1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GetElementPtrTypeIterator.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/IR/ValueMap.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetLibraryInfo.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/BuildLibCalls.h" 46 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 using namespace llvm; 49 using namespace llvm::PatternMatch; 50 51 #define DEBUG_TYPE "codegenprepare" 52 53 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 54 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 55 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 56 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 57 "sunken Cmps"); 58 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 59 "of sunken Casts"); 60 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 61 "computations were sunk"); 62 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 63 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 64 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 65 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 66 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 67 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 68 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 69 70 static cl::opt<bool> DisableBranchOpts( 71 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 72 cl::desc("Disable branch optimizations in CodeGenPrepare")); 73 74 static cl::opt<bool> DisableSelectToBranch( 75 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 76 cl::desc("Disable select to branch conversion.")); 77 78 static cl::opt<bool> AddrSinkUsingGEPs( 79 "addr-sink-using-gep", cl::Hidden, cl::init(false), 80 cl::desc("Address sinking in CGP using GEPs.")); 81 82 static cl::opt<bool> EnableAndCmpSinking( 83 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 84 cl::desc("Enable sinkinig and/cmp into branches.")); 85 86 static cl::opt<bool> DisableStoreExtract( 87 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 88 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 89 90 static cl::opt<bool> StressStoreExtract( 91 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 92 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 93 94 static cl::opt<bool> DisableExtLdPromotion( 95 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 96 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 97 "CodeGenPrepare")); 98 99 static cl::opt<bool> StressExtLdPromotion( 100 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 101 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 102 "optimization in CodeGenPrepare")); 103 104 namespace { 105 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 106 struct TypeIsSExt { 107 Type *Ty; 108 bool IsSExt; 109 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 110 }; 111 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 112 class TypePromotionTransaction; 113 114 class CodeGenPrepare : public FunctionPass { 115 /// TLI - Keep a pointer of a TargetLowering to consult for determining 116 /// transformation profitability. 117 const TargetMachine *TM; 118 const TargetLowering *TLI; 119 const TargetTransformInfo *TTI; 120 const TargetLibraryInfo *TLInfo; 121 DominatorTree *DT; 122 123 /// CurInstIterator - As we scan instructions optimizing them, this is the 124 /// next instruction to optimize. Xforms that can invalidate this should 125 /// update it. 126 BasicBlock::iterator CurInstIterator; 127 128 /// Keeps track of non-local addresses that have been sunk into a block. 129 /// This allows us to avoid inserting duplicate code for blocks with 130 /// multiple load/stores of the same address. 131 ValueMap<Value*, Value*> SunkAddrs; 132 133 /// Keeps track of all truncates inserted for the current function. 134 SetOfInstrs InsertedTruncsSet; 135 /// Keeps track of the type of the related instruction before their 136 /// promotion for the current function. 137 InstrToOrigTy PromotedInsts; 138 139 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 140 /// be updated. 141 bool ModifiedDT; 142 143 /// OptSize - True if optimizing for size. 144 bool OptSize; 145 146 public: 147 static char ID; // Pass identification, replacement for typeid 148 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 149 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 150 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 151 } 152 bool runOnFunction(Function &F) override; 153 154 const char *getPassName() const override { return "CodeGen Prepare"; } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.addPreserved<DominatorTreeWrapperPass>(); 158 AU.addRequired<TargetLibraryInfo>(); 159 AU.addRequired<TargetTransformInfo>(); 160 } 161 162 private: 163 bool EliminateFallThrough(Function &F); 164 bool EliminateMostlyEmptyBlocks(Function &F); 165 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 166 void EliminateMostlyEmptyBlock(BasicBlock *BB); 167 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 168 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 169 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 170 bool OptimizeInlineAsmInst(CallInst *CS); 171 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 172 bool MoveExtToFormExtLoad(Instruction *&I); 173 bool OptimizeExtUses(Instruction *I); 174 bool OptimizeSelectInst(SelectInst *SI); 175 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 176 bool OptimizeExtractElementInst(Instruction *Inst); 177 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 178 bool PlaceDbgValues(Function &F); 179 bool sinkAndCmp(Function &F); 180 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 181 Instruction *&Inst, 182 const SmallVectorImpl<Instruction *> &Exts, 183 unsigned CreatedInst); 184 bool splitBranchCondition(Function &F); 185 }; 186 } 187 188 char CodeGenPrepare::ID = 0; 189 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 190 "Optimize for code generation", false, false) 191 192 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 193 return new CodeGenPrepare(TM); 194 } 195 196 bool CodeGenPrepare::runOnFunction(Function &F) { 197 if (skipOptnoneFunction(F)) 198 return false; 199 200 bool EverMadeChange = false; 201 // Clear per function information. 202 InsertedTruncsSet.clear(); 203 PromotedInsts.clear(); 204 205 ModifiedDT = false; 206 if (TM) 207 TLI = TM->getSubtargetImpl()->getTargetLowering(); 208 TLInfo = &getAnalysis<TargetLibraryInfo>(); 209 TTI = &getAnalysis<TargetTransformInfo>(); 210 DominatorTreeWrapperPass *DTWP = 211 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 212 DT = DTWP ? &DTWP->getDomTree() : nullptr; 213 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 214 Attribute::OptimizeForSize); 215 216 /// This optimization identifies DIV instructions that can be 217 /// profitably bypassed and carried out with a shorter, faster divide. 218 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 219 const DenseMap<unsigned int, unsigned int> &BypassWidths = 220 TLI->getBypassSlowDivWidths(); 221 for (Function::iterator I = F.begin(); I != F.end(); I++) 222 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 223 } 224 225 // Eliminate blocks that contain only PHI nodes and an 226 // unconditional branch. 227 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 228 229 // llvm.dbg.value is far away from the value then iSel may not be able 230 // handle it properly. iSel will drop llvm.dbg.value if it can not 231 // find a node corresponding to the value. 232 EverMadeChange |= PlaceDbgValues(F); 233 234 // If there is a mask, compare against zero, and branch that can be combined 235 // into a single target instruction, push the mask and compare into branch 236 // users. Do this before OptimizeBlock -> OptimizeInst -> 237 // OptimizeCmpExpression, which perturbs the pattern being searched for. 238 if (!DisableBranchOpts) { 239 EverMadeChange |= sinkAndCmp(F); 240 EverMadeChange |= splitBranchCondition(F); 241 } 242 243 bool MadeChange = true; 244 while (MadeChange) { 245 MadeChange = false; 246 for (Function::iterator I = F.begin(); I != F.end(); ) { 247 BasicBlock *BB = I++; 248 bool ModifiedDTOnIteration = false; 249 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 250 251 // Restart BB iteration if the dominator tree of the Function was changed 252 ModifiedDT |= ModifiedDTOnIteration; 253 if (ModifiedDTOnIteration) 254 break; 255 } 256 EverMadeChange |= MadeChange; 257 } 258 259 SunkAddrs.clear(); 260 261 if (!DisableBranchOpts) { 262 MadeChange = false; 263 SmallPtrSet<BasicBlock*, 8> WorkList; 264 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 265 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 266 MadeChange |= ConstantFoldTerminator(BB, true); 267 if (!MadeChange) continue; 268 269 for (SmallVectorImpl<BasicBlock*>::iterator 270 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 271 if (pred_begin(*II) == pred_end(*II)) 272 WorkList.insert(*II); 273 } 274 275 // Delete the dead blocks and any of their dead successors. 276 MadeChange |= !WorkList.empty(); 277 while (!WorkList.empty()) { 278 BasicBlock *BB = *WorkList.begin(); 279 WorkList.erase(BB); 280 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 281 282 DeleteDeadBlock(BB); 283 284 for (SmallVectorImpl<BasicBlock*>::iterator 285 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 286 if (pred_begin(*II) == pred_end(*II)) 287 WorkList.insert(*II); 288 } 289 290 // Merge pairs of basic blocks with unconditional branches, connected by 291 // a single edge. 292 if (EverMadeChange || MadeChange) 293 MadeChange |= EliminateFallThrough(F); 294 295 if (MadeChange) 296 ModifiedDT = true; 297 EverMadeChange |= MadeChange; 298 } 299 300 if (ModifiedDT && DT) 301 DT->recalculate(F); 302 303 return EverMadeChange; 304 } 305 306 /// EliminateFallThrough - Merge basic blocks which are connected 307 /// by a single edge, where one of the basic blocks has a single successor 308 /// pointing to the other basic block, which has a single predecessor. 309 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 310 bool Changed = false; 311 // Scan all of the blocks in the function, except for the entry block. 312 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 313 BasicBlock *BB = I++; 314 // If the destination block has a single pred, then this is a trivial 315 // edge, just collapse it. 316 BasicBlock *SinglePred = BB->getSinglePredecessor(); 317 318 // Don't merge if BB's address is taken. 319 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 320 321 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 322 if (Term && !Term->isConditional()) { 323 Changed = true; 324 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 325 // Remember if SinglePred was the entry block of the function. 326 // If so, we will need to move BB back to the entry position. 327 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 328 MergeBasicBlockIntoOnlyPred(BB, this); 329 330 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 331 BB->moveBefore(&BB->getParent()->getEntryBlock()); 332 333 // We have erased a block. Update the iterator. 334 I = BB; 335 } 336 } 337 return Changed; 338 } 339 340 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 341 /// debug info directives, and an unconditional branch. Passes before isel 342 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 343 /// isel. Start by eliminating these blocks so we can split them the way we 344 /// want them. 345 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 346 bool MadeChange = false; 347 // Note that this intentionally skips the entry block. 348 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 349 BasicBlock *BB = I++; 350 351 // If this block doesn't end with an uncond branch, ignore it. 352 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 353 if (!BI || !BI->isUnconditional()) 354 continue; 355 356 // If the instruction before the branch (skipping debug info) isn't a phi 357 // node, then other stuff is happening here. 358 BasicBlock::iterator BBI = BI; 359 if (BBI != BB->begin()) { 360 --BBI; 361 while (isa<DbgInfoIntrinsic>(BBI)) { 362 if (BBI == BB->begin()) 363 break; 364 --BBI; 365 } 366 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 367 continue; 368 } 369 370 // Do not break infinite loops. 371 BasicBlock *DestBB = BI->getSuccessor(0); 372 if (DestBB == BB) 373 continue; 374 375 if (!CanMergeBlocks(BB, DestBB)) 376 continue; 377 378 EliminateMostlyEmptyBlock(BB); 379 MadeChange = true; 380 } 381 return MadeChange; 382 } 383 384 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 385 /// single uncond branch between them, and BB contains no other non-phi 386 /// instructions. 387 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 388 const BasicBlock *DestBB) const { 389 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 390 // the successor. If there are more complex condition (e.g. preheaders), 391 // don't mess around with them. 392 BasicBlock::const_iterator BBI = BB->begin(); 393 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 394 for (const User *U : PN->users()) { 395 const Instruction *UI = cast<Instruction>(U); 396 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 397 return false; 398 // If User is inside DestBB block and it is a PHINode then check 399 // incoming value. If incoming value is not from BB then this is 400 // a complex condition (e.g. preheaders) we want to avoid here. 401 if (UI->getParent() == DestBB) { 402 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 403 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 404 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 405 if (Insn && Insn->getParent() == BB && 406 Insn->getParent() != UPN->getIncomingBlock(I)) 407 return false; 408 } 409 } 410 } 411 } 412 413 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 414 // and DestBB may have conflicting incoming values for the block. If so, we 415 // can't merge the block. 416 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 417 if (!DestBBPN) return true; // no conflict. 418 419 // Collect the preds of BB. 420 SmallPtrSet<const BasicBlock*, 16> BBPreds; 421 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 422 // It is faster to get preds from a PHI than with pred_iterator. 423 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 424 BBPreds.insert(BBPN->getIncomingBlock(i)); 425 } else { 426 BBPreds.insert(pred_begin(BB), pred_end(BB)); 427 } 428 429 // Walk the preds of DestBB. 430 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 431 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 432 if (BBPreds.count(Pred)) { // Common predecessor? 433 BBI = DestBB->begin(); 434 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 435 const Value *V1 = PN->getIncomingValueForBlock(Pred); 436 const Value *V2 = PN->getIncomingValueForBlock(BB); 437 438 // If V2 is a phi node in BB, look up what the mapped value will be. 439 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 440 if (V2PN->getParent() == BB) 441 V2 = V2PN->getIncomingValueForBlock(Pred); 442 443 // If there is a conflict, bail out. 444 if (V1 != V2) return false; 445 } 446 } 447 } 448 449 return true; 450 } 451 452 453 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 454 /// an unconditional branch in it. 455 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 456 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 457 BasicBlock *DestBB = BI->getSuccessor(0); 458 459 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 460 461 // If the destination block has a single pred, then this is a trivial edge, 462 // just collapse it. 463 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 464 if (SinglePred != DestBB) { 465 // Remember if SinglePred was the entry block of the function. If so, we 466 // will need to move BB back to the entry position. 467 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 468 MergeBasicBlockIntoOnlyPred(DestBB, this); 469 470 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 471 BB->moveBefore(&BB->getParent()->getEntryBlock()); 472 473 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 474 return; 475 } 476 } 477 478 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 479 // to handle the new incoming edges it is about to have. 480 PHINode *PN; 481 for (BasicBlock::iterator BBI = DestBB->begin(); 482 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 483 // Remove the incoming value for BB, and remember it. 484 Value *InVal = PN->removeIncomingValue(BB, false); 485 486 // Two options: either the InVal is a phi node defined in BB or it is some 487 // value that dominates BB. 488 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 489 if (InValPhi && InValPhi->getParent() == BB) { 490 // Add all of the input values of the input PHI as inputs of this phi. 491 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 492 PN->addIncoming(InValPhi->getIncomingValue(i), 493 InValPhi->getIncomingBlock(i)); 494 } else { 495 // Otherwise, add one instance of the dominating value for each edge that 496 // we will be adding. 497 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 498 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 499 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 500 } else { 501 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 502 PN->addIncoming(InVal, *PI); 503 } 504 } 505 } 506 507 // The PHIs are now updated, change everything that refers to BB to use 508 // DestBB and remove BB. 509 BB->replaceAllUsesWith(DestBB); 510 if (DT && !ModifiedDT) { 511 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 512 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 513 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 514 DT->changeImmediateDominator(DestBB, NewIDom); 515 DT->eraseNode(BB); 516 } 517 BB->eraseFromParent(); 518 ++NumBlocksElim; 519 520 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 521 } 522 523 /// SinkCast - Sink the specified cast instruction into its user blocks 524 static bool SinkCast(CastInst *CI) { 525 BasicBlock *DefBB = CI->getParent(); 526 527 /// InsertedCasts - Only insert a cast in each block once. 528 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 529 530 bool MadeChange = false; 531 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 532 UI != E; ) { 533 Use &TheUse = UI.getUse(); 534 Instruction *User = cast<Instruction>(*UI); 535 536 // Figure out which BB this cast is used in. For PHI's this is the 537 // appropriate predecessor block. 538 BasicBlock *UserBB = User->getParent(); 539 if (PHINode *PN = dyn_cast<PHINode>(User)) { 540 UserBB = PN->getIncomingBlock(TheUse); 541 } 542 543 // Preincrement use iterator so we don't invalidate it. 544 ++UI; 545 546 // If this user is in the same block as the cast, don't change the cast. 547 if (UserBB == DefBB) continue; 548 549 // If we have already inserted a cast into this block, use it. 550 CastInst *&InsertedCast = InsertedCasts[UserBB]; 551 552 if (!InsertedCast) { 553 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 554 InsertedCast = 555 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 556 InsertPt); 557 MadeChange = true; 558 } 559 560 // Replace a use of the cast with a use of the new cast. 561 TheUse = InsertedCast; 562 ++NumCastUses; 563 } 564 565 // If we removed all uses, nuke the cast. 566 if (CI->use_empty()) { 567 CI->eraseFromParent(); 568 MadeChange = true; 569 } 570 571 return MadeChange; 572 } 573 574 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 575 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 576 /// sink it into user blocks to reduce the number of virtual 577 /// registers that must be created and coalesced. 578 /// 579 /// Return true if any changes are made. 580 /// 581 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 582 // If this is a noop copy, 583 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 584 EVT DstVT = TLI.getValueType(CI->getType()); 585 586 // This is an fp<->int conversion? 587 if (SrcVT.isInteger() != DstVT.isInteger()) 588 return false; 589 590 // If this is an extension, it will be a zero or sign extension, which 591 // isn't a noop. 592 if (SrcVT.bitsLT(DstVT)) return false; 593 594 // If these values will be promoted, find out what they will be promoted 595 // to. This helps us consider truncates on PPC as noop copies when they 596 // are. 597 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 598 TargetLowering::TypePromoteInteger) 599 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 600 if (TLI.getTypeAction(CI->getContext(), DstVT) == 601 TargetLowering::TypePromoteInteger) 602 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 603 604 // If, after promotion, these are the same types, this is a noop copy. 605 if (SrcVT != DstVT) 606 return false; 607 608 return SinkCast(CI); 609 } 610 611 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 612 /// the number of virtual registers that must be created and coalesced. This is 613 /// a clear win except on targets with multiple condition code registers 614 /// (PowerPC), where it might lose; some adjustment may be wanted there. 