1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 // The hot attribute overwrites profile count based hotness while profile 476 // counts based hotness overwrite the cold attribute. 477 // This is a conservative behabvior. 478 if (F.hasFnAttribute(Attribute::Hot) || 479 PSI->isFunctionHotInCallGraph(&F, *BFI)) 480 F.setSectionPrefix("hot"); 481 // If PSI shows this function is not hot, we will placed the function 482 // into unlikely section if (1) PSI shows this is a cold function, or 483 // (2) the function has a attribute of cold. 484 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 485 F.hasFnAttribute(Attribute::Cold)) 486 F.setSectionPrefix("unlikely"); 487 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 488 PSI->isFunctionHotnessUnknown(F)) 489 F.setSectionPrefix("unknown"); 490 } 491 492 /// This optimization identifies DIV instructions that can be 493 /// profitably bypassed and carried out with a shorter, faster divide. 494 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 495 const DenseMap<unsigned int, unsigned int> &BypassWidths = 496 TLI->getBypassSlowDivWidths(); 497 BasicBlock* BB = &*F.begin(); 498 while (BB != nullptr) { 499 // bypassSlowDivision may create new BBs, but we don't want to reapply the 500 // optimization to those blocks. 501 BasicBlock* Next = BB->getNextNode(); 502 // F.hasOptSize is already checked in the outer if statement. 503 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 504 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 505 BB = Next; 506 } 507 } 508 509 // Eliminate blocks that contain only PHI nodes and an 510 // unconditional branch. 511 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 512 513 bool ModifiedDT = false; 514 if (!DisableBranchOpts) 515 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 516 517 // Split some critical edges where one of the sources is an indirect branch, 518 // to help generate sane code for PHIs involving such edges. 519 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 520 521 bool MadeChange = true; 522 while (MadeChange) { 523 MadeChange = false; 524 DT.reset(); 525 for (Function::iterator I = F.begin(); I != F.end(); ) { 526 BasicBlock *BB = &*I++; 527 bool ModifiedDTOnIteration = false; 528 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 529 530 // Restart BB iteration if the dominator tree of the Function was changed 531 if (ModifiedDTOnIteration) 532 break; 533 } 534 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 535 MadeChange |= mergeSExts(F); 536 if (!LargeOffsetGEPMap.empty()) 537 MadeChange |= splitLargeGEPOffsets(); 538 MadeChange |= optimizePhiTypes(F); 539 540 if (MadeChange) 541 eliminateFallThrough(F); 542 543 // Really free removed instructions during promotion. 544 for (Instruction *I : RemovedInsts) 545 I->deleteValue(); 546 547 EverMadeChange |= MadeChange; 548 SeenChainsForSExt.clear(); 549 ValToSExtendedUses.clear(); 550 RemovedInsts.clear(); 551 LargeOffsetGEPMap.clear(); 552 LargeOffsetGEPID.clear(); 553 } 554 555 NewGEPBases.clear(); 556 SunkAddrs.clear(); 557 558 if (!DisableBranchOpts) { 559 MadeChange = false; 560 // Use a set vector to get deterministic iteration order. The order the 561 // blocks are removed may affect whether or not PHI nodes in successors 562 // are removed. 563 SmallSetVector<BasicBlock*, 8> WorkList; 564 for (BasicBlock &BB : F) { 565 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 566 MadeChange |= ConstantFoldTerminator(&BB, true); 567 if (!MadeChange) continue; 568 569 for (SmallVectorImpl<BasicBlock*>::iterator 570 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 571 if (pred_empty(*II)) 572 WorkList.insert(*II); 573 } 574 575 // Delete the dead blocks and any of their dead successors. 576 MadeChange |= !WorkList.empty(); 577 while (!WorkList.empty()) { 578 BasicBlock *BB = WorkList.pop_back_val(); 579 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 580 581 DeleteDeadBlock(BB); 582 583 for (SmallVectorImpl<BasicBlock*>::iterator 584 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 585 if (pred_empty(*II)) 586 WorkList.insert(*II); 587 } 588 589 // Merge pairs of basic blocks with unconditional branches, connected by 590 // a single edge. 591 if (EverMadeChange || MadeChange) 592 MadeChange |= eliminateFallThrough(F); 593 594 EverMadeChange |= MadeChange; 595 } 596 597 if (!DisableGCOpts) { 598 SmallVector<GCStatepointInst *, 2> Statepoints; 599 for (BasicBlock &BB : F) 600 for (Instruction &I : BB) 601 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 602 Statepoints.push_back(SP); 603 for (auto &I : Statepoints) 604 EverMadeChange |= simplifyOffsetableRelocate(*I); 605 } 606 607 // Do this last to clean up use-before-def scenarios introduced by other 608 // preparatory transforms. 609 EverMadeChange |= placeDbgValues(F); 610 611 #ifndef NDEBUG 612 if (VerifyBFIUpdates) 613 verifyBFIUpdates(F); 614 #endif 615 616 return EverMadeChange; 617 } 618 619 /// An instruction is about to be deleted, so remove all references to it in our 620 /// GEP-tracking data strcutures. 621 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 622 LargeOffsetGEPMap.erase(V); 623 NewGEPBases.erase(V); 624 625 auto GEP = dyn_cast<GetElementPtrInst>(V); 626 if (!GEP) 627 return; 628 629 LargeOffsetGEPID.erase(GEP); 630 631 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 632 if (VecI == LargeOffsetGEPMap.end()) 633 return; 634 635 auto &GEPVector = VecI->second; 636 const auto &I = 637 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 638 if (I == GEPVector.end()) 639 return; 640 641 GEPVector.erase(I); 642 if (GEPVector.empty()) 643 LargeOffsetGEPMap.erase(VecI); 644 } 645 646 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 647 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 648 DominatorTree NewDT(F); 649 LoopInfo NewLI(NewDT); 650 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 651 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 652 NewBFI.verifyMatch(*BFI); 653 } 654 655 /// Merge basic blocks which are connected by a single edge, where one of the 656 /// basic blocks has a single successor pointing to the other basic block, 657 /// which has a single predecessor. 658 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 659 bool Changed = false; 660 // Scan all of the blocks in the function, except for the entry block. 661 // Use a temporary array to avoid iterator being invalidated when 662 // deleting blocks. 663 SmallVector<WeakTrackingVH, 16> Blocks; 664 for (auto &Block : llvm::drop_begin(F)) 665 Blocks.push_back(&Block); 666 667 SmallSet<WeakTrackingVH, 16> Preds; 668 for (auto &Block : Blocks) { 669 auto *BB = cast_or_null<BasicBlock>(Block); 670 if (!BB) 671 continue; 672 // If the destination block has a single pred, then this is a trivial 673 // edge, just collapse it. 674 BasicBlock *SinglePred = BB->getSinglePredecessor(); 675 676 // Don't merge if BB's address is taken. 677 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 678 679 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 680 if (Term && !Term->isConditional()) { 681 Changed = true; 682 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 683 684 // Merge BB into SinglePred and delete it. 685 MergeBlockIntoPredecessor(BB); 686 Preds.insert(SinglePred); 687 } 688 } 689 690 // (Repeatedly) merging blocks into their predecessors can create redundant 691 // debug intrinsics. 692 for (auto &Pred : Preds) 693 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 694 RemoveRedundantDbgInstrs(BB); 695 696 return Changed; 697 } 698 699 /// Find a destination block from BB if BB is mergeable empty block. 700 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 701 // If this block doesn't end with an uncond branch, ignore it. 702 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 703 if (!BI || !BI->isUnconditional()) 704 return nullptr; 705 706 // If the instruction before the branch (skipping debug info) isn't a phi 707 // node, then other stuff is happening here. 708 BasicBlock::iterator BBI = BI->getIterator(); 709 if (BBI != BB->begin()) { 710 --BBI; 711 while (isa<DbgInfoIntrinsic>(BBI)) { 712 if (BBI == BB->begin()) 713 break; 714 --BBI; 715 } 716 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 717 return nullptr; 718 } 719 720 // Do not break infinite loops. 721 BasicBlock *DestBB = BI->getSuccessor(0); 722 if (DestBB == BB) 723 return nullptr; 724 725 if (!canMergeBlocks(BB, DestBB)) 726 DestBB = nullptr; 727 728 return DestBB; 729 } 730 731 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 732 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 733 /// edges in ways that are non-optimal for isel. Start by eliminating these 734 /// blocks so we can split them the way we want them. 735 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 736 SmallPtrSet<BasicBlock *, 16> Preheaders; 737 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 738 while (!LoopList.empty()) { 739 Loop *L = LoopList.pop_back_val(); 740 llvm::append_range(LoopList, *L); 741 if (BasicBlock *Preheader = L->getLoopPreheader()) 742 Preheaders.insert(Preheader); 743 } 744 745 bool MadeChange = false; 746 // Copy blocks into a temporary array to avoid iterator invalidation issues 747 // as we remove them. 748 // Note that this intentionally skips the entry block. 749 SmallVector<WeakTrackingVH, 16> Blocks; 750 for (auto &Block : llvm::drop_begin(F)) 751 Blocks.push_back(&Block); 752 753 for (auto &Block : Blocks) { 754 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 755 if (!BB) 756 continue; 757 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 758 if (!DestBB || 759 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 760 continue; 761 762 eliminateMostlyEmptyBlock(BB); 763 MadeChange = true; 764 } 765 return MadeChange; 766 } 767 768 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 769 BasicBlock *DestBB, 770 bool isPreheader) { 771 // Do not delete loop preheaders if doing so would create a critical edge. 772 // Loop preheaders can be good locations to spill registers. If the 773 // preheader is deleted and we create a critical edge, registers may be 774 // spilled in the loop body instead. 775 if (!DisablePreheaderProtect && isPreheader && 776 !(BB->getSinglePredecessor() && 777 BB->getSinglePredecessor()->getSingleSuccessor())) 778 return false; 779 780 // Skip merging if the block's successor is also a successor to any callbr 781 // that leads to this block. 782 // FIXME: Is this really needed? Is this a correctness issue? 783 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 784 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 785 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 786 if (DestBB == CBI->getSuccessor(i)) 787 return false; 788 } 789 790 // Try to skip merging if the unique predecessor of BB is terminated by a 791 // switch or indirect branch instruction, and BB is used as an incoming block 792 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 793 // add COPY instructions in the predecessor of BB instead of BB (if it is not 794 // merged). Note that the critical edge created by merging such blocks wont be 795 // split in MachineSink because the jump table is not analyzable. By keeping 796 // such empty block (BB), ISel will place COPY instructions in BB, not in the 797 // predecessor of BB. 798 BasicBlock *Pred = BB->getUniquePredecessor(); 799 if (!Pred || 800 !(isa<SwitchInst>(Pred->getTerminator()) || 801 isa<IndirectBrInst>(Pred->getTerminator()))) 802 return true; 803 804 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 805 return true; 806 807 // We use a simple cost heuristic which determine skipping merging is 808 // profitable if the cost of skipping merging is less than the cost of 809 // merging : Cost(skipping merging) < Cost(merging BB), where the 810 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 811 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 812 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 813 // Freq(Pred) / Freq(BB) > 2. 814 // Note that if there are multiple empty blocks sharing the same incoming 815 // value for the PHIs in the DestBB, we consider them together. In such 816 // case, Cost(merging BB) will be the sum of their frequencies. 817 818 if (!isa<PHINode>(DestBB->begin())) 819 return true; 820 821 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 822 823 // Find all other incoming blocks from which incoming values of all PHIs in 824 // DestBB are the same as the ones from BB. 825 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 826 ++PI) { 827 BasicBlock *DestBBPred = *PI; 828 if (DestBBPred == BB) 829 continue; 830 831 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 832 return DestPN.getIncomingValueForBlock(BB) == 833 DestPN.getIncomingValueForBlock(DestBBPred); 834 })) 835 SameIncomingValueBBs.insert(DestBBPred); 836 } 837 838 // See if all BB's incoming values are same as the value from Pred. In this 839 // case, no reason to skip merging because COPYs are expected to be place in 840 // Pred already. 841 if (SameIncomingValueBBs.count(Pred)) 842 return true; 843 844 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 845 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 846 847 for (auto *SameValueBB : SameIncomingValueBBs) 848 if (SameValueBB->getUniquePredecessor() == Pred && 849 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 850 BBFreq += BFI->getBlockFreq(SameValueBB); 851 852 return PredFreq.getFrequency() <= 853 BBFreq.getFrequency() * FreqRatioToSkipMerge; 854 } 855 856 /// Return true if we can merge BB into DestBB if there is a single 857 /// unconditional branch between them, and BB contains no other non-phi 858 /// instructions. 859 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 860 const BasicBlock *DestBB) const { 861 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 862 // the successor. If there are more complex condition (e.g. preheaders), 863 // don't mess around with them. 864 for (const PHINode &PN : BB->phis()) { 865 for (const User *U : PN.users()) { 866 const Instruction *UI = cast<Instruction>(U); 867 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 868 return false; 869 // If User is inside DestBB block and it is a PHINode then check 870 // incoming value. If incoming value is not from BB then this is 871 // a complex condition (e.g. preheaders) we want to avoid here. 872 if (UI->getParent() == DestBB) { 873 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 874 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 875 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 876 if (Insn && Insn->getParent() == BB && 877 Insn->getParent() != UPN->getIncomingBlock(I)) 878 return false; 879 } 880 } 881 } 882 } 883 884 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 885 // and DestBB may have conflicting incoming values for the block. If so, we 886 // can't merge the block. 887 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 888 if (!DestBBPN) return true; // no conflict. 889 890 // Collect the preds of BB. 891 SmallPtrSet<const BasicBlock*, 16> BBPreds; 892 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 893 // It is faster to get preds from a PHI than with pred_iterator. 894 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 895 BBPreds.insert(BBPN->getIncomingBlock(i)); 896 } else { 897 BBPreds.insert(pred_begin(BB), pred_end(BB)); 898 } 899 900 // Walk the preds of DestBB. 901 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 902 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 903 if (BBPreds.count(Pred)) { // Common predecessor? 904 for (const PHINode &PN : DestBB->phis()) { 905 const Value *V1 = PN.getIncomingValueForBlock(Pred); 906 const Value *V2 = PN.getIncomingValueForBlock(BB); 907 908 // If V2 is a phi node in BB, look up what the mapped value will be. 909 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 910 if (V2PN->getParent() == BB) 911 V2 = V2PN->getIncomingValueForBlock(Pred); 912 913 // If there is a conflict, bail out. 914 if (V1 != V2) return false; 915 } 916 } 917 } 918 919 return true; 920 } 921 922 /// Eliminate a basic block that has only phi's and an unconditional branch in 923 /// it. 924 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 925 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 926 BasicBlock *DestBB = BI->getSuccessor(0); 927 928 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 929 << *BB << *DestBB); 930 931 // If the destination block has a single pred, then this is a trivial edge, 932 // just collapse it. 933 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 934 if (SinglePred != DestBB) { 935 assert(SinglePred == BB && 936 "Single predecessor not the same as predecessor"); 937 // Merge DestBB into SinglePred/BB and delete it. 938 MergeBlockIntoPredecessor(DestBB); 939 // Note: BB(=SinglePred) will not be deleted on this path. 940 // DestBB(=its single successor) is the one that was deleted. 941 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 942 return; 943 } 944 } 945 946 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 947 // to handle the new incoming edges it is about to have. 948 for (PHINode &PN : DestBB->phis()) { 949 // Remove the incoming value for BB, and remember it. 950 Value *InVal = PN.removeIncomingValue(BB, false); 951 952 // Two options: either the InVal is a phi node defined in BB or it is some 953 // value that dominates BB. 954 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 955 if (InValPhi && InValPhi->getParent() == BB) { 956 // Add all of the input values of the input PHI as inputs of this phi. 957 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 958 PN.addIncoming(InValPhi->getIncomingValue(i), 959 InValPhi->getIncomingBlock(i)); 960 } else { 961 // Otherwise, add one instance of the dominating value for each edge that 962 // we will be adding. 963 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 964 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 965 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 966 } else { 967 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 968 PN.addIncoming(InVal, *PI); 969 } 970 } 971 } 972 973 // The PHIs are now updated, change everything that refers to BB to use 974 // DestBB and remove BB. 975 BB->replaceAllUsesWith(DestBB); 976 BB->eraseFromParent(); 977 ++NumBlocksElim; 978 979 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 980 } 981 982 // Computes a map of base pointer relocation instructions to corresponding 983 // derived pointer relocation instructions given a vector of all relocate calls 984 static void computeBaseDerivedRelocateMap( 985 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 986 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 987 &RelocateInstMap) { 988 // Collect information in two maps: one primarily for locating the base object 989 // while filling the second map; the second map is the final structure holding 990 // a mapping between Base and corresponding Derived relocate calls 991 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 992 for (auto *ThisRelocate : AllRelocateCalls) { 993 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 994 ThisRelocate->getDerivedPtrIndex()); 995 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 996 } 997 for (auto &Item : RelocateIdxMap) { 998 std::pair<unsigned, unsigned> Key = Item.first; 999 if (Key.first == Key.second) 1000 // Base relocation: nothing to insert 1001 continue; 1002 1003 GCRelocateInst *I = Item.second; 1004 auto BaseKey = std::make_pair(Key.first, Key.first); 1005 1006 // We're iterating over RelocateIdxMap so we cannot modify it. 1007 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1008 if (MaybeBase == RelocateIdxMap.end()) 1009 // TODO: We might want to insert a new base object relocate and gep off 1010 // that, if there are enough derived object relocates. 1011 continue; 1012 1013 RelocateInstMap[MaybeBase->second].push_back(I); 1014 } 1015 } 1016 1017 // Accepts a GEP and extracts the operands into a vector provided they're all 1018 // small integer constants 1019 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1020 SmallVectorImpl<Value *> &OffsetV) { 1021 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1022 // Only accept small constant integer operands 1023 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1024 if (!Op || Op->getZExtValue() > 20) 1025 return false; 1026 } 1027 1028 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1029 OffsetV.push_back(GEP->getOperand(i)); 1030 return true; 1031 } 1032 1033 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1034 // replace, computes a replacement, and affects it. 1035 static bool 1036 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1037 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1038 bool MadeChange = false; 1039 // We must ensure the relocation of derived pointer is defined after 1040 // relocation of base pointer. If we find a relocation corresponding to base 1041 // defined earlier than relocation of base then we move relocation of base 1042 // right before found relocation. We consider only relocation in the same 1043 // basic block as relocation of base. Relocations from other basic block will 1044 // be skipped by optimization and we do not care about them. 1045 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1046 &*R != RelocatedBase; ++R) 1047 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1048 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1049 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1050 RelocatedBase->moveBefore(RI); 1051 break; 1052 } 1053 1054 for (GCRelocateInst *ToReplace : Targets) { 1055 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1056 "Not relocating a derived object of the original base object"); 1057 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1058 // A duplicate relocate call. TODO: coalesce duplicates. 1059 continue; 1060 } 1061 1062 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1063 // Base and derived relocates are in different basic blocks. 1064 // In this case transform is only valid when base dominates derived 1065 // relocate. However it would be too expensive to check dominance 1066 // for each such relocate, so we skip the whole transformation. 1067 continue; 1068 } 1069 1070 Value *Base = ToReplace->getBasePtr(); 1071 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1072 if (!Derived || Derived->getPointerOperand() != Base) 1073 continue; 1074 1075 SmallVector<Value *, 2> OffsetV; 1076 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1077 continue; 1078 1079 // Create a Builder and replace the target callsite with a gep 1080 assert(RelocatedBase->getNextNode() && 1081 "Should always have one since it's not a terminator"); 1082 1083 // Insert after RelocatedBase 1084 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1085 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1086 1087 // If gc_relocate does not match the actual type, cast it to the right type. 1088 // In theory, there must be a bitcast after gc_relocate if the type does not 1089 // match, and we should reuse it to get the derived pointer. But it could be 1090 // cases like this: 1091 // bb1: 1092 // ... 1093 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1094 // br label %merge 1095 // 1096 // bb2: 1097 // ... 1098 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1099 // br label %merge 1100 // 1101 // merge: 1102 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1103 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1104 // 1105 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1106 // no matter there is already one or not. In this way, we can handle all cases, and 1107 // the extra bitcast should be optimized away in later passes. 1108 Value *ActualRelocatedBase = RelocatedBase; 1109 if (RelocatedBase->getType() != Base->getType()) { 1110 ActualRelocatedBase = 1111 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1112 } 1113 Value *Replacement = Builder.CreateGEP( 1114 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1115 Replacement->takeName(ToReplace); 1116 // If the newly generated derived pointer's type does not match the original derived 1117 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1118 Value *ActualReplacement = Replacement; 1119 if (Replacement->getType() != ToReplace->getType()) { 1120 ActualReplacement = 1121 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1122 } 1123 ToReplace->replaceAllUsesWith(ActualReplacement); 1124 ToReplace->eraseFromParent(); 1125 1126 MadeChange = true; 1127 } 1128 return MadeChange; 1129 } 1130 1131 // Turns this: 1132 // 1133 // %base = ... 1134 // %ptr = gep %base + 15 1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1136 // %base' = relocate(%tok, i32 4, i32 4) 1137 // %ptr' = relocate(%tok, i32 4, i32 5) 1138 // %val = load %ptr' 1139 // 1140 // into this: 1141 // 1142 // %base = ... 1143 // %ptr = gep %base + 15 1144 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1145 // %base' = gc.relocate(%tok, i32 4, i32 4) 1146 // %ptr' = gep %base' + 15 1147 // %val = load %ptr' 1148 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1149 bool MadeChange = false; 1150 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1151 for (auto *U : I.users()) 1152 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1153 // Collect all the relocate calls associated with a statepoint 1154 AllRelocateCalls.push_back(Relocate); 1155 1156 // We need at least one base pointer relocation + one derived pointer 1157 // relocation to mangle 1158 if (AllRelocateCalls.size() < 2) 1159 return false; 1160 1161 // RelocateInstMap is a mapping from the base relocate instruction to the 1162 // corresponding derived relocate instructions 1163 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1164 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1165 if (RelocateInstMap.empty()) 1166 return false; 1167 1168 for (auto &Item : RelocateInstMap) 1169 // Item.first is the RelocatedBase to offset against 1170 // Item.second is the vector of Targets to replace 1171 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1172 return MadeChange; 1173 } 1174 1175 /// Sink the specified cast instruction into its user blocks. 1176 static bool SinkCast(CastInst *CI) { 1177 BasicBlock *DefBB = CI->getParent(); 1178 1179 /// InsertedCasts - Only insert a cast in each block once. 1180 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1181 1182 bool MadeChange = false; 1183 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1184 UI != E; ) { 1185 Use &TheUse = UI.getUse(); 1186 Instruction *User = cast<Instruction>(*UI); 1187 1188 // Figure out which BB this cast is used in. For PHI's this is the 1189 // appropriate predecessor block. 1190 BasicBlock *UserBB = User->getParent(); 1191 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1192 UserBB = PN->getIncomingBlock(TheUse); 1193 } 1194 1195 // Preincrement use iterator so we don't invalidate it. 1196 ++UI; 1197 1198 // The first insertion point of a block containing an EH pad is after the 1199 // pad. If the pad is the user, we cannot sink the cast past the pad. 1200 if (User->isEHPad()) 1201 continue; 1202 1203 // If the block selected to receive the cast is an EH pad that does not 1204 // allow non-PHI instructions before the terminator, we can't sink the 1205 // cast. 1206 if (UserBB->getTerminator()->isEHPad()) 1207 continue; 1208 1209 // If this user is in the same block as the cast, don't change the cast. 1210 if (UserBB == DefBB) continue; 1211 1212 // If we have already inserted a cast into this block, use it. 1213 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1214 1215 if (!InsertedCast) { 1216 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1217 assert(InsertPt != UserBB->end()); 1218 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1219 CI->getType(), "", &*InsertPt); 1220 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1221 } 1222 1223 // Replace a use of the cast with a use of the new cast. 1224 TheUse = InsertedCast; 1225 MadeChange = true; 1226 ++NumCastUses; 1227 } 1228 1229 // If we removed all uses, nuke the cast. 1230 if (CI->use_empty()) { 1231 salvageDebugInfo(*CI); 1232 CI->eraseFromParent(); 1233 MadeChange = true; 1234 } 1235 1236 return MadeChange; 1237 } 1238 1239 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1240 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1241 /// reduce the number of virtual registers that must be created and coalesced. 1242 /// 1243 /// Return true if any changes are made. 1244 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1245 const DataLayout &DL) { 1246 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1247 // than sinking only nop casts, but is helpful on some platforms. 1248 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1249 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1250 ASC->getDestAddressSpace())) 1251 return false; 1252 } 1253 1254 // If this is a noop copy, 1255 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1256 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1257 1258 // This is an fp<->int conversion? 1259 if (SrcVT.isInteger() != DstVT.isInteger()) 1260 return false; 1261 1262 // If this is an extension, it will be a zero or sign extension, which 1263 // isn't a noop. 1264 if (SrcVT.bitsLT(DstVT)) return false; 1265 1266 // If these values will be promoted, find out what they will be promoted 1267 // to. This helps us consider truncates on PPC as noop copies when they 1268 // are. 1269 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1270 TargetLowering::TypePromoteInteger) 1271 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1272 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1273 TargetLowering::TypePromoteInteger) 1274 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1275 1276 // If, after promotion, these are the same types, this is a noop copy. 1277 if (SrcVT != DstVT) 1278 return false; 1279 1280 return SinkCast(CI); 1281 } 1282 1283 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1284 Value *Arg0, Value *Arg1, 1285 CmpInst *Cmp, 1286 Intrinsic::ID IID) { 1287 if (BO->getParent() != Cmp->getParent()) { 1288 // We used to use a dominator tree here to allow multi-block optimization. 1289 // But that was problematic because: 1290 // 1. It could cause a perf regression by hoisting the math op into the 1291 // critical path. 1292 // 2. It could cause a perf regression by creating a value that was live 1293 // across multiple blocks and increasing register pressure. 1294 // 3. Use of a dominator tree could cause large compile-time regression. 1295 // This is because we recompute the DT on every change in the main CGP 1296 // run-loop. The recomputing is probably unnecessary in many cases, so if 1297 // that was fixed, using a DT here would be ok. 1298 return false; 1299 } 1300 1301 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1302 if (BO->getOpcode() == Instruction::Add && 1303 IID == Intrinsic::usub_with_overflow) { 1304 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1305 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1306 } 1307 1308 // Insert at the first instruction of the pair. 1309 Instruction *InsertPt = nullptr; 1310 for (Instruction &Iter : *Cmp->getParent()) { 1311 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1312 // the overflow intrinsic are defined. 1313 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1314 InsertPt = &Iter; 1315 break; 1316 } 1317 } 1318 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1319 1320 IRBuilder<> Builder(InsertPt); 1321 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1322 if (BO->getOpcode() != Instruction::Xor) { 1323 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1324 BO->replaceAllUsesWith(Math); 1325 } else 1326 assert(BO->hasOneUse() && 1327 "Patterns with XOr should use the BO only in the compare"); 1328 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1329 Cmp->replaceAllUsesWith(OV); 1330 Cmp->eraseFromParent(); 1331 BO->eraseFromParent(); 1332 return true; 1333 } 1334 1335 /// Match special-case patterns that check for unsigned add overflow. 1336 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1337 BinaryOperator *&Add) { 1338 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1339 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1340 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1341 1342 // We are not expecting non-canonical/degenerate code. Just bail out. 1343 if (isa<Constant>(A)) 1344 return false; 1345 1346 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1347 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1348 B = ConstantInt::get(B->getType(), 1); 1349 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1350 B = ConstantInt::get(B->getType(), -1); 1351 else 1352 return false; 1353 1354 // Check the users of the variable operand of the compare looking for an add 1355 // with the adjusted constant. 1356 for (User *U : A->users()) { 1357 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1358 Add = cast<BinaryOperator>(U); 1359 return true; 1360 } 1361 } 1362 return false; 1363 } 1364 1365 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1366 /// intrinsic. Return true if any changes were made. 1367 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1368 bool &ModifiedDT) { 1369 Value *A, *B; 1370 BinaryOperator *Add; 1371 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1372 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1373 return false; 1374 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1375 A = Add->getOperand(0); 1376 B = Add->getOperand(1); 1377 } 1378 1379 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1380 TLI->getValueType(*DL, Add->getType()), 1381 Add->hasNUsesOrMore(2))) 1382 return false; 1383 1384 // We don't want to move around uses of condition values this late, so we 1385 // check if it is legal to create the call to the intrinsic in the basic 1386 // block containing the icmp. 1387 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1388 return false; 1389 1390 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1391 Intrinsic::uadd_with_overflow)) 1392 return false; 1393 1394 // Reset callers - do not crash by iterating over a dead instruction. 1395 ModifiedDT = true; 1396 return true; 1397 } 1398 1399 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1400 bool &ModifiedDT) { 1401 // We are not expecting non-canonical/degenerate code. Just bail out. 1402 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1403 if (isa<Constant>(A) && isa<Constant>(B)) 1404 return false; 1405 1406 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1407 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1408 if (Pred == ICmpInst::ICMP_UGT) { 1409 std::swap(A, B); 1410 Pred = ICmpInst::ICMP_ULT; 1411 } 1412 // Convert special-case: (A == 0) is the same as (A u< 1). 