1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 static cl::opt<bool> OptimizePhiTypes( 249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 250 cl::desc("Enable converting phi types in CodeGenPrepare")); 251 252 namespace { 253 254 enum ExtType { 255 ZeroExtension, // Zero extension has been seen. 256 SignExtension, // Sign extension has been seen. 257 BothExtension // This extension type is used if we saw sext after 258 // ZeroExtension had been set, or if we saw zext after 259 // SignExtension had been set. It makes the type 260 // information of a promoted instruction invalid. 261 }; 262 263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 266 using SExts = SmallVector<Instruction *, 16>; 267 using ValueToSExts = DenseMap<Value *, SExts>; 268 269 class TypePromotionTransaction; 270 271 class CodeGenPrepare : public FunctionPass { 272 const TargetMachine *TM = nullptr; 273 const TargetSubtargetInfo *SubtargetInfo; 274 const TargetLowering *TLI = nullptr; 275 const TargetRegisterInfo *TRI; 276 const TargetTransformInfo *TTI = nullptr; 277 const TargetLibraryInfo *TLInfo; 278 const LoopInfo *LI; 279 std::unique_ptr<BlockFrequencyInfo> BFI; 280 std::unique_ptr<BranchProbabilityInfo> BPI; 281 ProfileSummaryInfo *PSI; 282 283 /// As we scan instructions optimizing them, this is the next instruction 284 /// to optimize. Transforms that can invalidate this should update it. 285 BasicBlock::iterator CurInstIterator; 286 287 /// Keeps track of non-local addresses that have been sunk into a block. 288 /// This allows us to avoid inserting duplicate code for blocks with 289 /// multiple load/stores of the same address. The usage of WeakTrackingVH 290 /// enables SunkAddrs to be treated as a cache whose entries can be 291 /// invalidated if a sunken address computation has been erased. 292 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 293 294 /// Keeps track of all instructions inserted for the current function. 295 SetOfInstrs InsertedInsts; 296 297 /// Keeps track of the type of the related instruction before their 298 /// promotion for the current function. 299 InstrToOrigTy PromotedInsts; 300 301 /// Keep track of instructions removed during promotion. 302 SetOfInstrs RemovedInsts; 303 304 /// Keep track of sext chains based on their initial value. 305 DenseMap<Value *, Instruction *> SeenChainsForSExt; 306 307 /// Keep track of GEPs accessing the same data structures such as structs or 308 /// arrays that are candidates to be split later because of their large 309 /// size. 310 MapVector< 311 AssertingVH<Value>, 312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 313 LargeOffsetGEPMap; 314 315 /// Keep track of new GEP base after splitting the GEPs having large offset. 316 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 317 318 /// Map serial numbers to Large offset GEPs. 319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 320 321 /// Keep track of SExt promoted. 322 ValueToSExts ValToSExtendedUses; 323 324 /// True if the function has the OptSize attribute. 325 bool OptSize; 326 327 /// DataLayout for the Function being processed. 328 const DataLayout *DL = nullptr; 329 330 /// Building the dominator tree can be expensive, so we only build it 331 /// lazily and update it when required. 332 std::unique_ptr<DominatorTree> DT; 333 334 public: 335 static char ID; // Pass identification, replacement for typeid 336 337 CodeGenPrepare() : FunctionPass(ID) { 338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 339 } 340 341 bool runOnFunction(Function &F) override; 342 343 StringRef getPassName() const override { return "CodeGen Prepare"; } 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 // FIXME: When we can selectively preserve passes, preserve the domtree. 347 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 348 AU.addRequired<TargetLibraryInfoWrapperPass>(); 349 AU.addRequired<TargetPassConfig>(); 350 AU.addRequired<TargetTransformInfoWrapperPass>(); 351 AU.addRequired<LoopInfoWrapperPass>(); 352 } 353 354 private: 355 template <typename F> 356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 357 // Substituting can cause recursive simplifications, which can invalidate 358 // our iterator. Use a WeakTrackingVH to hold onto it in case this 359 // happens. 360 Value *CurValue = &*CurInstIterator; 361 WeakTrackingVH IterHandle(CurValue); 362 363 f(); 364 365 // If the iterator instruction was recursively deleted, start over at the 366 // start of the block. 367 if (IterHandle != CurValue) { 368 CurInstIterator = BB->begin(); 369 SunkAddrs.clear(); 370 } 371 } 372 373 // Get the DominatorTree, building if necessary. 374 DominatorTree &getDT(Function &F) { 375 if (!DT) 376 DT = std::make_unique<DominatorTree>(F); 377 return *DT; 378 } 379 380 void removeAllAssertingVHReferences(Value *V); 381 bool eliminateAssumptions(Function &F); 382 bool eliminateFallThrough(Function &F); 383 bool eliminateMostlyEmptyBlocks(Function &F); 384 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 385 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 386 void eliminateMostlyEmptyBlock(BasicBlock *BB); 387 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 388 bool isPreheader); 389 bool makeBitReverse(Instruction &I); 390 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 391 bool optimizeInst(Instruction *I, bool &ModifiedDT); 392 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 393 Type *AccessTy, unsigned AddrSpace); 394 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 395 bool optimizeInlineAsmInst(CallInst *CS); 396 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 397 bool optimizeExt(Instruction *&I); 398 bool optimizeExtUses(Instruction *I); 399 bool optimizeLoadExt(LoadInst *Load); 400 bool optimizeShiftInst(BinaryOperator *BO); 401 bool optimizeFunnelShift(IntrinsicInst *Fsh); 402 bool optimizeSelectInst(SelectInst *SI); 403 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 404 bool optimizeSwitchInst(SwitchInst *SI); 405 bool optimizeExtractElementInst(Instruction *Inst); 406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 407 