615 /// 616 /// Return true if any changes are made. 617 static bool OptimizeCmpExpression(CmpInst *CI) { 618 BasicBlock *DefBB = CI->getParent(); 619 620 /// InsertedCmp - Only insert a cmp in each block once. 621 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 622 623 bool MadeChange = false; 624 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 625 UI != E; ) { 626 Use &TheUse = UI.getUse(); 627 Instruction *User = cast<Instruction>(*UI); 628 629 // Preincrement use iterator so we don't invalidate it. 630 ++UI; 631 632 // Don't bother for PHI nodes. 633 if (isa<PHINode>(User)) 634 continue; 635 636 // Figure out which BB this cmp is used in. 637 BasicBlock *UserBB = User->getParent(); 638 639 // If this user is in the same block as the cmp, don't change the cmp. 640 if (UserBB == DefBB) continue; 641 642 // If we have already inserted a cmp into this block, use it. 643 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 644 645 if (!InsertedCmp) { 646 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 647 InsertedCmp = 648 CmpInst::Create(CI->getOpcode(), 649 CI->getPredicate(), CI->getOperand(0), 650 CI->getOperand(1), "", InsertPt); 651 MadeChange = true; 652 } 653 654 // Replace a use of the cmp with a use of the new cmp. 655 TheUse = InsertedCmp; 656 ++NumCmpUses; 657 } 658 659 // If we removed all uses, nuke the cmp. 660 if (CI->use_empty()) 661 CI->eraseFromParent(); 662 663 return MadeChange; 664 } 665 666 /// isExtractBitsCandidateUse - Check if the candidates could 667 /// be combined with shift instruction, which includes: 668 /// 1. Truncate instruction 669 /// 2. And instruction and the imm is a mask of the low bits: 670 /// imm & (imm+1) == 0 671 static bool isExtractBitsCandidateUse(Instruction *User) { 672 if (!isa<TruncInst>(User)) { 673 if (User->getOpcode() != Instruction::And || 674 !isa<ConstantInt>(User->getOperand(1))) 675 return false; 676 677 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 678 679 if ((Cimm & (Cimm + 1)).getBoolValue()) 680 return false; 681 } 682 return true; 683 } 684 685 /// SinkShiftAndTruncate - sink both shift and truncate instruction 686 /// to the use of truncate's BB. 687 static bool 688 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 689 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 690 const TargetLowering &TLI) { 691 BasicBlock *UserBB = User->getParent(); 692 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 693 TruncInst *TruncI = dyn_cast<TruncInst>(User); 694 bool MadeChange = false; 695 696 for (Value::user_iterator TruncUI = TruncI->user_begin(), 697 TruncE = TruncI->user_end(); 698 TruncUI != TruncE;) { 699 700 Use &TruncTheUse = TruncUI.getUse(); 701 Instruction *TruncUser = cast<Instruction>(*TruncUI); 702 // Preincrement use iterator so we don't invalidate it. 703 704 ++TruncUI; 705 706 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 707 if (!ISDOpcode) 708 continue; 709 710 // If the use is actually a legal node, there will not be an 711 // implicit truncate. 712 // FIXME: always querying the result type is just an 713 // approximation; some nodes' legality is determined by the 714 // operand or other means. There's no good way to find out though. 715 if (TLI.isOperationLegalOrCustom( 716 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 717 continue; 718 719 // Don't bother for PHI nodes. 720 if (isa<PHINode>(TruncUser)) 721 continue; 722 723 BasicBlock *TruncUserBB = TruncUser->getParent(); 724 725 if (UserBB == TruncUserBB) 726 continue; 727 728 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 729 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 730 731 if (!InsertedShift && !InsertedTrunc) { 732 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 733 // Sink the shift 734 if (ShiftI->getOpcode() == Instruction::AShr) 735 InsertedShift = 736 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 737 else 738 InsertedShift = 739 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 740 741 // Sink the trunc 742 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 743 TruncInsertPt++; 744 745 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 746 TruncI->getType(), "", TruncInsertPt); 747 748 MadeChange = true; 749 750 TruncTheUse = InsertedTrunc; 751 } 752 } 753 return MadeChange; 754 } 755 756 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 757 /// the uses could potentially be combined with this shift instruction and 758 /// generate BitExtract instruction. It will only be applied if the architecture 759 /// supports BitExtract instruction. Here is an example: 760 /// BB1: 761 /// %x.extract.shift = lshr i64 %arg1, 32 762 /// BB2: 763 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 764 /// ==> 765 /// 766 /// BB2: 767 /// %x.extract.shift.1 = lshr i64 %arg1, 32 768 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 769 /// 770 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 771 /// instruction. 772 /// Return true if any changes are made. 773 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 774 const TargetLowering &TLI) { 775 BasicBlock *DefBB = ShiftI->getParent(); 776 777 /// Only insert instructions in each block once. 778 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 779 780 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 781 782 bool MadeChange = false; 783 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 784 UI != E;) { 785 Use &TheUse = UI.getUse(); 786 Instruction *User = cast<Instruction>(*UI); 787 // Preincrement use iterator so we don't invalidate it. 788 ++UI; 789 790 // Don't bother for PHI nodes. 791 if (isa<PHINode>(User)) 792 continue; 793 794 if (!isExtractBitsCandidateUse(User)) 795 continue; 796 797 BasicBlock *UserBB = User->getParent(); 798 799 if (UserBB == DefBB) { 800 // If the shift and truncate instruction are in the same BB. The use of 801 // the truncate(TruncUse) may still introduce another truncate if not 802 // legal. In this case, we would like to sink both shift and truncate 803 // instruction to the BB of TruncUse. 804 // for example: 805 // BB1: 806 // i64 shift.result = lshr i64 opnd, imm 807 // trunc.result = trunc shift.result to i16 808 // 809 // BB2: 810 // ----> We will have an implicit truncate here if the architecture does 811 // not have i16 compare. 812 // cmp i16 trunc.result, opnd2 813 // 814 if (isa<TruncInst>(User) && shiftIsLegal 815 // If the type of the truncate is legal, no trucate will be 816 // introduced in other basic blocks. 817 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 818 MadeChange = 819 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 820 821 continue; 822 } 823 // If we have already inserted a shift into this block, use it. 824 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 825 826 if (!InsertedShift) { 827 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 828 829 if (ShiftI->getOpcode() == Instruction::AShr) 830 InsertedShift = 831 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 832 else 833 InsertedShift = 834 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 835 836 MadeChange = true; 837 } 838 839 // Replace a use of the shift with a use of the new shift. 840 TheUse = InsertedShift; 841 } 842 843 // If we removed all uses, nuke the shift. 844 if (ShiftI->use_empty()) 845 ShiftI->eraseFromParent(); 846 847 return MadeChange; 848 } 849 850 namespace { 851 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { 852 protected: 853 void replaceCall(Value *With) override { 854 CI->replaceAllUsesWith(With); 855 CI->eraseFromParent(); 856 } 857 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override { 858 if (ConstantInt *SizeCI = 859 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) 860 return SizeCI->isAllOnesValue(); 861 return false; 862 } 863 }; 864 } // end anonymous namespace 865 866 // ScalarizeMaskedLoad() translates masked load intrinsic, like 867 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 868 // <16 x i1> %mask, <16 x i32> %passthru) 869 // to a chain of basic blocks, whith loading element one-by-one if 870 // the appropriate mask bit is set 871 // 872 // %1 = bitcast i8* %addr to i32* 873 // %2 = extractelement <16 x i1> %mask, i32 0 874 // %3 = icmp eq i1 %2, true 875 // br i1 %3, label %cond.load, label %else 876 // 877 //cond.load: ; preds = %0 878 // %4 = getelementptr i32* %1, i32 0 879 // %5 = load i32* %4 880 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 881 // br label %else 882 // 883 //else: ; preds = %0, %cond.load 884 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 885 // %7 = extractelement <16 x i1> %mask, i32 1 886 // %8 = icmp eq i1 %7, true 887 // br i1 %8, label %cond.load1, label %else2 888 // 889 //cond.load1: ; preds = %else 890 // %9 = getelementptr i32* %1, i32 1 891 // %10 = load i32* %9 892 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 893 // br label %else2 894 // 895 //else2: ; preds = %else, %cond.load1 896 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 897 // %12 = extractelement <16 x i1> %mask, i32 2 898 // %13 = icmp eq i1 %12, true 899 // br i1 %13, label %cond.load4, label %else5 900 // 901 static void ScalarizeMaskedLoad(CallInst *CI) { 902 Value *Ptr = CI->getArgOperand(0); 903 Value *Src0 = CI->getArgOperand(3); 904 Value *Mask = CI->getArgOperand(2); 905 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 906 Type *EltTy = VecType->getElementType(); 907 908 assert(VecType && "Unexpected return type of masked load intrinsic"); 909 910 IRBuilder<> Builder(CI->getContext()); 911 Instruction *InsertPt = CI; 912 BasicBlock *IfBlock = CI->getParent(); 913 BasicBlock *CondBlock = nullptr; 914 BasicBlock *PrevIfBlock = CI->getParent(); 915 Builder.SetInsertPoint(InsertPt); 916 917 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 918 919 // Bitcast %addr fron i8* to EltTy* 920 Type *NewPtrType = 921 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 922 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 923 Value *UndefVal = UndefValue::get(VecType); 924 925 // The result vector 926 Value *VResult = UndefVal; 927 928 PHINode *Phi = nullptr; 929 Value *PrevPhi = UndefVal; 930 931 unsigned VectorWidth = VecType->getNumElements(); 932 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 933 934 // Fill the "else" block, created in the previous iteration 935 // 936 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 937 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 938 // %to_load = icmp eq i1 %mask_1, true 939 // br i1 %to_load, label %cond.load, label %else 940 // 941 if (Idx > 0) { 942 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 943 Phi->addIncoming(VResult, CondBlock); 944 Phi->addIncoming(PrevPhi, PrevIfBlock); 945 PrevPhi = Phi; 946 VResult = Phi; 947 } 948 949 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 950 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 951 ConstantInt::get(Predicate->getType(), 1)); 952 953 // Create "cond" block 954 // 955 // %EltAddr = getelementptr i32* %1, i32 0 956 // %Elt = load i32* %EltAddr 957 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 958 // 959 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 960 Builder.SetInsertPoint(InsertPt); 961 962 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 963 LoadInst* Load = Builder.CreateLoad(Gep, false); 964 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 965 966 // Create "else" block, fill it in the next iteration 967 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 968 Builder.SetInsertPoint(InsertPt); 969 Instruction *OldBr = IfBlock->getTerminator(); 970 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 971 OldBr->eraseFromParent(); 972 PrevIfBlock = IfBlock; 973 IfBlock = NewIfBlock; 974 } 975 976 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 977 Phi->addIncoming(VResult, CondBlock); 978 Phi->addIncoming(PrevPhi, PrevIfBlock); 979 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 980 CI->replaceAllUsesWith(NewI); 981 CI->eraseFromParent(); 982 } 983 984 // ScalarizeMaskedStore() translates masked store intrinsic, like 985 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 986 // <16 x i1> %mask) 987 // to a chain of basic blocks, that stores element one-by-one if 988 // the appropriate mask bit is set 989 // 990 // %1 = bitcast i8* %addr to i32* 991 // %2 = extractelement <16 x i1> %mask, i32 0 992 // %3 = icmp eq i1 %2, true 993 // br i1 %3, label %cond.store, label %else 994 // 995 // cond.store: ; preds = %0 996 // %4 = extractelement <16 x i32> %val, i32 0 997 // %5 = getelementptr i32* %1, i32 0 998 // store i32 %4, i32* %5 999 // br label %else 1000 // 1001 // else: ; preds = %0, %cond.store 1002 // %6 = extractelement <16 x i1> %mask, i32 1 1003 // %7 = icmp eq i1 %6, true 1004 // br i1 %7, label %cond.store1, label %else2 1005 // 1006 // cond.store1: ; preds = %else 1007 // %8 = extractelement <16 x i32> %val, i32 1 1008 // %9 = getelementptr i32* %1, i32 1 1009 // store i32 %8, i32* %9 1010 // br label %else2 1011 // . . . 1012 static void ScalarizeMaskedStore(CallInst *CI) { 1013 Value *Ptr = CI->getArgOperand(1); 1014 Value *Src = CI->getArgOperand(0); 1015 Value *Mask = CI->getArgOperand(3); 1016 1017 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1018 Type *EltTy = VecType->getElementType(); 1019 1020 assert(VecType && "Unexpected data type in masked store intrinsic"); 1021 1022 IRBuilder<> Builder(CI->getContext()); 1023 Instruction *InsertPt = CI; 1024 BasicBlock *IfBlock = CI->getParent(); 1025 Builder.SetInsertPoint(InsertPt); 1026 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1027 1028 // Bitcast %addr fron i8* to EltTy* 1029 Type *NewPtrType = 1030 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1031 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1032 1033 unsigned VectorWidth = VecType->getNumElements(); 1034 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1035 1036 // Fill the "else" block, created in the previous iteration 1037 // 1038 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1039 // %to_store = icmp eq i1 %mask_1, true 1040 // br i1 %to_load, label %cond.store, label %else 1041 // 1042 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1043 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1044 ConstantInt::get(Predicate->getType(), 1)); 1045 1046 // Create "cond" block 1047 // 1048 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1049 // %EltAddr = getelementptr i32* %1, i32 0 1050 // %store i32 %OneElt, i32* %EltAddr 1051 // 1052 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1053 Builder.SetInsertPoint(InsertPt); 1054 1055 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1056 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1057 Builder.CreateStore(OneElt, Gep); 1058 1059 // Create "else" block, fill it in the next iteration 1060 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1061 Builder.SetInsertPoint(InsertPt); 1062 Instruction *OldBr = IfBlock->getTerminator(); 1063 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1064 OldBr->eraseFromParent(); 1065 IfBlock = NewIfBlock; 1066 } 1067 CI->eraseFromParent(); 1068 } 1069 1070 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1071 BasicBlock *BB = CI->getParent(); 1072 1073 // Lower inline assembly if we can. 1074 // If we found an inline asm expession, and if the target knows how to 1075 // lower it to normal LLVM code, do so now. 1076 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1077 if (TLI->ExpandInlineAsm(CI)) { 1078 // Avoid invalidating the iterator. 1079 CurInstIterator = BB->begin(); 1080 // Avoid processing instructions out of order, which could cause 1081 // reuse before a value is defined. 1082 SunkAddrs.clear(); 1083 return true; 1084 } 1085 // Sink address computing for memory operands into the block. 1086 if (OptimizeInlineAsmInst(CI)) 1087 return true; 1088 } 1089 1090 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1091 if (II) { 1092 switch (II->getIntrinsicID()) { 1093 default: break; 1094 case Intrinsic::objectsize: { 1095 // Lower all uses of llvm.objectsize.* 1096 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1097 Type *ReturnTy = CI->getType(); 1098 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1099 1100 // Substituting this can cause recursive simplifications, which can 1101 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1102 // happens. 1103 WeakVH IterHandle(CurInstIterator); 1104 1105 replaceAndRecursivelySimplify(CI, RetVal, 1106 TLI ? TLI->getDataLayout() : nullptr, 1107 TLInfo, ModifiedDT ? nullptr : DT); 1108 1109 // If the iterator instruction was recursively deleted, start over at the 1110 // start of the block. 1111 if (IterHandle != CurInstIterator) { 1112 CurInstIterator = BB->begin(); 1113 SunkAddrs.clear(); 1114 } 1115 return true; 1116 } 1117 case Intrinsic::masked_load: { 1118 // Scalarize unsupported vector masked load 1119 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1120 ScalarizeMaskedLoad(CI); 1121 ModifiedDT = true; 1122 return true; 1123 } 1124 return false; 1125 } 1126 case Intrinsic::masked_store: { 1127 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1128 ScalarizeMaskedStore(CI); 1129 ModifiedDT = true; 1130 return true; 1131 } 1132 return false; 1133 } 1134 } 1135 1136 if (TLI) { 1137 SmallVector<Value*, 2> PtrOps; 1138 Type *AccessTy; 1139 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1140 while (!PtrOps.empty()) 1141 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1142 return true; 1143 } 1144 } 1145 1146 // From here on out we're working with named functions. 1147 if (!CI->getCalledFunction()) return false; 1148 1149 // We'll need DataLayout from here on out. 1150 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1151 if (!TD) return false; 1152 1153 // Lower all default uses of _chk calls. This is very similar 1154 // to what InstCombineCalls does, but here we are only lowering calls 1155 // that have the default "don't know" as the objectsize. Anything else 1156 // should be left alone. 1157 CodeGenPrepareFortifiedLibCalls Simplifier; 1158 return Simplifier.fold(CI, TD, TLInfo); 1159 } 1160 1161 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1162 /// instructions to the predecessor to enable tail call optimizations. The 1163 /// case it is currently looking for is: 1164 /// @code 1165 /// bb0: 1166 /// %tmp0 = tail call i32 @f0() 1167 /// br label %return 1168 /// bb1: 1169 /// %tmp1 = tail call i32 @f1() 1170 /// br label %return 1171 /// bb2: 1172 /// %tmp2 = tail call i32 @f2() 1173 /// br label %return 1174 /// return: 1175 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1176 /// ret i32 %retval 1177 /// @endcode 1178 /// 1179 /// => 1180 /// 1181 /// @code 1182 /// bb0: 1183 /// %tmp0 = tail call i32 @f0() 1184 /// ret i32 %tmp0 1185 /// bb1: 1186 /// %tmp1 = tail call i32 @f1() 1187 /// ret i32 %tmp1 1188 /// bb2: 1189 /// %tmp2 = tail call i32 @f2() 1190 /// ret i32 %tmp2 1191 /// @endcode 1192 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1193 if (!TLI) 1194 return false; 1195 1196 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1197 if (!RI) 1198 return false; 1199 1200 PHINode *PN = nullptr; 1201 BitCastInst *BCI = nullptr; 1202 Value *V = RI->getReturnValue(); 1203 if (V) { 1204 BCI = dyn_cast<BitCastInst>(V); 1205 if (BCI) 1206 V = BCI->getOperand(0); 1207 1208 PN = dyn_cast<PHINode>(V); 1209 if (!PN) 1210 return false; 1211 } 1212 1213 if (PN && PN->getParent() != BB) 1214 return false; 1215 1216 // It's not safe to eliminate the sign / zero extension of the return value. 1217 // See llvm::isInTailCallPosition(). 1218 const Function *F = BB->getParent(); 1219 AttributeSet CallerAttrs = F->getAttributes(); 1220 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1221 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1222 return false; 1223 1224 // Make sure there are no instructions between the PHI and return, or that the 1225 // return is the first instruction in the block. 1226 if (PN) { 1227 BasicBlock::iterator BI = BB->begin(); 1228 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1229 if (&*BI == BCI) 1230 // Also skip over the bitcast. 1231 ++BI; 1232 if (&*BI != RI) 1233 return false; 1234 } else { 1235 BasicBlock::iterator BI = BB->begin(); 1236 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1237 if (&*BI != RI) 1238 return false; 1239 } 1240 1241 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1242 /// call. 1243 SmallVector<CallInst*, 4> TailCalls; 1244 if (PN) { 1245 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1246 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1247 // Make sure the phi value is indeed produced by the tail call. 1248 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1249 TLI->mayBeEmittedAsTailCall(CI)) 1250 TailCalls.push_back(CI); 1251 } 1252 } else { 1253 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1254 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1255 if (!VisitedBBs.insert(*PI).second) 1256 continue; 1257 1258 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1259 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1260 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1261 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1262 if (RI == RE) 1263 continue; 1264 1265 CallInst *CI = dyn_cast<CallInst>(&*RI); 1266 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1267 TailCalls.push_back(CI); 1268 } 1269 } 1270 1271 bool Changed = false; 1272 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1273 CallInst *CI = TailCalls[i]; 1274 CallSite CS(CI); 1275 1276 // Conservatively require the attributes of the call to match those of the 1277 // return. Ignore noalias because it doesn't affect the call sequence. 