseRegField: 3576 return AddrSinkCombineBaseReg; 3577 case ExtAddrMode::BaseGVField: 3578 return AddrSinkCombineBaseGV; 3579 case ExtAddrMode::BaseOffsField: 3580 return AddrSinkCombineBaseOffs; 3581 case ExtAddrMode::ScaledRegField: 3582 return AddrSinkCombineScaledReg; 3583 } 3584 } 3585 }; 3586 } // end anonymous namespace 3587 3588 /// Try adding ScaleReg*Scale to the current addressing mode. 3589 /// Return true and update AddrMode if this addr mode is legal for the target, 3590 /// false if not. 3591 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3592 unsigned Depth) { 3593 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3594 // mode. Just process that directly. 3595 if (Scale == 1) 3596 return matchAddr(ScaleReg, Depth); 3597 3598 // If the scale is 0, it takes nothing to add this. 3599 if (Scale == 0) 3600 return true; 3601 3602 // If we already have a scale of this value, we can add to it, otherwise, we 3603 // need an available scale field. 3604 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3605 return false; 3606 3607 ExtAddrMode TestAddrMode = AddrMode; 3608 3609 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3610 // [A+B + A*7] -> [B+A*8]. 3611 TestAddrMode.Scale += Scale; 3612 TestAddrMode.ScaledReg = ScaleReg; 3613 3614 // If the new address isn't legal, bail out. 3615 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3616 return false; 3617 3618 // It was legal, so commit it. 3619 AddrMode = TestAddrMode; 3620 3621 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3622 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3623 // X*Scale + C*Scale to addr mode. 3624 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3625 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3626 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3627 TestAddrMode.InBounds = false; 3628 TestAddrMode.ScaledReg = AddLHS; 3629 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3630 3631 // If this addressing mode is legal, commit it and remember that we folded 3632 // this instruction. 3633 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3634 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3635 AddrMode = TestAddrMode; 3636 return true; 3637 } 3638 } 3639 3640 // Otherwise, not (x+c)*scale, just return what we have. 3641 return true; 3642 } 3643 3644 /// This is a little filter, which returns true if an addressing computation 3645 /// involving I might be folded into a load/store accessing it. 3646 /// This doesn't need to be perfect, but needs to accept at least 3647 /// the set of instructions that MatchOperationAddr can. 3648 static bool MightBeFoldableInst(Instruction *I) { 3649 switch (I->getOpcode()) { 3650 case Instruction::BitCast: 3651 case Instruction::AddrSpaceCast: 3652 // Don't touch identity bitcasts. 3653 if (I->getType() == I->getOperand(0)->getType()) 3654 return false; 3655 return I->getType()->isIntOrPtrTy(); 3656 case Instruction::PtrToInt: 3657 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3658 return true; 3659 case Instruction::IntToPtr: 3660 // We know the input is intptr_t, so this is foldable. 3661 return true; 3662 case Instruction::Add: 3663 return true; 3664 case Instruction::Mul: 3665 case Instruction::Shl: 3666 // Can only handle X*C and X << C. 3667 return isa<ConstantInt>(I->getOperand(1)); 3668 case Instruction::GetElementPtr: 3669 return true; 3670 default: 3671 return false; 3672 } 3673 } 3674 3675 /// Check whether or not \p Val is a legal instruction for \p TLI. 3676 /// \note \p Val is assumed to be the product of some type promotion. 3677 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3678 /// to be legal, as the non-promoted value would have had the same state. 3679 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3680 const DataLayout &DL, Value *Val) { 3681 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3682 if (!PromotedInst) 3683 return false; 3684 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3685 // If the ISDOpcode is undefined, it was undefined before the promotion. 3686 if (!ISDOpcode) 3687 return true; 3688 // Otherwise, check if the promoted instruction is legal or not. 3689 return TLI.isOperationLegalOrCustom( 3690 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3691 } 3692 3693 namespace { 3694 3695 /// Hepler class to perform type promotion. 3696 class TypePromotionHelper { 3697 /// Utility function to add a promoted instruction \p ExtOpnd to 3698 /// \p PromotedInsts and record the type of extension we have seen. 3699 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3700 Instruction *ExtOpnd, 3701 bool IsSExt) { 3702 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3703 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3704 if (It != PromotedInsts.end()) { 3705 // If the new extension is same as original, the information in 3706 // PromotedInsts[ExtOpnd] is still correct. 3707 if (It->second.getInt() == ExtTy) 3708 return; 3709 3710 // Now the new extension is different from old extension, we make 3711 // the type information invalid by setting extension type to 3712 // BothExtension. 3713 ExtTy = BothExtension; 3714 } 3715 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3716 } 3717 3718 /// Utility function to query the original type of instruction \p Opnd 3719 /// with a matched extension type. If the extension doesn't match, we 3720 /// cannot use the information we had on the original type. 3721 /// BothExtension doesn't match any extension type. 3722 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3723 Instruction *Opnd, 3724 bool IsSExt) { 3725 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3726 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3727 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3728 return It->second.getPointer(); 3729 return nullptr; 3730 } 3731 3732 /// Utility function to check whether or not a sign or zero extension 3733 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3734 /// either using the operands of \p Inst or promoting \p Inst. 3735 /// The type of the extension is defined by \p IsSExt. 3736 /// In other words, check if: 3737 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3738 /// #1 Promotion applies: 3739 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3740 /// #2 Operand reuses: 3741 /// ext opnd1 to ConsideredExtType. 3742 /// \p PromotedInsts maps the instructions to their type before promotion. 3743 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3744 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3745 3746 /// Utility function to determine if \p OpIdx should be promoted when 3747 /// promoting \p Inst. 3748 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3749 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3750 } 3751 3752 /// Utility function to promote the operand of \p Ext when this 3753 /// operand is a promotable trunc or sext or zext. 3754 /// \p PromotedInsts maps the instructions to their type before promotion. 3755 /// \p CreatedInstsCost[out] contains the cost of all instructions 3756 /// created to promote the operand of Ext. 3757 /// Newly added extensions are inserted in \p Exts. 3758 /// Newly added truncates are inserted in \p Truncs. 3759 /// Should never be called directly. 3760 /// \return The promoted value which is used instead of Ext. 3761 static Value *promoteOperandForTruncAndAnyExt( 3762 Instruction *Ext, TypePromotionTransaction &TPT, 3763 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3764 SmallVectorImpl<Instruction *> *Exts, 3765 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3766 3767 /// Utility function to promote the operand of \p Ext when this 3768 /// operand is promotable and is not a supported trunc or sext. 3769 /// \p PromotedInsts maps the instructions to their type before promotion. 3770 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3771 /// created to promote the operand of Ext. 3772 /// Newly added extensions are inserted in \p Exts. 3773 /// Newly added truncates are inserted in \p Truncs. 3774 /// Should never be called directly. 3775 /// \return The promoted value which is used instead of Ext. 3776 static Value *promoteOperandForOther(Instruction *Ext, 3777 TypePromotionTransaction &TPT, 3778 InstrToOrigTy &PromotedInsts, 3779 unsigned &CreatedInstsCost, 3780 SmallVectorImpl<Instruction *> *Exts, 3781 SmallVectorImpl<Instruction *> *Truncs, 3782 const TargetLowering &TLI, bool IsSExt); 3783 3784 /// \see promoteOperandForOther. 3785 static Value *signExtendOperandForOther( 3786 Instruction *Ext, TypePromotionTransaction &TPT, 3787 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3788 SmallVectorImpl<Instruction *> *Exts, 3789 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3790 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3791 Exts, Truncs, TLI, true); 3792 } 3793 3794 /// \see promoteOperandForOther. 3795 static Value *zeroExtendOperandForOther( 3796 Instruction *Ext, TypePromotionTransaction &TPT, 3797 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3798 SmallVectorImpl<Instruction *> *Exts, 3799 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3800 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3801 Exts, Truncs, TLI, false); 3802 } 3803 3804 public: 3805 /// Type for the utility function that promotes the operand of Ext. 3806 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3807 InstrToOrigTy &PromotedInsts, 3808 unsigned &CreatedInstsCost, 3809 SmallVectorImpl<Instruction *> *Exts, 3810 SmallVectorImpl<Instruction *> *Truncs, 3811 const TargetLowering &TLI); 3812 3813 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3814 /// action to promote the operand of \p Ext instead of using Ext. 3815 /// \return NULL if no promotable action is possible with the current 3816 /// sign extension. 3817 /// \p InsertedInsts keeps track of all the instructions inserted by the 3818 /// other CodeGenPrepare optimizations. This information is important 3819 /// because we do not want to promote these instructions as CodeGenPrepare 3820 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3821 /// \p PromotedInsts maps the instructions to their type before promotion. 3822 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3823 const TargetLowering &TLI, 3824 const InstrToOrigTy &PromotedInsts); 3825 }; 3826 3827 } // end anonymous namespace 3828 3829 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3830 Type *ConsideredExtType, 3831 const InstrToOrigTy &PromotedInsts, 3832 bool IsSExt) { 3833 // The promotion helper does not know how to deal with vector types yet. 3834 // To be able to fix that, we would need to fix the places where we 3835 // statically extend, e.g., constants and such. 3836 if (Inst->getType()->isVectorTy()) 3837 return false; 3838 3839 // We can always get through zext. 3840 if (isa<ZExtInst>(Inst)) 3841 return true; 3842 3843 // sext(sext) is ok too. 3844 if (IsSExt && isa<SExtInst>(Inst)) 3845 return true; 3846 3847 // We can get through binary operator, if it is legal. In other words, the 3848 // binary operator must have a nuw or nsw flag. 3849 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3850 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3851 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3852 (IsSExt && BinOp->hasNoSignedWrap()))) 3853 return true; 3854 3855 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3856 if ((Inst->getOpcode() == Instruction::And || 3857 Inst->getOpcode() == Instruction::Or)) 3858 return true; 3859 3860 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3861 if (Inst->getOpcode() == Instruction::Xor) { 3862 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3863 // Make sure it is not a NOT. 3864 if (Cst && !Cst->getValue().isAllOnesValue()) 3865 return true; 3866 } 3867 3868 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3869 // It may change a poisoned value into a regular value, like 3870 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3871 // poisoned value regular value 3872 // It should be OK since undef covers valid value. 3873 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3874 return true; 3875 3876 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3877 // It may change a poisoned value into a regular value, like 3878 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3879 // poisoned value regular value 3880 // It should be OK since undef covers valid value. 3881 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3882 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3883 if (ExtInst->hasOneUse()) { 3884 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3885 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3886 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3887 if (Cst && 3888 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3889 return true; 3890 } 3891 } 3892 } 3893 3894 // Check if we can do the following simplification. 3895 // ext(trunc(opnd)) --> ext(opnd) 3896 if (!isa<TruncInst>(Inst)) 3897 return false; 3898 3899 Value *OpndVal = Inst->getOperand(0); 3900 // Check if we can use this operand in the extension. 3901 // If the type is larger than the result type of the extension, we cannot. 3902 if (!OpndVal->getType()->isIntegerTy() || 3903 OpndVal->getType()->getIntegerBitWidth() > 3904 ConsideredExtType->getIntegerBitWidth()) 3905 return false; 3906 3907 // If the operand of the truncate is not an instruction, we will not have 3908 // any information on the dropped bits. 3909 // (Actually we could for constant but it is not worth the extra logic). 3910 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3911 if (!Opnd) 3912 return false; 3913 3914 // Check if the source of the type is narrow enough. 3915 // I.e., check that trunc just drops extended bits of the same kind of 3916 // the extension. 3917 // #1 get the type of the operand and check the kind of the extended bits. 3918 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3919 if (OpndType) 3920 ; 3921 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3922 OpndType = Opnd->getOperand(0)->getType(); 3923 else 3924 return false; 3925 3926 // #2 check that the truncate just drops extended bits. 3927 return Inst->getType()->getIntegerBitWidth() >= 3928 OpndType->getIntegerBitWidth(); 3929 } 3930 3931 TypePromotionHelper::Action TypePromotionHelper::getAction( 3932 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3933 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3934 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3935 "Unexpected instruction type"); 3936 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3937 Type *ExtTy = Ext->getType(); 3938 bool IsSExt = isa<SExtInst>(Ext); 3939 // If the operand of the extension is not an instruction, we cannot 3940 // get through. 3941 // If it, check we can get through. 3942 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3943 return nullptr; 3944 3945 // Do not promote if the operand has been added by codegenprepare. 3946 // Otherwise, it means we are undoing an optimization that is likely to be 3947 // redone, thus causing potential infinite loop. 3948 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3949 return nullptr; 3950 3951 // SExt or Trunc instructions. 3952 // Return the related handler. 3953 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3954 isa<ZExtInst>(ExtOpnd)) 3955 return promoteOperandForTruncAndAnyExt; 3956 3957 // Regular instruction. 3958 // Abort early if we will have to insert non-free instructions. 3959 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3960 return nullptr; 3961 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3962 } 3963 3964 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3965 Instruction *SExt, TypePromotionTransaction &TPT, 3966 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3967 SmallVectorImpl<Instruction *> *Exts, 3968 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3969 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3970 // get through it and this method should not be called. 3971 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3972 Value *ExtVal = SExt; 3973 bool HasMergedNonFreeExt = false; 3974 if (isa<ZExtInst>(SExtOpnd)) { 3975 // Replace s|zext(zext(opnd)) 3976 // => zext(opnd). 3977 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3978 Value *ZExt = 3979 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3980 TPT.replaceAllUsesWith(SExt, ZExt); 3981 TPT.eraseInstruction(SExt); 3982 ExtVal = ZExt; 3983 } else { 3984 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3985 // => z|sext(opnd). 3986 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3987 } 3988 CreatedInstsCost = 0; 3989 3990 // Remove dead code. 3991 if (SExtOpnd->use_empty()) 3992 TPT.eraseInstruction(SExtOpnd); 3993 3994 // Check if the extension is still needed. 3995 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3996 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3997 if (ExtInst) { 3998 if (Exts) 3999 Exts->push_back(ExtInst); 4000 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4001 } 4002 return ExtVal; 4003 } 4004 4005 // At this point we have: ext ty opnd to ty. 4006 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4007 Value *NextVal = ExtInst->getOperand(0); 4008 TPT.eraseInstruction(ExtInst, NextVal); 4009 return NextVal; 4010 } 4011 4012 Value *TypePromotionHelper::promoteOperandForOther( 4013 Instruction *Ext, TypePromotionTransaction &TPT, 4014 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4015 SmallVectorImpl<Instruction *> *Exts, 4016 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4017 bool IsSExt) { 4018 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4019 // get through it and this method should not be called. 4020 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4021 CreatedInstsCost = 0; 4022 if (!ExtOpnd->hasOneUse()) { 4023 // ExtOpnd will be promoted. 4024 // All its uses, but Ext, will need to use a truncated value of the 4025 // promoted version. 4026 // Create the truncate now. 4027 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4028 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4029 // Insert it just after the definition. 4030 ITrunc->moveAfter(ExtOpnd); 4031 if (Truncs) 4032 Truncs->push_back(ITrunc); 4033 } 4034 4035 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4036 // Restore the operand of Ext (which has been replaced by the previous call 4037 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4038 TPT.setOperand(Ext, 0, ExtOpnd); 4039 } 4040 4041 // Get through the Instruction: 4042 // 1. Update its type. 4043 // 2. Replace the uses of Ext by Inst. 4044 // 3. Extend each operand that needs to be extended. 