1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 128 /// CurInstIterator - As we scan instructions optimizing them, this is the 129 /// next instruction to optimize. Xforms that can invalidate this should 130 /// update it. 131 BasicBlock::iterator CurInstIterator; 132 133 /// Keeps track of non-local addresses that have been sunk into a block. 134 /// This allows us to avoid inserting duplicate code for blocks with 135 /// multiple load/stores of the same address. 136 ValueMap<Value*, Value*> SunkAddrs; 137 138 /// Keeps track of all instructions inserted for the current function. 139 SetOfInstrs InsertedInsts; 140 /// Keeps track of the type of the related instruction before their 141 /// promotion for the current function. 142 InstrToOrigTy PromotedInsts; 143 144 /// ModifiedDT - If CFG is modified in anyway. 145 bool ModifiedDT; 146 147 /// OptSize - True if optimizing for size. 148 bool OptSize; 149 150 /// DataLayout for the Function being processed. 151 const DataLayout *DL; 152 153 public: 154 static char ID; // Pass identification, replacement for typeid 155 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 156 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 157 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 158 } 159 bool runOnFunction(Function &F) override; 160 161 const char *getPassName() const override { return "CodeGen Prepare"; } 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 AU.addPreserved<DominatorTreeWrapperPass>(); 165 AU.addRequired<TargetLibraryInfoWrapperPass>(); 166 AU.addRequired<TargetTransformInfoWrapperPass>(); 167 } 168 169 private: 170 bool EliminateFallThrough(Function &F); 171 bool EliminateMostlyEmptyBlocks(Function &F); 172 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 173 void EliminateMostlyEmptyBlock(BasicBlock *BB); 174 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 175 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 176 bool OptimizeMemoryInst(Instruction *I, Value *Addr, 177 Type *AccessTy, unsigned AS); 178 bool OptimizeInlineAsmInst(CallInst *CS); 179 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 180 bool MoveExtToFormExtLoad(Instruction *&I); 181 bool OptimizeExtUses(Instruction *I); 182 bool OptimizeSelectInst(SelectInst *SI); 183 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 184 bool OptimizeExtractElementInst(Instruction *Inst); 185 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 186 bool PlaceDbgValues(Function &F); 187 bool sinkAndCmp(Function &F); 188 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 189 Instruction *&Inst, 190 const SmallVectorImpl<Instruction *> &Exts, 191 unsigned CreatedInstCost); 192 bool splitBranchCondition(Function &F); 193 bool simplifyOffsetableRelocate(Instruction &I); 194 }; 195 } 196 197 char CodeGenPrepare::ID = 0; 198 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 199 "Optimize for code generation", false, false) 200 201 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 202 return new CodeGenPrepare(TM); 203 } 204 205 bool CodeGenPrepare::runOnFunction(Function &F) { 206 if (skipOptnoneFunction(F)) 207 return false; 208 209 DL = &F.getParent()->getDataLayout(); 210 211 bool EverMadeChange = false; 212 // Clear per function information. 213 InsertedInsts.clear(); 214 PromotedInsts.clear(); 215 216 ModifiedDT = false; 217 if (TM) 218 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 219 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 220 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 221 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); 222 223 /// This optimization identifies DIV instructions that can be 224 /// profitably bypassed and carried out with a shorter, faster divide. 225 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 226 const DenseMap<unsigned int, unsigned int> &BypassWidths = 227 TLI->getBypassSlowDivWidths(); 228 for (Function::iterator I = F.begin(); I != F.end(); I++) 229 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 230 } 231 232 // Eliminate blocks that contain only PHI nodes and an 233 // unconditional branch. 234 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 235 236 // llvm.dbg.value is far away from the value then iSel may not be able 237 // handle it properly. iSel will drop llvm.dbg.value if it can not 238 // find a node corresponding to the value. 239 EverMadeChange |= PlaceDbgValues(F); 240 241 // If there is a mask, compare against zero, and branch that can be combined 242 // into a single target instruction, push the mask and compare into branch 243 // users. Do this before OptimizeBlock -> OptimizeInst -> 244 // OptimizeCmpExpression, which perturbs the pattern being searched for. 245 if (!DisableBranchOpts) { 246 EverMadeChange |= sinkAndCmp(F); 247 EverMadeChange |= splitBranchCondition(F); 248 } 249 250 bool MadeChange = true; 251 while (MadeChange) { 252 MadeChange = false; 253 for (Function::iterator I = F.begin(); I != F.end(); ) { 254 BasicBlock *BB = I++; 255 bool ModifiedDTOnIteration = false; 256 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 257 258 // Restart BB iteration if the dominator tree of the Function was changed 259 if (ModifiedDTOnIteration) 260 break; 261 } 262 EverMadeChange |= MadeChange; 263 } 264 265 SunkAddrs.clear(); 266 267 if (!DisableBranchOpts) { 268 MadeChange = false; 269 SmallPtrSet<BasicBlock*, 8> WorkList; 270 for (BasicBlock &BB : F) { 271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 272 MadeChange |= ConstantFoldTerminator(&BB, true); 273 if (!MadeChange) continue; 274 275 for (SmallVectorImpl<BasicBlock*>::iterator 276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 277 if (pred_begin(*II) == pred_end(*II)) 278 WorkList.insert(*II); 279 } 280 281 // Delete the dead blocks and any of their dead successors. 282 MadeChange |= !WorkList.empty(); 283 while (!WorkList.empty()) { 284 BasicBlock *BB = *WorkList.begin(); 285 WorkList.erase(BB); 286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 287 288 DeleteDeadBlock(BB); 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Merge pairs of basic blocks with unconditional branches, connected by 297 // a single edge. 298 if (EverMadeChange || MadeChange) 299 MadeChange |= EliminateFallThrough(F); 300 301 EverMadeChange |= MadeChange; 302 } 303 304 if (!DisableGCOpts) { 305 SmallVector<Instruction *, 2> Statepoints; 306 for (BasicBlock &BB : F) 307 for (Instruction &I : BB) 308 if (isStatepoint(I)) 309 Statepoints.push_back(&I); 310 for (auto &I : Statepoints) 311 EverMadeChange |= simplifyOffsetableRelocate(*I); 312 } 313 314 return EverMadeChange; 315 } 316 317 /// EliminateFallThrough - Merge basic blocks which are connected 318 /// by a single edge, where one of the basic blocks has a single successor 319 /// pointing to the other basic block, which has a single predecessor. 320 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 321 bool Changed = false; 322 // Scan all of the blocks in the function, except for the entry block. 323 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 324 BasicBlock *BB = I++; 325 // If the destination block has a single pred, then this is a trivial 326 // edge, just collapse it. 327 BasicBlock *SinglePred = BB->getSinglePredecessor(); 328 329 // Don't merge if BB's address is taken. 330 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 331 332 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 333 if (Term && !Term->isConditional()) { 334 Changed = true; 335 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 336 // Remember if SinglePred was the entry block of the function. 337 // If so, we will need to move BB back to the entry position. 338 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 339 MergeBasicBlockIntoOnlyPred(BB, nullptr); 340 341 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 342 BB->moveBefore(&BB->getParent()->getEntryBlock()); 343 344 // We have erased a block. Update the iterator. 345 I = BB; 346 } 347 } 348 return Changed; 349 } 350 351 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 352 /// debug info directives, and an unconditional branch. Passes before isel 353 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 354 /// isel. Start by eliminating these blocks so we can split them the way we 355 /// want them. 356 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 357 bool MadeChange = false; 358 // Note that this intentionally skips the entry block. 359 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 360 BasicBlock *BB = I++; 361 362 // If this block doesn't end with an uncond branch, ignore it. 363 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 364 if (!BI || !BI->isUnconditional()) 365 continue; 366 367 // If the instruction before the branch (skipping debug info) isn't a phi 368 // node, then other stuff is happening here. 369 BasicBlock::iterator BBI = BI; 370 if (BBI != BB->begin()) { 371 --BBI; 372 while (isa<DbgInfoIntrinsic>(BBI)) { 373 if (BBI == BB->begin()) 374 break; 375 --BBI; 376 } 377 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 378 continue; 379 } 380 381 // Do not break infinite loops. 382 BasicBlock *DestBB = BI->getSuccessor(0); 383 if (DestBB == BB) 384 continue; 385 386 if (!CanMergeBlocks(BB, DestBB)) 387 continue; 388 389 EliminateMostlyEmptyBlock(BB); 390 MadeChange = true; 391 } 392 return MadeChange; 393 } 394 395 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 396 /// single uncond branch between them, and BB contains no other non-phi 397 /// instructions. 398 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 399 const BasicBlock *DestBB) const { 400 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 401 // the successor. If there are more complex condition (e.g. preheaders), 402 // don't mess around with them. 403 BasicBlock::const_iterator BBI = BB->begin(); 404 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 405 for (const User *U : PN->users()) { 406 const Instruction *UI = cast<Instruction>(U); 407 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 408 return false; 409 // If User is inside DestBB block and it is a PHINode then check 410 // incoming value. If incoming value is not from BB then this is 411 // a complex condition (e.g. preheaders) we want to avoid here. 412 if (UI->getParent() == DestBB) { 413 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 414 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 415 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 416 if (Insn && Insn->getParent() == BB && 417 Insn->getParent() != UPN->getIncomingBlock(I)) 418 return false; 419 } 420 } 421 } 422 } 423 424 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 425 // and DestBB may have conflicting incoming values for the block. If so, we 426 // can't merge the block. 427 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 428 if (!DestBBPN) return true; // no conflict. 429 430 // Collect the preds of BB. 431 SmallPtrSet<const BasicBlock*, 16> BBPreds; 432 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 433 // It is faster to get preds from a PHI than with pred_iterator. 434 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 435 BBPreds.insert(BBPN->getIncomingBlock(i)); 436 } else { 437 BBPreds.insert(pred_begin(BB), pred_end(BB)); 438 } 439 440 // Walk the preds of DestBB. 441 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 442 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 443 if (BBPreds.count(Pred)) { // Common predecessor? 444 BBI = DestBB->begin(); 445 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 446 const Value *V1 = PN->getIncomingValueForBlock(Pred); 447 const Value *V2 = PN->getIncomingValueForBlock(BB); 448 449 // If V2 is a phi node in BB, look up what the mapped value will be. 450 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 451 if (V2PN->getParent() == BB) 452 V2 = V2PN->getIncomingValueForBlock(Pred); 453 454 // If there is a conflict, bail out. 455 if (V1 != V2) return false; 456 } 457 } 458 } 459 460 return true; 461 } 462 463 464 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 465 /// an unconditional branch in it. 466 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 467 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 468 BasicBlock *DestBB = BI->getSuccessor(0); 469 470 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 471 472 // If the destination block has a single pred, then this is a trivial edge, 473 // just collapse it. 474 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 475 if (SinglePred != DestBB) { 476 // Remember if SinglePred was the entry block of the function. If so, we 477 // will need to move BB back to the entry position. 478 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 479 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 480 481 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 482 BB->moveBefore(&BB->getParent()->getEntryBlock()); 483 484 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 485 return; 486 } 487 } 488 489 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 490 // to handle the new incoming edges it is about to have. 491 PHINode *PN; 492 for (BasicBlock::iterator BBI = DestBB->begin(); 493 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 494 // Remove the incoming value for BB, and remember it. 495 Value *InVal = PN->removeIncomingValue(BB, false); 496 497 // Two options: either the InVal is a phi node defined in BB or it is some 498 // value that dominates BB. 499 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 500 if (InValPhi && InValPhi->getParent() == BB) { 501 // Add all of the input values of the input PHI as inputs of this phi. 502 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 503 PN->addIncoming(InValPhi->getIncomingValue(i), 504 InValPhi->getIncomingBlock(i)); 505 } else { 506 // Otherwise, add one instance of the dominating value for each edge that 507 // we will be adding. 508 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 509 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 510 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 511 } else { 512 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 513 PN->addIncoming(InVal, *PI); 514 } 515 } 516 } 517 518 // The PHIs are now updated, change everything that refers to BB to use 519 // DestBB and remove BB. 520 BB->replaceAllUsesWith(DestBB); 521 BB->eraseFromParent(); 522 ++NumBlocksElim; 523 524 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 525 } 526 527 // Computes a map of base pointer relocation instructions to corresponding 528 // derived pointer relocation instructions given a vector of all relocate calls 529 static void computeBaseDerivedRelocateMap( 530 const SmallVectorImpl<User *> &AllRelocateCalls, 531 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 532 RelocateInstMap) { 533 // Collect information in two maps: one primarily for locating the base object 534 // while filling the second map; the second map is the final structure holding 535 // a mapping between Base and corresponding Derived relocate calls 536 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 537 for (auto &U : AllRelocateCalls) { 538 GCRelocateOperands ThisRelocate(U); 539 IntrinsicInst *I = cast<IntrinsicInst>(U); 540 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 541 ThisRelocate.getDerivedPtrIndex()); 542 RelocateIdxMap.insert(std::make_pair(K, I)); 543 } 544 for (auto &Item : RelocateIdxMap) { 545 std::pair<unsigned, unsigned> Key = Item.first; 546 if (Key.first == Key.second) 547 // Base relocation: nothing to insert 548 continue; 549 550 IntrinsicInst *I = Item.second; 551 auto BaseKey = std::make_pair(Key.first, Key.first); 552 553 // We're iterating over RelocateIdxMap so we cannot modify it. 554 auto MaybeBase = RelocateIdxMap.find(BaseKey); 555 if (MaybeBase == RelocateIdxMap.end()) 556 // TODO: We might want to insert a new base object relocate and gep off 557 // that, if there are enough derived object relocates. 558 continue; 559 560 RelocateInstMap[MaybeBase->second].push_back(I); 561 } 562 } 563 564 // Accepts a GEP and extracts the operands into a vector provided they're all 565 // small integer constants 566 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 567 SmallVectorImpl<Value *> &OffsetV) { 568 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 569 // Only accept small constant integer operands 570 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 571 if (!Op || Op->getZExtValue() > 20) 572 return false; 573 } 574 575 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 576 OffsetV.push_back(GEP->getOperand(i)); 577 return true; 578 } 579 580 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 581 // replace, computes a replacement, and affects it. 582 static bool 583 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 584 const SmallVectorImpl<IntrinsicInst *> &Targets) { 585 bool MadeChange = false; 586 for (auto &ToReplace : Targets) { 587 GCRelocateOperands MasterRelocate(RelocatedBase); 588 GCRelocateOperands ThisRelocate(ToReplace); 589 590 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 591 "Not relocating a derived object of the original base object"); 592 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 593 // A duplicate relocate call. TODO: coalesce duplicates. 594 continue; 595 } 596 597 Value *Base = ThisRelocate.getBasePtr(); 598 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 599 if (!Derived || Derived->getPointerOperand() != Base) 600 continue; 601 602 SmallVector<Value *, 2> OffsetV; 603 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 604 continue; 605 606 // Create a Builder and replace the target callsite with a gep 607 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 608 609 // Insert after RelocatedBase 610 IRBuilder<> Builder(RelocatedBase->getNextNode()); 611 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 612 613 // If gc_relocate does not match the actual type, cast it to the right type. 614 // In theory, there must be a bitcast after gc_relocate if the type does not 615 // match, and we should reuse it to get the derived pointer. But it could be 616 // cases like this: 617 // bb1: 618 // ... 619 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 620 // br label %merge 621 // 622 // bb2: 623 // ... 624 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 625 // br label %merge 626 // 627 // merge: 628 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 629 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 630 // 631 // In this case, we can not find the bitcast any more. So we insert a new bitcast 632 // no matter there is already one or not. In this way, we can handle all cases, and 633 // the extra bitcast should be optimized away in later passes. 634 Instruction *ActualRelocatedBase = RelocatedBase; 635 if (RelocatedBase->getType() != Base->getType()) { 636 ActualRelocatedBase = 637 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 638 } 639 Value *Replacement = Builder.CreateGEP( 640 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 641 Instruction *ReplacementInst = cast<Instruction>(Replacement); 642 Replacement->takeName(ToReplace); 643 // If the newly generated derived pointer's type does not match the original derived 644 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 645 Instruction *ActualReplacement = ReplacementInst; 646 if (ReplacementInst->getType() != ToReplace->getType()) { 647 ActualReplacement = 648 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 649 } 650 ToReplace->replaceAllUsesWith(ActualReplacement); 651 ToReplace->eraseFromParent(); 652 653 MadeChange = true; 654 } 655 return MadeChange; 656 } 657 658 // Turns this: 659 // 660 // %base = ... 661 // %ptr = gep %base + 15 662 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 663 // %base' = relocate(%tok, i32 4, i32 4) 664 // %ptr' = relocate(%tok, i32 4, i32 5) 665 // %val = load %ptr' 666 // 667 // into this: 668 // 669 // %base = ... 670 // %ptr = gep %base + 15 671 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 672 // %base' = gc.relocate(%tok, i32 4, i32 4) 673 // %ptr' = gep %base' + 15 674 // %val = load %ptr' 675 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 676 bool MadeChange = false; 677 SmallVector<User *, 2> AllRelocateCalls; 678 679 for (auto *U : I.users()) 680 if (isGCRelocate(dyn_cast<Instruction>(U))) 681 // Collect all the relocate calls associated with a statepoint 682 AllRelocateCalls.push_back(U); 683 684 // We need atleast one base pointer relocation + one derived pointer 685 // relocation to mangle 686 if (AllRelocateCalls.size() < 2) 687 return false; 688 689 // RelocateInstMap is a mapping from the base relocate instruction to the 690 // corresponding derived relocate instructions 691 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 692 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 693 if (RelocateInstMap.empty()) 694 return false; 695 696 for (auto &Item : RelocateInstMap) 697 // Item.first is the RelocatedBase to offset against 698 // Item.second is the vector of Targets to replace 699 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 700 return MadeChange; 701 } 702 703 /// SinkCast - Sink the specified cast instruction into its user blocks 704 static bool SinkCast(CastInst *CI) { 705 BasicBlock *DefBB = CI->getParent(); 706 707 /// InsertedCasts - Only insert a cast in each block once. 708 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 709 710 bool MadeChange = false; 711 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 712 UI != E; ) { 713 Use &TheUse = UI.getUse(); 714 Instruction *User = cast<Instruction>(*UI); 715 716 // Figure out which BB this cast is used in. For PHI's this is the 717 // appropriate predecessor block. 