1278 AttributeSet CalleeAttrs = CS.getAttributes(); 1279 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1280 removeAttribute(Attribute::NoAlias) != 1281 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1282 removeAttribute(Attribute::NoAlias)) 1283 continue; 1284 1285 // Make sure the call instruction is followed by an unconditional branch to 1286 // the return block. 1287 BasicBlock *CallBB = CI->getParent(); 1288 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1289 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1290 continue; 1291 1292 // Duplicate the return into CallBB. 1293 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1294 ModifiedDT = Changed = true; 1295 ++NumRetsDup; 1296 } 1297 1298 // If we eliminated all predecessors of the block, delete the block now. 1299 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1300 BB->eraseFromParent(); 1301 1302 return Changed; 1303 } 1304 1305 //===----------------------------------------------------------------------===// 1306 // Memory Optimization 1307 //===----------------------------------------------------------------------===// 1308 1309 namespace { 1310 1311 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1312 /// which holds actual Value*'s for register values. 1313 struct ExtAddrMode : public TargetLowering::AddrMode { 1314 Value *BaseReg; 1315 Value *ScaledReg; 1316 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1317 void print(raw_ostream &OS) const; 1318 void dump() const; 1319 1320 bool operator==(const ExtAddrMode& O) const { 1321 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1322 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1323 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1324 } 1325 }; 1326 1327 #ifndef NDEBUG 1328 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1329 AM.print(OS); 1330 return OS; 1331 } 1332 #endif 1333 1334 void ExtAddrMode::print(raw_ostream &OS) const { 1335 bool NeedPlus = false; 1336 OS << "["; 1337 if (BaseGV) { 1338 OS << (NeedPlus ? " + " : "") 1339 << "GV:"; 1340 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1341 NeedPlus = true; 1342 } 1343 1344 if (BaseOffs) { 1345 OS << (NeedPlus ? " + " : "") 1346 << BaseOffs; 1347 NeedPlus = true; 1348 } 1349 1350 if (BaseReg) { 1351 OS << (NeedPlus ? " + " : "") 1352 << "Base:"; 1353 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1354 NeedPlus = true; 1355 } 1356 if (Scale) { 1357 OS << (NeedPlus ? " + " : "") 1358 << Scale << "*"; 1359 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1360 } 1361 1362 OS << ']'; 1363 } 1364 1365 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1366 void ExtAddrMode::dump() const { 1367 print(dbgs()); 1368 dbgs() << '\n'; 1369 } 1370 #endif 1371 1372 /// \brief This class provides transaction based operation on the IR. 1373 /// Every change made through this class is recorded in the internal state and 1374 /// can be undone (rollback) until commit is called. 1375 class TypePromotionTransaction { 1376 1377 /// \brief This represents the common interface of the individual transaction. 1378 /// Each class implements the logic for doing one specific modification on 1379 /// the IR via the TypePromotionTransaction. 1380 class TypePromotionAction { 1381 protected: 1382 /// The Instruction modified. 1383 Instruction *Inst; 1384 1385 public: 1386 /// \brief Constructor of the action. 1387 /// The constructor performs the related action on the IR. 1388 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1389 1390 virtual ~TypePromotionAction() {} 1391 1392 /// \brief Undo the modification done by this action. 1393 /// When this method is called, the IR must be in the same state as it was 1394 /// before this action was applied. 1395 /// \pre Undoing the action works if and only if the IR is in the exact same 1396 /// state as it was directly after this action was applied. 1397 virtual void undo() = 0; 1398 1399 /// \brief Advocate every change made by this action. 1400 /// When the results on the IR of the action are to be kept, it is important 1401 /// to call this function, otherwise hidden information may be kept forever. 1402 virtual void commit() { 1403 // Nothing to be done, this action is not doing anything. 1404 } 1405 }; 1406 1407 /// \brief Utility to remember the position of an instruction. 1408 class InsertionHandler { 1409 /// Position of an instruction. 1410 /// Either an instruction: 1411 /// - Is the first in a basic block: BB is used. 1412 /// - Has a previous instructon: PrevInst is used. 1413 union { 1414 Instruction *PrevInst; 1415 BasicBlock *BB; 1416 } Point; 1417 /// Remember whether or not the instruction had a previous instruction. 1418 bool HasPrevInstruction; 1419 1420 public: 1421 /// \brief Record the position of \p Inst. 1422 InsertionHandler(Instruction *Inst) { 1423 BasicBlock::iterator It = Inst; 1424 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1425 if (HasPrevInstruction) 1426 Point.PrevInst = --It; 1427 else 1428 Point.BB = Inst->getParent(); 1429 } 1430 1431 /// \brief Insert \p Inst at the recorded position. 1432 void insert(Instruction *Inst) { 1433 if (HasPrevInstruction) { 1434 if (Inst->getParent()) 1435 Inst->removeFromParent(); 1436 Inst->insertAfter(Point.PrevInst); 1437 } else { 1438 Instruction *Position = Point.BB->getFirstInsertionPt(); 1439 if (Inst->getParent()) 1440 Inst->moveBefore(Position); 1441 else 1442 Inst->insertBefore(Position); 1443 } 1444 } 1445 }; 1446 1447 /// \brief Move an instruction before another. 1448 class InstructionMoveBefore : public TypePromotionAction { 1449 /// Original position of the instruction. 1450 InsertionHandler Position; 1451 1452 public: 1453 /// \brief Move \p Inst before \p Before. 1454 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1455 : TypePromotionAction(Inst), Position(Inst) { 1456 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1457 Inst->moveBefore(Before); 1458 } 1459 1460 /// \brief Move the instruction back to its original position. 1461 void undo() override { 1462 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1463 Position.insert(Inst); 1464 } 1465 }; 1466 1467 /// \brief Set the operand of an instruction with a new value. 1468 class OperandSetter : public TypePromotionAction { 1469 /// Original operand of the instruction. 1470 Value *Origin; 1471 /// Index of the modified instruction. 1472 unsigned Idx; 1473 1474 public: 1475 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1476 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1477 : TypePromotionAction(Inst), Idx(Idx) { 1478 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1479 << "for:" << *Inst << "\n" 1480 << "with:" << *NewVal << "\n"); 1481 Origin = Inst->getOperand(Idx); 1482 Inst->setOperand(Idx, NewVal); 1483 } 1484 1485 /// \brief Restore the original value of the instruction. 1486 void undo() override { 1487 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1488 << "for: " << *Inst << "\n" 1489 << "with: " << *Origin << "\n"); 1490 Inst->setOperand(Idx, Origin); 1491 } 1492 }; 1493 1494 /// \brief Hide the operands of an instruction. 1495 /// Do as if this instruction was not using any of its operands. 1496 class OperandsHider : public TypePromotionAction { 1497 /// The list of original operands. 1498 SmallVector<Value *, 4> OriginalValues; 1499 1500 public: 1501 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1502 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1503 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1504 unsigned NumOpnds = Inst->getNumOperands(); 1505 OriginalValues.reserve(NumOpnds); 1506 for (unsigned It = 0; It < NumOpnds; ++It) { 1507 // Save the current operand. 1508 Value *Val = Inst->getOperand(It); 1509 OriginalValues.push_back(Val); 1510 // Set a dummy one. 1511 // We could use OperandSetter here, but that would implied an overhead 1512 // that we are not willing to pay. 1513 Inst->setOperand(It, UndefValue::get(Val->getType())); 1514 } 1515 } 1516 1517 /// \brief Restore the original list of uses. 1518 void undo() override { 1519 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1520 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1521 Inst->setOperand(It, OriginalValues[It]); 1522 } 1523 }; 1524 1525 /// \brief Build a truncate instruction. 1526 class TruncBuilder : public TypePromotionAction { 1527 Value *Val; 1528 public: 1529 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1530 /// result. 1531 /// trunc Opnd to Ty. 1532 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1533 IRBuilder<> Builder(Opnd); 1534 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1535 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1536 } 1537 1538 /// \brief Get the built value. 1539 Value *getBuiltValue() { return Val; } 1540 1541 /// \brief Remove the built instruction. 1542 void undo() override { 1543 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1544 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1545 IVal->eraseFromParent(); 1546 } 1547 }; 1548 1549 /// \brief Build a sign extension instruction. 1550 class SExtBuilder : public TypePromotionAction { 1551 Value *Val; 1552 public: 1553 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1554 /// result. 1555 /// sext Opnd to Ty. 1556 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1557 : TypePromotionAction(InsertPt) { 1558 IRBuilder<> Builder(InsertPt); 1559 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1560 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1561 } 1562 1563 /// \brief Get the built value. 1564 Value *getBuiltValue() { return Val; } 1565 1566 /// \brief Remove the built instruction. 1567 void undo() override { 1568 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1569 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1570 IVal->eraseFromParent(); 1571 } 1572 }; 1573 1574 /// \brief Build a zero extension instruction. 1575 class ZExtBuilder : public TypePromotionAction { 1576 Value *Val; 1577 public: 1578 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1579 /// result. 1580 /// zext Opnd to Ty. 1581 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1582 : TypePromotionAction(InsertPt) { 1583 IRBuilder<> Builder(InsertPt); 1584 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1585 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1586 } 1587 1588 /// \brief Get the built value. 1589 Value *getBuiltValue() { return Val; } 1590 1591 /// \brief Remove the built instruction. 1592 void undo() override { 1593 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1594 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1595 IVal->eraseFromParent(); 1596 } 1597 }; 1598 1599 /// \brief Mutate an instruction to another type. 1600 class TypeMutator : public TypePromotionAction { 1601 /// Record the original type. 1602 Type *OrigTy; 1603 1604 public: 1605 /// \brief Mutate the type of \p Inst into \p NewTy. 1606 TypeMutator(Instruction *Inst, Type *NewTy) 1607 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1608 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1609 << "\n"); 1610 Inst->mutateType(NewTy); 1611 } 1612 1613 /// \brief Mutate the instruction back to its original type. 1614 void undo() override { 1615 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1616 << "\n"); 1617 Inst->mutateType(OrigTy); 1618 } 1619 }; 1620 1621 /// \brief Replace the uses of an instruction by another instruction. 1622 class UsesReplacer : public TypePromotionAction { 1623 /// Helper structure to keep track of the replaced uses. 1624 struct InstructionAndIdx { 1625 /// The instruction using the instruction. 1626 Instruction *Inst; 1627 /// The index where this instruction is used for Inst. 1628 unsigned Idx; 1629 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1630 : Inst(Inst), Idx(Idx) {} 1631 }; 1632 1633 /// Keep track of the original uses (pair Instruction, Index). 1634 SmallVector<InstructionAndIdx, 4> OriginalUses; 1635 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1636 1637 public: 1638 /// \brief Replace all the use of \p Inst by \p New. 1639 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1640 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1641 << "\n"); 1642 // Record the original uses. 1643 for (Use &U : Inst->uses()) { 1644 Instruction *UserI = cast<Instruction>(U.getUser()); 1645 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1646 } 1647 // Now, we can replace the uses. 1648 Inst->replaceAllUsesWith(New); 1649 } 1650 1651 /// \brief Reassign the original uses of Inst to Inst. 1652 void undo() override { 1653 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1654 for (use_iterator UseIt = OriginalUses.begin(), 1655 EndIt = OriginalUses.end(); 1656 UseIt != EndIt; ++UseIt) { 1657 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1658 } 1659 } 1660 }; 1661 1662 /// \brief Remove an instruction from the IR. 1663 class InstructionRemover : public TypePromotionAction { 1664 /// Original position of the instruction. 1665 InsertionHandler Inserter; 1666 /// Helper structure to hide all the link to the instruction. In other 1667 /// words, this helps to do as if the instruction was removed. 1668 OperandsHider Hider; 1669 /// Keep track of the uses replaced, if any. 1670 UsesReplacer *Replacer; 1671 1672 public: 1673 /// \brief Remove all reference of \p Inst and optinally replace all its 1674 /// uses with New. 1675 /// \pre If !Inst->use_empty(), then New != nullptr 1676 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1677 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1678 Replacer(nullptr) { 1679 if (New) 1680 Replacer = new UsesReplacer(Inst, New); 1681 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1682 Inst->removeFromParent(); 1683 } 1684 1685 ~InstructionRemover() { delete Replacer; } 1686 1687 /// \brief Really remove the instruction. 1688 void commit() override { delete Inst; } 1689 1690 /// \brief Resurrect the instruction and reassign it to the proper uses if 1691 /// new value was provided when build this action. 1692 void undo() override { 1693 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1694 Inserter.insert(Inst); 1695 if (Replacer) 1696 Replacer->undo(); 1697 Hider.undo(); 1698 } 1699 }; 1700 1701 public: 1702 /// Restoration point. 1703 /// The restoration point is a pointer to an action instead of an iterator 1704 /// because the iterator may be invalidated but not the pointer. 1705 typedef const TypePromotionAction *ConstRestorationPt; 1706 /// Advocate every changes made in that transaction. 1707 void commit(); 1708 /// Undo all the changes made after the given point. 1709 void rollback(ConstRestorationPt Point); 1710 /// Get the current restoration point. 1711 ConstRestorationPt getRestorationPoint() const; 1712 1713 /// \name API for IR modification with state keeping to support rollback. 1714 /// @{ 1715 /// Same as Instruction::setOperand. 1716 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1717 /// Same as Instruction::eraseFromParent. 1718 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1719 /// Same as Value::replaceAllUsesWith. 1720 void replaceAllUsesWith(Instruction *Inst, Value *New); 1721 /// Same as Value::mutateType. 1722 void mutateType(Instruction *Inst, Type *NewTy); 1723 /// Same as IRBuilder::createTrunc. 1724 Value *createTrunc(Instruction *Opnd, Type *Ty); 1725 /// Same as IRBuilder::createSExt. 1726 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1727 /// Same as IRBuilder::createZExt. 1728 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1729 /// Same as Instruction::moveBefore. 1730 void moveBefore(Instruction *Inst, Instruction *Before); 1731 /// @} 1732 1733 private: 1734 /// The ordered list of actions made so far. 1735 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1736 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1737 }; 1738 1739 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1740 Value *NewVal) { 1741 Actions.push_back( 1742 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1743 } 1744 1745 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1746 Value *NewVal) { 1747 Actions.push_back( 1748 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1749 } 1750 1751 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1752 Value *New) { 1753 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1754 } 1755 1756 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1757 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1758 } 1759 1760 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1761 Type *Ty) { 1762 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1763 Value *Val = Ptr->getBuiltValue(); 1764 Actions.push_back(std::move(Ptr)); 1765 return Val; 1766 } 1767 1768 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1769 Value *Opnd, Type *Ty) { 1770 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1771 Value *Val = Ptr->getBuiltValue(); 1772 Actions.push_back(std::move(Ptr)); 1773 return Val; 1774 } 1775 1776 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1777 Value *Opnd, Type *Ty) { 1778 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1779 Value *Val = Ptr->getBuiltValue(); 1780 Actions.push_back(std::move(Ptr)); 1781 return Val; 1782 } 1783 1784 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1785 Instruction *Before) { 1786 Actions.push_back( 1787 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1788 } 1789 1790 TypePromotionTransaction::ConstRestorationPt 1791 TypePromotionTransaction::getRestorationPoint() const { 1792 return !Actions.empty() ? Actions.back().get() : nullptr; 1793 } 1794 1795 void TypePromotionTransaction::commit() { 1796 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1797 ++It) 1798 (*It)->commit(); 1799 Actions.clear(); 1800 } 1801 1802 void TypePromotionTransaction::rollback( 1803 TypePromotionTransaction::ConstRestorationPt Point) { 1804 while (!Actions.empty() && Point != Actions.back().get()) { 1805 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1806 Curr->undo(); 1807 } 1808 } 1809 1810 /// \brief A helper class for matching addressing modes. 1811 /// 1812 /// This encapsulates the logic for matching the target-legal addressing modes. 1813 class AddressingModeMatcher { 1814 SmallVectorImpl<Instruction*> &AddrModeInsts; 1815 const TargetLowering &TLI; 1816 1817 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1818 /// the memory instruction that we're computing this address for. 1819 Type *AccessTy; 1820 Instruction *MemoryInst; 1821 1822 /// AddrMode - This is the addressing mode that we're building up. This is 1823 /// part of the return value of this addressing mode matching stuff. 1824 ExtAddrMode &AddrMode; 1825 1826 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1827 const SetOfInstrs &InsertedTruncs; 1828 /// A map from the instructions to their type before promotion. 1829 InstrToOrigTy &PromotedInsts; 1830 /// The ongoing transaction where every action should be registered. 1831 TypePromotionTransaction &TPT; 1832 1833 /// IgnoreProfitability - This is set to true when we should not do 1834 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1835 /// always returns true. 1836 bool IgnoreProfitability; 1837 1838 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1839 const TargetLowering &T, Type *AT, 1840 Instruction *MI, ExtAddrMode &AM, 1841 const SetOfInstrs &InsertedTruncs, 1842 InstrToOrigTy &PromotedInsts, 1843 TypePromotionTransaction &TPT) 1844 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1845 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1846 IgnoreProfitability = false; 1847 } 1848 public: 1849 1850 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1851 /// give an access type of AccessTy. This returns a list of involved 1852 /// instructions in AddrModeInsts. 1853 /// \p InsertedTruncs The truncate instruction inserted by other 1854 /// CodeGenPrepare 1855 /// optimizations. 1856 /// \p PromotedInsts maps the instructions to their type before promotion. 1857 /// \p The ongoing transaction where every action should be registered. 