4045 4046 // Remember the original type of the instruction before promotion. 4047 // This is useful to know that the high bits are sign extended bits. 4048 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4049 // Step #1. 4050 TPT.mutateType(ExtOpnd, Ext->getType()); 4051 // Step #2. 4052 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4053 // Step #3. 4054 Instruction *ExtForOpnd = Ext; 4055 4056 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4057 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4058 ++OpIdx) { 4059 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4060 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4061 !shouldExtOperand(ExtOpnd, OpIdx)) { 4062 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4063 continue; 4064 } 4065 // Check if we can statically extend the operand. 4066 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4067 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4068 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4069 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4070 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4071 : Cst->getValue().zext(BitWidth); 4072 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4073 continue; 4074 } 4075 // UndefValue are typed, so we have to statically sign extend them. 4076 if (isa<UndefValue>(Opnd)) { 4077 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4078 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4079 continue; 4080 } 4081 4082 // Otherwise we have to explicitly sign extend the operand. 4083 // Check if Ext was reused to extend an operand. 4084 if (!ExtForOpnd) { 4085 // If yes, create a new one. 4086 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4087 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4088 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4089 if (!isa<Instruction>(ValForExtOpnd)) { 4090 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4091 continue; 4092 } 4093 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4094 } 4095 if (Exts) 4096 Exts->push_back(ExtForOpnd); 4097 TPT.setOperand(ExtForOpnd, 0, Opnd); 4098 4099 // Move the sign extension before the insertion point. 4100 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4101 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4102 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4103 // If more sext are required, new instructions will have to be created. 4104 ExtForOpnd = nullptr; 4105 } 4106 if (ExtForOpnd == Ext) { 4107 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4108 TPT.eraseInstruction(Ext); 4109 } 4110 return ExtOpnd; 4111 } 4112 4113 /// Check whether or not promoting an instruction to a wider type is profitable. 4114 /// \p NewCost gives the cost of extension instructions created by the 4115 /// promotion. 4116 /// \p OldCost gives the cost of extension instructions before the promotion 4117 /// plus the number of instructions that have been 4118 /// matched in the addressing mode the promotion. 4119 /// \p PromotedOperand is the value that has been promoted. 4120 /// \return True if the promotion is profitable, false otherwise. 4121 bool AddressingModeMatcher::isPromotionProfitable( 4122 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4123 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4124 << '\n'); 4125 // The cost of the new extensions is greater than the cost of the 4126 // old extension plus what we folded. 4127 // This is not profitable. 4128 if (NewCost > OldCost) 4129 return false; 4130 if (NewCost < OldCost) 4131 return true; 4132 // The promotion is neutral but it may help folding the sign extension in 4133 // loads for instance. 4134 // Check that we did not create an illegal instruction. 4135 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4136 } 4137 4138 /// Given an instruction or constant expr, see if we can fold the operation 4139 /// into the addressing mode. If so, update the addressing mode and return 4140 /// true, otherwise return false without modifying AddrMode. 4141 /// If \p MovedAway is not NULL, it contains the information of whether or 4142 /// not AddrInst has to be folded into the addressing mode on success. 4143 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4144 /// because it has been moved away. 4145 /// Thus AddrInst must not be added in the matched instructions. 4146 /// This state can happen when AddrInst is a sext, since it may be moved away. 4147 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4148 /// not be referenced anymore. 4149 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4150 unsigned Depth, 4151 bool *MovedAway) { 4152 // Avoid exponential behavior on extremely deep expression trees. 4153 if (Depth >= 5) return false; 4154 4155 // By default, all matched instructions stay in place. 4156 if (MovedAway) 4157 *MovedAway = false; 4158 4159 switch (Opcode) { 4160 case Instruction::PtrToInt: 4161 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4162 return matchAddr(AddrInst->getOperand(0), Depth); 4163 case Instruction::IntToPtr: { 4164 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4165 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4166 // This inttoptr is a no-op if the integer type is pointer sized. 4167 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4168 return matchAddr(AddrInst->getOperand(0), Depth); 4169 return false; 4170 } 4171 case Instruction::BitCast: 4172 // BitCast is always a noop, and we can handle it as long as it is 4173 // int->int or pointer->pointer (we don't want int<->fp or something). 4174 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4175 // Don't touch identity bitcasts. These were probably put here by LSR, 4176 // and we don't want to mess around with them. Assume it knows what it 4177 // is doing. 4178 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4179 return matchAddr(AddrInst->getOperand(0), Depth); 4180 return false; 4181 case Instruction::AddrSpaceCast: { 4182 unsigned SrcAS 4183 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4184 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4185 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4186 return matchAddr(AddrInst->getOperand(0), Depth); 4187 return false; 4188 } 4189 case Instruction::Add: { 4190 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4191 ExtAddrMode BackupAddrMode = AddrMode; 4192 unsigned OldSize = AddrModeInsts.size(); 4193 // Start a transaction at this point. 4194 // The LHS may match but not the RHS. 4195 // Therefore, we need a higher level restoration point to undo partially 4196 // matched operation. 4197 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4198 TPT.getRestorationPoint(); 4199 4200 AddrMode.InBounds = false; 4201 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4202 matchAddr(AddrInst->getOperand(0), Depth+1)) 4203 return true; 4204 4205 // Restore the old addr mode info. 4206 AddrMode = BackupAddrMode; 4207 AddrModeInsts.resize(OldSize); 4208 TPT.rollback(LastKnownGood); 4209 4210 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4211 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4212 matchAddr(AddrInst->getOperand(1), Depth+1)) 4213 return true; 4214 4215 // Otherwise we definitely can't merge the ADD in. 4216 AddrMode = BackupAddrMode; 4217 AddrModeInsts.resize(OldSize); 4218 TPT.rollback(LastKnownGood); 4219 break; 4220 } 4221 //case Instruction::Or: 4222 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4223 //break; 4224 case Instruction::Mul: 4225 case Instruction::Shl: { 4226 // Can only handle X*C and X << C. 4227 AddrMode.InBounds = false; 4228 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4229 if (!RHS || RHS->getBitWidth() > 64) 4230 return false; 4231 int64_t Scale = RHS->getSExtValue(); 4232 if (Opcode == Instruction::Shl) 4233 Scale = 1LL << Scale; 4234 4235 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4236 } 4237 case Instruction::GetElementPtr: { 4238 // Scan the GEP. We check it if it contains constant offsets and at most 4239 // one variable offset. 4240 int VariableOperand = -1; 4241 unsigned VariableScale = 0; 4242 4243 int64_t ConstantOffset = 0; 4244 gep_type_iterator GTI = gep_type_begin(AddrInst); 4245 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4246 if (StructType *STy = GTI.getStructTypeOrNull()) { 4247 const StructLayout *SL = DL.getStructLayout(STy); 4248 unsigned Idx = 4249 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4250 ConstantOffset += SL->getElementOffset(Idx); 4251 } else { 4252 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4253 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4254 const APInt &CVal = CI->getValue(); 4255 if (CVal.getMinSignedBits() <= 64) { 4256 ConstantOffset += CVal.getSExtValue() * TypeSize; 4257 continue; 4258 } 4259 } 4260 if (TypeSize) { // Scales of zero don't do anything. 4261 // We only allow one variable index at the moment. 4262 if (VariableOperand != -1) 4263 return false; 4264 4265 // Remember the variable index. 4266 VariableOperand = i; 4267 VariableScale = TypeSize; 4268 } 4269 } 4270 } 4271 4272 // A common case is for the GEP to only do a constant offset. In this case, 4273 // just add it to the disp field and check validity. 4274 if (VariableOperand == -1) { 4275 AddrMode.BaseOffs += ConstantOffset; 4276 if (ConstantOffset == 0 || 4277 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4278 // Check to see if we can fold the base pointer in too. 4279 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4280 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4281 AddrMode.InBounds = false; 4282 return true; 4283 } 4284 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4285 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4286 ConstantOffset > 0) { 4287 // Record GEPs with non-zero offsets as candidates for splitting in the 4288 // event that the offset cannot fit into the r+i addressing mode. 4289 // Simple and common case that only one GEP is used in calculating the 4290 // address for the memory access. 4291 Value *Base = AddrInst->getOperand(0); 4292 auto *BaseI = dyn_cast<Instruction>(Base); 4293 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4294 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4295 (BaseI && !isa<CastInst>(BaseI) && 4296 !isa<GetElementPtrInst>(BaseI))) { 4297 // Make sure the parent block allows inserting non-PHI instructions 4298 // before the terminator. 4299 BasicBlock *Parent = 4300 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4301 if (!Parent->getTerminator()->isEHPad()) 4302 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4303 } 4304 } 4305 AddrMode.BaseOffs -= ConstantOffset; 4306 return false; 4307 } 4308 4309 // Save the valid addressing mode in case we can't match. 4310 ExtAddrMode BackupAddrMode = AddrMode; 4311 unsigned OldSize = AddrModeInsts.size(); 4312 4313 // See if the scale and offset amount is valid for this target. 4314 AddrMode.BaseOffs += ConstantOffset; 4315 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4316 AddrMode.InBounds = false; 4317 4318 // Match the base operand of the GEP. 4319 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4320 // If it couldn't be matched, just stuff the value in a register. 4321 if (AddrMode.HasBaseReg) { 4322 AddrMode = BackupAddrMode; 4323 AddrModeInsts.resize(OldSize); 4324 return false; 4325 } 4326 AddrMode.HasBaseReg = true; 4327 AddrMode.BaseReg = AddrInst->getOperand(0); 4328 } 4329 4330 // Match the remaining variable portion of the GEP. 4331 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4332 Depth)) { 4333 // If it couldn't be matched, try stuffing the base into a register 4334 // instead of matching it, and retrying the match of the scale. 4335 AddrMode = BackupAddrMode; 4336 AddrModeInsts.resize(OldSize); 4337 if (AddrMode.HasBaseReg) 4338 return false; 4339 AddrMode.HasBaseReg = true; 4340 AddrMode.BaseReg = AddrInst->getOperand(0); 4341 AddrMode.BaseOffs += ConstantOffset; 4342 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4343 VariableScale, Depth)) { 4344 // If even that didn't work, bail. 4345 AddrMode = BackupAddrMode; 4346 AddrModeInsts.resize(OldSize); 4347 return false; 4348 } 4349 } 4350 4351 return true; 4352 } 4353 case Instruction::SExt: 4354 case Instruction::ZExt: { 4355 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4356 if (!Ext) 4357 return false; 4358 4359 // Try to move this ext out of the way of the addressing mode. 4360 // Ask for a method for doing so. 4361 TypePromotionHelper::Action TPH = 4362 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4363 if (!TPH) 4364 return false; 4365 4366 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4367 TPT.getRestorationPoint(); 4368 unsigned CreatedInstsCost = 0; 4369 unsigned ExtCost = !TLI.isExtFree(Ext); 4370 Value *PromotedOperand = 4371 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4372 // SExt has been moved away. 4373 // Thus either it will be rematched later in the recursive calls or it is 4374 // gone. Anyway, we must not fold it into the addressing mode at this point. 4375 // E.g., 4376 // op = add opnd, 1 4377 // idx = ext op 4378 // addr = gep base, idx 4379 // is now: 4380 // promotedOpnd = ext opnd <- no match here 4381 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4382 // addr = gep base, op <- match 4383 if (MovedAway) 4384 *MovedAway = true; 4385 4386 assert(PromotedOperand && 4387 "TypePromotionHelper should have filtered out those cases"); 4388 4389 ExtAddrMode BackupAddrMode = AddrMode; 4390 unsigned OldSize = AddrModeInsts.size(); 4391 4392 if (!matchAddr(PromotedOperand, Depth) || 4393 // The total of the new cost is equal to the cost of the created 4394 // instructions. 4395 // The total of the old cost is equal to the cost of the extension plus 4396 // what we have saved in the addressing mode. 4397 !isPromotionProfitable(CreatedInstsCost, 4398 ExtCost + (AddrModeInsts.size() - OldSize), 4399 PromotedOperand)) { 4400 AddrMode = BackupAddrMode; 4401 AddrModeInsts.resize(OldSize); 4402 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4403 TPT.rollback(LastKnownGood); 4404 return false; 4405 } 4406 return true; 4407 } 4408 } 4409 return false; 4410 } 4411 4412 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4413 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4414 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4415 /// for the target. 4416 /// 4417 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4418 // Start a transaction at this point that we will rollback if the matching 4419 // fails. 4420 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4421 TPT.getRestorationPoint(); 4422 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4423 // Fold in immediates if legal for the target. 4424 AddrMode.BaseOffs += CI->getSExtValue(); 4425 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4426 return true; 4427 AddrMode.BaseOffs -= CI->getSExtValue(); 4428 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4429 // If this is a global variable, try to fold it into the addressing mode. 4430 if (!AddrMode.BaseGV) { 4431 AddrMode.BaseGV = GV; 4432 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4433 return true; 4434 AddrMode.BaseGV = nullptr; 4435 } 4436 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4437 ExtAddrMode BackupAddrMode = AddrMode; 4438 unsigned OldSize = AddrModeInsts.size(); 4439 4440 // Check to see if it is possible to fold this operation. 4441 bool MovedAway = false; 4442 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4443 // This instruction may have been moved away. If so, there is nothing 4444 // to check here. 4445 if (MovedAway) 4446 return true; 4447 // Okay, it's possible to fold this. Check to see if it is actually 4448 // *profitable* to do so. We use a simple cost model to avoid increasing 4449 // register pressure too much. 4450 if (I->hasOneUse() || 4451 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4452 AddrModeInsts.push_back(I); 4453 return true; 4454 } 4455 4456 // It isn't profitable to do this, roll back. 4457 //cerr << "NOT FOLDING: " << *I; 4458 AddrMode = BackupAddrMode; 4459 AddrModeInsts.resize(OldSize); 4460 TPT.rollback(LastKnownGood); 4461 } 4462 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4463 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4464 return true; 4465 TPT.rollback(LastKnownGood); 4466 } else if (isa<ConstantPointerNull>(Addr)) { 4467 // Null pointer gets folded without affecting the addressing mode. 4468 return true; 4469 } 4470 4471 // Worse case, the target should support [reg] addressing modes. :) 4472 if (!AddrMode.HasBaseReg) { 4473 AddrMode.HasBaseReg = true; 4474 AddrMode.BaseReg = Addr; 4475 // Still check for legality in case the target supports [imm] but not [i+r]. 4476 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4477 return true; 4478 AddrMode.HasBaseReg = false; 4479 AddrMode.BaseReg = nullptr; 4480 } 4481 4482 // If the base register is already taken, see if we can do [r+r]. 4483 if (AddrMode.Scale == 0) { 4484 AddrMode.Scale = 1; 4485 AddrMode.ScaledReg = Addr; 4486 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4487 return true; 4488 AddrMode.Scale = 0; 4489 AddrMode.ScaledReg = nullptr; 4490 } 4491 // Couldn't match. 4492 TPT.rollback(LastKnownGood); 4493 return false; 4494 } 4495 4496 /// Check to see if all uses of OpVal by the specified inline asm call are due 4497 /// to memory operands. If so, return true, otherwise return false. 4498 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4499 const TargetLowering &TLI, 4500 const TargetRegisterInfo &TRI) { 4501 const Function *F = CI->getFunction(); 4502 TargetLowering::AsmOperandInfoVector TargetConstraints = 4503 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4504 ImmutableCallSite(CI)); 4505 4506 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4507 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4508 4509 // Compute the constraint code and ConstraintType to use. 4510 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4511 4512 // If this asm operand is our Value*, and if it isn't an indirect memory 4513 // operand, we can't fold it! 4514 if (OpInfo.CallOperandVal == OpVal && 4515 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4516 !OpInfo.isIndirect)) 4517 return false; 4518 } 4519 4520 return true; 4521 } 4522 4523 // Max number of memory uses to look at before aborting the search to conserve 4524 // compile time. 4525 static constexpr int MaxMemoryUsesToScan = 20; 4526 4527 /// Recursively walk all the uses of I until we find a memory use. 4528 /// If we find an obviously non-foldable instruction, return true. 4529 /// Add the ultimately found memory instructions to MemoryUses. 