1413 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1414 B = ConstantInt::get(B->getType(), 1); 1415 Pred = ICmpInst::ICMP_ULT; 1416 } 1417 // Convert special-case: (A != 0) is the same as (0 u< A). 1418 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1419 std::swap(A, B); 1420 Pred = ICmpInst::ICMP_ULT; 1421 } 1422 if (Pred != ICmpInst::ICMP_ULT) 1423 return false; 1424 1425 // Walk the users of a variable operand of a compare looking for a subtract or 1426 // add with that same operand. Also match the 2nd operand of the compare to 1427 // the add/sub, but that may be a negated constant operand of an add. 1428 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1429 BinaryOperator *Sub = nullptr; 1430 for (User *U : CmpVariableOperand->users()) { 1431 // A - B, A u< B --> usubo(A, B) 1432 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1433 Sub = cast<BinaryOperator>(U); 1434 break; 1435 } 1436 1437 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1438 const APInt *CmpC, *AddC; 1439 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1440 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1441 Sub = cast<BinaryOperator>(U); 1442 break; 1443 } 1444 } 1445 if (!Sub) 1446 return false; 1447 1448 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1449 TLI->getValueType(*DL, Sub->getType()), 1450 Sub->hasNUsesOrMore(2))) 1451 return false; 1452 1453 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1454 Cmp, Intrinsic::usub_with_overflow)) 1455 return false; 1456 1457 // Reset callers - do not crash by iterating over a dead instruction. 1458 ModifiedDT = true; 1459 return true; 1460 } 1461 1462 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1463 /// registers that must be created and coalesced. This is a clear win except on 1464 /// targets with multiple condition code registers (PowerPC), where it might 1465 /// lose; some adjustment may be wanted there. 1466 /// 1467 /// Return true if any changes are made. 1468 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1469 if (TLI.hasMultipleConditionRegisters()) 1470 return false; 1471 1472 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1473 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1474 return false; 1475 1476 // Only insert a cmp in each block once. 1477 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1478 1479 bool MadeChange = false; 1480 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1481 UI != E; ) { 1482 Use &TheUse = UI.getUse(); 1483 Instruction *User = cast<Instruction>(*UI); 1484 1485 // Preincrement use iterator so we don't invalidate it. 1486 ++UI; 1487 1488 // Don't bother for PHI nodes. 1489 if (isa<PHINode>(User)) 1490 continue; 1491 1492 // Figure out which BB this cmp is used in. 1493 BasicBlock *UserBB = User->getParent(); 1494 BasicBlock *DefBB = Cmp->getParent(); 1495 1496 // If this user is in the same block as the cmp, don't change the cmp. 1497 if (UserBB == DefBB) continue; 1498 1499 // If we have already inserted a cmp into this block, use it. 1500 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1501 1502 if (!InsertedCmp) { 1503 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1504 assert(InsertPt != UserBB->end()); 1505 InsertedCmp = 1506 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1507 Cmp->getOperand(0), Cmp->getOperand(1), "", 1508 &*InsertPt); 1509 // Propagate the debug info. 1510 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1511 } 1512 1513 // Replace a use of the cmp with a use of the new cmp. 1514 TheUse = InsertedCmp; 1515 MadeChange = true; 1516 ++NumCmpUses; 1517 } 1518 1519 // If we removed all uses, nuke the cmp. 1520 if (Cmp->use_empty()) { 1521 Cmp->eraseFromParent(); 1522 MadeChange = true; 1523 } 1524 1525 return MadeChange; 1526 } 1527 1528 /// For pattern like: 1529 /// 1530 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1531 /// ... 1532 /// DomBB: 1533 /// ... 1534 /// br DomCond, TrueBB, CmpBB 1535 /// CmpBB: (with DomBB being the single predecessor) 1536 /// ... 1537 /// Cmp = icmp eq CmpOp0, CmpOp1 1538 /// ... 1539 /// 1540 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1541 /// different from lowering of icmp eq (PowerPC). This function try to convert 1542 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1543 /// After that, DomCond and Cmp can use the same comparison so reduce one 1544 /// comparison. 1545 /// 1546 /// Return true if any changes are made. 1547 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1548 const TargetLowering &TLI) { 1549 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1550 return false; 1551 1552 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1553 if (Pred != ICmpInst::ICMP_EQ) 1554 return false; 1555 1556 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1557 // icmp slt/sgt would introduce more redundant LLVM IR. 1558 for (User *U : Cmp->users()) { 1559 if (isa<BranchInst>(U)) 1560 continue; 1561 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1562 continue; 1563 return false; 1564 } 1565 1566 // This is a cheap/incomplete check for dominance - just match a single 1567 // predecessor with a conditional branch. 1568 BasicBlock *CmpBB = Cmp->getParent(); 1569 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1570 if (!DomBB) 1571 return false; 1572 1573 // We want to ensure that the only way control gets to the comparison of 1574 // interest is that a less/greater than comparison on the same operands is 1575 // false. 1576 Value *DomCond; 1577 BasicBlock *TrueBB, *FalseBB; 1578 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1579 return false; 1580 if (CmpBB != FalseBB) 1581 return false; 1582 1583 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1584 ICmpInst::Predicate DomPred; 1585 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1586 return false; 1587 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1588 return false; 1589 1590 // Convert the equality comparison to the opposite of the dominating 1591 // comparison and swap the direction for all branch/select users. 1592 // We have conceptually converted: 1593 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1594 // to 1595 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1596 // And similarly for branches. 1597 for (User *U : Cmp->users()) { 1598 if (auto *BI = dyn_cast<BranchInst>(U)) { 1599 assert(BI->isConditional() && "Must be conditional"); 1600 BI->swapSuccessors(); 1601 continue; 1602 } 1603 if (auto *SI = dyn_cast<SelectInst>(U)) { 1604 // Swap operands 1605 SI->swapValues(); 1606 SI->swapProfMetadata(); 1607 continue; 1608 } 1609 llvm_unreachable("Must be a branch or a select"); 1610 } 1611 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1612 return true; 1613 } 1614 1615 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1616 if (sinkCmpExpression(Cmp, *TLI)) 1617 return true; 1618 1619 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1620 return true; 1621 1622 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1623 return true; 1624 1625 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1626 return true; 1627 1628 return false; 1629 } 1630 1631 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1632 /// used in a compare to allow isel to generate better code for targets where 1633 /// this operation can be combined. 1634 /// 1635 /// Return true if any changes are made. 1636 static bool sinkAndCmp0Expression(Instruction *AndI, 1637 const TargetLowering &TLI, 1638 SetOfInstrs &InsertedInsts) { 1639 // Double-check that we're not trying to optimize an instruction that was 1640 // already optimized by some other part of this pass. 1641 assert(!InsertedInsts.count(AndI) && 1642 "Attempting to optimize already optimized and instruction"); 1643 (void) InsertedInsts; 1644 1645 // Nothing to do for single use in same basic block. 1646 if (AndI->hasOneUse() && 1647 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1648 return false; 1649 1650 // Try to avoid cases where sinking/duplicating is likely to increase register 1651 // pressure. 1652 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1653 !isa<ConstantInt>(AndI->getOperand(1)) && 1654 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1655 return false; 1656 1657 for (auto *U : AndI->users()) { 1658 Instruction *User = cast<Instruction>(U); 1659 1660 // Only sink 'and' feeding icmp with 0. 1661 if (!isa<ICmpInst>(User)) 1662 return false; 1663 1664 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1665 if (!CmpC || !CmpC->isZero()) 1666 return false; 1667 } 1668 1669 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1670 return false; 1671 1672 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1673 LLVM_DEBUG(AndI->getParent()->dump()); 1674 1675 // Push the 'and' into the same block as the icmp 0. There should only be 1676 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1677 // others, so we don't need to keep track of which BBs we insert into. 1678 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1679 UI != E; ) { 1680 Use &TheUse = UI.getUse(); 1681 Instruction *User = cast<Instruction>(*UI); 1682 1683 // Preincrement use iterator so we don't invalidate it. 1684 ++UI; 1685 1686 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1687 1688 // Keep the 'and' in the same place if the use is already in the same block. 1689 Instruction *InsertPt = 1690 User->getParent() == AndI->getParent() ? AndI : User; 1691 Instruction *InsertedAnd = 1692 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1693 AndI->getOperand(1), "", InsertPt); 1694 // Propagate the debug info. 1695 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1696 1697 // Replace a use of the 'and' with a use of the new 'and'. 1698 TheUse = InsertedAnd; 1699 ++NumAndUses; 1700 LLVM_DEBUG(User->getParent()->dump()); 1701 } 1702 1703 // We removed all uses, nuke the and. 1704 AndI->eraseFromParent(); 1705 return true; 1706 } 1707 1708 /// Check if the candidates could be combined with a shift instruction, which 1709 /// includes: 1710 /// 1. Truncate instruction 1711 /// 2. And instruction and the imm is a mask of the low bits: 1712 /// imm & (imm+1) == 0 1713 static bool isExtractBitsCandidateUse(Instruction *User) { 1714 if (!isa<TruncInst>(User)) { 1715 if (User->getOpcode() != Instruction::And || 1716 !isa<ConstantInt>(User->getOperand(1))) 1717 return false; 1718 1719 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1720 1721 if ((Cimm & (Cimm + 1)).getBoolValue()) 1722 return false; 1723 } 1724 return true; 1725 } 1726 1727 /// Sink both shift and truncate instruction to the use of truncate's BB. 1728 static bool 1729 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1730 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1731 const TargetLowering &TLI, const DataLayout &DL) { 1732 BasicBlock *UserBB = User->getParent(); 1733 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1734 auto *TruncI = cast<TruncInst>(User); 1735 bool MadeChange = false; 1736 1737 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1738 TruncE = TruncI->user_end(); 1739 TruncUI != TruncE;) { 1740 1741 Use &TruncTheUse = TruncUI.getUse(); 1742 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1743 // Preincrement use iterator so we don't invalidate it. 1744 1745 ++TruncUI; 1746 1747 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1748 if (!ISDOpcode) 1749 continue; 1750 1751 // If the use is actually a legal node, there will not be an 1752 // implicit truncate. 1753 // FIXME: always querying the result type is just an 1754 // approximation; some nodes' legality is determined by the 1755 // operand or other means. There's no good way to find out though. 1756 if (TLI.isOperationLegalOrCustom( 1757 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1758 continue; 1759 1760 // Don't bother for PHI nodes. 1761 if (isa<PHINode>(TruncUser)) 1762 continue; 1763 1764 BasicBlock *TruncUserBB = TruncUser->getParent(); 1765 1766 if (UserBB == TruncUserBB) 1767 continue; 1768 1769 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1770 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1771 1772 if (!InsertedShift && !InsertedTrunc) { 1773 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1774 assert(InsertPt != TruncUserBB->end()); 1775 // Sink the shift 1776 if (ShiftI->getOpcode() == Instruction::AShr) 1777 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1778 "", &*InsertPt); 1779 else 1780 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1781 "", &*InsertPt); 1782 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1783 1784 // Sink the trunc 1785 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1786 TruncInsertPt++; 1787 assert(TruncInsertPt != TruncUserBB->end()); 1788 1789 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1790 TruncI->getType(), "", &*TruncInsertPt); 1791 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1792 1793 MadeChange = true; 1794 1795 TruncTheUse = InsertedTrunc; 1796 } 1797 } 1798 return MadeChange; 1799 } 1800 1801 /// Sink the shift *right* instruction into user blocks if the uses could 1802 /// potentially be combined with this shift instruction and generate BitExtract 1803 /// instruction. It will only be applied if the architecture supports BitExtract 1804 /// instruction. Here is an example: 1805 /// BB1: 1806 /// %x.extract.shift = lshr i64 %arg1, 32 1807 /// BB2: 1808 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1809 /// ==> 1810 /// 1811 /// BB2: 1812 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1813 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1814 /// 1815 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1816 /// instruction. 1817 /// Return true if any changes are made. 1818 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1819 const TargetLowering &TLI, 1820 const DataLayout &DL) { 1821 BasicBlock *DefBB = ShiftI->getParent(); 1822 1823 /// Only insert instructions in each block once. 1824 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1825 1826 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1827 1828 bool MadeChange = false; 1829 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1830 UI != E;) { 1831 Use &TheUse = UI.getUse(); 1832 Instruction *User = cast<Instruction>(*UI); 1833 // Preincrement use iterator so we don't invalidate it. 1834 ++UI; 1835 1836 // Don't bother for PHI nodes. 1837 if (isa<PHINode>(User)) 1838 continue; 1839 1840 if (!isExtractBitsCandidateUse(User)) 1841 continue; 1842 1843 BasicBlock *UserBB = User->getParent(); 1844 1845 if (UserBB == DefBB) { 1846 // If the shift and truncate instruction are in the same BB. The use of 1847 // the truncate(TruncUse) may still introduce another truncate if not 1848 // legal. In this case, we would like to sink both shift and truncate 1849 // instruction to the BB of TruncUse. 1850 // for example: 1851 // BB1: 1852 // i64 shift.result = lshr i64 opnd, imm 1853 // trunc.result = trunc shift.result to i16 1854 // 1855 // BB2: 1856 // ----> We will have an implicit truncate here if the architecture does 1857 // not have i16 compare. 1858 // cmp i16 trunc.result, opnd2 1859 // 1860 if (isa<TruncInst>(User) && shiftIsLegal 1861 // If the type of the truncate is legal, no truncate will be 1862 // introduced in other basic blocks. 1863 && 1864 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1865 MadeChange = 1866 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1867 1868 continue; 1869 } 1870 // If we have already inserted a shift into this block, use it. 1871 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1872 1873 if (!InsertedShift) { 1874 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1875 assert(InsertPt != UserBB->end()); 1876 1877 if (ShiftI->getOpcode() == Instruction::AShr) 1878 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1879 "", &*InsertPt); 1880 else 1881 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1882 "", &*InsertPt); 1883 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1884 1885 MadeChange = true; 1886 } 1887 1888 // Replace a use of the shift with a use of the new shift. 1889 TheUse = InsertedShift; 1890 } 1891 1892 // If we removed all uses, or there are none, nuke the shift. 1893 if (ShiftI->use_empty()) { 1894 salvageDebugInfo(*ShiftI); 1895 ShiftI->eraseFromParent(); 1896 MadeChange = true; 1897 } 1898 1899 return MadeChange; 1900 } 1901 1902 /// If counting leading or trailing zeros is an expensive operation and a zero 1903 /// input is defined, add a check for zero to avoid calling the intrinsic. 1904 /// 1905 /// We want to transform: 1906 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1907 /// 1908 /// into: 1909 /// entry: 1910 /// %cmpz = icmp eq i64 %A, 0 1911 /// br i1 %cmpz, label %cond.end, label %cond.false 1912 /// cond.false: 1913 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1914 /// br label %cond.end 1915 /// cond.end: 1916 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1917 /// 1918 /// If the transform is performed, return true and set ModifiedDT to true. 1919 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1920 const TargetLowering *TLI, 1921 const DataLayout *DL, 1922 bool &ModifiedDT) { 1923 // If a zero input is undefined, it doesn't make sense to despeculate that. 1924 if (match(CountZeros->getOperand(1), m_One())) 1925 return false; 1926 1927 // If it's cheap to speculate, there's nothing to do. 1928 auto IntrinsicID = CountZeros->getIntrinsicID(); 1929 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1930 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1931 return false; 1932 1933 // Only handle legal scalar cases. Anything else requires too much work. 1934 Type *Ty = CountZeros->getType(); 1935 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1936 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1937 return false; 1938 1939 // The intrinsic will be sunk behind a compare against zero and branch. 1940 BasicBlock *StartBlock = CountZeros->getParent(); 1941 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1942 1943 // Create another block after the count zero intrinsic. A PHI will be added 1944 // in this block to select the result of the intrinsic or the bit-width 1945 // constant if the input to the intrinsic is zero. 1946 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1947 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1948 1949 // Set up a builder to create a compare, conditional branch, and PHI. 1950 IRBuilder<> Builder(CountZeros->getContext()); 1951 Builder.SetInsertPoint(StartBlock->getTerminator()); 1952 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1953 1954 // Replace the unconditional branch that was created by the first split with 1955 // a compare against zero and a conditional branch. 1956 Value *Zero = Constant::getNullValue(Ty); 1957 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1958 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1959 StartBlock->getTerminator()->eraseFromParent(); 1960 1961 // Create a PHI in the end block to select either the output of the intrinsic 1962 // or the bit width of the operand. 1963 Builder.SetInsertPoint(&EndBlock->front()); 1964 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1965 CountZeros->replaceAllUsesWith(PN); 1966 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1967 PN->addIncoming(BitWidth, StartBlock); 1968 PN->addIncoming(CountZeros, CallBlock); 1969 1970 // We are explicitly handling the zero case, so we can set the intrinsic's 1971 // undefined zero argument to 'true'. This will also prevent reprocessing the 1972 // intrinsic; we only despeculate when a zero input is defined. 1973 CountZeros->setArgOperand(1, Builder.getTrue()); 1974 ModifiedDT = true; 1975 return true; 1976 } 1977 1978 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1979 BasicBlock *BB = CI->getParent(); 1980 1981 // Lower inline assembly if we can. 1982 // If we found an inline asm expession, and if the target knows how to 1983 // lower it to normal LLVM code, do so now. 1984 if (CI->isInlineAsm()) { 1985 if (TLI->ExpandInlineAsm(CI)) { 1986 // Avoid invalidating the iterator. 1987 CurInstIterator = BB->begin(); 1988 // Avoid processing instructions out of order, which could cause 1989 // reuse before a value is defined. 1990 SunkAddrs.clear(); 1991 return true; 1992 } 1993 // Sink address computing for memory operands into the block. 1994 if (optimizeInlineAsmInst(CI)) 1995 return true; 1996 } 1997 1998 // Align the pointer arguments to this call if the target thinks it's a good 1999 // idea 2000 unsigned MinSize, PrefAlign; 2001 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2002 for (auto &Arg : CI->arg_operands()) { 2003 // We want to align both objects whose address is used directly and 2004 // objects whose address is used in casts and GEPs, though it only makes 2005 // sense for GEPs if the offset is a multiple of the desired alignment and 2006 // if size - offset meets the size threshold. 2007 if (!Arg->getType()->isPointerTy()) 2008 continue; 2009 APInt Offset(DL->getIndexSizeInBits( 2010 cast<PointerType>(Arg->getType())->getAddressSpace()), 2011 0); 2012 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2013 uint64_t Offset2 = Offset.getLimitedValue(); 2014 if ((Offset2 & (PrefAlign-1)) != 0) 2015 continue; 2016 AllocaInst *AI; 2017 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2018 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2019 AI->setAlignment(Align(PrefAlign)); 2020 // Global variables can only be aligned if they are defined in this 2021 // object (i.e. they are uniquely initialized in this object), and 2022 // over-aligning global variables that have an explicit section is 2023 // forbidden. 2024 GlobalVariable *GV; 2025 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2026 GV->getPointerAlignment(*DL) < PrefAlign && 2027 DL->getTypeAllocSize(GV->getValueType()) >= 2028 MinSize + Offset2) 2029 GV->setAlignment(MaybeAlign(PrefAlign)); 2030 } 2031 // If this is a memcpy (or similar) then we may be able to improve the 2032 // alignment 2033 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2034 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2035 MaybeAlign MIDestAlign = MI->getDestAlign(); 2036 if (!MIDestAlign || DestAlign > *MIDestAlign) 2037 MI->setDestAlignment(DestAlign); 2038 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2039 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2040 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2041 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2042 MTI->setSourceAlignment(SrcAlign); 2043 } 2044 } 2045 } 2046 2047 // If we have a cold call site, try to sink addressing computation into the 2048 // cold block. This interacts with our handling for loads and stores to 2049 // ensure that we can fold all uses of a potential addressing computation 2050 // into their uses. TODO: generalize this to work over profiling data 2051 if (CI->hasFnAttr(Attribute::Cold) && 2052 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2053 for (auto &Arg : CI->arg_operands()) { 2054 if (!Arg->getType()->isPointerTy()) 2055 continue; 2056 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2057 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2058 } 2059 2060 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2061 if (II) { 2062 switch (II->getIntrinsicID()) { 2063 default: break; 2064 case Intrinsic::assume: { 2065 Value *Operand = II->getOperand(0); 2066 II->eraseFromParent(); 2067 // Prune the operand, it's most likely dead. 2068 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2069 RecursivelyDeleteTriviallyDeadInstructions( 2070 Operand, TLInfo, nullptr, 2071 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2072 }); 2073 return true; 2074 } 2075 2076 case Intrinsic::experimental_widenable_condition: { 2077 // Give up on future widening oppurtunties so that we can fold away dead 2078 // paths and merge blocks before going into block-local instruction 2079 // selection. 2080 if (II->use_empty()) { 2081 II->eraseFromParent(); 2082 return true; 2083 } 2084 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2085 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2086 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2087 }); 2088 return true; 2089 } 2090 case Intrinsic::objectsize: 2091 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2092 case Intrinsic::is_constant: 2093 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2094 case Intrinsic::aarch64_stlxr: 2095 case Intrinsic::aarch64_stxr: { 2096 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2097 if (!ExtVal || !ExtVal->hasOneUse() || 2098 ExtVal->getParent() == CI->getParent()) 2099 return false; 2100 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2101 ExtVal->moveBefore(CI); 2102 // Mark this instruction as "inserted by CGP", so that other 2103 // optimizations don't touch it. 2104 InsertedInsts.insert(ExtVal); 2105 return true; 2106 } 2107 2108 case Intrinsic::launder_invariant_group: 2109 case Intrinsic::strip_invariant_group: { 2110 Value *ArgVal = II->getArgOperand(0); 2111 auto it = LargeOffsetGEPMap.find(II); 2112 if (it != LargeOffsetGEPMap.end()) { 2113 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2114 // Make sure not to have to deal with iterator invalidation 2115 // after possibly adding ArgVal to LargeOffsetGEPMap. 2116 auto GEPs = std::move(it->second); 2117 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2118 LargeOffsetGEPMap.erase(II); 2119 } 2120 2121 II->replaceAllUsesWith(ArgVal); 2122 II->eraseFromParent(); 2123 return true; 2124 } 2125 case Intrinsic::cttz: 2126 case Intrinsic::ctlz: 2127 // If counting zeros is expensive, try to avoid it. 2128 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2129 case Intrinsic::fshl: 2130 case Intrinsic::fshr: 2131 return optimizeFunnelShift(II); 2132 case Intrinsic::dbg_value: 2133 return fixupDbgValue(II); 2134 case Intrinsic::vscale: { 2135 // If datalayout has no special restrictions on vector data layout, 2136 // replace `llvm.vscale` by an equivalent constant expression 2137 // to benefit from cheap constant propagation. 2138 Type *ScalableVectorTy = 2139 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2140 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2141 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2142 auto *One = ConstantInt::getSigned(II->getType(), 1); 2143 auto *CGep = 2144 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2145 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2146 II->eraseFromParent(); 2147 return true; 2148 } 2149 break; 2150 } 2151 case Intrinsic::masked_gather: 2152 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2153 case Intrinsic::masked_scatter: 2154 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2155 } 2156 2157 SmallVector<Value *, 2> PtrOps; 2158 Type *AccessTy; 2159 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2160 while (!PtrOps.empty()) { 2161 Value *PtrVal = PtrOps.pop_back_val(); 2162 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2163 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2164 return true; 2165 } 2166 } 2167 2168 // From here on out we're working with named functions. 2169 if (!CI->getCalledFunction()) return false; 2170 2171 // Lower all default uses of _chk calls. This is very similar 2172 // to what InstCombineCalls does, but here we are only lowering calls 2173 // to fortified library functions (e.g. __memcpy_chk) that have the default 2174 // "don't know" as the objectsize. Anything else should be left alone. 2175 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2176 IRBuilder<> Builder(CI); 2177 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2178 CI->replaceAllUsesWith(V); 2179 CI->eraseFromParent(); 2180 return true; 2181 } 2182 2183 return false; 2184 } 2185 2186 /// Look for opportunities to duplicate return instructions to the predecessor 2187 /// to enable tail call optimizations. The case it is currently looking for is: 2188 /// @code 2189 /// bb0: 2190 /// %tmp0 = tail call i32 @f0() 2191 /// br label %return 2192 /// bb1: 2193 /// %tmp1 = tail call i32 @f1() 2194 /// br label %return 2195 /// bb2: 2196 /// %tmp2 = tail call i32 @f2() 2197 /// br label %return 2198 /// return: 2199 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2200 /// ret i32 %retval 2201 /// @endcode 2202 /// 2203 /// => 2204 /// 2205 /// @code 2206 /// bb0: 2207 /// %tmp0 = tail call i32 @f0() 2208 /// ret i32 %tmp0 2209 /// bb1: 2210 /// %tmp1 = tail call i32 @f1() 2211 /// ret i32 %tmp1 2212 /// bb2: 2213 /// %tmp2 = tail call i32 @f2() 2214 /// ret i32 %tmp2 2215 /// @endcode 2216 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2217 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2218 if (!RetI) 2219 return false; 2220 2221 PHINode *PN = nullptr; 2222 ExtractValueInst *EVI = nullptr; 2223 BitCastInst *BCI = nullptr; 2224 Value *V = RetI->getReturnValue(); 2225 if (V) { 2226 BCI = dyn_cast<BitCastInst>(V); 2227 if (BCI) 2228 V = BCI->getOperand(0); 2229 2230 EVI = dyn_cast<ExtractValueInst>(V); 2231 if (EVI) { 2232 V = EVI->getOperand(0); 2233 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2234 return false; 2235 } 2236 2237 PN = dyn_cast<PHINode>(V); 2238 if (!PN) 2239 return false; 2240 } 2241 2242 if (PN && PN->getParent() != BB) 2243 return false; 2244 2245 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2246 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2247 if (BC && BC->hasOneUse()) 2248 Inst = BC->user_back(); 2249 2250 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2251 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2252 return false; 2253 }; 2254 2255 // Make sure there are no instructions between the first instruction 2256 // and return. 2257 const Instruction *BI = BB->getFirstNonPHI(); 2258 // Skip over debug and the bitcast. 2259 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2260 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2261 BI = BI->getNextNode(); 2262 if (BI != RetI) 2263 return false; 2264 2265 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2266 /// call. 2267 const Function *F = BB->getParent(); 2268 SmallVector<BasicBlock*, 4> TailCallBBs; 2269 if (PN) { 2270 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2271 // Look through bitcasts. 2272 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2273 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2274 BasicBlock *PredBB = PN->getIncomingBlock(I); 2275 // Make sure the phi value is indeed produced by the tail call. 2276 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2277 TLI->mayBeEmittedAsTailCall(CI) && 2278 attributesPermitTailCall(F, CI, RetI, *TLI)) 2279 TailCallBBs.push_back(PredBB); 2280 } 2281 } else { 2282 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2283 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2284 if (!VisitedBBs.insert(*PI).second) 2285 continue; 2286 if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) { 2287 CallInst *CI = dyn_cast<CallInst>(I); 2288 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2289 attributesPermitTailCall(F, CI, RetI, *TLI)) 2290 TailCallBBs.push_back(*PI); 2291 } 2292 } 2293 } 2294 2295 bool Changed = false; 2296 for (auto const &TailCallBB : TailCallBBs) { 2297 // Make sure the call instruction is followed by an unconditional branch to 2298 // the return block. 2299 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2300 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2301 continue; 2302 2303 // Duplicate the return into TailCallBB. 2304 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2305 assert(!VerifyBFIUpdates || 2306 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2307 BFI->setBlockFreq( 2308 BB, 2309 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2310 ModifiedDT = Changed = true; 2311 ++NumRetsDup; 2312 } 2313 2314 // If we eliminated all predecessors of the block, delete the block now. 2315 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2316 BB->eraseFromParent(); 2317 2318 return Changed; 2319 } 2320 2321 //===----------------------------------------------------------------------===// 2322 // Memory Optimization 2323 //===----------------------------------------------------------------------===// 2324 2325 namespace { 2326 2327 /// This is an extended version of TargetLowering::AddrMode 2328 /// which holds actual Value*'s for register values. 2329 struct ExtAddrMode : public TargetLowering::AddrMode { 2330 Value *BaseReg = nullptr; 2331 Value *ScaledReg = nullptr; 2332 Value *OriginalValue = nullptr; 2333 bool InBounds = true; 2334 2335 enum FieldName { 2336 NoField = 0x00, 2337 BaseRegField = 0x01, 2338 BaseGVField = 0x02, 2339 BaseOffsField = 0x04, 2340 ScaledRegField = 0x08, 2341 ScaleField = 0x10, 2342 MultipleFields = 0xff 2343 }; 2344 2345 2346 ExtAddrMode() = default; 2347 2348 void print(raw_ostream &OS) const; 2349 void dump() const; 2350 2351 FieldName compare(const ExtAddrMode &other) { 2352 // First check that the types are the same on each field, as differing types 2353 // is something we can't cope with later on. 2354 if (BaseReg && other.BaseReg && 2355 BaseReg->getType() != other.BaseReg->getType()) 2356 return MultipleFields; 2357 if (BaseGV && other.BaseGV && 2358 BaseGV->getType() != other.BaseGV->getType()) 2359 return MultipleFields; 2360 if (ScaledReg && other.ScaledReg && 2361 ScaledReg->getType() != other.ScaledReg->getType()) 2362 return MultipleFields; 2363 2364 // Conservatively reject 'inbounds' mismatches. 2365 if (InBounds != other.InBounds) 2366 return MultipleFields; 2367 2368 // Check each field to see if it differs. 2369 unsigned Result = NoField; 2370 if (BaseReg != other.BaseReg) 2371 Result |= BaseRegField; 2372 if (BaseGV != other.BaseGV) 2373 Result |= BaseGVField; 2374 if (BaseOffs != other.BaseOffs) 2375 Result |= BaseOffsField; 2376 if (ScaledReg != other.ScaledReg) 2377 Result |= ScaledRegField; 2378 // Don't count 0 as being a different scale, because that actually means 2379 // unscaled (which will already be counted by having no ScaledReg). 2380 if (Scale && other.Scale && Scale != other.Scale) 2381 Result |= ScaleField; 2382 2383 if (countPopulation(Result) > 1) 2384 return MultipleFields; 2385 else 2386 return static_cast<FieldName>(Result); 2387 } 2388 2389 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2390 // with no offset. 