1858 static ExtAddrMode Match(Value *V, Type *AccessTy, 1859 Instruction *MemoryInst, 1860 SmallVectorImpl<Instruction*> &AddrModeInsts, 1861 const TargetLowering &TLI, 1862 const SetOfInstrs &InsertedTruncs, 1863 InstrToOrigTy &PromotedInsts, 1864 TypePromotionTransaction &TPT) { 1865 ExtAddrMode Result; 1866 1867 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 1868 MemoryInst, Result, InsertedTruncs, 1869 PromotedInsts, TPT).MatchAddr(V, 0); 1870 (void)Success; assert(Success && "Couldn't select *anything*?"); 1871 return Result; 1872 } 1873 private: 1874 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 1875 bool MatchAddr(Value *V, unsigned Depth); 1876 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 1877 bool *MovedAway = nullptr); 1878 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 1879 ExtAddrMode &AMBefore, 1880 ExtAddrMode &AMAfter); 1881 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 1882 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 1883 Value *PromotedOperand) const; 1884 }; 1885 1886 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 1887 /// Return true and update AddrMode if this addr mode is legal for the target, 1888 /// false if not. 1889 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 1890 unsigned Depth) { 1891 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 1892 // mode. Just process that directly. 1893 if (Scale == 1) 1894 return MatchAddr(ScaleReg, Depth); 1895 1896 // If the scale is 0, it takes nothing to add this. 1897 if (Scale == 0) 1898 return true; 1899 1900 // If we already have a scale of this value, we can add to it, otherwise, we 1901 // need an available scale field. 1902 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 1903 return false; 1904 1905 ExtAddrMode TestAddrMode = AddrMode; 1906 1907 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 1908 // [A+B + A*7] -> [B+A*8]. 1909 TestAddrMode.Scale += Scale; 1910 TestAddrMode.ScaledReg = ScaleReg; 1911 1912 // If the new address isn't legal, bail out. 1913 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 1914 return false; 1915 1916 // It was legal, so commit it. 1917 AddrMode = TestAddrMode; 1918 1919 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 1920 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 1921 // X*Scale + C*Scale to addr mode. 1922 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 1923 if (isa<Instruction>(ScaleReg) && // not a constant expr. 1924 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 1925 TestAddrMode.ScaledReg = AddLHS; 1926 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 1927 1928 // If this addressing mode is legal, commit it and remember that we folded 1929 // this instruction. 1930 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 1931 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 1932 AddrMode = TestAddrMode; 1933 return true; 1934 } 1935 } 1936 1937 // Otherwise, not (x+c)*scale, just return what we have. 1938 return true; 1939 } 1940 1941 /// MightBeFoldableInst - This is a little filter, which returns true if an 1942 /// addressing computation involving I might be folded into a load/store 1943 /// accessing it. This doesn't need to be perfect, but needs to accept at least 1944 /// the set of instructions that MatchOperationAddr can. 1945 static bool MightBeFoldableInst(Instruction *I) { 1946 switch (I->getOpcode()) { 1947 case Instruction::BitCast: 1948 case Instruction::AddrSpaceCast: 1949 // Don't touch identity bitcasts. 1950 if (I->getType() == I->getOperand(0)->getType()) 1951 return false; 1952 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 1953 case Instruction::PtrToInt: 1954 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1955 return true; 1956 case Instruction::IntToPtr: 1957 // We know the input is intptr_t, so this is foldable. 1958 return true; 1959 case Instruction::Add: 1960 return true; 1961 case Instruction::Mul: 1962 case Instruction::Shl: 1963 // Can only handle X*C and X << C. 1964 return isa<ConstantInt>(I->getOperand(1)); 1965 case Instruction::GetElementPtr: 1966 return true; 1967 default: 1968 return false; 1969 } 1970 } 1971 1972 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 1973 /// \note \p Val is assumed to be the product of some type promotion. 1974 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 1975 /// to be legal, as the non-promoted value would have had the same state. 1976 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 1977 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 1978 if (!PromotedInst) 1979 return false; 1980 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 1981 // If the ISDOpcode is undefined, it was undefined before the promotion. 1982 if (!ISDOpcode) 1983 return true; 1984 // Otherwise, check if the promoted instruction is legal or not. 1985 return TLI.isOperationLegalOrCustom( 1986 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 1987 } 1988 1989 /// \brief Hepler class to perform type promotion. 1990 class TypePromotionHelper { 1991 /// \brief Utility function to check whether or not a sign or zero extension 1992 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 1993 /// either using the operands of \p Inst or promoting \p Inst. 1994 /// The type of the extension is defined by \p IsSExt. 1995 /// In other words, check if: 1996 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 1997 /// #1 Promotion applies: 1998 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 1999 /// #2 Operand reuses: 2000 /// ext opnd1 to ConsideredExtType. 2001 /// \p PromotedInsts maps the instructions to their type before promotion. 2002 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2003 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2004 2005 /// \brief Utility function to determine if \p OpIdx should be promoted when 2006 /// promoting \p Inst. 2007 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2008 if (isa<SelectInst>(Inst) && OpIdx == 0) 2009 return false; 2010 return true; 2011 } 2012 2013 /// \brief Utility function to promote the operand of \p Ext when this 2014 /// operand is a promotable trunc or sext or zext. 2015 /// \p PromotedInsts maps the instructions to their type before promotion. 2016 /// \p CreatedInsts[out] contains how many non-free instructions have been 2017 /// created to promote the operand of Ext. 2018 /// Newly added extensions are inserted in \p Exts. 2019 /// Newly added truncates are inserted in \p Truncs. 2020 /// Should never be called directly. 2021 /// \return The promoted value which is used instead of Ext. 2022 static Value *promoteOperandForTruncAndAnyExt( 2023 Instruction *Ext, TypePromotionTransaction &TPT, 2024 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2025 SmallVectorImpl<Instruction *> *Exts, 2026 SmallVectorImpl<Instruction *> *Truncs); 2027 2028 /// \brief Utility function to promote the operand of \p Ext when this 2029 /// operand is promotable and is not a supported trunc or sext. 2030 /// \p PromotedInsts maps the instructions to their type before promotion. 2031 /// \p CreatedInsts[out] contains how many non-free instructions have been 2032 /// created to promote the operand of Ext. 2033 /// Newly added extensions are inserted in \p Exts. 2034 /// Newly added truncates are inserted in \p Truncs. 2035 /// Should never be called directly. 2036 /// \return The promoted value which is used instead of Ext. 2037 static Value * 2038 promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2039 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2040 SmallVectorImpl<Instruction *> *Exts, 2041 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt); 2042 2043 /// \see promoteOperandForOther. 2044 static Value * 2045 signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2046 InstrToOrigTy &PromotedInsts, 2047 unsigned &CreatedInsts, 2048 SmallVectorImpl<Instruction *> *Exts, 2049 SmallVectorImpl<Instruction *> *Truncs) { 2050 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2051 Truncs, true); 2052 } 2053 2054 /// \see promoteOperandForOther. 2055 static Value * 2056 zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2057 InstrToOrigTy &PromotedInsts, 2058 unsigned &CreatedInsts, 2059 SmallVectorImpl<Instruction *> *Exts, 2060 SmallVectorImpl<Instruction *> *Truncs) { 2061 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2062 Truncs, false); 2063 } 2064 2065 public: 2066 /// Type for the utility function that promotes the operand of Ext. 2067 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2068 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2069 SmallVectorImpl<Instruction *> *Exts, 2070 SmallVectorImpl<Instruction *> *Truncs); 2071 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2072 /// action to promote the operand of \p Ext instead of using Ext. 2073 /// \return NULL if no promotable action is possible with the current 2074 /// sign extension. 2075 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2076 /// the others CodeGenPrepare optimizations. This information is important 2077 /// because we do not want to promote these instructions as CodeGenPrepare 2078 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2079 /// \p PromotedInsts maps the instructions to their type before promotion. 2080 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2081 const TargetLowering &TLI, 2082 const InstrToOrigTy &PromotedInsts); 2083 }; 2084 2085 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2086 Type *ConsideredExtType, 2087 const InstrToOrigTy &PromotedInsts, 2088 bool IsSExt) { 2089 // The promotion helper does not know how to deal with vector types yet. 2090 // To be able to fix that, we would need to fix the places where we 2091 // statically extend, e.g., constants and such. 2092 if (Inst->getType()->isVectorTy()) 2093 return false; 2094 2095 // We can always get through zext. 2096 if (isa<ZExtInst>(Inst)) 2097 return true; 2098 2099 // sext(sext) is ok too. 2100 if (IsSExt && isa<SExtInst>(Inst)) 2101 return true; 2102 2103 // We can get through binary operator, if it is legal. In other words, the 2104 // binary operator must have a nuw or nsw flag. 2105 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2106 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2107 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2108 (IsSExt && BinOp->hasNoSignedWrap()))) 2109 return true; 2110 2111 // Check if we can do the following simplification. 2112 // ext(trunc(opnd)) --> ext(opnd) 2113 if (!isa<TruncInst>(Inst)) 2114 return false; 2115 2116 Value *OpndVal = Inst->getOperand(0); 2117 // Check if we can use this operand in the extension. 2118 // If the type is larger than the result type of the extension, 2119 // we cannot. 2120 if (!OpndVal->getType()->isIntegerTy() || 2121 OpndVal->getType()->getIntegerBitWidth() > 2122 ConsideredExtType->getIntegerBitWidth()) 2123 return false; 2124 2125 // If the operand of the truncate is not an instruction, we will not have 2126 // any information on the dropped bits. 2127 // (Actually we could for constant but it is not worth the extra logic). 2128 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2129 if (!Opnd) 2130 return false; 2131 2132 // Check if the source of the type is narrow enough. 2133 // I.e., check that trunc just drops extended bits of the same kind of 2134 // the extension. 2135 // #1 get the type of the operand and check the kind of the extended bits. 2136 const Type *OpndType; 2137 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2138 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2139 OpndType = It->second.Ty; 2140 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2141 OpndType = Opnd->getOperand(0)->getType(); 2142 else 2143 return false; 2144 2145 // #2 check that the truncate just drop extended bits. 2146 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 TypePromotionHelper::Action TypePromotionHelper::getAction( 2153 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2154 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2155 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2156 "Unexpected instruction type"); 2157 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2158 Type *ExtTy = Ext->getType(); 2159 bool IsSExt = isa<SExtInst>(Ext); 2160 // If the operand of the extension is not an instruction, we cannot 2161 // get through. 2162 // If it, check we can get through. 2163 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2164 return nullptr; 2165 2166 // Do not promote if the operand has been added by codegenprepare. 2167 // Otherwise, it means we are undoing an optimization that is likely to be 2168 // redone, thus causing potential infinite loop. 2169 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2170 return nullptr; 2171 2172 // SExt or Trunc instructions. 2173 // Return the related handler. 2174 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2175 isa<ZExtInst>(ExtOpnd)) 2176 return promoteOperandForTruncAndAnyExt; 2177 2178 // Regular instruction. 2179 // Abort early if we will have to insert non-free instructions. 2180 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2181 return nullptr; 2182 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2183 } 2184 2185 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2186 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2187 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2188 SmallVectorImpl<Instruction *> *Exts, 2189 SmallVectorImpl<Instruction *> *Truncs) { 2190 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2191 // get through it and this method should not be called. 2192 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2193 Value *ExtVal = SExt; 2194 if (isa<ZExtInst>(SExtOpnd)) { 2195 // Replace s|zext(zext(opnd)) 2196 // => zext(opnd). 2197 Value *ZExt = 2198 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2199 TPT.replaceAllUsesWith(SExt, ZExt); 2200 TPT.eraseInstruction(SExt); 2201 ExtVal = ZExt; 2202 } else { 2203 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2204 // => z|sext(opnd). 2205 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2206 } 2207 CreatedInsts = 0; 2208 2209 // Remove dead code. 2210 if (SExtOpnd->use_empty()) 2211 TPT.eraseInstruction(SExtOpnd); 2212 2213 // Check if the extension is still needed. 2214 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2215 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2216 if (ExtInst && Exts) 2217 Exts->push_back(ExtInst); 2218 return ExtVal; 2219 } 2220 2221 // At this point we have: ext ty opnd to ty. 2222 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2223 Value *NextVal = ExtInst->getOperand(0); 2224 TPT.eraseInstruction(ExtInst, NextVal); 2225 return NextVal; 2226 } 2227 2228 Value *TypePromotionHelper::promoteOperandForOther( 2229 Instruction *Ext, TypePromotionTransaction &TPT, 2230 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2231 SmallVectorImpl<Instruction *> *Exts, 2232 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) { 2233 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2234 // get through it and this method should not be called. 2235 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2236 CreatedInsts = 0; 2237 if (!ExtOpnd->hasOneUse()) { 2238 // ExtOpnd will be promoted. 2239 // All its uses, but Ext, will need to use a truncated value of the 2240 // promoted version. 2241 // Create the truncate now. 2242 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2243 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2244 ITrunc->removeFromParent(); 2245 // Insert it just after the definition. 2246 ITrunc->insertAfter(ExtOpnd); 2247 if (Truncs) 2248 Truncs->push_back(ITrunc); 2249 } 2250 2251 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2252 // Restore the operand of Ext (which has been replace by the previous call 2253 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2254 TPT.setOperand(Ext, 0, ExtOpnd); 2255 } 2256 2257 // Get through the Instruction: 2258 // 1. Update its type. 2259 // 2. Replace the uses of Ext by Inst. 2260 // 3. Extend each operand that needs to be extended. 2261 2262 // Remember the original type of the instruction before promotion. 2263 // This is useful to know that the high bits are sign extended bits. 2264 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2265 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2266 // Step #1. 2267 TPT.mutateType(ExtOpnd, Ext->getType()); 2268 // Step #2. 2269 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2270 // Step #3. 2271 Instruction *ExtForOpnd = Ext; 2272 2273 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2274 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2275 ++OpIdx) { 2276 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2277 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2278 !shouldExtOperand(ExtOpnd, OpIdx)) { 2279 DEBUG(dbgs() << "No need to propagate\n"); 2280 continue; 2281 } 2282 // Check if we can statically extend the operand. 2283 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2284 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2285 DEBUG(dbgs() << "Statically extend\n"); 2286 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2287 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2288 : Cst->getValue().zext(BitWidth); 2289 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2290 continue; 2291 } 2292 // UndefValue are typed, so we have to statically sign extend them. 2293 if (isa<UndefValue>(Opnd)) { 2294 DEBUG(dbgs() << "Statically extend\n"); 2295 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2296 continue; 2297 } 2298 2299 // Otherwise we have to explicity sign extend the operand. 2300 // Check if Ext was reused to extend an operand. 2301 if (!ExtForOpnd) { 2302 // If yes, create a new one. 2303 DEBUG(dbgs() << "More operands to ext\n"); 2304 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2305 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2306 if (!isa<Instruction>(ValForExtOpnd)) { 2307 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2308 continue; 2309 } 2310 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2311 ++CreatedInsts; 2312 } 2313 if (Exts) 2314 Exts->push_back(ExtForOpnd); 2315 TPT.setOperand(ExtForOpnd, 0, Opnd); 2316 2317 // Move the sign extension before the insertion point. 2318 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2319 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2320 // If more sext are required, new instructions will have to be created. 2321 ExtForOpnd = nullptr; 2322 } 2323 if (ExtForOpnd == Ext) { 2324 DEBUG(dbgs() << "Extension is useless now\n"); 2325 TPT.eraseInstruction(Ext); 2326 } 2327 return ExtOpnd; 2328 } 2329 2330 /// IsPromotionProfitable - Check whether or not promoting an instruction 2331 /// to a wider type was profitable. 2332 /// \p MatchedSize gives the number of instructions that have been matched 2333 /// in the addressing mode after the promotion was applied. 2334 /// \p SizeWithPromotion gives the number of created instructions for 2335 /// the promotion plus the number of instructions that have been 2336 /// matched in the addressing mode before the promotion. 2337 /// \p PromotedOperand is the value that has been promoted. 2338 /// \return True if the promotion is profitable, false otherwise. 2339 bool 2340 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 2341 unsigned SizeWithPromotion, 2342 Value *PromotedOperand) const { 2343 // We folded less instructions than what we created to promote the operand. 2344 // This is not profitable. 2345 if (MatchedSize < SizeWithPromotion) 2346 return false; 2347 if (MatchedSize > SizeWithPromotion) 2348 return true; 2349 // The promotion is neutral but it may help folding the sign extension in 2350 // loads for instance. 2351 // Check that we did not create an illegal instruction. 2352 return isPromotedInstructionLegal(TLI, PromotedOperand); 2353 } 2354 2355 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2356 /// fold the operation into the addressing mode. If so, update the addressing 2357 /// mode and return true, otherwise return false without modifying AddrMode. 2358 /// If \p MovedAway is not NULL, it contains the information of whether or 2359 /// not AddrInst has to be folded into the addressing mode on success. 2360 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2361 /// because it has been moved away. 2362 /// Thus AddrInst must not be added in the matched instructions. 2363 /// This state can happen when AddrInst is a sext, since it may be moved away. 2364 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2365 /// not be referenced anymore. 2366 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2367 unsigned Depth, 2368 bool *MovedAway) { 2369 // Avoid exponential behavior on extremely deep expression trees. 2370 if (Depth >= 5) return false; 2371 2372 // By default, all matched instructions stay in place. 2373 if (MovedAway) 2374 *MovedAway = false; 2375 2376 switch (Opcode) { 2377 case Instruction::PtrToInt: 2378 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2379 return MatchAddr(AddrInst->getOperand(0), Depth); 2380 case Instruction::IntToPtr: 2381 // This inttoptr is a no-op if the integer type is pointer sized. 