4530 static bool FindAllMemoryUses( 4531 Instruction *I, 4532 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4533 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4534 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4535 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4536 // If we already considered this instruction, we're done. 4537 if (!ConsideredInsts.insert(I).second) 4538 return false; 4539 4540 // If this is an obviously unfoldable instruction, bail out. 4541 if (!MightBeFoldableInst(I)) 4542 return true; 4543 4544 // Loop over all the uses, recursively processing them. 4545 for (Use &U : I->uses()) { 4546 // Conservatively return true if we're seeing a large number or a deep chain 4547 // of users. This avoids excessive compilation times in pathological cases. 4548 if (SeenInsts++ >= MaxMemoryUsesToScan) 4549 return true; 4550 4551 Instruction *UserI = cast<Instruction>(U.getUser()); 4552 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4553 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4554 continue; 4555 } 4556 4557 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4558 unsigned opNo = U.getOperandNo(); 4559 if (opNo != StoreInst::getPointerOperandIndex()) 4560 return true; // Storing addr, not into addr. 4561 MemoryUses.push_back(std::make_pair(SI, opNo)); 4562 continue; 4563 } 4564 4565 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4566 unsigned opNo = U.getOperandNo(); 4567 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4568 return true; // Storing addr, not into addr. 4569 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4570 continue; 4571 } 4572 4573 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4574 unsigned opNo = U.getOperandNo(); 4575 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4576 return true; // Storing addr, not into addr. 4577 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4578 continue; 4579 } 4580 4581 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4582 // If this is a cold call, we can sink the addressing calculation into 4583 // the cold path. See optimizeCallInst 4584 bool OptForSize = OptSize || 4585 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4586 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 4587 continue; 4588 4589 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4590 if (!IA) return true; 4591 4592 // If this is a memory operand, we're cool, otherwise bail out. 4593 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4594 return true; 4595 continue; 4596 } 4597 4598 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4599 PSI, BFI, SeenInsts)) 4600 return true; 4601 } 4602 4603 return false; 4604 } 4605 4606 /// Return true if Val is already known to be live at the use site that we're 4607 /// folding it into. If so, there is no cost to include it in the addressing 4608 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4609 /// instruction already. 4610 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4611 Value *KnownLive2) { 4612 // If Val is either of the known-live values, we know it is live! 4613 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4614 return true; 4615 4616 // All values other than instructions and arguments (e.g. constants) are live. 4617 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4618 4619 // If Val is a constant sized alloca in the entry block, it is live, this is 4620 // true because it is just a reference to the stack/frame pointer, which is 4621 // live for the whole function. 4622 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4623 if (AI->isStaticAlloca()) 4624 return true; 4625 4626 // Check to see if this value is already used in the memory instruction's 4627 // block. If so, it's already live into the block at the very least, so we 4628 // can reasonably fold it. 4629 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4630 } 4631 4632 /// It is possible for the addressing mode of the machine to fold the specified 4633 /// instruction into a load or store that ultimately uses it. 4634 /// However, the specified instruction has multiple uses. 4635 /// Given this, it may actually increase register pressure to fold it 4636 /// into the load. For example, consider this code: 4637 /// 4638 /// X = ... 4639 /// Y = X+1 4640 /// use(Y) -> nonload/store 4641 /// Z = Y+1 4642 /// load Z 4643 /// 4644 /// In this case, Y has multiple uses, and can be folded into the load of Z 4645 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4646 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4647 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4648 /// number of computations either. 4649 /// 4650 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4651 /// X was live across 'load Z' for other reasons, we actually *would* want to 4652 /// fold the addressing mode in the Z case. This would make Y die earlier. 4653 bool AddressingModeMatcher:: 4654 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4655 ExtAddrMode &AMAfter) { 4656 if (IgnoreProfitability) return true; 4657 4658 // AMBefore is the addressing mode before this instruction was folded into it, 4659 // and AMAfter is the addressing mode after the instruction was folded. Get 4660 // the set of registers referenced by AMAfter and subtract out those 4661 // referenced by AMBefore: this is the set of values which folding in this 4662 // address extends the lifetime of. 4663 // 4664 // Note that there are only two potential values being referenced here, 4665 // BaseReg and ScaleReg (global addresses are always available, as are any 4666 // folded immediates). 4667 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4668 4669 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4670 // lifetime wasn't extended by adding this instruction. 4671 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4672 BaseReg = nullptr; 4673 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4674 ScaledReg = nullptr; 4675 4676 // If folding this instruction (and it's subexprs) didn't extend any live 4677 // ranges, we're ok with it. 4678 if (!BaseReg && !ScaledReg) 4679 return true; 4680 4681 // If all uses of this instruction can have the address mode sunk into them, 4682 // we can remove the addressing mode and effectively trade one live register 4683 // for another (at worst.) In this context, folding an addressing mode into 4684 // the use is just a particularly nice way of sinking it. 4685 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4686 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4687 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4688 PSI, BFI)) 4689 return false; // Has a non-memory, non-foldable use! 4690 4691 // Now that we know that all uses of this instruction are part of a chain of 4692 // computation involving only operations that could theoretically be folded 4693 // into a memory use, loop over each of these memory operation uses and see 4694 // if they could *actually* fold the instruction. The assumption is that 4695 // addressing modes are cheap and that duplicating the computation involved 4696 // many times is worthwhile, even on a fastpath. For sinking candidates 4697 // (i.e. cold call sites), this serves as a way to prevent excessive code 4698 // growth since most architectures have some reasonable small and fast way to 4699 // compute an effective address. (i.e LEA on x86) 4700 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4701 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4702 Instruction *User = MemoryUses[i].first; 4703 unsigned OpNo = MemoryUses[i].second; 4704 4705 // Get the access type of this use. If the use isn't a pointer, we don't 4706 // know what it accesses. 4707 Value *Address = User->getOperand(OpNo); 4708 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4709 if (!AddrTy) 4710 return false; 4711 Type *AddressAccessTy = AddrTy->getElementType(); 4712 unsigned AS = AddrTy->getAddressSpace(); 4713 4714 // Do a match against the root of this address, ignoring profitability. This 4715 // will tell us if the addressing mode for the memory operation will 4716 // *actually* cover the shared instruction. 4717 ExtAddrMode Result; 4718 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4719 0); 4720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4721 TPT.getRestorationPoint(); 4722 AddressingModeMatcher Matcher( 4723 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4724 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4725 Matcher.IgnoreProfitability = true; 4726 bool Success = Matcher.matchAddr(Address, 0); 4727 (void)Success; assert(Success && "Couldn't select *anything*?"); 4728 4729 // The match was to check the profitability, the changes made are not 4730 // part of the original matcher. Therefore, they should be dropped 4731 // otherwise the original matcher will not present the right state. 4732 TPT.rollback(LastKnownGood); 4733 4734 // If the match didn't cover I, then it won't be shared by it. 4735 if (!is_contained(MatchedAddrModeInsts, I)) 4736 return false; 4737 4738 MatchedAddrModeInsts.clear(); 4739 } 4740 4741 return true; 4742 } 4743 4744 /// Return true if the specified values are defined in a 4745 /// different basic block than BB. 4746 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4747 if (Instruction *I = dyn_cast<Instruction>(V)) 4748 return I->getParent() != BB; 4749 return false; 4750 } 4751 4752 /// Sink addressing mode computation immediate before MemoryInst if doing so 4753 /// can be done without increasing register pressure. The need for the 4754 /// register pressure constraint means this can end up being an all or nothing 4755 /// decision for all uses of the same addressing computation. 4756 /// 4757 /// Load and Store Instructions often have addressing modes that can do 4758 /// significant amounts of computation. As such, instruction selection will try 4759 /// to get the load or store to do as much computation as possible for the 4760 /// program. The problem is that isel can only see within a single block. As 4761 /// such, we sink as much legal addressing mode work into the block as possible. 4762 /// 4763 /// This method is used to optimize both load/store and inline asms with memory 4764 /// operands. It's also used to sink addressing computations feeding into cold 4765 /// call sites into their (cold) basic block. 4766 /// 4767 /// The motivation for handling sinking into cold blocks is that doing so can 4768 /// both enable other address mode sinking (by satisfying the register pressure 4769 /// constraint above), and reduce register pressure globally (by removing the 4770 /// addressing mode computation from the fast path entirely.). 4771 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4772 Type *AccessTy, unsigned AddrSpace) { 4773 Value *Repl = Addr; 4774 4775 // Try to collapse single-value PHI nodes. This is necessary to undo 4776 // unprofitable PRE transformations. 4777 SmallVector<Value*, 8> worklist; 4778 SmallPtrSet<Value*, 16> Visited; 4779 worklist.push_back(Addr); 4780 4781 // Use a worklist to iteratively look through PHI and select nodes, and 4782 // ensure that the addressing mode obtained from the non-PHI/select roots of 4783 // the graph are compatible. 4784 bool PhiOrSelectSeen = false; 4785 SmallVector<Instruction*, 16> AddrModeInsts; 4786 const SimplifyQuery SQ(*DL, TLInfo); 4787 AddressingModeCombiner AddrModes(SQ, Addr); 4788 TypePromotionTransaction TPT(RemovedInsts); 4789 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4790 TPT.getRestorationPoint(); 4791 while (!worklist.empty()) { 4792 Value *V = worklist.back(); 4793 worklist.pop_back(); 4794 4795 // We allow traversing cyclic Phi nodes. 4796 // In case of success after this loop we ensure that traversing through 4797 // Phi nodes ends up with all cases to compute address of the form 4798 // BaseGV + Base + Scale * Index + Offset 4799 // where Scale and Offset are constans and BaseGV, Base and Index 4800 // are exactly the same Values in all cases. 4801 // It means that BaseGV, Scale and Offset dominate our memory instruction 4802 // and have the same value as they had in address computation represented 4803 // as Phi. So we can safely sink address computation to memory instruction. 4804 if (!Visited.insert(V).second) 4805 continue; 4806 4807 // For a PHI node, push all of its incoming values. 4808 if (PHINode *P = dyn_cast<PHINode>(V)) { 4809 for (Value *IncValue : P->incoming_values()) 4810 worklist.push_back(IncValue); 4811 PhiOrSelectSeen = true; 4812 continue; 4813 } 4814 // Similar for select. 4815 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4816 worklist.push_back(SI->getFalseValue()); 4817 worklist.push_back(SI->getTrueValue()); 4818 PhiOrSelectSeen = true; 4819 continue; 4820 } 4821 4822 // For non-PHIs, determine the addressing mode being computed. Note that 4823 // the result may differ depending on what other uses our candidate 4824 // addressing instructions might have. 4825 AddrModeInsts.clear(); 4826 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4827 0); 4828 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4829 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4830 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4831 BFI.get()); 4832 4833 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4834 if (GEP && !NewGEPBases.count(GEP)) { 4835 // If splitting the underlying data structure can reduce the offset of a 4836 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4837 // previously split data structures. 4838 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4839 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4840 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4841 } 4842 4843 NewAddrMode.OriginalValue = V; 4844 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4845 break; 4846 } 4847 4848 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4849 // or we have multiple but either couldn't combine them or combining them 4850 // wouldn't do anything useful, bail out now. 4851 if (!AddrModes.combineAddrModes()) { 4852 TPT.rollback(LastKnownGood); 4853 return false; 4854 } 4855 TPT.commit(); 4856 4857 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4858 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4859 4860 // If all the instructions matched are already in this BB, don't do anything. 4861 // If we saw a Phi node then it is not local definitely, and if we saw a select 4862 // then we want to push the address calculation past it even if it's already 4863 // in this BB. 4864 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4865 return IsNonLocalValue(V, MemoryInst->getParent()); 4866 })) { 4867 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4868 << "\n"); 4869 return false; 4870 } 4871 4872 // Insert this computation right after this user. Since our caller is 4873 // scanning from the top of the BB to the bottom, reuse of the expr are 4874 // guaranteed to happen later. 4875 IRBuilder<> Builder(MemoryInst); 4876 4877 // Now that we determined the addressing expression we want to use and know 4878 // that we have to sink it into this block. Check to see if we have already 4879 // done this for some other load/store instr in this block. If so, reuse 4880 // the computation. Before attempting reuse, check if the address is valid 4881 // as it may have been erased. 4882 4883 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4884 4885 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4886 if (SunkAddr) { 4887 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4888 << " for " << *MemoryInst << "\n"); 4889 if (SunkAddr->getType() != Addr->getType()) 4890 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4891 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4892 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4893 // By default, we use the GEP-based method when AA is used later. This 4894 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4895 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4896 << " for " << *MemoryInst << "\n"); 4897 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4898 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4899 4900 // First, find the pointer. 4901 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4902 ResultPtr = AddrMode.BaseReg; 4903 AddrMode.BaseReg = nullptr; 4904 } 4905 4906 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4907 // We can't add more than one pointer together, nor can we scale a 4908 // pointer (both of which seem meaningless). 4909 if (ResultPtr || AddrMode.Scale != 1) 4910 return false; 4911 4912 ResultPtr = AddrMode.ScaledReg; 4913 AddrMode.Scale = 0; 4914 } 4915 4916 // It is only safe to sign extend the BaseReg if we know that the math 4917 // required to create it did not overflow before we extend it. Since 4918 // the original IR value was tossed in favor of a constant back when 4919 // the AddrMode was created we need to bail out gracefully if widths 4920 // do not match instead of extending it. 4921 // 4922 // (See below for code to add the scale.) 4923 if (AddrMode.Scale) { 4924 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4925 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4926 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4927 return false; 4928 } 4929 4930 if (AddrMode.BaseGV) { 4931 if (ResultPtr) 4932 return false; 4933 4934 ResultPtr = AddrMode.BaseGV; 4935 } 4936 4937 // If the real base value actually came from an inttoptr, then the matcher 4938 // will look through it and provide only the integer value. In that case, 4939 // use it here. 4940 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4941 if (!ResultPtr && AddrMode.BaseReg) { 4942 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4943 "sunkaddr"); 4944 AddrMode.BaseReg = nullptr; 4945 } else if (!ResultPtr && AddrMode.Scale == 1) { 4946 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4947 "sunkaddr"); 4948 AddrMode.Scale = 0; 4949 } 4950 } 4951 4952 if (!ResultPtr && 4953 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4954 SunkAddr = Constant::getNullValue(Addr->getType()); 4955 } else if (!ResultPtr) { 4956 return false; 4957 } else { 4958 Type *I8PtrTy = 4959 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4960 Type *I8Ty = Builder.getInt8Ty(); 4961 4962 // Start with the base register. Do this first so that subsequent address 4963 // matching finds it last, which will prevent it from trying to match it 4964 // as the scaled value in case it happens to be a mul. That would be 4965 // problematic if we've sunk a different mul for the scale, because then 4966 // we'd end up sinking both muls. 4967 if (AddrMode.BaseReg) { 4968 Value *V = AddrMode.BaseReg; 4969 if (V->getType() != IntPtrTy) 4970 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4971 4972 ResultIndex = V; 4973 } 4974 4975 // Add the scale value. 