2391 bool isTrivial() { 2392 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2393 // trivial if at most one of these terms is nonzero, except that BaseGV and 2394 // BaseReg both being zero actually means a null pointer value, which we 2395 // consider to be 'non-zero' here. 2396 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2397 } 2398 2399 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2400 switch (Field) { 2401 default: 2402 return nullptr; 2403 case BaseRegField: 2404 return BaseReg; 2405 case BaseGVField: 2406 return BaseGV; 2407 case ScaledRegField: 2408 return ScaledReg; 2409 case BaseOffsField: 2410 return ConstantInt::get(IntPtrTy, BaseOffs); 2411 } 2412 } 2413 2414 void SetCombinedField(FieldName Field, Value *V, 2415 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2416 switch (Field) { 2417 default: 2418 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2419 break; 2420 case ExtAddrMode::BaseRegField: 2421 BaseReg = V; 2422 break; 2423 case ExtAddrMode::BaseGVField: 2424 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2425 // in the BaseReg field. 2426 assert(BaseReg == nullptr); 2427 BaseReg = V; 2428 BaseGV = nullptr; 2429 break; 2430 case ExtAddrMode::ScaledRegField: 2431 ScaledReg = V; 2432 // If we have a mix of scaled and unscaled addrmodes then we want scale 2433 // to be the scale and not zero. 2434 if (!Scale) 2435 for (const ExtAddrMode &AM : AddrModes) 2436 if (AM.Scale) { 2437 Scale = AM.Scale; 2438 break; 2439 } 2440 break; 2441 case ExtAddrMode::BaseOffsField: 2442 // The offset is no longer a constant, so it goes in ScaledReg with a 2443 // scale of 1. 2444 assert(ScaledReg == nullptr); 2445 ScaledReg = V; 2446 Scale = 1; 2447 BaseOffs = 0; 2448 break; 2449 } 2450 } 2451 }; 2452 2453 } // end anonymous namespace 2454 2455 #ifndef NDEBUG 2456 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2457 AM.print(OS); 2458 return OS; 2459 } 2460 #endif 2461 2462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2463 void ExtAddrMode::print(raw_ostream &OS) const { 2464 bool NeedPlus = false; 2465 OS << "["; 2466 if (InBounds) 2467 OS << "inbounds "; 2468 if (BaseGV) { 2469 OS << (NeedPlus ? " + " : "") 2470 << "GV:"; 2471 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2472 NeedPlus = true; 2473 } 2474 2475 if (BaseOffs) { 2476 OS << (NeedPlus ? " + " : "") 2477 << BaseOffs; 2478 NeedPlus = true; 2479 } 2480 2481 if (BaseReg) { 2482 OS << (NeedPlus ? " + " : "") 2483 << "Base:"; 2484 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2485 NeedPlus = true; 2486 } 2487 if (Scale) { 2488 OS << (NeedPlus ? " + " : "") 2489 << Scale << "*"; 2490 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2491 } 2492 2493 OS << ']'; 2494 } 2495 2496 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2497 print(dbgs()); 2498 dbgs() << '\n'; 2499 } 2500 #endif 2501 2502 namespace { 2503 2504 /// This class provides transaction based operation on the IR. 2505 /// Every change made through this class is recorded in the internal state and 2506 /// can be undone (rollback) until commit is called. 2507 /// CGP does not check if instructions could be speculatively executed when 2508 /// moved. Preserving the original location would pessimize the debugging 2509 /// experience, as well as negatively impact the quality of sample PGO. 2510 class TypePromotionTransaction { 2511 /// This represents the common interface of the individual transaction. 2512 /// Each class implements the logic for doing one specific modification on 2513 /// the IR via the TypePromotionTransaction. 2514 class TypePromotionAction { 2515 protected: 2516 /// The Instruction modified. 2517 Instruction *Inst; 2518 2519 public: 2520 /// Constructor of the action. 2521 /// The constructor performs the related action on the IR. 2522 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2523 2524 virtual ~TypePromotionAction() = default; 2525 2526 /// Undo the modification done by this action. 2527 /// When this method is called, the IR must be in the same state as it was 2528 /// before this action was applied. 2529 /// \pre Undoing the action works if and only if the IR is in the exact same 2530 /// state as it was directly after this action was applied. 2531 virtual void undo() = 0; 2532 2533 /// Advocate every change made by this action. 2534 /// When the results on the IR of the action are to be kept, it is important 2535 /// to call this function, otherwise hidden information may be kept forever. 2536 virtual void commit() { 2537 // Nothing to be done, this action is not doing anything. 2538 } 2539 }; 2540 2541 /// Utility to remember the position of an instruction. 2542 class InsertionHandler { 2543 /// Position of an instruction. 2544 /// Either an instruction: 2545 /// - Is the first in a basic block: BB is used. 2546 /// - Has a previous instruction: PrevInst is used. 2547 union { 2548 Instruction *PrevInst; 2549 BasicBlock *BB; 2550 } Point; 2551 2552 /// Remember whether or not the instruction had a previous instruction. 2553 bool HasPrevInstruction; 2554 2555 public: 2556 /// Record the position of \p Inst. 2557 InsertionHandler(Instruction *Inst) { 2558 BasicBlock::iterator It = Inst->getIterator(); 2559 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2560 if (HasPrevInstruction) 2561 Point.PrevInst = &*--It; 2562 else 2563 Point.BB = Inst->getParent(); 2564 } 2565 2566 /// Insert \p Inst at the recorded position. 2567 void insert(Instruction *Inst) { 2568 if (HasPrevInstruction) { 2569 if (Inst->getParent()) 2570 Inst->removeFromParent(); 2571 Inst->insertAfter(Point.PrevInst); 2572 } else { 2573 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2574 if (Inst->getParent()) 2575 Inst->moveBefore(Position); 2576 else 2577 Inst->insertBefore(Position); 2578 } 2579 } 2580 }; 2581 2582 /// Move an instruction before another. 2583 class InstructionMoveBefore : public TypePromotionAction { 2584 /// Original position of the instruction. 2585 InsertionHandler Position; 2586 2587 public: 2588 /// Move \p Inst before \p Before. 2589 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2590 : TypePromotionAction(Inst), Position(Inst) { 2591 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2592 << "\n"); 2593 Inst->moveBefore(Before); 2594 } 2595 2596 /// Move the instruction back to its original position. 2597 void undo() override { 2598 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2599 Position.insert(Inst); 2600 } 2601 }; 2602 2603 /// Set the operand of an instruction with a new value. 2604 class OperandSetter : public TypePromotionAction { 2605 /// Original operand of the instruction. 2606 Value *Origin; 2607 2608 /// Index of the modified instruction. 2609 unsigned Idx; 2610 2611 public: 2612 /// Set \p Idx operand of \p Inst with \p NewVal. 2613 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2614 : TypePromotionAction(Inst), Idx(Idx) { 2615 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2616 << "for:" << *Inst << "\n" 2617 << "with:" << *NewVal << "\n"); 2618 Origin = Inst->getOperand(Idx); 2619 Inst->setOperand(Idx, NewVal); 2620 } 2621 2622 /// Restore the original value of the instruction. 2623 void undo() override { 2624 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2625 << "for: " << *Inst << "\n" 2626 << "with: " << *Origin << "\n"); 2627 Inst->setOperand(Idx, Origin); 2628 } 2629 }; 2630 2631 /// Hide the operands of an instruction. 2632 /// Do as if this instruction was not using any of its operands. 2633 class OperandsHider : public TypePromotionAction { 2634 /// The list of original operands. 2635 SmallVector<Value *, 4> OriginalValues; 2636 2637 public: 2638 /// Remove \p Inst from the uses of the operands of \p Inst. 2639 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2640 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2641 unsigned NumOpnds = Inst->getNumOperands(); 2642 OriginalValues.reserve(NumOpnds); 2643 for (unsigned It = 0; It < NumOpnds; ++It) { 2644 // Save the current operand. 2645 Value *Val = Inst->getOperand(It); 2646 OriginalValues.push_back(Val); 2647 // Set a dummy one. 2648 // We could use OperandSetter here, but that would imply an overhead 2649 // that we are not willing to pay. 2650 Inst->setOperand(It, UndefValue::get(Val->getType())); 2651 } 2652 } 2653 2654 /// Restore the original list of uses. 2655 void undo() override { 2656 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2657 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2658 Inst->setOperand(It, OriginalValues[It]); 2659 } 2660 }; 2661 2662 /// Build a truncate instruction. 2663 class TruncBuilder : public TypePromotionAction { 2664 Value *Val; 2665 2666 public: 2667 /// Build a truncate instruction of \p Opnd producing a \p Ty 2668 /// result. 2669 /// trunc Opnd to Ty. 2670 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2671 IRBuilder<> Builder(Opnd); 2672 Builder.SetCurrentDebugLocation(DebugLoc()); 2673 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2674 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2675 } 2676 2677 /// Get the built value. 2678 Value *getBuiltValue() { return Val; } 2679 2680 /// Remove the built instruction. 2681 void undo() override { 2682 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2683 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2684 IVal->eraseFromParent(); 2685 } 2686 }; 2687 2688 /// Build a sign extension instruction. 2689 class SExtBuilder : public TypePromotionAction { 2690 Value *Val; 2691 2692 public: 2693 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2694 /// result. 2695 /// sext Opnd to Ty. 2696 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2697 : TypePromotionAction(InsertPt) { 2698 IRBuilder<> Builder(InsertPt); 2699 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2700 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2701 } 2702 2703 /// Get the built value. 2704 Value *getBuiltValue() { return Val; } 2705 2706 /// Remove the built instruction. 2707 void undo() override { 2708 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2709 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2710 IVal->eraseFromParent(); 2711 } 2712 }; 2713 2714 /// Build a zero extension instruction. 2715 class ZExtBuilder : public TypePromotionAction { 2716 Value *Val; 2717 2718 public: 2719 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2720 /// result. 2721 /// zext Opnd to Ty. 2722 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2723 : TypePromotionAction(InsertPt) { 2724 IRBuilder<> Builder(InsertPt); 2725 Builder.SetCurrentDebugLocation(DebugLoc()); 2726 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2727 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2728 } 2729 2730 /// Get the built value. 2731 Value *getBuiltValue() { return Val; } 2732 2733 /// Remove the built instruction. 2734 void undo() override { 2735 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2736 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2737 IVal->eraseFromParent(); 2738 } 2739 }; 2740 2741 /// Mutate an instruction to another type. 2742 class TypeMutator : public TypePromotionAction { 2743 /// Record the original type. 2744 Type *OrigTy; 2745 2746 public: 2747 /// Mutate the type of \p Inst into \p NewTy. 2748 TypeMutator(Instruction *Inst, Type *NewTy) 2749 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2750 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2751 << "\n"); 2752 Inst->mutateType(NewTy); 2753 } 2754 2755 /// Mutate the instruction back to its original type. 2756 void undo() override { 2757 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2758 << "\n"); 2759 Inst->mutateType(OrigTy); 2760 } 2761 }; 2762 2763 /// Replace the uses of an instruction by another instruction. 2764 class UsesReplacer : public TypePromotionAction { 2765 /// Helper structure to keep track of the replaced uses. 2766 struct InstructionAndIdx { 2767 /// The instruction using the instruction. 2768 Instruction *Inst; 2769 2770 /// The index where this instruction is used for Inst. 2771 unsigned Idx; 2772 2773 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2774 : Inst(Inst), Idx(Idx) {} 2775 }; 2776 2777 /// Keep track of the original uses (pair Instruction, Index). 2778 SmallVector<InstructionAndIdx, 4> OriginalUses; 2779 /// Keep track of the debug users. 2780 SmallVector<DbgValueInst *, 1> DbgValues; 2781 2782 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2783 2784 public: 2785 /// Replace all the use of \p Inst by \p New. 2786 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2787 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2788 << "\n"); 2789 // Record the original uses. 2790 for (Use &U : Inst->uses()) { 2791 Instruction *UserI = cast<Instruction>(U.getUser()); 2792 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2793 } 2794 // Record the debug uses separately. They are not in the instruction's 2795 // use list, but they are replaced by RAUW. 2796 findDbgValues(DbgValues, Inst); 2797 2798 // Now, we can replace the uses. 2799 Inst->replaceAllUsesWith(New); 2800 } 2801 2802 /// Reassign the original uses of Inst to Inst. 2803 void undo() override { 2804 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2805 for (use_iterator UseIt = OriginalUses.begin(), 2806 EndIt = OriginalUses.end(); 2807 UseIt != EndIt; ++UseIt) { 2808 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2809 } 2810 // RAUW has replaced all original uses with references to the new value, 2811 // including the debug uses. Since we are undoing the replacements, 2812 // the original debug uses must also be reinstated to maintain the 2813 // correctness and utility of debug value instructions. 2814 for (auto *DVI: DbgValues) { 2815 LLVMContext &Ctx = Inst->getType()->getContext(); 2816 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2817 DVI->setOperand(0, MV); 2818 } 2819 } 2820 }; 2821 2822 /// Remove an instruction from the IR. 2823 class InstructionRemover : public TypePromotionAction { 2824 /// Original position of the instruction. 2825 InsertionHandler Inserter; 2826 2827 /// Helper structure to hide all the link to the instruction. In other 2828 /// words, this helps to do as if the instruction was removed. 2829 OperandsHider Hider; 2830 2831 /// Keep track of the uses replaced, if any. 2832 UsesReplacer *Replacer = nullptr; 2833 2834 /// Keep track of instructions removed. 2835 SetOfInstrs &RemovedInsts; 2836 2837 public: 2838 /// Remove all reference of \p Inst and optionally replace all its 2839 /// uses with New. 2840 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2841 /// \pre If !Inst->use_empty(), then New != nullptr 2842 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2843 Value *New = nullptr) 2844 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2845 RemovedInsts(RemovedInsts) { 2846 if (New) 2847 Replacer = new UsesReplacer(Inst, New); 2848 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2849 RemovedInsts.insert(Inst); 2850 /// The instructions removed here will be freed after completing 2851 /// optimizeBlock() for all blocks as we need to keep track of the 2852 /// removed instructions during promotion. 2853 Inst->removeFromParent(); 2854 } 2855 2856 ~InstructionRemover() override { delete Replacer; } 2857 2858 /// Resurrect the instruction and reassign it to the proper uses if 2859 /// new value was provided when build this action. 2860 void undo() override { 2861 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2862 Inserter.insert(Inst); 2863 if (Replacer) 2864 Replacer->undo(); 2865 Hider.undo(); 2866 RemovedInsts.erase(Inst); 2867 } 2868 }; 2869 2870 public: 2871 /// Restoration point. 2872 /// The restoration point is a pointer to an action instead of an iterator 2873 /// because the iterator may be invalidated but not the pointer. 2874 using ConstRestorationPt = const TypePromotionAction *; 2875 2876 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2877 : RemovedInsts(RemovedInsts) {} 2878 2879 /// Advocate every changes made in that transaction. Return true if any change 2880 /// happen. 2881 bool commit(); 2882 2883 /// Undo all the changes made after the given point. 2884 void rollback(ConstRestorationPt Point); 2885 2886 /// Get the current restoration point. 2887 ConstRestorationPt getRestorationPoint() const; 2888 2889 /// \name API for IR modification with state keeping to support rollback. 2890 /// @{ 2891 /// Same as Instruction::setOperand. 2892 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2893 2894 /// Same as Instruction::eraseFromParent. 2895 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2896 2897 /// Same as Value::replaceAllUsesWith. 2898 void replaceAllUsesWith(Instruction *Inst, Value *New); 2899 2900 /// Same as Value::mutateType. 2901 void mutateType(Instruction *Inst, Type *NewTy); 2902 2903 /// Same as IRBuilder::createTrunc. 2904 Value *createTrunc(Instruction *Opnd, Type *Ty); 2905 2906 /// Same as IRBuilder::createSExt. 2907 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2908 2909 /// Same as IRBuilder::createZExt. 2910 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2911 2912 /// Same as Instruction::moveBefore. 2913 void moveBefore(Instruction *Inst, Instruction *Before); 2914 /// @} 2915 2916 private: 2917 /// The ordered list of actions made so far. 2918 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2919 2920 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2921 2922 SetOfInstrs &RemovedInsts; 2923 }; 2924 2925 } // end anonymous namespace 2926 2927 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2928 Value *NewVal) { 2929 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2930 Inst, Idx, NewVal)); 2931 } 2932 2933 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2934 Value *NewVal) { 2935 Actions.push_back( 2936 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2937 Inst, RemovedInsts, NewVal)); 2938 } 2939 2940 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2941 Value *New) { 2942 Actions.push_back( 2943 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2944 } 2945 2946 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2947 Actions.push_back( 2948 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2949 } 2950 2951 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2952 Type *Ty) { 2953 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2954 Value *Val = Ptr->getBuiltValue(); 2955 Actions.push_back(std::move(Ptr)); 2956 return Val; 2957 } 2958 2959 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2960 Value *Opnd, Type *Ty) { 2961 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2962 Value *Val = Ptr->getBuiltValue(); 2963 Actions.push_back(std::move(Ptr)); 2964 return Val; 2965 } 2966 2967 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2968 Value *Opnd, Type *Ty) { 2969 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2970 Value *Val = Ptr->getBuiltValue(); 2971 Actions.push_back(std::move(Ptr)); 2972 return Val; 2973 } 2974 2975 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2976 Instruction *Before) { 2977 Actions.push_back( 2978 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2979 Inst, Before)); 2980 } 2981 2982 TypePromotionTransaction::ConstRestorationPt 2983 TypePromotionTransaction::getRestorationPoint() const { 2984 return !Actions.empty() ? Actions.back().get() : nullptr; 2985 } 2986 2987 bool TypePromotionTransaction::commit() { 2988 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2989 ++It) 2990 (*It)->commit(); 2991 bool Modified = !Actions.empty(); 2992 Actions.clear(); 2993 return Modified; 2994 } 2995 2996 void TypePromotionTransaction::rollback( 2997 TypePromotionTransaction::ConstRestorationPt Point) { 2998 while (!Actions.empty() && Point != Actions.back().get()) { 2999 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3000 Curr->undo(); 3001 } 3002 } 3003 3004 namespace { 3005 3006 /// A helper class for matching addressing modes. 3007 /// 3008 /// This encapsulates the logic for matching the target-legal addressing modes. 3009 class AddressingModeMatcher { 3010 SmallVectorImpl<Instruction*> &AddrModeInsts; 3011 const TargetLowering &TLI; 3012 const TargetRegisterInfo &TRI; 3013 const DataLayout &DL; 3014 3015 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3016 /// the memory instruction that we're computing this address for. 3017 Type *AccessTy; 3018 unsigned AddrSpace; 3019 Instruction *MemoryInst; 3020 3021 /// This is the addressing mode that we're building up. This is 3022 /// part of the return value of this addressing mode matching stuff. 3023 ExtAddrMode &AddrMode; 3024 3025 /// The instructions inserted by other CodeGenPrepare optimizations. 3026 const SetOfInstrs &InsertedInsts; 3027 3028 /// A map from the instructions to their type before promotion. 3029 InstrToOrigTy &PromotedInsts; 3030 3031 /// The ongoing transaction where every action should be registered. 3032 TypePromotionTransaction &TPT; 3033 3034 // A GEP which has too large offset to be folded into the addressing mode. 3035 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3036 3037 /// This is set to true when we should not do profitability checks. 3038 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3039 bool IgnoreProfitability; 3040 3041 /// True if we are optimizing for size. 3042 bool OptSize; 3043 3044 ProfileSummaryInfo *PSI; 3045 BlockFrequencyInfo *BFI; 3046 3047 AddressingModeMatcher( 3048 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3049 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3050 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3051 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3052 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3053 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3054 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3055 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3056 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3057 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3058 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3059 IgnoreProfitability = false; 3060 } 3061 3062 public: 3063 /// Find the maximal addressing mode that a load/store of V can fold, 3064 /// give an access type of AccessTy. This returns a list of involved 3065 /// instructions in AddrModeInsts. 3066 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3067 /// optimizations. 3068 /// \p PromotedInsts maps the instructions to their type before promotion. 3069 /// \p The ongoing transaction where every action should be registered. 3070 static ExtAddrMode 3071 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3072 SmallVectorImpl<Instruction *> &AddrModeInsts, 3073 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3074 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3075 TypePromotionTransaction &TPT, 3076 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3077 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3078 ExtAddrMode Result; 3079 3080 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3081 MemoryInst, Result, InsertedInsts, 3082 PromotedInsts, TPT, LargeOffsetGEP, 3083 OptSize, PSI, BFI) 3084 .matchAddr(V, 0); 3085 (void)Success; assert(Success && "Couldn't select *anything*?"); 3086 return Result; 3087 } 3088 3089 private: 3090 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3091 bool matchAddr(Value *Addr, unsigned Depth); 3092 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3093 bool *MovedAway = nullptr); 3094 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3095 ExtAddrMode &AMBefore, 3096 ExtAddrMode &AMAfter); 3097 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3098 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3099 Value *PromotedOperand) const; 3100 }; 3101 3102 class PhiNodeSet; 3103 3104 /// An iterator for PhiNodeSet. 3105 class PhiNodeSetIterator { 3106 PhiNodeSet * const Set; 3107 size_t CurrentIndex = 0; 3108 3109 public: 3110 /// The constructor. Start should point to either a valid element, or be equal 3111 /// to the size of the underlying SmallVector of the PhiNodeSet. 3112 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3113 PHINode * operator*() const; 3114 PhiNodeSetIterator& operator++(); 3115 bool operator==(const PhiNodeSetIterator &RHS) const; 3116 bool operator!=(const PhiNodeSetIterator &RHS) const; 3117 }; 3118 3119 /// Keeps a set of PHINodes. 3120 /// 3121 /// This is a minimal set implementation for a specific use case: 3122 /// It is very fast when there are very few elements, but also provides good 3123 /// performance when there are many. It is similar to SmallPtrSet, but also 3124 /// provides iteration by insertion order, which is deterministic and stable 3125 /// across runs. It is also similar to SmallSetVector, but provides removing 3126 /// elements in O(1) time. This is achieved by not actually removing the element 3127 /// from the underlying vector, so comes at the cost of using more memory, but 3128 /// that is fine, since PhiNodeSets are used as short lived objects. 3129 class PhiNodeSet { 3130 friend class PhiNodeSetIterator; 3131 3132 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3133 using iterator = PhiNodeSetIterator; 3134 3135 /// Keeps the elements in the order of their insertion in the underlying 3136 /// vector. To achieve constant time removal, it never deletes any element. 3137 SmallVector<PHINode *, 32> NodeList; 3138 3139 /// Keeps the elements in the underlying set implementation. This (and not the 3140 /// NodeList defined above) is the source of truth on whether an element 3141 /// is actually in the collection. 3142 MapType NodeMap; 3143 3144 /// Points to the first valid (not deleted) element when the set is not empty 3145 /// and the value is not zero. Equals to the size of the underlying vector 3146 /// when the set is empty. When the value is 0, as in the beginning, the 3147 /// first element may or may not be valid. 3148 size_t FirstValidElement = 0; 3149 3150 public: 3151 /// Inserts a new element to the collection. 3152 /// \returns true if the element is actually added, i.e. was not in the 3153 /// collection before the operation. 3154 bool insert(PHINode *Ptr) { 3155 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3156 NodeList.push_back(Ptr); 3157 return true; 3158 } 3159 return false; 3160 } 3161 3162 /// Removes the element from the collection. 3163 /// \returns whether the element is actually removed, i.e. was in the 3164 /// collection before the operation. 3165 bool erase(PHINode *Ptr) { 3166 if (NodeMap.erase(Ptr)) { 3167 SkipRemovedElements(FirstValidElement); 3168 return true; 3169 } 3170 return false; 3171 } 3172 3173 /// Removes all elements and clears the collection. 3174 void clear() { 3175 NodeMap.clear(); 3176 NodeList.clear(); 3177 FirstValidElement = 0; 3178 } 3179 3180 /// \returns an iterator that will iterate the elements in the order of 3181 /// insertion. 3182 iterator begin() { 3183 if (FirstValidElement == 0) 3184 SkipRemovedElements(FirstValidElement); 3185 return PhiNodeSetIterator(this, FirstValidElement); 3186 } 3187 3188 /// \returns an iterator that points to the end of the collection. 3189 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3190 3191 /// Returns the number of elements in the collection. 3192 size_t size() const { 3193 return NodeMap.size(); 3194 } 3195 3196 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3197 size_t count(PHINode *Ptr) const { 3198 return NodeMap.count(Ptr); 3199 } 3200 3201 private: 3202 /// Updates the CurrentIndex so that it will point to a valid element. 3203 /// 3204 /// If the element of NodeList at CurrentIndex is valid, it does not 3205 /// change it. If there are no more valid elements, it updates CurrentIndex 3206 /// to point to the end of the NodeList. 3207 void SkipRemovedElements(size_t &CurrentIndex) { 3208 while (CurrentIndex < NodeList.size()) { 3209 auto it = NodeMap.find(NodeList[CurrentIndex]); 3210 // If the element has been deleted and added again later, NodeMap will 3211 // point to a different index, so CurrentIndex will still be invalid. 3212 if (it != NodeMap.end() && it->second == CurrentIndex) 3213 break; 3214 ++CurrentIndex; 3215 } 3216 } 3217 }; 3218 3219 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3220 : Set(Set), CurrentIndex(Start) {} 3221 3222 PHINode * PhiNodeSetIterator::operator*() const { 3223 assert(CurrentIndex < Set->NodeList.size() && 3224 "PhiNodeSet access out of range"); 3225 return Set->NodeList[CurrentIndex]; 3226 } 3227 3228 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3229 assert(CurrentIndex < Set->NodeList.size() && 3230 "PhiNodeSet access out of range"); 3231 ++CurrentIndex; 3232 Set->SkipRemovedElements(CurrentIndex); 3233 return *this; 3234 } 3235 3236 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3237 return CurrentIndex == RHS.CurrentIndex; 3238 } 3239 3240 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3241 return !((*this) == RHS); 3242 } 3243 3244 /// Keep track of simplification of Phi nodes. 3245 /// Accept the set of all phi nodes and erase phi node from this set 3246 /// if it is simplified. 3247 class SimplificationTracker { 3248 DenseMap<Value *, Value *> Storage; 3249 const SimplifyQuery &SQ; 3250 // Tracks newly created Phi nodes. The elements are iterated by insertion 3251 // order. 3252 PhiNodeSet AllPhiNodes; 3253 // Tracks newly created Select nodes. 3254 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3255 3256 public: 3257 SimplificationTracker(const SimplifyQuery &sq) 3258 : SQ(sq) {} 3259 3260 Value *Get(Value *V) { 3261 do { 3262 auto SV = Storage.find(V); 3263 if (SV == Storage.end()) 3264 return V; 3265 V = SV->second; 3266 } while (true); 3267 } 3268 3269 Value *Simplify(Value *Val) { 3270 SmallVector<Value *, 32> WorkList; 3271 SmallPtrSet<Value *, 32> Visited; 3272 WorkList.push_back(Val); 3273 while (!WorkList.empty()) { 3274 auto *P = WorkList.pop_back_val(); 3275 if (!Visited.insert(P).second) 3276 continue; 3277 if (auto *PI = dyn_cast<Instruction>(P)) 3278 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3279 for (auto *U : PI->users()) 3280 WorkList.push_back(cast<Value>(U)); 3281 Put(PI, V); 3282 PI->replaceAllUsesWith(V); 3283 if (auto *PHI = dyn_cast<PHINode>(PI)) 3284 AllPhiNodes.erase(PHI); 3285 if (auto *Select = dyn_cast<SelectInst>(PI)) 3286 AllSelectNodes.erase(Select); 3287 PI->eraseFromParent(); 3288 } 3289 } 3290 return Get(Val); 3291 } 3292 3293 void Put(Value *From, Value *To) { 3294 Storage.insert({ From, To }); 3295 } 3296 3297 void ReplacePhi(PHINode *From, PHINode *To) { 3298 Value* OldReplacement = Get(From); 3299 while (OldReplacement != From) { 3300 From = To; 3301 To = dyn_cast<PHINode>(OldReplacement); 3302 OldReplacement = Get(From); 3303 } 3304 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3305 Put(From, To); 3306 From->replaceAllUsesWith(To); 3307 AllPhiNodes.erase(From); 3308 From->eraseFromParent(); 3309 } 3310 3311 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3312 3313 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3314 3315 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3316 3317 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3318 3319 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3320 3321 void destroyNewNodes(Type *CommonType) { 3322 // For safe erasing, replace the uses with dummy value first. 3323 auto *Dummy = UndefValue::get(CommonType); 3324 for (auto *I : AllPhiNodes) { 3325 I->replaceAllUsesWith(Dummy); 3326 I->eraseFromParent(); 3327 } 3328 AllPhiNodes.clear(); 3329 for (auto *I : AllSelectNodes) { 3330 I->replaceAllUsesWith(Dummy); 3331 I->eraseFromParent(); 3332 } 3333 AllSelectNodes.clear(); 3334 } 3335 }; 3336 3337 /// A helper class for combining addressing modes. 3338 class AddressingModeCombiner { 3339 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3340 typedef std::pair<PHINode *, PHINode *> PHIPair; 3341 3342 private: 3343 /// The addressing modes we've collected. 3344 SmallVector<ExtAddrMode, 16> AddrModes; 3345 3346 /// The field in which the AddrModes differ, when we have more than one. 3347 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3348 3349 /// Are the AddrModes that we have all just equal to their original values? 3350 bool AllAddrModesTrivial = true; 3351 3352 /// Common Type for all different fields in addressing modes. 3353 Type *CommonType; 3354 3355 /// SimplifyQuery for simplifyInstruction utility. 3356 const SimplifyQuery &SQ; 3357 3358 /// Original Address. 3359 Value *Original; 3360 3361 public: 3362 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3363 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3364 3365 /// Get the combined AddrMode 3366 const ExtAddrMode &getAddrMode() const { 3367 return AddrModes[0]; 3368 } 3369 3370 /// Add a new AddrMode if it's compatible with the AddrModes we already 3371 /// have. 3372 /// \return True iff we succeeded in doing so. 3373 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3374 // Take note of if we have any non-trivial AddrModes, as we need to detect 3375 // when all AddrModes are trivial as then we would introduce a phi or select 3376 // which just duplicates what's already there. 3377 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3378 3379 // If this is the first addrmode then everything is fine. 3380 if (AddrModes.empty()) { 3381 AddrModes.emplace_back(NewAddrMode); 3382 return true; 3383 } 3384 3385 // Figure out how different this is from the other address modes, which we 3386 // can do just by comparing against the first one given that we only care 3387 // about the cumulative difference. 3388 ExtAddrMode::FieldName ThisDifferentField = 3389 AddrModes[0].compare(NewAddrMode); 3390 if (DifferentField == ExtAddrMode::NoField) 3391 DifferentField = ThisDifferentField; 3392 else if (DifferentField != ThisDifferentField) 3393 DifferentField = ExtAddrMode::MultipleFields; 3394 3395 // If NewAddrMode differs in more than one dimension we cannot handle it. 3396 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3397 3398 // If Scale Field is different then we reject. 3399 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3400 3401 // We also must reject the case when base offset is different and 3402 // scale reg is not null, we cannot handle this case due to merge of 3403 // different offsets will be used as ScaleReg. 3404 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3405 !NewAddrMode.ScaledReg); 3406 3407 // We also must reject the case when GV is different and BaseReg installed 3408 // due to we want to use base reg as a merge of GV values. 