2382 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2383 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2384 return MatchAddr(AddrInst->getOperand(0), Depth); 2385 return false; 2386 case Instruction::BitCast: 2387 case Instruction::AddrSpaceCast: 2388 // BitCast is always a noop, and we can handle it as long as it is 2389 // int->int or pointer->pointer (we don't want int<->fp or something). 2390 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2391 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2392 // Don't touch identity bitcasts. These were probably put here by LSR, 2393 // and we don't want to mess around with them. Assume it knows what it 2394 // is doing. 2395 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2396 return MatchAddr(AddrInst->getOperand(0), Depth); 2397 return false; 2398 case Instruction::Add: { 2399 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2400 ExtAddrMode BackupAddrMode = AddrMode; 2401 unsigned OldSize = AddrModeInsts.size(); 2402 // Start a transaction at this point. 2403 // The LHS may match but not the RHS. 2404 // Therefore, we need a higher level restoration point to undo partially 2405 // matched operation. 2406 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2407 TPT.getRestorationPoint(); 2408 2409 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2410 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2411 return true; 2412 2413 // Restore the old addr mode info. 2414 AddrMode = BackupAddrMode; 2415 AddrModeInsts.resize(OldSize); 2416 TPT.rollback(LastKnownGood); 2417 2418 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2419 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2420 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2421 return true; 2422 2423 // Otherwise we definitely can't merge the ADD in. 2424 AddrMode = BackupAddrMode; 2425 AddrModeInsts.resize(OldSize); 2426 TPT.rollback(LastKnownGood); 2427 break; 2428 } 2429 //case Instruction::Or: 2430 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2431 //break; 2432 case Instruction::Mul: 2433 case Instruction::Shl: { 2434 // Can only handle X*C and X << C. 2435 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2436 if (!RHS) 2437 return false; 2438 int64_t Scale = RHS->getSExtValue(); 2439 if (Opcode == Instruction::Shl) 2440 Scale = 1LL << Scale; 2441 2442 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2443 } 2444 case Instruction::GetElementPtr: { 2445 // Scan the GEP. We check it if it contains constant offsets and at most 2446 // one variable offset. 2447 int VariableOperand = -1; 2448 unsigned VariableScale = 0; 2449 2450 int64_t ConstantOffset = 0; 2451 const DataLayout *TD = TLI.getDataLayout(); 2452 gep_type_iterator GTI = gep_type_begin(AddrInst); 2453 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2454 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2455 const StructLayout *SL = TD->getStructLayout(STy); 2456 unsigned Idx = 2457 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2458 ConstantOffset += SL->getElementOffset(Idx); 2459 } else { 2460 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2461 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2462 ConstantOffset += CI->getSExtValue()*TypeSize; 2463 } else if (TypeSize) { // Scales of zero don't do anything. 2464 // We only allow one variable index at the moment. 2465 if (VariableOperand != -1) 2466 return false; 2467 2468 // Remember the variable index. 2469 VariableOperand = i; 2470 VariableScale = TypeSize; 2471 } 2472 } 2473 } 2474 2475 // A common case is for the GEP to only do a constant offset. In this case, 2476 // just add it to the disp field and check validity. 2477 if (VariableOperand == -1) { 2478 AddrMode.BaseOffs += ConstantOffset; 2479 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2480 // Check to see if we can fold the base pointer in too. 2481 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2482 return true; 2483 } 2484 AddrMode.BaseOffs -= ConstantOffset; 2485 return false; 2486 } 2487 2488 // Save the valid addressing mode in case we can't match. 2489 ExtAddrMode BackupAddrMode = AddrMode; 2490 unsigned OldSize = AddrModeInsts.size(); 2491 2492 // See if the scale and offset amount is valid for this target. 2493 AddrMode.BaseOffs += ConstantOffset; 2494 2495 // Match the base operand of the GEP. 2496 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2497 // If it couldn't be matched, just stuff the value in a register. 2498 if (AddrMode.HasBaseReg) { 2499 AddrMode = BackupAddrMode; 2500 AddrModeInsts.resize(OldSize); 2501 return false; 2502 } 2503 AddrMode.HasBaseReg = true; 2504 AddrMode.BaseReg = AddrInst->getOperand(0); 2505 } 2506 2507 // Match the remaining variable portion of the GEP. 2508 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2509 Depth)) { 2510 // If it couldn't be matched, try stuffing the base into a register 2511 // instead of matching it, and retrying the match of the scale. 2512 AddrMode = BackupAddrMode; 2513 AddrModeInsts.resize(OldSize); 2514 if (AddrMode.HasBaseReg) 2515 return false; 2516 AddrMode.HasBaseReg = true; 2517 AddrMode.BaseReg = AddrInst->getOperand(0); 2518 AddrMode.BaseOffs += ConstantOffset; 2519 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2520 VariableScale, Depth)) { 2521 // If even that didn't work, bail. 2522 AddrMode = BackupAddrMode; 2523 AddrModeInsts.resize(OldSize); 2524 return false; 2525 } 2526 } 2527 2528 return true; 2529 } 2530 case Instruction::SExt: 2531 case Instruction::ZExt: { 2532 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2533 if (!Ext) 2534 return false; 2535 2536 // Try to move this ext out of the way of the addressing mode. 2537 // Ask for a method for doing so. 2538 TypePromotionHelper::Action TPH = 2539 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2540 if (!TPH) 2541 return false; 2542 2543 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2544 TPT.getRestorationPoint(); 2545 unsigned CreatedInsts = 0; 2546 Value *PromotedOperand = 2547 TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); 2548 // SExt has been moved away. 2549 // Thus either it will be rematched later in the recursive calls or it is 2550 // gone. Anyway, we must not fold it into the addressing mode at this point. 2551 // E.g., 2552 // op = add opnd, 1 2553 // idx = ext op 2554 // addr = gep base, idx 2555 // is now: 2556 // promotedOpnd = ext opnd <- no match here 2557 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2558 // addr = gep base, op <- match 2559 if (MovedAway) 2560 *MovedAway = true; 2561 2562 assert(PromotedOperand && 2563 "TypePromotionHelper should have filtered out those cases"); 2564 2565 ExtAddrMode BackupAddrMode = AddrMode; 2566 unsigned OldSize = AddrModeInsts.size(); 2567 2568 if (!MatchAddr(PromotedOperand, Depth) || 2569 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2570 PromotedOperand)) { 2571 AddrMode = BackupAddrMode; 2572 AddrModeInsts.resize(OldSize); 2573 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2574 TPT.rollback(LastKnownGood); 2575 return false; 2576 } 2577 return true; 2578 } 2579 } 2580 return false; 2581 } 2582 2583 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2584 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2585 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2586 /// or intptr_t for the target. 2587 /// 2588 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2589 // Start a transaction at this point that we will rollback if the matching 2590 // fails. 2591 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2592 TPT.getRestorationPoint(); 2593 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2594 // Fold in immediates if legal for the target. 2595 AddrMode.BaseOffs += CI->getSExtValue(); 2596 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2597 return true; 2598 AddrMode.BaseOffs -= CI->getSExtValue(); 2599 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2600 // If this is a global variable, try to fold it into the addressing mode. 2601 if (!AddrMode.BaseGV) { 2602 AddrMode.BaseGV = GV; 2603 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2604 return true; 2605 AddrMode.BaseGV = nullptr; 2606 } 2607 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2608 ExtAddrMode BackupAddrMode = AddrMode; 2609 unsigned OldSize = AddrModeInsts.size(); 2610 2611 // Check to see if it is possible to fold this operation. 2612 bool MovedAway = false; 2613 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2614 // This instruction may have been move away. If so, there is nothing 2615 // to check here. 2616 if (MovedAway) 2617 return true; 2618 // Okay, it's possible to fold this. Check to see if it is actually 2619 // *profitable* to do so. We use a simple cost model to avoid increasing 2620 // register pressure too much. 2621 if (I->hasOneUse() || 2622 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2623 AddrModeInsts.push_back(I); 2624 return true; 2625 } 2626 2627 // It isn't profitable to do this, roll back. 2628 //cerr << "NOT FOLDING: " << *I; 2629 AddrMode = BackupAddrMode; 2630 AddrModeInsts.resize(OldSize); 2631 TPT.rollback(LastKnownGood); 2632 } 2633 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2634 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2635 return true; 2636 TPT.rollback(LastKnownGood); 2637 } else if (isa<ConstantPointerNull>(Addr)) { 2638 // Null pointer gets folded without affecting the addressing mode. 2639 return true; 2640 } 2641 2642 // Worse case, the target should support [reg] addressing modes. :) 2643 if (!AddrMode.HasBaseReg) { 2644 AddrMode.HasBaseReg = true; 2645 AddrMode.BaseReg = Addr; 2646 // Still check for legality in case the target supports [imm] but not [i+r]. 2647 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2648 return true; 2649 AddrMode.HasBaseReg = false; 2650 AddrMode.BaseReg = nullptr; 2651 } 2652 2653 // If the base register is already taken, see if we can do [r+r]. 2654 if (AddrMode.Scale == 0) { 2655 AddrMode.Scale = 1; 2656 AddrMode.ScaledReg = Addr; 2657 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2658 return true; 2659 AddrMode.Scale = 0; 2660 AddrMode.ScaledReg = nullptr; 2661 } 2662 // Couldn't match. 2663 TPT.rollback(LastKnownGood); 2664 return false; 2665 } 2666 2667 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2668 /// inline asm call are due to memory operands. If so, return true, otherwise 2669 /// return false. 2670 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2671 const TargetLowering &TLI) { 2672 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2673 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2674 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2675 2676 // Compute the constraint code and ConstraintType to use. 2677 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2678 2679 // If this asm operand is our Value*, and if it isn't an indirect memory 2680 // operand, we can't fold it! 2681 if (OpInfo.CallOperandVal == OpVal && 2682 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2683 !OpInfo.isIndirect)) 2684 return false; 2685 } 2686 2687 return true; 2688 } 2689 2690 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2691 /// memory use. If we find an obviously non-foldable instruction, return true. 2692 /// Add the ultimately found memory instructions to MemoryUses. 2693 static bool FindAllMemoryUses(Instruction *I, 2694 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2695 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2696 const TargetLowering &TLI) { 2697 // If we already considered this instruction, we're done. 2698 if (!ConsideredInsts.insert(I).second) 2699 return false; 2700 2701 // If this is an obviously unfoldable instruction, bail out. 2702 if (!MightBeFoldableInst(I)) 2703 return true; 2704 2705 // Loop over all the uses, recursively processing them. 2706 for (Use &U : I->uses()) { 2707 Instruction *UserI = cast<Instruction>(U.getUser()); 2708 2709 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2710 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2711 continue; 2712 } 2713 2714 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2715 unsigned opNo = U.getOperandNo(); 2716 if (opNo == 0) return true; // Storing addr, not into addr. 2717 MemoryUses.push_back(std::make_pair(SI, opNo)); 2718 continue; 2719 } 2720 2721 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2722 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2723 if (!IA) return true; 2724 2725 // If this is a memory operand, we're cool, otherwise bail out. 2726 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2727 return true; 2728 continue; 2729 } 2730 2731 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2732 return true; 2733 } 2734 2735 return false; 2736 } 2737 2738 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2739 /// the use site that we're folding it into. If so, there is no cost to 2740 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2741 /// that we know are live at the instruction already. 2742 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2743 Value *KnownLive2) { 2744 // If Val is either of the known-live values, we know it is live! 2745 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2746 return true; 2747 2748 // All values other than instructions and arguments (e.g. constants) are live. 2749 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2750 2751 // If Val is a constant sized alloca in the entry block, it is live, this is 2752 // true because it is just a reference to the stack/frame pointer, which is 2753 // live for the whole function. 2754 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2755 if (AI->isStaticAlloca()) 2756 return true; 2757 2758 // Check to see if this value is already used in the memory instruction's 2759 // block. If so, it's already live into the block at the very least, so we 2760 // can reasonably fold it. 2761 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2762 } 2763 2764 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2765 /// mode of the machine to fold the specified instruction into a load or store 2766 /// that ultimately uses it. However, the specified instruction has multiple 2767 /// uses. Given this, it may actually increase register pressure to fold it 2768 /// into the load. For example, consider this code: 2769 /// 2770 /// X = ... 2771 /// Y = X+1 2772 /// use(Y) -> nonload/store 2773 /// Z = Y+1 2774 /// load Z 2775 /// 2776 /// In this case, Y has multiple uses, and can be folded into the load of Z 2777 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2778 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2779 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2780 /// number of computations either. 2781 /// 2782 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2783 /// X was live across 'load Z' for other reasons, we actually *would* want to 2784 /// fold the addressing mode in the Z case. This would make Y die earlier. 2785 bool AddressingModeMatcher:: 2786 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2787 ExtAddrMode &AMAfter) { 2788 if (IgnoreProfitability) return true; 2789 2790 // AMBefore is the addressing mode before this instruction was folded into it, 2791 // and AMAfter is the addressing mode after the instruction was folded. Get 2792 // the set of registers referenced by AMAfter and subtract out those 2793 // referenced by AMBefore: this is the set of values which folding in this 2794 // address extends the lifetime of. 2795 // 2796 // Note that there are only two potential values being referenced here, 2797 // BaseReg and ScaleReg (global addresses are always available, as are any 2798 // folded immediates). 2799 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2800 2801 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2802 // lifetime wasn't extended by adding this instruction. 2803 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2804 BaseReg = nullptr; 2805 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2806 ScaledReg = nullptr; 2807 2808 // If folding this instruction (and it's subexprs) didn't extend any live 2809 // ranges, we're ok with it. 2810 if (!BaseReg && !ScaledReg) 2811 return true; 2812 2813 // If all uses of this instruction are ultimately load/store/inlineasm's, 2814 // check to see if their addressing modes will include this instruction. If 2815 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2816 // uses. 2817 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2818 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2819 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2820 return false; // Has a non-memory, non-foldable use! 2821 2822 // Now that we know that all uses of this instruction are part of a chain of 2823 // computation involving only operations that could theoretically be folded 2824 // into a memory use, loop over each of these uses and see if they could 2825 // *actually* fold the instruction. 2826 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2827 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2828 Instruction *User = MemoryUses[i].first; 2829 unsigned OpNo = MemoryUses[i].second; 2830 2831 // Get the access type of this use. If the use isn't a pointer, we don't 2832 // know what it accesses. 2833 Value *Address = User->getOperand(OpNo); 2834 if (!Address->getType()->isPointerTy()) 2835 return false; 2836 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2837 2838 // Do a match against the root of this address, ignoring profitability. This 2839 // will tell us if the addressing mode for the memory operation will 2840 // *actually* cover the shared instruction. 2841 ExtAddrMode Result; 2842 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2843 TPT.getRestorationPoint(); 2844 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2845 MemoryInst, Result, InsertedTruncs, 2846 PromotedInsts, TPT); 2847 Matcher.IgnoreProfitability = true; 2848 bool Success = Matcher.MatchAddr(Address, 0); 2849 (void)Success; assert(Success && "Couldn't select *anything*?"); 2850 2851 // The match was to check the profitability, the changes made are not 2852 // part of the original matcher. Therefore, they should be dropped 2853 // otherwise the original matcher will not present the right state. 2854 TPT.rollback(LastKnownGood); 2855 2856 // If the match didn't cover I, then it won't be shared by it. 2857 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 2858 I) == MatchedAddrModeInsts.end()) 2859 return false; 2860 2861 MatchedAddrModeInsts.clear(); 2862 } 2863 2864 return true; 2865 } 2866 2867 } // end anonymous namespace 2868 2869 /// IsNonLocalValue - Return true if the specified values are defined in a 2870 /// different basic block than BB. 2871 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 2872 if (Instruction *I = dyn_cast<Instruction>(V)) 2873 return I->getParent() != BB; 2874 return false; 2875 } 2876 2877 /// OptimizeMemoryInst - Load and Store Instructions often have 2878 /// addressing modes that can do significant amounts of computation. As such, 2879 /// instruction selection will try to get the load or store to do as much 2880 /// computation as possible for the program. The problem is that isel can only 2881 /// see within a single block. As such, we sink as much legal addressing mode 2882 /// stuff into the block as possible. 2883 /// 2884 /// This method is used to optimize both load/store and inline asms with memory 2885 /// operands. 2886 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 2887 Type *AccessTy) { 2888 Value *Repl = Addr; 2889 2890 // Try to collapse single-value PHI nodes. This is necessary to undo 2891 // unprofitable PRE transformations. 2892 SmallVector<Value*, 8> worklist; 2893 SmallPtrSet<Value*, 16> Visited; 2894 worklist.push_back(Addr); 2895 2896 // Use a worklist to iteratively look through PHI nodes, and ensure that 2897 // the addressing mode obtained from the non-PHI roots of the graph 2898 // are equivalent. 2899 Value *Consensus = nullptr; 2900 unsigned NumUsesConsensus = 0; 2901 bool IsNumUsesConsensusValid = false; 2902 SmallVector<Instruction*, 16> AddrModeInsts; 2903 ExtAddrMode AddrMode; 2904 TypePromotionTransaction TPT; 2905 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2906 TPT.getRestorationPoint(); 2907 while (!worklist.empty()) { 2908 Value *V = worklist.back(); 2909 worklist.pop_back(); 2910 2911 // Break use-def graph loops. 2912 if (!Visited.insert(V).second) { 2913 Consensus = nullptr; 2914 break; 2915 } 2916 2917 // For a PHI node, push all of its incoming values. 2918 if (PHINode *P = dyn_cast<PHINode>(V)) { 2919 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 2920 worklist.push_back(P->getIncomingValue(i)); 2921 continue; 2922 } 2923 2924 // For non-PHIs, determine the addressing mode being computed. 