4976 if (AddrMode.Scale) { 4977 Value *V = AddrMode.ScaledReg; 4978 if (V->getType() == IntPtrTy) { 4979 // done. 4980 } else { 4981 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4982 cast<IntegerType>(V->getType())->getBitWidth() && 4983 "We can't transform if ScaledReg is too narrow"); 4984 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4985 } 4986 4987 if (AddrMode.Scale != 1) 4988 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4989 "sunkaddr"); 4990 if (ResultIndex) 4991 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4992 else 4993 ResultIndex = V; 4994 } 4995 4996 // Add in the Base Offset if present. 4997 if (AddrMode.BaseOffs) { 4998 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4999 if (ResultIndex) { 5000 // We need to add this separately from the scale above to help with 5001 // SDAG consecutive load/store merging. 5002 if (ResultPtr->getType() != I8PtrTy) 5003 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5004 ResultPtr = 5005 AddrMode.InBounds 5006 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5007 "sunkaddr") 5008 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5009 } 5010 5011 ResultIndex = V; 5012 } 5013 5014 if (!ResultIndex) { 5015 SunkAddr = ResultPtr; 5016 } else { 5017 if (ResultPtr->getType() != I8PtrTy) 5018 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5019 SunkAddr = 5020 AddrMode.InBounds 5021 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5022 "sunkaddr") 5023 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5024 } 5025 5026 if (SunkAddr->getType() != Addr->getType()) 5027 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5028 } 5029 } else { 5030 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5031 // non-integral pointers, so in that case bail out now. 5032 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5033 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5034 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5035 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5036 if (DL->isNonIntegralPointerType(Addr->getType()) || 5037 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5038 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5039 (AddrMode.BaseGV && 5040 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5041 return false; 5042 5043 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5044 << " for " << *MemoryInst << "\n"); 5045 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5046 Value *Result = nullptr; 5047 5048 // Start with the base register. Do this first so that subsequent address 5049 // matching finds it last, which will prevent it from trying to match it 5050 // as the scaled value in case it happens to be a mul. That would be 5051 // problematic if we've sunk a different mul for the scale, because then 5052 // we'd end up sinking both muls. 5053 if (AddrMode.BaseReg) { 5054 Value *V = AddrMode.BaseReg; 5055 if (V->getType()->isPointerTy()) 5056 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5057 if (V->getType() != IntPtrTy) 5058 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5059 Result = V; 5060 } 5061 5062 // Add the scale value. 5063 if (AddrMode.Scale) { 5064 Value *V = AddrMode.ScaledReg; 5065 if (V->getType() == IntPtrTy) { 5066 // done. 5067 } else if (V->getType()->isPointerTy()) { 5068 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5069 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5070 cast<IntegerType>(V->getType())->getBitWidth()) { 5071 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5072 } else { 5073 // It is only safe to sign extend the BaseReg if we know that the math 5074 // required to create it did not overflow before we extend it. Since 5075 // the original IR value was tossed in favor of a constant back when 5076 // the AddrMode was created we need to bail out gracefully if widths 5077 // do not match instead of extending it. 5078 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5079 if (I && (Result != AddrMode.BaseReg)) 5080 I->eraseFromParent(); 5081 return false; 5082 } 5083 if (AddrMode.Scale != 1) 5084 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5085 "sunkaddr"); 5086 if (Result) 5087 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5088 else 5089 Result = V; 5090 } 5091 5092 // Add in the BaseGV if present. 5093 if (AddrMode.BaseGV) { 5094 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5095 if (Result) 5096 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5097 else 5098 Result = V; 5099 } 5100 5101 // Add in the Base Offset if present. 5102 if (AddrMode.BaseOffs) { 5103 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5104 if (Result) 5105 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5106 else 5107 Result = V; 5108 } 5109 5110 if (!Result) 5111 SunkAddr = Constant::getNullValue(Addr->getType()); 5112 else 5113 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5114 } 5115 5116 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5117 // Store the newly computed address into the cache. In the case we reused a 5118 // value, this should be idempotent. 5119 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5120 5121 // If we have no uses, recursively delete the value and all dead instructions 5122 // using it. 5123 if (Repl->use_empty()) { 5124 // This can cause recursive deletion, which can invalidate our iterator. 5125 // Use a WeakTrackingVH to hold onto it in case this happens. 5126 Value *CurValue = &*CurInstIterator; 5127 WeakTrackingVH IterHandle(CurValue); 5128 BasicBlock *BB = CurInstIterator->getParent(); 5129 5130 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5131 5132 if (IterHandle != CurValue) { 5133 // If the iterator instruction was recursively deleted, start over at the 5134 // start of the block. 5135 CurInstIterator = BB->begin(); 5136 SunkAddrs.clear(); 5137 } 5138 } 5139 ++NumMemoryInsts; 5140 return true; 5141 } 5142 5143 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5144 /// address computing into the block when possible / profitable. 5145 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5146 bool MadeChange = false; 5147 5148 const TargetRegisterInfo *TRI = 5149 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5150 TargetLowering::AsmOperandInfoVector TargetConstraints = 5151 TLI->ParseConstraints(*DL, TRI, CS); 5152 unsigned ArgNo = 0; 5153 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5154 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5155 5156 // Compute the constraint code and ConstraintType to use. 5157 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5158 5159 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5160 OpInfo.isIndirect) { 5161 Value *OpVal = CS->getArgOperand(ArgNo++); 5162 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5163 } else if (OpInfo.Type == InlineAsm::isInput) 5164 ArgNo++; 5165 } 5166 5167 return MadeChange; 5168 } 5169 5170 /// Check if all the uses of \p Val are equivalent (or free) zero or 5171 /// sign extensions. 5172 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5173 assert(!Val->use_empty() && "Input must have at least one use"); 5174 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5175 bool IsSExt = isa<SExtInst>(FirstUser); 5176 Type *ExtTy = FirstUser->getType(); 5177 for (const User *U : Val->users()) { 5178 const Instruction *UI = cast<Instruction>(U); 5179 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5180 return false; 5181 Type *CurTy = UI->getType(); 5182 // Same input and output types: Same instruction after CSE. 5183 if (CurTy == ExtTy) 5184 continue; 5185 5186 // If IsSExt is true, we are in this situation: 5187 // a = Val 5188 // b = sext ty1 a to ty2 5189 // c = sext ty1 a to ty3 5190 // Assuming ty2 is shorter than ty3, this could be turned into: 5191 // a = Val 5192 // b = sext ty1 a to ty2 5193 // c = sext ty2 b to ty3 5194 // However, the last sext is not free. 5195 if (IsSExt) 5196 return false; 5197 5198 // This is a ZExt, maybe this is free to extend from one type to another. 5199 // In that case, we would not account for a different use. 5200 Type *NarrowTy; 5201 Type *LargeTy; 5202 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5203 CurTy->getScalarType()->getIntegerBitWidth()) { 5204 NarrowTy = CurTy; 5205 LargeTy = ExtTy; 5206 } else { 5207 NarrowTy = ExtTy; 5208 LargeTy = CurTy; 5209 } 5210 5211 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5212 return false; 5213 } 5214 // All uses are the same or can be derived from one another for free. 5215 return true; 5216 } 5217 5218 /// Try to speculatively promote extensions in \p Exts and continue 5219 /// promoting through newly promoted operands recursively as far as doing so is 5220 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5221 /// When some promotion happened, \p TPT contains the proper state to revert 5222 /// them. 5223 /// 5224 /// \return true if some promotion happened, false otherwise. 5225 bool CodeGenPrepare::tryToPromoteExts( 5226 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5227 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5228 unsigned CreatedInstsCost) { 5229 bool Promoted = false; 5230 5231 // Iterate over all the extensions to try to promote them. 5232 for (auto I : Exts) { 5233 // Early check if we directly have ext(load). 5234 if (isa<LoadInst>(I->getOperand(0))) { 5235 ProfitablyMovedExts.push_back(I); 5236 continue; 5237 } 5238 5239 // Check whether or not we want to do any promotion. The reason we have 5240 // this check inside the for loop is to catch the case where an extension 5241 // is directly fed by a load because in such case the extension can be moved 5242 // up without any promotion on its operands. 5243 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5244 return false; 5245 5246 // Get the action to perform the promotion. 5247 TypePromotionHelper::Action TPH = 5248 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5249 // Check if we can promote. 5250 if (!TPH) { 5251 // Save the current extension as we cannot move up through its operand. 5252 ProfitablyMovedExts.push_back(I); 5253 continue; 5254 } 5255 5256 // Save the current state. 5257 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5258 TPT.getRestorationPoint(); 5259 SmallVector<Instruction *, 4> NewExts; 5260 unsigned NewCreatedInstsCost = 0; 5261 unsigned ExtCost = !TLI->isExtFree(I); 5262 // Promote. 5263 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5264 &NewExts, nullptr, *TLI); 5265 assert(PromotedVal && 5266 "TypePromotionHelper should have filtered out those cases"); 5267 5268 // We would be able to merge only one extension in a load. 5269 // Therefore, if we have more than 1 new extension we heuristically 5270 // cut this search path, because it means we degrade the code quality. 5271 // With exactly 2, the transformation is neutral, because we will merge 5272 // one extension but leave one. However, we optimistically keep going, 5273 // because the new extension may be removed too. 5274 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5275 // FIXME: It would be possible to propagate a negative value instead of 5276 // conservatively ceiling it to 0. 5277 TotalCreatedInstsCost = 5278 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5279 if (!StressExtLdPromotion && 5280 (TotalCreatedInstsCost > 1 || 5281 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5282 // This promotion is not profitable, rollback to the previous state, and 5283 // save the current extension in ProfitablyMovedExts as the latest 5284 // speculative promotion turned out to be unprofitable. 5285 TPT.rollback(LastKnownGood); 5286 ProfitablyMovedExts.push_back(I); 5287 continue; 5288 } 5289 // Continue promoting NewExts as far as doing so is profitable. 5290 SmallVector<Instruction *, 2> NewlyMovedExts; 5291 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5292 bool NewPromoted = false; 5293 for (auto ExtInst : NewlyMovedExts) { 5294 Instruction *MovedExt = cast<Instruction>(ExtInst); 5295 Value *ExtOperand = MovedExt->getOperand(0); 5296 // If we have reached to a load, we need this extra profitability check 5297 // as it could potentially be merged into an ext(load). 5298 if (isa<LoadInst>(ExtOperand) && 5299 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5300 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5301 continue; 5302 5303 ProfitablyMovedExts.push_back(MovedExt); 5304 NewPromoted = true; 5305 } 5306 5307 // If none of speculative promotions for NewExts is profitable, rollback 5308 // and save the current extension (I) as the last profitable extension. 5309 if (!NewPromoted) { 5310 TPT.rollback(LastKnownGood); 5311 ProfitablyMovedExts.push_back(I); 5312 continue; 5313 } 5314 // The promotion is profitable. 5315 Promoted = true; 5316 } 5317 return Promoted; 5318 } 5319 5320 /// Merging redundant sexts when one is dominating the other. 5321 bool CodeGenPrepare::mergeSExts(Function &F) { 5322 bool Changed = false; 5323 for (auto &Entry : ValToSExtendedUses) { 5324 SExts &Insts = Entry.second; 5325 SExts CurPts; 5326 for (Instruction *Inst : Insts) { 5327 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5328 Inst->getOperand(0) != Entry.first) 5329 continue; 5330 bool inserted = false; 5331 for (auto &Pt : CurPts) { 5332 if (getDT(F).dominates(Inst, Pt)) { 5333 Pt->replaceAllUsesWith(Inst); 5334 RemovedInsts.insert(Pt); 5335 Pt->removeFromParent(); 5336 Pt = Inst; 5337 inserted = true; 5338 Changed = true; 5339 break; 5340 } 5341 if (!getDT(F).dominates(Pt, Inst)) 5342 // Give up if we need to merge in a common dominator as the 5343 // experiments show it is not profitable. 5344 continue; 5345 Inst->replaceAllUsesWith(Pt); 5346 RemovedInsts.insert(Inst); 5347 Inst->removeFromParent(); 5348 inserted = true; 5349 Changed = true; 5350 break; 5351 } 5352 if (!inserted) 5353 CurPts.push_back(Inst); 5354 } 5355 } 5356 return Changed; 5357 } 5358 5359 // Spliting large data structures so that the GEPs accessing them can have 5360 // smaller offsets so that they can be sunk to the same blocks as their users. 5361 // For example, a large struct starting from %base is splitted into two parts 5362 // where the second part starts from %new_base. 5363 // 5364 // Before: 5365 // BB0: 5366 // %base = 5367 // 5368 // BB1: 5369 // %gep0 = gep %base, off0 5370 // %gep1 = gep %base, off1 5371 // %gep2 = gep %base, off2 5372 // 5373 // BB2: 5374 // %load1 = load %gep0 5375 // %load2 = load %gep1 5376 // %load3 = load %gep2 5377 // 5378 // After: 5379 // BB0: 5380 // %base = 5381 // %new_base = gep %base, off0 5382 // 5383 // BB1: 5384 // %new_gep0 = %new_base 5385 // %new_gep1 = gep %new_base, off1 - off0 5386 // %new_gep2 = gep %new_base, off2 - off0 5387 // 5388 // BB2: 5389 // %load1 = load i32, i32* %new_gep0 5390 // %load2 = load i32, i32* %new_gep1 5391 // %load3 = load i32, i32* %new_gep2 5392 // 5393 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5394 // their offsets are smaller enough to fit into the addressing mode. 5395 bool CodeGenPrepare::splitLargeGEPOffsets() { 5396 bool Changed = false; 5397 for (auto &Entry : LargeOffsetGEPMap) { 5398 Value *OldBase = Entry.first; 5399 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5400 &LargeOffsetGEPs = Entry.second; 5401 auto compareGEPOffset = 5402 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5403 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5404 if (LHS.first == RHS.first) 5405 return false; 5406 if (LHS.second != RHS.second) 5407 return LHS.second < RHS.second; 5408 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5409 }; 5410 // Sorting all the GEPs of the same data structures based on the offsets. 5411 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5412 LargeOffsetGEPs.erase( 5413 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5414 LargeOffsetGEPs.end()); 5415 // Skip if all the GEPs have the same offsets. 5416 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5417 continue; 5418 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5419 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5420 Value *NewBaseGEP = nullptr; 5421 5422 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5423 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5424 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5425 int64_t Offset = LargeOffsetGEP->second; 5426 if (Offset != BaseOffset) { 5427 TargetLowering::AddrMode AddrMode; 5428 AddrMode.BaseOffs = Offset - BaseOffset; 5429 // The result type of the GEP might not be the type of the memory 5430 // access. 5431 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5432 GEP->getResultElementType(), 5433 GEP->getAddressSpace())) { 5434 // We need to create a new base if the offset to the current base is 5435 // too large to fit into the addressing mode. So, a very large struct 5436 // may be splitted into several parts. 5437 BaseGEP = GEP; 5438 BaseOffset = Offset; 5439 NewBaseGEP = nullptr; 5440 } 5441 } 5442 5443 // Generate a new GEP to replace the current one. 5444 LLVMContext &Ctx = GEP->getContext(); 5445 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5446 Type *I8PtrTy = 5447 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5448 Type *I8Ty = Type::getInt8Ty(Ctx); 5449 5450 if (!NewBaseGEP) { 5451 // Create a new base if we don't have one yet. Find the insertion 5452 // pointer for the new base first. 5453 BasicBlock::iterator NewBaseInsertPt; 5454 BasicBlock *NewBaseInsertBB; 5455 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5456 // If the base of the struct is an instruction, the new base will be 5457 // inserted close to it. 5458 NewBaseInsertBB = BaseI->getParent(); 5459 if (isa<PHINode>(BaseI)) 5460 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5461 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5462 NewBaseInsertBB = 5463 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5464 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5465 } else 5466 NewBaseInsertPt = std::next(BaseI->getIterator()); 5467 } else { 5468 // If the current base is an argument or global value, the new base 5469 // will be inserted to the entry block. 