718 BasicBlock *UserBB = User->getParent(); 719 if (PHINode *PN = dyn_cast<PHINode>(User)) { 720 UserBB = PN->getIncomingBlock(TheUse); 721 } 722 723 // Preincrement use iterator so we don't invalidate it. 724 ++UI; 725 726 // If this user is in the same block as the cast, don't change the cast. 727 if (UserBB == DefBB) continue; 728 729 // If we have already inserted a cast into this block, use it. 730 CastInst *&InsertedCast = InsertedCasts[UserBB]; 731 732 if (!InsertedCast) { 733 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 734 InsertedCast = 735 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 736 InsertPt); 737 } 738 739 // Replace a use of the cast with a use of the new cast. 740 TheUse = InsertedCast; 741 MadeChange = true; 742 ++NumCastUses; 743 } 744 745 // If we removed all uses, nuke the cast. 746 if (CI->use_empty()) { 747 CI->eraseFromParent(); 748 MadeChange = true; 749 } 750 751 return MadeChange; 752 } 753 754 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 755 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 756 /// sink it into user blocks to reduce the number of virtual 757 /// registers that must be created and coalesced. 758 /// 759 /// Return true if any changes are made. 760 /// 761 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 762 const DataLayout &DL) { 763 // If this is a noop copy, 764 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 765 EVT DstVT = TLI.getValueType(DL, CI->getType()); 766 767 // This is an fp<->int conversion? 768 if (SrcVT.isInteger() != DstVT.isInteger()) 769 return false; 770 771 // If this is an extension, it will be a zero or sign extension, which 772 // isn't a noop. 773 if (SrcVT.bitsLT(DstVT)) return false; 774 775 // If these values will be promoted, find out what they will be promoted 776 // to. This helps us consider truncates on PPC as noop copies when they 777 // are. 778 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 779 TargetLowering::TypePromoteInteger) 780 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 781 if (TLI.getTypeAction(CI->getContext(), DstVT) == 782 TargetLowering::TypePromoteInteger) 783 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 784 785 // If, after promotion, these are the same types, this is a noop copy. 786 if (SrcVT != DstVT) 787 return false; 788 789 return SinkCast(CI); 790 } 791 792 /// CombineUAddWithOverflow - try to combine CI into a call to the 793 /// llvm.uadd.with.overflow intrinsic if possible. 794 /// 795 /// Return true if any changes were made. 796 static bool CombineUAddWithOverflow(CmpInst *CI) { 797 Value *A, *B; 798 Instruction *AddI; 799 if (!match(CI, 800 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 801 return false; 802 803 Type *Ty = AddI->getType(); 804 if (!isa<IntegerType>(Ty)) 805 return false; 806 807 // We don't want to move around uses of condition values this late, so we we 808 // check if it is legal to create the call to the intrinsic in the basic 809 // block containing the icmp: 810 811 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 812 return false; 813 814 #ifndef NDEBUG 815 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 816 // for now: 817 if (AddI->hasOneUse()) 818 assert(*AddI->user_begin() == CI && "expected!"); 819 #endif 820 821 Module *M = CI->getParent()->getParent()->getParent(); 822 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 823 824 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 825 826 auto *UAddWithOverflow = 827 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 828 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 829 auto *Overflow = 830 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 831 832 CI->replaceAllUsesWith(Overflow); 833 AddI->replaceAllUsesWith(UAdd); 834 CI->eraseFromParent(); 835 AddI->eraseFromParent(); 836 return true; 837 } 838 839 /// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce 840 /// the number of virtual registers that must be created and coalesced. This is 841 /// a clear win except on targets with multiple condition code registers 842 /// (PowerPC), where it might lose; some adjustment may be wanted there. 843 /// 844 /// Return true if any changes are made. 845 static bool SinkCmpExpression(CmpInst *CI) { 846 BasicBlock *DefBB = CI->getParent(); 847 848 /// InsertedCmp - Only insert a cmp in each block once. 849 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 850 851 bool MadeChange = false; 852 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 853 UI != E; ) { 854 Use &TheUse = UI.getUse(); 855 Instruction *User = cast<Instruction>(*UI); 856 857 // Preincrement use iterator so we don't invalidate it. 858 ++UI; 859 860 // Don't bother for PHI nodes. 861 if (isa<PHINode>(User)) 862 continue; 863 864 // Figure out which BB this cmp is used in. 865 BasicBlock *UserBB = User->getParent(); 866 867 // If this user is in the same block as the cmp, don't change the cmp. 868 if (UserBB == DefBB) continue; 869 870 // If we have already inserted a cmp into this block, use it. 871 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 872 873 if (!InsertedCmp) { 874 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 875 InsertedCmp = 876 CmpInst::Create(CI->getOpcode(), 877 CI->getPredicate(), CI->getOperand(0), 878 CI->getOperand(1), "", InsertPt); 879 } 880 881 // Replace a use of the cmp with a use of the new cmp. 882 TheUse = InsertedCmp; 883 MadeChange = true; 884 ++NumCmpUses; 885 } 886 887 // If we removed all uses, nuke the cmp. 888 if (CI->use_empty()) { 889 CI->eraseFromParent(); 890 MadeChange = true; 891 } 892 893 return MadeChange; 894 } 895 896 static bool OptimizeCmpExpression(CmpInst *CI) { 897 if (SinkCmpExpression(CI)) 898 return true; 899 900 if (CombineUAddWithOverflow(CI)) 901 return true; 902 903 return false; 904 } 905 906 /// isExtractBitsCandidateUse - Check if the candidates could 907 /// be combined with shift instruction, which includes: 908 /// 1. Truncate instruction 909 /// 2. And instruction and the imm is a mask of the low bits: 910 /// imm & (imm+1) == 0 911 static bool isExtractBitsCandidateUse(Instruction *User) { 912 if (!isa<TruncInst>(User)) { 913 if (User->getOpcode() != Instruction::And || 914 !isa<ConstantInt>(User->getOperand(1))) 915 return false; 916 917 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 918 919 if ((Cimm & (Cimm + 1)).getBoolValue()) 920 return false; 921 } 922 return true; 923 } 924 925 /// SinkShiftAndTruncate - sink both shift and truncate instruction 926 /// to the use of truncate's BB. 927 static bool 928 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 929 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 930 const TargetLowering &TLI, const DataLayout &DL) { 931 BasicBlock *UserBB = User->getParent(); 932 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 933 TruncInst *TruncI = dyn_cast<TruncInst>(User); 934 bool MadeChange = false; 935 936 for (Value::user_iterator TruncUI = TruncI->user_begin(), 937 TruncE = TruncI->user_end(); 938 TruncUI != TruncE;) { 939 940 Use &TruncTheUse = TruncUI.getUse(); 941 Instruction *TruncUser = cast<Instruction>(*TruncUI); 942 // Preincrement use iterator so we don't invalidate it. 943 944 ++TruncUI; 945 946 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 947 if (!ISDOpcode) 948 continue; 949 950 // If the use is actually a legal node, there will not be an 951 // implicit truncate. 952 // FIXME: always querying the result type is just an 953 // approximation; some nodes' legality is determined by the 954 // operand or other means. There's no good way to find out though. 955 if (TLI.isOperationLegalOrCustom( 956 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 957 continue; 958 959 // Don't bother for PHI nodes. 960 if (isa<PHINode>(TruncUser)) 961 continue; 962 963 BasicBlock *TruncUserBB = TruncUser->getParent(); 964 965 if (UserBB == TruncUserBB) 966 continue; 967 968 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 969 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 970 971 if (!InsertedShift && !InsertedTrunc) { 972 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 973 // Sink the shift 974 if (ShiftI->getOpcode() == Instruction::AShr) 975 InsertedShift = 976 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 977 else 978 InsertedShift = 979 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 980 981 // Sink the trunc 982 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 983 TruncInsertPt++; 984 985 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 986 TruncI->getType(), "", TruncInsertPt); 987 988 MadeChange = true; 989 990 TruncTheUse = InsertedTrunc; 991 } 992 } 993 return MadeChange; 994 } 995 996 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 997 /// the uses could potentially be combined with this shift instruction and 998 /// generate BitExtract instruction. It will only be applied if the architecture 999 /// supports BitExtract instruction. Here is an example: 1000 /// BB1: 1001 /// %x.extract.shift = lshr i64 %arg1, 32 1002 /// BB2: 1003 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1004 /// ==> 1005 /// 1006 /// BB2: 1007 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1008 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1009 /// 1010 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1011 /// instruction. 1012 /// Return true if any changes are made. 1013 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1014 const TargetLowering &TLI, 1015 const DataLayout &DL) { 1016 BasicBlock *DefBB = ShiftI->getParent(); 1017 1018 /// Only insert instructions in each block once. 1019 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1020 1021 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1022 1023 bool MadeChange = false; 1024 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1025 UI != E;) { 1026 Use &TheUse = UI.getUse(); 1027 Instruction *User = cast<Instruction>(*UI); 1028 // Preincrement use iterator so we don't invalidate it. 1029 ++UI; 1030 1031 // Don't bother for PHI nodes. 1032 if (isa<PHINode>(User)) 1033 continue; 1034 1035 if (!isExtractBitsCandidateUse(User)) 1036 continue; 1037 1038 BasicBlock *UserBB = User->getParent(); 1039 1040 if (UserBB == DefBB) { 1041 // If the shift and truncate instruction are in the same BB. The use of 1042 // the truncate(TruncUse) may still introduce another truncate if not 1043 // legal. In this case, we would like to sink both shift and truncate 1044 // instruction to the BB of TruncUse. 1045 // for example: 1046 // BB1: 1047 // i64 shift.result = lshr i64 opnd, imm 1048 // trunc.result = trunc shift.result to i16 1049 // 1050 // BB2: 1051 // ----> We will have an implicit truncate here if the architecture does 1052 // not have i16 compare. 1053 // cmp i16 trunc.result, opnd2 1054 // 1055 if (isa<TruncInst>(User) && shiftIsLegal 1056 // If the type of the truncate is legal, no trucate will be 1057 // introduced in other basic blocks. 1058 && 1059 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1060 MadeChange = 1061 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1062 1063 continue; 1064 } 1065 // If we have already inserted a shift into this block, use it. 1066 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1067 1068 if (!InsertedShift) { 1069 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1070 1071 if (ShiftI->getOpcode() == Instruction::AShr) 1072 InsertedShift = 1073 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 1074 else 1075 InsertedShift = 1076 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 1077 1078 MadeChange = true; 1079 } 1080 1081 // Replace a use of the shift with a use of the new shift. 1082 TheUse = InsertedShift; 1083 } 1084 1085 // If we removed all uses, nuke the shift. 1086 if (ShiftI->use_empty()) 1087 ShiftI->eraseFromParent(); 1088 1089 return MadeChange; 1090 } 1091 1092 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1093 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1094 // <16 x i1> %mask, <16 x i32> %passthru) 1095 // to a chain of basic blocks, whith loading element one-by-one if 1096 // the appropriate mask bit is set 1097 // 1098 // %1 = bitcast i8* %addr to i32* 1099 // %2 = extractelement <16 x i1> %mask, i32 0 1100 // %3 = icmp eq i1 %2, true 1101 // br i1 %3, label %cond.load, label %else 1102 // 1103 //cond.load: ; preds = %0 1104 // %4 = getelementptr i32* %1, i32 0 1105 // %5 = load i32* %4 1106 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1107 // br label %else 1108 // 1109 //else: ; preds = %0, %cond.load 1110 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1111 // %7 = extractelement <16 x i1> %mask, i32 1 1112 // %8 = icmp eq i1 %7, true 1113 // br i1 %8, label %cond.load1, label %else2 1114 // 1115 //cond.load1: ; preds = %else 1116 // %9 = getelementptr i32* %1, i32 1 1117 // %10 = load i32* %9 1118 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1119 // br label %else2 1120 // 1121 //else2: ; preds = %else, %cond.load1 1122 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1123 // %12 = extractelement <16 x i1> %mask, i32 2 1124 // %13 = icmp eq i1 %12, true 1125 // br i1 %13, label %cond.load4, label %else5 1126 // 1127 static void ScalarizeMaskedLoad(CallInst *CI) { 1128 Value *Ptr = CI->getArgOperand(0); 1129 Value *Src0 = CI->getArgOperand(3); 1130 Value *Mask = CI->getArgOperand(2); 1131 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1132 Type *EltTy = VecType->getElementType(); 1133 1134 assert(VecType && "Unexpected return type of masked load intrinsic"); 1135 1136 IRBuilder<> Builder(CI->getContext()); 1137 Instruction *InsertPt = CI; 1138 BasicBlock *IfBlock = CI->getParent(); 1139 BasicBlock *CondBlock = nullptr; 1140 BasicBlock *PrevIfBlock = CI->getParent(); 1141 Builder.SetInsertPoint(InsertPt); 1142 1143 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1144 1145 // Bitcast %addr fron i8* to EltTy* 1146 Type *NewPtrType = 1147 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1148 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1149 Value *UndefVal = UndefValue::get(VecType); 1150 1151 // The result vector 1152 Value *VResult = UndefVal; 1153 1154 PHINode *Phi = nullptr; 1155 Value *PrevPhi = UndefVal; 1156 1157 unsigned VectorWidth = VecType->getNumElements(); 1158 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1159 1160 // Fill the "else" block, created in the previous iteration 1161 // 1162 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1163 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1164 // %to_load = icmp eq i1 %mask_1, true 1165 // br i1 %to_load, label %cond.load, label %else 1166 // 1167 if (Idx > 0) { 1168 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1169 Phi->addIncoming(VResult, CondBlock); 1170 Phi->addIncoming(PrevPhi, PrevIfBlock); 1171 PrevPhi = Phi; 1172 VResult = Phi; 1173 } 1174 1175 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1176 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1177 ConstantInt::get(Predicate->getType(), 1)); 1178 1179 // Create "cond" block 1180 // 1181 // %EltAddr = getelementptr i32* %1, i32 0 1182 // %Elt = load i32* %EltAddr 1183 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1184 // 1185 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1186 Builder.SetInsertPoint(InsertPt); 1187 1188 Value *Gep = 1189 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1190 LoadInst* Load = Builder.CreateLoad(Gep, false); 1191 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1192 1193 // Create "else" block, fill it in the next iteration 1194 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1195 Builder.SetInsertPoint(InsertPt); 1196 Instruction *OldBr = IfBlock->getTerminator(); 1197 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1198 OldBr->eraseFromParent(); 1199 PrevIfBlock = IfBlock; 1200 IfBlock = NewIfBlock; 1201 } 1202 1203 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1204 Phi->addIncoming(VResult, CondBlock); 1205 Phi->addIncoming(PrevPhi, PrevIfBlock); 1206 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1207 CI->replaceAllUsesWith(NewI); 1208 CI->eraseFromParent(); 1209 } 1210 1211 // ScalarizeMaskedStore() translates masked store intrinsic, like 1212 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1213 // <16 x i1> %mask) 1214 // to a chain of basic blocks, that stores element one-by-one if 1215 // the appropriate mask bit is set 1216 // 1217 // %1 = bitcast i8* %addr to i32* 1218 // %2 = extractelement <16 x i1> %mask, i32 0 1219 // %3 = icmp eq i1 %2, true 1220 // br i1 %3, label %cond.store, label %else 1221 // 1222 // cond.store: ; preds = %0 1223 // %4 = extractelement <16 x i32> %val, i32 0 1224 // %5 = getelementptr i32* %1, i32 0 1225 // store i32 %4, i32* %5 1226 // br label %else 1227 // 1228 // else: ; preds = %0, %cond.store 1229 // %6 = extractelement <16 x i1> %mask, i32 1 1230 // %7 = icmp eq i1 %6, true 1231 // br i1 %7, label %cond.store1, label %else2 1232 // 1233 // cond.store1: ; preds = %else 1234 // %8 = extractelement <16 x i32> %val, i32 1 1235 // %9 = getelementptr i32* %1, i32 1 1236 // store i32 %8, i32* %9 1237 // br label %else2 1238 // . . . 1239 static void ScalarizeMaskedStore(CallInst *CI) { 1240 Value *Ptr = CI->getArgOperand(1); 1241 Value *Src = CI->getArgOperand(0); 1242 Value *Mask = CI->getArgOperand(3); 1243 1244 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1245 Type *EltTy = VecType->getElementType(); 1246 1247 assert(VecType && "Unexpected data type in masked store intrinsic"); 1248 1249 IRBuilder<> Builder(CI->getContext()); 1250 Instruction *InsertPt = CI; 1251 BasicBlock *IfBlock = CI->getParent(); 1252 Builder.SetInsertPoint(InsertPt); 1253 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1254 1255 // Bitcast %addr fron i8* to EltTy* 1256 Type *NewPtrType = 1257 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1258 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1259 1260 unsigned VectorWidth = VecType->getNumElements(); 1261 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1262 1263 // Fill the "else" block, created in the previous iteration 1264 // 1265 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1266 // %to_store = icmp eq i1 %mask_1, true 1267 // br i1 %to_load, label %cond.store, label %else 1268 // 1269 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1270 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1271 ConstantInt::get(Predicate->getType(), 1)); 1272 1273 // Create "cond" block 1274 // 1275 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1276 // %EltAddr = getelementptr i32* %1, i32 0 1277 // %store i32 %OneElt, i32* %EltAddr 1278 // 1279 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1280 Builder.SetInsertPoint(InsertPt); 1281 1282 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1283 Value *Gep = 1284 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1285 Builder.CreateStore(OneElt, Gep); 1286 1287 // Create "else" block, fill it in the next iteration 1288 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1289 Builder.SetInsertPoint(InsertPt); 1290 Instruction *OldBr = IfBlock->getTerminator(); 1291 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1292 OldBr->eraseFromParent(); 1293 IfBlock = NewIfBlock; 1294 } 1295 CI->eraseFromParent(); 1296 } 1297 1298 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1299 BasicBlock *BB = CI->getParent(); 1300 1301 // Lower inline assembly if we can. 1302 // If we found an inline asm expession, and if the target knows how to 1303 // lower it to normal LLVM code, do so now. 1304 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1305 if (TLI->ExpandInlineAsm(CI)) { 1306 // Avoid invalidating the iterator. 1307 CurInstIterator = BB->begin(); 1308 // Avoid processing instructions out of order, which could cause 1309 // reuse before a value is defined. 1310 SunkAddrs.clear(); 1311 return true; 1312 } 1313 // Sink address computing for memory operands into the block. 1314 if (OptimizeInlineAsmInst(CI)) 1315 return true; 1316 } 1317 1318 // Align the pointer arguments to this call if the target thinks it's a good 1319 // idea 1320 unsigned MinSize, PrefAlign; 1321 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1322 for (auto &Arg : CI->arg_operands()) { 1323 // We want to align both objects whose address is used directly and 1324 // objects whose address is used in casts and GEPs, though it only makes 1325 // sense for GEPs if the offset is a multiple of the desired alignment and 1326 // if size - offset meets the size threshold. 1327 if (!Arg->getType()->isPointerTy()) 1328 continue; 1329 APInt Offset(DL->getPointerSizeInBits( 1330 cast<PointerType>(Arg->getType())->getAddressSpace()), 1331 0); 1332 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1333 uint64_t Offset2 = Offset.getLimitedValue(); 1334 if ((Offset2 & (PrefAlign-1)) != 0) 1335 continue; 1336 AllocaInst *AI; 1337 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1338 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1339 AI->setAlignment(PrefAlign); 1340 // Global variables can only be aligned if they are defined in this 1341 // object (i.e. they are uniquely initialized in this object), and 1342 // over-aligning global variables that have an explicit section is 1343 // forbidden. 