bool fixupDbgValue(Instruction *I); 408 bool placeDbgValues(Function &F); 409 bool placePseudoProbes(Function &F); 410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 412 bool tryToPromoteExts(TypePromotionTransaction &TPT, 413 const SmallVectorImpl<Instruction *> &Exts, 414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 415 unsigned CreatedInstsCost = 0); 416 bool mergeSExts(Function &F); 417 bool splitLargeGEPOffsets(); 418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 419 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 420 bool optimizePhiTypes(Function &F); 421 bool performAddressTypePromotion( 422 Instruction *&Inst, 423 bool AllowPromotionWithoutCommonHeader, 424 bool HasPromoted, TypePromotionTransaction &TPT, 425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 426 bool splitBranchCondition(Function &F, bool &ModifiedDT); 427 bool simplifyOffsetableRelocate(GCStatepointInst &I); 428 429 bool tryToSinkFreeOperands(Instruction *I); 430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 431 Value *Arg1, CmpInst *Cmp, 432 Intrinsic::ID IID); 433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 436 void verifyBFIUpdates(Function &F); 437 }; 438 439 } // end anonymous namespace 440 441 char CodeGenPrepare::ID = 0; 442 443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 444 "Optimize for code generation", false, false) 445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 451 "Optimize for code generation", false, false) 452 453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 454 455 bool CodeGenPrepare::runOnFunction(Function &F) { 456 if (skipFunction(F)) 457 return false; 458 459 DL = &F.getParent()->getDataLayout(); 460 461 bool EverMadeChange = false; 462 // Clear per function information. 463 InsertedInsts.clear(); 464 PromotedInsts.clear(); 465 466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 467 SubtargetInfo = TM->getSubtargetImpl(F); 468 TLI = SubtargetInfo->getTargetLowering(); 469 TRI = SubtargetInfo->getRegisterInfo(); 470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 BPI.reset(new BranchProbabilityInfo(F, *LI)); 474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 476 OptSize = F.hasOptSize(); 477 if (ProfileGuidedSectionPrefix) { 478 // The hot attribute overwrites profile count based hotness while profile 479 // counts based hotness overwrite the cold attribute. 480 // This is a conservative behabvior. 481 if (F.hasFnAttribute(Attribute::Hot) || 482 PSI->isFunctionHotInCallGraph(&F, *BFI)) 483 F.setSectionPrefix("hot"); 484 // If PSI shows this function is not hot, we will placed the function 485 // into unlikely section if (1) PSI shows this is a cold function, or 486 // (2) the function has a attribute of cold. 487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 488 F.hasFnAttribute(Attribute::Cold)) 489 F.setSectionPrefix("unlikely"); 490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 491 PSI->isFunctionHotnessUnknown(F)) 492 F.setSectionPrefix("unknown"); 493 } 494 495 /// This optimization identifies DIV instructions that can be 496 /// profitably bypassed and carried out with a shorter, faster divide. 497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 498 const DenseMap<unsigned int, unsigned int> &BypassWidths = 499 TLI->getBypassSlowDivWidths(); 500 BasicBlock* BB = &*F.begin(); 501 while (BB != nullptr) { 502 // bypassSlowDivision may create new BBs, but we don't want to reapply the 503 // optimization to those blocks. 504 BasicBlock* Next = BB->getNextNode(); 505 // F.hasOptSize is already checked in the outer if statement. 506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 508 BB = Next; 509 } 510 } 511 512 // Get rid of @llvm.assume builtins before attempting to eliminate empty 513 // blocks, since there might be blocks that only contain @llvm.assume calls 514 // (plus arguments that we can get rid of). 515 EverMadeChange |= eliminateAssumptions(F); 516 517 // Eliminate blocks that contain only PHI nodes and an 518 // unconditional branch. 519 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 520 521 bool ModifiedDT = false; 522 if (!DisableBranchOpts) 523 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 524 525 // Split some critical edges where one of the sources is an indirect branch, 526 // to help generate sane code for PHIs involving such edges. 527 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 528 529 bool MadeChange = true; 530 while (MadeChange) { 531 MadeChange = false; 532 DT.reset(); 533 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 534 bool ModifiedDTOnIteration = false; 535 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 536 537 // Restart BB iteration if the dominator tree of the Function was changed 538 if (ModifiedDTOnIteration) 539 break; 540 } 541 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 542 MadeChange |= mergeSExts(F); 543 if (!LargeOffsetGEPMap.empty()) 544 MadeChange |= splitLargeGEPOffsets(); 545 MadeChange |= optimizePhiTypes(F); 546 547 if (MadeChange) 548 eliminateFallThrough(F); 549 550 // Really free removed instructions during promotion. 551 for (Instruction *I : RemovedInsts) 552 I->deleteValue(); 553 554 EverMadeChange |= MadeChange; 555 SeenChainsForSExt.clear(); 556 ValToSExtendedUses.clear(); 557 RemovedInsts.clear(); 558 LargeOffsetGEPMap.clear(); 559 LargeOffsetGEPID.clear(); 560 } 561 562 NewGEPBases.clear(); 563 SunkAddrs.clear(); 564 565 if (!DisableBranchOpts) { 566 MadeChange = false; 567 // Use a set vector to get deterministic iteration order. The order the 568 // blocks are removed may affect whether or not PHI nodes in successors 569 // are removed. 570 SmallSetVector<BasicBlock*, 8> WorkList; 571 for (BasicBlock &BB : F) { 572 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 573 MadeChange |= ConstantFoldTerminator(&BB, true); 574 if (!MadeChange) continue; 575 576 for (BasicBlock *Succ : Successors) 577 if (pred_empty(Succ)) 578 WorkList.insert(Succ); 579 } 580 581 // Delete the dead blocks and any of their dead successors. 