5470 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5471 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5472 } 5473 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5474 // Create a new base. 5475 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5476 NewBaseGEP = OldBase; 5477 if (NewBaseGEP->getType() != I8PtrTy) 5478 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5479 NewBaseGEP = 5480 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5481 NewGEPBases.insert(NewBaseGEP); 5482 } 5483 5484 IRBuilder<> Builder(GEP); 5485 Value *NewGEP = NewBaseGEP; 5486 if (Offset == BaseOffset) { 5487 if (GEP->getType() != I8PtrTy) 5488 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5489 } else { 5490 // Calculate the new offset for the new GEP. 5491 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5492 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5493 5494 if (GEP->getType() != I8PtrTy) 5495 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5496 } 5497 GEP->replaceAllUsesWith(NewGEP); 5498 LargeOffsetGEPID.erase(GEP); 5499 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5500 GEP->eraseFromParent(); 5501 Changed = true; 5502 } 5503 } 5504 return Changed; 5505 } 5506 5507 /// Return true, if an ext(load) can be formed from an extension in 5508 /// \p MovedExts. 5509 bool CodeGenPrepare::canFormExtLd( 5510 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5511 Instruction *&Inst, bool HasPromoted) { 5512 for (auto *MovedExtInst : MovedExts) { 5513 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5514 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5515 Inst = MovedExtInst; 5516 break; 5517 } 5518 } 5519 if (!LI) 5520 return false; 5521 5522 // If they're already in the same block, there's nothing to do. 5523 // Make the cheap checks first if we did not promote. 5524 // If we promoted, we need to check if it is indeed profitable. 5525 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5526 return false; 5527 5528 return TLI->isExtLoad(LI, Inst, *DL); 5529 } 5530 5531 /// Move a zext or sext fed by a load into the same basic block as the load, 5532 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5533 /// extend into the load. 5534 /// 5535 /// E.g., 5536 /// \code 5537 /// %ld = load i32* %addr 5538 /// %add = add nuw i32 %ld, 4 5539 /// %zext = zext i32 %add to i64 5540 // \endcode 5541 /// => 5542 /// \code 5543 /// %ld = load i32* %addr 5544 /// %zext = zext i32 %ld to i64 5545 /// %add = add nuw i64 %zext, 4 5546 /// \encode 5547 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5548 /// allow us to match zext(load i32*) to i64. 5549 /// 5550 /// Also, try to promote the computations used to obtain a sign extended 5551 /// value used into memory accesses. 5552 /// E.g., 5553 /// \code 5554 /// a = add nsw i32 b, 3 5555 /// d = sext i32 a to i64 5556 /// e = getelementptr ..., i64 d 5557 /// \endcode 5558 /// => 5559 /// \code 5560 /// f = sext i32 b to i64 5561 /// a = add nsw i64 f, 3 5562 /// e = getelementptr ..., i64 a 5563 /// \endcode 5564 /// 5565 /// \p Inst[in/out] the extension may be modified during the process if some 5566 /// promotions apply. 5567 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5568 // ExtLoad formation and address type promotion infrastructure requires TLI to 5569 // be effective. 5570 if (!TLI) 5571 return false; 5572 5573 bool AllowPromotionWithoutCommonHeader = false; 5574 /// See if it is an interesting sext operations for the address type 5575 /// promotion before trying to promote it, e.g., the ones with the right 5576 /// type and used in memory accesses. 5577 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5578 *Inst, AllowPromotionWithoutCommonHeader); 5579 TypePromotionTransaction TPT(RemovedInsts); 5580 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5581 TPT.getRestorationPoint(); 5582 SmallVector<Instruction *, 1> Exts; 5583 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5584 Exts.push_back(Inst); 5585 5586 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5587 5588 // Look for a load being extended. 5589 LoadInst *LI = nullptr; 5590 Instruction *ExtFedByLoad; 5591 5592 // Try to promote a chain of computation if it allows to form an extended 5593 // load. 5594 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5595 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5596 TPT.commit(); 5597 // Move the extend into the same block as the load 5598 ExtFedByLoad->moveAfter(LI); 5599 // CGP does not check if the zext would be speculatively executed when moved 5600 // to the same basic block as the load. Preserving its original location 5601 // would pessimize the debugging experience, as well as negatively impact 5602 // the quality of sample pgo. We don't want to use "line 0" as that has a 5603 // size cost in the line-table section and logically the zext can be seen as 5604 // part of the load. Therefore we conservatively reuse the same debug 5605 // location for the load and the zext. 5606 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5607 ++NumExtsMoved; 5608 Inst = ExtFedByLoad; 5609 return true; 5610 } 5611 5612 // Continue promoting SExts if known as considerable depending on targets. 5613 if (ATPConsiderable && 5614 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5615 HasPromoted, TPT, SpeculativelyMovedExts)) 5616 return true; 5617 5618 TPT.rollback(LastKnownGood); 5619 return false; 5620 } 5621 5622 // Perform address type promotion if doing so is profitable. 5623 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5624 // instructions that sign extended the same initial value. However, if 5625 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5626 // extension is just profitable. 5627 bool CodeGenPrepare::performAddressTypePromotion( 5628 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5629 bool HasPromoted, TypePromotionTransaction &TPT, 5630 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5631 bool Promoted = false; 5632 SmallPtrSet<Instruction *, 1> UnhandledExts; 5633 bool AllSeenFirst = true; 5634 for (auto I : SpeculativelyMovedExts) { 5635 Value *HeadOfChain = I->getOperand(0); 5636 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5637 SeenChainsForSExt.find(HeadOfChain); 5638 // If there is an unhandled SExt which has the same header, try to promote 5639 // it as well. 5640 if (AlreadySeen != SeenChainsForSExt.end()) { 5641 if (AlreadySeen->second != nullptr) 5642 UnhandledExts.insert(AlreadySeen->second); 5643 AllSeenFirst = false; 5644 } 5645 } 5646 5647 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5648 SpeculativelyMovedExts.size() == 1)) { 5649 TPT.commit(); 5650 if (HasPromoted) 5651 Promoted = true; 5652 for (auto I : SpeculativelyMovedExts) { 5653 Value *HeadOfChain = I->getOperand(0); 5654 SeenChainsForSExt[HeadOfChain] = nullptr; 5655 ValToSExtendedUses[HeadOfChain].push_back(I); 5656 } 5657 // Update Inst as promotion happen. 5658 Inst = SpeculativelyMovedExts.pop_back_val(); 5659 } else { 5660 // This is the first chain visited from the header, keep the current chain 5661 // as unhandled. Defer to promote this until we encounter another SExt 5662 // chain derived from the same header. 5663 for (auto I : SpeculativelyMovedExts) { 5664 Value *HeadOfChain = I->getOperand(0); 5665 SeenChainsForSExt[HeadOfChain] = Inst; 5666 } 5667 return false; 5668 } 5669 5670 if (!AllSeenFirst && !UnhandledExts.empty()) 5671 for (auto VisitedSExt : UnhandledExts) { 5672 if (RemovedInsts.count(VisitedSExt)) 5673 continue; 5674 TypePromotionTransaction TPT(RemovedInsts); 5675 SmallVector<Instruction *, 1> Exts; 5676 SmallVector<Instruction *, 2> Chains; 5677 Exts.push_back(VisitedSExt); 5678 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5679 TPT.commit(); 5680 if (HasPromoted) 5681 Promoted = true; 5682 for (auto I : Chains) { 5683 Value *HeadOfChain = I->getOperand(0); 5684 // Mark this as handled. 5685 SeenChainsForSExt[HeadOfChain] = nullptr; 5686 ValToSExtendedUses[HeadOfChain].push_back(I); 5687 } 5688 } 5689 return Promoted; 5690 } 5691 5692 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5693 BasicBlock *DefBB = I->getParent(); 5694 5695 // If the result of a {s|z}ext and its source are both live out, rewrite all 5696 // other uses of the source with result of extension. 5697 Value *Src = I->getOperand(0); 5698 if (Src->hasOneUse()) 5699 return false; 5700 5701 // Only do this xform if truncating is free. 5702 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5703 return false; 5704 5705 // Only safe to perform the optimization if the source is also defined in 5706 // this block. 5707 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5708 return false; 5709 5710 bool DefIsLiveOut = false; 5711 for (User *U : I->users()) { 5712 Instruction *UI = cast<Instruction>(U); 5713 5714 // Figure out which BB this ext is used in. 5715 BasicBlock *UserBB = UI->getParent(); 5716 if (UserBB == DefBB) continue; 5717 DefIsLiveOut = true; 5718 break; 5719 } 5720 if (!DefIsLiveOut) 5721 return false; 5722 5723 // Make sure none of the uses are PHI nodes. 5724 for (User *U : Src->users()) { 5725 Instruction *UI = cast<Instruction>(U); 5726 BasicBlock *UserBB = UI->getParent(); 5727 if (UserBB == DefBB) continue; 5728 // Be conservative. We don't want this xform to end up introducing 5729 // reloads just before load / store instructions. 5730 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5731 return false; 5732 } 5733 5734 // InsertedTruncs - Only insert one trunc in each block once. 5735 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5736 5737 bool MadeChange = false; 5738 for (Use &U : Src->uses()) { 5739 Instruction *User = cast<Instruction>(U.getUser()); 5740 5741 // Figure out which BB this ext is used in. 5742 BasicBlock *UserBB = User->getParent(); 5743 if (UserBB == DefBB) continue; 5744 5745 // Both src and def are live in this block. Rewrite the use. 5746 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5747 5748 if (!InsertedTrunc) { 5749 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5750 assert(InsertPt != UserBB->end()); 5751 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5752 InsertedInsts.insert(InsertedTrunc); 5753 } 5754 5755 // Replace a use of the {s|z}ext source with a use of the result. 5756 U = InsertedTrunc; 5757 ++NumExtUses; 5758 MadeChange = true; 5759 } 5760 5761 return MadeChange; 5762 } 5763 5764 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5765 // just after the load if the target can fold this into one extload instruction, 5766 // with the hope of eliminating some of the other later "and" instructions using 5767 // the loaded value. "and"s that are made trivially redundant by the insertion 5768 // of the new "and" are removed by this function, while others (e.g. those whose 5769 // path from the load goes through a phi) are left for isel to potentially 5770 // remove. 5771 // 5772 // For example: 5773 // 5774 // b0: 5775 // x = load i32 5776 // ... 5777 // b1: 5778 // y = and x, 0xff 5779 // z = use y 5780 // 5781 // becomes: 5782 // 5783 // b0: 5784 // x = load i32 5785 // x' = and x, 0xff 5786 // ... 5787 // b1: 5788 // z = use x' 5789 // 5790 // whereas: 5791 // 5792 // b0: 5793 // x1 = load i32 5794 // ... 5795 // b1: 5796 // x2 = load i32 5797 // ... 5798 // b2: 5799 // x = phi x1, x2 5800 // y = and x, 0xff 5801 // 5802 // becomes (after a call to optimizeLoadExt for each load): 5803 // 5804 // b0: 5805 // x1 = load i32 5806 // x1' = and x1, 0xff 5807 // ... 5808 // b1: 5809 // x2 = load i32 5810 // x2' = and x2, 0xff 5811 // ... 5812 // b2: 5813 // x = phi x1', x2' 5814 // y = and x, 0xff 5815 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5816 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5817 return false; 5818 5819 // Skip loads we've already transformed. 5820 if (Load->hasOneUse() && 5821 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5822 return false; 5823 5824 // Look at all uses of Load, looking through phis, to determine how many bits 5825 // of the loaded value are needed. 5826 SmallVector<Instruction *, 8> WorkList; 5827 SmallPtrSet<Instruction *, 16> Visited; 5828 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5829 for (auto *U : Load->users()) 5830 WorkList.push_back(cast<Instruction>(U)); 5831 5832 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5833 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5834 APInt DemandBits(BitWidth, 0); 5835 APInt WidestAndBits(BitWidth, 0); 5836 5837 while (!WorkList.empty()) { 5838 Instruction *I = WorkList.back(); 5839 WorkList.pop_back(); 5840 5841 // Break use-def graph loops. 5842 if (!Visited.insert(I).second) 5843 continue; 5844 5845 // For a PHI node, push all of its users. 5846 if (auto *Phi = dyn_cast<PHINode>(I)) { 5847 for (auto *U : Phi->users()) 5848 WorkList.push_back(cast<Instruction>(U)); 5849 continue; 5850 } 5851 5852 switch (I->getOpcode()) { 5853 case Instruction::And: { 5854 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5855 if (!AndC) 5856 return false; 5857 APInt AndBits = AndC->getValue(); 5858 DemandBits |= AndBits; 5859 // Keep track of the widest and mask we see. 5860 if (AndBits.ugt(WidestAndBits)) 5861 WidestAndBits = AndBits; 5862 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5863 AndsToMaybeRemove.push_back(I); 5864 break; 5865 } 5866 5867 case Instruction::Shl: { 5868 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5869 if (!ShlC) 5870 return false; 5871 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5872 DemandBits.setLowBits(BitWidth - ShiftAmt); 5873 break; 5874 } 5875 5876 case Instruction::Trunc: { 5877 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5878 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5879 DemandBits.setLowBits(TruncBitWidth); 5880 break; 5881 } 5882 5883 default: 5884 return false; 5885 } 5886 } 5887 5888 uint32_t ActiveBits = DemandBits.getActiveBits(); 5889 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5890 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5891 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5892 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5893 // followed by an AND. 5894 // TODO: Look into removing this restriction by fixing backends to either 5895 // return false for isLoadExtLegal for i1 or have them select this pattern to 5896 // a single instruction. 5897 // 5898 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5899 // mask, since these are the only ands that will be removed by isel. 5900 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5901 WidestAndBits != DemandBits) 5902 return false; 5903 5904 LLVMContext &Ctx = Load->getType()->getContext(); 5905 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5906 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5907 5908 // Reject cases that won't be matched as extloads. 5909 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5910 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5911 return false; 5912 5913 IRBuilder<> Builder(Load->getNextNode()); 5914 auto *NewAnd = cast<Instruction>( 5915 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5916 // Mark this instruction as "inserted by CGP", so that other 5917 // optimizations don't touch it. 5918 InsertedInsts.insert(NewAnd); 5919 5920 // Replace all uses of load with new and (except for the use of load in the 5921 // new and itself). 5922 Load->replaceAllUsesWith(NewAnd); 5923 NewAnd->setOperand(0, Load); 5924 5925 // Remove any and instructions that are now redundant. 5926 for (auto *And : AndsToMaybeRemove) 5927 // Check that the and mask is the same as the one we decided to put on the 5928 // new and. 5929 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5930 And->replaceAllUsesWith(NewAnd); 5931 if (&*CurInstIterator == And) 5932 CurInstIterator = std::next(And->getIterator()); 5933 And->eraseFromParent(); 5934 ++NumAndUses; 5935 } 5936 5937 ++NumAndsAdded; 5938 return true; 5939 } 5940 5941 /// Check if V (an operand of a select instruction) is an expensive instruction 5942 /// that is only used once. 5943 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5944 auto *I = dyn_cast<Instruction>(V); 5945 // If it's safe to speculatively execute, then it should not have side 5946 // effects; therefore, it's safe to sink and possibly *not* execute. 5947 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5948 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5949 } 5950 5951 /// Returns true if a SelectInst should be turned into an explicit branch. 5952 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5953 const TargetLowering *TLI, 5954 SelectInst *SI) { 5955 // If even a predictable select is cheap, then a branch can't be cheaper. 5956 if (!TLI->isPredictableSelectExpensive()) 5957 return false; 5958 5959 // FIXME: This should use the same heuristics as IfConversion to determine 5960 // whether a select is better represented as a branch. 5961 5962 // If metadata tells us that the select condition is obviously predictable, 5963 // then we want to replace the select with a branch. 5964 uint64_t TrueWeight, FalseWeight; 5965 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5966 uint64_t Max = std::max(TrueWeight, FalseWeight); 5967 uint64_t Sum = TrueWeight + FalseWeight; 5968 if (Sum != 0) { 5969 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5970 if (Probability > TLI->getPredictableBranchThreshold()) 5971 return true; 5972 } 5973 } 5974 5975 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5976 5977 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5978 // comparison condition. If the compare has more than one use, there's 5979 // probably another cmov or setcc around, so it's not worth emitting a branch. 5980 if (!Cmp || !Cmp->hasOneUse()) 5981 return false; 5982 5983 // If either operand of the select is expensive and only needed on one side 5984 // of the select, we should form a branch. 5985 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5986 sinkSelectOperand(TTI, SI->getFalseValue())) 5987 return true; 5988 5989 return false; 5990 } 5991 5992 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5993 /// false value of \p SI. If the true/false value of \p SI is defined by any 5994 /// select instructions in \p Selects, look through the defining select 5995 /// instruction until the true/false value is not defined in \p Selects. 