1344 GlobalVariable *GV; 1345 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1346 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1347 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1348 MinSize + Offset2) 1349 GV->setAlignment(PrefAlign); 1350 } 1351 // If this is a memcpy (or similar) then we may be able to improve the 1352 // alignment 1353 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1354 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1355 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1356 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1357 if (Align > MI->getAlignment()) 1358 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1359 } 1360 } 1361 1362 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1363 if (II) { 1364 switch (II->getIntrinsicID()) { 1365 default: break; 1366 case Intrinsic::objectsize: { 1367 // Lower all uses of llvm.objectsize.* 1368 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1369 Type *ReturnTy = CI->getType(); 1370 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1371 1372 // Substituting this can cause recursive simplifications, which can 1373 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1374 // happens. 1375 WeakVH IterHandle(CurInstIterator); 1376 1377 replaceAndRecursivelySimplify(CI, RetVal, 1378 TLInfo, nullptr); 1379 1380 // If the iterator instruction was recursively deleted, start over at the 1381 // start of the block. 1382 if (IterHandle != CurInstIterator) { 1383 CurInstIterator = BB->begin(); 1384 SunkAddrs.clear(); 1385 } 1386 return true; 1387 } 1388 case Intrinsic::masked_load: { 1389 // Scalarize unsupported vector masked load 1390 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1391 ScalarizeMaskedLoad(CI); 1392 ModifiedDT = true; 1393 return true; 1394 } 1395 return false; 1396 } 1397 case Intrinsic::masked_store: { 1398 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1399 ScalarizeMaskedStore(CI); 1400 ModifiedDT = true; 1401 return true; 1402 } 1403 return false; 1404 } 1405 case Intrinsic::aarch64_stlxr: 1406 case Intrinsic::aarch64_stxr: { 1407 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1408 if (!ExtVal || !ExtVal->hasOneUse() || 1409 ExtVal->getParent() == CI->getParent()) 1410 return false; 1411 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1412 ExtVal->moveBefore(CI); 1413 // Mark this instruction as "inserted by CGP", so that other 1414 // optimizations don't touch it. 1415 InsertedInsts.insert(ExtVal); 1416 return true; 1417 } 1418 } 1419 1420 if (TLI) { 1421 // Unknown address space. 1422 // TODO: Target hook to pick which address space the intrinsic cares 1423 // about? 1424 unsigned AddrSpace = ~0u; 1425 SmallVector<Value*, 2> PtrOps; 1426 Type *AccessTy; 1427 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1428 while (!PtrOps.empty()) 1429 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1430 return true; 1431 } 1432 } 1433 1434 // From here on out we're working with named functions. 1435 if (!CI->getCalledFunction()) return false; 1436 1437 // Lower all default uses of _chk calls. This is very similar 1438 // to what InstCombineCalls does, but here we are only lowering calls 1439 // to fortified library functions (e.g. __memcpy_chk) that have the default 1440 // "don't know" as the objectsize. Anything else should be left alone. 1441 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1442 if (Value *V = Simplifier.optimizeCall(CI)) { 1443 CI->replaceAllUsesWith(V); 1444 CI->eraseFromParent(); 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1451 /// instructions to the predecessor to enable tail call optimizations. The 1452 /// case it is currently looking for is: 1453 /// @code 1454 /// bb0: 1455 /// %tmp0 = tail call i32 @f0() 1456 /// br label %return 1457 /// bb1: 1458 /// %tmp1 = tail call i32 @f1() 1459 /// br label %return 1460 /// bb2: 1461 /// %tmp2 = tail call i32 @f2() 1462 /// br label %return 1463 /// return: 1464 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1465 /// ret i32 %retval 1466 /// @endcode 1467 /// 1468 /// => 1469 /// 1470 /// @code 1471 /// bb0: 1472 /// %tmp0 = tail call i32 @f0() 1473 /// ret i32 %tmp0 1474 /// bb1: 1475 /// %tmp1 = tail call i32 @f1() 1476 /// ret i32 %tmp1 1477 /// bb2: 1478 /// %tmp2 = tail call i32 @f2() 1479 /// ret i32 %tmp2 1480 /// @endcode 1481 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1482 if (!TLI) 1483 return false; 1484 1485 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1486 if (!RI) 1487 return false; 1488 1489 PHINode *PN = nullptr; 1490 BitCastInst *BCI = nullptr; 1491 Value *V = RI->getReturnValue(); 1492 if (V) { 1493 BCI = dyn_cast<BitCastInst>(V); 1494 if (BCI) 1495 V = BCI->getOperand(0); 1496 1497 PN = dyn_cast<PHINode>(V); 1498 if (!PN) 1499 return false; 1500 } 1501 1502 if (PN && PN->getParent() != BB) 1503 return false; 1504 1505 // It's not safe to eliminate the sign / zero extension of the return value. 1506 // See llvm::isInTailCallPosition(). 1507 const Function *F = BB->getParent(); 1508 AttributeSet CallerAttrs = F->getAttributes(); 1509 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1510 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1511 return false; 1512 1513 // Make sure there are no instructions between the PHI and return, or that the 1514 // return is the first instruction in the block. 1515 if (PN) { 1516 BasicBlock::iterator BI = BB->begin(); 1517 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1518 if (&*BI == BCI) 1519 // Also skip over the bitcast. 1520 ++BI; 1521 if (&*BI != RI) 1522 return false; 1523 } else { 1524 BasicBlock::iterator BI = BB->begin(); 1525 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1526 if (&*BI != RI) 1527 return false; 1528 } 1529 1530 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1531 /// call. 1532 SmallVector<CallInst*, 4> TailCalls; 1533 if (PN) { 1534 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1535 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1536 // Make sure the phi value is indeed produced by the tail call. 1537 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1538 TLI->mayBeEmittedAsTailCall(CI)) 1539 TailCalls.push_back(CI); 1540 } 1541 } else { 1542 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1543 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1544 if (!VisitedBBs.insert(*PI).second) 1545 continue; 1546 1547 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1548 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1549 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1550 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1551 if (RI == RE) 1552 continue; 1553 1554 CallInst *CI = dyn_cast<CallInst>(&*RI); 1555 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1556 TailCalls.push_back(CI); 1557 } 1558 } 1559 1560 bool Changed = false; 1561 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1562 CallInst *CI = TailCalls[i]; 1563 CallSite CS(CI); 1564 1565 // Conservatively require the attributes of the call to match those of the 1566 // return. Ignore noalias because it doesn't affect the call sequence. 1567 AttributeSet CalleeAttrs = CS.getAttributes(); 1568 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1569 removeAttribute(Attribute::NoAlias) != 1570 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1571 removeAttribute(Attribute::NoAlias)) 1572 continue; 1573 1574 // Make sure the call instruction is followed by an unconditional branch to 1575 // the return block. 1576 BasicBlock *CallBB = CI->getParent(); 1577 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1578 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1579 continue; 1580 1581 // Duplicate the return into CallBB. 1582 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1583 ModifiedDT = Changed = true; 1584 ++NumRetsDup; 1585 } 1586 1587 // If we eliminated all predecessors of the block, delete the block now. 1588 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1589 BB->eraseFromParent(); 1590 1591 return Changed; 1592 } 1593 1594 //===----------------------------------------------------------------------===// 1595 // Memory Optimization 1596 //===----------------------------------------------------------------------===// 1597 1598 namespace { 1599 1600 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1601 /// which holds actual Value*'s for register values. 1602 struct ExtAddrMode : public TargetLowering::AddrMode { 1603 Value *BaseReg; 1604 Value *ScaledReg; 1605 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1606 void print(raw_ostream &OS) const; 1607 void dump() const; 1608 1609 bool operator==(const ExtAddrMode& O) const { 1610 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1611 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1612 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1613 } 1614 }; 1615 1616 #ifndef NDEBUG 1617 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1618 AM.print(OS); 1619 return OS; 1620 } 1621 #endif 1622 1623 void ExtAddrMode::print(raw_ostream &OS) const { 1624 bool NeedPlus = false; 1625 OS << "["; 1626 if (BaseGV) { 1627 OS << (NeedPlus ? " + " : "") 1628 << "GV:"; 1629 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1630 NeedPlus = true; 1631 } 1632 1633 if (BaseOffs) { 1634 OS << (NeedPlus ? " + " : "") 1635 << BaseOffs; 1636 NeedPlus = true; 1637 } 1638 1639 if (BaseReg) { 1640 OS << (NeedPlus ? " + " : "") 1641 << "Base:"; 1642 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1643 NeedPlus = true; 1644 } 1645 if (Scale) { 1646 OS << (NeedPlus ? " + " : "") 1647 << Scale << "*"; 1648 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1649 } 1650 1651 OS << ']'; 1652 } 1653 1654 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1655 void ExtAddrMode::dump() const { 1656 print(dbgs()); 1657 dbgs() << '\n'; 1658 } 1659 #endif 1660 1661 /// \brief This class provides transaction based operation on the IR. 1662 /// Every change made through this class is recorded in the internal state and 1663 /// can be undone (rollback) until commit is called. 1664 class TypePromotionTransaction { 1665 1666 /// \brief This represents the common interface of the individual transaction. 1667 /// Each class implements the logic for doing one specific modification on 1668 /// the IR via the TypePromotionTransaction. 1669 class TypePromotionAction { 1670 protected: 1671 /// The Instruction modified. 1672 Instruction *Inst; 1673 1674 public: 1675 /// \brief Constructor of the action. 1676 /// The constructor performs the related action on the IR. 1677 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1678 1679 virtual ~TypePromotionAction() {} 1680 1681 /// \brief Undo the modification done by this action. 1682 /// When this method is called, the IR must be in the same state as it was 1683 /// before this action was applied. 1684 /// \pre Undoing the action works if and only if the IR is in the exact same 1685 /// state as it was directly after this action was applied. 1686 virtual void undo() = 0; 1687 1688 /// \brief Advocate every change made by this action. 1689 /// When the results on the IR of the action are to be kept, it is important 1690 /// to call this function, otherwise hidden information may be kept forever. 1691 virtual void commit() { 1692 // Nothing to be done, this action is not doing anything. 1693 } 1694 }; 1695 1696 /// \brief Utility to remember the position of an instruction. 1697 class InsertionHandler { 1698 /// Position of an instruction. 1699 /// Either an instruction: 1700 /// - Is the first in a basic block: BB is used. 1701 /// - Has a previous instructon: PrevInst is used. 1702 union { 1703 Instruction *PrevInst; 1704 BasicBlock *BB; 1705 } Point; 1706 /// Remember whether or not the instruction had a previous instruction. 1707 bool HasPrevInstruction; 1708 1709 public: 1710 /// \brief Record the position of \p Inst. 1711 InsertionHandler(Instruction *Inst) { 1712 BasicBlock::iterator It = Inst; 1713 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1714 if (HasPrevInstruction) 1715 Point.PrevInst = --It; 1716 else 1717 Point.BB = Inst->getParent(); 1718 } 1719 1720 /// \brief Insert \p Inst at the recorded position. 1721 void insert(Instruction *Inst) { 1722 if (HasPrevInstruction) { 1723 if (Inst->getParent()) 1724 Inst->removeFromParent(); 1725 Inst->insertAfter(Point.PrevInst); 1726 } else { 1727 Instruction *Position = Point.BB->getFirstInsertionPt(); 1728 if (Inst->getParent()) 1729 Inst->moveBefore(Position); 1730 else 1731 Inst->insertBefore(Position); 1732 } 1733 } 1734 }; 1735 1736 /// \brief Move an instruction before another. 1737 class InstructionMoveBefore : public TypePromotionAction { 1738 /// Original position of the instruction. 1739 InsertionHandler Position; 1740 1741 public: 1742 /// \brief Move \p Inst before \p Before. 1743 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1744 : TypePromotionAction(Inst), Position(Inst) { 1745 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1746 Inst->moveBefore(Before); 1747 } 1748 1749 /// \brief Move the instruction back to its original position. 1750 void undo() override { 1751 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1752 Position.insert(Inst); 1753 } 1754 }; 1755 1756 /// \brief Set the operand of an instruction with a new value. 1757 class OperandSetter : public TypePromotionAction { 1758 /// Original operand of the instruction. 1759 Value *Origin; 1760 /// Index of the modified instruction. 1761 unsigned Idx; 1762 1763 public: 1764 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1765 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1766 : TypePromotionAction(Inst), Idx(Idx) { 1767 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1768 << "for:" << *Inst << "\n" 1769 << "with:" << *NewVal << "\n"); 1770 Origin = Inst->getOperand(Idx); 1771 Inst->setOperand(Idx, NewVal); 1772 } 1773 1774 /// \brief Restore the original value of the instruction. 1775 void undo() override { 1776 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1777 << "for: " << *Inst << "\n" 1778 << "with: " << *Origin << "\n"); 1779 Inst->setOperand(Idx, Origin); 1780 } 1781 }; 1782 1783 /// \brief Hide the operands of an instruction. 1784 /// Do as if this instruction was not using any of its operands. 1785 class OperandsHider : public TypePromotionAction { 1786 /// The list of original operands. 1787 SmallVector<Value *, 4> OriginalValues; 1788 1789 public: 1790 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1791 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1792 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1793 unsigned NumOpnds = Inst->getNumOperands(); 1794 OriginalValues.reserve(NumOpnds); 1795 for (unsigned It = 0; It < NumOpnds; ++It) { 1796 // Save the current operand. 1797 Value *Val = Inst->getOperand(It); 1798 OriginalValues.push_back(Val); 1799 // Set a dummy one. 1800 // We could use OperandSetter here, but that would implied an overhead 1801 // that we are not willing to pay. 1802 Inst->setOperand(It, UndefValue::get(Val->getType())); 1803 } 1804 } 1805 1806 /// \brief Restore the original list of uses. 1807 void undo() override { 1808 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1809 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1810 Inst->setOperand(It, OriginalValues[It]); 1811 } 1812 }; 1813 1814 /// \brief Build a truncate instruction. 1815 class TruncBuilder : public TypePromotionAction { 1816 Value *Val; 1817 public: 1818 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1819 /// result. 1820 /// trunc Opnd to Ty. 1821 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1822 IRBuilder<> Builder(Opnd); 1823 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1824 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1825 } 1826 1827 /// \brief Get the built value. 1828 Value *getBuiltValue() { return Val; } 1829 1830 /// \brief Remove the built instruction. 1831 void undo() override { 1832 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1833 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1834 IVal->eraseFromParent(); 1835 } 1836 }; 1837 1838 /// \brief Build a sign extension instruction. 1839 class SExtBuilder : public TypePromotionAction { 1840 Value *Val; 1841 public: 1842 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1843 /// result. 1844 /// sext Opnd to Ty. 1845 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1846 : TypePromotionAction(InsertPt) { 1847 IRBuilder<> Builder(InsertPt); 1848 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1849 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1850 } 1851 1852 /// \brief Get the built value. 1853 Value *getBuiltValue() { return Val; } 1854 1855 /// \brief Remove the built instruction. 1856 void undo() override { 1857 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1858 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1859 IVal->eraseFromParent(); 1860 } 1861 }; 1862 1863 /// \brief Build a zero extension instruction. 1864 class ZExtBuilder : public TypePromotionAction { 1865 Value *Val; 1866 public: 1867 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1868 /// result. 1869 /// zext Opnd to Ty. 1870 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1871 : TypePromotionAction(InsertPt) { 1872 IRBuilder<> Builder(InsertPt); 1873 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1874 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1875 } 1876 1877 /// \brief Get the built value. 1878 Value *getBuiltValue() { return Val; } 1879 1880 /// \brief Remove the built instruction. 1881 void undo() override { 1882 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1883 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1884 IVal->eraseFromParent(); 1885 } 1886 }; 1887 1888 /// \brief Mutate an instruction to another type. 1889 class TypeMutator : public TypePromotionAction { 1890 /// Record the original type. 1891 Type *OrigTy; 1892 1893 public: 1894 /// \brief Mutate the type of \p Inst into \p NewTy. 1895 TypeMutator(Instruction *Inst, Type *NewTy) 1896 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1897 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1898 << "\n"); 1899 Inst->mutateType(NewTy); 1900 } 1901 1902 /// \brief Mutate the instruction back to its original type. 1903 void undo() override { 1904 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1905 << "\n"); 1906 Inst->mutateType(OrigTy); 1907 } 1908 }; 1909 1910 /// \brief Replace the uses of an instruction by another instruction. 1911 class UsesReplacer : public TypePromotionAction { 1912 /// Helper structure to keep track of the replaced uses. 1913 struct InstructionAndIdx { 1914 /// The instruction using the instruction. 1915 Instruction *Inst; 1916 /// The index where this instruction is used for Inst. 1917 unsigned Idx; 1918 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1919 : Inst(Inst), Idx(Idx) {} 1920 }; 1921 1922 /// Keep track of the original uses (pair Instruction, Index). 1923 SmallVector<InstructionAndIdx, 4> OriginalUses; 1924 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1925 1926 public: 1927 /// \brief Replace all the use of \p Inst by \p New. 1928 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1929 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1930 << "\n"); 1931 // Record the original uses. 1932 for (Use &U : Inst->uses()) { 1933 Instruction *UserI = cast<Instruction>(U.getUser()); 1934 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1935 } 1936 // Now, we can replace the uses. 1937 Inst->replaceAllUsesWith(New); 1938 } 1939 1940 /// \brief Reassign the original uses of Inst to Inst. 1941 void undo() override { 1942 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1943 for (use_iterator UseIt = OriginalUses.begin(), 1944 EndIt = OriginalUses.end(); 1945 UseIt != EndIt; ++UseIt) { 1946 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1947 } 1948 } 1949 }; 1950 1951 /// \brief Remove an instruction from the IR. 1952 class InstructionRemover : public TypePromotionAction { 1953 /// Original position of the instruction. 1954 InsertionHandler Inserter; 1955 /// Helper structure to hide all the link to the instruction. In other 1956 /// words, this helps to do as if the instruction was removed. 1957 OperandsHider Hider; 1958 /// Keep track of the uses replaced, if any. 1959 UsesReplacer *Replacer; 1960 1961 public: 1962 /// \brief Remove all reference of \p Inst and optinally replace all its 1963 /// uses with New. 1964 /// \pre If !Inst->use_empty(), then New != nullptr 1965 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1966 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1967 Replacer(nullptr) { 1968 if (New) 1969 Replacer = new UsesReplacer(Inst, New); 1970 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1971 Inst->removeFromParent(); 1972 } 1973 1974 ~InstructionRemover() override { delete Replacer; } 1975 1976 /// \brief Really remove the instruction. 1977 void commit() override { delete Inst; } 1978 1979 /// \brief Resurrect the instruction and reassign it to the proper uses if 1980 /// new value was provided when build this action. 1981 void undo() override { 1982 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1983 Inserter.insert(Inst); 1984 if (Replacer) 1985 Replacer->undo(); 1986 Hider.undo(); 1987 } 1988 }; 1989 1990 public: 1991 /// Restoration point. 