3409 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3410 !NewAddrMode.HasBaseReg); 3411 3412 // Even if NewAddMode is the same we still need to collect it due to 3413 // original value is different. And later we will need all original values 3414 // as anchors during finding the common Phi node. 3415 if (CanHandle) 3416 AddrModes.emplace_back(NewAddrMode); 3417 else 3418 AddrModes.clear(); 3419 3420 return CanHandle; 3421 } 3422 3423 /// Combine the addressing modes we've collected into a single 3424 /// addressing mode. 3425 /// \return True iff we successfully combined them or we only had one so 3426 /// didn't need to combine them anyway. 3427 bool combineAddrModes() { 3428 // If we have no AddrModes then they can't be combined. 3429 if (AddrModes.size() == 0) 3430 return false; 3431 3432 // A single AddrMode can trivially be combined. 3433 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3434 return true; 3435 3436 // If the AddrModes we collected are all just equal to the value they are 3437 // derived from then combining them wouldn't do anything useful. 3438 if (AllAddrModesTrivial) 3439 return false; 3440 3441 if (!addrModeCombiningAllowed()) 3442 return false; 3443 3444 // Build a map between <original value, basic block where we saw it> to 3445 // value of base register. 3446 // Bail out if there is no common type. 3447 FoldAddrToValueMapping Map; 3448 if (!initializeMap(Map)) 3449 return false; 3450 3451 Value *CommonValue = findCommon(Map); 3452 if (CommonValue) 3453 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3454 return CommonValue != nullptr; 3455 } 3456 3457 private: 3458 /// Initialize Map with anchor values. For address seen 3459 /// we set the value of different field saw in this address. 3460 /// At the same time we find a common type for different field we will 3461 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3462 /// Return false if there is no common type found. 3463 bool initializeMap(FoldAddrToValueMapping &Map) { 3464 // Keep track of keys where the value is null. We will need to replace it 3465 // with constant null when we know the common type. 3466 SmallVector<Value *, 2> NullValue; 3467 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3468 for (auto &AM : AddrModes) { 3469 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3470 if (DV) { 3471 auto *Type = DV->getType(); 3472 if (CommonType && CommonType != Type) 3473 return false; 3474 CommonType = Type; 3475 Map[AM.OriginalValue] = DV; 3476 } else { 3477 NullValue.push_back(AM.OriginalValue); 3478 } 3479 } 3480 assert(CommonType && "At least one non-null value must be!"); 3481 for (auto *V : NullValue) 3482 Map[V] = Constant::getNullValue(CommonType); 3483 return true; 3484 } 3485 3486 /// We have mapping between value A and other value B where B was a field in 3487 /// addressing mode represented by A. Also we have an original value C 3488 /// representing an address we start with. Traversing from C through phi and 3489 /// selects we ended up with A's in a map. This utility function tries to find 3490 /// a value V which is a field in addressing mode C and traversing through phi 3491 /// nodes and selects we will end up in corresponded values B in a map. 3492 /// The utility will create a new Phi/Selects if needed. 3493 // The simple example looks as follows: 3494 // BB1: 3495 // p1 = b1 + 40 3496 // br cond BB2, BB3 3497 // BB2: 3498 // p2 = b2 + 40 3499 // br BB3 3500 // BB3: 3501 // p = phi [p1, BB1], [p2, BB2] 3502 // v = load p 3503 // Map is 3504 // p1 -> b1 3505 // p2 -> b2 3506 // Request is 3507 // p -> ? 3508 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3509 Value *findCommon(FoldAddrToValueMapping &Map) { 3510 // Tracks the simplification of newly created phi nodes. The reason we use 3511 // this mapping is because we will add new created Phi nodes in AddrToBase. 3512 // Simplification of Phi nodes is recursive, so some Phi node may 3513 // be simplified after we added it to AddrToBase. In reality this 3514 // simplification is possible only if original phi/selects were not 3515 // simplified yet. 3516 // Using this mapping we can find the current value in AddrToBase. 3517 SimplificationTracker ST(SQ); 3518 3519 // First step, DFS to create PHI nodes for all intermediate blocks. 3520 // Also fill traverse order for the second step. 3521 SmallVector<Value *, 32> TraverseOrder; 3522 InsertPlaceholders(Map, TraverseOrder, ST); 3523 3524 // Second Step, fill new nodes by merged values and simplify if possible. 3525 FillPlaceholders(Map, TraverseOrder, ST); 3526 3527 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3528 ST.destroyNewNodes(CommonType); 3529 return nullptr; 3530 } 3531 3532 // Now we'd like to match New Phi nodes to existed ones. 3533 unsigned PhiNotMatchedCount = 0; 3534 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3535 ST.destroyNewNodes(CommonType); 3536 return nullptr; 3537 } 3538 3539 auto *Result = ST.Get(Map.find(Original)->second); 3540 if (Result) { 3541 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3542 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3543 } 3544 return Result; 3545 } 3546 3547 /// Try to match PHI node to Candidate. 3548 /// Matcher tracks the matched Phi nodes. 3549 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3550 SmallSetVector<PHIPair, 8> &Matcher, 3551 PhiNodeSet &PhiNodesToMatch) { 3552 SmallVector<PHIPair, 8> WorkList; 3553 Matcher.insert({ PHI, Candidate }); 3554 SmallSet<PHINode *, 8> MatchedPHIs; 3555 MatchedPHIs.insert(PHI); 3556 WorkList.push_back({ PHI, Candidate }); 3557 SmallSet<PHIPair, 8> Visited; 3558 while (!WorkList.empty()) { 3559 auto Item = WorkList.pop_back_val(); 3560 if (!Visited.insert(Item).second) 3561 continue; 3562 // We iterate over all incoming values to Phi to compare them. 3563 // If values are different and both of them Phi and the first one is a 3564 // Phi we added (subject to match) and both of them is in the same basic 3565 // block then we can match our pair if values match. So we state that 3566 // these values match and add it to work list to verify that. 3567 for (auto B : Item.first->blocks()) { 3568 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3569 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3570 if (FirstValue == SecondValue) 3571 continue; 3572 3573 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3574 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3575 3576 // One of them is not Phi or 3577 // The first one is not Phi node from the set we'd like to match or 3578 // Phi nodes from different basic blocks then 3579 // we will not be able to match. 3580 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3581 FirstPhi->getParent() != SecondPhi->getParent()) 3582 return false; 3583 3584 // If we already matched them then continue. 3585 if (Matcher.count({ FirstPhi, SecondPhi })) 3586 continue; 3587 // So the values are different and does not match. So we need them to 3588 // match. (But we register no more than one match per PHI node, so that 3589 // we won't later try to replace them twice.) 3590 if (MatchedPHIs.insert(FirstPhi).second) 3591 Matcher.insert({ FirstPhi, SecondPhi }); 3592 // But me must check it. 3593 WorkList.push_back({ FirstPhi, SecondPhi }); 3594 } 3595 } 3596 return true; 3597 } 3598 3599 /// For the given set of PHI nodes (in the SimplificationTracker) try 3600 /// to find their equivalents. 3601 /// Returns false if this matching fails and creation of new Phi is disabled. 3602 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3603 unsigned &PhiNotMatchedCount) { 3604 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3605 // order, so the replacements (ReplacePhi) are also done in a deterministic 3606 // order. 3607 SmallSetVector<PHIPair, 8> Matched; 3608 SmallPtrSet<PHINode *, 8> WillNotMatch; 3609 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3610 while (PhiNodesToMatch.size()) { 3611 PHINode *PHI = *PhiNodesToMatch.begin(); 3612 3613 // Add us, if no Phi nodes in the basic block we do not match. 3614 WillNotMatch.clear(); 3615 WillNotMatch.insert(PHI); 3616 3617 // Traverse all Phis until we found equivalent or fail to do that. 3618 bool IsMatched = false; 3619 for (auto &P : PHI->getParent()->phis()) { 3620 if (&P == PHI) 3621 continue; 3622 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3623 break; 3624 // If it does not match, collect all Phi nodes from matcher. 3625 // if we end up with no match, them all these Phi nodes will not match 3626 // later. 3627 for (auto M : Matched) 3628 WillNotMatch.insert(M.first); 3629 Matched.clear(); 3630 } 3631 if (IsMatched) { 3632 // Replace all matched values and erase them. 3633 for (auto MV : Matched) 3634 ST.ReplacePhi(MV.first, MV.second); 3635 Matched.clear(); 3636 continue; 3637 } 3638 // If we are not allowed to create new nodes then bail out. 3639 if (!AllowNewPhiNodes) 3640 return false; 3641 // Just remove all seen values in matcher. They will not match anything. 3642 PhiNotMatchedCount += WillNotMatch.size(); 3643 for (auto *P : WillNotMatch) 3644 PhiNodesToMatch.erase(P); 3645 } 3646 return true; 3647 } 3648 /// Fill the placeholders with values from predecessors and simplify them. 3649 void FillPlaceholders(FoldAddrToValueMapping &Map, 3650 SmallVectorImpl<Value *> &TraverseOrder, 3651 SimplificationTracker &ST) { 3652 while (!TraverseOrder.empty()) { 3653 Value *Current = TraverseOrder.pop_back_val(); 3654 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3655 Value *V = Map[Current]; 3656 3657 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3658 // CurrentValue also must be Select. 3659 auto *CurrentSelect = cast<SelectInst>(Current); 3660 auto *TrueValue = CurrentSelect->getTrueValue(); 3661 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3662 Select->setTrueValue(ST.Get(Map[TrueValue])); 3663 auto *FalseValue = CurrentSelect->getFalseValue(); 3664 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3665 Select->setFalseValue(ST.Get(Map[FalseValue])); 3666 } else { 3667 // Must be a Phi node then. 3668 auto *PHI = cast<PHINode>(V); 3669 // Fill the Phi node with values from predecessors. 3670 for (auto *B : predecessors(PHI->getParent())) { 3671 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3672 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3673 PHI->addIncoming(ST.Get(Map[PV]), B); 3674 } 3675 } 3676 Map[Current] = ST.Simplify(V); 3677 } 3678 } 3679 3680 /// Starting from original value recursively iterates over def-use chain up to 3681 /// known ending values represented in a map. For each traversed phi/select 3682 /// inserts a placeholder Phi or Select. 3683 /// Reports all new created Phi/Select nodes by adding them to set. 3684 /// Also reports and order in what values have been traversed. 3685 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3686 SmallVectorImpl<Value *> &TraverseOrder, 3687 SimplificationTracker &ST) { 3688 SmallVector<Value *, 32> Worklist; 3689 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3690 "Address must be a Phi or Select node"); 3691 auto *Dummy = UndefValue::get(CommonType); 3692 Worklist.push_back(Original); 3693 while (!Worklist.empty()) { 3694 Value *Current = Worklist.pop_back_val(); 3695 // if it is already visited or it is an ending value then skip it. 3696 if (Map.find(Current) != Map.end()) 3697 continue; 3698 TraverseOrder.push_back(Current); 3699 3700 // CurrentValue must be a Phi node or select. All others must be covered 3701 // by anchors. 3702 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3703 // Is it OK to get metadata from OrigSelect?! 3704 // Create a Select placeholder with dummy value. 3705 SelectInst *Select = SelectInst::Create( 3706 CurrentSelect->getCondition(), Dummy, Dummy, 3707 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3708 Map[Current] = Select; 3709 ST.insertNewSelect(Select); 3710 // We are interested in True and False values. 3711 Worklist.push_back(CurrentSelect->getTrueValue()); 3712 Worklist.push_back(CurrentSelect->getFalseValue()); 3713 } else { 3714 // It must be a Phi node then. 3715 PHINode *CurrentPhi = cast<PHINode>(Current); 3716 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3717 PHINode *PHI = 3718 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3719 Map[Current] = PHI; 3720 ST.insertNewPhi(PHI); 3721 append_range(Worklist, CurrentPhi->incoming_values()); 3722 } 3723 } 3724 } 3725 3726 bool addrModeCombiningAllowed() { 3727 if (DisableComplexAddrModes) 3728 return false; 3729 switch (DifferentField) { 3730 default: 3731 return false; 3732 case ExtAddrMode::BaseRegField: 3733 return AddrSinkCombineBaseReg; 3734 case ExtAddrMode::BaseGVField: 3735 return AddrSinkCombineBaseGV; 3736 case ExtAddrMode::BaseOffsField: 3737 return AddrSinkCombineBaseOffs; 3738 case ExtAddrMode::ScaledRegField: 3739 return AddrSinkCombineScaledReg; 3740 } 3741 } 3742 }; 3743 } // end anonymous namespace 3744 3745 /// Try adding ScaleReg*Scale to the current addressing mode. 3746 /// Return true and update AddrMode if this addr mode is legal for the target, 3747 /// false if not. 3748 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3749 unsigned Depth) { 3750 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3751 // mode. Just process that directly. 3752 if (Scale == 1) 3753 return matchAddr(ScaleReg, Depth); 3754 3755 // If the scale is 0, it takes nothing to add this. 3756 if (Scale == 0) 3757 return true; 3758 3759 // If we already have a scale of this value, we can add to it, otherwise, we 3760 // need an available scale field. 3761 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3762 return false; 3763 3764 ExtAddrMode TestAddrMode = AddrMode; 3765 3766 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3767 // [A+B + A*7] -> [B+A*8]. 3768 TestAddrMode.Scale += Scale; 3769 TestAddrMode.ScaledReg = ScaleReg; 3770 3771 // If the new address isn't legal, bail out. 3772 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3773 return false; 3774 3775 // It was legal, so commit it. 3776 AddrMode = TestAddrMode; 3777 3778 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3779 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3780 // X*Scale + C*Scale to addr mode. 3781 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3782 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3783 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3784 CI->getValue().isSignedIntN(64)) { 3785 TestAddrMode.InBounds = false; 3786 TestAddrMode.ScaledReg = AddLHS; 3787 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3788 3789 // If this addressing mode is legal, commit it and remember that we folded 3790 // this instruction. 3791 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3792 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3793 AddrMode = TestAddrMode; 3794 return true; 3795 } 3796 } 3797 3798 // Otherwise, not (x+c)*scale, just return what we have. 3799 return true; 3800 } 3801 3802 /// This is a little filter, which returns true if an addressing computation 3803 /// involving I might be folded into a load/store accessing it. 3804 /// This doesn't need to be perfect, but needs to accept at least 3805 /// the set of instructions that MatchOperationAddr can. 3806 static bool MightBeFoldableInst(Instruction *I) { 3807 switch (I->getOpcode()) { 3808 case Instruction::BitCast: 3809 case Instruction::AddrSpaceCast: 3810 // Don't touch identity bitcasts. 3811 if (I->getType() == I->getOperand(0)->getType()) 3812 return false; 3813 return I->getType()->isIntOrPtrTy(); 3814 case Instruction::PtrToInt: 3815 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3816 return true; 3817 case Instruction::IntToPtr: 3818 // We know the input is intptr_t, so this is foldable. 3819 return true; 3820 case Instruction::Add: 3821 return true; 3822 case Instruction::Mul: 3823 case Instruction::Shl: 3824 // Can only handle X*C and X << C. 3825 return isa<ConstantInt>(I->getOperand(1)); 3826 case Instruction::GetElementPtr: 3827 return true; 3828 default: 3829 return false; 3830 } 3831 } 3832 3833 /// Check whether or not \p Val is a legal instruction for \p TLI. 3834 /// \note \p Val is assumed to be the product of some type promotion. 3835 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3836 /// to be legal, as the non-promoted value would have had the same state. 3837 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3838 const DataLayout &DL, Value *Val) { 3839 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3840 if (!PromotedInst) 3841 return false; 3842 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3843 // If the ISDOpcode is undefined, it was undefined before the promotion. 3844 if (!ISDOpcode) 3845 return true; 3846 // Otherwise, check if the promoted instruction is legal or not. 3847 return TLI.isOperationLegalOrCustom( 3848 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3849 } 3850 3851 namespace { 3852 3853 /// Hepler class to perform type promotion. 3854 class TypePromotionHelper { 3855 /// Utility function to add a promoted instruction \p ExtOpnd to 3856 /// \p PromotedInsts and record the type of extension we have seen. 3857 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3858 Instruction *ExtOpnd, 3859 bool IsSExt) { 3860 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3861 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3862 if (It != PromotedInsts.end()) { 3863 // If the new extension is same as original, the information in 3864 // PromotedInsts[ExtOpnd] is still correct. 3865 if (It->second.getInt() == ExtTy) 3866 return; 3867 3868 // Now the new extension is different from old extension, we make 3869 // the type information invalid by setting extension type to 3870 // BothExtension. 3871 ExtTy = BothExtension; 3872 } 3873 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3874 } 3875 3876 /// Utility function to query the original type of instruction \p Opnd 3877 /// with a matched extension type. If the extension doesn't match, we 3878 /// cannot use the information we had on the original type. 3879 /// BothExtension doesn't match any extension type. 3880 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3881 Instruction *Opnd, 3882 bool IsSExt) { 3883 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3884 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3885 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3886 return It->second.getPointer(); 3887 return nullptr; 3888 } 3889 3890 /// Utility function to check whether or not a sign or zero extension 3891 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3892 /// either using the operands of \p Inst or promoting \p Inst. 3893 /// The type of the extension is defined by \p IsSExt. 3894 /// In other words, check if: 3895 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3896 /// #1 Promotion applies: 3897 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3898 /// #2 Operand reuses: 3899 /// ext opnd1 to ConsideredExtType. 3900 /// \p PromotedInsts maps the instructions to their type before promotion. 3901 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3902 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3903 3904 /// Utility function to determine if \p OpIdx should be promoted when 3905 /// promoting \p Inst. 3906 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3907 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3908 } 3909 3910 /// Utility function to promote the operand of \p Ext when this 3911 /// operand is a promotable trunc or sext or zext. 3912 /// \p PromotedInsts maps the instructions to their type before promotion. 3913 /// \p CreatedInstsCost[out] contains the cost of all instructions 3914 /// created to promote the operand of Ext. 3915 /// Newly added extensions are inserted in \p Exts. 3916 /// Newly added truncates are inserted in \p Truncs. 3917 /// Should never be called directly. 3918 /// \return The promoted value which is used instead of Ext. 3919 static Value *promoteOperandForTruncAndAnyExt( 3920 Instruction *Ext, TypePromotionTransaction &TPT, 3921 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3922 SmallVectorImpl<Instruction *> *Exts, 3923 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3924 3925 /// Utility function to promote the operand of \p Ext when this 3926 /// operand is promotable and is not a supported trunc or sext. 3927 /// \p PromotedInsts maps the instructions to their type before promotion. 3928 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3929 /// created to promote the operand of Ext. 3930 /// Newly added extensions are inserted in \p Exts. 3931 /// Newly added truncates are inserted in \p Truncs. 3932 /// Should never be called directly. 3933 /// \return The promoted value which is used instead of Ext. 3934 static Value *promoteOperandForOther(Instruction *Ext, 3935 TypePromotionTransaction &TPT, 3936 InstrToOrigTy &PromotedInsts, 3937 unsigned &CreatedInstsCost, 3938 SmallVectorImpl<Instruction *> *Exts, 3939 SmallVectorImpl<Instruction *> *Truncs, 3940 const TargetLowering &TLI, bool IsSExt); 3941 3942 /// \see promoteOperandForOther. 3943 static Value *signExtendOperandForOther( 3944 Instruction *Ext, TypePromotionTransaction &TPT, 3945 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3946 SmallVectorImpl<Instruction *> *Exts, 3947 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3948 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3949 Exts, Truncs, TLI, true); 3950 } 3951 3952 /// \see promoteOperandForOther. 3953 static Value *zeroExtendOperandForOther( 3954 Instruction *Ext, TypePromotionTransaction &TPT, 3955 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3956 SmallVectorImpl<Instruction *> *Exts, 3957 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3958 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3959 Exts, Truncs, TLI, false); 3960 } 3961 3962 public: 3963 /// Type for the utility function that promotes the operand of Ext. 3964 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3965 InstrToOrigTy &PromotedInsts, 3966 unsigned &CreatedInstsCost, 3967 SmallVectorImpl<Instruction *> *Exts, 3968 SmallVectorImpl<Instruction *> *Truncs, 3969 const TargetLowering &TLI); 3970 3971 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3972 /// action to promote the operand of \p Ext instead of using Ext. 3973 /// \return NULL if no promotable action is possible with the current 3974 /// sign extension. 3975 /// \p InsertedInsts keeps track of all the instructions inserted by the 3976 /// other CodeGenPrepare optimizations. This information is important 3977 /// because we do not want to promote these instructions as CodeGenPrepare 3978 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3979 /// \p PromotedInsts maps the instructions to their type before promotion. 3980 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3981 const TargetLowering &TLI, 3982 const InstrToOrigTy &PromotedInsts); 3983 }; 3984 3985 } // end anonymous namespace 3986 3987 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3988 Type *ConsideredExtType, 3989 const InstrToOrigTy &PromotedInsts, 3990 bool IsSExt) { 3991 // The promotion helper does not know how to deal with vector types yet. 3992 // To be able to fix that, we would need to fix the places where we 3993 // statically extend, e.g., constants and such. 3994 if (Inst->getType()->isVectorTy()) 3995 return false; 3996 3997 // We can always get through zext. 3998 if (isa<ZExtInst>(Inst)) 3999 return true; 4000 4001 // sext(sext) is ok too. 4002 if (IsSExt && isa<SExtInst>(Inst)) 4003 return true; 4004 4005 // We can get through binary operator, if it is legal. In other words, the 4006 // binary operator must have a nuw or nsw flag. 4007 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4008 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4009 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4010 (IsSExt && BinOp->hasNoSignedWrap()))) 4011 return true; 4012 4013 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4014 if ((Inst->getOpcode() == Instruction::And || 4015 Inst->getOpcode() == Instruction::Or)) 4016 return true; 4017 4018 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4019 if (Inst->getOpcode() == Instruction::Xor) { 4020 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4021 // Make sure it is not a NOT. 4022 if (Cst && !Cst->getValue().isAllOnesValue()) 4023 return true; 4024 } 4025 4026 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4027 // It may change a poisoned value into a regular value, like 4028 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4029 // poisoned value regular value 4030 // It should be OK since undef covers valid value. 4031 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4032 return true; 4033 4034 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4035 // It may change a poisoned value into a regular value, like 4036 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4037 // poisoned value regular value 4038 // It should be OK since undef covers valid value. 4039 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4040 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4041 if (ExtInst->hasOneUse()) { 4042 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4043 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4044 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4045 if (Cst && 4046 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4047 return true; 4048 } 4049 } 4050 } 4051 4052 // Check if we can do the following simplification. 4053 // ext(trunc(opnd)) --> ext(opnd) 4054 if (!isa<TruncInst>(Inst)) 4055 return false; 4056 4057 Value *OpndVal = Inst->getOperand(0); 4058 // Check if we can use this operand in the extension. 4059 // If the type is larger than the result type of the extension, we cannot. 4060 if (!OpndVal->getType()->isIntegerTy() || 4061 OpndVal->getType()->getIntegerBitWidth() > 4062 ConsideredExtType->getIntegerBitWidth()) 4063 return false; 4064 4065 // If the operand of the truncate is not an instruction, we will not have 4066 // any information on the dropped bits. 4067 // (Actually we could for constant but it is not worth the extra logic). 4068 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4069 if (!Opnd) 4070 return false; 4071 4072 // Check if the source of the type is narrow enough. 4073 // I.e., check that trunc just drops extended bits of the same kind of 4074 // the extension. 4075 // #1 get the type of the operand and check the kind of the extended bits. 4076 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4077 if (OpndType) 4078 ; 4079 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4080 OpndType = Opnd->getOperand(0)->getType(); 4081 else 4082 return false; 4083 4084 // #2 check that the truncate just drops extended bits. 4085 return Inst->getType()->getIntegerBitWidth() >= 4086 OpndType->getIntegerBitWidth(); 4087 } 4088 4089 TypePromotionHelper::Action TypePromotionHelper::getAction( 4090 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4091 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4092 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4093 "Unexpected instruction type"); 4094 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4095 Type *ExtTy = Ext->getType(); 4096 bool IsSExt = isa<SExtInst>(Ext); 4097 // If the operand of the extension is not an instruction, we cannot 4098 // get through. 4099 // If it, check we can get through. 4100 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4101 return nullptr; 4102 4103 // Do not promote if the operand has been added by codegenprepare. 4104 // Otherwise, it means we are undoing an optimization that is likely to be 4105 // redone, thus causing potential infinite loop. 4106 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4107 return nullptr; 4108 4109 // SExt or Trunc instructions. 4110 // Return the related handler. 4111 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4112 isa<ZExtInst>(ExtOpnd)) 4113 return promoteOperandForTruncAndAnyExt; 4114 4115 // Regular instruction. 4116 // Abort early if we will have to insert non-free instructions. 4117 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4118 return nullptr; 4119 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4120 } 4121 4122 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4123 Instruction *SExt, TypePromotionTransaction &TPT, 4124 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4125 SmallVectorImpl<Instruction *> *Exts, 4126 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4127 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4128 // get through it and this method should not be called. 4129 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4130 Value *ExtVal = SExt; 4131 bool HasMergedNonFreeExt = false; 4132 if (isa<ZExtInst>(SExtOpnd)) { 4133 // Replace s|zext(zext(opnd)) 4134 // => zext(opnd). 4135 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4136 Value *ZExt = 4137 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4138 TPT.replaceAllUsesWith(SExt, ZExt); 4139 TPT.eraseInstruction(SExt); 4140 ExtVal = ZExt; 4141 } else { 4142 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4143 // => z|sext(opnd). 4144 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4145 } 4146 CreatedInstsCost = 0; 4147 4148 // Remove dead code. 4149 if (SExtOpnd->use_empty()) 4150 TPT.eraseInstruction(SExtOpnd); 4151 4152 // Check if the extension is still needed. 4153 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4154 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4155 if (ExtInst) { 4156 if (Exts) 4157 Exts->push_back(ExtInst); 4158 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4159 } 4160 return ExtVal; 4161 } 4162 4163 // At this point we have: ext ty opnd to ty. 4164 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4165 Value *NextVal = ExtInst->getOperand(0); 4166 TPT.eraseInstruction(ExtInst, NextVal); 4167 return NextVal; 4168 } 4169 4170 Value *TypePromotionHelper::promoteOperandForOther( 4171 Instruction *Ext, TypePromotionTransaction &TPT, 4172 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4173 SmallVectorImpl<Instruction *> *Exts, 4174 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4175 bool IsSExt) { 4176 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4177 // get through it and this method should not be called. 4178 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4179 CreatedInstsCost = 0; 4180 if (!ExtOpnd->hasOneUse()) { 4181 // ExtOpnd will be promoted. 4182 // All its uses, but Ext, will need to use a truncated value of the 4183 // promoted version. 4184 // Create the truncate now. 4185 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4186 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4187 // Insert it just after the definition. 4188 ITrunc->moveAfter(ExtOpnd); 4189 if (Truncs) 4190 Truncs->push_back(ITrunc); 4191 } 4192 4193 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4194 // Restore the operand of Ext (which has been replaced by the previous call 4195 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4196 TPT.setOperand(Ext, 0, ExtOpnd); 4197 } 4198 4199 // Get through the Instruction: 4200 // 1. Update its type. 4201 // 2. Replace the uses of Ext by Inst. 4202 // 3. Extend each operand that needs to be extended. 4203 4204 // Remember the original type of the instruction before promotion. 4205 // This is useful to know that the high bits are sign extended bits. 4206 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4207 // Step #1. 4208 TPT.mutateType(ExtOpnd, Ext->getType()); 4209 // Step #2. 4210 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4211 // Step #3. 4212 Instruction *ExtForOpnd = Ext; 4213 4214 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4215 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4216 ++OpIdx) { 4217 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4218 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4219 !shouldExtOperand(ExtOpnd, OpIdx)) { 4220 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4221 continue; 4222 } 4223 // Check if we can statically extend the operand. 4224 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4225 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4226 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4227 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4228 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4229 : Cst->getValue().zext(BitWidth); 4230 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4231 continue; 4232 } 4233 // UndefValue are typed, so we have to statically sign extend them. 4234 if (isa<UndefValue>(Opnd)) { 4235 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4236 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4237 continue; 4238 } 4239 4240 // Otherwise we have to explicitly sign extend the operand. 4241 // Check if Ext was reused to extend an operand. 4242 if (!ExtForOpnd) { 4243 // If yes, create a new one. 4244 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4245 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4246 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4247 if (!isa<Instruction>(ValForExtOpnd)) { 4248 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4249 continue; 4250 } 4251 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4252 } 4253 if (Exts) 4254 Exts->push_back(ExtForOpnd); 4255 TPT.setOperand(ExtForOpnd, 0, Opnd); 4256 4257 // Move the sign extension before the insertion point. 4258 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4259 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4260 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4261 // If more sext are required, new instructions will have to be created. 4262 ExtForOpnd = nullptr; 4263 } 4264 if (ExtForOpnd == Ext) { 4265 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4266 TPT.eraseInstruction(Ext); 4267 } 4268 return ExtOpnd; 4269 } 4270 4271 /// Check whether or not promoting an instruction to a wider type is profitable. 4272 /// \p NewCost gives the cost of extension instructions created by the 4273 /// promotion. 4274 /// \p OldCost gives the cost of extension instructions before the promotion 4275 /// plus the number of instructions that have been 4276 /// matched in the addressing mode the promotion. 4277 /// \p PromotedOperand is the value that has been promoted. 4278 /// \return True if the promotion is profitable, false otherwise. 4279 bool AddressingModeMatcher::isPromotionProfitable( 4280 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4281 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4282 << '\n'); 4283 // The cost of the new extensions is greater than the cost of the 4284 // old extension plus what we folded. 4285 // This is not profitable. 