582 MadeChange |= !WorkList.empty(); 583 while (!WorkList.empty()) { 584 BasicBlock *BB = WorkList.pop_back_val(); 585 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 586 587 DeleteDeadBlock(BB); 588 589 for (BasicBlock *Succ : Successors) 590 if (pred_empty(Succ)) 591 WorkList.insert(Succ); 592 } 593 594 // Merge pairs of basic blocks with unconditional branches, connected by 595 // a single edge. 596 if (EverMadeChange || MadeChange) 597 MadeChange |= eliminateFallThrough(F); 598 599 EverMadeChange |= MadeChange; 600 } 601 602 if (!DisableGCOpts) { 603 SmallVector<GCStatepointInst *, 2> Statepoints; 604 for (BasicBlock &BB : F) 605 for (Instruction &I : BB) 606 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 607 Statepoints.push_back(SP); 608 for (auto &I : Statepoints) 609 EverMadeChange |= simplifyOffsetableRelocate(*I); 610 } 611 612 // Do this last to clean up use-before-def scenarios introduced by other 613 // preparatory transforms. 614 EverMadeChange |= placeDbgValues(F); 615 EverMadeChange |= placePseudoProbes(F); 616 617 #ifndef NDEBUG 618 if (VerifyBFIUpdates) 619 verifyBFIUpdates(F); 620 #endif 621 622 return EverMadeChange; 623 } 624 625 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 626 bool MadeChange = false; 627 for (BasicBlock &BB : F) { 628 CurInstIterator = BB.begin(); 629 while (CurInstIterator != BB.end()) { 630 Instruction *I = &*(CurInstIterator++); 631 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 632 MadeChange = true; 633 Value *Operand = Assume->getOperand(0); 634 Assume->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 const auto &I = 663 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 if (I == GEPVector.end()) 665 return; 666 667 GEPVector.erase(I); 668 if (GEPVector.empty()) 669 LargeOffsetGEPMap.erase(VecI); 670 } 671 672 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 673 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 674 DominatorTree NewDT(F); 675 LoopInfo NewLI(NewDT); 676 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 677 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 678 NewBFI.verifyMatch(*BFI); 679 } 680 681 /// Merge basic blocks which are connected by a single edge, where one of the 682 /// basic blocks has a single successor pointing to the other basic block, 683 /// which has a single predecessor. 684 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 685 bool Changed = false; 686 // Scan all of the blocks in the function, except for the entry block. 687 // Use a temporary array to avoid iterator being invalidated when 688 // deleting blocks. 689 SmallVector<WeakTrackingVH, 16> Blocks; 690 for (auto &Block : llvm::drop_begin(F)) 691 Blocks.push_back(&Block); 692 693 SmallSet<WeakTrackingVH, 16> Preds; 694 for (auto &Block : Blocks) { 695 auto *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 // If the destination block has a single pred, then this is a trivial 699 // edge, just collapse it. 700 BasicBlock *SinglePred = BB->getSinglePredecessor(); 701 702 // Don't merge if BB's address is taken. 703 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 704 705 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 706 if (Term && !Term->isConditional()) { 707 Changed = true; 708 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 709 710 // Merge BB into SinglePred and delete it. 711 MergeBlockIntoPredecessor(BB); 712 Preds.insert(SinglePred); 713 } 714 } 715 716 // (Repeatedly) merging blocks into their predecessors can create redundant 717 // debug intrinsics. 718 for (auto &Pred : Preds) 719 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 720 RemoveRedundantDbgInstrs(BB); 721 722 return Changed; 723 } 724 725 /// Find a destination block from BB if BB is mergeable empty block. 726 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 727 // If this block doesn't end with an uncond branch, ignore it. 728 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 729 if (!BI || !BI->isUnconditional()) 730 return nullptr; 731 732 // If the instruction before the branch (skipping debug info) isn't a phi 733 // node, then other stuff is happening here. 734 BasicBlock::iterator BBI = BI->getIterator(); 735 if (BBI != BB->begin()) { 736 --BBI; 737 while (isa<DbgInfoIntrinsic>(BBI)) { 738 if (BBI == BB->begin()) 739 break; 740 --BBI; 741 } 742 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 743 return nullptr; 744 } 745 746 // Do not break infinite loops. 747 BasicBlock *DestBB = BI->getSuccessor(0); 748 if (DestBB == BB) 749 return nullptr; 750 751 if (!canMergeBlocks(BB, DestBB)) 752 DestBB = nullptr; 753 754 return DestBB; 755 } 756 757 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 758 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 759 /// edges in ways that are non-optimal for isel. Start by eliminating these 760 /// blocks so we can split them the way we want them. 761 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 762 SmallPtrSet<BasicBlock *, 16> Preheaders; 763 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 764 while (!LoopList.empty()) { 765 Loop *L = LoopList.pop_back_val(); 766 llvm::append_range(LoopList, *L); 767 if (BasicBlock *Preheader = L->getLoopPreheader()) 768 Preheaders.insert(Preheader); 769 } 770 771 bool MadeChange = false; 772 // Copy blocks into a temporary array to avoid iterator invalidation issues 773 // as we remove them. 774 // Note that this intentionally skips the entry block. 775 SmallVector<WeakTrackingVH, 16> Blocks; 776 for (auto &Block : llvm::drop_begin(F)) 777 Blocks.push_back(&Block); 778 779 for (auto &Block : Blocks) { 780 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 781 if (!BB) 782 continue; 783 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 784 if (!DestBB || 785 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 786 continue; 787 788 eliminateMostlyEmptyBlock(BB); 789 MadeChange = true; 790 } 791 return MadeChange; 792 } 793 794 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 795 BasicBlock *DestBB, 796 bool isPreheader) { 797 // Do not delete loop preheaders if doing so would create a critical edge. 798 // Loop preheaders can be good locations to spill registers. If the 799 // preheader is deleted and we create a critical edge, registers may be 800 // spilled in the loop body instead. 