1992 /// The restoration point is a pointer to an action instead of an iterator 1993 /// because the iterator may be invalidated but not the pointer. 1994 typedef const TypePromotionAction *ConstRestorationPt; 1995 /// Advocate every changes made in that transaction. 1996 void commit(); 1997 /// Undo all the changes made after the given point. 1998 void rollback(ConstRestorationPt Point); 1999 /// Get the current restoration point. 2000 ConstRestorationPt getRestorationPoint() const; 2001 2002 /// \name API for IR modification with state keeping to support rollback. 2003 /// @{ 2004 /// Same as Instruction::setOperand. 2005 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2006 /// Same as Instruction::eraseFromParent. 2007 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2008 /// Same as Value::replaceAllUsesWith. 2009 void replaceAllUsesWith(Instruction *Inst, Value *New); 2010 /// Same as Value::mutateType. 2011 void mutateType(Instruction *Inst, Type *NewTy); 2012 /// Same as IRBuilder::createTrunc. 2013 Value *createTrunc(Instruction *Opnd, Type *Ty); 2014 /// Same as IRBuilder::createSExt. 2015 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2016 /// Same as IRBuilder::createZExt. 2017 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2018 /// Same as Instruction::moveBefore. 2019 void moveBefore(Instruction *Inst, Instruction *Before); 2020 /// @} 2021 2022 private: 2023 /// The ordered list of actions made so far. 2024 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2025 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2026 }; 2027 2028 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2029 Value *NewVal) { 2030 Actions.push_back( 2031 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2032 } 2033 2034 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2035 Value *NewVal) { 2036 Actions.push_back( 2037 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2038 } 2039 2040 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2041 Value *New) { 2042 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2043 } 2044 2045 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2046 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2047 } 2048 2049 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2050 Type *Ty) { 2051 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2052 Value *Val = Ptr->getBuiltValue(); 2053 Actions.push_back(std::move(Ptr)); 2054 return Val; 2055 } 2056 2057 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2058 Value *Opnd, Type *Ty) { 2059 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2060 Value *Val = Ptr->getBuiltValue(); 2061 Actions.push_back(std::move(Ptr)); 2062 return Val; 2063 } 2064 2065 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2066 Value *Opnd, Type *Ty) { 2067 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2068 Value *Val = Ptr->getBuiltValue(); 2069 Actions.push_back(std::move(Ptr)); 2070 return Val; 2071 } 2072 2073 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2074 Instruction *Before) { 2075 Actions.push_back( 2076 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2077 } 2078 2079 TypePromotionTransaction::ConstRestorationPt 2080 TypePromotionTransaction::getRestorationPoint() const { 2081 return !Actions.empty() ? Actions.back().get() : nullptr; 2082 } 2083 2084 void TypePromotionTransaction::commit() { 2085 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2086 ++It) 2087 (*It)->commit(); 2088 Actions.clear(); 2089 } 2090 2091 void TypePromotionTransaction::rollback( 2092 TypePromotionTransaction::ConstRestorationPt Point) { 2093 while (!Actions.empty() && Point != Actions.back().get()) { 2094 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2095 Curr->undo(); 2096 } 2097 } 2098 2099 /// \brief A helper class for matching addressing modes. 2100 /// 2101 /// This encapsulates the logic for matching the target-legal addressing modes. 2102 class AddressingModeMatcher { 2103 SmallVectorImpl<Instruction*> &AddrModeInsts; 2104 const TargetMachine &TM; 2105 const TargetLowering &TLI; 2106 const DataLayout &DL; 2107 2108 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2109 /// the memory instruction that we're computing this address for. 2110 Type *AccessTy; 2111 unsigned AddrSpace; 2112 Instruction *MemoryInst; 2113 2114 /// AddrMode - This is the addressing mode that we're building up. This is 2115 /// part of the return value of this addressing mode matching stuff. 2116 ExtAddrMode &AddrMode; 2117 2118 /// The instructions inserted by other CodeGenPrepare optimizations. 2119 const SetOfInstrs &InsertedInsts; 2120 /// A map from the instructions to their type before promotion. 2121 InstrToOrigTy &PromotedInsts; 2122 /// The ongoing transaction where every action should be registered. 2123 TypePromotionTransaction &TPT; 2124 2125 /// IgnoreProfitability - This is set to true when we should not do 2126 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 2127 /// always returns true. 2128 bool IgnoreProfitability; 2129 2130 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2131 const TargetMachine &TM, Type *AT, unsigned AS, 2132 Instruction *MI, ExtAddrMode &AM, 2133 const SetOfInstrs &InsertedInsts, 2134 InstrToOrigTy &PromotedInsts, 2135 TypePromotionTransaction &TPT) 2136 : AddrModeInsts(AMI), TM(TM), 2137 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2138 ->getTargetLowering()), 2139 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2140 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2141 PromotedInsts(PromotedInsts), TPT(TPT) { 2142 IgnoreProfitability = false; 2143 } 2144 public: 2145 2146 /// Match - Find the maximal addressing mode that a load/store of V can fold, 2147 /// give an access type of AccessTy. This returns a list of involved 2148 /// instructions in AddrModeInsts. 2149 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2150 /// optimizations. 2151 /// \p PromotedInsts maps the instructions to their type before promotion. 2152 /// \p The ongoing transaction where every action should be registered. 2153 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2154 Instruction *MemoryInst, 2155 SmallVectorImpl<Instruction*> &AddrModeInsts, 2156 const TargetMachine &TM, 2157 const SetOfInstrs &InsertedInsts, 2158 InstrToOrigTy &PromotedInsts, 2159 TypePromotionTransaction &TPT) { 2160 ExtAddrMode Result; 2161 2162 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2163 MemoryInst, Result, InsertedInsts, 2164 PromotedInsts, TPT).MatchAddr(V, 0); 2165 (void)Success; assert(Success && "Couldn't select *anything*?"); 2166 return Result; 2167 } 2168 private: 2169 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2170 bool MatchAddr(Value *V, unsigned Depth); 2171 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2172 bool *MovedAway = nullptr); 2173 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2174 ExtAddrMode &AMBefore, 2175 ExtAddrMode &AMAfter); 2176 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2177 bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost, 2178 Value *PromotedOperand) const; 2179 }; 2180 2181 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2182 /// Return true and update AddrMode if this addr mode is legal for the target, 2183 /// false if not. 2184 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2185 unsigned Depth) { 2186 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2187 // mode. Just process that directly. 2188 if (Scale == 1) 2189 return MatchAddr(ScaleReg, Depth); 2190 2191 // If the scale is 0, it takes nothing to add this. 2192 if (Scale == 0) 2193 return true; 2194 2195 // If we already have a scale of this value, we can add to it, otherwise, we 2196 // need an available scale field. 2197 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2198 return false; 2199 2200 ExtAddrMode TestAddrMode = AddrMode; 2201 2202 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2203 // [A+B + A*7] -> [B+A*8]. 2204 TestAddrMode.Scale += Scale; 2205 TestAddrMode.ScaledReg = ScaleReg; 2206 2207 // If the new address isn't legal, bail out. 2208 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2209 return false; 2210 2211 // It was legal, so commit it. 2212 AddrMode = TestAddrMode; 2213 2214 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2215 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2216 // X*Scale + C*Scale to addr mode. 2217 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2218 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2219 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2220 TestAddrMode.ScaledReg = AddLHS; 2221 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2222 2223 // If this addressing mode is legal, commit it and remember that we folded 2224 // this instruction. 2225 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2226 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2227 AddrMode = TestAddrMode; 2228 return true; 2229 } 2230 } 2231 2232 // Otherwise, not (x+c)*scale, just return what we have. 2233 return true; 2234 } 2235 2236 /// MightBeFoldableInst - This is a little filter, which returns true if an 2237 /// addressing computation involving I might be folded into a load/store 2238 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2239 /// the set of instructions that MatchOperationAddr can. 2240 static bool MightBeFoldableInst(Instruction *I) { 2241 switch (I->getOpcode()) { 2242 case Instruction::BitCast: 2243 case Instruction::AddrSpaceCast: 2244 // Don't touch identity bitcasts. 2245 if (I->getType() == I->getOperand(0)->getType()) 2246 return false; 2247 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2248 case Instruction::PtrToInt: 2249 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2250 return true; 2251 case Instruction::IntToPtr: 2252 // We know the input is intptr_t, so this is foldable. 2253 return true; 2254 case Instruction::Add: 2255 return true; 2256 case Instruction::Mul: 2257 case Instruction::Shl: 2258 // Can only handle X*C and X << C. 2259 return isa<ConstantInt>(I->getOperand(1)); 2260 case Instruction::GetElementPtr: 2261 return true; 2262 default: 2263 return false; 2264 } 2265 } 2266 2267 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2268 /// \note \p Val is assumed to be the product of some type promotion. 2269 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2270 /// to be legal, as the non-promoted value would have had the same state. 2271 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2272 const DataLayout &DL, Value *Val) { 2273 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2274 if (!PromotedInst) 2275 return false; 2276 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2277 // If the ISDOpcode is undefined, it was undefined before the promotion. 2278 if (!ISDOpcode) 2279 return true; 2280 // Otherwise, check if the promoted instruction is legal or not. 2281 return TLI.isOperationLegalOrCustom( 2282 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2283 } 2284 2285 /// \brief Hepler class to perform type promotion. 2286 class TypePromotionHelper { 2287 /// \brief Utility function to check whether or not a sign or zero extension 2288 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2289 /// either using the operands of \p Inst or promoting \p Inst. 2290 /// The type of the extension is defined by \p IsSExt. 2291 /// In other words, check if: 2292 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2293 /// #1 Promotion applies: 2294 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2295 /// #2 Operand reuses: 2296 /// ext opnd1 to ConsideredExtType. 2297 /// \p PromotedInsts maps the instructions to their type before promotion. 2298 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2299 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2300 2301 /// \brief Utility function to determine if \p OpIdx should be promoted when 2302 /// promoting \p Inst. 2303 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2304 if (isa<SelectInst>(Inst) && OpIdx == 0) 2305 return false; 2306 return true; 2307 } 2308 2309 /// \brief Utility function to promote the operand of \p Ext when this 2310 /// operand is a promotable trunc or sext or zext. 2311 /// \p PromotedInsts maps the instructions to their type before promotion. 2312 /// \p CreatedInstsCost[out] contains the cost of all instructions 2313 /// created to promote the operand of Ext. 2314 /// Newly added extensions are inserted in \p Exts. 2315 /// Newly added truncates are inserted in \p Truncs. 2316 /// Should never be called directly. 2317 /// \return The promoted value which is used instead of Ext. 2318 static Value *promoteOperandForTruncAndAnyExt( 2319 Instruction *Ext, TypePromotionTransaction &TPT, 2320 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2321 SmallVectorImpl<Instruction *> *Exts, 2322 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2323 2324 /// \brief Utility function to promote the operand of \p Ext when this 2325 /// operand is promotable and is not a supported trunc or sext. 2326 /// \p PromotedInsts maps the instructions to their type before promotion. 2327 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2328 /// created to promote the operand of Ext. 2329 /// Newly added extensions are inserted in \p Exts. 2330 /// Newly added truncates are inserted in \p Truncs. 2331 /// Should never be called directly. 2332 /// \return The promoted value which is used instead of Ext. 2333 static Value *promoteOperandForOther(Instruction *Ext, 2334 TypePromotionTransaction &TPT, 2335 InstrToOrigTy &PromotedInsts, 2336 unsigned &CreatedInstsCost, 2337 SmallVectorImpl<Instruction *> *Exts, 2338 SmallVectorImpl<Instruction *> *Truncs, 2339 const TargetLowering &TLI, bool IsSExt); 2340 2341 /// \see promoteOperandForOther. 2342 static Value *signExtendOperandForOther( 2343 Instruction *Ext, TypePromotionTransaction &TPT, 2344 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2345 SmallVectorImpl<Instruction *> *Exts, 2346 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2347 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2348 Exts, Truncs, TLI, true); 2349 } 2350 2351 /// \see promoteOperandForOther. 2352 static Value *zeroExtendOperandForOther( 2353 Instruction *Ext, TypePromotionTransaction &TPT, 2354 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2355 SmallVectorImpl<Instruction *> *Exts, 2356 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2357 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2358 Exts, Truncs, TLI, false); 2359 } 2360 2361 public: 2362 /// Type for the utility function that promotes the operand of Ext. 2363 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2364 InstrToOrigTy &PromotedInsts, 2365 unsigned &CreatedInstsCost, 2366 SmallVectorImpl<Instruction *> *Exts, 2367 SmallVectorImpl<Instruction *> *Truncs, 2368 const TargetLowering &TLI); 2369 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2370 /// action to promote the operand of \p Ext instead of using Ext. 2371 /// \return NULL if no promotable action is possible with the current 2372 /// sign extension. 2373 /// \p InsertedInsts keeps track of all the instructions inserted by the 2374 /// other CodeGenPrepare optimizations. This information is important 2375 /// because we do not want to promote these instructions as CodeGenPrepare 2376 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2377 /// \p PromotedInsts maps the instructions to their type before promotion. 2378 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2379 const TargetLowering &TLI, 2380 const InstrToOrigTy &PromotedInsts); 2381 }; 2382 2383 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2384 Type *ConsideredExtType, 2385 const InstrToOrigTy &PromotedInsts, 2386 bool IsSExt) { 2387 // The promotion helper does not know how to deal with vector types yet. 2388 // To be able to fix that, we would need to fix the places where we 2389 // statically extend, e.g., constants and such. 2390 if (Inst->getType()->isVectorTy()) 2391 return false; 2392 2393 // We can always get through zext. 2394 if (isa<ZExtInst>(Inst)) 2395 return true; 2396 2397 // sext(sext) is ok too. 2398 if (IsSExt && isa<SExtInst>(Inst)) 2399 return true; 2400 2401 // We can get through binary operator, if it is legal. In other words, the 2402 // binary operator must have a nuw or nsw flag. 2403 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2404 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2405 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2406 (IsSExt && BinOp->hasNoSignedWrap()))) 2407 return true; 2408 2409 // Check if we can do the following simplification. 2410 // ext(trunc(opnd)) --> ext(opnd) 2411 if (!isa<TruncInst>(Inst)) 2412 return false; 2413 2414 Value *OpndVal = Inst->getOperand(0); 2415 // Check if we can use this operand in the extension. 2416 // If the type is larger than the result type of the extension, 2417 // we cannot. 2418 if (!OpndVal->getType()->isIntegerTy() || 2419 OpndVal->getType()->getIntegerBitWidth() > 2420 ConsideredExtType->getIntegerBitWidth()) 2421 return false; 2422 2423 // If the operand of the truncate is not an instruction, we will not have 2424 // any information on the dropped bits. 2425 // (Actually we could for constant but it is not worth the extra logic). 2426 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2427 if (!Opnd) 2428 return false; 2429 2430 // Check if the source of the type is narrow enough. 2431 // I.e., check that trunc just drops extended bits of the same kind of 2432 // the extension. 2433 // #1 get the type of the operand and check the kind of the extended bits. 2434 const Type *OpndType; 2435 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2436 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2437 OpndType = It->second.Ty; 2438 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2439 OpndType = Opnd->getOperand(0)->getType(); 2440 else 2441 return false; 2442 2443 // #2 check that the truncate just drop extended bits. 2444 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2445 return true; 2446 2447 return false; 2448 } 2449 2450 TypePromotionHelper::Action TypePromotionHelper::getAction( 2451 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2452 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2453 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2454 "Unexpected instruction type"); 2455 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2456 Type *ExtTy = Ext->getType(); 2457 bool IsSExt = isa<SExtInst>(Ext); 2458 // If the operand of the extension is not an instruction, we cannot 2459 // get through. 2460 // If it, check we can get through. 2461 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2462 return nullptr; 2463 2464 // Do not promote if the operand has been added by codegenprepare. 2465 // Otherwise, it means we are undoing an optimization that is likely to be 2466 // redone, thus causing potential infinite loop. 2467 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2468 return nullptr; 2469 2470 // SExt or Trunc instructions. 2471 // Return the related handler. 2472 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2473 isa<ZExtInst>(ExtOpnd)) 2474 return promoteOperandForTruncAndAnyExt; 2475 2476 // Regular instruction. 2477 // Abort early if we will have to insert non-free instructions. 2478 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2479 return nullptr; 2480 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2481 } 2482 2483 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2484 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2485 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2486 SmallVectorImpl<Instruction *> *Exts, 2487 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2488 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2489 // get through it and this method should not be called. 2490 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2491 Value *ExtVal = SExt; 2492 bool HasMergedNonFreeExt = false; 2493 if (isa<ZExtInst>(SExtOpnd)) { 2494 // Replace s|zext(zext(opnd)) 2495 // => zext(opnd). 2496 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2497 Value *ZExt = 2498 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2499 TPT.replaceAllUsesWith(SExt, ZExt); 2500 TPT.eraseInstruction(SExt); 2501 ExtVal = ZExt; 2502 } else { 2503 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2504 // => z|sext(opnd). 2505 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2506 } 2507 CreatedInstsCost = 0; 2508 2509 // Remove dead code. 2510 if (SExtOpnd->use_empty()) 2511 TPT.eraseInstruction(SExtOpnd); 2512 2513 // Check if the extension is still needed. 2514 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2515 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2516 if (ExtInst) { 2517 if (Exts) 2518 Exts->push_back(ExtInst); 2519 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2520 } 2521 return ExtVal; 2522 } 2523 2524 // At this point we have: ext ty opnd to ty. 2525 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2526 Value *NextVal = ExtInst->getOperand(0); 2527 TPT.eraseInstruction(ExtInst, NextVal); 2528 return NextVal; 2529 } 2530 2531 Value *TypePromotionHelper::promoteOperandForOther( 2532 Instruction *Ext, TypePromotionTransaction &TPT, 2533 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2534 SmallVectorImpl<Instruction *> *Exts, 2535 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2536 bool IsSExt) { 2537 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2538 // get through it and this method should not be called. 