5996 static Value *getTrueOrFalseValue( 5997 SelectInst *SI, bool isTrue, 5998 const SmallPtrSet<const Instruction *, 2> &Selects) { 5999 Value *V = nullptr; 6000 6001 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6002 DefSI = dyn_cast<SelectInst>(V)) { 6003 assert(DefSI->getCondition() == SI->getCondition() && 6004 "The condition of DefSI does not match with SI"); 6005 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6006 } 6007 6008 assert(V && "Failed to get select true/false value"); 6009 return V; 6010 } 6011 6012 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6013 assert(Shift->isShift() && "Expected a shift"); 6014 6015 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6016 // general vector shifts, and (3) the shift amount is a select-of-splatted 6017 // values, hoist the shifts before the select: 6018 // shift Op0, (select Cond, TVal, FVal) --> 6019 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6020 // 6021 // This is inverting a generic IR transform when we know that the cost of a 6022 // general vector shift is more than the cost of 2 shift-by-scalars. 6023 // We can't do this effectively in SDAG because we may not be able to 6024 // determine if the select operands are splats from within a basic block. 6025 Type *Ty = Shift->getType(); 6026 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6027 return false; 6028 Value *Cond, *TVal, *FVal; 6029 if (!match(Shift->getOperand(1), 6030 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6031 return false; 6032 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6033 return false; 6034 6035 IRBuilder<> Builder(Shift); 6036 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6037 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6038 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6039 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6040 Shift->replaceAllUsesWith(NewSel); 6041 Shift->eraseFromParent(); 6042 return true; 6043 } 6044 6045 /// If we have a SelectInst that will likely profit from branch prediction, 6046 /// turn it into a branch. 6047 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6048 // If branch conversion isn't desirable, exit early. 6049 if (DisableSelectToBranch || 6050 OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) || 6051 !TLI) 6052 return false; 6053 6054 // Find all consecutive select instructions that share the same condition. 6055 SmallVector<SelectInst *, 2> ASI; 6056 ASI.push_back(SI); 6057 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6058 It != SI->getParent()->end(); ++It) { 6059 SelectInst *I = dyn_cast<SelectInst>(&*It); 6060 if (I && SI->getCondition() == I->getCondition()) { 6061 ASI.push_back(I); 6062 } else { 6063 break; 6064 } 6065 } 6066 6067 SelectInst *LastSI = ASI.back(); 6068 // Increment the current iterator to skip all the rest of select instructions 6069 // because they will be either "not lowered" or "all lowered" to branch. 6070 CurInstIterator = std::next(LastSI->getIterator()); 6071 6072 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6073 6074 // Can we convert the 'select' to CF ? 6075 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6076 return false; 6077 6078 TargetLowering::SelectSupportKind SelectKind; 6079 if (VectorCond) 6080 SelectKind = TargetLowering::VectorMaskSelect; 6081 else if (SI->getType()->isVectorTy()) 6082 SelectKind = TargetLowering::ScalarCondVectorVal; 6083 else 6084 SelectKind = TargetLowering::ScalarValSelect; 6085 6086 if (TLI->isSelectSupported(SelectKind) && 6087 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6088 return false; 6089 6090 // The DominatorTree needs to be rebuilt by any consumers after this 6091 // transformation. We simply reset here rather than setting the ModifiedDT 6092 // flag to avoid restarting the function walk in runOnFunction for each 6093 // select optimized. 6094 DT.reset(); 6095 6096 // Transform a sequence like this: 6097 // start: 6098 // %cmp = cmp uge i32 %a, %b 6099 // %sel = select i1 %cmp, i32 %c, i32 %d 6100 // 6101 // Into: 6102 // start: 6103 // %cmp = cmp uge i32 %a, %b 6104 // br i1 %cmp, label %select.true, label %select.false 6105 // select.true: 6106 // br label %select.end 6107 // select.false: 6108 // br label %select.end 6109 // select.end: 6110 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6111 // 6112 // In addition, we may sink instructions that produce %c or %d from 6113 // the entry block into the destination(s) of the new branch. 6114 // If the true or false blocks do not contain a sunken instruction, that 6115 // block and its branch may be optimized away. In that case, one side of the 6116 // first branch will point directly to select.end, and the corresponding PHI 6117 // predecessor block will be the start block. 6118 6119 // First, we split the block containing the select into 2 blocks. 6120 BasicBlock *StartBlock = SI->getParent(); 6121 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6122 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6123 6124 // Delete the unconditional branch that was just created by the split. 6125 StartBlock->getTerminator()->eraseFromParent(); 6126 6127 // These are the new basic blocks for the conditional branch. 6128 // At least one will become an actual new basic block. 6129 BasicBlock *TrueBlock = nullptr; 6130 BasicBlock *FalseBlock = nullptr; 6131 BranchInst *TrueBranch = nullptr; 6132 BranchInst *FalseBranch = nullptr; 6133 6134 // Sink expensive instructions into the conditional blocks to avoid executing 6135 // them speculatively. 6136 for (SelectInst *SI : ASI) { 6137 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6138 if (TrueBlock == nullptr) { 6139 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6140 EndBlock->getParent(), EndBlock); 6141 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6142 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6143 } 6144 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6145 TrueInst->moveBefore(TrueBranch); 6146 } 6147 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6148 if (FalseBlock == nullptr) { 6149 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6150 EndBlock->getParent(), EndBlock); 6151 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6152 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6153 } 6154 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6155 FalseInst->moveBefore(FalseBranch); 6156 } 6157 } 6158 6159 // If there was nothing to sink, then arbitrarily choose the 'false' side 6160 // for a new input value to the PHI. 6161 if (TrueBlock == FalseBlock) { 6162 assert(TrueBlock == nullptr && 6163 "Unexpected basic block transform while optimizing select"); 6164 6165 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6166 EndBlock->getParent(), EndBlock); 6167 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6168 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6169 } 6170 6171 // Insert the real conditional branch based on the original condition. 6172 // If we did not create a new block for one of the 'true' or 'false' paths 6173 // of the condition, it means that side of the branch goes to the end block 6174 // directly and the path originates from the start block from the point of 6175 // view of the new PHI. 6176 BasicBlock *TT, *FT; 6177 if (TrueBlock == nullptr) { 6178 TT = EndBlock; 6179 FT = FalseBlock; 6180 TrueBlock = StartBlock; 6181 } else if (FalseBlock == nullptr) { 6182 TT = TrueBlock; 6183 FT = EndBlock; 6184 FalseBlock = StartBlock; 6185 } else { 6186 TT = TrueBlock; 6187 FT = FalseBlock; 6188 } 6189 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6190 6191 SmallPtrSet<const Instruction *, 2> INS; 6192 INS.insert(ASI.begin(), ASI.end()); 6193 // Use reverse iterator because later select may use the value of the 6194 // earlier select, and we need to propagate value through earlier select 6195 // to get the PHI operand. 6196 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6197 SelectInst *SI = *It; 6198 // The select itself is replaced with a PHI Node. 6199 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6200 PN->takeName(SI); 6201 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6202 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6203 PN->setDebugLoc(SI->getDebugLoc()); 6204 6205 SI->replaceAllUsesWith(PN); 6206 SI->eraseFromParent(); 6207 INS.erase(SI); 6208 ++NumSelectsExpanded; 6209 } 6210 6211 // Instruct OptimizeBlock to skip to the next block. 6212 CurInstIterator = StartBlock->end(); 6213 return true; 6214 } 6215 6216 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6217 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6218 int SplatElem = -1; 6219 for (unsigned i = 0; i < Mask.size(); ++i) { 6220 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6221 return false; 6222 SplatElem = Mask[i]; 6223 } 6224 6225 return true; 6226 } 6227 6228 /// Some targets have expensive vector shifts if the lanes aren't all the same 6229 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6230 /// it's often worth sinking a shufflevector splat down to its use so that 6231 /// codegen can spot all lanes are identical. 6232 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6233 BasicBlock *DefBB = SVI->getParent(); 6234 6235 // Only do this xform if variable vector shifts are particularly expensive. 6236 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6237 return false; 6238 6239 // We only expect better codegen by sinking a shuffle if we can recognise a 6240 // constant splat. 6241 if (!isBroadcastShuffle(SVI)) 6242 return false; 6243 6244 // InsertedShuffles - Only insert a shuffle in each block once. 6245 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6246 6247 bool MadeChange = false; 6248 for (User *U : SVI->users()) { 6249 Instruction *UI = cast<Instruction>(U); 6250 6251 // Figure out which BB this ext is used in. 6252 BasicBlock *UserBB = UI->getParent(); 6253 if (UserBB == DefBB) continue; 6254 6255 // For now only apply this when the splat is used by a shift instruction. 6256 if (!UI->isShift()) continue; 6257 6258 // Everything checks out, sink the shuffle if the user's block doesn't 6259 // already have a copy. 6260 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6261 6262 if (!InsertedShuffle) { 6263 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6264 assert(InsertPt != UserBB->end()); 6265 InsertedShuffle = 6266 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6267 SVI->getOperand(2), "", &*InsertPt); 6268 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6269 } 6270 6271 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6272 MadeChange = true; 6273 } 6274 6275 // If we removed all uses, nuke the shuffle. 6276 if (SVI->use_empty()) { 6277 SVI->eraseFromParent(); 6278 MadeChange = true; 6279 } 6280 6281 return MadeChange; 6282 } 6283 6284 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6285 // If the operands of I can be folded into a target instruction together with 6286 // I, duplicate and sink them. 6287 SmallVector<Use *, 4> OpsToSink; 6288 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6289 return false; 6290 6291 // OpsToSink can contain multiple uses in a use chain (e.g. 6292 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6293 // uses must come first, so we process the ops in reverse order so as to not 6294 // create invalid IR. 6295 BasicBlock *TargetBB = I->getParent(); 6296 bool Changed = false; 6297 SmallVector<Use *, 4> ToReplace; 6298 for (Use *U : reverse(OpsToSink)) { 6299 auto *UI = cast<Instruction>(U->get()); 6300 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6301 continue; 6302 ToReplace.push_back(U); 6303 } 6304 6305 SetVector<Instruction *> MaybeDead; 6306 DenseMap<Instruction *, Instruction *> NewInstructions; 6307 Instruction *InsertPoint = I; 6308 for (Use *U : ToReplace) { 6309 auto *UI = cast<Instruction>(U->get()); 6310 Instruction *NI = UI->clone(); 6311 NewInstructions[UI] = NI; 6312 MaybeDead.insert(UI); 6313 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6314 NI->insertBefore(InsertPoint); 6315 InsertPoint = NI; 6316 InsertedInsts.insert(NI); 6317 6318 // Update the use for the new instruction, making sure that we update the 6319 // sunk instruction uses, if it is part of a chain that has already been 6320 // sunk. 6321 Instruction *OldI = cast<Instruction>(U->getUser()); 6322 if (NewInstructions.count(OldI)) 6323 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6324 else 6325 U->set(NI); 6326 Changed = true; 6327 } 6328 6329 // Remove instructions that are dead after sinking. 6330 for (auto *I : MaybeDead) { 6331 if (!I->hasNUsesOrMore(1)) { 6332 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6333 I->eraseFromParent(); 6334 } 6335 } 6336 6337 return Changed; 6338 } 6339 6340 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6341 if (!TLI || !DL) 6342 return false; 6343 6344 Value *Cond = SI->getCondition(); 6345 Type *OldType = Cond->getType(); 6346 LLVMContext &Context = Cond->getContext(); 6347 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6348 unsigned RegWidth = RegType.getSizeInBits(); 6349 6350 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6351 return false; 6352 6353 // If the register width is greater than the type width, expand the condition 6354 // of the switch instruction and each case constant to the width of the 6355 // register. By widening the type of the switch condition, subsequent 6356 // comparisons (for case comparisons) will not need to be extended to the 6357 // preferred register width, so we will potentially eliminate N-1 extends, 6358 // where N is the number of cases in the switch. 6359 auto *NewType = Type::getIntNTy(Context, RegWidth); 6360 6361 // Zero-extend the switch condition and case constants unless the switch 6362 // condition is a function argument that is already being sign-extended. 6363 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6364 // everything instead. 6365 Instruction::CastOps ExtType = Instruction::ZExt; 6366 if (auto *Arg = dyn_cast<Argument>(Cond)) 6367 if (Arg->hasSExtAttr()) 6368 ExtType = Instruction::SExt; 6369 6370 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6371 ExtInst->insertBefore(SI); 6372 ExtInst->setDebugLoc(SI->getDebugLoc()); 6373 SI->setCondition(ExtInst); 6374 for (auto Case : SI->cases()) { 6375 APInt NarrowConst = Case.getCaseValue()->getValue(); 6376 APInt WideConst = (ExtType == Instruction::ZExt) ? 6377 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6378 Case.setValue(ConstantInt::get(Context, WideConst)); 6379 } 6380 6381 return true; 6382 } 6383 6384 6385 namespace { 6386 6387 /// Helper class to promote a scalar operation to a vector one. 6388 /// This class is used to move downward extractelement transition. 6389 /// E.g., 6390 /// a = vector_op <2 x i32> 6391 /// b = extractelement <2 x i32> a, i32 0 6392 /// c = scalar_op b 6393 /// store c 6394 /// 6395 /// => 6396 /// a = vector_op <2 x i32> 6397 /// c = vector_op a (equivalent to scalar_op on the related lane) 6398 /// * d = extractelement <2 x i32> c, i32 0 6399 /// * store d 6400 /// Assuming both extractelement and store can be combine, we get rid of the 6401 /// transition. 6402 class VectorPromoteHelper { 6403 /// DataLayout associated with the current module. 6404 const DataLayout &DL; 6405 6406 /// Used to perform some checks on the legality of vector operations. 6407 const TargetLowering &TLI; 6408 6409 /// Used to estimated the cost of the promoted chain. 6410 const TargetTransformInfo &TTI; 6411 6412 /// The transition being moved downwards. 6413 Instruction *Transition; 6414 6415 /// The sequence of instructions to be promoted. 6416 SmallVector<Instruction *, 4> InstsToBePromoted; 6417 6418 /// Cost of combining a store and an extract. 6419 unsigned StoreExtractCombineCost; 6420 6421 /// Instruction that will be combined with the transition. 6422 Instruction *CombineInst = nullptr; 6423 6424 /// The instruction that represents the current end of the transition. 6425 /// Since we are faking the promotion until we reach the end of the chain 6426 /// of computation, we need a way to get the current end of the transition. 6427 Instruction *getEndOfTransition() const { 6428 if (InstsToBePromoted.empty()) 6429 return Transition; 6430 return InstsToBePromoted.back(); 6431 } 6432 6433 /// Return the index of the original value in the transition. 6434 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6435 /// c, is at index 0. 6436 unsigned getTransitionOriginalValueIdx() const { 6437 assert(isa<ExtractElementInst>(Transition) && 6438 "Other kind of transitions are not supported yet"); 6439 return 0; 6440 } 6441 6442 /// Return the index of the index in the transition. 6443 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6444 /// is at index 1. 6445 unsigned getTransitionIdx() const { 6446 assert(isa<ExtractElementInst>(Transition) && 6447 "Other kind of transitions are not supported yet"); 6448 return 1; 6449 } 6450 6451 /// Get the type of the transition. 6452 /// This is the type of the original value. 6453 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6454 /// transition is <2 x i32>. 6455 Type *getTransitionType() const { 6456 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6457 } 6458 6459 /// Promote \p ToBePromoted by moving \p Def downward through. 6460 /// I.e., we have the following sequence: 6461 /// Def = Transition <ty1> a to <ty2> 6462 /// b = ToBePromoted <ty2> Def, ... 6463 /// => 6464 /// b = ToBePromoted <ty1> a, ... 6465 /// Def = Transition <ty1> ToBePromoted to <ty2> 6466 void promoteImpl(Instruction *ToBePromoted); 6467 6468 /// Check whether or not it is profitable to promote all the 6469 /// instructions enqueued to be promoted. 6470 bool isProfitableToPromote() { 6471 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6472 unsigned Index = isa<ConstantInt>(ValIdx) 6473 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6474 : -1; 6475 Type *PromotedType = getTransitionType(); 6476 6477 StoreInst *ST = cast<StoreInst>(CombineInst); 6478 unsigned AS = ST->getPointerAddressSpace(); 6479 unsigned Align = ST->getAlignment(); 6480 // Check if this store is supported. 6481 if (!TLI.allowsMisalignedMemoryAccesses( 6482 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6483 Align)) { 6484 // If this is not supported, there is no way we can combine 6485 // the extract with the store. 