2925 SmallVector<Instruction*, 16> NewAddrModeInsts; 2926 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 2927 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 2928 PromotedInsts, TPT); 2929 2930 // This check is broken into two cases with very similar code to avoid using 2931 // getNumUses() as much as possible. Some values have a lot of uses, so 2932 // calling getNumUses() unconditionally caused a significant compile-time 2933 // regression. 2934 if (!Consensus) { 2935 Consensus = V; 2936 AddrMode = NewAddrMode; 2937 AddrModeInsts = NewAddrModeInsts; 2938 continue; 2939 } else if (NewAddrMode == AddrMode) { 2940 if (!IsNumUsesConsensusValid) { 2941 NumUsesConsensus = Consensus->getNumUses(); 2942 IsNumUsesConsensusValid = true; 2943 } 2944 2945 // Ensure that the obtained addressing mode is equivalent to that obtained 2946 // for all other roots of the PHI traversal. Also, when choosing one 2947 // such root as representative, select the one with the most uses in order 2948 // to keep the cost modeling heuristics in AddressingModeMatcher 2949 // applicable. 2950 unsigned NumUses = V->getNumUses(); 2951 if (NumUses > NumUsesConsensus) { 2952 Consensus = V; 2953 NumUsesConsensus = NumUses; 2954 AddrModeInsts = NewAddrModeInsts; 2955 } 2956 continue; 2957 } 2958 2959 Consensus = nullptr; 2960 break; 2961 } 2962 2963 // If the addressing mode couldn't be determined, or if multiple different 2964 // ones were determined, bail out now. 2965 if (!Consensus) { 2966 TPT.rollback(LastKnownGood); 2967 return false; 2968 } 2969 TPT.commit(); 2970 2971 // Check to see if any of the instructions supersumed by this addr mode are 2972 // non-local to I's BB. 2973 bool AnyNonLocal = false; 2974 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 2975 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 2976 AnyNonLocal = true; 2977 break; 2978 } 2979 } 2980 2981 // If all the instructions matched are already in this BB, don't do anything. 2982 if (!AnyNonLocal) { 2983 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 2984 return false; 2985 } 2986 2987 // Insert this computation right after this user. Since our caller is 2988 // scanning from the top of the BB to the bottom, reuse of the expr are 2989 // guaranteed to happen later. 2990 IRBuilder<> Builder(MemoryInst); 2991 2992 // Now that we determined the addressing expression we want to use and know 2993 // that we have to sink it into this block. Check to see if we have already 2994 // done this for some other load/store instr in this block. If so, reuse the 2995 // computation. 2996 Value *&SunkAddr = SunkAddrs[Addr]; 2997 if (SunkAddr) { 2998 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 2999 << *MemoryInst << "\n"); 3000 if (SunkAddr->getType() != Addr->getType()) 3001 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3002 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 3003 TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) { 3004 // By default, we use the GEP-based method when AA is used later. This 3005 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3006 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3007 << *MemoryInst << "\n"); 3008 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3009 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3010 3011 // First, find the pointer. 3012 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3013 ResultPtr = AddrMode.BaseReg; 3014 AddrMode.BaseReg = nullptr; 3015 } 3016 3017 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3018 // We can't add more than one pointer together, nor can we scale a 3019 // pointer (both of which seem meaningless). 3020 if (ResultPtr || AddrMode.Scale != 1) 3021 return false; 3022 3023 ResultPtr = AddrMode.ScaledReg; 3024 AddrMode.Scale = 0; 3025 } 3026 3027 if (AddrMode.BaseGV) { 3028 if (ResultPtr) 3029 return false; 3030 3031 ResultPtr = AddrMode.BaseGV; 3032 } 3033 3034 // If the real base value actually came from an inttoptr, then the matcher 3035 // will look through it and provide only the integer value. In that case, 3036 // use it here. 3037 if (!ResultPtr && AddrMode.BaseReg) { 3038 ResultPtr = 3039 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3040 AddrMode.BaseReg = nullptr; 3041 } else if (!ResultPtr && AddrMode.Scale == 1) { 3042 ResultPtr = 3043 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3044 AddrMode.Scale = 0; 3045 } 3046 3047 if (!ResultPtr && 3048 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3049 SunkAddr = Constant::getNullValue(Addr->getType()); 3050 } else if (!ResultPtr) { 3051 return false; 3052 } else { 3053 Type *I8PtrTy = 3054 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3055 3056 // Start with the base register. Do this first so that subsequent address 3057 // matching finds it last, which will prevent it from trying to match it 3058 // as the scaled value in case it happens to be a mul. That would be 3059 // problematic if we've sunk a different mul for the scale, because then 3060 // we'd end up sinking both muls. 3061 if (AddrMode.BaseReg) { 3062 Value *V = AddrMode.BaseReg; 3063 if (V->getType() != IntPtrTy) 3064 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3065 3066 ResultIndex = V; 3067 } 3068 3069 // Add the scale value. 3070 if (AddrMode.Scale) { 3071 Value *V = AddrMode.ScaledReg; 3072 if (V->getType() == IntPtrTy) { 3073 // done. 3074 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3075 cast<IntegerType>(V->getType())->getBitWidth()) { 3076 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3077 } else { 3078 // It is only safe to sign extend the BaseReg if we know that the math 3079 // required to create it did not overflow before we extend it. Since 3080 // the original IR value was tossed in favor of a constant back when 3081 // the AddrMode was created we need to bail out gracefully if widths 3082 // do not match instead of extending it. 3083 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3084 if (I && (ResultIndex != AddrMode.BaseReg)) 3085 I->eraseFromParent(); 3086 return false; 3087 } 3088 3089 if (AddrMode.Scale != 1) 3090 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3091 "sunkaddr"); 3092 if (ResultIndex) 3093 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3094 else 3095 ResultIndex = V; 3096 } 3097 3098 // Add in the Base Offset if present. 3099 if (AddrMode.BaseOffs) { 3100 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3101 if (ResultIndex) { 3102 // We need to add this separately from the scale above to help with 3103 // SDAG consecutive load/store merging. 3104 if (ResultPtr->getType() != I8PtrTy) 3105 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3106 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3107 } 3108 3109 ResultIndex = V; 3110 } 3111 3112 if (!ResultIndex) { 3113 SunkAddr = ResultPtr; 3114 } else { 3115 if (ResultPtr->getType() != I8PtrTy) 3116 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3117 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3118 } 3119 3120 if (SunkAddr->getType() != Addr->getType()) 3121 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3122 } 3123 } else { 3124 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3125 << *MemoryInst << "\n"); 3126 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3127 Value *Result = nullptr; 3128 3129 // Start with the base register. Do this first so that subsequent address 3130 // matching finds it last, which will prevent it from trying to match it 3131 // as the scaled value in case it happens to be a mul. That would be 3132 // problematic if we've sunk a different mul for the scale, because then 3133 // we'd end up sinking both muls. 3134 if (AddrMode.BaseReg) { 3135 Value *V = AddrMode.BaseReg; 3136 if (V->getType()->isPointerTy()) 3137 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3138 if (V->getType() != IntPtrTy) 3139 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3140 Result = V; 3141 } 3142 3143 // Add the scale value. 3144 if (AddrMode.Scale) { 3145 Value *V = AddrMode.ScaledReg; 3146 if (V->getType() == IntPtrTy) { 3147 // done. 3148 } else if (V->getType()->isPointerTy()) { 3149 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3150 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3151 cast<IntegerType>(V->getType())->getBitWidth()) { 3152 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3153 } else { 3154 // It is only safe to sign extend the BaseReg if we know that the math 3155 // required to create it did not overflow before we extend it. Since 3156 // the original IR value was tossed in favor of a constant back when 3157 // the AddrMode was created we need to bail out gracefully if widths 3158 // do not match instead of extending it. 3159 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3160 if (I && (Result != AddrMode.BaseReg)) 3161 I->eraseFromParent(); 3162 return false; 3163 } 3164 if (AddrMode.Scale != 1) 3165 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3166 "sunkaddr"); 3167 if (Result) 3168 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3169 else 3170 Result = V; 3171 } 3172 3173 // Add in the BaseGV if present. 3174 if (AddrMode.BaseGV) { 3175 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3176 if (Result) 3177 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3178 else 3179 Result = V; 3180 } 3181 3182 // Add in the Base Offset if present. 3183 if (AddrMode.BaseOffs) { 3184 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3185 if (Result) 3186 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3187 else 3188 Result = V; 3189 } 3190 3191 if (!Result) 3192 SunkAddr = Constant::getNullValue(Addr->getType()); 3193 else 3194 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3195 } 3196 3197 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3198 3199 // If we have no uses, recursively delete the value and all dead instructions 3200 // using it. 3201 if (Repl->use_empty()) { 3202 // This can cause recursive deletion, which can invalidate our iterator. 3203 // Use a WeakVH to hold onto it in case this happens. 3204 WeakVH IterHandle(CurInstIterator); 3205 BasicBlock *BB = CurInstIterator->getParent(); 3206 3207 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3208 3209 if (IterHandle != CurInstIterator) { 3210 // If the iterator instruction was recursively deleted, start over at the 3211 // start of the block. 3212 CurInstIterator = BB->begin(); 3213 SunkAddrs.clear(); 3214 } 3215 } 3216 ++NumMemoryInsts; 3217 return true; 3218 } 3219 3220 /// OptimizeInlineAsmInst - If there are any memory operands, use 3221 /// OptimizeMemoryInst to sink their address computing into the block when 3222 /// possible / profitable. 3223 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3224 bool MadeChange = false; 3225 3226 TargetLowering::AsmOperandInfoVector 3227 TargetConstraints = TLI->ParseConstraints(CS); 3228 unsigned ArgNo = 0; 3229 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3230 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3231 3232 // Compute the constraint code and ConstraintType to use. 3233 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3234 3235 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3236 OpInfo.isIndirect) { 3237 Value *OpVal = CS->getArgOperand(ArgNo++); 3238 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3239 } else if (OpInfo.Type == InlineAsm::isInput) 3240 ArgNo++; 3241 } 3242 3243 return MadeChange; 3244 } 3245 3246 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3247 /// sign extensions. 3248 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3249 assert(!Inst->use_empty() && "Input must have at least one use"); 3250 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3251 bool IsSExt = isa<SExtInst>(FirstUser); 3252 Type *ExtTy = FirstUser->getType(); 3253 for (const User *U : Inst->users()) { 3254 const Instruction *UI = cast<Instruction>(U); 3255 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3256 return false; 3257 Type *CurTy = UI->getType(); 3258 // Same input and output types: Same instruction after CSE. 3259 if (CurTy == ExtTy) 3260 continue; 3261 3262 // If IsSExt is true, we are in this situation: 3263 // a = Inst 3264 // b = sext ty1 a to ty2 3265 // c = sext ty1 a to ty3 3266 // Assuming ty2 is shorter than ty3, this could be turned into: 3267 // a = Inst 3268 // b = sext ty1 a to ty2 3269 // c = sext ty2 b to ty3 3270 // However, the last sext is not free. 3271 if (IsSExt) 3272 return false; 3273 3274 // This is a ZExt, maybe this is free to extend from one type to another. 3275 // In that case, we would not account for a different use. 3276 Type *NarrowTy; 3277 Type *LargeTy; 3278 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3279 CurTy->getScalarType()->getIntegerBitWidth()) { 3280 NarrowTy = CurTy; 3281 LargeTy = ExtTy; 3282 } else { 3283 NarrowTy = ExtTy; 3284 LargeTy = CurTy; 3285 } 3286 3287 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3288 return false; 3289 } 3290 // All uses are the same or can be derived from one another for free. 3291 return true; 3292 } 3293 3294 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3295 /// load instruction. 3296 /// If an ext(load) can be formed, it is returned via \p LI for the load 3297 /// and \p Inst for the extension. 3298 /// Otherwise LI == nullptr and Inst == nullptr. 3299 /// When some promotion happened, \p TPT contains the proper state to 3300 /// revert them. 3301 /// 3302 /// \return true when promoting was necessary to expose the ext(load) 3303 /// opportunity, false otherwise. 3304 /// 3305 /// Example: 3306 /// \code 3307 /// %ld = load i32* %addr 3308 /// %add = add nuw i32 %ld, 4 3309 /// %zext = zext i32 %add to i64 3310 /// \endcode 3311 /// => 3312 /// \code 3313 /// %ld = load i32* %addr 3314 /// %zext = zext i32 %ld to i64 3315 /// %add = add nuw i64 %zext, 4 3316 /// \encode 3317 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3318 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3319 LoadInst *&LI, Instruction *&Inst, 3320 const SmallVectorImpl<Instruction *> &Exts, 3321 unsigned CreatedInsts = 0) { 3322 // Iterate over all the extensions to see if one form an ext(load). 3323 for (auto I : Exts) { 3324 // Check if we directly have ext(load). 3325 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3326 Inst = I; 3327 // No promotion happened here. 3328 return false; 3329 } 3330 // Check whether or not we want to do any promotion. 3331 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3332 continue; 3333 // Get the action to perform the promotion. 3334 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3335 I, InsertedTruncsSet, *TLI, PromotedInsts); 3336 // Check if we can promote. 3337 if (!TPH) 3338 continue; 3339 // Save the current state. 3340 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3341 TPT.getRestorationPoint(); 3342 SmallVector<Instruction *, 4> NewExts; 3343 unsigned NewCreatedInsts = 0; 3344 // Promote. 3345 Value *PromotedVal = 3346 TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); 3347 assert(PromotedVal && 3348 "TypePromotionHelper should have filtered out those cases"); 3349 3350 // We would be able to merge only one extension in a load. 3351 // Therefore, if we have more than 1 new extension we heuristically 3352 // cut this search path, because it means we degrade the code quality. 3353 // With exactly 2, the transformation is neutral, because we will merge 3354 // one extension but leave one. However, we optimistically keep going, 3355 // because the new extension may be removed too. 3356 unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; 3357 if (!StressExtLdPromotion && 3358 (TotalCreatedInsts > 1 || 3359 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3360 // The promotion is not profitable, rollback to the previous state. 3361 TPT.rollback(LastKnownGood); 3362 continue; 3363 } 3364 // The promotion is profitable. 3365 // Check if it exposes an ext(load). 3366 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); 3367 if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || 3368 // If we have created a new extension, i.e., now we have two 3369 // extensions. We must make sure one of them is merged with 3370 // the load, otherwise we may degrade the code quality. 3371 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3372 // Promotion happened. 3373 return true; 3374 // If this does not help to expose an ext(load) then, rollback. 3375 TPT.rollback(LastKnownGood); 3376 } 3377 // None of the extension can form an ext(load). 3378 LI = nullptr; 3379 Inst = nullptr; 3380 return false; 3381 } 3382 3383 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3384 /// basic block as the load, unless conditions are unfavorable. This allows 3385 /// SelectionDAG to fold the extend into the load. 3386 /// \p I[in/out] the extension may be modified during the process if some 3387 /// promotions apply. 3388 /// 3389 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3390 // Try to promote a chain of computation if it allows to form 3391 // an extended load. 3392 TypePromotionTransaction TPT; 3393 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3394 TPT.getRestorationPoint(); 3395 SmallVector<Instruction *, 1> Exts; 3396 Exts.push_back(I); 3397 // Look for a load being extended. 3398 LoadInst *LI = nullptr; 3399 Instruction *OldExt = I; 3400 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3401 if (!LI || !I) { 3402 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3403 "the code must remain the same"); 3404 I = OldExt; 3405 return false; 3406 } 3407 3408 // If they're already in the same block, there's nothing to do. 3409 // Make the cheap checks first if we did not promote. 3410 // If we promoted, we need to check if it is indeed profitable. 3411 if (!HasPromoted && LI->getParent() == I->getParent()) 3412 return false; 3413 3414 EVT VT = TLI->getValueType(I->getType()); 3415 EVT LoadVT = TLI->getValueType(LI->getType()); 3416 3417 // If the load has other users and the truncate is not free, this probably 3418 // isn't worthwhile. 3419 if (!LI->hasOneUse() && TLI && 3420 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3421 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3422 I = OldExt; 3423 TPT.rollback(LastKnownGood); 3424 return false; 3425 } 3426 3427 // Check whether the target supports casts folded into loads. 3428 unsigned LType; 3429 if (isa<ZExtInst>(I)) 3430 LType = ISD::ZEXTLOAD; 3431 else { 3432 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3433 LType = ISD::SEXTLOAD; 3434 } 3435 if (TLI && !TLI->isLoadExtLegal(LType, LoadVT)) { 3436 I = OldExt; 3437 TPT.rollback(LastKnownGood); 3438 return false; 3439 } 3440 3441 // Move the extend into the same block as the load, so that SelectionDAG 3442 // can fold it. 3443 TPT.commit(); 3444 I->removeFromParent(); 3445 I->insertAfter(LI); 3446 ++NumExtsMoved; 3447 return true; 3448 } 3449 3450 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3451 BasicBlock *DefBB = I->getParent(); 3452 3453 // If the result of a {s|z}ext and its source are both live out, rewrite all 3454 // other uses of the source with result of extension. 3455 Value *Src = I->getOperand(0); 3456 if (Src->hasOneUse()) 3457 return false; 3458 3459 // Only do this xform if truncating is free. 3460 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3461 return false; 3462 3463 // Only safe to perform the optimization if the source is also defined in 3464 // this block. 3465 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3466 return false; 3467 3468 bool DefIsLiveOut = false; 3469 for (User *U : I->users()) { 3470 Instruction *UI = cast<Instruction>(U); 3471 3472 // Figure out which BB this ext is used in. 3473 BasicBlock *UserBB = UI->getParent(); 3474 if (UserBB == DefBB) continue; 3475 DefIsLiveOut = true; 3476 break; 3477 } 3478 if (!DefIsLiveOut) 3479 return false; 3480 3481 // Make sure none of the uses are PHI nodes. 3482 for (User *U : Src->users()) { 3483 Instruction *UI = cast<Instruction>(U); 3484 BasicBlock *UserBB = UI->getParent(); 3485 if (UserBB == DefBB) continue; 3486 // Be conservative. We don't want this xform to end up introducing 3487 // reloads just before load / store instructions. 3488 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3489 return false; 3490 } 3491 3492 // InsertedTruncs - Only insert one trunc in each block once. 3493 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3494 3495 bool MadeChange = false; 3496 for (Use &U : Src->uses()) { 3497 Instruction *User = cast<Instruction>(U.getUser()); 3498 3499 // Figure out which BB this ext is used in. 3500 BasicBlock *UserBB = User->getParent(); 3501 if (UserBB == DefBB) continue; 3502 3503 // Both src and def are live in this block. Rewrite the use. 3504 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3505 3506 if (!InsertedTrunc) { 3507 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3508 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3509 InsertedTruncsSet.insert(InsertedTrunc); 3510 } 3511 3512 // Replace a use of the {s|z}ext source with a use of the result. 