2539 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2540 CreatedInstsCost = 0; 2541 if (!ExtOpnd->hasOneUse()) { 2542 // ExtOpnd will be promoted. 2543 // All its uses, but Ext, will need to use a truncated value of the 2544 // promoted version. 2545 // Create the truncate now. 2546 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2547 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2548 ITrunc->removeFromParent(); 2549 // Insert it just after the definition. 2550 ITrunc->insertAfter(ExtOpnd); 2551 if (Truncs) 2552 Truncs->push_back(ITrunc); 2553 } 2554 2555 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2556 // Restore the operand of Ext (which has been replace by the previous call 2557 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2558 TPT.setOperand(Ext, 0, ExtOpnd); 2559 } 2560 2561 // Get through the Instruction: 2562 // 1. Update its type. 2563 // 2. Replace the uses of Ext by Inst. 2564 // 3. Extend each operand that needs to be extended. 2565 2566 // Remember the original type of the instruction before promotion. 2567 // This is useful to know that the high bits are sign extended bits. 2568 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2569 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2570 // Step #1. 2571 TPT.mutateType(ExtOpnd, Ext->getType()); 2572 // Step #2. 2573 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2574 // Step #3. 2575 Instruction *ExtForOpnd = Ext; 2576 2577 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2578 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2579 ++OpIdx) { 2580 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2581 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2582 !shouldExtOperand(ExtOpnd, OpIdx)) { 2583 DEBUG(dbgs() << "No need to propagate\n"); 2584 continue; 2585 } 2586 // Check if we can statically extend the operand. 2587 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2588 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2589 DEBUG(dbgs() << "Statically extend\n"); 2590 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2591 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2592 : Cst->getValue().zext(BitWidth); 2593 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2594 continue; 2595 } 2596 // UndefValue are typed, so we have to statically sign extend them. 2597 if (isa<UndefValue>(Opnd)) { 2598 DEBUG(dbgs() << "Statically extend\n"); 2599 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2600 continue; 2601 } 2602 2603 // Otherwise we have to explicity sign extend the operand. 2604 // Check if Ext was reused to extend an operand. 2605 if (!ExtForOpnd) { 2606 // If yes, create a new one. 2607 DEBUG(dbgs() << "More operands to ext\n"); 2608 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2609 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2610 if (!isa<Instruction>(ValForExtOpnd)) { 2611 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2612 continue; 2613 } 2614 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2615 } 2616 if (Exts) 2617 Exts->push_back(ExtForOpnd); 2618 TPT.setOperand(ExtForOpnd, 0, Opnd); 2619 2620 // Move the sign extension before the insertion point. 2621 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2622 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2623 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2624 // If more sext are required, new instructions will have to be created. 2625 ExtForOpnd = nullptr; 2626 } 2627 if (ExtForOpnd == Ext) { 2628 DEBUG(dbgs() << "Extension is useless now\n"); 2629 TPT.eraseInstruction(Ext); 2630 } 2631 return ExtOpnd; 2632 } 2633 2634 /// IsPromotionProfitable - Check whether or not promoting an instruction 2635 /// to a wider type was profitable. 2636 /// \p NewCost gives the cost of extension instructions created by the 2637 /// promotion. 2638 /// \p OldCost gives the cost of extension instructions before the promotion 2639 /// plus the number of instructions that have been 2640 /// matched in the addressing mode the promotion. 2641 /// \p PromotedOperand is the value that has been promoted. 2642 /// \return True if the promotion is profitable, false otherwise. 2643 bool AddressingModeMatcher::IsPromotionProfitable( 2644 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2645 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2646 // The cost of the new extensions is greater than the cost of the 2647 // old extension plus what we folded. 2648 // This is not profitable. 2649 if (NewCost > OldCost) 2650 return false; 2651 if (NewCost < OldCost) 2652 return true; 2653 // The promotion is neutral but it may help folding the sign extension in 2654 // loads for instance. 2655 // Check that we did not create an illegal instruction. 2656 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2657 } 2658 2659 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2660 /// fold the operation into the addressing mode. If so, update the addressing 2661 /// mode and return true, otherwise return false without modifying AddrMode. 2662 /// If \p MovedAway is not NULL, it contains the information of whether or 2663 /// not AddrInst has to be folded into the addressing mode on success. 2664 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2665 /// because it has been moved away. 2666 /// Thus AddrInst must not be added in the matched instructions. 2667 /// This state can happen when AddrInst is a sext, since it may be moved away. 2668 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2669 /// not be referenced anymore. 2670 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2671 unsigned Depth, 2672 bool *MovedAway) { 2673 // Avoid exponential behavior on extremely deep expression trees. 2674 if (Depth >= 5) return false; 2675 2676 // By default, all matched instructions stay in place. 2677 if (MovedAway) 2678 *MovedAway = false; 2679 2680 switch (Opcode) { 2681 case Instruction::PtrToInt: 2682 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2683 return MatchAddr(AddrInst->getOperand(0), Depth); 2684 case Instruction::IntToPtr: { 2685 auto AS = AddrInst->getType()->getPointerAddressSpace(); 2686 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 2687 // This inttoptr is a no-op if the integer type is pointer sized. 2688 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 2689 return MatchAddr(AddrInst->getOperand(0), Depth); 2690 return false; 2691 } 2692 case Instruction::BitCast: 2693 // BitCast is always a noop, and we can handle it as long as it is 2694 // int->int or pointer->pointer (we don't want int<->fp or something). 2695 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2696 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2697 // Don't touch identity bitcasts. These were probably put here by LSR, 2698 // and we don't want to mess around with them. Assume it knows what it 2699 // is doing. 2700 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2701 return MatchAddr(AddrInst->getOperand(0), Depth); 2702 return false; 2703 case Instruction::AddrSpaceCast: { 2704 unsigned SrcAS 2705 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2706 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2707 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2708 return MatchAddr(AddrInst->getOperand(0), Depth); 2709 return false; 2710 } 2711 case Instruction::Add: { 2712 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2713 ExtAddrMode BackupAddrMode = AddrMode; 2714 unsigned OldSize = AddrModeInsts.size(); 2715 // Start a transaction at this point. 2716 // The LHS may match but not the RHS. 2717 // Therefore, we need a higher level restoration point to undo partially 2718 // matched operation. 2719 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2720 TPT.getRestorationPoint(); 2721 2722 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2723 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2724 return true; 2725 2726 // Restore the old addr mode info. 2727 AddrMode = BackupAddrMode; 2728 AddrModeInsts.resize(OldSize); 2729 TPT.rollback(LastKnownGood); 2730 2731 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2732 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2733 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2734 return true; 2735 2736 // Otherwise we definitely can't merge the ADD in. 2737 AddrMode = BackupAddrMode; 2738 AddrModeInsts.resize(OldSize); 2739 TPT.rollback(LastKnownGood); 2740 break; 2741 } 2742 //case Instruction::Or: 2743 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2744 //break; 2745 case Instruction::Mul: 2746 case Instruction::Shl: { 2747 // Can only handle X*C and X << C. 2748 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2749 if (!RHS) 2750 return false; 2751 int64_t Scale = RHS->getSExtValue(); 2752 if (Opcode == Instruction::Shl) 2753 Scale = 1LL << Scale; 2754 2755 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2756 } 2757 case Instruction::GetElementPtr: { 2758 // Scan the GEP. We check it if it contains constant offsets and at most 2759 // one variable offset. 2760 int VariableOperand = -1; 2761 unsigned VariableScale = 0; 2762 2763 int64_t ConstantOffset = 0; 2764 gep_type_iterator GTI = gep_type_begin(AddrInst); 2765 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2766 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2767 const StructLayout *SL = DL.getStructLayout(STy); 2768 unsigned Idx = 2769 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2770 ConstantOffset += SL->getElementOffset(Idx); 2771 } else { 2772 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 2773 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2774 ConstantOffset += CI->getSExtValue()*TypeSize; 2775 } else if (TypeSize) { // Scales of zero don't do anything. 2776 // We only allow one variable index at the moment. 2777 if (VariableOperand != -1) 2778 return false; 2779 2780 // Remember the variable index. 2781 VariableOperand = i; 2782 VariableScale = TypeSize; 2783 } 2784 } 2785 } 2786 2787 // A common case is for the GEP to only do a constant offset. In this case, 2788 // just add it to the disp field and check validity. 2789 if (VariableOperand == -1) { 2790 AddrMode.BaseOffs += ConstantOffset; 2791 if (ConstantOffset == 0 || 2792 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 2793 // Check to see if we can fold the base pointer in too. 2794 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2795 return true; 2796 } 2797 AddrMode.BaseOffs -= ConstantOffset; 2798 return false; 2799 } 2800 2801 // Save the valid addressing mode in case we can't match. 2802 ExtAddrMode BackupAddrMode = AddrMode; 2803 unsigned OldSize = AddrModeInsts.size(); 2804 2805 // See if the scale and offset amount is valid for this target. 2806 AddrMode.BaseOffs += ConstantOffset; 2807 2808 // Match the base operand of the GEP. 2809 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2810 // If it couldn't be matched, just stuff the value in a register. 2811 if (AddrMode.HasBaseReg) { 2812 AddrMode = BackupAddrMode; 2813 AddrModeInsts.resize(OldSize); 2814 return false; 2815 } 2816 AddrMode.HasBaseReg = true; 2817 AddrMode.BaseReg = AddrInst->getOperand(0); 2818 } 2819 2820 // Match the remaining variable portion of the GEP. 2821 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2822 Depth)) { 2823 // If it couldn't be matched, try stuffing the base into a register 2824 // instead of matching it, and retrying the match of the scale. 2825 AddrMode = BackupAddrMode; 2826 AddrModeInsts.resize(OldSize); 2827 if (AddrMode.HasBaseReg) 2828 return false; 2829 AddrMode.HasBaseReg = true; 2830 AddrMode.BaseReg = AddrInst->getOperand(0); 2831 AddrMode.BaseOffs += ConstantOffset; 2832 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2833 VariableScale, Depth)) { 2834 // If even that didn't work, bail. 2835 AddrMode = BackupAddrMode; 2836 AddrModeInsts.resize(OldSize); 2837 return false; 2838 } 2839 } 2840 2841 return true; 2842 } 2843 case Instruction::SExt: 2844 case Instruction::ZExt: { 2845 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2846 if (!Ext) 2847 return false; 2848 2849 // Try to move this ext out of the way of the addressing mode. 2850 // Ask for a method for doing so. 2851 TypePromotionHelper::Action TPH = 2852 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2853 if (!TPH) 2854 return false; 2855 2856 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2857 TPT.getRestorationPoint(); 2858 unsigned CreatedInstsCost = 0; 2859 unsigned ExtCost = !TLI.isExtFree(Ext); 2860 Value *PromotedOperand = 2861 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2862 // SExt has been moved away. 2863 // Thus either it will be rematched later in the recursive calls or it is 2864 // gone. Anyway, we must not fold it into the addressing mode at this point. 2865 // E.g., 2866 // op = add opnd, 1 2867 // idx = ext op 2868 // addr = gep base, idx 2869 // is now: 2870 // promotedOpnd = ext opnd <- no match here 2871 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2872 // addr = gep base, op <- match 2873 if (MovedAway) 2874 *MovedAway = true; 2875 2876 assert(PromotedOperand && 2877 "TypePromotionHelper should have filtered out those cases"); 2878 2879 ExtAddrMode BackupAddrMode = AddrMode; 2880 unsigned OldSize = AddrModeInsts.size(); 2881 2882 if (!MatchAddr(PromotedOperand, Depth) || 2883 // The total of the new cost is equals to the cost of the created 2884 // instructions. 2885 // The total of the old cost is equals to the cost of the extension plus 2886 // what we have saved in the addressing mode. 2887 !IsPromotionProfitable(CreatedInstsCost, 2888 ExtCost + (AddrModeInsts.size() - OldSize), 2889 PromotedOperand)) { 2890 AddrMode = BackupAddrMode; 2891 AddrModeInsts.resize(OldSize); 2892 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2893 TPT.rollback(LastKnownGood); 2894 return false; 2895 } 2896 return true; 2897 } 2898 } 2899 return false; 2900 } 2901 2902 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2903 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2904 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2905 /// or intptr_t for the target. 2906 /// 2907 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2908 // Start a transaction at this point that we will rollback if the matching 2909 // fails. 2910 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2911 TPT.getRestorationPoint(); 2912 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2913 // Fold in immediates if legal for the target. 2914 AddrMode.BaseOffs += CI->getSExtValue(); 2915 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2916 return true; 2917 AddrMode.BaseOffs -= CI->getSExtValue(); 2918 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2919 // If this is a global variable, try to fold it into the addressing mode. 2920 if (!AddrMode.BaseGV) { 2921 AddrMode.BaseGV = GV; 2922 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2923 return true; 2924 AddrMode.BaseGV = nullptr; 2925 } 2926 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2927 ExtAddrMode BackupAddrMode = AddrMode; 2928 unsigned OldSize = AddrModeInsts.size(); 2929 2930 // Check to see if it is possible to fold this operation. 2931 bool MovedAway = false; 2932 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2933 // This instruction may have been move away. If so, there is nothing 2934 // to check here. 2935 if (MovedAway) 2936 return true; 2937 // Okay, it's possible to fold this. Check to see if it is actually 2938 // *profitable* to do so. We use a simple cost model to avoid increasing 2939 // register pressure too much. 2940 if (I->hasOneUse() || 2941 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2942 AddrModeInsts.push_back(I); 2943 return true; 2944 } 2945 2946 // It isn't profitable to do this, roll back. 2947 //cerr << "NOT FOLDING: " << *I; 2948 AddrMode = BackupAddrMode; 2949 AddrModeInsts.resize(OldSize); 2950 TPT.rollback(LastKnownGood); 2951 } 2952 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2953 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2954 return true; 2955 TPT.rollback(LastKnownGood); 2956 } else if (isa<ConstantPointerNull>(Addr)) { 2957 // Null pointer gets folded without affecting the addressing mode. 2958 return true; 2959 } 2960 2961 // Worse case, the target should support [reg] addressing modes. :) 2962 if (!AddrMode.HasBaseReg) { 2963 AddrMode.HasBaseReg = true; 2964 AddrMode.BaseReg = Addr; 2965 // Still check for legality in case the target supports [imm] but not [i+r]. 2966 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2967 return true; 2968 AddrMode.HasBaseReg = false; 2969 AddrMode.BaseReg = nullptr; 2970 } 2971 2972 // If the base register is already taken, see if we can do [r+r]. 2973 if (AddrMode.Scale == 0) { 2974 AddrMode.Scale = 1; 2975 AddrMode.ScaledReg = Addr; 2976 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2977 return true; 2978 AddrMode.Scale = 0; 2979 AddrMode.ScaledReg = nullptr; 2980 } 2981 // Couldn't match. 2982 TPT.rollback(LastKnownGood); 2983 return false; 2984 } 2985 2986 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2987 /// inline asm call are due to memory operands. If so, return true, otherwise 2988 /// return false. 2989 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2990 const TargetMachine &TM) { 2991 const Function *F = CI->getParent()->getParent(); 2992 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2993 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2994 TargetLowering::AsmOperandInfoVector TargetConstraints = 2995 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 2996 ImmutableCallSite(CI)); 2997 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2998 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2999 3000 // Compute the constraint code and ConstraintType to use. 3001 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3002 3003 // If this asm operand is our Value*, and if it isn't an indirect memory 3004 // operand, we can't fold it! 3005 if (OpInfo.CallOperandVal == OpVal && 3006 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3007 !OpInfo.isIndirect)) 3008 return false; 3009 } 3010 3011 return true; 3012 } 3013 3014 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 3015 /// memory use. If we find an obviously non-foldable instruction, return true. 3016 /// Add the ultimately found memory instructions to MemoryUses. 3017 static bool FindAllMemoryUses( 3018 Instruction *I, 3019 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3020 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3021 // If we already considered this instruction, we're done. 3022 if (!ConsideredInsts.insert(I).second) 3023 return false; 3024 3025 // If this is an obviously unfoldable instruction, bail out. 3026 if (!MightBeFoldableInst(I)) 3027 return true; 3028 3029 // Loop over all the uses, recursively processing them. 3030 for (Use &U : I->uses()) { 3031 Instruction *UserI = cast<Instruction>(U.getUser()); 3032 3033 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3034 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3035 continue; 3036 } 3037 3038 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3039 unsigned opNo = U.getOperandNo(); 3040 if (opNo == 0) return true; // Storing addr, not into addr. 3041 MemoryUses.push_back(std::make_pair(SI, opNo)); 3042 continue; 3043 } 3044 3045 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3046 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3047 if (!IA) return true; 3048 3049 // If this is a memory operand, we're cool, otherwise bail out. 3050 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3051 return true; 3052 continue; 3053 } 3054 3055 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3056 return true; 3057 } 3058 3059 return false; 3060 } 3061 3062 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 3063 /// the use site that we're folding it into. If so, there is no cost to 3064 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 3065 /// that we know are live at the instruction already. 3066 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3067 Value *KnownLive2) { 3068 // If Val is either of the known-live values, we know it is live! 3069 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3070 return true; 3071 3072 // All values other than instructions and arguments (e.g. constants) are live. 3073 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3074 3075 // If Val is a constant sized alloca in the entry block, it is live, this is 3076 // true because it is just a reference to the stack/frame pointer, which is 3077 // live for the whole function. 3078 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3079 if (AI->isStaticAlloca()) 3080 return true; 3081 3082 // Check to see if this value is already used in the memory instruction's 3083 // block. If so, it's already live into the block at the very least, so we 3084 // can reasonably fold it. 3085 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3086 } 3087 3088 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 3089 /// mode of the machine to fold the specified instruction into a load or store 3090 /// that ultimately uses it. However, the specified instruction has multiple 3091 /// uses. Given this, it may actually increase register pressure to fold it 3092 /// into the load. For example, consider this code: 3093 /// 3094 /// X = ... 