4286 if (NewCost > OldCost) 4287 return false; 4288 if (NewCost < OldCost) 4289 return true; 4290 // The promotion is neutral but it may help folding the sign extension in 4291 // loads for instance. 4292 // Check that we did not create an illegal instruction. 4293 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4294 } 4295 4296 /// Given an instruction or constant expr, see if we can fold the operation 4297 /// into the addressing mode. If so, update the addressing mode and return 4298 /// true, otherwise return false without modifying AddrMode. 4299 /// If \p MovedAway is not NULL, it contains the information of whether or 4300 /// not AddrInst has to be folded into the addressing mode on success. 4301 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4302 /// because it has been moved away. 4303 /// Thus AddrInst must not be added in the matched instructions. 4304 /// This state can happen when AddrInst is a sext, since it may be moved away. 4305 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4306 /// not be referenced anymore. 4307 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4308 unsigned Depth, 4309 bool *MovedAway) { 4310 // Avoid exponential behavior on extremely deep expression trees. 4311 if (Depth >= 5) return false; 4312 4313 // By default, all matched instructions stay in place. 4314 if (MovedAway) 4315 *MovedAway = false; 4316 4317 switch (Opcode) { 4318 case Instruction::PtrToInt: 4319 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4320 return matchAddr(AddrInst->getOperand(0), Depth); 4321 case Instruction::IntToPtr: { 4322 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4323 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4324 // This inttoptr is a no-op if the integer type is pointer sized. 4325 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4326 return matchAddr(AddrInst->getOperand(0), Depth); 4327 return false; 4328 } 4329 case Instruction::BitCast: 4330 // BitCast is always a noop, and we can handle it as long as it is 4331 // int->int or pointer->pointer (we don't want int<->fp or something). 4332 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4333 // Don't touch identity bitcasts. These were probably put here by LSR, 4334 // and we don't want to mess around with them. Assume it knows what it 4335 // is doing. 4336 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4337 return matchAddr(AddrInst->getOperand(0), Depth); 4338 return false; 4339 case Instruction::AddrSpaceCast: { 4340 unsigned SrcAS 4341 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4342 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4343 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4344 return matchAddr(AddrInst->getOperand(0), Depth); 4345 return false; 4346 } 4347 case Instruction::Add: { 4348 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4349 ExtAddrMode BackupAddrMode = AddrMode; 4350 unsigned OldSize = AddrModeInsts.size(); 4351 // Start a transaction at this point. 4352 // The LHS may match but not the RHS. 4353 // Therefore, we need a higher level restoration point to undo partially 4354 // matched operation. 4355 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4356 TPT.getRestorationPoint(); 4357 4358 AddrMode.InBounds = false; 4359 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4360 matchAddr(AddrInst->getOperand(0), Depth+1)) 4361 return true; 4362 4363 // Restore the old addr mode info. 4364 AddrMode = BackupAddrMode; 4365 AddrModeInsts.resize(OldSize); 4366 TPT.rollback(LastKnownGood); 4367 4368 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4369 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4370 matchAddr(AddrInst->getOperand(1), Depth+1)) 4371 return true; 4372 4373 // Otherwise we definitely can't merge the ADD in. 4374 AddrMode = BackupAddrMode; 4375 AddrModeInsts.resize(OldSize); 4376 TPT.rollback(LastKnownGood); 4377 break; 4378 } 4379 //case Instruction::Or: 4380 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4381 //break; 4382 case Instruction::Mul: 4383 case Instruction::Shl: { 4384 // Can only handle X*C and X << C. 4385 AddrMode.InBounds = false; 4386 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4387 if (!RHS || RHS->getBitWidth() > 64) 4388 return false; 4389 int64_t Scale = RHS->getSExtValue(); 4390 if (Opcode == Instruction::Shl) 4391 Scale = 1LL << Scale; 4392 4393 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4394 } 4395 case Instruction::GetElementPtr: { 4396 // Scan the GEP. We check it if it contains constant offsets and at most 4397 // one variable offset. 4398 int VariableOperand = -1; 4399 unsigned VariableScale = 0; 4400 4401 int64_t ConstantOffset = 0; 4402 gep_type_iterator GTI = gep_type_begin(AddrInst); 4403 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4404 if (StructType *STy = GTI.getStructTypeOrNull()) { 4405 const StructLayout *SL = DL.getStructLayout(STy); 4406 unsigned Idx = 4407 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4408 ConstantOffset += SL->getElementOffset(Idx); 4409 } else { 4410 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4411 if (TS.isNonZero()) { 4412 // The optimisations below currently only work for fixed offsets. 4413 if (TS.isScalable()) 4414 return false; 4415 int64_t TypeSize = TS.getFixedSize(); 4416 if (ConstantInt *CI = 4417 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4418 const APInt &CVal = CI->getValue(); 4419 if (CVal.getMinSignedBits() <= 64) { 4420 ConstantOffset += CVal.getSExtValue() * TypeSize; 4421 continue; 4422 } 4423 } 4424 // We only allow one variable index at the moment. 4425 if (VariableOperand != -1) 4426 return false; 4427 4428 // Remember the variable index. 4429 VariableOperand = i; 4430 VariableScale = TypeSize; 4431 } 4432 } 4433 } 4434 4435 // A common case is for the GEP to only do a constant offset. In this case, 4436 // just add it to the disp field and check validity. 4437 if (VariableOperand == -1) { 4438 AddrMode.BaseOffs += ConstantOffset; 4439 if (ConstantOffset == 0 || 4440 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4441 // Check to see if we can fold the base pointer in too. 4442 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4443 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4444 AddrMode.InBounds = false; 4445 return true; 4446 } 4447 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4448 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4449 ConstantOffset > 0) { 4450 // Record GEPs with non-zero offsets as candidates for splitting in the 4451 // event that the offset cannot fit into the r+i addressing mode. 4452 // Simple and common case that only one GEP is used in calculating the 4453 // address for the memory access. 4454 Value *Base = AddrInst->getOperand(0); 4455 auto *BaseI = dyn_cast<Instruction>(Base); 4456 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4457 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4458 (BaseI && !isa<CastInst>(BaseI) && 4459 !isa<GetElementPtrInst>(BaseI))) { 4460 // Make sure the parent block allows inserting non-PHI instructions 4461 // before the terminator. 4462 BasicBlock *Parent = 4463 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4464 if (!Parent->getTerminator()->isEHPad()) 4465 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4466 } 4467 } 4468 AddrMode.BaseOffs -= ConstantOffset; 4469 return false; 4470 } 4471 4472 // Save the valid addressing mode in case we can't match. 4473 ExtAddrMode BackupAddrMode = AddrMode; 4474 unsigned OldSize = AddrModeInsts.size(); 4475 4476 // See if the scale and offset amount is valid for this target. 4477 AddrMode.BaseOffs += ConstantOffset; 4478 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4479 AddrMode.InBounds = false; 4480 4481 // Match the base operand of the GEP. 4482 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4483 // If it couldn't be matched, just stuff the value in a register. 4484 if (AddrMode.HasBaseReg) { 4485 AddrMode = BackupAddrMode; 4486 AddrModeInsts.resize(OldSize); 4487 return false; 4488 } 4489 AddrMode.HasBaseReg = true; 4490 AddrMode.BaseReg = AddrInst->getOperand(0); 4491 } 4492 4493 // Match the remaining variable portion of the GEP. 4494 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4495 Depth)) { 4496 // If it couldn't be matched, try stuffing the base into a register 4497 // instead of matching it, and retrying the match of the scale. 4498 AddrMode = BackupAddrMode; 4499 AddrModeInsts.resize(OldSize); 4500 if (AddrMode.HasBaseReg) 4501 return false; 4502 AddrMode.HasBaseReg = true; 4503 AddrMode.BaseReg = AddrInst->getOperand(0); 4504 AddrMode.BaseOffs += ConstantOffset; 4505 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4506 VariableScale, Depth)) { 4507 // If even that didn't work, bail. 4508 AddrMode = BackupAddrMode; 4509 AddrModeInsts.resize(OldSize); 4510 return false; 4511 } 4512 } 4513 4514 return true; 4515 } 4516 case Instruction::SExt: 4517 case Instruction::ZExt: { 4518 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4519 if (!Ext) 4520 return false; 4521 4522 // Try to move this ext out of the way of the addressing mode. 4523 // Ask for a method for doing so. 4524 TypePromotionHelper::Action TPH = 4525 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4526 if (!TPH) 4527 return false; 4528 4529 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4530 TPT.getRestorationPoint(); 4531 unsigned CreatedInstsCost = 0; 4532 unsigned ExtCost = !TLI.isExtFree(Ext); 4533 Value *PromotedOperand = 4534 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4535 // SExt has been moved away. 4536 // Thus either it will be rematched later in the recursive calls or it is 4537 // gone. Anyway, we must not fold it into the addressing mode at this point. 4538 // E.g., 4539 // op = add opnd, 1 4540 // idx = ext op 4541 // addr = gep base, idx 4542 // is now: 4543 // promotedOpnd = ext opnd <- no match here 4544 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4545 // addr = gep base, op <- match 4546 if (MovedAway) 4547 *MovedAway = true; 4548 4549 assert(PromotedOperand && 4550 "TypePromotionHelper should have filtered out those cases"); 4551 4552 ExtAddrMode BackupAddrMode = AddrMode; 4553 unsigned OldSize = AddrModeInsts.size(); 4554 4555 if (!matchAddr(PromotedOperand, Depth) || 4556 // The total of the new cost is equal to the cost of the created 4557 // instructions. 4558 // The total of the old cost is equal to the cost of the extension plus 4559 // what we have saved in the addressing mode. 4560 !isPromotionProfitable(CreatedInstsCost, 4561 ExtCost + (AddrModeInsts.size() - OldSize), 4562 PromotedOperand)) { 4563 AddrMode = BackupAddrMode; 4564 AddrModeInsts.resize(OldSize); 4565 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4566 TPT.rollback(LastKnownGood); 4567 return false; 4568 } 4569 return true; 4570 } 4571 } 4572 return false; 4573 } 4574 4575 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4576 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4577 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4578 /// for the target. 4579 /// 4580 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4581 // Start a transaction at this point that we will rollback if the matching 4582 // fails. 4583 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4584 TPT.getRestorationPoint(); 4585 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4586 if (CI->getValue().isSignedIntN(64)) { 4587 // Fold in immediates if legal for the target. 4588 AddrMode.BaseOffs += CI->getSExtValue(); 4589 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4590 return true; 4591 AddrMode.BaseOffs -= CI->getSExtValue(); 4592 } 4593 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4594 // If this is a global variable, try to fold it into the addressing mode. 4595 if (!AddrMode.BaseGV) { 4596 AddrMode.BaseGV = GV; 4597 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4598 return true; 4599 AddrMode.BaseGV = nullptr; 4600 } 4601 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4602 ExtAddrMode BackupAddrMode = AddrMode; 4603 unsigned OldSize = AddrModeInsts.size(); 4604 4605 // Check to see if it is possible to fold this operation. 4606 bool MovedAway = false; 4607 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4608 // This instruction may have been moved away. If so, there is nothing 4609 // to check here. 4610 if (MovedAway) 4611 return true; 4612 // Okay, it's possible to fold this. Check to see if it is actually 4613 // *profitable* to do so. We use a simple cost model to avoid increasing 4614 // register pressure too much. 4615 if (I->hasOneUse() || 4616 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4617 AddrModeInsts.push_back(I); 4618 return true; 4619 } 4620 4621 // It isn't profitable to do this, roll back. 4622 //cerr << "NOT FOLDING: " << *I; 4623 AddrMode = BackupAddrMode; 4624 AddrModeInsts.resize(OldSize); 4625 TPT.rollback(LastKnownGood); 4626 } 4627 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4628 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4629 return true; 4630 TPT.rollback(LastKnownGood); 4631 } else if (isa<ConstantPointerNull>(Addr)) { 4632 // Null pointer gets folded without affecting the addressing mode. 4633 return true; 4634 } 4635 4636 // Worse case, the target should support [reg] addressing modes. :) 4637 if (!AddrMode.HasBaseReg) { 4638 AddrMode.HasBaseReg = true; 4639 AddrMode.BaseReg = Addr; 4640 // Still check for legality in case the target supports [imm] but not [i+r]. 4641 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4642 return true; 4643 AddrMode.HasBaseReg = false; 4644 AddrMode.BaseReg = nullptr; 4645 } 4646 4647 // If the base register is already taken, see if we can do [r+r]. 4648 if (AddrMode.Scale == 0) { 4649 AddrMode.Scale = 1; 4650 AddrMode.ScaledReg = Addr; 4651 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4652 return true; 4653 AddrMode.Scale = 0; 4654 AddrMode.ScaledReg = nullptr; 4655 } 4656 // Couldn't match. 4657 TPT.rollback(LastKnownGood); 4658 return false; 4659 } 4660 4661 /// Check to see if all uses of OpVal by the specified inline asm call are due 4662 /// to memory operands. If so, return true, otherwise return false. 4663 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4664 const TargetLowering &TLI, 4665 const TargetRegisterInfo &TRI) { 4666 const Function *F = CI->getFunction(); 4667 TargetLowering::AsmOperandInfoVector TargetConstraints = 4668 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4669 4670 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4671 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4672 4673 // Compute the constraint code and ConstraintType to use. 4674 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4675 4676 // If this asm operand is our Value*, and if it isn't an indirect memory 4677 // operand, we can't fold it! 4678 if (OpInfo.CallOperandVal == OpVal && 4679 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4680 !OpInfo.isIndirect)) 4681 return false; 4682 } 4683 4684 return true; 4685 } 4686 4687 // Max number of memory uses to look at before aborting the search to conserve 4688 // compile time. 4689 static constexpr int MaxMemoryUsesToScan = 20; 4690 4691 /// Recursively walk all the uses of I until we find a memory use. 4692 /// If we find an obviously non-foldable instruction, return true. 4693 /// Add the ultimately found memory instructions to MemoryUses. 4694 static bool FindAllMemoryUses( 4695 Instruction *I, 4696 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4697 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4698 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4699 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4700 // If we already considered this instruction, we're done. 4701 if (!ConsideredInsts.insert(I).second) 4702 return false; 4703 4704 // If this is an obviously unfoldable instruction, bail out. 4705 if (!MightBeFoldableInst(I)) 4706 return true; 4707 4708 // Loop over all the uses, recursively processing them. 4709 for (Use &U : I->uses()) { 4710 // Conservatively return true if we're seeing a large number or a deep chain 4711 // of users. This avoids excessive compilation times in pathological cases. 4712 if (SeenInsts++ >= MaxMemoryUsesToScan) 4713 return true; 4714 4715 Instruction *UserI = cast<Instruction>(U.getUser()); 4716 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4717 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4718 continue; 4719 } 4720 4721 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4722 unsigned opNo = U.getOperandNo(); 4723 if (opNo != StoreInst::getPointerOperandIndex()) 4724 return true; // Storing addr, not into addr. 4725 MemoryUses.push_back(std::make_pair(SI, opNo)); 4726 continue; 4727 } 4728 4729 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4730 unsigned opNo = U.getOperandNo(); 4731 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4732 return true; // Storing addr, not into addr. 4733 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4734 continue; 4735 } 4736 4737 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4738 unsigned opNo = U.getOperandNo(); 4739 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4740 return true; // Storing addr, not into addr. 4741 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4742 continue; 4743 } 4744 4745 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4746 if (CI->hasFnAttr(Attribute::Cold)) { 4747 // If this is a cold call, we can sink the addressing calculation into 4748 // the cold path. See optimizeCallInst 4749 bool OptForSize = OptSize || 4750 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4751 if (!OptForSize) 4752 continue; 4753 } 4754 4755 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4756 if (!IA) return true; 4757 4758 // If this is a memory operand, we're cool, otherwise bail out. 4759 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4760 return true; 4761 continue; 4762 } 4763 4764 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4765 PSI, BFI, SeenInsts)) 4766 return true; 4767 } 4768 4769 return false; 4770 } 4771 4772 /// Return true if Val is already known to be live at the use site that we're 4773 /// folding it into. If so, there is no cost to include it in the addressing 4774 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4775 /// instruction already. 4776 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4777 Value *KnownLive2) { 4778 // If Val is either of the known-live values, we know it is live! 4779 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4780 return true; 4781 4782 // All values other than instructions and arguments (e.g. constants) are live. 4783 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4784 4785 // If Val is a constant sized alloca in the entry block, it is live, this is 4786 // true because it is just a reference to the stack/frame pointer, which is 4787 // live for the whole function. 4788 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4789 if (AI->isStaticAlloca()) 4790 return true; 4791 4792 // Check to see if this value is already used in the memory instruction's 4793 // block. If so, it's already live into the block at the very least, so we 4794 // can reasonably fold it. 4795 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4796 } 4797 4798 /// It is possible for the addressing mode of the machine to fold the specified 4799 /// instruction into a load or store that ultimately uses it. 4800 /// However, the specified instruction has multiple uses. 4801 /// Given this, it may actually increase register pressure to fold it 4802 /// into the load. For example, consider this code: 4803 /// 4804 /// X = ... 4805 /// Y = X+1 4806 /// use(Y) -> nonload/store 4807 /// Z = Y+1 4808 /// load Z 4809 /// 4810 /// In this case, Y has multiple uses, and can be folded into the load of Z 4811 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4812 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4813 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4814 /// number of computations either. 4815 /// 4816 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4817 /// X was live across 'load Z' for other reasons, we actually *would* want to 4818 /// fold the addressing mode in the Z case. This would make Y die earlier. 4819 bool AddressingModeMatcher:: 4820 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4821 ExtAddrMode &AMAfter) { 4822 if (IgnoreProfitability) return true; 4823 4824 // AMBefore is the addressing mode before this instruction was folded into it, 4825 // and AMAfter is the addressing mode after the instruction was folded. Get 4826 // the set of registers referenced by AMAfter and subtract out those 4827 // referenced by AMBefore: this is the set of values which folding in this 4828 // address extends the lifetime of. 4829 // 4830 // Note that there are only two potential values being referenced here, 4831 // BaseReg and ScaleReg (global addresses are always available, as are any 4832 // folded immediates). 4833 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4834 4835 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4836 // lifetime wasn't extended by adding this instruction. 4837 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4838 BaseReg = nullptr; 4839 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4840 ScaledReg = nullptr; 4841 4842 // If folding this instruction (and it's subexprs) didn't extend any live 4843 // ranges, we're ok with it. 4844 if (!BaseReg && !ScaledReg) 4845 return true; 4846 4847 // If all uses of this instruction can have the address mode sunk into them, 4848 // we can remove the addressing mode and effectively trade one live register 4849 // for another (at worst.) In this context, folding an addressing mode into 4850 // the use is just a particularly nice way of sinking it. 4851 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4852 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4853 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4854 PSI, BFI)) 4855 return false; // Has a non-memory, non-foldable use! 4856 4857 // Now that we know that all uses of this instruction are part of a chain of 4858 // computation involving only operations that could theoretically be folded 4859 // into a memory use, loop over each of these memory operation uses and see 4860 // if they could *actually* fold the instruction. The assumption is that 4861 // addressing modes are cheap and that duplicating the computation involved 4862 // many times is worthwhile, even on a fastpath. For sinking candidates 4863 // (i.e. cold call sites), this serves as a way to prevent excessive code 4864 // growth since most architectures have some reasonable small and fast way to 4865 // compute an effective address. (i.e LEA on x86) 4866 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4867 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4868 Instruction *User = MemoryUses[i].first; 4869 unsigned OpNo = MemoryUses[i].second; 4870 4871 // Get the access type of this use. If the use isn't a pointer, we don't 4872 // know what it accesses. 4873 Value *Address = User->getOperand(OpNo); 4874 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4875 if (!AddrTy) 4876 return false; 4877 Type *AddressAccessTy = AddrTy->getElementType(); 4878 unsigned AS = AddrTy->getAddressSpace(); 4879 4880 // Do a match against the root of this address, ignoring profitability. This 4881 // will tell us if the addressing mode for the memory operation will 4882 // *actually* cover the shared instruction. 4883 ExtAddrMode Result; 4884 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4885 0); 4886 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4887 TPT.getRestorationPoint(); 4888 AddressingModeMatcher Matcher( 4889 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4890 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4891 Matcher.IgnoreProfitability = true; 4892 bool Success = Matcher.matchAddr(Address, 0); 4893 (void)Success; assert(Success && "Couldn't select *anything*?"); 4894 4895 // The match was to check the profitability, the changes made are not 4896 // part of the original matcher. Therefore, they should be dropped 4897 // otherwise the original matcher will not present the right state. 4898 TPT.rollback(LastKnownGood); 4899 4900 // If the match didn't cover I, then it won't be shared by it. 4901 if (!is_contained(MatchedAddrModeInsts, I)) 4902 return false; 4903 4904 MatchedAddrModeInsts.clear(); 4905 } 4906 4907 return true; 4908 } 4909 4910 /// Return true if the specified values are defined in a 4911 /// different basic block than BB. 4912 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4913 if (Instruction *I = dyn_cast<Instruction>(V)) 4914 return I->getParent() != BB; 4915 return false; 4916 } 4917 4918 /// Sink addressing mode computation immediate before MemoryInst if doing so 4919 /// can be done without increasing register pressure. The need for the 4920 /// register pressure constraint means this can end up being an all or nothing 4921 /// decision for all uses of the same addressing computation. 4922 /// 4923 /// Load and Store Instructions often have addressing modes that can do 4924 /// significant amounts of computation. As such, instruction selection will try 4925 /// to get the load or store to do as much computation as possible for the 4926 /// program. The problem is that isel can only see within a single block. As 4927 /// such, we sink as much legal addressing mode work into the block as possible. 4928 /// 4929 /// This method is used to optimize both load/store and inline asms with memory 4930 /// operands. It's also used to sink addressing computations feeding into cold 4931 /// call sites into their (cold) basic block. 4932 /// 4933 /// The motivation for handling sinking into cold blocks is that doing so can 4934 /// both enable other address mode sinking (by satisfying the register pressure 4935 /// constraint above), and reduce register pressure globally (by removing the 4936 /// addressing mode computation from the fast path entirely.). 4937 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4938 Type *AccessTy, unsigned AddrSpace) { 4939 Value *Repl = Addr; 4940 4941 // Try to collapse single-value PHI nodes. This is necessary to undo 4942 // unprofitable PRE transformations. 4943 SmallVector<Value*, 8> worklist; 4944 SmallPtrSet<Value*, 16> Visited; 4945 worklist.push_back(Addr); 4946 4947 // Use a worklist to iteratively look through PHI and select nodes, and 4948 // ensure that the addressing mode obtained from the non-PHI/select roots of 4949 // the graph are compatible. 4950 bool PhiOrSelectSeen = false; 4951 SmallVector<Instruction*, 16> AddrModeInsts; 4952 const SimplifyQuery SQ(*DL, TLInfo); 4953 AddressingModeCombiner AddrModes(SQ, Addr); 4954 TypePromotionTransaction TPT(RemovedInsts); 4955 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4956 TPT.getRestorationPoint(); 4957 while (!worklist.empty()) { 4958 Value *V = worklist.back(); 4959 worklist.pop_back(); 4960 4961 // We allow traversing cyclic Phi nodes. 4962 // In case of success after this loop we ensure that traversing through 4963 // Phi nodes ends up with all cases to compute address of the form 4964 // BaseGV + Base + Scale * Index + Offset 4965 // where Scale and Offset are constans and BaseGV, Base and Index 4966 // are exactly the same Values in all cases. 4967 // It means that BaseGV, Scale and Offset dominate our memory instruction 4968 // and have the same value as they had in address computation represented 4969 // as Phi. So we can safely sink address computation to memory instruction. 4970 if (!Visited.insert(V).second) 4971 continue; 4972 4973 // For a PHI node, push all of its incoming values. 4974 if (PHINode *P = dyn_cast<PHINode>(V)) { 4975 append_range(worklist, P->incoming_values()); 4976 PhiOrSelectSeen = true; 4977 continue; 4978 } 4979 // Similar for select. 4980 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4981 worklist.push_back(SI->getFalseValue()); 4982 worklist.push_back(SI->getTrueValue()); 4983 PhiOrSelectSeen = true; 4984 continue; 4985 } 4986 4987 // For non-PHIs, determine the addressing mode being computed. Note that 4988 // the result may differ depending on what other uses our candidate 4989 // addressing instructions might have. 4990 AddrModeInsts.clear(); 4991 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4992 0); 4993 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4994 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4995 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4996 BFI.get()); 4997 4998 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4999 if (GEP && !NewGEPBases.count(GEP)) { 5000 // If splitting the underlying data structure can reduce the offset of a 5001 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5002 // previously split data structures. 5003 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5004 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5005 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5006 } 5007 5008 NewAddrMode.OriginalValue = V; 5009 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5010 break; 5011 } 5012 5013 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5014 // or we have multiple but either couldn't combine them or combining them 5015 // wouldn't do anything useful, bail out now. 5016 if (!AddrModes.combineAddrModes()) { 5017 TPT.rollback(LastKnownGood); 5018 return false; 5019 } 5020 bool Modified = TPT.commit(); 5021 5022 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5023 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5024 5025 // If all the instructions matched are already in this BB, don't do anything. 5026 // If we saw a Phi node then it is not local definitely, and if we saw a select 5027 // then we want to push the address calculation past it even if it's already 5028 // in this BB. 5029 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5030 return IsNonLocalValue(V, MemoryInst->getParent()); 5031 })) { 5032 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5033 << "\n"); 5034 return Modified; 5035 } 5036 5037 // Insert this computation right after this user. Since our caller is 5038 // scanning from the top of the BB to the bottom, reuse of the expr are 5039 // guaranteed to happen later. 5040 IRBuilder<> Builder(MemoryInst); 5041 5042 // Now that we determined the addressing expression we want to use and know 5043 // that we have to sink it into this block. Check to see if we have already 5044 // done this for some other load/store instr in this block. If so, reuse 5045 // the computation. Before attempting reuse, check if the address is valid 5046 // as it may have been erased. 5047 5048 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5049 5050 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5051 if (SunkAddr) { 5052 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5053 << " for " << *MemoryInst << "\n"); 5054 if (SunkAddr->getType() != Addr->getType()) 5055 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5056 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5057 SubtargetInfo->addrSinkUsingGEPs())) { 5058 // By default, we use the GEP-based method when AA is used later. This 5059 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5060 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5061 << " for " << *MemoryInst << "\n"); 5062 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5063 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5064 5065 // First, find the pointer. 5066 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5067 ResultPtr = AddrMode.BaseReg; 5068 AddrMode.BaseReg = nullptr; 5069 } 5070 5071 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5072 // We can't add more than one pointer together, nor can we scale a 5073 // pointer (both of which seem meaningless). 5074 if (ResultPtr || AddrMode.Scale != 1) 5075 return Modified; 5076 5077 ResultPtr = AddrMode.ScaledReg; 5078 AddrMode.Scale = 0; 5079 } 5080 5081 // It is only safe to sign extend the BaseReg if we know that the math 5082 // required to create it did not overflow before we extend it. Since 5083 // the original IR value was tossed in favor of a constant back when 5084 // the AddrMode was created we need to bail out gracefully if widths 5085 // do not match instead of extending it. 5086 // 5087 // (See below for code to add the scale.) 5088 if (AddrMode.Scale) { 5089 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5090 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5091 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5092 return Modified; 5093 } 5094 5095 if (AddrMode.BaseGV) { 5096 if (ResultPtr) 5097 return Modified; 5098 5099 ResultPtr = AddrMode.BaseGV; 5100 } 5101 5102 // If the real base value actually came from an inttoptr, then the matcher 5103 // will look through it and provide only the integer value. In that case, 5104 // use it here. 5105 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5106 if (!ResultPtr && AddrMode.BaseReg) { 5107 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5108 "sunkaddr"); 5109 AddrMode.BaseReg = nullptr; 5110 } else if (!ResultPtr && AddrMode.Scale == 1) { 5111 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5112 "sunkaddr"); 5113 AddrMode.Scale = 0; 5114 } 5115 } 5116 5117 if (!ResultPtr && 5118 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5119 SunkAddr = Constant::getNullValue(Addr->getType()); 5120 } else if (!ResultPtr) { 5121 return Modified; 5122 } else { 5123 Type *I8PtrTy = 5124 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5125 Type *I8Ty = Builder.getInt8Ty(); 5126 5127 // Start with the base register. Do this first so that subsequent address 5128 // matching finds it last, which will prevent it from trying to match it 5129 // as the scaled value in case it happens to be a mul. That would be 5130 // problematic if we've sunk a different mul for the scale, because then 5131 // we'd end up sinking both muls. 5132 if (AddrMode.BaseReg) { 5133 Value *V = AddrMode.BaseReg; 5134 if (V->getType() != IntPtrTy) 5135 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5136 5137 ResultIndex = V; 5138 } 5139 5140 // Add the scale value. 5141 if (AddrMode.Scale) { 5142 Value *V = AddrMode.ScaledReg; 5143 if (V->getType() == IntPtrTy) { 5144 // done. 5145 } else { 5146 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5147 cast<IntegerType>(V->getType())->getBitWidth() && 5148 "We can't transform if ScaledReg is too narrow"); 5149 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5150 } 5151 5152 if (AddrMode.Scale != 1) 5153 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5154 "sunkaddr"); 5155 if (ResultIndex) 5156 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5157 else 5158 ResultIndex = V; 5159 } 5160 5161 // Add in the Base Offset if present. 