3513 U = InsertedTrunc; 3514 ++NumExtUses; 3515 MadeChange = true; 3516 } 3517 3518 return MadeChange; 3519 } 3520 3521 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3522 /// turned into an explicit branch. 3523 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3524 // FIXME: This should use the same heuristics as IfConversion to determine 3525 // whether a select is better represented as a branch. This requires that 3526 // branch probability metadata is preserved for the select, which is not the 3527 // case currently. 3528 3529 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3530 3531 // If the branch is predicted right, an out of order CPU can avoid blocking on 3532 // the compare. Emit cmovs on compares with a memory operand as branches to 3533 // avoid stalls on the load from memory. If the compare has more than one use 3534 // there's probably another cmov or setcc around so it's not worth emitting a 3535 // branch. 3536 if (!Cmp) 3537 return false; 3538 3539 Value *CmpOp0 = Cmp->getOperand(0); 3540 Value *CmpOp1 = Cmp->getOperand(1); 3541 3542 // We check that the memory operand has one use to avoid uses of the loaded 3543 // value directly after the compare, making branches unprofitable. 3544 return Cmp->hasOneUse() && 3545 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3546 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3547 } 3548 3549 3550 /// If we have a SelectInst that will likely profit from branch prediction, 3551 /// turn it into a branch. 3552 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3553 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3554 3555 // Can we convert the 'select' to CF ? 3556 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3557 return false; 3558 3559 TargetLowering::SelectSupportKind SelectKind; 3560 if (VectorCond) 3561 SelectKind = TargetLowering::VectorMaskSelect; 3562 else if (SI->getType()->isVectorTy()) 3563 SelectKind = TargetLowering::ScalarCondVectorVal; 3564 else 3565 SelectKind = TargetLowering::ScalarValSelect; 3566 3567 // Do we have efficient codegen support for this kind of 'selects' ? 3568 if (TLI->isSelectSupported(SelectKind)) { 3569 // We have efficient codegen support for the select instruction. 3570 // Check if it is profitable to keep this 'select'. 3571 if (!TLI->isPredictableSelectExpensive() || 3572 !isFormingBranchFromSelectProfitable(SI)) 3573 return false; 3574 } 3575 3576 ModifiedDT = true; 3577 3578 // First, we split the block containing the select into 2 blocks. 3579 BasicBlock *StartBlock = SI->getParent(); 3580 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3581 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3582 3583 // Create a new block serving as the landing pad for the branch. 3584 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3585 NextBlock->getParent(), NextBlock); 3586 3587 // Move the unconditional branch from the block with the select in it into our 3588 // landing pad block. 3589 StartBlock->getTerminator()->eraseFromParent(); 3590 BranchInst::Create(NextBlock, SmallBlock); 3591 3592 // Insert the real conditional branch based on the original condition. 3593 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3594 3595 // The select itself is replaced with a PHI Node. 3596 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3597 PN->takeName(SI); 3598 PN->addIncoming(SI->getTrueValue(), StartBlock); 3599 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3600 SI->replaceAllUsesWith(PN); 3601 SI->eraseFromParent(); 3602 3603 // Instruct OptimizeBlock to skip to the next block. 3604 CurInstIterator = StartBlock->end(); 3605 ++NumSelectsExpanded; 3606 return true; 3607 } 3608 3609 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3610 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3611 int SplatElem = -1; 3612 for (unsigned i = 0; i < Mask.size(); ++i) { 3613 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3614 return false; 3615 SplatElem = Mask[i]; 3616 } 3617 3618 return true; 3619 } 3620 3621 /// Some targets have expensive vector shifts if the lanes aren't all the same 3622 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3623 /// it's often worth sinking a shufflevector splat down to its use so that 3624 /// codegen can spot all lanes are identical. 3625 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3626 BasicBlock *DefBB = SVI->getParent(); 3627 3628 // Only do this xform if variable vector shifts are particularly expensive. 3629 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3630 return false; 3631 3632 // We only expect better codegen by sinking a shuffle if we can recognise a 3633 // constant splat. 3634 if (!isBroadcastShuffle(SVI)) 3635 return false; 3636 3637 // InsertedShuffles - Only insert a shuffle in each block once. 3638 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3639 3640 bool MadeChange = false; 3641 for (User *U : SVI->users()) { 3642 Instruction *UI = cast<Instruction>(U); 3643 3644 // Figure out which BB this ext is used in. 3645 BasicBlock *UserBB = UI->getParent(); 3646 if (UserBB == DefBB) continue; 3647 3648 // For now only apply this when the splat is used by a shift instruction. 3649 if (!UI->isShift()) continue; 3650 3651 // Everything checks out, sink the shuffle if the user's block doesn't 3652 // already have a copy. 3653 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3654 3655 if (!InsertedShuffle) { 3656 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3657 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3658 SVI->getOperand(1), 3659 SVI->getOperand(2), "", InsertPt); 3660 } 3661 3662 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3663 MadeChange = true; 3664 } 3665 3666 // If we removed all uses, nuke the shuffle. 3667 if (SVI->use_empty()) { 3668 SVI->eraseFromParent(); 3669 MadeChange = true; 3670 } 3671 3672 return MadeChange; 3673 } 3674 3675 namespace { 3676 /// \brief Helper class to promote a scalar operation to a vector one. 3677 /// This class is used to move downward extractelement transition. 3678 /// E.g., 3679 /// a = vector_op <2 x i32> 3680 /// b = extractelement <2 x i32> a, i32 0 3681 /// c = scalar_op b 3682 /// store c 3683 /// 3684 /// => 3685 /// a = vector_op <2 x i32> 3686 /// c = vector_op a (equivalent to scalar_op on the related lane) 3687 /// * d = extractelement <2 x i32> c, i32 0 3688 /// * store d 3689 /// Assuming both extractelement and store can be combine, we get rid of the 3690 /// transition. 3691 class VectorPromoteHelper { 3692 /// Used to perform some checks on the legality of vector operations. 3693 const TargetLowering &TLI; 3694 3695 /// Used to estimated the cost of the promoted chain. 3696 const TargetTransformInfo &TTI; 3697 3698 /// The transition being moved downwards. 3699 Instruction *Transition; 3700 /// The sequence of instructions to be promoted. 3701 SmallVector<Instruction *, 4> InstsToBePromoted; 3702 /// Cost of combining a store and an extract. 3703 unsigned StoreExtractCombineCost; 3704 /// Instruction that will be combined with the transition. 3705 Instruction *CombineInst; 3706 3707 /// \brief The instruction that represents the current end of the transition. 3708 /// Since we are faking the promotion until we reach the end of the chain 3709 /// of computation, we need a way to get the current end of the transition. 3710 Instruction *getEndOfTransition() const { 3711 if (InstsToBePromoted.empty()) 3712 return Transition; 3713 return InstsToBePromoted.back(); 3714 } 3715 3716 /// \brief Return the index of the original value in the transition. 3717 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3718 /// c, is at index 0. 3719 unsigned getTransitionOriginalValueIdx() const { 3720 assert(isa<ExtractElementInst>(Transition) && 3721 "Other kind of transitions are not supported yet"); 3722 return 0; 3723 } 3724 3725 /// \brief Return the index of the index in the transition. 3726 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3727 /// is at index 1. 3728 unsigned getTransitionIdx() const { 3729 assert(isa<ExtractElementInst>(Transition) && 3730 "Other kind of transitions are not supported yet"); 3731 return 1; 3732 } 3733 3734 /// \brief Get the type of the transition. 3735 /// This is the type of the original value. 3736 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3737 /// transition is <2 x i32>. 3738 Type *getTransitionType() const { 3739 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3740 } 3741 3742 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3743 /// I.e., we have the following sequence: 3744 /// Def = Transition <ty1> a to <ty2> 3745 /// b = ToBePromoted <ty2> Def, ... 3746 /// => 3747 /// b = ToBePromoted <ty1> a, ... 3748 /// Def = Transition <ty1> ToBePromoted to <ty2> 3749 void promoteImpl(Instruction *ToBePromoted); 3750 3751 /// \brief Check whether or not it is profitable to promote all the 3752 /// instructions enqueued to be promoted. 3753 bool isProfitableToPromote() { 3754 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3755 unsigned Index = isa<ConstantInt>(ValIdx) 3756 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3757 : -1; 3758 Type *PromotedType = getTransitionType(); 3759 3760 StoreInst *ST = cast<StoreInst>(CombineInst); 3761 unsigned AS = ST->getPointerAddressSpace(); 3762 unsigned Align = ST->getAlignment(); 3763 // Check if this store is supported. 3764 if (!TLI.allowsMisalignedMemoryAccesses( 3765 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3766 // If this is not supported, there is no way we can combine 3767 // the extract with the store. 3768 return false; 3769 } 3770 3771 // The scalar chain of computation has to pay for the transition 3772 // scalar to vector. 3773 // The vector chain has to account for the combining cost. 3774 uint64_t ScalarCost = 3775 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3776 uint64_t VectorCost = StoreExtractCombineCost; 3777 for (const auto &Inst : InstsToBePromoted) { 3778 // Compute the cost. 3779 // By construction, all instructions being promoted are arithmetic ones. 3780 // Moreover, one argument is a constant that can be viewed as a splat 3781 // constant. 3782 Value *Arg0 = Inst->getOperand(0); 3783 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3784 isa<ConstantFP>(Arg0); 3785 TargetTransformInfo::OperandValueKind Arg0OVK = 3786 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3787 : TargetTransformInfo::OK_AnyValue; 3788 TargetTransformInfo::OperandValueKind Arg1OVK = 3789 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3790 : TargetTransformInfo::OK_AnyValue; 3791 ScalarCost += TTI.getArithmeticInstrCost( 3792 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3793 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3794 Arg0OVK, Arg1OVK); 3795 } 3796 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3797 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3798 return ScalarCost > VectorCost; 3799 } 3800 3801 /// \brief Generate a constant vector with \p Val with the same 3802 /// number of elements as the transition. 3803 /// \p UseSplat defines whether or not \p Val should be replicated 3804 /// accross the whole vector. 3805 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3806 /// otherwise we generate a vector with as many undef as possible: 3807 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3808 /// used at the index of the extract. 3809 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3810 unsigned ExtractIdx = UINT_MAX; 3811 if (!UseSplat) { 3812 // If we cannot determine where the constant must be, we have to 3813 // use a splat constant. 3814 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 3815 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 3816 ExtractIdx = CstVal->getSExtValue(); 3817 else 3818 UseSplat = true; 3819 } 3820 3821 unsigned End = getTransitionType()->getVectorNumElements(); 3822 if (UseSplat) 3823 return ConstantVector::getSplat(End, Val); 3824 3825 SmallVector<Constant *, 4> ConstVec; 3826 UndefValue *UndefVal = UndefValue::get(Val->getType()); 3827 for (unsigned Idx = 0; Idx != End; ++Idx) { 3828 if (Idx == ExtractIdx) 3829 ConstVec.push_back(Val); 3830 else 3831 ConstVec.push_back(UndefVal); 3832 } 3833 return ConstantVector::get(ConstVec); 3834 } 3835 3836 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 3837 /// in \p Use can trigger undefined behavior. 3838 static bool canCauseUndefinedBehavior(const Instruction *Use, 3839 unsigned OperandIdx) { 3840 // This is not safe to introduce undef when the operand is on 3841 // the right hand side of a division-like instruction. 3842 if (OperandIdx != 1) 3843 return false; 3844 switch (Use->getOpcode()) { 3845 default: 3846 return false; 3847 case Instruction::SDiv: 3848 case Instruction::UDiv: 3849 case Instruction::SRem: 3850 case Instruction::URem: 3851 return true; 3852 case Instruction::FDiv: 3853 case Instruction::FRem: 3854 return !Use->hasNoNaNs(); 3855 } 3856 llvm_unreachable(nullptr); 3857 } 3858 3859 public: 3860 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 3861 Instruction *Transition, unsigned CombineCost) 3862 : TLI(TLI), TTI(TTI), Transition(Transition), 3863 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 3864 assert(Transition && "Do not know how to promote null"); 3865 } 3866 3867 /// \brief Check if we can promote \p ToBePromoted to \p Type. 3868 bool canPromote(const Instruction *ToBePromoted) const { 3869 // We could support CastInst too. 3870 return isa<BinaryOperator>(ToBePromoted); 3871 } 3872 3873 /// \brief Check if it is profitable to promote \p ToBePromoted 3874 /// by moving downward the transition through. 3875 bool shouldPromote(const Instruction *ToBePromoted) const { 3876 // Promote only if all the operands can be statically expanded. 3877 // Indeed, we do not want to introduce any new kind of transitions. 3878 for (const Use &U : ToBePromoted->operands()) { 3879 const Value *Val = U.get(); 3880 if (Val == getEndOfTransition()) { 3881 // If the use is a division and the transition is on the rhs, 3882 // we cannot promote the operation, otherwise we may create a 3883 // division by zero. 3884 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 3885 return false; 3886 continue; 3887 } 3888 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 3889 !isa<ConstantFP>(Val)) 3890 return false; 3891 } 3892 // Check that the resulting operation is legal. 3893 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 3894 if (!ISDOpcode) 3895 return false; 3896 return StressStoreExtract || 3897 TLI.isOperationLegalOrCustom( 3898 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 3899 } 3900 3901 /// \brief Check whether or not \p Use can be combined 3902 /// with the transition. 3903 /// I.e., is it possible to do Use(Transition) => AnotherUse? 3904 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 3905 3906 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 3907 void enqueueForPromotion(Instruction *ToBePromoted) { 3908 InstsToBePromoted.push_back(ToBePromoted); 3909 } 3910 3911 /// \brief Set the instruction that will be combined with the transition. 3912 void recordCombineInstruction(Instruction *ToBeCombined) { 3913 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 3914 CombineInst = ToBeCombined; 3915 } 3916 3917 /// \brief Promote all the instructions enqueued for promotion if it is 3918 /// is profitable. 3919 /// \return True if the promotion happened, false otherwise. 3920 bool promote() { 3921 // Check if there is something to promote. 3922 // Right now, if we do not have anything to combine with, 3923 // we assume the promotion is not profitable. 3924 if (InstsToBePromoted.empty() || !CombineInst) 3925 return false; 3926 3927 // Check cost. 3928 if (!StressStoreExtract && !isProfitableToPromote()) 3929 return false; 3930 3931 // Promote. 3932 for (auto &ToBePromoted : InstsToBePromoted) 3933 promoteImpl(ToBePromoted); 3934 InstsToBePromoted.clear(); 3935 return true; 3936 } 3937 }; 3938 } // End of anonymous namespace. 3939 3940 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 3941 // At this point, we know that all the operands of ToBePromoted but Def 3942 // can be statically promoted. 3943 // For Def, we need to use its parameter in ToBePromoted: 3944 // b = ToBePromoted ty1 a 3945 // Def = Transition ty1 b to ty2 3946 // Move the transition down. 3947 // 1. Replace all uses of the promoted operation by the transition. 3948 // = ... b => = ... Def. 3949 assert(ToBePromoted->getType() == Transition->getType() && 3950 "The type of the result of the transition does not match " 3951 "the final type"); 3952 ToBePromoted->replaceAllUsesWith(Transition); 3953 // 2. Update the type of the uses. 3954 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 3955 Type *TransitionTy = getTransitionType(); 3956 ToBePromoted->mutateType(TransitionTy); 3957 // 3. Update all the operands of the promoted operation with promoted 3958 // operands. 3959 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 3960 for (Use &U : ToBePromoted->operands()) { 3961 Value *Val = U.get(); 3962 Value *NewVal = nullptr; 3963 if (Val == Transition) 3964 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 3965 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 3966 isa<ConstantFP>(Val)) { 3967 // Use a splat constant if it is not safe to use undef. 3968 NewVal = getConstantVector( 3969 cast<Constant>(Val), 3970 isa<UndefValue>(Val) || 3971 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 3972 } else 3973 llvm_unreachable("Did you modified shouldPromote and forgot to update " 3974 "this?"); 3975 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 3976 } 3977 Transition->removeFromParent(); 3978 Transition->insertAfter(ToBePromoted); 3979 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 3980 } 3981 3982 // See if we can speculate calls to intrinsic cttz/ctlz. 3983 // 3984 // Example: 3985 // entry: 3986 // ... 3987 // %cmp = icmp eq i64 %val, 0 3988 // br i1 %cmp, label %end.bb, label %then.bb 3989 // 3990 // then.bb: 3991 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true) 3992 // br label %EndBB 3993 // 3994 // end.bb: 3995 // %cond = phi i64 [ %c, %then.bb ], [ 64, %entry ] 3996 // 3997 // ==> 3998 // 3999 // entry: 4000 // ... 4001 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 false) 4002 // 4003 static bool OptimizeBranchInst(BranchInst *BrInst, const TargetLowering &TLI) { 4004 assert(BrInst->isConditional() && "Expected a conditional branch!"); 4005 BasicBlock *ThenBB = BrInst->getSuccessor(1); 4006 BasicBlock *EndBB = BrInst->getSuccessor(0); 4007 4008 // See if ThenBB contains only one instruction (excluding the 4009 // terminator and DbgInfoIntrinsic calls). 4010 IntrinsicInst *II = nullptr; 4011 CastInst *CI = nullptr; 4012 for (BasicBlock::iterator I = ThenBB->begin(), 4013 E = std::prev(ThenBB->end()); I != E; ++I) { 4014 // Skip debug info. 4015 if (isa<DbgInfoIntrinsic>(I)) 4016 continue; 4017 4018 // Check if this is a zero extension or a truncate of a previously 4019 // matched call to intrinsic cttz/ctlz. 4020 if (II) { 4021 // Early exit if we already found a "free" zero extend/truncate. 4022 if (CI) 4023 return false; 4024 4025 Type *SrcTy = II->getType(); 4026 Type *DestTy = I->getType(); 4027 Value *V; 4028 4029 if (match(cast<Instruction>(I), m_ZExt(m_Value(V))) && V == II) { 4030 // Speculate this zero extend only if it is "free" for the target. 4031 if (TLI.isZExtFree(SrcTy, DestTy)) { 4032 CI = cast<CastInst>(I); 4033 continue; 4034 } 4035 } else if (match(cast<Instruction>(I), m_Trunc(m_Value(V))) && V == II) { 4036 // Speculate this truncate only if it is "free" for the target. 4037 if (TLI.isTruncateFree(SrcTy, DestTy)) { 4038 CI = cast<CastInst>(I); 4039 continue; 4040 } 4041 } else { 4042 // Avoid speculating more than one instruction. 4043 return false; 4044 } 4045 } 4046 4047 // See if this is a call to intrinsic cttz/ctlz. 4048 if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::cttz>())) { 4049 // Avoid speculating expensive intrinsic calls. 4050 if (!TLI.isCheapToSpeculateCttz()) 4051 return false; 4052 } 4053 else if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::ctlz>())) { 4054 // Avoid speculating expensive intrinsic calls. 4055 if (!TLI.isCheapToSpeculateCtlz()) 4056 return false; 4057 } else 4058 return false; 4059 4060 II = cast<IntrinsicInst>(I); 4061 } 4062 4063 // Look for PHI nodes with 'II' as the incoming value from 'ThenBB'. 4064 BasicBlock *EntryBB = BrInst->getParent(); 4065 for (BasicBlock::iterator I = EndBB->begin(); 4066 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 4067 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 4068 Value *OrigV = PN->getIncomingValueForBlock(EntryBB); 4069 4070 if (!OrigV) 4071 return false; 4072 4073 if (ThenV != II && (!CI || ThenV != CI)) 4074 return false; 4075 4076 if (ConstantInt *CInt = dyn_cast<ConstantInt>(OrigV)) { 4077 unsigned BitWidth = II->getType()->getIntegerBitWidth(); 4078 4079 // Don't try to simplify this phi node if 'ThenV' is a cttz/ctlz 4080 // intrinsic call, but 'OrigV' is not equal to the 'size-of' in bits 4081 // of the value in input to the cttz/ctlz. 4082 if (CInt->getValue() != BitWidth) 4083 return false; 4084 4085 // Hoist the call to cttz/ctlz from ThenBB into EntryBB. 