3095 /// Y = X+1 3096 /// use(Y) -> nonload/store 3097 /// Z = Y+1 3098 /// load Z 3099 /// 3100 /// In this case, Y has multiple uses, and can be folded into the load of Z 3101 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3102 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3103 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3104 /// number of computations either. 3105 /// 3106 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3107 /// X was live across 'load Z' for other reasons, we actually *would* want to 3108 /// fold the addressing mode in the Z case. This would make Y die earlier. 3109 bool AddressingModeMatcher:: 3110 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3111 ExtAddrMode &AMAfter) { 3112 if (IgnoreProfitability) return true; 3113 3114 // AMBefore is the addressing mode before this instruction was folded into it, 3115 // and AMAfter is the addressing mode after the instruction was folded. Get 3116 // the set of registers referenced by AMAfter and subtract out those 3117 // referenced by AMBefore: this is the set of values which folding in this 3118 // address extends the lifetime of. 3119 // 3120 // Note that there are only two potential values being referenced here, 3121 // BaseReg and ScaleReg (global addresses are always available, as are any 3122 // folded immediates). 3123 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3124 3125 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3126 // lifetime wasn't extended by adding this instruction. 3127 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3128 BaseReg = nullptr; 3129 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3130 ScaledReg = nullptr; 3131 3132 // If folding this instruction (and it's subexprs) didn't extend any live 3133 // ranges, we're ok with it. 3134 if (!BaseReg && !ScaledReg) 3135 return true; 3136 3137 // If all uses of this instruction are ultimately load/store/inlineasm's, 3138 // check to see if their addressing modes will include this instruction. If 3139 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3140 // uses. 3141 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3142 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3143 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3144 return false; // Has a non-memory, non-foldable use! 3145 3146 // Now that we know that all uses of this instruction are part of a chain of 3147 // computation involving only operations that could theoretically be folded 3148 // into a memory use, loop over each of these uses and see if they could 3149 // *actually* fold the instruction. 3150 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3151 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3152 Instruction *User = MemoryUses[i].first; 3153 unsigned OpNo = MemoryUses[i].second; 3154 3155 // Get the access type of this use. If the use isn't a pointer, we don't 3156 // know what it accesses. 3157 Value *Address = User->getOperand(OpNo); 3158 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3159 if (!AddrTy) 3160 return false; 3161 Type *AddressAccessTy = AddrTy->getElementType(); 3162 unsigned AS = AddrTy->getAddressSpace(); 3163 3164 // Do a match against the root of this address, ignoring profitability. This 3165 // will tell us if the addressing mode for the memory operation will 3166 // *actually* cover the shared instruction. 3167 ExtAddrMode Result; 3168 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3169 TPT.getRestorationPoint(); 3170 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3171 MemoryInst, Result, InsertedInsts, 3172 PromotedInsts, TPT); 3173 Matcher.IgnoreProfitability = true; 3174 bool Success = Matcher.MatchAddr(Address, 0); 3175 (void)Success; assert(Success && "Couldn't select *anything*?"); 3176 3177 // The match was to check the profitability, the changes made are not 3178 // part of the original matcher. Therefore, they should be dropped 3179 // otherwise the original matcher will not present the right state. 3180 TPT.rollback(LastKnownGood); 3181 3182 // If the match didn't cover I, then it won't be shared by it. 3183 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3184 I) == MatchedAddrModeInsts.end()) 3185 return false; 3186 3187 MatchedAddrModeInsts.clear(); 3188 } 3189 3190 return true; 3191 } 3192 3193 } // end anonymous namespace 3194 3195 /// IsNonLocalValue - Return true if the specified values are defined in a 3196 /// different basic block than BB. 3197 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3198 if (Instruction *I = dyn_cast<Instruction>(V)) 3199 return I->getParent() != BB; 3200 return false; 3201 } 3202 3203 /// OptimizeMemoryInst - Load and Store Instructions often have 3204 /// addressing modes that can do significant amounts of computation. As such, 3205 /// instruction selection will try to get the load or store to do as much 3206 /// computation as possible for the program. The problem is that isel can only 3207 /// see within a single block. As such, we sink as much legal addressing mode 3208 /// stuff into the block as possible. 3209 /// 3210 /// This method is used to optimize both load/store and inline asms with memory 3211 /// operands. 3212 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3213 Type *AccessTy, unsigned AddrSpace) { 3214 Value *Repl = Addr; 3215 3216 // Try to collapse single-value PHI nodes. This is necessary to undo 3217 // unprofitable PRE transformations. 3218 SmallVector<Value*, 8> worklist; 3219 SmallPtrSet<Value*, 16> Visited; 3220 worklist.push_back(Addr); 3221 3222 // Use a worklist to iteratively look through PHI nodes, and ensure that 3223 // the addressing mode obtained from the non-PHI roots of the graph 3224 // are equivalent. 3225 Value *Consensus = nullptr; 3226 unsigned NumUsesConsensus = 0; 3227 bool IsNumUsesConsensusValid = false; 3228 SmallVector<Instruction*, 16> AddrModeInsts; 3229 ExtAddrMode AddrMode; 3230 TypePromotionTransaction TPT; 3231 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3232 TPT.getRestorationPoint(); 3233 while (!worklist.empty()) { 3234 Value *V = worklist.back(); 3235 worklist.pop_back(); 3236 3237 // Break use-def graph loops. 3238 if (!Visited.insert(V).second) { 3239 Consensus = nullptr; 3240 break; 3241 } 3242 3243 // For a PHI node, push all of its incoming values. 3244 if (PHINode *P = dyn_cast<PHINode>(V)) { 3245 for (Value *IncValue : P->incoming_values()) 3246 worklist.push_back(IncValue); 3247 continue; 3248 } 3249 3250 // For non-PHIs, determine the addressing mode being computed. 3251 SmallVector<Instruction*, 16> NewAddrModeInsts; 3252 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3253 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3254 InsertedInsts, PromotedInsts, TPT); 3255 3256 // This check is broken into two cases with very similar code to avoid using 3257 // getNumUses() as much as possible. Some values have a lot of uses, so 3258 // calling getNumUses() unconditionally caused a significant compile-time 3259 // regression. 3260 if (!Consensus) { 3261 Consensus = V; 3262 AddrMode = NewAddrMode; 3263 AddrModeInsts = NewAddrModeInsts; 3264 continue; 3265 } else if (NewAddrMode == AddrMode) { 3266 if (!IsNumUsesConsensusValid) { 3267 NumUsesConsensus = Consensus->getNumUses(); 3268 IsNumUsesConsensusValid = true; 3269 } 3270 3271 // Ensure that the obtained addressing mode is equivalent to that obtained 3272 // for all other roots of the PHI traversal. Also, when choosing one 3273 // such root as representative, select the one with the most uses in order 3274 // to keep the cost modeling heuristics in AddressingModeMatcher 3275 // applicable. 3276 unsigned NumUses = V->getNumUses(); 3277 if (NumUses > NumUsesConsensus) { 3278 Consensus = V; 3279 NumUsesConsensus = NumUses; 3280 AddrModeInsts = NewAddrModeInsts; 3281 } 3282 continue; 3283 } 3284 3285 Consensus = nullptr; 3286 break; 3287 } 3288 3289 // If the addressing mode couldn't be determined, or if multiple different 3290 // ones were determined, bail out now. 3291 if (!Consensus) { 3292 TPT.rollback(LastKnownGood); 3293 return false; 3294 } 3295 TPT.commit(); 3296 3297 // Check to see if any of the instructions supersumed by this addr mode are 3298 // non-local to I's BB. 3299 bool AnyNonLocal = false; 3300 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3301 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3302 AnyNonLocal = true; 3303 break; 3304 } 3305 } 3306 3307 // If all the instructions matched are already in this BB, don't do anything. 3308 if (!AnyNonLocal) { 3309 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3310 return false; 3311 } 3312 3313 // Insert this computation right after this user. Since our caller is 3314 // scanning from the top of the BB to the bottom, reuse of the expr are 3315 // guaranteed to happen later. 3316 IRBuilder<> Builder(MemoryInst); 3317 3318 // Now that we determined the addressing expression we want to use and know 3319 // that we have to sink it into this block. Check to see if we have already 3320 // done this for some other load/store instr in this block. If so, reuse the 3321 // computation. 3322 Value *&SunkAddr = SunkAddrs[Addr]; 3323 if (SunkAddr) { 3324 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3325 << *MemoryInst << "\n"); 3326 if (SunkAddr->getType() != Addr->getType()) 3327 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3328 } else if (AddrSinkUsingGEPs || 3329 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3330 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3331 ->useAA())) { 3332 // By default, we use the GEP-based method when AA is used later. This 3333 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3334 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3335 << *MemoryInst << "\n"); 3336 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3337 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3338 3339 // First, find the pointer. 3340 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3341 ResultPtr = AddrMode.BaseReg; 3342 AddrMode.BaseReg = nullptr; 3343 } 3344 3345 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3346 // We can't add more than one pointer together, nor can we scale a 3347 // pointer (both of which seem meaningless). 3348 if (ResultPtr || AddrMode.Scale != 1) 3349 return false; 3350 3351 ResultPtr = AddrMode.ScaledReg; 3352 AddrMode.Scale = 0; 3353 } 3354 3355 if (AddrMode.BaseGV) { 3356 if (ResultPtr) 3357 return false; 3358 3359 ResultPtr = AddrMode.BaseGV; 3360 } 3361 3362 // If the real base value actually came from an inttoptr, then the matcher 3363 // will look through it and provide only the integer value. In that case, 3364 // use it here. 3365 if (!ResultPtr && AddrMode.BaseReg) { 3366 ResultPtr = 3367 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3368 AddrMode.BaseReg = nullptr; 3369 } else if (!ResultPtr && AddrMode.Scale == 1) { 3370 ResultPtr = 3371 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3372 AddrMode.Scale = 0; 3373 } 3374 3375 if (!ResultPtr && 3376 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3377 SunkAddr = Constant::getNullValue(Addr->getType()); 3378 } else if (!ResultPtr) { 3379 return false; 3380 } else { 3381 Type *I8PtrTy = 3382 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3383 Type *I8Ty = Builder.getInt8Ty(); 3384 3385 // Start with the base register. Do this first so that subsequent address 3386 // matching finds it last, which will prevent it from trying to match it 3387 // as the scaled value in case it happens to be a mul. That would be 3388 // problematic if we've sunk a different mul for the scale, because then 3389 // we'd end up sinking both muls. 3390 if (AddrMode.BaseReg) { 3391 Value *V = AddrMode.BaseReg; 3392 if (V->getType() != IntPtrTy) 3393 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3394 3395 ResultIndex = V; 3396 } 3397 3398 // Add the scale value. 3399 if (AddrMode.Scale) { 3400 Value *V = AddrMode.ScaledReg; 3401 if (V->getType() == IntPtrTy) { 3402 // done. 3403 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3404 cast<IntegerType>(V->getType())->getBitWidth()) { 3405 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3406 } else { 3407 // It is only safe to sign extend the BaseReg if we know that the math 3408 // required to create it did not overflow before we extend it. Since 3409 // the original IR value was tossed in favor of a constant back when 3410 // the AddrMode was created we need to bail out gracefully if widths 3411 // do not match instead of extending it. 3412 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3413 if (I && (ResultIndex != AddrMode.BaseReg)) 3414 I->eraseFromParent(); 3415 return false; 3416 } 3417 3418 if (AddrMode.Scale != 1) 3419 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3420 "sunkaddr"); 3421 if (ResultIndex) 3422 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3423 else 3424 ResultIndex = V; 3425 } 3426 3427 // Add in the Base Offset if present. 3428 if (AddrMode.BaseOffs) { 3429 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3430 if (ResultIndex) { 3431 // We need to add this separately from the scale above to help with 3432 // SDAG consecutive load/store merging. 3433 if (ResultPtr->getType() != I8PtrTy) 3434 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3435 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3436 } 3437 3438 ResultIndex = V; 3439 } 3440 3441 if (!ResultIndex) { 3442 SunkAddr = ResultPtr; 3443 } else { 3444 if (ResultPtr->getType() != I8PtrTy) 3445 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3446 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3447 } 3448 3449 if (SunkAddr->getType() != Addr->getType()) 3450 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3451 } 3452 } else { 3453 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3454 << *MemoryInst << "\n"); 3455 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3456 Value *Result = nullptr; 3457 3458 // Start with the base register. Do this first so that subsequent address 3459 // matching finds it last, which will prevent it from trying to match it 3460 // as the scaled value in case it happens to be a mul. That would be 3461 // problematic if we've sunk a different mul for the scale, because then 3462 // we'd end up sinking both muls. 3463 if (AddrMode.BaseReg) { 3464 Value *V = AddrMode.BaseReg; 3465 if (V->getType()->isPointerTy()) 3466 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3467 if (V->getType() != IntPtrTy) 3468 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3469 Result = V; 3470 } 3471 3472 // Add the scale value. 3473 if (AddrMode.Scale) { 3474 Value *V = AddrMode.ScaledReg; 3475 if (V->getType() == IntPtrTy) { 3476 // done. 3477 } else if (V->getType()->isPointerTy()) { 3478 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3479 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3480 cast<IntegerType>(V->getType())->getBitWidth()) { 3481 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3482 } else { 3483 // It is only safe to sign extend the BaseReg if we know that the math 3484 // required to create it did not overflow before we extend it. Since 3485 // the original IR value was tossed in favor of a constant back when 3486 // the AddrMode was created we need to bail out gracefully if widths 3487 // do not match instead of extending it. 3488 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3489 if (I && (Result != AddrMode.BaseReg)) 3490 I->eraseFromParent(); 3491 return false; 3492 } 3493 if (AddrMode.Scale != 1) 3494 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3495 "sunkaddr"); 3496 if (Result) 3497 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3498 else 3499 Result = V; 3500 } 3501 3502 // Add in the BaseGV if present. 3503 if (AddrMode.BaseGV) { 3504 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3505 if (Result) 3506 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3507 else 3508 Result = V; 3509 } 3510 3511 // Add in the Base Offset if present. 3512 if (AddrMode.BaseOffs) { 3513 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3514 if (Result) 3515 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3516 else 3517 Result = V; 3518 } 3519 3520 if (!Result) 3521 SunkAddr = Constant::getNullValue(Addr->getType()); 3522 else 3523 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3524 } 3525 3526 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3527 3528 // If we have no uses, recursively delete the value and all dead instructions 3529 // using it. 3530 if (Repl->use_empty()) { 3531 // This can cause recursive deletion, which can invalidate our iterator. 3532 // Use a WeakVH to hold onto it in case this happens. 3533 WeakVH IterHandle(CurInstIterator); 3534 BasicBlock *BB = CurInstIterator->getParent(); 3535 3536 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3537 3538 if (IterHandle != CurInstIterator) { 3539 // If the iterator instruction was recursively deleted, start over at the 3540 // start of the block. 3541 CurInstIterator = BB->begin(); 3542 SunkAddrs.clear(); 3543 } 3544 } 3545 ++NumMemoryInsts; 3546 return true; 3547 } 3548 3549 /// OptimizeInlineAsmInst - If there are any memory operands, use 3550 /// OptimizeMemoryInst to sink their address computing into the block when 3551 /// possible / profitable. 3552 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3553 bool MadeChange = false; 3554 3555 const TargetRegisterInfo *TRI = 3556 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3557 TargetLowering::AsmOperandInfoVector TargetConstraints = 3558 TLI->ParseConstraints(*DL, TRI, CS); 3559 unsigned ArgNo = 0; 3560 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3561 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3562 3563 // Compute the constraint code and ConstraintType to use. 3564 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3565 3566 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3567 OpInfo.isIndirect) { 3568 Value *OpVal = CS->getArgOperand(ArgNo++); 3569 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3570 } else if (OpInfo.Type == InlineAsm::isInput) 3571 ArgNo++; 3572 } 3573 3574 return MadeChange; 3575 } 3576 3577 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3578 /// sign extensions. 3579 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3580 assert(!Inst->use_empty() && "Input must have at least one use"); 3581 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3582 bool IsSExt = isa<SExtInst>(FirstUser); 3583 Type *ExtTy = FirstUser->getType(); 3584 for (const User *U : Inst->users()) { 3585 const Instruction *UI = cast<Instruction>(U); 3586 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3587 return false; 3588 Type *CurTy = UI->getType(); 3589 // Same input and output types: Same instruction after CSE. 3590 if (CurTy == ExtTy) 3591 continue; 3592 3593 // If IsSExt is true, we are in this situation: 3594 // a = Inst 3595 // b = sext ty1 a to ty2 3596 // c = sext ty1 a to ty3 3597 // Assuming ty2 is shorter than ty3, this could be turned into: 3598 // a = Inst 3599 // b = sext ty1 a to ty2 3600 // c = sext ty2 b to ty3 3601 // However, the last sext is not free. 3602 if (IsSExt) 3603 return false; 3604 3605 // This is a ZExt, maybe this is free to extend from one type to another. 3606 // In that case, we would not account for a different use. 3607 Type *NarrowTy; 3608 Type *LargeTy; 3609 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3610 CurTy->getScalarType()->getIntegerBitWidth()) { 3611 NarrowTy = CurTy; 3612 LargeTy = ExtTy; 3613 } else { 3614 NarrowTy = ExtTy; 3615 LargeTy = CurTy; 3616 } 3617 3618 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3619 return false; 3620 } 3621 // All uses are the same or can be derived from one another for free. 3622 return true; 3623 } 3624 3625 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3626 /// load instruction. 3627 /// If an ext(load) can be formed, it is returned via \p LI for the load 3628 /// and \p Inst for the extension. 3629 /// Otherwise LI == nullptr and Inst == nullptr. 3630 /// When some promotion happened, \p TPT contains the proper state to 3631 /// revert them. 3632 /// 3633 /// \return true when promoting was necessary to expose the ext(load) 3634 /// opportunity, false otherwise. 3635 /// 3636 /// Example: 3637 /// \code 3638 /// %ld = load i32* %addr 3639 /// %add = add nuw i32 %ld, 4 3640 /// %zext = zext i32 %add to i64 3641 /// \endcode 3642 /// => 3643 /// \code 3644 /// %ld = load i32* %addr 3645 /// %zext = zext i32 %ld to i64 3646 /// %add = add nuw i64 %zext, 4 3647 /// \encode 3648 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3649 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3650 LoadInst *&LI, Instruction *&Inst, 3651 const SmallVectorImpl<Instruction *> &Exts, 3652 unsigned CreatedInstsCost = 0) { 3653 // Iterate over all the extensions to see if one form an ext(load). 3654 for (auto I : Exts) { 3655 // Check if we directly have ext(load). 3656 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3657 Inst = I; 3658 // No promotion happened here. 3659 return false; 3660 } 3661 // Check whether or not we want to do any promotion. 3662 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3663 continue; 3664 // Get the action to perform the promotion. 