5162 if (AddrMode.BaseOffs) { 5163 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5164 if (ResultIndex) { 5165 // We need to add this separately from the scale above to help with 5166 // SDAG consecutive load/store merging. 5167 if (ResultPtr->getType() != I8PtrTy) 5168 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5169 ResultPtr = 5170 AddrMode.InBounds 5171 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5172 "sunkaddr") 5173 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5174 } 5175 5176 ResultIndex = V; 5177 } 5178 5179 if (!ResultIndex) { 5180 SunkAddr = ResultPtr; 5181 } else { 5182 if (ResultPtr->getType() != I8PtrTy) 5183 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5184 SunkAddr = 5185 AddrMode.InBounds 5186 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5187 "sunkaddr") 5188 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5189 } 5190 5191 if (SunkAddr->getType() != Addr->getType()) 5192 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5193 } 5194 } else { 5195 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5196 // non-integral pointers, so in that case bail out now. 5197 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5198 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5199 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5200 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5201 if (DL->isNonIntegralPointerType(Addr->getType()) || 5202 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5203 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5204 (AddrMode.BaseGV && 5205 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5206 return Modified; 5207 5208 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5209 << " for " << *MemoryInst << "\n"); 5210 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5211 Value *Result = nullptr; 5212 5213 // Start with the base register. Do this first so that subsequent address 5214 // matching finds it last, which will prevent it from trying to match it 5215 // as the scaled value in case it happens to be a mul. That would be 5216 // problematic if we've sunk a different mul for the scale, because then 5217 // we'd end up sinking both muls. 5218 if (AddrMode.BaseReg) { 5219 Value *V = AddrMode.BaseReg; 5220 if (V->getType()->isPointerTy()) 5221 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5222 if (V->getType() != IntPtrTy) 5223 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5224 Result = V; 5225 } 5226 5227 // Add the scale value. 5228 if (AddrMode.Scale) { 5229 Value *V = AddrMode.ScaledReg; 5230 if (V->getType() == IntPtrTy) { 5231 // done. 5232 } else if (V->getType()->isPointerTy()) { 5233 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5234 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5235 cast<IntegerType>(V->getType())->getBitWidth()) { 5236 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5237 } else { 5238 // It is only safe to sign extend the BaseReg if we know that the math 5239 // required to create it did not overflow before we extend it. Since 5240 // the original IR value was tossed in favor of a constant back when 5241 // the AddrMode was created we need to bail out gracefully if widths 5242 // do not match instead of extending it. 5243 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5244 if (I && (Result != AddrMode.BaseReg)) 5245 I->eraseFromParent(); 5246 return Modified; 5247 } 5248 if (AddrMode.Scale != 1) 5249 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5250 "sunkaddr"); 5251 if (Result) 5252 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5253 else 5254 Result = V; 5255 } 5256 5257 // Add in the BaseGV if present. 5258 if (AddrMode.BaseGV) { 5259 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5260 if (Result) 5261 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5262 else 5263 Result = V; 5264 } 5265 5266 // Add in the Base Offset if present. 5267 if (AddrMode.BaseOffs) { 5268 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5269 if (Result) 5270 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5271 else 5272 Result = V; 5273 } 5274 5275 if (!Result) 5276 SunkAddr = Constant::getNullValue(Addr->getType()); 5277 else 5278 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5279 } 5280 5281 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5282 // Store the newly computed address into the cache. In the case we reused a 5283 // value, this should be idempotent. 5284 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5285 5286 // If we have no uses, recursively delete the value and all dead instructions 5287 // using it. 5288 if (Repl->use_empty()) { 5289 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5290 RecursivelyDeleteTriviallyDeadInstructions( 5291 Repl, TLInfo, nullptr, 5292 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5293 }); 5294 } 5295 ++NumMemoryInsts; 5296 return true; 5297 } 5298 5299 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5300 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5301 /// only handle a 2 operand GEP in the same basic block or a splat constant 5302 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5303 /// index. 5304 /// 5305 /// If the existing GEP has a vector base pointer that is splat, we can look 5306 /// through the splat to find the scalar pointer. If we can't find a scalar 5307 /// pointer there's nothing we can do. 5308 /// 5309 /// If we have a GEP with more than 2 indices where the middle indices are all 5310 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5311 /// 5312 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5313 /// followed by a GEP with an all zeroes vector index. This will enable 5314 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5315 /// zero index. 5316 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5317 Value *Ptr) { 5318 Value *NewAddr; 5319 5320 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5321 // Don't optimize GEPs that don't have indices. 5322 if (!GEP->hasIndices()) 5323 return false; 5324 5325 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5326 // FIXME: We should support this by sinking the GEP. 5327 if (MemoryInst->getParent() != GEP->getParent()) 5328 return false; 5329 5330 SmallVector<Value *, 2> Ops(GEP->operands()); 5331 5332 bool RewriteGEP = false; 5333 5334 if (Ops[0]->getType()->isVectorTy()) { 5335 Ops[0] = getSplatValue(Ops[0]); 5336 if (!Ops[0]) 5337 return false; 5338 RewriteGEP = true; 5339 } 5340 5341 unsigned FinalIndex = Ops.size() - 1; 5342 5343 // Ensure all but the last index is 0. 5344 // FIXME: This isn't strictly required. All that's required is that they are 5345 // all scalars or splats. 5346 for (unsigned i = 1; i < FinalIndex; ++i) { 5347 auto *C = dyn_cast<Constant>(Ops[i]); 5348 if (!C) 5349 return false; 5350 if (isa<VectorType>(C->getType())) 5351 C = C->getSplatValue(); 5352 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5353 if (!CI || !CI->isZero()) 5354 return false; 5355 // Scalarize the index if needed. 5356 Ops[i] = CI; 5357 } 5358 5359 // Try to scalarize the final index. 5360 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5361 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5362 auto *C = dyn_cast<ConstantInt>(V); 5363 // Don't scalarize all zeros vector. 5364 if (!C || !C->isZero()) { 5365 Ops[FinalIndex] = V; 5366 RewriteGEP = true; 5367 } 5368 } 5369 } 5370 5371 // If we made any changes or the we have extra operands, we need to generate 5372 // new instructions. 5373 if (!RewriteGEP && Ops.size() == 2) 5374 return false; 5375 5376 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5377 5378 IRBuilder<> Builder(MemoryInst); 5379 5380 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5381 5382 // If the final index isn't a vector, emit a scalar GEP containing all ops 5383 // and a vector GEP with all zeroes final index. 5384 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5385 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5386 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5387 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5388 } else { 5389 Value *Base = Ops[0]; 5390 Value *Index = Ops[FinalIndex]; 5391 5392 // Create a scalar GEP if there are more than 2 operands. 5393 if (Ops.size() != 2) { 5394 // Replace the last index with 0. 5395 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5396 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5397 } 5398 5399 // Now create the GEP with scalar pointer and vector index. 5400 NewAddr = Builder.CreateGEP(Base, Index); 5401 } 5402 } else if (!isa<Constant>(Ptr)) { 5403 // Not a GEP, maybe its a splat and we can create a GEP to enable 5404 // SelectionDAGBuilder to use it as a uniform base. 5405 Value *V = getSplatValue(Ptr); 5406 if (!V) 5407 return false; 5408 5409 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5410 5411 IRBuilder<> Builder(MemoryInst); 5412 5413 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5414 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5415 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5416 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5417 } else { 5418 // Constant, SelectionDAGBuilder knows to check if its a splat. 5419 return false; 5420 } 5421 5422 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5423 5424 // If we have no uses, recursively delete the value and all dead instructions 5425 // using it. 5426 if (Ptr->use_empty()) 5427 RecursivelyDeleteTriviallyDeadInstructions( 5428 Ptr, TLInfo, nullptr, 5429 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5430 5431 return true; 5432 } 5433 5434 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5435 /// address computing into the block when possible / profitable. 5436 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5437 bool MadeChange = false; 5438 5439 const TargetRegisterInfo *TRI = 5440 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5441 TargetLowering::AsmOperandInfoVector TargetConstraints = 5442 TLI->ParseConstraints(*DL, TRI, *CS); 5443 unsigned ArgNo = 0; 5444 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5445 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5446 5447 // Compute the constraint code and ConstraintType to use. 5448 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5449 5450 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5451 OpInfo.isIndirect) { 5452 Value *OpVal = CS->getArgOperand(ArgNo++); 5453 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5454 } else if (OpInfo.Type == InlineAsm::isInput) 5455 ArgNo++; 5456 } 5457 5458 return MadeChange; 5459 } 5460 5461 /// Check if all the uses of \p Val are equivalent (or free) zero or 5462 /// sign extensions. 5463 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5464 assert(!Val->use_empty() && "Input must have at least one use"); 5465 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5466 bool IsSExt = isa<SExtInst>(FirstUser); 5467 Type *ExtTy = FirstUser->getType(); 5468 for (const User *U : Val->users()) { 5469 const Instruction *UI = cast<Instruction>(U); 5470 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5471 return false; 5472 Type *CurTy = UI->getType(); 5473 // Same input and output types: Same instruction after CSE. 5474 if (CurTy == ExtTy) 5475 continue; 5476 5477 // If IsSExt is true, we are in this situation: 5478 // a = Val 5479 // b = sext ty1 a to ty2 5480 // c = sext ty1 a to ty3 5481 // Assuming ty2 is shorter than ty3, this could be turned into: 5482 // a = Val 5483 // b = sext ty1 a to ty2 5484 // c = sext ty2 b to ty3 5485 // However, the last sext is not free. 5486 if (IsSExt) 5487 return false; 5488 5489 // This is a ZExt, maybe this is free to extend from one type to another. 5490 // In that case, we would not account for a different use. 5491 Type *NarrowTy; 5492 Type *LargeTy; 5493 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5494 CurTy->getScalarType()->getIntegerBitWidth()) { 5495 NarrowTy = CurTy; 5496 LargeTy = ExtTy; 5497 } else { 5498 NarrowTy = ExtTy; 5499 LargeTy = CurTy; 5500 } 5501 5502 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5503 return false; 5504 } 5505 // All uses are the same or can be derived from one another for free. 5506 return true; 5507 } 5508 5509 /// Try to speculatively promote extensions in \p Exts and continue 5510 /// promoting through newly promoted operands recursively as far as doing so is 5511 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5512 /// When some promotion happened, \p TPT contains the proper state to revert 5513 /// them. 5514 /// 5515 /// \return true if some promotion happened, false otherwise. 5516 bool CodeGenPrepare::tryToPromoteExts( 5517 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5518 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5519 unsigned CreatedInstsCost) { 5520 bool Promoted = false; 5521 5522 // Iterate over all the extensions to try to promote them. 5523 for (auto *I : Exts) { 5524 // Early check if we directly have ext(load). 5525 if (isa<LoadInst>(I->getOperand(0))) { 5526 ProfitablyMovedExts.push_back(I); 5527 continue; 5528 } 5529 5530 // Check whether or not we want to do any promotion. The reason we have 5531 // this check inside the for loop is to catch the case where an extension 5532 // is directly fed by a load because in such case the extension can be moved 5533 // up without any promotion on its operands. 5534 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5535 return false; 5536 5537 // Get the action to perform the promotion. 5538 TypePromotionHelper::Action TPH = 5539 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5540 // Check if we can promote. 5541 if (!TPH) { 5542 // Save the current extension as we cannot move up through its operand. 5543 ProfitablyMovedExts.push_back(I); 5544 continue; 5545 } 5546 5547 // Save the current state. 5548 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5549 TPT.getRestorationPoint(); 5550 SmallVector<Instruction *, 4> NewExts; 5551 unsigned NewCreatedInstsCost = 0; 5552 unsigned ExtCost = !TLI->isExtFree(I); 5553 // Promote. 5554 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5555 &NewExts, nullptr, *TLI); 5556 assert(PromotedVal && 5557 "TypePromotionHelper should have filtered out those cases"); 5558 5559 // We would be able to merge only one extension in a load. 5560 // Therefore, if we have more than 1 new extension we heuristically 5561 // cut this search path, because it means we degrade the code quality. 5562 // With exactly 2, the transformation is neutral, because we will merge 5563 // one extension but leave one. However, we optimistically keep going, 5564 // because the new extension may be removed too. 5565 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5566 // FIXME: It would be possible to propagate a negative value instead of 5567 // conservatively ceiling it to 0. 5568 TotalCreatedInstsCost = 5569 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5570 if (!StressExtLdPromotion && 5571 (TotalCreatedInstsCost > 1 || 5572 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5573 // This promotion is not profitable, rollback to the previous state, and 5574 // save the current extension in ProfitablyMovedExts as the latest 5575 // speculative promotion turned out to be unprofitable. 5576 TPT.rollback(LastKnownGood); 5577 ProfitablyMovedExts.push_back(I); 5578 continue; 5579 } 5580 // Continue promoting NewExts as far as doing so is profitable. 5581 SmallVector<Instruction *, 2> NewlyMovedExts; 5582 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5583 bool NewPromoted = false; 5584 for (auto *ExtInst : NewlyMovedExts) { 5585 Instruction *MovedExt = cast<Instruction>(ExtInst); 5586 Value *ExtOperand = MovedExt->getOperand(0); 5587 // If we have reached to a load, we need this extra profitability check 5588 // as it could potentially be merged into an ext(load). 5589 if (isa<LoadInst>(ExtOperand) && 5590 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5591 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5592 continue; 5593 5594 ProfitablyMovedExts.push_back(MovedExt); 5595 NewPromoted = true; 5596 } 5597 5598 // If none of speculative promotions for NewExts is profitable, rollback 5599 // and save the current extension (I) as the last profitable extension. 5600 if (!NewPromoted) { 5601 TPT.rollback(LastKnownGood); 5602 ProfitablyMovedExts.push_back(I); 5603 continue; 5604 } 5605 // The promotion is profitable. 5606 Promoted = true; 5607 } 5608 return Promoted; 5609 } 5610 5611 /// Merging redundant sexts when one is dominating the other. 5612 bool CodeGenPrepare::mergeSExts(Function &F) { 5613 bool Changed = false; 5614 for (auto &Entry : ValToSExtendedUses) { 5615 SExts &Insts = Entry.second; 5616 SExts CurPts; 5617 for (Instruction *Inst : Insts) { 5618 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5619 Inst->getOperand(0) != Entry.first) 5620 continue; 5621 bool inserted = false; 5622 for (auto &Pt : CurPts) { 5623 if (getDT(F).dominates(Inst, Pt)) { 5624 Pt->replaceAllUsesWith(Inst); 5625 RemovedInsts.insert(Pt); 5626 Pt->removeFromParent(); 5627 Pt = Inst; 5628 inserted = true; 5629 Changed = true; 5630 break; 5631 } 5632 if (!getDT(F).dominates(Pt, Inst)) 5633 // Give up if we need to merge in a common dominator as the 5634 // experiments show it is not profitable. 5635 continue; 5636 Inst->replaceAllUsesWith(Pt); 5637 RemovedInsts.insert(Inst); 5638 Inst->removeFromParent(); 5639 inserted = true; 5640 Changed = true; 5641 break; 5642 } 5643 if (!inserted) 5644 CurPts.push_back(Inst); 5645 } 5646 } 5647 return Changed; 5648 } 5649 5650 // Splitting large data structures so that the GEPs accessing them can have 5651 // smaller offsets so that they can be sunk to the same blocks as their users. 5652 // For example, a large struct starting from %base is split into two parts 5653 // where the second part starts from %new_base. 5654 // 5655 // Before: 5656 // BB0: 5657 // %base = 5658 // 5659 // BB1: 5660 // %gep0 = gep %base, off0 5661 // %gep1 = gep %base, off1 5662 // %gep2 = gep %base, off2 5663 // 5664 // BB2: 5665 // %load1 = load %gep0 5666 // %load2 = load %gep1 5667 // %load3 = load %gep2 5668 // 5669 // After: 5670 // BB0: 5671 // %base = 5672 // %new_base = gep %base, off0 5673 // 5674 // BB1: 5675 // %new_gep0 = %new_base 5676 // %new_gep1 = gep %new_base, off1 - off0 5677 // %new_gep2 = gep %new_base, off2 - off0 5678 // 5679 // BB2: 5680 // %load1 = load i32, i32* %new_gep0 5681 // %load2 = load i32, i32* %new_gep1 5682 // %load3 = load i32, i32* %new_gep2 5683 // 5684 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5685 // their offsets are smaller enough to fit into the addressing mode. 5686 bool CodeGenPrepare::splitLargeGEPOffsets() { 5687 bool Changed = false; 5688 for (auto &Entry : LargeOffsetGEPMap) { 5689 Value *OldBase = Entry.first; 5690 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5691 &LargeOffsetGEPs = Entry.second; 5692 auto compareGEPOffset = 5693 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5694 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5695 if (LHS.first == RHS.first) 5696 return false; 5697 if (LHS.second != RHS.second) 5698 return LHS.second < RHS.second; 5699 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5700 }; 5701 // Sorting all the GEPs of the same data structures based on the offsets. 5702 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5703 LargeOffsetGEPs.erase( 5704 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5705 LargeOffsetGEPs.end()); 5706 // Skip if all the GEPs have the same offsets. 5707 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5708 continue; 5709 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5710 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5711 Value *NewBaseGEP = nullptr; 5712 5713 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5714 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5715 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5716 int64_t Offset = LargeOffsetGEP->second; 5717 if (Offset != BaseOffset) { 5718 TargetLowering::AddrMode AddrMode; 5719 AddrMode.BaseOffs = Offset - BaseOffset; 5720 // The result type of the GEP might not be the type of the memory 5721 // access. 5722 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5723 GEP->getResultElementType(), 5724 GEP->getAddressSpace())) { 5725 // We need to create a new base if the offset to the current base is 5726 // too large to fit into the addressing mode. So, a very large struct 5727 // may be split into several parts. 5728 BaseGEP = GEP; 5729 BaseOffset = Offset; 5730 NewBaseGEP = nullptr; 5731 } 5732 } 5733 5734 // Generate a new GEP to replace the current one. 5735 LLVMContext &Ctx = GEP->getContext(); 5736 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5737 Type *I8PtrTy = 5738 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5739 Type *I8Ty = Type::getInt8Ty(Ctx); 5740 5741 if (!NewBaseGEP) { 5742 // Create a new base if we don't have one yet. Find the insertion 5743 // pointer for the new base first. 5744 BasicBlock::iterator NewBaseInsertPt; 5745 BasicBlock *NewBaseInsertBB; 5746 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5747 // If the base of the struct is an instruction, the new base will be 5748 // inserted close to it. 5749 NewBaseInsertBB = BaseI->getParent(); 5750 if (isa<PHINode>(BaseI)) 5751 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5752 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5753 NewBaseInsertBB = 5754 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5755 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5756 } else 5757 NewBaseInsertPt = std::next(BaseI->getIterator()); 5758 } else { 5759 // If the current base is an argument or global value, the new base 5760 // will be inserted to the entry block. 5761 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5762 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5763 } 5764 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5765 // Create a new base. 5766 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5767 NewBaseGEP = OldBase; 5768 if (NewBaseGEP->getType() != I8PtrTy) 5769 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5770 NewBaseGEP = 5771 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5772 NewGEPBases.insert(NewBaseGEP); 5773 } 5774 5775 IRBuilder<> Builder(GEP); 5776 Value *NewGEP = NewBaseGEP; 5777 if (Offset == BaseOffset) { 5778 if (GEP->getType() != I8PtrTy) 5779 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5780 } else { 5781 // Calculate the new offset for the new GEP. 5782 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5783 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5784 5785 if (GEP->getType() != I8PtrTy) 5786 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5787 } 5788 GEP->replaceAllUsesWith(NewGEP); 5789 LargeOffsetGEPID.erase(GEP); 5790 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5791 GEP->eraseFromParent(); 5792 Changed = true; 5793 } 5794 } 5795 return Changed; 5796 } 5797 5798 bool CodeGenPrepare::optimizePhiType( 5799 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5800 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5801 // We are looking for a collection on interconnected phi nodes that together 5802 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5803 // are of the same type. Convert the whole set of nodes to the type of the 5804 // bitcast. 5805 Type *PhiTy = I->getType(); 5806 Type *ConvertTy = nullptr; 5807 if (Visited.count(I) || 5808 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5809 return false; 5810 5811 SmallVector<Instruction *, 4> Worklist; 5812 Worklist.push_back(cast<Instruction>(I)); 5813 SmallPtrSet<PHINode *, 4> PhiNodes; 5814 PhiNodes.insert(I); 5815 Visited.insert(I); 5816 SmallPtrSet<Instruction *, 4> Defs; 5817 SmallPtrSet<Instruction *, 4> Uses; 5818 // This works by adding extra bitcasts between load/stores and removing 5819 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5820 // we can get in the situation where we remove a bitcast in one iteration 5821 // just to add it again in the next. We need to ensure that at least one 5822 // bitcast we remove are anchored to something that will not change back. 5823 bool AnyAnchored = false; 5824 5825 while (!Worklist.empty()) { 5826 Instruction *II = Worklist.pop_back_val(); 5827 5828 if (auto *Phi = dyn_cast<PHINode>(II)) { 5829 // Handle Defs, which might also be PHI's 5830 for (Value *V : Phi->incoming_values()) { 5831 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5832 if (!PhiNodes.count(OpPhi)) { 5833 if (Visited.count(OpPhi)) 5834 return false; 5835 PhiNodes.insert(OpPhi); 5836 Visited.insert(OpPhi); 5837 Worklist.push_back(OpPhi); 5838 } 5839 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5840 if (!OpLoad->isSimple()) 5841 return false; 5842 if (!Defs.count(OpLoad)) { 5843 Defs.insert(OpLoad); 5844 Worklist.push_back(OpLoad); 5845 } 5846 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5847 if (!Defs.count(OpEx)) { 5848 Defs.insert(OpEx); 5849 Worklist.push_back(OpEx); 5850 } 5851 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5852 if (!ConvertTy) 5853 ConvertTy = OpBC->getOperand(0)->getType(); 5854 if (OpBC->getOperand(0)->getType() != ConvertTy) 5855 return false; 5856 if (!Defs.count(OpBC)) { 5857 Defs.insert(OpBC); 5858 Worklist.push_back(OpBC); 5859 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5860 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5861 } 5862 } else if (!isa<UndefValue>(V)) { 5863 return false; 5864 } 5865 } 5866 } 5867 5868 // Handle uses which might also be phi's 5869 for (User *V : II->users()) { 5870 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5871 if (!PhiNodes.count(OpPhi)) { 5872 if (Visited.count(OpPhi)) 5873 return false; 5874 PhiNodes.insert(OpPhi); 5875 Visited.insert(OpPhi); 5876 Worklist.push_back(OpPhi); 5877 } 5878 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5879 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5880 return false; 5881 Uses.insert(OpStore); 5882 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5883 if (!ConvertTy) 5884 ConvertTy = OpBC->getType(); 5885 if (OpBC->getType() != ConvertTy) 5886 return false; 5887 Uses.insert(OpBC); 5888 AnyAnchored |= 5889 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5890 } else { 5891 return false; 5892 } 5893 } 5894 } 5895 5896 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5897 return false; 5898 5899 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5900 << *ConvertTy << "\n"); 5901 5902 // Create all the new phi nodes of the new type, and bitcast any loads to the 5903 // correct type. 5904 ValueToValueMap ValMap; 5905 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5906 for (Instruction *D : Defs) { 5907 if (isa<BitCastInst>(D)) { 5908 ValMap[D] = D->getOperand(0); 5909 DeletedInstrs.insert(D); 5910 } else { 5911 ValMap[D] = 5912 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5913 } 5914 } 5915 for (PHINode *Phi : PhiNodes) 5916 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5917 Phi->getName() + ".tc", Phi); 5918 // Pipe together all the PhiNodes. 5919 for (PHINode *Phi : PhiNodes) { 5920 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5921 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5922 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5923 Phi->getIncomingBlock(i)); 5924 Visited.insert(NewPhi); 5925 } 5926 // And finally pipe up the stores and bitcasts 5927 for (Instruction *U : Uses) { 5928 if (isa<BitCastInst>(U)) { 5929 DeletedInstrs.insert(U); 5930 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5931 } else { 5932 U->setOperand(0, 5933 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5934 } 5935 } 5936 5937 // Save the removed phis to be deleted later. 5938 for (PHINode *Phi : PhiNodes) 5939 DeletedInstrs.insert(Phi); 5940 return true; 5941 } 5942 5943 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5944 if (!OptimizePhiTypes) 5945 return false; 5946 5947 bool Changed = false; 5948 SmallPtrSet<PHINode *, 4> Visited; 5949 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5950 5951 // Attempt to optimize all the phis in the functions to the correct type. 5952 for (auto &BB : F) 5953 for (auto &Phi : BB.phis()) 5954 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5955 5956 // Remove any old phi's that have been converted. 5957 for (auto *I : DeletedInstrs) { 5958 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5959 I->eraseFromParent(); 5960 } 5961 5962 return Changed; 5963 } 5964 5965 /// Return true, if an ext(load) can be formed from an extension in 5966 /// \p MovedExts. 5967 bool CodeGenPrepare::canFormExtLd( 5968 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5969 Instruction *&Inst, bool HasPromoted) { 5970 for (auto *MovedExtInst : MovedExts) { 5971 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5972 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5973 Inst = MovedExtInst; 5974 break; 5975 } 5976 } 5977 if (!LI) 5978 return false; 5979 5980 // If they're already in the same block, there's nothing to do. 5981 // Make the cheap checks first if we did not promote. 5982 // If we promoted, we need to check if it is indeed profitable. 5983 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5984 return false; 5985 5986 return TLI->isExtLoad(LI, Inst, *DL); 5987 } 5988 5989 /// Move a zext or sext fed by a load into the same basic block as the load, 5990 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5991 /// extend into the load. 5992 /// 5993 /// E.g., 5994 /// \code 5995 /// %ld = load i32* %addr 5996 /// %add = add nuw i32 %ld, 4 5997 /// %zext = zext i32 %add to i64 5998 // \endcode 5999 /// => 6000 /// \code 6001 /// %ld = load i32* %addr 6002 /// %zext = zext i32 %ld to i64 6003 /// %add = add nuw i64 %zext, 4 6004 /// \encode 6005 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6006 /// allow us to match zext(load i32*) to i64. 6007 /// 6008 /// Also, try to promote the computations used to obtain a sign extended 6009 /// value used into memory accesses. 6010 /// E.g., 6011 /// \code 6012 /// a = add nsw i32 b, 3 6013 /// d = sext i32 a to i64 6014 /// e = getelementptr ..., i64 d 6015 /// \endcode 6016 /// => 6017 /// \code 6018 /// f = sext i32 b to i64 6019 /// a = add nsw i64 f, 3 6020 /// e = getelementptr ..., i64 a 6021 /// \endcode 6022 /// 6023 /// \p Inst[in/out] the extension may be modified during the process if some 6024 /// promotions apply. 6025 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6026 bool AllowPromotionWithoutCommonHeader = false; 6027 /// See if it is an interesting sext operations for the address type 6028 /// promotion before trying to promote it, e.g., the ones with the right 6029 /// type and used in memory accesses. 6030 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6031 *Inst, AllowPromotionWithoutCommonHeader); 6032 TypePromotionTransaction TPT(RemovedInsts); 6033 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6034 TPT.getRestorationPoint(); 6035 SmallVector<Instruction *, 1> Exts; 6036 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6037 Exts.push_back(Inst); 6038 6039 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6040 6041 // Look for a load being extended. 6042 LoadInst *LI = nullptr; 6043 Instruction *ExtFedByLoad; 6044 6045 // Try to promote a chain of computation if it allows to form an extended 6046 // load. 6047 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6048 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6049 TPT.commit(); 6050 // Move the extend into the same block as the load. 6051 ExtFedByLoad->moveAfter(LI); 6052 ++NumExtsMoved; 6053 Inst = ExtFedByLoad; 6054 return true; 6055 } 6056 6057 // Continue promoting SExts if known as considerable depending on targets. 6058 if (ATPConsiderable && 6059 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6060 HasPromoted, TPT, SpeculativelyMovedExts)) 6061 return true; 6062 6063 TPT.rollback(LastKnownGood); 6064 return false; 6065 } 6066 6067 // Perform address type promotion if doing so is profitable. 6068 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6069 // instructions that sign extended the same initial value. However, if 6070 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6071 // extension is just profitable. 6072 bool CodeGenPrepare::performAddressTypePromotion( 6073 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6074 bool HasPromoted, TypePromotionTransaction &TPT, 6075 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6076 bool Promoted = false; 6077 SmallPtrSet<Instruction *, 1> UnhandledExts; 6078 bool AllSeenFirst = true; 6079 for (auto *I : SpeculativelyMovedExts) { 6080 Value *HeadOfChain = I->getOperand(0); 6081 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6082 SeenChainsForSExt.find(HeadOfChain); 6083 // If there is an unhandled SExt which has the same header, try to promote 6084 // it as well. 6085 if (AlreadySeen != SeenChainsForSExt.end()) { 6086 if (AlreadySeen->second != nullptr) 6087 UnhandledExts.insert(AlreadySeen->second); 6088 AllSeenFirst = false; 6089 } 6090 } 6091 6092 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6093 SpeculativelyMovedExts.size() == 1)) { 6094 TPT.commit(); 6095 if (HasPromoted) 6096 Promoted = true; 6097 for (auto *I : SpeculativelyMovedExts) { 6098 Value *HeadOfChain = I->getOperand(0); 6099 SeenChainsForSExt[HeadOfChain] = nullptr; 6100 ValToSExtendedUses[HeadOfChain].push_back(I); 6101 } 6102 // Update Inst as promotion happen. 6103 Inst = SpeculativelyMovedExts.pop_back_val(); 6104 } else { 6105 // This is the first chain visited from the header, keep the current chain 6106 // as unhandled. Defer to promote this until we encounter another SExt 6107 // chain derived from the same header. 6108 for (auto *I : SpeculativelyMovedExts) { 6109 Value *HeadOfChain = I->getOperand(0); 6110 SeenChainsForSExt[HeadOfChain] = Inst; 6111 } 6112 return false; 6113 } 6114 6115 if (!AllSeenFirst && !UnhandledExts.empty()) 6116 for (auto *VisitedSExt : UnhandledExts) { 6117 if (RemovedInsts.count(VisitedSExt)) 6118 continue; 6119 TypePromotionTransaction TPT(RemovedInsts); 6120 SmallVector<Instruction *, 1> Exts; 6121 SmallVector<Instruction *, 2> Chains; 6122 Exts.push_back(VisitedSExt); 6123 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6124 TPT.commit(); 6125 if (HasPromoted) 6126 Promoted = true; 6127 for (auto *I : Chains) { 6128 Value *HeadOfChain = I->getOperand(0); 6129 // Mark this as handled. 