801 if (!DisablePreheaderProtect && isPreheader && 802 !(BB->getSinglePredecessor() && 803 BB->getSinglePredecessor()->getSingleSuccessor())) 804 return false; 805 806 // Skip merging if the block's successor is also a successor to any callbr 807 // that leads to this block. 808 // FIXME: Is this really needed? Is this a correctness issue? 809 for (BasicBlock *Pred : predecessors(BB)) { 810 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 811 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 812 if (DestBB == CBI->getSuccessor(i)) 813 return false; 814 } 815 816 // Try to skip merging if the unique predecessor of BB is terminated by a 817 // switch or indirect branch instruction, and BB is used as an incoming block 818 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 819 // add COPY instructions in the predecessor of BB instead of BB (if it is not 820 // merged). Note that the critical edge created by merging such blocks wont be 821 // split in MachineSink because the jump table is not analyzable. By keeping 822 // such empty block (BB), ISel will place COPY instructions in BB, not in the 823 // predecessor of BB. 824 BasicBlock *Pred = BB->getUniquePredecessor(); 825 if (!Pred || 826 !(isa<SwitchInst>(Pred->getTerminator()) || 827 isa<IndirectBrInst>(Pred->getTerminator()))) 828 return true; 829 830 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 831 return true; 832 833 // We use a simple cost heuristic which determine skipping merging is 834 // profitable if the cost of skipping merging is less than the cost of 835 // merging : Cost(skipping merging) < Cost(merging BB), where the 836 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 837 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 838 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 839 // Freq(Pred) / Freq(BB) > 2. 840 // Note that if there are multiple empty blocks sharing the same incoming 841 // value for the PHIs in the DestBB, we consider them together. In such 842 // case, Cost(merging BB) will be the sum of their frequencies. 843 844 if (!isa<PHINode>(DestBB->begin())) 845 return true; 846 847 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 848 849 // Find all other incoming blocks from which incoming values of all PHIs in 850 // DestBB are the same as the ones from BB. 851 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 852 if (DestBBPred == BB) 853 continue; 854 855 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 856 return DestPN.getIncomingValueForBlock(BB) == 857 DestPN.getIncomingValueForBlock(DestBBPred); 858 })) 859 SameIncomingValueBBs.insert(DestBBPred); 860 } 861 862 // See if all BB's incoming values are same as the value from Pred. In this 863 // case, no reason to skip merging because COPYs are expected to be place in 864 // Pred already. 865 if (SameIncomingValueBBs.count(Pred)) 866 return true; 867 868 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 869 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 870 871 for (auto *SameValueBB : SameIncomingValueBBs) 872 if (SameValueBB->getUniquePredecessor() == Pred && 873 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 874 BBFreq += BFI->getBlockFreq(SameValueBB); 875 876 return PredFreq.getFrequency() <= 877 BBFreq.getFrequency() * FreqRatioToSkipMerge; 878 } 879 880 /// Return true if we can merge BB into DestBB if there is a single 881 /// unconditional branch between them, and BB contains no other non-phi 882 /// instructions. 883 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 884 const BasicBlock *DestBB) const { 885 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 886 // the successor. If there are more complex condition (e.g. preheaders), 887 // don't mess around with them. 888 for (const PHINode &PN : BB->phis()) { 889 for (const User *U : PN.users()) { 890 const Instruction *UI = cast<Instruction>(U); 891 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 892 return false; 893 // If User is inside DestBB block and it is a PHINode then check 894 // incoming value. If incoming value is not from BB then this is 895 // a complex condition (e.g. preheaders) we want to avoid here. 896 if (UI->getParent() == DestBB) { 897 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 898 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 899 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 900 if (Insn && Insn->getParent() == BB && 901 Insn->getParent() != UPN->getIncomingBlock(I)) 902 return false; 903 } 904 } 905 } 906 } 907 908 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 909 // and DestBB may have conflicting incoming values for the block. If so, we 910 // can't merge the block. 911 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 912 if (!DestBBPN) return true; // no conflict. 913 914 // Collect the preds of BB. 915 SmallPtrSet<const BasicBlock*, 16> BBPreds; 916 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 917 // It is faster to get preds from a PHI than with pred_iterator. 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 BBPreds.insert(BBPN->getIncomingBlock(i)); 920 } else { 921 BBPreds.insert(pred_begin(BB), pred_end(BB)); 922 } 923 924 // Walk the preds of DestBB. 925 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 926 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 927 if (BBPreds.count(Pred)) { // Common predecessor? 