3665 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3666 I, InsertedInsts, *TLI, PromotedInsts); 3667 // Check if we can promote. 3668 if (!TPH) 3669 continue; 3670 // Save the current state. 3671 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3672 TPT.getRestorationPoint(); 3673 SmallVector<Instruction *, 4> NewExts; 3674 unsigned NewCreatedInstsCost = 0; 3675 unsigned ExtCost = !TLI->isExtFree(I); 3676 // Promote. 3677 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3678 &NewExts, nullptr, *TLI); 3679 assert(PromotedVal && 3680 "TypePromotionHelper should have filtered out those cases"); 3681 3682 // We would be able to merge only one extension in a load. 3683 // Therefore, if we have more than 1 new extension we heuristically 3684 // cut this search path, because it means we degrade the code quality. 3685 // With exactly 2, the transformation is neutral, because we will merge 3686 // one extension but leave one. However, we optimistically keep going, 3687 // because the new extension may be removed too. 3688 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3689 TotalCreatedInstsCost -= ExtCost; 3690 if (!StressExtLdPromotion && 3691 (TotalCreatedInstsCost > 1 || 3692 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 3693 // The promotion is not profitable, rollback to the previous state. 3694 TPT.rollback(LastKnownGood); 3695 continue; 3696 } 3697 // The promotion is profitable. 3698 // Check if it exposes an ext(load). 3699 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3700 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3701 // If we have created a new extension, i.e., now we have two 3702 // extensions. We must make sure one of them is merged with 3703 // the load, otherwise we may degrade the code quality. 3704 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3705 // Promotion happened. 3706 return true; 3707 // If this does not help to expose an ext(load) then, rollback. 3708 TPT.rollback(LastKnownGood); 3709 } 3710 // None of the extension can form an ext(load). 3711 LI = nullptr; 3712 Inst = nullptr; 3713 return false; 3714 } 3715 3716 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3717 /// basic block as the load, unless conditions are unfavorable. This allows 3718 /// SelectionDAG to fold the extend into the load. 3719 /// \p I[in/out] the extension may be modified during the process if some 3720 /// promotions apply. 3721 /// 3722 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3723 // Try to promote a chain of computation if it allows to form 3724 // an extended load. 3725 TypePromotionTransaction TPT; 3726 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3727 TPT.getRestorationPoint(); 3728 SmallVector<Instruction *, 1> Exts; 3729 Exts.push_back(I); 3730 // Look for a load being extended. 3731 LoadInst *LI = nullptr; 3732 Instruction *OldExt = I; 3733 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3734 if (!LI || !I) { 3735 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3736 "the code must remain the same"); 3737 I = OldExt; 3738 return false; 3739 } 3740 3741 // If they're already in the same block, there's nothing to do. 3742 // Make the cheap checks first if we did not promote. 3743 // If we promoted, we need to check if it is indeed profitable. 3744 if (!HasPromoted && LI->getParent() == I->getParent()) 3745 return false; 3746 3747 EVT VT = TLI->getValueType(*DL, I->getType()); 3748 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 3749 3750 // If the load has other users and the truncate is not free, this probably 3751 // isn't worthwhile. 3752 if (!LI->hasOneUse() && TLI && 3753 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3754 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3755 I = OldExt; 3756 TPT.rollback(LastKnownGood); 3757 return false; 3758 } 3759 3760 // Check whether the target supports casts folded into loads. 3761 unsigned LType; 3762 if (isa<ZExtInst>(I)) 3763 LType = ISD::ZEXTLOAD; 3764 else { 3765 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3766 LType = ISD::SEXTLOAD; 3767 } 3768 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3769 I = OldExt; 3770 TPT.rollback(LastKnownGood); 3771 return false; 3772 } 3773 3774 // Move the extend into the same block as the load, so that SelectionDAG 3775 // can fold it. 3776 TPT.commit(); 3777 I->removeFromParent(); 3778 I->insertAfter(LI); 3779 ++NumExtsMoved; 3780 return true; 3781 } 3782 3783 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3784 BasicBlock *DefBB = I->getParent(); 3785 3786 // If the result of a {s|z}ext and its source are both live out, rewrite all 3787 // other uses of the source with result of extension. 3788 Value *Src = I->getOperand(0); 3789 if (Src->hasOneUse()) 3790 return false; 3791 3792 // Only do this xform if truncating is free. 3793 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3794 return false; 3795 3796 // Only safe to perform the optimization if the source is also defined in 3797 // this block. 3798 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3799 return false; 3800 3801 bool DefIsLiveOut = false; 3802 for (User *U : I->users()) { 3803 Instruction *UI = cast<Instruction>(U); 3804 3805 // Figure out which BB this ext is used in. 3806 BasicBlock *UserBB = UI->getParent(); 3807 if (UserBB == DefBB) continue; 3808 DefIsLiveOut = true; 3809 break; 3810 } 3811 if (!DefIsLiveOut) 3812 return false; 3813 3814 // Make sure none of the uses are PHI nodes. 3815 for (User *U : Src->users()) { 3816 Instruction *UI = cast<Instruction>(U); 3817 BasicBlock *UserBB = UI->getParent(); 3818 if (UserBB == DefBB) continue; 3819 // Be conservative. We don't want this xform to end up introducing 3820 // reloads just before load / store instructions. 3821 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3822 return false; 3823 } 3824 3825 // InsertedTruncs - Only insert one trunc in each block once. 3826 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3827 3828 bool MadeChange = false; 3829 for (Use &U : Src->uses()) { 3830 Instruction *User = cast<Instruction>(U.getUser()); 3831 3832 // Figure out which BB this ext is used in. 3833 BasicBlock *UserBB = User->getParent(); 3834 if (UserBB == DefBB) continue; 3835 3836 // Both src and def are live in this block. Rewrite the use. 3837 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3838 3839 if (!InsertedTrunc) { 3840 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3841 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3842 InsertedInsts.insert(InsertedTrunc); 3843 } 3844 3845 // Replace a use of the {s|z}ext source with a use of the result. 3846 U = InsertedTrunc; 3847 ++NumExtUses; 3848 MadeChange = true; 3849 } 3850 3851 return MadeChange; 3852 } 3853 3854 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3855 /// turned into an explicit branch. 3856 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3857 // FIXME: This should use the same heuristics as IfConversion to determine 3858 // whether a select is better represented as a branch. This requires that 3859 // branch probability metadata is preserved for the select, which is not the 3860 // case currently. 3861 3862 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3863 3864 // If the branch is predicted right, an out of order CPU can avoid blocking on 3865 // the compare. Emit cmovs on compares with a memory operand as branches to 3866 // avoid stalls on the load from memory. If the compare has more than one use 3867 // there's probably another cmov or setcc around so it's not worth emitting a 3868 // branch. 3869 if (!Cmp) 3870 return false; 3871 3872 Value *CmpOp0 = Cmp->getOperand(0); 3873 Value *CmpOp1 = Cmp->getOperand(1); 3874 3875 // We check that the memory operand has one use to avoid uses of the loaded 3876 // value directly after the compare, making branches unprofitable. 3877 return Cmp->hasOneUse() && 3878 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3879 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3880 } 3881 3882 3883 /// If we have a SelectInst that will likely profit from branch prediction, 3884 /// turn it into a branch. 3885 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3886 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3887 3888 // Can we convert the 'select' to CF ? 3889 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3890 return false; 3891 3892 TargetLowering::SelectSupportKind SelectKind; 3893 if (VectorCond) 3894 SelectKind = TargetLowering::VectorMaskSelect; 3895 else if (SI->getType()->isVectorTy()) 3896 SelectKind = TargetLowering::ScalarCondVectorVal; 3897 else 3898 SelectKind = TargetLowering::ScalarValSelect; 3899 3900 // Do we have efficient codegen support for this kind of 'selects' ? 3901 if (TLI->isSelectSupported(SelectKind)) { 3902 // We have efficient codegen support for the select instruction. 3903 // Check if it is profitable to keep this 'select'. 3904 if (!TLI->isPredictableSelectExpensive() || 3905 !isFormingBranchFromSelectProfitable(SI)) 3906 return false; 3907 } 3908 3909 ModifiedDT = true; 3910 3911 // First, we split the block containing the select into 2 blocks. 3912 BasicBlock *StartBlock = SI->getParent(); 3913 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3914 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3915 3916 // Create a new block serving as the landing pad for the branch. 3917 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3918 NextBlock->getParent(), NextBlock); 3919 3920 // Move the unconditional branch from the block with the select in it into our 3921 // landing pad block. 3922 StartBlock->getTerminator()->eraseFromParent(); 3923 BranchInst::Create(NextBlock, SmallBlock); 3924 3925 // Insert the real conditional branch based on the original condition. 3926 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3927 3928 // The select itself is replaced with a PHI Node. 3929 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3930 PN->takeName(SI); 3931 PN->addIncoming(SI->getTrueValue(), StartBlock); 3932 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3933 SI->replaceAllUsesWith(PN); 3934 SI->eraseFromParent(); 3935 3936 // Instruct OptimizeBlock to skip to the next block. 3937 CurInstIterator = StartBlock->end(); 3938 ++NumSelectsExpanded; 3939 return true; 3940 } 3941 3942 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3943 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3944 int SplatElem = -1; 3945 for (unsigned i = 0; i < Mask.size(); ++i) { 3946 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3947 return false; 3948 SplatElem = Mask[i]; 3949 } 3950 3951 return true; 3952 } 3953 3954 /// Some targets have expensive vector shifts if the lanes aren't all the same 3955 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3956 /// it's often worth sinking a shufflevector splat down to its use so that 3957 /// codegen can spot all lanes are identical. 3958 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3959 BasicBlock *DefBB = SVI->getParent(); 3960 3961 // Only do this xform if variable vector shifts are particularly expensive. 3962 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3963 return false; 3964 3965 // We only expect better codegen by sinking a shuffle if we can recognise a 3966 // constant splat. 3967 if (!isBroadcastShuffle(SVI)) 3968 return false; 3969 3970 // InsertedShuffles - Only insert a shuffle in each block once. 3971 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3972 3973 bool MadeChange = false; 3974 for (User *U : SVI->users()) { 3975 Instruction *UI = cast<Instruction>(U); 3976 3977 // Figure out which BB this ext is used in. 3978 BasicBlock *UserBB = UI->getParent(); 3979 if (UserBB == DefBB) continue; 3980 3981 // For now only apply this when the splat is used by a shift instruction. 3982 if (!UI->isShift()) continue; 3983 3984 // Everything checks out, sink the shuffle if the user's block doesn't 3985 // already have a copy. 3986 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3987 3988 if (!InsertedShuffle) { 3989 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3990 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3991 SVI->getOperand(1), 3992 SVI->getOperand(2), "", InsertPt); 3993 } 3994 3995 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3996 MadeChange = true; 3997 } 3998 3999 // If we removed all uses, nuke the shuffle. 4000 if (SVI->use_empty()) { 4001 SVI->eraseFromParent(); 4002 MadeChange = true; 4003 } 4004 4005 return MadeChange; 4006 } 4007 4008 namespace { 4009 /// \brief Helper class to promote a scalar operation to a vector one. 4010 /// This class is used to move downward extractelement transition. 4011 /// E.g., 4012 /// a = vector_op <2 x i32> 4013 /// b = extractelement <2 x i32> a, i32 0 4014 /// c = scalar_op b 4015 /// store c 4016 /// 4017 /// => 4018 /// a = vector_op <2 x i32> 4019 /// c = vector_op a (equivalent to scalar_op on the related lane) 4020 /// * d = extractelement <2 x i32> c, i32 0 4021 /// * store d 4022 /// Assuming both extractelement and store can be combine, we get rid of the 4023 /// transition. 4024 class VectorPromoteHelper { 4025 /// DataLayout associated with the current module. 4026 const DataLayout &DL; 4027 4028 /// Used to perform some checks on the legality of vector operations. 4029 const TargetLowering &TLI; 4030 4031 /// Used to estimated the cost of the promoted chain. 4032 const TargetTransformInfo &TTI; 4033 4034 /// The transition being moved downwards. 4035 Instruction *Transition; 4036 /// The sequence of instructions to be promoted. 4037 SmallVector<Instruction *, 4> InstsToBePromoted; 4038 /// Cost of combining a store and an extract. 4039 unsigned StoreExtractCombineCost; 4040 /// Instruction that will be combined with the transition. 4041 Instruction *CombineInst; 4042 4043 /// \brief The instruction that represents the current end of the transition. 4044 /// Since we are faking the promotion until we reach the end of the chain 4045 /// of computation, we need a way to get the current end of the transition. 4046 Instruction *getEndOfTransition() const { 4047 if (InstsToBePromoted.empty()) 4048 return Transition; 4049 return InstsToBePromoted.back(); 4050 } 4051 4052 /// \brief Return the index of the original value in the transition. 4053 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4054 /// c, is at index 0. 4055 unsigned getTransitionOriginalValueIdx() const { 4056 assert(isa<ExtractElementInst>(Transition) && 4057 "Other kind of transitions are not supported yet"); 4058 return 0; 4059 } 4060 4061 /// \brief Return the index of the index in the transition. 4062 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4063 /// is at index 1. 4064 unsigned getTransitionIdx() const { 4065 assert(isa<ExtractElementInst>(Transition) && 4066 "Other kind of transitions are not supported yet"); 4067 return 1; 4068 } 4069 4070 /// \brief Get the type of the transition. 4071 /// This is the type of the original value. 4072 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4073 /// transition is <2 x i32>. 4074 Type *getTransitionType() const { 4075 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4076 } 4077 4078 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4079 /// I.e., we have the following sequence: 4080 /// Def = Transition <ty1> a to <ty2> 4081 /// b = ToBePromoted <ty2> Def, ... 4082 /// => 4083 /// b = ToBePromoted <ty1> a, ... 4084 /// Def = Transition <ty1> ToBePromoted to <ty2> 4085 void promoteImpl(Instruction *ToBePromoted); 4086 4087 /// \brief Check whether or not it is profitable to promote all the 4088 /// instructions enqueued to be promoted. 4089 bool isProfitableToPromote() { 4090 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4091 unsigned Index = isa<ConstantInt>(ValIdx) 4092 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4093 : -1; 4094 Type *PromotedType = getTransitionType(); 4095 4096 StoreInst *ST = cast<StoreInst>(CombineInst); 4097 unsigned AS = ST->getPointerAddressSpace(); 4098 unsigned Align = ST->getAlignment(); 4099 // Check if this store is supported. 4100 if (!TLI.allowsMisalignedMemoryAccesses( 4101 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4102 Align)) { 4103 // If this is not supported, there is no way we can combine 4104 // the extract with the store. 4105 return false; 4106 } 4107 4108 // The scalar chain of computation has to pay for the transition 4109 // scalar to vector. 4110 // The vector chain has to account for the combining cost. 4111 uint64_t ScalarCost = 4112 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4113 uint64_t VectorCost = StoreExtractCombineCost; 4114 for (const auto &Inst : InstsToBePromoted) { 4115 // Compute the cost. 4116 // By construction, all instructions being promoted are arithmetic ones. 4117 // Moreover, one argument is a constant that can be viewed as a splat 4118 // constant. 4119 Value *Arg0 = Inst->getOperand(0); 4120 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4121 isa<ConstantFP>(Arg0); 4122 TargetTransformInfo::OperandValueKind Arg0OVK = 4123 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4124 : TargetTransformInfo::OK_AnyValue; 4125 TargetTransformInfo::OperandValueKind Arg1OVK = 4126 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4127 : TargetTransformInfo::OK_AnyValue; 4128 ScalarCost += TTI.getArithmeticInstrCost( 4129 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4130 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4131 Arg0OVK, Arg1OVK); 4132 } 4133 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4134 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4135 return ScalarCost > VectorCost; 4136 } 4137 4138 /// \brief Generate a constant vector with \p Val with the same 4139 /// number of elements as the transition. 4140 /// \p UseSplat defines whether or not \p Val should be replicated 4141 /// accross the whole vector. 4142 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4143 /// otherwise we generate a vector with as many undef as possible: 4144 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4145 /// used at the index of the extract. 4146 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4147 unsigned ExtractIdx = UINT_MAX; 4148 if (!UseSplat) { 4149 // If we cannot determine where the constant must be, we have to 4150 // use a splat constant. 4151 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4152 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4153 ExtractIdx = CstVal->getSExtValue(); 4154 else 4155 UseSplat = true; 4156 } 4157 4158 unsigned End = getTransitionType()->getVectorNumElements(); 4159 if (UseSplat) 4160 return ConstantVector::getSplat(End, Val); 4161 4162 SmallVector<Constant *, 4> ConstVec; 4163 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4164 for (unsigned Idx = 0; Idx != End; ++Idx) { 4165 if (Idx == ExtractIdx) 4166 ConstVec.push_back(Val); 4167 else 4168 ConstVec.push_back(UndefVal); 4169 } 4170 return ConstantVector::get(ConstVec); 4171 } 4172 4173 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4174 /// in \p Use can trigger undefined behavior. 4175 static bool canCauseUndefinedBehavior(const Instruction *Use, 4176 unsigned OperandIdx) { 4177 // This is not safe to introduce undef when the operand is on 4178 // the right hand side of a division-like instruction. 4179 if (OperandIdx != 1) 4180 return false; 4181 switch (Use->getOpcode()) { 4182 default: 4183 return false; 4184 case Instruction::SDiv: 4185 case Instruction::UDiv: 4186 case Instruction::SRem: 4187 case Instruction::URem: 4188 return true; 4189 case Instruction::FDiv: 4190 case Instruction::FRem: 4191 return !Use->hasNoNaNs(); 4192 } 4193 llvm_unreachable(nullptr); 4194 } 4195 4196 public: 4197 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4198 const TargetTransformInfo &TTI, Instruction *Transition, 4199 unsigned CombineCost) 4200 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4201 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4202 assert(Transition && "Do not know how to promote null"); 4203 } 4204 4205 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4206 bool canPromote(const Instruction *ToBePromoted) const { 4207 // We could support CastInst too. 4208 return isa<BinaryOperator>(ToBePromoted); 4209 } 4210 4211 /// \brief Check if it is profitable to promote \p ToBePromoted 4212 /// by moving downward the transition through. 4213 bool shouldPromote(const Instruction *ToBePromoted) const { 4214 // Promote only if all the operands can be statically expanded. 4215 // Indeed, we do not want to introduce any new kind of transitions. 4216 for (const Use &U : ToBePromoted->operands()) { 4217 const Value *Val = U.get(); 4218 if (Val == getEndOfTransition()) { 4219 // If the use is a division and the transition is on the rhs, 4220 // we cannot promote the operation, otherwise we may create a 4221 // division by zero. 4222 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4223 return false; 4224 continue; 4225 } 4226 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4227 !isa<ConstantFP>(Val)) 4228 return false; 4229 } 4230 // Check that the resulting operation is legal. 4231 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4232 if (!ISDOpcode) 4233 return false; 4234 return StressStoreExtract || 4235 TLI.isOperationLegalOrCustom( 4236 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4237 } 4238 4239 /// \brief Check whether or not \p Use can be combined 4240 /// with the transition. 