6486 return false; 6487 } 6488 6489 // The scalar chain of computation has to pay for the transition 6490 // scalar to vector. 6491 // The vector chain has to account for the combining cost. 6492 uint64_t ScalarCost = 6493 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6494 uint64_t VectorCost = StoreExtractCombineCost; 6495 for (const auto &Inst : InstsToBePromoted) { 6496 // Compute the cost. 6497 // By construction, all instructions being promoted are arithmetic ones. 6498 // Moreover, one argument is a constant that can be viewed as a splat 6499 // constant. 6500 Value *Arg0 = Inst->getOperand(0); 6501 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6502 isa<ConstantFP>(Arg0); 6503 TargetTransformInfo::OperandValueKind Arg0OVK = 6504 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6505 : TargetTransformInfo::OK_AnyValue; 6506 TargetTransformInfo::OperandValueKind Arg1OVK = 6507 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6508 : TargetTransformInfo::OK_AnyValue; 6509 ScalarCost += TTI.getArithmeticInstrCost( 6510 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6511 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6512 Arg0OVK, Arg1OVK); 6513 } 6514 LLVM_DEBUG( 6515 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6516 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6517 return ScalarCost > VectorCost; 6518 } 6519 6520 /// Generate a constant vector with \p Val with the same 6521 /// number of elements as the transition. 6522 /// \p UseSplat defines whether or not \p Val should be replicated 6523 /// across the whole vector. 6524 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6525 /// otherwise we generate a vector with as many undef as possible: 6526 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6527 /// used at the index of the extract. 6528 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6529 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6530 if (!UseSplat) { 6531 // If we cannot determine where the constant must be, we have to 6532 // use a splat constant. 6533 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6534 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6535 ExtractIdx = CstVal->getSExtValue(); 6536 else 6537 UseSplat = true; 6538 } 6539 6540 unsigned End = getTransitionType()->getVectorNumElements(); 6541 if (UseSplat) 6542 return ConstantVector::getSplat(End, Val); 6543 6544 SmallVector<Constant *, 4> ConstVec; 6545 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6546 for (unsigned Idx = 0; Idx != End; ++Idx) { 6547 if (Idx == ExtractIdx) 6548 ConstVec.push_back(Val); 6549 else 6550 ConstVec.push_back(UndefVal); 6551 } 6552 return ConstantVector::get(ConstVec); 6553 } 6554 6555 /// Check if promoting to a vector type an operand at \p OperandIdx 6556 /// in \p Use can trigger undefined behavior. 6557 static bool canCauseUndefinedBehavior(const Instruction *Use, 6558 unsigned OperandIdx) { 6559 // This is not safe to introduce undef when the operand is on 6560 // the right hand side of a division-like instruction. 6561 if (OperandIdx != 1) 6562 return false; 6563 switch (Use->getOpcode()) { 6564 default: 6565 return false; 6566 case Instruction::SDiv: 6567 case Instruction::UDiv: 6568 case Instruction::SRem: 6569 case Instruction::URem: 6570 return true; 6571 case Instruction::FDiv: 6572 case Instruction::FRem: 6573 return !Use->hasNoNaNs(); 6574 } 6575 llvm_unreachable(nullptr); 6576 } 6577 6578 public: 6579 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6580 const TargetTransformInfo &TTI, Instruction *Transition, 6581 unsigned CombineCost) 6582 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6583 StoreExtractCombineCost(CombineCost) { 6584 assert(Transition && "Do not know how to promote null"); 6585 } 6586 6587 /// Check if we can promote \p ToBePromoted to \p Type. 6588 bool canPromote(const Instruction *ToBePromoted) const { 6589 // We could support CastInst too. 6590 return isa<BinaryOperator>(ToBePromoted); 6591 } 6592 6593 /// Check if it is profitable to promote \p ToBePromoted 6594 /// by moving downward the transition through. 6595 bool shouldPromote(const Instruction *ToBePromoted) const { 6596 // Promote only if all the operands can be statically expanded. 6597 // Indeed, we do not want to introduce any new kind of transitions. 6598 for (const Use &U : ToBePromoted->operands()) { 6599 const Value *Val = U.get(); 6600 if (Val == getEndOfTransition()) { 6601 // If the use is a division and the transition is on the rhs, 6602 // we cannot promote the operation, otherwise we may create a 6603 // division by zero. 6604 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6605 return false; 6606 continue; 6607 } 6608 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6609 !isa<ConstantFP>(Val)) 6610 return false; 6611 } 6612 // Check that the resulting operation is legal. 6613 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6614 if (!ISDOpcode) 6615 return false; 6616 return StressStoreExtract || 6617 TLI.isOperationLegalOrCustom( 6618 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6619 } 6620 6621 /// Check whether or not \p Use can be combined 6622 /// with the transition. 6623 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6624 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6625 6626 /// Record \p ToBePromoted as part of the chain to be promoted. 6627 void enqueueForPromotion(Instruction *ToBePromoted) { 6628 InstsToBePromoted.push_back(ToBePromoted); 6629 } 6630 6631 /// Set the instruction that will be combined with the transition. 6632 void recordCombineInstruction(Instruction *ToBeCombined) { 6633 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6634 CombineInst = ToBeCombined; 6635 } 6636 6637 /// Promote all the instructions enqueued for promotion if it is 6638 /// is profitable. 6639 /// \return True if the promotion happened, false otherwise. 6640 bool promote() { 6641 // Check if there is something to promote. 6642 // Right now, if we do not have anything to combine with, 6643 // we assume the promotion is not profitable. 6644 if (InstsToBePromoted.empty() || !CombineInst) 6645 return false; 6646 6647 // Check cost. 6648 if (!StressStoreExtract && !isProfitableToPromote()) 6649 return false; 6650 6651 // Promote. 6652 for (auto &ToBePromoted : InstsToBePromoted) 6653 promoteImpl(ToBePromoted); 6654 InstsToBePromoted.clear(); 6655 return true; 6656 } 6657 }; 6658 6659 } // end anonymous namespace 6660 6661 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6662 // At this point, we know that all the operands of ToBePromoted but Def 6663 // can be statically promoted. 6664 // For Def, we need to use its parameter in ToBePromoted: 6665 // b = ToBePromoted ty1 a 6666 // Def = Transition ty1 b to ty2 6667 // Move the transition down. 6668 // 1. Replace all uses of the promoted operation by the transition. 6669 // = ... b => = ... Def. 6670 assert(ToBePromoted->getType() == Transition->getType() && 6671 "The type of the result of the transition does not match " 6672 "the final type"); 6673 ToBePromoted->replaceAllUsesWith(Transition); 6674 // 2. Update the type of the uses. 6675 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6676 Type *TransitionTy = getTransitionType(); 6677 ToBePromoted->mutateType(TransitionTy); 6678 // 3. Update all the operands of the promoted operation with promoted 6679 // operands. 6680 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6681 for (Use &U : ToBePromoted->operands()) { 6682 Value *Val = U.get(); 6683 Value *NewVal = nullptr; 6684 if (Val == Transition) 6685 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6686 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6687 isa<ConstantFP>(Val)) { 6688 // Use a splat constant if it is not safe to use undef. 6689 NewVal = getConstantVector( 6690 cast<Constant>(Val), 6691 isa<UndefValue>(Val) || 6692 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6693 } else 6694 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6695 "this?"); 6696 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6697 } 6698 Transition->moveAfter(ToBePromoted); 6699 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6700 } 6701 6702 /// Some targets can do store(extractelement) with one instruction. 6703 /// Try to push the extractelement towards the stores when the target 6704 /// has this feature and this is profitable. 6705 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6706 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6707 if (DisableStoreExtract || !TLI || 6708 (!StressStoreExtract && 6709 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6710 Inst->getOperand(1), CombineCost))) 6711 return false; 6712 6713 // At this point we know that Inst is a vector to scalar transition. 6714 // Try to move it down the def-use chain, until: 6715 // - We can combine the transition with its single use 6716 // => we got rid of the transition. 6717 // - We escape the current basic block 6718 // => we would need to check that we are moving it at a cheaper place and 6719 // we do not do that for now. 6720 BasicBlock *Parent = Inst->getParent(); 6721 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6722 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6723 // If the transition has more than one use, assume this is not going to be 6724 // beneficial. 6725 while (Inst->hasOneUse()) { 6726 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6727 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6728 6729 if (ToBePromoted->getParent() != Parent) { 6730 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6731 << ToBePromoted->getParent()->getName() 6732 << ") than the transition (" << Parent->getName() 6733 << ").\n"); 6734 return false; 6735 } 6736 6737 if (VPH.canCombine(ToBePromoted)) { 6738 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6739 << "will be combined with: " << *ToBePromoted << '\n'); 6740 VPH.recordCombineInstruction(ToBePromoted); 6741 bool Changed = VPH.promote(); 6742 NumStoreExtractExposed += Changed; 6743 return Changed; 6744 } 6745 6746 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6747 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6748 return false; 6749 6750 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6751 6752 VPH.enqueueForPromotion(ToBePromoted); 6753 Inst = ToBePromoted; 6754 } 6755 return false; 6756 } 6757 6758 /// For the instruction sequence of store below, F and I values 6759 /// are bundled together as an i64 value before being stored into memory. 6760 /// Sometimes it is more efficient to generate separate stores for F and I, 6761 /// which can remove the bitwise instructions or sink them to colder places. 6762 /// 6763 /// (store (or (zext (bitcast F to i32) to i64), 6764 /// (shl (zext I to i64), 32)), addr) --> 6765 /// (store F, addr) and (store I, addr+4) 6766 /// 6767 /// Similarly, splitting for other merged store can also be beneficial, like: 6768 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6769 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6770 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6771 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6772 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6773 /// 6774 /// We allow each target to determine specifically which kind of splitting is 6775 /// supported. 6776 /// 6777 /// The store patterns are commonly seen from the simple code snippet below 6778 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6779 /// void goo(const std::pair<int, float> &); 6780 /// hoo() { 6781 /// ... 6782 /// goo(std::make_pair(tmp, ftmp)); 6783 /// ... 6784 /// } 6785 /// 6786 /// Although we already have similar splitting in DAG Combine, we duplicate 6787 /// it in CodeGenPrepare to catch the case in which pattern is across 6788 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6789 /// during code expansion. 6790 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6791 const TargetLowering &TLI) { 6792 // Handle simple but common cases only. 6793 Type *StoreType = SI.getValueOperand()->getType(); 6794 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6795 DL.getTypeSizeInBits(StoreType) == 0) 6796 return false; 6797 6798 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6799 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6800 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6801 return false; 6802 6803 // Don't split the store if it is volatile. 6804 if (SI.isVolatile()) 6805 return false; 6806 6807 // Match the following patterns: 6808 // (store (or (zext LValue to i64), 6809 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6810 // or 6811 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6812 // (zext LValue to i64), 6813 // Expect both operands of OR and the first operand of SHL have only 6814 // one use. 6815 Value *LValue, *HValue; 6816 if (!match(SI.getValueOperand(), 6817 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6818 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6819 m_SpecificInt(HalfValBitSize)))))) 6820 return false; 6821 6822 // Check LValue and HValue are int with size less or equal than 32. 6823 if (!LValue->getType()->isIntegerTy() || 6824 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6825 !HValue->getType()->isIntegerTy() || 6826 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6827 return false; 6828 6829 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6830 // as the input of target query. 6831 auto *LBC = dyn_cast<BitCastInst>(LValue); 6832 auto *HBC = dyn_cast<BitCastInst>(HValue); 6833 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6834 : EVT::getEVT(LValue->getType()); 6835 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6836 : EVT::getEVT(HValue->getType()); 6837 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6838 return false; 6839 6840 // Start to split store. 6841 IRBuilder<> Builder(SI.getContext()); 6842 Builder.SetInsertPoint(&SI); 6843 6844 // If LValue/HValue is a bitcast in another BB, create a new one in current 6845 // BB so it may be merged with the splitted stores by dag combiner. 6846 if (LBC && LBC->getParent() != SI.getParent()) 6847 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6848 if (HBC && HBC->getParent() != SI.getParent()) 6849 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6850 6851 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6852 auto CreateSplitStore = [&](Value *V, bool Upper) { 6853 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6854 Value *Addr = Builder.CreateBitCast( 6855 SI.getOperand(1), 6856 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6857 if ((IsLE && Upper) || (!IsLE && !Upper)) 6858 Addr = Builder.CreateGEP( 6859 SplitStoreType, Addr, 6860 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6861 Builder.CreateAlignedStore( 6862 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6863 }; 6864 6865 CreateSplitStore(LValue, false); 6866 CreateSplitStore(HValue, true); 6867 6868 // Delete the old store. 6869 SI.eraseFromParent(); 6870 return true; 6871 } 6872 6873 // Return true if the GEP has two operands, the first operand is of a sequential 6874 // type, and the second operand is a constant. 6875 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6876 gep_type_iterator I = gep_type_begin(*GEP); 6877 return GEP->getNumOperands() == 2 && 6878 I.isSequential() && 6879 isa<ConstantInt>(GEP->getOperand(1)); 6880 } 6881 6882 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6883 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6884 // reducing liveness interference across those edges benefits global register 6885 // allocation. Currently handles only certain cases. 6886 // 6887 // For example, unmerge %GEPI and %UGEPI as below. 6888 // 6889 // ---------- BEFORE ---------- 6890 // SrcBlock: 6891 // ... 6892 // %GEPIOp = ... 6893 // ... 6894 // %GEPI = gep %GEPIOp, Idx 6895 // ... 6896 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6897 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6898 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6899 // %UGEPI) 6900 // 6901 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6902 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6903 // ... 6904 // 6905 // DstBi: 6906 // ... 6907 // %UGEPI = gep %GEPIOp, UIdx 6908 // ... 6909 // --------------------------- 6910 // 6911 // ---------- AFTER ---------- 6912 // SrcBlock: 6913 // ... (same as above) 6914 // (* %GEPI is still alive on the indirectbr edges) 6915 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6916 // unmerging) 6917 // ... 6918 // 6919 // DstBi: 6920 // ... 6921 // %UGEPI = gep %GEPI, (UIdx-Idx) 6922 // ... 6923 // --------------------------- 6924 // 6925 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6926 // no longer alive on them. 6927 // 6928 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6929 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6930 // not to disable further simplications and optimizations as a result of GEP 6931 // merging. 6932 // 6933 // Note this unmerging may increase the length of the data flow critical path 6934 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6935 // between the register pressure and the length of data-flow critical 6936 // path. Restricting this to the uncommon IndirectBr case would minimize the 6937 // impact of potentially longer critical path, if any, and the impact on compile 6938 // time. 6939 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6940 const TargetTransformInfo *TTI) { 6941 BasicBlock *SrcBlock = GEPI->getParent(); 6942 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6943 // (non-IndirectBr) cases exit early here. 6944 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6945 return false; 6946 // Check that GEPI is a simple gep with a single constant index. 6947 if (!GEPSequentialConstIndexed(GEPI)) 6948 return false; 6949 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6950 // Check that GEPI is a cheap one. 6951 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6952 > TargetTransformInfo::TCC_Basic) 6953 return false; 6954 Value *GEPIOp = GEPI->getOperand(0); 6955 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6956 if (!isa<Instruction>(GEPIOp)) 6957 return false; 6958 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6959 if (GEPIOpI->getParent() != SrcBlock) 6960 return false; 6961 // Check that GEP is used outside the block, meaning it's alive on the 6962 // IndirectBr edge(s). 