6130 SeenChainsForSExt[HeadOfChain] = nullptr; 6131 ValToSExtendedUses[HeadOfChain].push_back(I); 6132 } 6133 } 6134 return Promoted; 6135 } 6136 6137 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6138 BasicBlock *DefBB = I->getParent(); 6139 6140 // If the result of a {s|z}ext and its source are both live out, rewrite all 6141 // other uses of the source with result of extension. 6142 Value *Src = I->getOperand(0); 6143 if (Src->hasOneUse()) 6144 return false; 6145 6146 // Only do this xform if truncating is free. 6147 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6148 return false; 6149 6150 // Only safe to perform the optimization if the source is also defined in 6151 // this block. 6152 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6153 return false; 6154 6155 bool DefIsLiveOut = false; 6156 for (User *U : I->users()) { 6157 Instruction *UI = cast<Instruction>(U); 6158 6159 // Figure out which BB this ext is used in. 6160 BasicBlock *UserBB = UI->getParent(); 6161 if (UserBB == DefBB) continue; 6162 DefIsLiveOut = true; 6163 break; 6164 } 6165 if (!DefIsLiveOut) 6166 return false; 6167 6168 // Make sure none of the uses are PHI nodes. 6169 for (User *U : Src->users()) { 6170 Instruction *UI = cast<Instruction>(U); 6171 BasicBlock *UserBB = UI->getParent(); 6172 if (UserBB == DefBB) continue; 6173 // Be conservative. We don't want this xform to end up introducing 6174 // reloads just before load / store instructions. 6175 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6176 return false; 6177 } 6178 6179 // InsertedTruncs - Only insert one trunc in each block once. 6180 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6181 6182 bool MadeChange = false; 6183 for (Use &U : Src->uses()) { 6184 Instruction *User = cast<Instruction>(U.getUser()); 6185 6186 // Figure out which BB this ext is used in. 6187 BasicBlock *UserBB = User->getParent(); 6188 if (UserBB == DefBB) continue; 6189 6190 // Both src and def are live in this block. Rewrite the use. 6191 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6192 6193 if (!InsertedTrunc) { 6194 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6195 assert(InsertPt != UserBB->end()); 6196 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6197 InsertedInsts.insert(InsertedTrunc); 6198 } 6199 6200 // Replace a use of the {s|z}ext source with a use of the result. 6201 U = InsertedTrunc; 6202 ++NumExtUses; 6203 MadeChange = true; 6204 } 6205 6206 return MadeChange; 6207 } 6208 6209 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6210 // just after the load if the target can fold this into one extload instruction, 6211 // with the hope of eliminating some of the other later "and" instructions using 6212 // the loaded value. "and"s that are made trivially redundant by the insertion 6213 // of the new "and" are removed by this function, while others (e.g. those whose 6214 // path from the load goes through a phi) are left for isel to potentially 6215 // remove. 6216 // 6217 // For example: 6218 // 6219 // b0: 6220 // x = load i32 6221 // ... 6222 // b1: 6223 // y = and x, 0xff 6224 // z = use y 6225 // 6226 // becomes: 6227 // 6228 // b0: 6229 // x = load i32 6230 // x' = and x, 0xff 6231 // ... 6232 // b1: 6233 // z = use x' 6234 // 6235 // whereas: 6236 // 6237 // b0: 6238 // x1 = load i32 6239 // ... 6240 // b1: 6241 // x2 = load i32 6242 // ... 6243 // b2: 6244 // x = phi x1, x2 6245 // y = and x, 0xff 6246 // 6247 // becomes (after a call to optimizeLoadExt for each load): 6248 // 6249 // b0: 6250 // x1 = load i32 6251 // x1' = and x1, 0xff 6252 // ... 6253 // b1: 6254 // x2 = load i32 6255 // x2' = and x2, 0xff 6256 // ... 6257 // b2: 6258 // x = phi x1', x2' 6259 // y = and x, 0xff 6260 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6261 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6262 return false; 6263 6264 // Skip loads we've already transformed. 6265 if (Load->hasOneUse() && 6266 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6267 return false; 6268 6269 // Look at all uses of Load, looking through phis, to determine how many bits 6270 // of the loaded value are needed. 6271 SmallVector<Instruction *, 8> WorkList; 6272 SmallPtrSet<Instruction *, 16> Visited; 6273 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6274 for (auto *U : Load->users()) 6275 WorkList.push_back(cast<Instruction>(U)); 6276 6277 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6278 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6279 APInt DemandBits(BitWidth, 0); 6280 APInt WidestAndBits(BitWidth, 0); 6281 6282 while (!WorkList.empty()) { 6283 Instruction *I = WorkList.back(); 6284 WorkList.pop_back(); 6285 6286 // Break use-def graph loops. 6287 if (!Visited.insert(I).second) 6288 continue; 6289 6290 // For a PHI node, push all of its users. 6291 if (auto *Phi = dyn_cast<PHINode>(I)) { 6292 for (auto *U : Phi->users()) 6293 WorkList.push_back(cast<Instruction>(U)); 6294 continue; 6295 } 6296 6297 switch (I->getOpcode()) { 6298 case Instruction::And: { 6299 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6300 if (!AndC) 6301 return false; 6302 APInt AndBits = AndC->getValue(); 6303 DemandBits |= AndBits; 6304 // Keep track of the widest and mask we see. 6305 if (AndBits.ugt(WidestAndBits)) 6306 WidestAndBits = AndBits; 6307 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6308 AndsToMaybeRemove.push_back(I); 6309 break; 6310 } 6311 6312 case Instruction::Shl: { 6313 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6314 if (!ShlC) 6315 return false; 6316 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6317 DemandBits.setLowBits(BitWidth - ShiftAmt); 6318 break; 6319 } 6320 6321 case Instruction::Trunc: { 6322 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6323 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6324 DemandBits.setLowBits(TruncBitWidth); 6325 break; 6326 } 6327 6328 default: 6329 return false; 6330 } 6331 } 6332 6333 uint32_t ActiveBits = DemandBits.getActiveBits(); 6334 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6335 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6336 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6337 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6338 // followed by an AND. 6339 // TODO: Look into removing this restriction by fixing backends to either 6340 // return false for isLoadExtLegal for i1 or have them select this pattern to 6341 // a single instruction. 6342 // 6343 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6344 // mask, since these are the only ands that will be removed by isel. 6345 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6346 WidestAndBits != DemandBits) 6347 return false; 6348 6349 LLVMContext &Ctx = Load->getType()->getContext(); 6350 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6351 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6352 6353 // Reject cases that won't be matched as extloads. 6354 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6355 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6356 return false; 6357 6358 IRBuilder<> Builder(Load->getNextNode()); 6359 auto *NewAnd = cast<Instruction>( 6360 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6361 // Mark this instruction as "inserted by CGP", so that other 6362 // optimizations don't touch it. 6363 InsertedInsts.insert(NewAnd); 6364 6365 // Replace all uses of load with new and (except for the use of load in the 6366 // new and itself). 6367 Load->replaceAllUsesWith(NewAnd); 6368 NewAnd->setOperand(0, Load); 6369 6370 // Remove any and instructions that are now redundant. 6371 for (auto *And : AndsToMaybeRemove) 6372 // Check that the and mask is the same as the one we decided to put on the 6373 // new and. 6374 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6375 And->replaceAllUsesWith(NewAnd); 6376 if (&*CurInstIterator == And) 6377 CurInstIterator = std::next(And->getIterator()); 6378 And->eraseFromParent(); 6379 ++NumAndUses; 6380 } 6381 6382 ++NumAndsAdded; 6383 return true; 6384 } 6385 6386 /// Check if V (an operand of a select instruction) is an expensive instruction 6387 /// that is only used once. 6388 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6389 auto *I = dyn_cast<Instruction>(V); 6390 // If it's safe to speculatively execute, then it should not have side 6391 // effects; therefore, it's safe to sink and possibly *not* execute. 6392 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6393 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6394 TargetTransformInfo::TCC_Expensive; 6395 } 6396 6397 /// Returns true if a SelectInst should be turned into an explicit branch. 6398 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6399 const TargetLowering *TLI, 6400 SelectInst *SI) { 6401 // If even a predictable select is cheap, then a branch can't be cheaper. 6402 if (!TLI->isPredictableSelectExpensive()) 6403 return false; 6404 6405 // FIXME: This should use the same heuristics as IfConversion to determine 6406 // whether a select is better represented as a branch. 6407 6408 // If metadata tells us that the select condition is obviously predictable, 6409 // then we want to replace the select with a branch. 6410 uint64_t TrueWeight, FalseWeight; 6411 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6412 uint64_t Max = std::max(TrueWeight, FalseWeight); 6413 uint64_t Sum = TrueWeight + FalseWeight; 6414 if (Sum != 0) { 6415 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6416 if (Probability > TLI->getPredictableBranchThreshold()) 6417 return true; 6418 } 6419 } 6420 6421 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6422 6423 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6424 // comparison condition. If the compare has more than one use, there's 6425 // probably another cmov or setcc around, so it's not worth emitting a branch. 6426 if (!Cmp || !Cmp->hasOneUse()) 6427 return false; 6428 6429 // If either operand of the select is expensive and only needed on one side 6430 // of the select, we should form a branch. 6431 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6432 sinkSelectOperand(TTI, SI->getFalseValue())) 6433 return true; 6434 6435 return false; 6436 } 6437 6438 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6439 /// false value of \p SI. If the true/false value of \p SI is defined by any 6440 /// select instructions in \p Selects, look through the defining select 6441 /// instruction until the true/false value is not defined in \p Selects. 6442 static Value *getTrueOrFalseValue( 6443 SelectInst *SI, bool isTrue, 6444 const SmallPtrSet<const Instruction *, 2> &Selects) { 6445 Value *V = nullptr; 6446 6447 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6448 DefSI = dyn_cast<SelectInst>(V)) { 6449 assert(DefSI->getCondition() == SI->getCondition() && 6450 "The condition of DefSI does not match with SI"); 6451 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6452 } 6453 6454 assert(V && "Failed to get select true/false value"); 6455 return V; 6456 } 6457 6458 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6459 assert(Shift->isShift() && "Expected a shift"); 6460 6461 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6462 // general vector shifts, and (3) the shift amount is a select-of-splatted 6463 // values, hoist the shifts before the select: 6464 // shift Op0, (select Cond, TVal, FVal) --> 6465 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6466 // 6467 // This is inverting a generic IR transform when we know that the cost of a 6468 // general vector shift is more than the cost of 2 shift-by-scalars. 6469 // We can't do this effectively in SDAG because we may not be able to 6470 // determine if the select operands are splats from within a basic block. 6471 Type *Ty = Shift->getType(); 6472 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6473 return false; 6474 Value *Cond, *TVal, *FVal; 6475 if (!match(Shift->getOperand(1), 6476 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6477 return false; 6478 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6479 return false; 6480 6481 IRBuilder<> Builder(Shift); 6482 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6483 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6484 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6485 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6486 Shift->replaceAllUsesWith(NewSel); 6487 Shift->eraseFromParent(); 6488 return true; 6489 } 6490 6491 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6492 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6493 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6494 "Expected a funnel shift"); 6495 6496 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6497 // than general vector shifts, and (3) the shift amount is select-of-splatted 6498 // values, hoist the funnel shifts before the select: 6499 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6500 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6501 // 6502 // This is inverting a generic IR transform when we know that the cost of a 6503 // general vector shift is more than the cost of 2 shift-by-scalars. 6504 // We can't do this effectively in SDAG because we may not be able to 6505 // determine if the select operands are splats from within a basic block. 6506 Type *Ty = Fsh->getType(); 6507 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6508 return false; 6509 Value *Cond, *TVal, *FVal; 6510 if (!match(Fsh->getOperand(2), 6511 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6512 return false; 6513 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6514 return false; 6515 6516 IRBuilder<> Builder(Fsh); 6517 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6518 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6519 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6520 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6521 Fsh->replaceAllUsesWith(NewSel); 6522 Fsh->eraseFromParent(); 6523 return true; 6524 } 6525 6526 /// If we have a SelectInst that will likely profit from branch prediction, 6527 /// turn it into a branch. 6528 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6529 if (DisableSelectToBranch) 6530 return false; 6531 6532 // Find all consecutive select instructions that share the same condition. 6533 SmallVector<SelectInst *, 2> ASI; 6534 ASI.push_back(SI); 6535 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6536 It != SI->getParent()->end(); ++It) { 6537 SelectInst *I = dyn_cast<SelectInst>(&*It); 6538 if (I && SI->getCondition() == I->getCondition()) { 6539 ASI.push_back(I); 6540 } else { 6541 break; 6542 } 6543 } 6544 6545 SelectInst *LastSI = ASI.back(); 6546 // Increment the current iterator to skip all the rest of select instructions 6547 // because they will be either "not lowered" or "all lowered" to branch. 6548 CurInstIterator = std::next(LastSI->getIterator()); 6549 6550 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6551 6552 // Can we convert the 'select' to CF ? 6553 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6554 return false; 6555 6556 TargetLowering::SelectSupportKind SelectKind; 6557 if (VectorCond) 6558 SelectKind = TargetLowering::VectorMaskSelect; 6559 else if (SI->getType()->isVectorTy()) 6560 SelectKind = TargetLowering::ScalarCondVectorVal; 6561 else 6562 SelectKind = TargetLowering::ScalarValSelect; 6563 6564 if (TLI->isSelectSupported(SelectKind) && 6565 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6566 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6567 return false; 6568 6569 // The DominatorTree needs to be rebuilt by any consumers after this 6570 // transformation. We simply reset here rather than setting the ModifiedDT 6571 // flag to avoid restarting the function walk in runOnFunction for each 6572 // select optimized. 6573 DT.reset(); 6574 6575 // Transform a sequence like this: 6576 // start: 6577 // %cmp = cmp uge i32 %a, %b 6578 // %sel = select i1 %cmp, i32 %c, i32 %d 6579 // 6580 // Into: 6581 // start: 6582 // %cmp = cmp uge i32 %a, %b 6583 // %cmp.frozen = freeze %cmp 6584 // br i1 %cmp.frozen, label %select.true, label %select.false 6585 // select.true: 6586 // br label %select.end 6587 // select.false: 6588 // br label %select.end 6589 // select.end: 6590 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6591 // 6592 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6593 // In addition, we may sink instructions that produce %c or %d from 6594 // the entry block into the destination(s) of the new branch. 6595 // If the true or false blocks do not contain a sunken instruction, that 6596 // block and its branch may be optimized away. In that case, one side of the 6597 // first branch will point directly to select.end, and the corresponding PHI 6598 // predecessor block will be the start block. 6599 6600 // First, we split the block containing the select into 2 blocks. 6601 BasicBlock *StartBlock = SI->getParent(); 6602 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6603 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6604 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6605 6606 // Delete the unconditional branch that was just created by the split. 6607 StartBlock->getTerminator()->eraseFromParent(); 6608 6609 // These are the new basic blocks for the conditional branch. 6610 // At least one will become an actual new basic block. 6611 BasicBlock *TrueBlock = nullptr; 6612 BasicBlock *FalseBlock = nullptr; 6613 BranchInst *TrueBranch = nullptr; 6614 BranchInst *FalseBranch = nullptr; 6615 6616 // Sink expensive instructions into the conditional blocks to avoid executing 6617 // them speculatively. 6618 for (SelectInst *SI : ASI) { 6619 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6620 if (TrueBlock == nullptr) { 6621 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6622 EndBlock->getParent(), EndBlock); 6623 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6624 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6625 } 6626 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6627 TrueInst->moveBefore(TrueBranch); 6628 } 6629 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6630 if (FalseBlock == nullptr) { 6631 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6632 EndBlock->getParent(), EndBlock); 6633 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6634 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6635 } 6636 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6637 FalseInst->moveBefore(FalseBranch); 6638 } 6639 } 6640 6641 // If there was nothing to sink, then arbitrarily choose the 'false' side 6642 // for a new input value to the PHI. 6643 if (TrueBlock == FalseBlock) { 6644 assert(TrueBlock == nullptr && 6645 "Unexpected basic block transform while optimizing select"); 6646 6647 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6648 EndBlock->getParent(), EndBlock); 6649 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6650 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6651 } 6652 6653 // Insert the real conditional branch based on the original condition. 6654 // If we did not create a new block for one of the 'true' or 'false' paths 6655 // of the condition, it means that side of the branch goes to the end block 6656 // directly and the path originates from the start block from the point of 6657 // view of the new PHI. 6658 BasicBlock *TT, *FT; 6659 if (TrueBlock == nullptr) { 6660 TT = EndBlock; 6661 FT = FalseBlock; 6662 TrueBlock = StartBlock; 6663 } else if (FalseBlock == nullptr) { 6664 TT = TrueBlock; 6665 FT = EndBlock; 6666 FalseBlock = StartBlock; 6667 } else { 6668 TT = TrueBlock; 6669 FT = FalseBlock; 6670 } 6671 IRBuilder<> IB(SI); 6672 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6673 IB.CreateCondBr(CondFr, TT, FT, SI); 6674 6675 SmallPtrSet<const Instruction *, 2> INS; 6676 INS.insert(ASI.begin(), ASI.end()); 6677 // Use reverse iterator because later select may use the value of the 6678 // earlier select, and we need to propagate value through earlier select 6679 // to get the PHI operand. 6680 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6681 SelectInst *SI = *It; 6682 // The select itself is replaced with a PHI Node. 6683 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6684 PN->takeName(SI); 6685 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6686 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6687 PN->setDebugLoc(SI->getDebugLoc()); 6688 6689 SI->replaceAllUsesWith(PN); 6690 SI->eraseFromParent(); 6691 INS.erase(SI); 6692 ++NumSelectsExpanded; 6693 } 6694 6695 // Instruct OptimizeBlock to skip to the next block. 6696 CurInstIterator = StartBlock->end(); 6697 return true; 6698 } 6699 6700 /// Some targets only accept certain types for splat inputs. For example a VDUP 6701 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6702 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6703 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6704 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6705 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6706 m_Undef(), m_ZeroMask()))) 6707 return false; 6708 Type *NewType = TLI->shouldConvertSplatType(SVI); 6709 if (!NewType) 6710 return false; 6711 6712 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6713 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6714 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6715 "Expected a type of the same size!"); 6716 auto *NewVecType = 6717 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6718 6719 // Create a bitcast (shuffle (insert (bitcast(..)))) 6720 IRBuilder<> Builder(SVI->getContext()); 6721 Builder.SetInsertPoint(SVI); 6722 Value *BC1 = Builder.CreateBitCast( 6723 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6724 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6725 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6726 6727 SVI->replaceAllUsesWith(BC2); 6728 RecursivelyDeleteTriviallyDeadInstructions( 6729 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6730 6731 // Also hoist the bitcast up to its operand if it they are not in the same 6732 // block. 6733 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6734 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6735 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6736 !Op->isTerminator() && !Op->isEHPad()) 6737 BCI->moveAfter(Op); 6738 6739 return true; 6740 } 6741 6742 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6743 // If the operands of I can be folded into a target instruction together with 6744 // I, duplicate and sink them. 6745 SmallVector<Use *, 4> OpsToSink; 6746 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6747 return false; 6748 6749 // OpsToSink can contain multiple uses in a use chain (e.g. 6750 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6751 // uses must come first, so we process the ops in reverse order so as to not 6752 // create invalid IR. 6753 BasicBlock *TargetBB = I->getParent(); 6754 bool Changed = false; 6755 SmallVector<Use *, 4> ToReplace; 6756 for (Use *U : reverse(OpsToSink)) { 6757 auto *UI = cast<Instruction>(U->get()); 6758 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6759 continue; 6760 ToReplace.push_back(U); 6761 } 6762 6763 SetVector<Instruction *> MaybeDead; 6764 DenseMap<Instruction *, Instruction *> NewInstructions; 6765 Instruction *InsertPoint = I; 6766 for (Use *U : ToReplace) { 6767 auto *UI = cast<Instruction>(U->get()); 6768 Instruction *NI = UI->clone(); 6769 NewInstructions[UI] = NI; 6770 MaybeDead.insert(UI); 6771 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6772 NI->insertBefore(InsertPoint); 6773 InsertPoint = NI; 6774 InsertedInsts.insert(NI); 6775 6776 // Update the use for the new instruction, making sure that we update the 6777 // sunk instruction uses, if it is part of a chain that has already been 6778 // sunk. 6779 Instruction *OldI = cast<Instruction>(U->getUser()); 6780 if (NewInstructions.count(OldI)) 6781 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6782 else 6783 U->set(NI); 6784 Changed = true; 6785 } 6786 6787 // Remove instructions that are dead after sinking. 6788 for (auto *I : MaybeDead) { 6789 if (!I->hasNUsesOrMore(1)) { 6790 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6791 I->eraseFromParent(); 6792 } 6793 } 6794 6795 return Changed; 6796 } 6797 6798 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6799 Value *Cond = SI->getCondition(); 6800 Type *OldType = Cond->getType(); 6801 LLVMContext &Context = Cond->getContext(); 6802 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6803 unsigned RegWidth = RegType.getSizeInBits(); 6804 6805 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6806 return false; 6807 6808 // If the register width is greater than the type width, expand the condition 6809 // of the switch instruction and each case constant to the width of the 6810 // register. By widening the type of the switch condition, subsequent 6811 // comparisons (for case comparisons) will not need to be extended to the 6812 // preferred register width, so we will potentially eliminate N-1 extends, 6813 // where N is the number of cases in the switch. 6814 auto *NewType = Type::getIntNTy(Context, RegWidth); 6815 6816 // Zero-extend the switch condition and case constants unless the switch 6817 // condition is a function argument that is already being sign-extended. 6818 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6819 // everything instead. 6820 Instruction::CastOps ExtType = Instruction::ZExt; 6821 if (auto *Arg = dyn_cast<Argument>(Cond)) 6822 if (Arg->hasSExtAttr()) 6823 ExtType = Instruction::SExt; 6824 6825 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6826 ExtInst->insertBefore(SI); 6827 ExtInst->setDebugLoc(SI->getDebugLoc()); 6828 SI->setCondition(ExtInst); 6829 for (auto Case : SI->cases()) { 6830 APInt NarrowConst = Case.getCaseValue()->getValue(); 6831 APInt WideConst = (ExtType == Instruction::ZExt) ? 6832 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6833 Case.setValue(ConstantInt::get(Context, WideConst)); 6834 } 6835 6836 return true; 6837 } 6838 6839 6840 namespace { 6841 6842 /// Helper class to promote a scalar operation to a vector one. 6843 /// This class is used to move downward extractelement transition. 6844 /// E.g., 6845 /// a = vector_op <2 x i32> 6846 /// b = extractelement <2 x i32> a, i32 0 6847 /// c = scalar_op b 6848 /// store c 6849 /// 6850 /// => 6851 /// a = vector_op <2 x i32> 6852 /// c = vector_op a (equivalent to scalar_op on the related lane) 6853 /// * d = extractelement <2 x i32> c, i32 0 6854 /// * store d 6855 /// Assuming both extractelement and store can be combine, we get rid of the 6856 /// transition. 6857 class VectorPromoteHelper { 6858 /// DataLayout associated with the current module. 6859 const DataLayout &DL; 6860 6861 /// Used to perform some checks on the legality of vector operations. 6862 const TargetLowering &TLI; 6863 6864 /// Used to estimated the cost of the promoted chain. 6865 const TargetTransformInfo &TTI; 6866 6867 /// The transition being moved downwards. 6868 Instruction *Transition; 6869 6870 /// The sequence of instructions to be promoted. 6871 SmallVector<Instruction *, 4> InstsToBePromoted; 6872 6873 /// Cost of combining a store and an extract. 6874 unsigned StoreExtractCombineCost; 6875 6876 /// Instruction that will be combined with the transition. 6877 Instruction *CombineInst = nullptr; 6878 6879 /// The instruction that represents the current end of the transition. 6880 /// Since we are faking the promotion until we reach the end of the chain 6881 /// of computation, we need a way to get the current end of the transition. 6882 Instruction *getEndOfTransition() const { 6883 if (InstsToBePromoted.empty()) 6884 return Transition; 6885 return InstsToBePromoted.back(); 6886 } 6887 6888 /// Return the index of the original value in the transition. 6889 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6890 /// c, is at index 0. 6891 unsigned getTransitionOriginalValueIdx() const { 6892 assert(isa<ExtractElementInst>(Transition) && 6893 "Other kind of transitions are not supported yet"); 6894 return 0; 6895 } 6896 6897 /// Return the index of the index in the transition. 6898 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6899 /// is at index 1. 6900 unsigned getTransitionIdx() const { 6901 assert(isa<ExtractElementInst>(Transition) && 6902 "Other kind of transitions are not supported yet"); 6903 return 1; 6904 } 6905 6906 /// Get the type of the transition. 6907 /// This is the type of the original value. 6908 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6909 /// transition is <2 x i32>. 6910 Type *getTransitionType() const { 6911 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6912 } 6913 6914 /// Promote \p ToBePromoted by moving \p Def downward through. 6915 /// I.e., we have the following sequence: 6916 /// Def = Transition <ty1> a to <ty2> 6917 /// b = ToBePromoted <ty2> Def, ... 6918 /// => 6919 /// b = ToBePromoted <ty1> a, ... 6920 /// Def = Transition <ty1> ToBePromoted to <ty2> 6921 void promoteImpl(Instruction *ToBePromoted); 6922 6923 /// Check whether or not it is profitable to promote all the 6924 /// instructions enqueued to be promoted. 6925 bool isProfitableToPromote() { 6926 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6927 unsigned Index = isa<ConstantInt>(ValIdx) 6928 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6929 : -1; 6930 Type *PromotedType = getTransitionType(); 6931 6932 StoreInst *ST = cast<StoreInst>(CombineInst); 6933 unsigned AS = ST->getPointerAddressSpace(); 6934 // Check if this store is supported. 6935 if (!TLI.allowsMisalignedMemoryAccesses( 6936 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6937 ST->getAlign())) { 6938 // If this is not supported, there is no way we can combine 6939 // the extract with the store. 6940 return false; 6941 } 6942 6943 // The scalar chain of computation has to pay for the transition 6944 // scalar to vector. 6945 // The vector chain has to account for the combining cost. 6946 uint64_t ScalarCost = 6947 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6948 uint64_t VectorCost = StoreExtractCombineCost; 6949 enum TargetTransformInfo::TargetCostKind CostKind = 6950 TargetTransformInfo::TCK_RecipThroughput; 6951 for (const auto &Inst : InstsToBePromoted) { 6952 // Compute the cost. 6953 // By construction, all instructions being promoted are arithmetic ones. 6954 // Moreover, one argument is a constant that can be viewed as a splat 6955 // constant. 6956 Value *Arg0 = Inst->getOperand(0); 6957 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6958 isa<ConstantFP>(Arg0); 6959 TargetTransformInfo::OperandValueKind Arg0OVK = 6960 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6961 : TargetTransformInfo::OK_AnyValue; 6962 TargetTransformInfo::OperandValueKind Arg1OVK = 6963 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6964 : TargetTransformInfo::OK_AnyValue; 6965 ScalarCost += TTI.getArithmeticInstrCost( 6966 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6967 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6968 CostKind, 6969 Arg0OVK, Arg1OVK); 6970 } 6971 LLVM_DEBUG( 6972 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6973 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6974 return ScalarCost > VectorCost; 6975 } 6976 6977 /// Generate a constant vector with \p Val with the same 6978 /// number of elements as the transition. 6979 /// \p UseSplat defines whether or not \p Val should be replicated 6980 /// across the whole vector. 6981 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6982 /// otherwise we generate a vector with as many undef as possible: 6983 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6984 /// used at the index of the extract. 6985 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6986 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6987 if (!UseSplat) { 6988 // If we cannot determine where the constant must be, we have to 6989 // use a splat constant. 6990 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6991 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6992 ExtractIdx = CstVal->getSExtValue(); 6993 else 6994 UseSplat = true; 6995 } 6996 6997 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6998 if (UseSplat) 6999 return ConstantVector::getSplat(EC, Val); 7000 7001 if (!EC.isScalable()) { 7002 SmallVector<Constant *, 4> ConstVec; 7003 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7004 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7005 if (Idx == ExtractIdx) 7006 ConstVec.push_back(Val); 7007 else 7008 ConstVec.push_back(UndefVal); 7009 } 7010 return ConstantVector::get(ConstVec); 7011 } else 7012 llvm_unreachable( 7013 "Generate scalable vector for non-splat is unimplemented"); 7014 } 7015 7016 /// Check if promoting to a vector type an operand at \p OperandIdx 7017 /// in \p Use can trigger undefined behavior. 7018 static bool canCauseUndefinedBehavior(const Instruction *Use, 7019 unsigned OperandIdx) { 7020 // This is not safe to introduce undef when the operand is on 7021 // the right hand side of a division-like instruction. 7022 if (OperandIdx != 1) 7023 return false; 7024 switch (Use->getOpcode()) { 7025 default: 7026 return false; 7027 case Instruction::SDiv: 7028 case Instruction::UDiv: 7029 case Instruction::SRem: 7030 case Instruction::URem: 7031 return true; 7032 case Instruction::FDiv: 7033 case Instruction::FRem: 7034 return !Use->hasNoNaNs(); 7035 } 7036 llvm_unreachable(nullptr); 7037 } 7038 7039 public: 7040 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7041 const TargetTransformInfo &TTI, Instruction *Transition, 7042 unsigned CombineCost) 7043 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7044 StoreExtractCombineCost(CombineCost) { 7045 assert(Transition && "Do not know how to promote null"); 7046 } 7047 7048 /// Check if we can promote \p ToBePromoted to \p Type. 7049 bool canPromote(const Instruction *ToBePromoted) const { 7050 // We could support CastInst too. 7051 return isa<BinaryOperator>(ToBePromoted); 7052 } 7053 7054 /// Check if it is profitable to promote \p ToBePromoted 7055 /// by moving downward the transition through. 7056 bool shouldPromote(const Instruction *ToBePromoted) const { 7057 // Promote only if all the operands can be statically expanded. 7058 // Indeed, we do not want to introduce any new kind of transitions. 