928 for (const PHINode &PN : DestBB->phis()) { 929 const Value *V1 = PN.getIncomingValueForBlock(Pred); 930 const Value *V2 = PN.getIncomingValueForBlock(BB); 931 932 // If V2 is a phi node in BB, look up what the mapped value will be. 933 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 934 if (V2PN->getParent() == BB) 935 V2 = V2PN->getIncomingValueForBlock(Pred); 936 937 // If there is a conflict, bail out. 938 if (V1 != V2) return false; 939 } 940 } 941 } 942 943 return true; 944 } 945 946 /// Eliminate a basic block that has only phi's and an unconditional branch in 947 /// it. 948 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 949 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 950 BasicBlock *DestBB = BI->getSuccessor(0); 951 952 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 953 << *BB << *DestBB); 954 955 // If the destination block has a single pred, then this is a trivial edge, 956 // just collapse it. 957 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 958 if (SinglePred != DestBB) { 959 assert(SinglePred == BB && 960 "Single predecessor not the same as predecessor"); 961 // Merge DestBB into SinglePred/BB and delete it. 962 MergeBlockIntoPredecessor(DestBB); 963 // Note: BB(=SinglePred) will not be deleted on this path. 964 // DestBB(=its single successor) is the one that was deleted. 965 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 966 return; 967 } 968 } 969 970 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 971 // to handle the new incoming edges it is about to have. 972 for (PHINode &PN : DestBB->phis()) { 973 // Remove the incoming value for BB, and remember it. 974 Value *InVal = PN.removeIncomingValue(BB, false); 975 976 // Two options: either the InVal is a phi node defined in BB or it is some 977 // value that dominates BB. 978 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 979 if (InValPhi && InValPhi->getParent() == BB) { 980 // Add all of the input values of the input PHI as inputs of this phi. 981 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 982 PN.addIncoming(InValPhi->getIncomingValue(i), 983 InValPhi->getIncomingBlock(i)); 984 } else { 985 // Otherwise, add one instance of the dominating value for each edge that 986 // we will be adding. 987 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 988 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 989 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 990 } else { 991 for (BasicBlock *Pred : predecessors(BB)) 992 PN.addIncoming(InVal, Pred); 993 } 994 } 995 } 996 997 // The PHIs are now updated, change everything that refers to BB to use 998 // DestBB and remove BB. 999 BB->replaceAllUsesWith(DestBB); 1000 BB->eraseFromParent(); 1001 ++NumBlocksElim; 1002 1003 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1004 } 1005 1006 // Computes a map of base pointer relocation instructions to corresponding 1007 // derived pointer relocation instructions given a vector of all relocate calls 1008 static void computeBaseDerivedRelocateMap( 1009 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1011 &RelocateInstMap) { 1012 // Collect information in two maps: one primarily for locating the base object 1013 // while filling the second map; the second map is the final structure holding 1014 // a mapping between Base and corresponding Derived relocate calls 1015 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1016 for (auto *ThisRelocate : AllRelocateCalls) { 1017 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1018 ThisRelocate->getDerivedPtrIndex()); 1019 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1020 } 1021 for (auto &Item : RelocateIdxMap) { 1022 std::pair<unsigned, unsigned> Key = Item.first; 1023 if (Key.first == Key.second) 1024 // Base relocation: nothing to insert 1025 continue; 1026 1027 GCRelocateInst *I = Item.second; 1028 auto BaseKey = std::make_pair(Key.first, Key.first); 1029 1030 // We're iterating over RelocateIdxMap so we cannot modify it. 1031 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1032 if (MaybeBase == RelocateIdxMap.end()) 1033 // TODO: We might want to insert a new base object relocate and gep off 1034 // that, if there are enough derived object relocates. 1035 continue; 1036 1037 RelocateInstMap[MaybeBase->second].push_back(I); 1038 } 1039 } 1040 1041 // Accepts a GEP and extracts the operands into a vector provided they're all 1042 // small integer constants 1043 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1044 SmallVectorImpl<Value *> &OffsetV) { 1045 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1046 // Only accept small constant integer operands 1047 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1048 if (!Op || Op->getZExtValue() > 20) 1049 return false; 1050 } 1051 1052 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1053 OffsetV.push_back(GEP->getOperand(i)); 1054 return true; 1055 } 1056 1057 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1058 // replace, computes a replacement, and affects it. 1059 static bool 1060 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1061 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1062 bool MadeChange = false; 1063 // We must ensure the relocation of derived pointer is defined after 1064 // relocation of base pointer. If we find a relocation corresponding to base 1065 // defined earlier than relocation of base then we move relocation of base 1066 // right before found relocation. We consider only relocation in the same 1067 // basic block as relocation of base. Relocations from other basic block will 1068 // be skipped by optimization and we do not care about them. 1069 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1070 &*R != RelocatedBase; ++R) 1071 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1072 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1073 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1074 RelocatedBase->moveBefore(RI); 1075 break; 1076 } 1077 1078 for (GCRelocateInst *ToReplace : Targets) { 1079 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1080 "Not relocating a derived object of the original base object"); 1081 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1082 // A duplicate relocate call. TODO: coalesce duplicates. 1083 continue; 1084 } 1085 1086 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1087 // Base and derived relocates are in different basic blocks. 1088 // In this case transform is only valid when base dominates derived 1089 // relocate. However it would be too expensive to check dominance 1090 // for each such relocate, so we skip the whole transformation. 