6963 if (find_if(GEPI->users(), [&](User *Usr) { 6964 if (auto *I = dyn_cast<Instruction>(Usr)) { 6965 if (I->getParent() != SrcBlock) { 6966 return true; 6967 } 6968 } 6969 return false; 6970 }) == GEPI->users().end()) 6971 return false; 6972 // The second elements of the GEP chains to be unmerged. 6973 std::vector<GetElementPtrInst *> UGEPIs; 6974 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6975 // on IndirectBr edges. 6976 for (User *Usr : GEPIOp->users()) { 6977 if (Usr == GEPI) continue; 6978 // Check if Usr is an Instruction. If not, give up. 6979 if (!isa<Instruction>(Usr)) 6980 return false; 6981 auto *UI = cast<Instruction>(Usr); 6982 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6983 if (UI->getParent() == SrcBlock) 6984 continue; 6985 // Check if Usr is a GEP. If not, give up. 6986 if (!isa<GetElementPtrInst>(Usr)) 6987 return false; 6988 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6989 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6990 // the pointer operand to it. If so, record it in the vector. If not, give 6991 // up. 6992 if (!GEPSequentialConstIndexed(UGEPI)) 6993 return false; 6994 if (UGEPI->getOperand(0) != GEPIOp) 6995 return false; 6996 if (GEPIIdx->getType() != 6997 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6998 return false; 6999 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7000 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7001 > TargetTransformInfo::TCC_Basic) 7002 return false; 7003 UGEPIs.push_back(UGEPI); 7004 } 7005 if (UGEPIs.size() == 0) 7006 return false; 7007 // Check the materializing cost of (Uidx-Idx). 7008 for (GetElementPtrInst *UGEPI : UGEPIs) { 7009 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7010 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7011 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7012 if (ImmCost > TargetTransformInfo::TCC_Basic) 7013 return false; 7014 } 7015 // Now unmerge between GEPI and UGEPIs. 7016 for (GetElementPtrInst *UGEPI : UGEPIs) { 7017 UGEPI->setOperand(0, GEPI); 7018 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7019 Constant *NewUGEPIIdx = 7020 ConstantInt::get(GEPIIdx->getType(), 7021 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7022 UGEPI->setOperand(1, NewUGEPIIdx); 7023 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7024 // inbounds to avoid UB. 7025 if (!GEPI->isInBounds()) { 7026 UGEPI->setIsInBounds(false); 7027 } 7028 } 7029 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7030 // alive on IndirectBr edges). 7031 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7032 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7033 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7034 return true; 7035 } 7036 7037 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7038 // Bail out if we inserted the instruction to prevent optimizations from 7039 // stepping on each other's toes. 7040 if (InsertedInsts.count(I)) 7041 return false; 7042 7043 // TODO: Move into the switch on opcode below here. 7044 if (PHINode *P = dyn_cast<PHINode>(I)) { 7045 // It is possible for very late stage optimizations (such as SimplifyCFG) 7046 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7047 // trivial PHI, go ahead and zap it here. 7048 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7049 LargeOffsetGEPMap.erase(P); 7050 P->replaceAllUsesWith(V); 7051 P->eraseFromParent(); 7052 ++NumPHIsElim; 7053 return true; 7054 } 7055 return false; 7056 } 7057 7058 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7059 // If the source of the cast is a constant, then this should have 7060 // already been constant folded. The only reason NOT to constant fold 7061 // it is if something (e.g. LSR) was careful to place the constant 7062 // evaluation in a block other than then one that uses it (e.g. to hoist 7063 // the address of globals out of a loop). If this is the case, we don't 7064 // want to forward-subst the cast. 7065 if (isa<Constant>(CI->getOperand(0))) 7066 return false; 7067 7068 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7069 return true; 7070 7071 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7072 /// Sink a zext or sext into its user blocks if the target type doesn't 7073 /// fit in one register 7074 if (TLI && 7075 TLI->getTypeAction(CI->getContext(), 7076 TLI->getValueType(*DL, CI->getType())) == 7077 TargetLowering::TypeExpandInteger) { 7078 return SinkCast(CI); 7079 } else { 7080 bool MadeChange = optimizeExt(I); 7081 return MadeChange | optimizeExtUses(I); 7082 } 7083 } 7084 return false; 7085 } 7086 7087 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7088 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 7089 return true; 7090 7091 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7092 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7093 if (TLI) { 7094 bool Modified = optimizeLoadExt(LI); 7095 unsigned AS = LI->getPointerAddressSpace(); 7096 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7097 return Modified; 7098 } 7099 return false; 7100 } 7101 7102 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7103 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 7104 return true; 7105 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7106 if (TLI) { 7107 unsigned AS = SI->getPointerAddressSpace(); 7108 return optimizeMemoryInst(I, SI->getOperand(1), 7109 SI->getOperand(0)->getType(), AS); 7110 } 7111 return false; 7112 } 7113 7114 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7115 unsigned AS = RMW->getPointerAddressSpace(); 7116 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7117 RMW->getType(), AS); 7118 } 7119 7120 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7121 unsigned AS = CmpX->getPointerAddressSpace(); 7122 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7123 CmpX->getCompareOperand()->getType(), AS); 7124 } 7125 7126 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7127 7128 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7129 EnableAndCmpSinking && TLI) 7130 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7131 7132 // TODO: Move this into the switch on opcode - it handles shifts already. 7133 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7134 BinOp->getOpcode() == Instruction::LShr)) { 7135 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7136 if (TLI && CI && TLI->hasExtractBitsInsn()) 7137 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7138 return true; 7139 } 7140 7141 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7142 if (GEPI->hasAllZeroIndices()) { 7143 /// The GEP operand must be a pointer, so must its result -> BitCast 7144 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7145 GEPI->getName(), GEPI); 7146 NC->setDebugLoc(GEPI->getDebugLoc()); 7147 GEPI->replaceAllUsesWith(NC); 7148 GEPI->eraseFromParent(); 7149 ++NumGEPsElim; 7150 optimizeInst(NC, ModifiedDT); 7151 return true; 7152 } 7153 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7154 return true; 7155 } 7156 return false; 7157 } 7158 7159 if (tryToSinkFreeOperands(I)) 7160 return true; 7161 7162 switch (I->getOpcode()) { 7163 case Instruction::Shl: 7164 case Instruction::LShr: 7165 case Instruction::AShr: 7166 return optimizeShiftInst(cast<BinaryOperator>(I)); 7167 case Instruction::Call: 7168 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7169 case Instruction::Select: 7170 return optimizeSelectInst(cast<SelectInst>(I)); 7171 case Instruction::ShuffleVector: 7172 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7173 case Instruction::Switch: 7174 return optimizeSwitchInst(cast<SwitchInst>(I)); 7175 case Instruction::ExtractElement: 7176 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7177 } 7178 7179 return false; 7180 } 7181 7182 /// Given an OR instruction, check to see if this is a bitreverse 7183 /// idiom. If so, insert the new intrinsic and return true. 7184 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7185 const TargetLowering &TLI) { 7186 if (!I.getType()->isIntegerTy() || 7187 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7188 TLI.getValueType(DL, I.getType(), true))) 7189 return false; 7190 7191 SmallVector<Instruction*, 4> Insts; 7192 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7193 return false; 7194 Instruction *LastInst = Insts.back(); 7195 I.replaceAllUsesWith(LastInst); 7196 RecursivelyDeleteTriviallyDeadInstructions(&I); 7197 return true; 7198 } 7199 7200 // In this pass we look for GEP and cast instructions that are used 7201 // across basic blocks and rewrite them to improve basic-block-at-a-time 7202 // selection. 7203 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7204 SunkAddrs.clear(); 7205 bool MadeChange = false; 7206 7207 CurInstIterator = BB.begin(); 7208 while (CurInstIterator != BB.end()) { 7209 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7210 if (ModifiedDT) 7211 return true; 7212 } 7213 7214 bool MadeBitReverse = true; 7215 while (TLI && MadeBitReverse) { 7216 MadeBitReverse = false; 7217 for (auto &I : reverse(BB)) { 7218 if (makeBitReverse(I, *DL, *TLI)) { 7219 MadeBitReverse = MadeChange = true; 7220 break; 7221 } 7222 } 7223 } 7224 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7225 7226 return MadeChange; 7227 } 7228 7229 // Some CGP optimizations may move or alter what's computed in a block. Check 7230 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7231 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7232 assert(isa<DbgValueInst>(I)); 7233 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7234 7235 // Does this dbg.value refer to a sunk address calculation? 7236 Value *Location = DVI.getVariableLocation(); 7237 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7238 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7239 if (SunkAddr) { 7240 // Point dbg.value at locally computed address, which should give the best 7241 // opportunity to be accurately lowered. This update may change the type of 7242 // pointer being referred to; however this makes no difference to debugging 7243 // information, and we can't generate bitcasts that may affect codegen. 7244 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7245 ValueAsMetadata::get(SunkAddr))); 7246 return true; 7247 } 7248 return false; 7249 } 7250 7251 // A llvm.dbg.value may be using a value before its definition, due to 7252 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7253 // them by moving the dbg.value to immediately after the value definition. 7254 // FIXME: Ideally this should never be necessary, and this has the potential 7255 // to re-order dbg.value intrinsics. 7256 bool CodeGenPrepare::placeDbgValues(Function &F) { 7257 bool MadeChange = false; 7258 DominatorTree DT(F); 7259 7260 for (BasicBlock &BB : F) { 7261 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7262 Instruction *Insn = &*BI++; 7263 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7264 if (!DVI) 7265 continue; 7266 7267 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7268 7269 if (!VI || VI->isTerminator()) 7270 continue; 7271 7272 // If VI is a phi in a block with an EHPad terminator, we can't insert 7273 // after it. 7274 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7275 continue; 7276 7277 // If the defining instruction dominates the dbg.value, we do not need 7278 // to move the dbg.value. 7279 if (DT.dominates(VI, DVI)) 7280 continue; 7281 7282 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7283 << *DVI << ' ' << *VI); 7284 DVI->removeFromParent(); 7285 if (isa<PHINode>(VI)) 7286 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7287 else 7288 DVI->insertAfter(VI); 7289 MadeChange = true; 7290 ++NumDbgValueMoved; 7291 } 7292 } 7293 return MadeChange; 7294 } 7295 7296 /// Scale down both weights to fit into uint32_t. 7297 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7298 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7299 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7300 NewTrue = NewTrue / Scale; 7301 NewFalse = NewFalse / Scale; 7302 } 7303 7304 /// Some targets prefer to split a conditional branch like: 7305 /// \code 7306 /// %0 = icmp ne i32 %a, 0 7307 /// %1 = icmp ne i32 %b, 0 7308 /// %or.cond = or i1 %0, %1 7309 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7310 /// \endcode 7311 /// into multiple branch instructions like: 7312 /// \code 7313 /// bb1: 7314 /// %0 = icmp ne i32 %a, 0 7315 /// br i1 %0, label %TrueBB, label %bb2 7316 /// bb2: 7317 /// %1 = icmp ne i32 %b, 0 7318 /// br i1 %1, label %TrueBB, label %FalseBB 7319 /// \endcode 7320 /// This usually allows instruction selection to do even further optimizations 7321 /// and combine the compare with the branch instruction. Currently this is 7322 /// applied for targets which have "cheap" jump instructions. 7323 /// 7324 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7325 /// 7326 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7327 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7328 return false; 7329 7330 bool MadeChange = false; 7331 for (auto &BB : F) { 7332 // Does this BB end with the following? 7333 // %cond1 = icmp|fcmp|binary instruction ... 7334 // %cond2 = icmp|fcmp|binary instruction ... 7335 // %cond.or = or|and i1 %cond1, cond2 7336 // br i1 %cond.or label %dest1, label %dest2" 7337 BinaryOperator *LogicOp; 7338 BasicBlock *TBB, *FBB; 7339 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7340 continue; 7341 7342 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7343 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7344 continue; 7345 7346 unsigned Opc; 7347 Value *Cond1, *Cond2; 7348 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7349 m_OneUse(m_Value(Cond2))))) 7350 Opc = Instruction::And; 7351 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7352 m_OneUse(m_Value(Cond2))))) 7353 Opc = Instruction::Or; 7354 else 7355 continue; 7356 7357 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7358 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7359 continue; 7360 7361 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7362 7363 // Create a new BB. 7364 auto TmpBB = 7365 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7366 BB.getParent(), BB.getNextNode()); 7367 7368 // Update original basic block by using the first condition directly by the 7369 // branch instruction and removing the no longer needed and/or instruction. 7370 Br1->setCondition(Cond1); 7371 LogicOp->eraseFromParent(); 7372 7373 // Depending on the condition we have to either replace the true or the 7374 // false successor of the original branch instruction. 7375 if (Opc == Instruction::And) 7376 Br1->setSuccessor(0, TmpBB); 7377 else 7378 Br1->setSuccessor(1, TmpBB); 7379 7380 // Fill in the new basic block. 7381 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7382 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7383 I->removeFromParent(); 7384 I->insertBefore(Br2); 7385 } 7386 7387 // Update PHI nodes in both successors. The original BB needs to be 7388 // replaced in one successor's PHI nodes, because the branch comes now from 7389 // the newly generated BB (NewBB). In the other successor we need to add one 7390 // incoming edge to the PHI nodes, because both branch instructions target 7391 // now the same successor. Depending on the original branch condition 7392 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7393 // we perform the correct update for the PHI nodes. 7394 // This doesn't change the successor order of the just created branch 7395 // instruction (or any other instruction). 7396 if (Opc == Instruction::Or) 7397 std::swap(TBB, FBB); 7398 7399 // Replace the old BB with the new BB. 7400 TBB->replacePhiUsesWith(&BB, TmpBB); 7401 7402 // Add another incoming edge form the new BB. 7403 for (PHINode &PN : FBB->phis()) { 7404 auto *Val = PN.getIncomingValueForBlock(&BB); 7405 PN.addIncoming(Val, TmpBB); 7406 } 7407 7408 // Update the branch weights (from SelectionDAGBuilder:: 7409 // FindMergedConditions). 7410 if (Opc == Instruction::Or) { 7411 // Codegen X | Y as: 7412 // BB1: 7413 // jmp_if_X TBB 7414 // jmp TmpBB 7415 // TmpBB: 7416 // jmp_if_Y TBB 7417 // jmp FBB 7418 // 7419 7420 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7421 // The requirement is that 7422 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7423 // = TrueProb for original BB. 7424 // Assuming the original weights are A and B, one choice is to set BB1's 7425 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7426 // assumes that 7427 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7428 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7429 // TmpBB, but the math is more complicated. 7430 uint64_t TrueWeight, FalseWeight; 7431 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7432 uint64_t NewTrueWeight = TrueWeight; 7433 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7434 scaleWeights(NewTrueWeight, NewFalseWeight); 7435 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7436 .createBranchWeights(TrueWeight, FalseWeight)); 7437 7438 NewTrueWeight = TrueWeight; 7439 NewFalseWeight = 2 * FalseWeight; 7440 scaleWeights(NewTrueWeight, NewFalseWeight); 7441 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7442 .createBranchWeights(TrueWeight, FalseWeight)); 7443 } 7444 } else { 7445 // Codegen X & Y as: 7446 // BB1: 7447 // jmp_if_X TmpBB 7448 // jmp FBB 7449 // TmpBB: 7450 // jmp_if_Y TBB 7451 // jmp FBB 7452 // 7453 // This requires creation of TmpBB after CurBB. 7454 7455 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7456 // The requirement is that 7457 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7458 // = FalseProb for original BB. 7459 // Assuming the original weights are A and B, one choice is to set BB1's 7460 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7461 // assumes that 7462 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7463 uint64_t TrueWeight, FalseWeight; 7464 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7465 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7466 uint64_t NewFalseWeight = FalseWeight; 7467 scaleWeights(NewTrueWeight, NewFalseWeight); 7468 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7469 .createBranchWeights(TrueWeight, FalseWeight)); 7470 7471 NewTrueWeight = 2 * TrueWeight; 7472 NewFalseWeight = FalseWeight; 7473 scaleWeights(NewTrueWeight, NewFalseWeight); 7474 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7475 .createBranchWeights(TrueWeight, FalseWeight)); 7476 } 7477 } 7478 7479 ModifiedDT = true; 7480 MadeChange = true; 7481 7482 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7483 TmpBB->dump()); 7484 } 7485 return MadeChange; 7486 } 7487