7059 for (const Use &U : ToBePromoted->operands()) { 7060 const Value *Val = U.get(); 7061 if (Val == getEndOfTransition()) { 7062 // If the use is a division and the transition is on the rhs, 7063 // we cannot promote the operation, otherwise we may create a 7064 // division by zero. 7065 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7066 return false; 7067 continue; 7068 } 7069 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7070 !isa<ConstantFP>(Val)) 7071 return false; 7072 } 7073 // Check that the resulting operation is legal. 7074 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7075 if (!ISDOpcode) 7076 return false; 7077 return StressStoreExtract || 7078 TLI.isOperationLegalOrCustom( 7079 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7080 } 7081 7082 /// Check whether or not \p Use can be combined 7083 /// with the transition. 7084 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7085 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7086 7087 /// Record \p ToBePromoted as part of the chain to be promoted. 7088 void enqueueForPromotion(Instruction *ToBePromoted) { 7089 InstsToBePromoted.push_back(ToBePromoted); 7090 } 7091 7092 /// Set the instruction that will be combined with the transition. 7093 void recordCombineInstruction(Instruction *ToBeCombined) { 7094 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7095 CombineInst = ToBeCombined; 7096 } 7097 7098 /// Promote all the instructions enqueued for promotion if it is 7099 /// is profitable. 7100 /// \return True if the promotion happened, false otherwise. 7101 bool promote() { 7102 // Check if there is something to promote. 7103 // Right now, if we do not have anything to combine with, 7104 // we assume the promotion is not profitable. 7105 if (InstsToBePromoted.empty() || !CombineInst) 7106 return false; 7107 7108 // Check cost. 7109 if (!StressStoreExtract && !isProfitableToPromote()) 7110 return false; 7111 7112 // Promote. 7113 for (auto &ToBePromoted : InstsToBePromoted) 7114 promoteImpl(ToBePromoted); 7115 InstsToBePromoted.clear(); 7116 return true; 7117 } 7118 }; 7119 7120 } // end anonymous namespace 7121 7122 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7123 // At this point, we know that all the operands of ToBePromoted but Def 7124 // can be statically promoted. 7125 // For Def, we need to use its parameter in ToBePromoted: 7126 // b = ToBePromoted ty1 a 7127 // Def = Transition ty1 b to ty2 7128 // Move the transition down. 7129 // 1. Replace all uses of the promoted operation by the transition. 7130 // = ... b => = ... Def. 7131 assert(ToBePromoted->getType() == Transition->getType() && 7132 "The type of the result of the transition does not match " 7133 "the final type"); 7134 ToBePromoted->replaceAllUsesWith(Transition); 7135 // 2. Update the type of the uses. 7136 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7137 Type *TransitionTy = getTransitionType(); 7138 ToBePromoted->mutateType(TransitionTy); 7139 // 3. Update all the operands of the promoted operation with promoted 7140 // operands. 7141 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7142 for (Use &U : ToBePromoted->operands()) { 7143 Value *Val = U.get(); 7144 Value *NewVal = nullptr; 7145 if (Val == Transition) 7146 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7147 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7148 isa<ConstantFP>(Val)) { 7149 // Use a splat constant if it is not safe to use undef. 7150 NewVal = getConstantVector( 7151 cast<Constant>(Val), 7152 isa<UndefValue>(Val) || 7153 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7154 } else 7155 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7156 "this?"); 7157 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7158 } 7159 Transition->moveAfter(ToBePromoted); 7160 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7161 } 7162 7163 /// Some targets can do store(extractelement) with one instruction. 7164 /// Try to push the extractelement towards the stores when the target 7165 /// has this feature and this is profitable. 7166 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7167 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7168 if (DisableStoreExtract || 7169 (!StressStoreExtract && 7170 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7171 Inst->getOperand(1), CombineCost))) 7172 return false; 7173 7174 // At this point we know that Inst is a vector to scalar transition. 7175 // Try to move it down the def-use chain, until: 7176 // - We can combine the transition with its single use 7177 // => we got rid of the transition. 7178 // - We escape the current basic block 7179 // => we would need to check that we are moving it at a cheaper place and 7180 // we do not do that for now. 7181 BasicBlock *Parent = Inst->getParent(); 7182 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7183 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7184 // If the transition has more than one use, assume this is not going to be 7185 // beneficial. 7186 while (Inst->hasOneUse()) { 7187 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7188 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7189 7190 if (ToBePromoted->getParent() != Parent) { 7191 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7192 << ToBePromoted->getParent()->getName() 7193 << ") than the transition (" << Parent->getName() 7194 << ").\n"); 7195 return false; 7196 } 7197 7198 if (VPH.canCombine(ToBePromoted)) { 7199 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7200 << "will be combined with: " << *ToBePromoted << '\n'); 7201 VPH.recordCombineInstruction(ToBePromoted); 7202 bool Changed = VPH.promote(); 7203 NumStoreExtractExposed += Changed; 7204 return Changed; 7205 } 7206 7207 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7208 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7209 return false; 7210 7211 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7212 7213 VPH.enqueueForPromotion(ToBePromoted); 7214 Inst = ToBePromoted; 7215 } 7216 return false; 7217 } 7218 7219 /// For the instruction sequence of store below, F and I values 7220 /// are bundled together as an i64 value before being stored into memory. 7221 /// Sometimes it is more efficient to generate separate stores for F and I, 7222 /// which can remove the bitwise instructions or sink them to colder places. 7223 /// 7224 /// (store (or (zext (bitcast F to i32) to i64), 7225 /// (shl (zext I to i64), 32)), addr) --> 7226 /// (store F, addr) and (store I, addr+4) 7227 /// 7228 /// Similarly, splitting for other merged store can also be beneficial, like: 7229 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7230 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7231 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7232 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7233 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7234 /// 7235 /// We allow each target to determine specifically which kind of splitting is 7236 /// supported. 7237 /// 7238 /// The store patterns are commonly seen from the simple code snippet below 7239 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7240 /// void goo(const std::pair<int, float> &); 7241 /// hoo() { 7242 /// ... 7243 /// goo(std::make_pair(tmp, ftmp)); 7244 /// ... 7245 /// } 7246 /// 7247 /// Although we already have similar splitting in DAG Combine, we duplicate 7248 /// it in CodeGenPrepare to catch the case in which pattern is across 7249 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7250 /// during code expansion. 7251 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7252 const TargetLowering &TLI) { 7253 // Handle simple but common cases only. 7254 Type *StoreType = SI.getValueOperand()->getType(); 7255 7256 // The code below assumes shifting a value by <number of bits>, 7257 // whereas scalable vectors would have to be shifted by 7258 // <2log(vscale) + number of bits> in order to store the 7259 // low/high parts. Bailing out for now. 7260 if (isa<ScalableVectorType>(StoreType)) 7261 return false; 7262 7263 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7264 DL.getTypeSizeInBits(StoreType) == 0) 7265 return false; 7266 7267 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7268 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7269 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7270 return false; 7271 7272 // Don't split the store if it is volatile. 7273 if (SI.isVolatile()) 7274 return false; 7275 7276 // Match the following patterns: 7277 // (store (or (zext LValue to i64), 7278 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7279 // or 7280 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7281 // (zext LValue to i64), 7282 // Expect both operands of OR and the first operand of SHL have only 7283 // one use. 7284 Value *LValue, *HValue; 7285 if (!match(SI.getValueOperand(), 7286 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7287 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7288 m_SpecificInt(HalfValBitSize)))))) 7289 return false; 7290 7291 // Check LValue and HValue are int with size less or equal than 32. 7292 if (!LValue->getType()->isIntegerTy() || 7293 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7294 !HValue->getType()->isIntegerTy() || 7295 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7296 return false; 7297 7298 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7299 // as the input of target query. 7300 auto *LBC = dyn_cast<BitCastInst>(LValue); 7301 auto *HBC = dyn_cast<BitCastInst>(HValue); 7302 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7303 : EVT::getEVT(LValue->getType()); 7304 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7305 : EVT::getEVT(HValue->getType()); 7306 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7307 return false; 7308 7309 // Start to split store. 7310 IRBuilder<> Builder(SI.getContext()); 7311 Builder.SetInsertPoint(&SI); 7312 7313 // If LValue/HValue is a bitcast in another BB, create a new one in current 7314 // BB so it may be merged with the splitted stores by dag combiner. 7315 if (LBC && LBC->getParent() != SI.getParent()) 7316 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7317 if (HBC && HBC->getParent() != SI.getParent()) 7318 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7319 7320 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7321 auto CreateSplitStore = [&](Value *V, bool Upper) { 7322 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7323 Value *Addr = Builder.CreateBitCast( 7324 SI.getOperand(1), 7325 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7326 Align Alignment = SI.getAlign(); 7327 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7328 if (IsOffsetStore) { 7329 Addr = Builder.CreateGEP( 7330 SplitStoreType, Addr, 7331 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7332 7333 // When splitting the store in half, naturally one half will retain the 7334 // alignment of the original wider store, regardless of whether it was 7335 // over-aligned or not, while the other will require adjustment. 7336 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7337 } 7338 Builder.CreateAlignedStore(V, Addr, Alignment); 7339 }; 7340 7341 CreateSplitStore(LValue, false); 7342 CreateSplitStore(HValue, true); 7343 7344 // Delete the old store. 7345 SI.eraseFromParent(); 7346 return true; 7347 } 7348 7349 // Return true if the GEP has two operands, the first operand is of a sequential 7350 // type, and the second operand is a constant. 7351 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7352 gep_type_iterator I = gep_type_begin(*GEP); 7353 return GEP->getNumOperands() == 2 && 7354 I.isSequential() && 7355 isa<ConstantInt>(GEP->getOperand(1)); 7356 } 7357 7358 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7359 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7360 // reducing liveness interference across those edges benefits global register 7361 // allocation. Currently handles only certain cases. 7362 // 7363 // For example, unmerge %GEPI and %UGEPI as below. 7364 // 7365 // ---------- BEFORE ---------- 7366 // SrcBlock: 7367 // ... 7368 // %GEPIOp = ... 7369 // ... 7370 // %GEPI = gep %GEPIOp, Idx 7371 // ... 7372 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7373 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7374 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7375 // %UGEPI) 7376 // 7377 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7378 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7379 // ... 7380 // 7381 // DstBi: 7382 // ... 7383 // %UGEPI = gep %GEPIOp, UIdx 7384 // ... 7385 // --------------------------- 7386 // 7387 // ---------- AFTER ---------- 7388 // SrcBlock: 7389 // ... (same as above) 7390 // (* %GEPI is still alive on the indirectbr edges) 7391 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7392 // unmerging) 7393 // ... 7394 // 7395 // DstBi: 7396 // ... 7397 // %UGEPI = gep %GEPI, (UIdx-Idx) 7398 // ... 7399 // --------------------------- 7400 // 7401 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7402 // no longer alive on them. 7403 // 7404 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7405 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7406 // not to disable further simplications and optimizations as a result of GEP 7407 // merging. 7408 // 7409 // Note this unmerging may increase the length of the data flow critical path 7410 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7411 // between the register pressure and the length of data-flow critical 7412 // path. Restricting this to the uncommon IndirectBr case would minimize the 7413 // impact of potentially longer critical path, if any, and the impact on compile 7414 // time. 7415 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7416 const TargetTransformInfo *TTI) { 7417 BasicBlock *SrcBlock = GEPI->getParent(); 7418 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7419 // (non-IndirectBr) cases exit early here. 7420 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7421 return false; 7422 // Check that GEPI is a simple gep with a single constant index. 7423 if (!GEPSequentialConstIndexed(GEPI)) 7424 return false; 7425 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7426 // Check that GEPI is a cheap one. 7427 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7428 TargetTransformInfo::TCK_SizeAndLatency) 7429 > TargetTransformInfo::TCC_Basic) 7430 return false; 7431 Value *GEPIOp = GEPI->getOperand(0); 7432 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7433 if (!isa<Instruction>(GEPIOp)) 7434 return false; 7435 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7436 if (GEPIOpI->getParent() != SrcBlock) 7437 return false; 7438 // Check that GEP is used outside the block, meaning it's alive on the 7439 // IndirectBr edge(s). 7440 if (find_if(GEPI->users(), [&](User *Usr) { 7441 if (auto *I = dyn_cast<Instruction>(Usr)) { 7442 if (I->getParent() != SrcBlock) { 7443 return true; 7444 } 7445 } 7446 return false; 7447 }) == GEPI->users().end()) 7448 return false; 7449 // The second elements of the GEP chains to be unmerged. 7450 std::vector<GetElementPtrInst *> UGEPIs; 7451 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7452 // on IndirectBr edges. 7453 for (User *Usr : GEPIOp->users()) { 7454 if (Usr == GEPI) continue; 7455 // Check if Usr is an Instruction. If not, give up. 7456 if (!isa<Instruction>(Usr)) 7457 return false; 7458 auto *UI = cast<Instruction>(Usr); 7459 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7460 if (UI->getParent() == SrcBlock) 7461 continue; 7462 // Check if Usr is a GEP. If not, give up. 7463 if (!isa<GetElementPtrInst>(Usr)) 7464 return false; 7465 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7466 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7467 // the pointer operand to it. If so, record it in the vector. If not, give 7468 // up. 7469 if (!GEPSequentialConstIndexed(UGEPI)) 7470 return false; 7471 if (UGEPI->getOperand(0) != GEPIOp) 7472 return false; 7473 if (GEPIIdx->getType() != 7474 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7475 return false; 7476 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7477 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7478 TargetTransformInfo::TCK_SizeAndLatency) 7479 > TargetTransformInfo::TCC_Basic) 7480 return false; 7481 UGEPIs.push_back(UGEPI); 7482 } 7483 if (UGEPIs.size() == 0) 7484 return false; 7485 // Check the materializing cost of (Uidx-Idx). 7486 for (GetElementPtrInst *UGEPI : UGEPIs) { 7487 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7488 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7489 unsigned ImmCost = 7490 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7491 TargetTransformInfo::TCK_SizeAndLatency); 7492 if (ImmCost > TargetTransformInfo::TCC_Basic) 7493 return false; 7494 } 7495 // Now unmerge between GEPI and UGEPIs. 7496 for (GetElementPtrInst *UGEPI : UGEPIs) { 7497 UGEPI->setOperand(0, GEPI); 7498 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7499 Constant *NewUGEPIIdx = 7500 ConstantInt::get(GEPIIdx->getType(), 7501 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7502 UGEPI->setOperand(1, NewUGEPIIdx); 7503 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7504 // inbounds to avoid UB. 7505 if (!GEPI->isInBounds()) { 7506 UGEPI->setIsInBounds(false); 7507 } 7508 } 7509 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7510 // alive on IndirectBr edges). 7511 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7512 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7513 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7514 return true; 7515 } 7516 7517 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7518 // Bail out if we inserted the instruction to prevent optimizations from 7519 // stepping on each other's toes. 7520 if (InsertedInsts.count(I)) 7521 return false; 7522 7523 // TODO: Move into the switch on opcode below here. 7524 if (PHINode *P = dyn_cast<PHINode>(I)) { 7525 // It is possible for very late stage optimizations (such as SimplifyCFG) 7526 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7527 // trivial PHI, go ahead and zap it here. 7528 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7529 LargeOffsetGEPMap.erase(P); 7530 P->replaceAllUsesWith(V); 7531 P->eraseFromParent(); 7532 ++NumPHIsElim; 7533 return true; 7534 } 7535 return false; 7536 } 7537 7538 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7539 // If the source of the cast is a constant, then this should have 7540 // already been constant folded. The only reason NOT to constant fold 7541 // it is if something (e.g. LSR) was careful to place the constant 7542 // evaluation in a block other than then one that uses it (e.g. to hoist 7543 // the address of globals out of a loop). If this is the case, we don't 7544 // want to forward-subst the cast. 7545 if (isa<Constant>(CI->getOperand(0))) 7546 return false; 7547 7548 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7549 return true; 7550 7551 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7552 /// Sink a zext or sext into its user blocks if the target type doesn't 7553 /// fit in one register 7554 if (TLI->getTypeAction(CI->getContext(), 7555 TLI->getValueType(*DL, CI->getType())) == 7556 TargetLowering::TypeExpandInteger) { 7557 return SinkCast(CI); 7558 } else { 7559 bool MadeChange = optimizeExt(I); 7560 return MadeChange | optimizeExtUses(I); 7561 } 7562 } 7563 return false; 7564 } 7565 7566 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7567 if (optimizeCmp(Cmp, ModifiedDT)) 7568 return true; 7569 7570 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7571 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7572 bool Modified = optimizeLoadExt(LI); 7573 unsigned AS = LI->getPointerAddressSpace(); 7574 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7575 return Modified; 7576 } 7577 7578 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7579 if (splitMergedValStore(*SI, *DL, *TLI)) 7580 return true; 7581 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7582 unsigned AS = SI->getPointerAddressSpace(); 7583 return optimizeMemoryInst(I, SI->getOperand(1), 7584 SI->getOperand(0)->getType(), AS); 7585 } 7586 7587 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7588 unsigned AS = RMW->getPointerAddressSpace(); 7589 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7590 RMW->getType(), AS); 7591 } 7592 7593 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7594 unsigned AS = CmpX->getPointerAddressSpace(); 7595 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7596 CmpX->getCompareOperand()->getType(), AS); 7597 } 7598 7599 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7600 7601 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7602 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7603 7604 // TODO: Move this into the switch on opcode - it handles shifts already. 7605 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7606 BinOp->getOpcode() == Instruction::LShr)) { 7607 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7608 if (CI && TLI->hasExtractBitsInsn()) 7609 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7610 return true; 7611 } 7612 7613 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7614 if (GEPI->hasAllZeroIndices()) { 7615 /// The GEP operand must be a pointer, so must its result -> BitCast 7616 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7617 GEPI->getName(), GEPI); 7618 NC->setDebugLoc(GEPI->getDebugLoc()); 7619 GEPI->replaceAllUsesWith(NC); 7620 GEPI->eraseFromParent(); 7621 ++NumGEPsElim; 7622 optimizeInst(NC, ModifiedDT); 7623 return true; 7624 } 7625 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7626 return true; 7627 } 7628 return false; 7629 } 7630 7631 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7632 // freeze(icmp a, const)) -> icmp (freeze a), const 7633 // This helps generate efficient conditional jumps. 7634 Instruction *CmpI = nullptr; 7635 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7636 CmpI = II; 7637 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7638 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7639 7640 if (CmpI && CmpI->hasOneUse()) { 7641 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7642 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7643 isa<ConstantPointerNull>(Op0); 7644 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7645 isa<ConstantPointerNull>(Op1); 7646 if (Const0 || Const1) { 7647 if (!Const0 || !Const1) { 7648 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7649 F->takeName(FI); 7650 CmpI->setOperand(Const0 ? 1 : 0, F); 7651 } 7652 FI->replaceAllUsesWith(CmpI); 7653 FI->eraseFromParent(); 7654 return true; 7655 } 7656 } 7657 return false; 7658 } 7659 7660 if (tryToSinkFreeOperands(I)) 7661 return true; 7662 7663 switch (I->getOpcode()) { 7664 case Instruction::Shl: 7665 case Instruction::LShr: 7666 case Instruction::AShr: 7667 return optimizeShiftInst(cast<BinaryOperator>(I)); 7668 case Instruction::Call: 7669 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7670 case Instruction::Select: 7671 return optimizeSelectInst(cast<SelectInst>(I)); 7672 case Instruction::ShuffleVector: 7673 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7674 case Instruction::Switch: 7675 return optimizeSwitchInst(cast<SwitchInst>(I)); 7676 case Instruction::ExtractElement: 7677 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7678 } 7679 7680 return false; 7681 } 7682 7683 /// Given an OR instruction, check to see if this is a bitreverse 7684 /// idiom. If so, insert the new intrinsic and return true. 7685 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7686 if (!I.getType()->isIntegerTy() || 7687 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7688 TLI->getValueType(*DL, I.getType(), true))) 7689 return false; 7690 7691 SmallVector<Instruction*, 4> Insts; 7692 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7693 return false; 7694 Instruction *LastInst = Insts.back(); 7695 I.replaceAllUsesWith(LastInst); 7696 RecursivelyDeleteTriviallyDeadInstructions( 7697 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7698 return true; 7699 } 7700 7701 // In this pass we look for GEP and cast instructions that are used 7702 // across basic blocks and rewrite them to improve basic-block-at-a-time 7703 // selection. 7704 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7705 SunkAddrs.clear(); 7706 bool MadeChange = false; 7707 7708 CurInstIterator = BB.begin(); 7709 while (CurInstIterator != BB.end()) { 7710 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7711 if (ModifiedDT) 7712 return true; 7713 } 7714 7715 bool MadeBitReverse = true; 7716 while (MadeBitReverse) { 7717 MadeBitReverse = false; 7718 for (auto &I : reverse(BB)) { 7719 if (makeBitReverse(I)) { 7720 MadeBitReverse = MadeChange = true; 7721 break; 7722 } 7723 } 7724 } 7725 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7726 7727 return MadeChange; 7728 } 7729 7730 // Some CGP optimizations may move or alter what's computed in a block. Check 7731 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7732 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7733 assert(isa<DbgValueInst>(I)); 7734 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7735 7736 // Does this dbg.value refer to a sunk address calculation? 7737 Value *Location = DVI.getVariableLocation(); 7738 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7739 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7740 if (SunkAddr) { 7741 // Point dbg.value at locally computed address, which should give the best 7742 // opportunity to be accurately lowered. This update may change the type of 7743 // pointer being referred to; however this makes no difference to debugging 7744 // information, and we can't generate bitcasts that may affect codegen. 7745 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7746 ValueAsMetadata::get(SunkAddr))); 7747 return true; 7748 } 7749 return false; 7750 } 7751 7752 // A llvm.dbg.value may be using a value before its definition, due to 7753 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7754 // them by moving the dbg.value to immediately after the value definition. 7755 // FIXME: Ideally this should never be necessary, and this has the potential 7756 // to re-order dbg.value intrinsics. 7757 bool CodeGenPrepare::placeDbgValues(Function &F) { 7758 bool MadeChange = false; 7759 DominatorTree DT(F); 7760 7761 for (BasicBlock &BB : F) { 7762 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7763 Instruction *Insn = &*BI++; 7764 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7765 if (!DVI) 7766 continue; 7767 7768 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7769 7770 if (!VI || VI->isTerminator()) 7771 continue; 7772 7773 // If VI is a phi in a block with an EHPad terminator, we can't insert 7774 // after it. 7775 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7776 continue; 7777 7778 // If the defining instruction dominates the dbg.value, we do not need 7779 // to move the dbg.value. 7780 if (DT.dominates(VI, DVI)) 7781 continue; 7782 7783 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7784 << *DVI << ' ' << *VI); 7785 DVI->removeFromParent(); 7786 if (isa<PHINode>(VI)) 7787 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7788 else 7789 DVI->insertAfter(VI); 7790 MadeChange = true; 7791 ++NumDbgValueMoved; 7792 } 7793 } 7794 return MadeChange; 7795 } 7796 7797 /// Scale down both weights to fit into uint32_t. 7798 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7799 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7800 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7801 NewTrue = NewTrue / Scale; 7802 NewFalse = NewFalse / Scale; 7803 } 7804 7805 /// Some targets prefer to split a conditional branch like: 7806 /// \code 7807 /// %0 = icmp ne i32 %a, 0 7808 /// %1 = icmp ne i32 %b, 0 7809 /// %or.cond = or i1 %0, %1 7810 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7811 /// \endcode 7812 /// into multiple branch instructions like: 7813 /// \code 7814 /// bb1: 7815 /// %0 = icmp ne i32 %a, 0 7816 /// br i1 %0, label %TrueBB, label %bb2 7817 /// bb2: 7818 /// %1 = icmp ne i32 %b, 0 7819 /// br i1 %1, label %TrueBB, label %FalseBB 7820 /// \endcode 7821 /// This usually allows instruction selection to do even further optimizations 7822 /// and combine the compare with the branch instruction. Currently this is 7823 /// applied for targets which have "cheap" jump instructions. 7824 /// 7825 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7826 /// 7827 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7828 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7829 return false; 7830 7831 bool MadeChange = false; 7832 for (auto &BB : F) { 7833 // Does this BB end with the following? 7834 // %cond1 = icmp|fcmp|binary instruction ... 7835 // %cond2 = icmp|fcmp|binary instruction ... 7836 // %cond.or = or|and i1 %cond1, cond2 7837 // br i1 %cond.or label %dest1, label %dest2" 7838 Instruction *LogicOp; 7839 BasicBlock *TBB, *FBB; 7840 if (!match(BB.getTerminator(), 7841 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 7842 continue; 7843 7844 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7845 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7846 continue; 7847 7848 // The merging of mostly empty BB can cause a degenerate branch. 7849 if (TBB == FBB) 7850 continue; 7851 7852 unsigned Opc; 7853 Value *Cond1, *Cond2; 7854 if (match(LogicOp, 7855 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 7856 Opc = Instruction::And; 7857 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 7858 m_OneUse(m_Value(Cond2))))) 7859 Opc = Instruction::Or; 7860 else 7861 continue; 7862 7863 auto IsGoodCond = [](Value *Cond) { 7864 return match( 7865 Cond, 7866 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 7867 m_LogicalOr(m_Value(), m_Value())))); 7868 }; 7869 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 7870 continue; 7871 7872 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7873 7874 // Create a new BB. 7875 auto *TmpBB = 7876 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7877 BB.getParent(), BB.getNextNode()); 7878 7879 // Update original basic block by using the first condition directly by the 7880 // branch instruction and removing the no longer needed and/or instruction. 7881 Br1->setCondition(Cond1); 7882 LogicOp->eraseFromParent(); 7883 7884 // Depending on the condition we have to either replace the true or the 7885 // false successor of the original branch instruction. 7886 if (Opc == Instruction::And) 7887 Br1->setSuccessor(0, TmpBB); 7888 else 7889 Br1->setSuccessor(1, TmpBB); 7890 7891 // Fill in the new basic block. 7892 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7893 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7894 I->removeFromParent(); 7895 I->insertBefore(Br2); 7896 } 7897 7898 // Update PHI nodes in both successors. The original BB needs to be 7899 // replaced in one successor's PHI nodes, because the branch comes now from 7900 // the newly generated BB (NewBB). In the other successor we need to add one 7901 // incoming edge to the PHI nodes, because both branch instructions target 7902 // now the same successor. Depending on the original branch condition 7903 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7904 // we perform the correct update for the PHI nodes. 7905 // This doesn't change the successor order of the just created branch 7906 // instruction (or any other instruction). 7907 if (Opc == Instruction::Or) 7908 std::swap(TBB, FBB); 7909 7910 // Replace the old BB with the new BB. 7911 TBB->replacePhiUsesWith(&BB, TmpBB); 7912 7913 // Add another incoming edge form the new BB. 7914 for (PHINode &PN : FBB->phis()) { 7915 auto *Val = PN.getIncomingValueForBlock(&BB); 7916 PN.addIncoming(Val, TmpBB); 7917 } 7918 7919 // Update the branch weights (from SelectionDAGBuilder:: 7920 // FindMergedConditions). 7921 if (Opc == Instruction::Or) { 7922 // Codegen X | Y as: 7923 // BB1: 7924 // jmp_if_X TBB 7925 // jmp TmpBB 7926 // TmpBB: 7927 // jmp_if_Y TBB 7928 // jmp FBB 7929 // 7930 7931 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7932 // The requirement is that 7933 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7934 // = TrueProb for original BB. 7935 // Assuming the original weights are A and B, one choice is to set BB1's 7936 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7937 // assumes that 7938 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7939 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7940 // TmpBB, but the math is more complicated. 7941 uint64_t TrueWeight, FalseWeight; 7942 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7943 uint64_t NewTrueWeight = TrueWeight; 7944 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7945 scaleWeights(NewTrueWeight, NewFalseWeight); 7946 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7947 .createBranchWeights(TrueWeight, FalseWeight)); 7948 7949 NewTrueWeight = TrueWeight; 7950 NewFalseWeight = 2 * FalseWeight; 7951 scaleWeights(NewTrueWeight, NewFalseWeight); 7952 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7953 .createBranchWeights(TrueWeight, FalseWeight)); 7954 } 7955 } else { 7956 // Codegen X & Y as: 7957 // BB1: 7958 // jmp_if_X TmpBB 7959 // jmp FBB 7960 // TmpBB: 7961 // jmp_if_Y TBB 7962 // jmp FBB 7963 // 7964 // This requires creation of TmpBB after CurBB. 7965 7966 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7967 // The requirement is that 7968 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7969 // = FalseProb for original BB. 7970 // Assuming the original weights are A and B, one choice is to set BB1's 7971 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7972 // assumes that 7973 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7974 uint64_t TrueWeight, FalseWeight; 7975 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7976 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7977 uint64_t NewFalseWeight = FalseWeight; 7978 scaleWeights(NewTrueWeight, NewFalseWeight); 7979 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7980 .createBranchWeights(TrueWeight, FalseWeight)); 7981 7982 NewTrueWeight = 2 * TrueWeight; 7983 NewFalseWeight = FalseWeight; 7984 scaleWeights(NewTrueWeight, NewFalseWeight); 7985 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7986 .createBranchWeights(TrueWeight, FalseWeight)); 7987 } 7988 } 7989 7990 ModifiedDT = true; 7991 MadeChange = true; 7992 7993 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7994 TmpBB->dump()); 7995 } 7996 return MadeChange; 7997 } 7998