1091 continue; 1092 } 1093 1094 Value *Base = ToReplace->getBasePtr(); 1095 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1096 if (!Derived || Derived->getPointerOperand() != Base) 1097 continue; 1098 1099 SmallVector<Value *, 2> OffsetV; 1100 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1101 continue; 1102 1103 // Create a Builder and replace the target callsite with a gep 1104 assert(RelocatedBase->getNextNode() && 1105 "Should always have one since it's not a terminator"); 1106 1107 // Insert after RelocatedBase 1108 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1109 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1110 1111 // If gc_relocate does not match the actual type, cast it to the right type. 1112 // In theory, there must be a bitcast after gc_relocate if the type does not 1113 // match, and we should reuse it to get the derived pointer. But it could be 1114 // cases like this: 1115 // bb1: 1116 // ... 1117 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // bb2: 1121 // ... 1122 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1123 // br label %merge 1124 // 1125 // merge: 1126 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1127 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1128 // 1129 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1130 // no matter there is already one or not. In this way, we can handle all cases, and 1131 // the extra bitcast should be optimized away in later passes. 1132 Value *ActualRelocatedBase = RelocatedBase; 1133 if (RelocatedBase->getType() != Base->getType()) { 1134 ActualRelocatedBase = 1135 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1136 } 1137 Value *Replacement = Builder.CreateGEP( 1138 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1139 Replacement->takeName(ToReplace); 1140 // If the newly generated derived pointer's type does not match the original derived 1141 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1142 Value *ActualReplacement = Replacement; 1143 if (Replacement->getType() != ToReplace->getType()) { 1144 ActualReplacement = 1145 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1146 } 1147 ToReplace->replaceAllUsesWith(ActualReplacement); 1148 ToReplace->eraseFromParent(); 1149 1150 MadeChange = true; 1151 } 1152 return MadeChange; 1153 } 1154 1155 // Turns this: 1156 // 1157 // %base = ... 1158 // %ptr = gep %base + 15 1159 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1160 // %base' = relocate(%tok, i32 4, i32 4) 1161 // %ptr' = relocate(%tok, i32 4, i32 5) 1162 // %val = load %ptr' 1163 // 1164 // into this: 1165 // 1166 // %base = ... 1167 // %ptr = gep %base + 15 1168 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1169 // %base' = gc.relocate(%tok, i32 4, i32 4) 1170 // %ptr' = gep %base' + 15 1171 // %val = load %ptr' 1172 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1173 bool MadeChange = false; 1174 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1175 for (auto *U : I.users()) 1176 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1177 // Collect all the relocate calls associated with a statepoint 1178 AllRelocateCalls.push_back(Relocate); 1179 1180 // We need at least one base pointer relocation + one derived pointer 1181 // relocation to mangle 1182 if (AllRelocateCalls.size() < 2) 1183 return false; 1184 1185 // RelocateInstMap is a mapping from the base relocate instruction to the 1186 // corresponding derived relocate instructions 1187 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1188 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1189 if (RelocateInstMap.empty()) 1190 return false; 1191 1192 for (auto &Item : RelocateInstMap) 1193 // Item.first is the RelocatedBase to offset against 1194 // Item.second is the vector of Targets to replace 1195 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1196 return MadeChange; 1197 } 1198 1199 /// Sink the specified cast instruction into its user blocks. 1200 static bool SinkCast(CastInst *CI) { 1201 BasicBlock *DefBB = CI->getParent(); 1202 1203 /// InsertedCasts - Only insert a cast in each block once. 1204 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1205 1206 bool MadeChange = false; 1207 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1208 UI != E; ) { 1209 Use &TheUse = UI.getUse(); 1210 Instruction *User = cast<Instruction>(*UI); 1211 1212 // Figure out which BB this cast is used in. For PHI's this is the 1213 // appropriate predecessor block. 1214 BasicBlock *UserBB = User->getParent(); 1215 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1216 UserBB = PN->getIncomingBlock(TheUse); 1217 } 1218 1219 // Preincrement use iterator so we don't invalidate it. 1220 ++UI; 1221 1222 // The first insertion point of a block containing an EH pad is after the 1223 // pad. If the pad is the user, we cannot sink the cast past the pad. 1224 if (User->isEHPad()) 1225 continue; 1226 1227 // If the block selected to receive the cast is an EH pad that does not 1228 // allow non-PHI instructions before the terminator, we can't sink the 1229 // cast. 1230 if (UserBB->getTerminator()->isEHPad()) 1231 continue; 1232 1233 // If this user is in the same block as the cast, don't change the cast. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cast into this block, use it. 1237 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1238 1239 if (!InsertedCast) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1243 CI->getType(), "", &*InsertPt); 1244 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1245 } 1246 1247 // Replace a use of the cast with a use of the new cast. 1248 TheUse = InsertedCast; 1249 MadeChange = true; 1250 ++NumCastUses; 1251 } 1252 1253 // If we removed all uses, nuke the cast. 1254 if (CI->use_empty()) { 1255 salvageDebugInfo(*CI); 1256 CI->eraseFromParent(); 1257 MadeChange = true; 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1264 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1265 /// reduce the number of virtual registers that must be created and coalesced. 1266 /// 1267 /// Return true if any changes are made. 1268 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1269 const DataLayout &DL) { 1270 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1271 // than sinking only nop casts, but is helpful on some platforms. 