4086 EntryBB->getInstList().splice(BrInst, ThenBB->getInstList(), 4087 ThenBB->begin(), std::prev(ThenBB->end())); 4088 4089 // Update PN setting ThenV as the incoming value from both 'EntryBB' 4090 // and 'ThenBB'. Eventually, method 'OptimizeInst' will fold this 4091 // phi node if all the incoming values are the same. 4092 PN->setIncomingValue(PN->getBasicBlockIndex(EntryBB), ThenV); 4093 PN->setIncomingValue(PN->getBasicBlockIndex(ThenBB), ThenV); 4094 4095 // Clear the 'undef on zero' flag of the cttz/ctlz intrinsic call. 4096 if (cast<ConstantInt>(II->getArgOperand(1))->isOne()) { 4097 Type *Ty = II->getArgOperand(0)->getType(); 4098 Value *Args[] = { II->getArgOperand(0), 4099 ConstantInt::getFalse(II->getContext()) }; 4100 Module *M = EntryBB->getParent()->getParent(); 4101 Value *IF = Intrinsic::getDeclaration(M, II->getIntrinsicID(), Ty); 4102 IRBuilder<> Builder(II); 4103 Instruction *NewI = Builder.CreateCall(IF, Args); 4104 4105 // Replace the old call to cttz/ctlz. 4106 II->replaceAllUsesWith(NewI); 4107 II->eraseFromParent(); 4108 } 4109 4110 // Update BrInst condition so that the branch to EndBB is always taken. 4111 // Later on, method 'ConstantFoldTerminator' will simplify this branch 4112 // replacing it with a direct branch to 'EndBB'. 4113 // As a side effect, CodeGenPrepare will attempt to simplify the control 4114 // flow graph by deleting basic block 'ThenBB' and merging 'EntryBB' into 4115 // 'EndBB' (calling method 'EliminateFallThrough'). 4116 BrInst->setCondition(ConstantInt::getTrue(BrInst->getContext())); 4117 return true; 4118 } 4119 } 4120 4121 return false; 4122 } 4123 4124 /// Some targets can do store(extractelement) with one instruction. 4125 /// Try to push the extractelement towards the stores when the target 4126 /// has this feature and this is profitable. 4127 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4128 unsigned CombineCost = UINT_MAX; 4129 if (DisableStoreExtract || !TLI || 4130 (!StressStoreExtract && 4131 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4132 Inst->getOperand(1), CombineCost))) 4133 return false; 4134 4135 // At this point we know that Inst is a vector to scalar transition. 4136 // Try to move it down the def-use chain, until: 4137 // - We can combine the transition with its single use 4138 // => we got rid of the transition. 4139 // - We escape the current basic block 4140 // => we would need to check that we are moving it at a cheaper place and 4141 // we do not do that for now. 4142 BasicBlock *Parent = Inst->getParent(); 4143 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4144 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4145 // If the transition has more than one use, assume this is not going to be 4146 // beneficial. 4147 while (Inst->hasOneUse()) { 4148 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4149 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4150 4151 if (ToBePromoted->getParent() != Parent) { 4152 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4153 << ToBePromoted->getParent()->getName() 4154 << ") than the transition (" << Parent->getName() << ").\n"); 4155 return false; 4156 } 4157 4158 if (VPH.canCombine(ToBePromoted)) { 4159 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4160 << "will be combined with: " << *ToBePromoted << '\n'); 4161 VPH.recordCombineInstruction(ToBePromoted); 4162 bool Changed = VPH.promote(); 4163 NumStoreExtractExposed += Changed; 4164 return Changed; 4165 } 4166 4167 DEBUG(dbgs() << "Try promoting.\n"); 4168 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4169 return false; 4170 4171 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4172 4173 VPH.enqueueForPromotion(ToBePromoted); 4174 Inst = ToBePromoted; 4175 } 4176 return false; 4177 } 4178 4179 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4180 if (PHINode *P = dyn_cast<PHINode>(I)) { 4181 // It is possible for very late stage optimizations (such as SimplifyCFG) 4182 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4183 // trivial PHI, go ahead and zap it here. 4184 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 4185 TLInfo, DT)) { 4186 P->replaceAllUsesWith(V); 4187 P->eraseFromParent(); 4188 ++NumPHIsElim; 4189 return true; 4190 } 4191 return false; 4192 } 4193 4194 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4195 // If the source of the cast is a constant, then this should have 4196 // already been constant folded. The only reason NOT to constant fold 4197 // it is if something (e.g. LSR) was careful to place the constant 4198 // evaluation in a block other than then one that uses it (e.g. to hoist 4199 // the address of globals out of a loop). If this is the case, we don't 4200 // want to forward-subst the cast. 4201 if (isa<Constant>(CI->getOperand(0))) 4202 return false; 4203 4204 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4205 return true; 4206 4207 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4208 /// Sink a zext or sext into its user blocks if the target type doesn't 4209 /// fit in one register 4210 if (TLI && TLI->getTypeAction(CI->getContext(), 4211 TLI->getValueType(CI->getType())) == 4212 TargetLowering::TypeExpandInteger) { 4213 return SinkCast(CI); 4214 } else { 4215 bool MadeChange = MoveExtToFormExtLoad(I); 4216 return MadeChange | OptimizeExtUses(I); 4217 } 4218 } 4219 return false; 4220 } 4221 4222 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4223 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4224 return OptimizeCmpExpression(CI); 4225 4226 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4227 if (TLI) 4228 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4229 return false; 4230 } 4231 4232 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4233 if (TLI) 4234 return OptimizeMemoryInst(I, SI->getOperand(1), 4235 SI->getOperand(0)->getType()); 4236 return false; 4237 } 4238 4239 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4240 4241 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4242 BinOp->getOpcode() == Instruction::LShr)) { 4243 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4244 if (TLI && CI && TLI->hasExtractBitsInsn()) 4245 return OptimizeExtractBits(BinOp, CI, *TLI); 4246 4247 return false; 4248 } 4249 4250 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4251 if (GEPI->hasAllZeroIndices()) { 4252 /// The GEP operand must be a pointer, so must its result -> BitCast 4253 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4254 GEPI->getName(), GEPI); 4255 GEPI->replaceAllUsesWith(NC); 4256 GEPI->eraseFromParent(); 4257 ++NumGEPsElim; 4258 OptimizeInst(NC, ModifiedDT); 4259 return true; 4260 } 4261 return false; 4262 } 4263 4264 if (CallInst *CI = dyn_cast<CallInst>(I)) 4265 return OptimizeCallInst(CI, ModifiedDT); 4266 4267 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4268 return OptimizeSelectInst(SI); 4269 4270 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4271 return OptimizeShuffleVectorInst(SVI); 4272 4273 if (isa<ExtractElementInst>(I)) 4274 return OptimizeExtractElementInst(I); 4275 4276 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 4277 if (TLI && BI->isConditional() && BI->getCondition()->hasOneUse()) { 4278 // Check if the branch condition compares a value agaist zero. 4279 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 4280 if (ICI->getPredicate() == ICmpInst::ICMP_EQ && 4281 match(ICI->getOperand(1), m_Zero())) { 4282 BasicBlock *ThenBB = BI->getSuccessor(1); 4283 BasicBlock *EndBB = BI->getSuccessor(0); 4284 4285 // Check if ThenBB is only reachable from this basic block; also, 4286 // check if EndBB has more than one predecessor. 4287 if (ThenBB->getSinglePredecessor() && 4288 !EndBB->getSinglePredecessor()) { 4289 TerminatorInst *TI = ThenBB->getTerminator(); 4290 4291 if (TI->getNumSuccessors() == 1 && TI->getSuccessor(0) == EndBB && 4292 // Try to speculate calls to intrinsic cttz/ctlz from 'ThenBB'. 4293 OptimizeBranchInst(BI, *TLI)) { 4294 ModifiedDT = true; 4295 return true; 4296 } 4297 } 4298 } 4299 } 4300 } 4301 return false; 4302 } 4303 4304 return false; 4305 } 4306 4307 // In this pass we look for GEP and cast instructions that are used 4308 // across basic blocks and rewrite them to improve basic-block-at-a-time 4309 // selection. 4310 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4311 SunkAddrs.clear(); 4312 bool MadeChange = false; 4313 4314 CurInstIterator = BB.begin(); 4315 while (CurInstIterator != BB.end()) { 4316 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4317 if (ModifiedDT) 4318 return true; 4319 } 4320 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4321 4322 return MadeChange; 4323 } 4324 4325 // llvm.dbg.value is far away from the value then iSel may not be able 4326 // handle it properly. iSel will drop llvm.dbg.value if it can not 4327 // find a node corresponding to the value. 4328 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4329 bool MadeChange = false; 4330 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 4331 Instruction *PrevNonDbgInst = nullptr; 4332 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { 4333 Instruction *Insn = BI; ++BI; 4334 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4335 // Leave dbg.values that refer to an alloca alone. These 4336 // instrinsics describe the address of a variable (= the alloca) 4337 // being taken. They should not be moved next to the alloca 4338 // (and to the beginning of the scope), but rather stay close to 4339 // where said address is used. 4340 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4341 PrevNonDbgInst = Insn; 4342 continue; 4343 } 4344 4345 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4346 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4347 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4348 DVI->removeFromParent(); 4349 if (isa<PHINode>(VI)) 4350 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4351 else 4352 DVI->insertAfter(VI); 4353 MadeChange = true; 4354 ++NumDbgValueMoved; 4355 } 4356 } 4357 } 4358 return MadeChange; 4359 } 4360 4361 // If there is a sequence that branches based on comparing a single bit 4362 // against zero that can be combined into a single instruction, and the 4363 // target supports folding these into a single instruction, sink the 4364 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4365 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4366 // searched for. 4367 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4368 if (!EnableAndCmpSinking) 4369 return false; 4370 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4371 return false; 4372 bool MadeChange = false; 4373 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4374 BasicBlock *BB = I++; 4375 4376 // Does this BB end with the following? 4377 // %andVal = and %val, #single-bit-set 4378 // %icmpVal = icmp %andResult, 0 4379 // br i1 %cmpVal label %dest1, label %dest2" 4380 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4381 if (!Brcc || !Brcc->isConditional()) 4382 continue; 4383 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4384 if (!Cmp || Cmp->getParent() != BB) 4385 continue; 4386 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4387 if (!Zero || !Zero->isZero()) 4388 continue; 4389 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4390 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4391 continue; 4392 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4393 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4394 continue; 4395 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4396 4397 // Push the "and; icmp" for any users that are conditional branches. 4398 // Since there can only be one branch use per BB, we don't need to keep 4399 // track of which BBs we insert into. 4400 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4401 UI != E; ) { 4402 Use &TheUse = *UI; 4403 // Find brcc use. 4404 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4405 ++UI; 4406 if (!BrccUser || !BrccUser->isConditional()) 4407 continue; 4408 BasicBlock *UserBB = BrccUser->getParent(); 4409 if (UserBB == BB) continue; 4410 DEBUG(dbgs() << "found Brcc use\n"); 4411 4412 // Sink the "and; icmp" to use. 4413 MadeChange = true; 4414 BinaryOperator *NewAnd = 4415 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4416 BrccUser); 4417 CmpInst *NewCmp = 4418 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4419 "", BrccUser); 4420 TheUse = NewCmp; 4421 ++NumAndCmpsMoved; 4422 DEBUG(BrccUser->getParent()->dump()); 4423 } 4424 } 4425 return MadeChange; 4426 } 4427 4428 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4429 /// success, or returns false if no or invalid metadata was found. 4430 static bool extractBranchMetadata(BranchInst *BI, 4431 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4432 assert(BI->isConditional() && 4433 "Looking for probabilities on unconditional branch?"); 4434 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4435 if (!ProfileData || ProfileData->getNumOperands() != 3) 4436 return false; 4437 4438 const auto *CITrue = 4439 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4440 const auto *CIFalse = 4441 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4442 if (!CITrue || !CIFalse) 4443 return false; 4444 4445 ProbTrue = CITrue->getValue().getZExtValue(); 4446 ProbFalse = CIFalse->getValue().getZExtValue(); 4447 4448 return true; 4449 } 4450 4451 /// \brief Scale down both weights to fit into uint32_t. 4452 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4453 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4454 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4455 NewTrue = NewTrue / Scale; 4456 NewFalse = NewFalse / Scale; 4457 } 4458 4459 /// \brief Some targets prefer to split a conditional branch like: 4460 /// \code 4461 /// %0 = icmp ne i32 %a, 0 4462 /// %1 = icmp ne i32 %b, 0 4463 /// %or.cond = or i1 %0, %1 4464 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4465 /// \endcode 4466 /// into multiple branch instructions like: 4467 /// \code 4468 /// bb1: 4469 /// %0 = icmp ne i32 %a, 0 4470 /// br i1 %0, label %TrueBB, label %bb2 4471 /// bb2: 4472 /// %1 = icmp ne i32 %b, 0 4473 /// br i1 %1, label %TrueBB, label %FalseBB 4474 /// \endcode 4475 /// This usually allows instruction selection to do even further optimizations 4476 /// and combine the compare with the branch instruction. Currently this is 4477 /// applied for targets which have "cheap" jump instructions. 4478 /// 4479 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4480 /// 4481 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4482 if (!TM || TM->Options.EnableFastISel != true || 4483 !TLI || TLI->isJumpExpensive()) 4484 return false; 4485 4486 bool MadeChange = false; 4487 for (auto &BB : F) { 4488 // Does this BB end with the following? 4489 // %cond1 = icmp|fcmp|binary instruction ... 4490 // %cond2 = icmp|fcmp|binary instruction ... 4491 // %cond.or = or|and i1 %cond1, cond2 4492 // br i1 %cond.or label %dest1, label %dest2" 4493 BinaryOperator *LogicOp; 4494 BasicBlock *TBB, *FBB; 4495 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4496 continue; 4497 4498 unsigned Opc; 4499 Value *Cond1, *Cond2; 4500 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4501 m_OneUse(m_Value(Cond2))))) 4502 Opc = Instruction::And; 4503 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4504 m_OneUse(m_Value(Cond2))))) 4505 Opc = Instruction::Or; 4506 else 4507 continue; 4508 4509 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4510 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4511 continue; 4512 4513 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4514 4515 // Create a new BB. 4516 auto *InsertBefore = std::next(Function::iterator(BB)) 4517 .getNodePtrUnchecked(); 4518 auto TmpBB = BasicBlock::Create(BB.getContext(), 4519 BB.getName() + ".cond.split", 4520 BB.getParent(), InsertBefore); 4521 4522 // Update original basic block by using the first condition directly by the 4523 // branch instruction and removing the no longer needed and/or instruction. 4524 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4525 Br1->setCondition(Cond1); 4526 LogicOp->eraseFromParent(); 4527 4528 // Depending on the conditon we have to either replace the true or the false 4529 // successor of the original branch instruction. 4530 if (Opc == Instruction::And) 4531 Br1->setSuccessor(0, TmpBB); 4532 else 4533 Br1->setSuccessor(1, TmpBB); 4534 4535 // Fill in the new basic block. 4536 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4537 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4538 I->removeFromParent(); 4539 I->insertBefore(Br2); 4540 } 4541 4542 // Update PHI nodes in both successors. The original BB needs to be 4543 // replaced in one succesor's PHI nodes, because the branch comes now from 4544 // the newly generated BB (NewBB). In the other successor we need to add one 4545 // incoming edge to the PHI nodes, because both branch instructions target 4546 // now the same successor. Depending on the original branch condition 4547 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4548 // we perfrom the correct update for the PHI nodes. 4549 // This doesn't change the successor order of the just created branch 4550 // instruction (or any other instruction). 4551 if (Opc == Instruction::Or) 4552 std::swap(TBB, FBB); 4553 4554 // Replace the old BB with the new BB. 4555 for (auto &I : *TBB) { 4556 PHINode *PN = dyn_cast<PHINode>(&I); 4557 if (!PN) 4558 break; 4559 int i; 4560 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4561 PN->setIncomingBlock(i, TmpBB); 4562 } 4563 4564 // Add another incoming edge form the new BB. 4565 for (auto &I : *FBB) { 4566 PHINode *PN = dyn_cast<PHINode>(&I); 4567 if (!PN) 4568 break; 4569 auto *Val = PN->getIncomingValueForBlock(&BB); 4570 PN->addIncoming(Val, TmpBB); 4571 } 4572 4573 // Update the branch weights (from SelectionDAGBuilder:: 4574 // FindMergedConditions). 4575 if (Opc == Instruction::Or) { 4576 // Codegen X | Y as: 4577 // BB1: 4578 // jmp_if_X TBB 4579 // jmp TmpBB 4580 // TmpBB: 4581 // jmp_if_Y TBB 4582 // jmp FBB 4583 // 4584 4585 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4586 // The requirement is that 4587 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4588 // = TrueProb for orignal BB. 4589 // Assuming the orignal weights are A and B, one choice is to set BB1's 4590 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4591 // assumes that 4592 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4593 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4594 // TmpBB, but the math is more complicated. 4595 uint64_t TrueWeight, FalseWeight; 4596 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4597 uint64_t NewTrueWeight = TrueWeight; 4598 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4599 scaleWeights(NewTrueWeight, NewFalseWeight); 4600 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4601 .createBranchWeights(TrueWeight, FalseWeight)); 4602 4603 NewTrueWeight = TrueWeight; 4604 NewFalseWeight = 2 * FalseWeight; 4605 scaleWeights(NewTrueWeight, NewFalseWeight); 4606 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4607 .createBranchWeights(TrueWeight, FalseWeight)); 4608 } 4609 } else { 4610 // Codegen X & Y as: 4611 // BB1: 4612 // jmp_if_X TmpBB 4613 // jmp FBB 4614 // TmpBB: 4615 // jmp_if_Y TBB 4616 // jmp FBB 4617 // 4618 // This requires creation of TmpBB after CurBB. 4619 4620 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4621 // The requirement is that 4622 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4623 // = FalseProb for orignal BB. 4624 // Assuming the orignal weights are A and B, one choice is to set BB1's 4625 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4626 // assumes that 4627 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4628 uint64_t TrueWeight, FalseWeight; 4629 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4630 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4631 uint64_t NewFalseWeight = FalseWeight; 4632 scaleWeights(NewTrueWeight, NewFalseWeight); 4633 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4634 .createBranchWeights(TrueWeight, FalseWeight)); 4635 4636 NewTrueWeight = 2 * TrueWeight; 4637 NewFalseWeight = FalseWeight; 4638 scaleWeights(NewTrueWeight, NewFalseWeight); 4639 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4640 .createBranchWeights(TrueWeight, FalseWeight)); 4641 } 4642 } 4643 4644 // Request DOM Tree update. 4645 // Note: No point in getting fancy here, since the DT info is never 4646 // available to CodeGenPrepare and the existing update code is broken 4647 // anyways. 4648 ModifiedDT = true; 4649 4650 MadeChange = true; 4651 4652 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4653 TmpBB->dump()); 4654 } 4655 return MadeChange; 4656 } 4657