4241 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4242 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4243 4244 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4245 void enqueueForPromotion(Instruction *ToBePromoted) { 4246 InstsToBePromoted.push_back(ToBePromoted); 4247 } 4248 4249 /// \brief Set the instruction that will be combined with the transition. 4250 void recordCombineInstruction(Instruction *ToBeCombined) { 4251 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4252 CombineInst = ToBeCombined; 4253 } 4254 4255 /// \brief Promote all the instructions enqueued for promotion if it is 4256 /// is profitable. 4257 /// \return True if the promotion happened, false otherwise. 4258 bool promote() { 4259 // Check if there is something to promote. 4260 // Right now, if we do not have anything to combine with, 4261 // we assume the promotion is not profitable. 4262 if (InstsToBePromoted.empty() || !CombineInst) 4263 return false; 4264 4265 // Check cost. 4266 if (!StressStoreExtract && !isProfitableToPromote()) 4267 return false; 4268 4269 // Promote. 4270 for (auto &ToBePromoted : InstsToBePromoted) 4271 promoteImpl(ToBePromoted); 4272 InstsToBePromoted.clear(); 4273 return true; 4274 } 4275 }; 4276 } // End of anonymous namespace. 4277 4278 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4279 // At this point, we know that all the operands of ToBePromoted but Def 4280 // can be statically promoted. 4281 // For Def, we need to use its parameter in ToBePromoted: 4282 // b = ToBePromoted ty1 a 4283 // Def = Transition ty1 b to ty2 4284 // Move the transition down. 4285 // 1. Replace all uses of the promoted operation by the transition. 4286 // = ... b => = ... Def. 4287 assert(ToBePromoted->getType() == Transition->getType() && 4288 "The type of the result of the transition does not match " 4289 "the final type"); 4290 ToBePromoted->replaceAllUsesWith(Transition); 4291 // 2. Update the type of the uses. 4292 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4293 Type *TransitionTy = getTransitionType(); 4294 ToBePromoted->mutateType(TransitionTy); 4295 // 3. Update all the operands of the promoted operation with promoted 4296 // operands. 4297 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4298 for (Use &U : ToBePromoted->operands()) { 4299 Value *Val = U.get(); 4300 Value *NewVal = nullptr; 4301 if (Val == Transition) 4302 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4303 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4304 isa<ConstantFP>(Val)) { 4305 // Use a splat constant if it is not safe to use undef. 4306 NewVal = getConstantVector( 4307 cast<Constant>(Val), 4308 isa<UndefValue>(Val) || 4309 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4310 } else 4311 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4312 "this?"); 4313 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4314 } 4315 Transition->removeFromParent(); 4316 Transition->insertAfter(ToBePromoted); 4317 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4318 } 4319 4320 /// Some targets can do store(extractelement) with one instruction. 4321 /// Try to push the extractelement towards the stores when the target 4322 /// has this feature and this is profitable. 4323 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4324 unsigned CombineCost = UINT_MAX; 4325 if (DisableStoreExtract || !TLI || 4326 (!StressStoreExtract && 4327 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4328 Inst->getOperand(1), CombineCost))) 4329 return false; 4330 4331 // At this point we know that Inst is a vector to scalar transition. 4332 // Try to move it down the def-use chain, until: 4333 // - We can combine the transition with its single use 4334 // => we got rid of the transition. 4335 // - We escape the current basic block 4336 // => we would need to check that we are moving it at a cheaper place and 4337 // we do not do that for now. 4338 BasicBlock *Parent = Inst->getParent(); 4339 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4340 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4341 // If the transition has more than one use, assume this is not going to be 4342 // beneficial. 4343 while (Inst->hasOneUse()) { 4344 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4345 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4346 4347 if (ToBePromoted->getParent() != Parent) { 4348 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4349 << ToBePromoted->getParent()->getName() 4350 << ") than the transition (" << Parent->getName() << ").\n"); 4351 return false; 4352 } 4353 4354 if (VPH.canCombine(ToBePromoted)) { 4355 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4356 << "will be combined with: " << *ToBePromoted << '\n'); 4357 VPH.recordCombineInstruction(ToBePromoted); 4358 bool Changed = VPH.promote(); 4359 NumStoreExtractExposed += Changed; 4360 return Changed; 4361 } 4362 4363 DEBUG(dbgs() << "Try promoting.\n"); 4364 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4365 return false; 4366 4367 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4368 4369 VPH.enqueueForPromotion(ToBePromoted); 4370 Inst = ToBePromoted; 4371 } 4372 return false; 4373 } 4374 4375 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4376 // Bail out if we inserted the instruction to prevent optimizations from 4377 // stepping on each other's toes. 4378 if (InsertedInsts.count(I)) 4379 return false; 4380 4381 if (PHINode *P = dyn_cast<PHINode>(I)) { 4382 // It is possible for very late stage optimizations (such as SimplifyCFG) 4383 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4384 // trivial PHI, go ahead and zap it here. 4385 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4386 P->replaceAllUsesWith(V); 4387 P->eraseFromParent(); 4388 ++NumPHIsElim; 4389 return true; 4390 } 4391 return false; 4392 } 4393 4394 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4395 // If the source of the cast is a constant, then this should have 4396 // already been constant folded. The only reason NOT to constant fold 4397 // it is if something (e.g. LSR) was careful to place the constant 4398 // evaluation in a block other than then one that uses it (e.g. to hoist 4399 // the address of globals out of a loop). If this is the case, we don't 4400 // want to forward-subst the cast. 4401 if (isa<Constant>(CI->getOperand(0))) 4402 return false; 4403 4404 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4405 return true; 4406 4407 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4408 /// Sink a zext or sext into its user blocks if the target type doesn't 4409 /// fit in one register 4410 if (TLI && 4411 TLI->getTypeAction(CI->getContext(), 4412 TLI->getValueType(*DL, CI->getType())) == 4413 TargetLowering::TypeExpandInteger) { 4414 return SinkCast(CI); 4415 } else { 4416 bool MadeChange = MoveExtToFormExtLoad(I); 4417 return MadeChange | OptimizeExtUses(I); 4418 } 4419 } 4420 return false; 4421 } 4422 4423 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4424 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4425 return OptimizeCmpExpression(CI); 4426 4427 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4428 if (TLI) { 4429 unsigned AS = LI->getPointerAddressSpace(); 4430 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4431 } 4432 return false; 4433 } 4434 4435 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4436 if (TLI) { 4437 unsigned AS = SI->getPointerAddressSpace(); 4438 return OptimizeMemoryInst(I, SI->getOperand(1), 4439 SI->getOperand(0)->getType(), AS); 4440 } 4441 return false; 4442 } 4443 4444 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4445 4446 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4447 BinOp->getOpcode() == Instruction::LShr)) { 4448 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4449 if (TLI && CI && TLI->hasExtractBitsInsn()) 4450 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4451 4452 return false; 4453 } 4454 4455 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4456 if (GEPI->hasAllZeroIndices()) { 4457 /// The GEP operand must be a pointer, so must its result -> BitCast 4458 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4459 GEPI->getName(), GEPI); 4460 GEPI->replaceAllUsesWith(NC); 4461 GEPI->eraseFromParent(); 4462 ++NumGEPsElim; 4463 OptimizeInst(NC, ModifiedDT); 4464 return true; 4465 } 4466 return false; 4467 } 4468 4469 if (CallInst *CI = dyn_cast<CallInst>(I)) 4470 return OptimizeCallInst(CI, ModifiedDT); 4471 4472 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4473 return OptimizeSelectInst(SI); 4474 4475 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4476 return OptimizeShuffleVectorInst(SVI); 4477 4478 if (isa<ExtractElementInst>(I)) 4479 return OptimizeExtractElementInst(I); 4480 4481 return false; 4482 } 4483 4484 // In this pass we look for GEP and cast instructions that are used 4485 // across basic blocks and rewrite them to improve basic-block-at-a-time 4486 // selection. 4487 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4488 SunkAddrs.clear(); 4489 bool MadeChange = false; 4490 4491 CurInstIterator = BB.begin(); 4492 while (CurInstIterator != BB.end()) { 4493 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4494 if (ModifiedDT) 4495 return true; 4496 } 4497 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4498 4499 return MadeChange; 4500 } 4501 4502 // llvm.dbg.value is far away from the value then iSel may not be able 4503 // handle it properly. iSel will drop llvm.dbg.value if it can not 4504 // find a node corresponding to the value. 4505 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4506 bool MadeChange = false; 4507 for (BasicBlock &BB : F) { 4508 Instruction *PrevNonDbgInst = nullptr; 4509 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4510 Instruction *Insn = BI++; 4511 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4512 // Leave dbg.values that refer to an alloca alone. These 4513 // instrinsics describe the address of a variable (= the alloca) 4514 // being taken. They should not be moved next to the alloca 4515 // (and to the beginning of the scope), but rather stay close to 4516 // where said address is used. 4517 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4518 PrevNonDbgInst = Insn; 4519 continue; 4520 } 4521 4522 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4523 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4524 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4525 DVI->removeFromParent(); 4526 if (isa<PHINode>(VI)) 4527 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4528 else 4529 DVI->insertAfter(VI); 4530 MadeChange = true; 4531 ++NumDbgValueMoved; 4532 } 4533 } 4534 } 4535 return MadeChange; 4536 } 4537 4538 // If there is a sequence that branches based on comparing a single bit 4539 // against zero that can be combined into a single instruction, and the 4540 // target supports folding these into a single instruction, sink the 4541 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4542 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4543 // searched for. 4544 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4545 if (!EnableAndCmpSinking) 4546 return false; 4547 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4548 return false; 4549 bool MadeChange = false; 4550 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4551 BasicBlock *BB = I++; 4552 4553 // Does this BB end with the following? 4554 // %andVal = and %val, #single-bit-set 4555 // %icmpVal = icmp %andResult, 0 4556 // br i1 %cmpVal label %dest1, label %dest2" 4557 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4558 if (!Brcc || !Brcc->isConditional()) 4559 continue; 4560 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4561 if (!Cmp || Cmp->getParent() != BB) 4562 continue; 4563 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4564 if (!Zero || !Zero->isZero()) 4565 continue; 4566 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4567 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4568 continue; 4569 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4570 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4571 continue; 4572 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4573 4574 // Push the "and; icmp" for any users that are conditional branches. 4575 // Since there can only be one branch use per BB, we don't need to keep 4576 // track of which BBs we insert into. 4577 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4578 UI != E; ) { 4579 Use &TheUse = *UI; 4580 // Find brcc use. 4581 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4582 ++UI; 4583 if (!BrccUser || !BrccUser->isConditional()) 4584 continue; 4585 BasicBlock *UserBB = BrccUser->getParent(); 4586 if (UserBB == BB) continue; 4587 DEBUG(dbgs() << "found Brcc use\n"); 4588 4589 // Sink the "and; icmp" to use. 4590 MadeChange = true; 4591 BinaryOperator *NewAnd = 4592 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4593 BrccUser); 4594 CmpInst *NewCmp = 4595 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4596 "", BrccUser); 4597 TheUse = NewCmp; 4598 ++NumAndCmpsMoved; 4599 DEBUG(BrccUser->getParent()->dump()); 4600 } 4601 } 4602 return MadeChange; 4603 } 4604 4605 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4606 /// success, or returns false if no or invalid metadata was found. 4607 static bool extractBranchMetadata(BranchInst *BI, 4608 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4609 assert(BI->isConditional() && 4610 "Looking for probabilities on unconditional branch?"); 4611 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4612 if (!ProfileData || ProfileData->getNumOperands() != 3) 4613 return false; 4614 4615 const auto *CITrue = 4616 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4617 const auto *CIFalse = 4618 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4619 if (!CITrue || !CIFalse) 4620 return false; 4621 4622 ProbTrue = CITrue->getValue().getZExtValue(); 4623 ProbFalse = CIFalse->getValue().getZExtValue(); 4624 4625 return true; 4626 } 4627 4628 /// \brief Scale down both weights to fit into uint32_t. 4629 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4630 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4631 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4632 NewTrue = NewTrue / Scale; 4633 NewFalse = NewFalse / Scale; 4634 } 4635 4636 /// \brief Some targets prefer to split a conditional branch like: 4637 /// \code 4638 /// %0 = icmp ne i32 %a, 0 4639 /// %1 = icmp ne i32 %b, 0 4640 /// %or.cond = or i1 %0, %1 4641 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4642 /// \endcode 4643 /// into multiple branch instructions like: 4644 /// \code 4645 /// bb1: 4646 /// %0 = icmp ne i32 %a, 0 4647 /// br i1 %0, label %TrueBB, label %bb2 4648 /// bb2: 4649 /// %1 = icmp ne i32 %b, 0 4650 /// br i1 %1, label %TrueBB, label %FalseBB 4651 /// \endcode 4652 /// This usually allows instruction selection to do even further optimizations 4653 /// and combine the compare with the branch instruction. Currently this is 4654 /// applied for targets which have "cheap" jump instructions. 4655 /// 4656 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4657 /// 4658 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4659 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4660 return false; 4661 4662 bool MadeChange = false; 4663 for (auto &BB : F) { 4664 // Does this BB end with the following? 4665 // %cond1 = icmp|fcmp|binary instruction ... 4666 // %cond2 = icmp|fcmp|binary instruction ... 4667 // %cond.or = or|and i1 %cond1, cond2 4668 // br i1 %cond.or label %dest1, label %dest2" 4669 BinaryOperator *LogicOp; 4670 BasicBlock *TBB, *FBB; 4671 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4672 continue; 4673 4674 unsigned Opc; 4675 Value *Cond1, *Cond2; 4676 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4677 m_OneUse(m_Value(Cond2))))) 4678 Opc = Instruction::And; 4679 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4680 m_OneUse(m_Value(Cond2))))) 4681 Opc = Instruction::Or; 4682 else 4683 continue; 4684 4685 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4686 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4687 continue; 4688 4689 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4690 4691 // Create a new BB. 4692 auto *InsertBefore = std::next(Function::iterator(BB)) 4693 .getNodePtrUnchecked(); 4694 auto TmpBB = BasicBlock::Create(BB.getContext(), 4695 BB.getName() + ".cond.split", 4696 BB.getParent(), InsertBefore); 4697 4698 // Update original basic block by using the first condition directly by the 4699 // branch instruction and removing the no longer needed and/or instruction. 4700 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4701 Br1->setCondition(Cond1); 4702 LogicOp->eraseFromParent(); 4703 4704 // Depending on the conditon we have to either replace the true or the false 4705 // successor of the original branch instruction. 4706 if (Opc == Instruction::And) 4707 Br1->setSuccessor(0, TmpBB); 4708 else 4709 Br1->setSuccessor(1, TmpBB); 4710 4711 // Fill in the new basic block. 4712 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4713 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4714 I->removeFromParent(); 4715 I->insertBefore(Br2); 4716 } 4717 4718 // Update PHI nodes in both successors. The original BB needs to be 4719 // replaced in one succesor's PHI nodes, because the branch comes now from 4720 // the newly generated BB (NewBB). In the other successor we need to add one 4721 // incoming edge to the PHI nodes, because both branch instructions target 4722 // now the same successor. Depending on the original branch condition 4723 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4724 // we perfrom the correct update for the PHI nodes. 4725 // This doesn't change the successor order of the just created branch 4726 // instruction (or any other instruction). 4727 if (Opc == Instruction::Or) 4728 std::swap(TBB, FBB); 4729 4730 // Replace the old BB with the new BB. 4731 for (auto &I : *TBB) { 4732 PHINode *PN = dyn_cast<PHINode>(&I); 4733 if (!PN) 4734 break; 4735 int i; 4736 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4737 PN->setIncomingBlock(i, TmpBB); 4738 } 4739 4740 // Add another incoming edge form the new BB. 4741 for (auto &I : *FBB) { 4742 PHINode *PN = dyn_cast<PHINode>(&I); 4743 if (!PN) 4744 break; 4745 auto *Val = PN->getIncomingValueForBlock(&BB); 4746 PN->addIncoming(Val, TmpBB); 4747 } 4748 4749 // Update the branch weights (from SelectionDAGBuilder:: 4750 // FindMergedConditions). 4751 if (Opc == Instruction::Or) { 4752 // Codegen X | Y as: 4753 // BB1: 4754 // jmp_if_X TBB 4755 // jmp TmpBB 4756 // TmpBB: 4757 // jmp_if_Y TBB 4758 // jmp FBB 4759 // 4760 4761 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4762 // The requirement is that 4763 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4764 // = TrueProb for orignal BB. 4765 // Assuming the orignal weights are A and B, one choice is to set BB1's 4766 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4767 // assumes that 4768 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4769 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4770 // TmpBB, but the math is more complicated. 4771 uint64_t TrueWeight, FalseWeight; 4772 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4773 uint64_t NewTrueWeight = TrueWeight; 4774 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4775 scaleWeights(NewTrueWeight, NewFalseWeight); 4776 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4777 .createBranchWeights(TrueWeight, FalseWeight)); 4778 4779 NewTrueWeight = TrueWeight; 4780 NewFalseWeight = 2 * FalseWeight; 4781 scaleWeights(NewTrueWeight, NewFalseWeight); 4782 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4783 .createBranchWeights(TrueWeight, FalseWeight)); 4784 } 4785 } else { 4786 // Codegen X & Y as: 4787 // BB1: 4788 // jmp_if_X TmpBB 4789 // jmp FBB 4790 // TmpBB: 4791 // jmp_if_Y TBB 4792 // jmp FBB 4793 // 4794 // This requires creation of TmpBB after CurBB. 4795 4796 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4797 // The requirement is that 4798 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4799 // = FalseProb for orignal BB. 4800 // Assuming the orignal weights are A and B, one choice is to set BB1's 4801 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4802 // assumes that 4803 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4804 uint64_t TrueWeight, FalseWeight; 4805 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4806 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4807 uint64_t NewFalseWeight = FalseWeight; 4808 scaleWeights(NewTrueWeight, NewFalseWeight); 4809 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4810 .createBranchWeights(TrueWeight, FalseWeight)); 4811 4812 NewTrueWeight = 2 * TrueWeight; 4813 NewFalseWeight = FalseWeight; 4814 scaleWeights(NewTrueWeight, NewFalseWeight); 4815 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4816 .createBranchWeights(TrueWeight, FalseWeight)); 4817 } 4818 } 4819 4820 // Note: No point in getting fancy here, since the DT info is never 4821 // available to CodeGenPrepare. 4822 ModifiedDT = true; 4823 4824 MadeChange = true; 4825 4826 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4827 TmpBB->dump()); 4828 } 4829 return MadeChange; 4830 } 4831