1272 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1273 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1274 ASC->getDestAddressSpace())) 1275 return false; 1276 } 1277 1278 // If this is a noop copy, 1279 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1281 1282 // This is an fp<->int conversion? 1283 if (SrcVT.isInteger() != DstVT.isInteger()) 1284 return false; 1285 1286 // If this is an extension, it will be a zero or sign extension, which 1287 // isn't a noop. 1288 if (SrcVT.bitsLT(DstVT)) return false; 1289 1290 // If these values will be promoted, find out what they will be promoted 1291 // to. This helps us consider truncates on PPC as noop copies when they 1292 // are. 1293 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1294 TargetLowering::TypePromoteInteger) 1295 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1296 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1297 TargetLowering::TypePromoteInteger) 1298 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1299 1300 // If, after promotion, these are the same types, this is a noop copy. 1301 if (SrcVT != DstVT) 1302 return false; 1303 1304 return SinkCast(CI); 1305 } 1306 1307 // Match a simple increment by constant operation. Note that if a sub is 1308 // matched, the step is negated (as if the step had been canonicalized to 1309 // an add, even though we leave the instruction alone.) 1310 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1311 Constant *&Step) { 1312 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1313 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1314 m_Instruction(LHS), m_Constant(Step))))) 1315 return true; 1316 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1317 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1318 m_Instruction(LHS), m_Constant(Step))))) { 1319 Step = ConstantExpr::getNeg(Step); 1320 return true; 1321 } 1322 return false; 1323 } 1324 1325 /// If given \p PN is an inductive variable with value IVInc coming from the 1326 /// backedge, and on each iteration it gets increased by Step, return pair 1327 /// <IVInc, Step>. Otherwise, return None. 1328 static Optional<std::pair<Instruction *, Constant *> > 1329 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1330 const Loop *L = LI->getLoopFor(PN->getParent()); 1331 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1332 return None; 1333 auto *IVInc = 1334 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1335 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1336 return None; 1337 Instruction *LHS = nullptr; 1338 Constant *Step = nullptr; 1339 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1340 return std::make_pair(IVInc, Step); 1341 return None; 1342 } 1343 1344 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1345 auto *I = dyn_cast<Instruction>(V); 1346 if (!I) 1347 return false; 1348 Instruction *LHS = nullptr; 1349 Constant *Step = nullptr; 1350 if (!matchIncrement(I, LHS, Step)) 1351 return false; 1352 if (auto *PN = dyn_cast<PHINode>(LHS)) 1353 if (auto IVInc = getIVIncrement(PN, LI)) 1354 return IVInc->first == I; 1355 return false; 1356 } 1357 1358 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1359 Value *Arg0, Value *Arg1, 1360 CmpInst *Cmp, 1361 Intrinsic::ID IID) { 1362 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1363 if (!isIVIncrement(BO, LI)) 1364 return false; 1365 const Loop *L = LI->getLoopFor(BO->getParent()); 1366 assert(L && "L should not be null after isIVIncrement()"); 1367 // Do not risk on moving increment into a child loop. 1368 if (LI->getLoopFor(Cmp->getParent()) != L) 1369 return false; 1370 1371 // Finally, we need to ensure that the insert point will dominate all 1372 // existing uses of the increment. 1373 1374 auto &DT = getDT(*BO->getParent()->getParent()); 1375 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1376 // If we're moving up the dom tree, all uses are trivially dominated. 1377 // (This is the common case for code produced by LSR.) 1378 return true; 1379 1380 // Otherwise, special case the single use in the phi recurrence. 1381 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1382 }; 1383 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1384 // We used to use a dominator tree here to allow multi-block optimization. 1385 // But that was problematic because: 1386 // 1. It could cause a perf regression by hoisting the math op into the 1387 // critical path. 1388 // 2. It could cause a perf regression by creating a value that was live 1389 // across multiple blocks and increasing register pressure. 1390 // 3. Use of a dominator tree could cause large compile-time regression. 1391 // This is because we recompute the DT on every change in the main CGP 1392 // run-loop. The recomputing is probably unnecessary in many cases, so if 1393 // that was fixed, using a DT here would be ok. 1394 // 1395 // There is one important particular case we still want to handle: if BO is 1396 // the IV increment. Important properties that make it profitable: 1397 // - We can speculate IV increment anywhere in the loop (as long as the 1398 // indvar Phi is its only user); 1399 // - Upon computing Cmp, we effectively compute something equivalent to the 1400 // IV increment (despite it loops differently in the IR). So moving it up 1401 // to the cmp point does not really increase register pressure. 1402 return false; 1403 } 1404 1405 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1406 if (BO->getOpcode() == Instruction::Add && 1407 IID == Intrinsic::usub_with_overflow) { 1408 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1409 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1410 } 1411 1412 // Insert at the first instruction of the pair. 1413 Instruction *InsertPt = nullptr; 1414 for (Instruction &Iter : *Cmp->getParent()) { 1415 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1416 // the overflow intrinsic are defined. 1417 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1418 InsertPt = &Iter; 1419 break; 1420 } 1421 } 1422 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1423 1424 IRBuilder<> Builder(InsertPt); 1425 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1426 if (BO->getOpcode() != Instruction::Xor) { 1427 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1428 BO->replaceAllUsesWith(Math); 1429 } else 1430 assert(BO->hasOneUse() && 1431 "Patterns with XOr should use the BO only in the compare"); 1432 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1433 Cmp->replaceAllUsesWith(OV); 1434 Cmp->eraseFromParent(); 1435 BO->eraseFromParent(); 1436 return true; 1437 } 1438 1439 /// Match special-case patterns that check for unsigned add overflow. 1440 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1441 BinaryOperator *&Add) { 1442 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1443 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1444 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1445 1446 // We are not expecting non-canonical/degenerate code. Just bail out. 1447 if (isa<Constant>(A)) 1448 return false; 1449 1450 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1451 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1452 B = ConstantInt::get(B->getType(), 1); 1453 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1454 B = ConstantInt::get(B->getType(), -1); 1455 else 1456 return false; 1457 1458 // Check the users of the variable operand of the compare looking for an add 1459 // with the adjusted constant. 1460 for (User *U : A->users()) { 1461 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1462 Add = cast<BinaryOperator>(U); 1463 return true; 1464 } 1465 } 1466 return false; 1467 } 1468 1469 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1470 /// intrinsic. Return true if any changes were made. 1471 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1472 bool &ModifiedDT) { 1473 Value *A, *B; 1474 BinaryOperator *Add; 1475 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1476 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1477 return false; 1478 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1479 A = Add->getOperand(0); 1480 B = Add->getOperand(1); 1481 } 1482 1483 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1484 TLI->getValueType(*DL, Add->getType()), 1485 Add->hasNUsesOrMore(2))) 1486 return false; 1487 1488 // We don't want to move around uses of condition values this late, so we 1489 // check if it is legal to create the call to the intrinsic in the basic 1490 // block containing the icmp. 1491 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1492 return false; 1493 1494 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1495 Intrinsic::uadd_with_overflow)) 1496 return false; 1497 1498 // Reset callers - do not crash by iterating over a dead instruction. 1499 ModifiedDT = true; 1500 return true; 1501 } 1502 1503 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1504 bool &ModifiedDT) { 1505 // We are not expecting non-canonical/degenerate code. Just bail out. 1506 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1507 if (isa<Constant>(A) && isa<Constant>(B)) 1508 return false; 1509 1510 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1511 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1512 if (Pred == ICmpInst::ICMP_UGT) { 1513 std::swap(A, B); 1514 Pred = ICmpInst::ICMP_ULT; 1515 } 1516 // Convert special-case: (A == 0) is the same as (A u< 1). 1517 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1518 B = ConstantInt::get(B->getType(), 1); 1519 Pred = ICmpInst::ICMP_ULT; 1520 } 1521 // Convert special-case: (A != 0) is the same as (0 u< A). 1522 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1523 std::swap(A, B); 1524 Pred = ICmpInst::ICMP_ULT; 1525 } 1526 if (Pred != ICmpInst::ICMP_ULT) 1527 return false; 1528 1529 // Walk the users of a variable operand of a compare looking for a subtract or 1530 // add with that same operand. Also match the 2nd operand of the compare to 1531 // the add/sub, but that may be a negated constant operand of an add. 1532 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1533 BinaryOperator *Sub = nullptr; 1534 for (User *U : CmpVariableOperand->users()) { 1535 // A - B, A u< B --> usubo(A, B) 1536 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1537 Sub = cast<BinaryOperator>(U); 1538 break; 1539 } 1540 1541 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1542 const APInt *CmpC, *AddC; 1543 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1544 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1545 Sub = cast<BinaryOperator>(U); 1546 break; 1547 } 1548 } 1549 if (!Sub) 1550 return false; 1551 1552 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1553 TLI->getValueType(*DL, Sub->getType()), 1554 Sub->hasNUsesOrMore(2))) 1555 return false; 1556 1557 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1558 Cmp, Intrinsic::usub_with_overflow)) 1559 return false; 1560 1561 // Reset callers - do not crash by iterating over a dead instruction. 1562 ModifiedDT = true; 1563 return true; 1564 } 1565 1566 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1567 /// registers that must be created and coalesced. This is a clear win except on 1568 /// targets with multiple condition code registers (PowerPC), where it might 1569 /// lose; some adjustment may be wanted there. 1570 /// 1571 /// Return true if any changes are made. 1572 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1573 if (TLI.hasMultipleConditionRegisters()) 1574 return false; 1575 1576 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1577 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1578 return false; 1579 1580 // Only insert a cmp in each block once. 1581 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1582 1583 bool MadeChange = false; 1584 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1585 UI != E; ) { 1586 Use &TheUse = UI.getUse(); 1587 Instruction *User = cast<Instruction>(*UI); 1588 1589 // Preincrement use iterator so we don't invalidate it. 1590 ++UI; 1591 1592 // Don't bother for PHI nodes. 1593 if (isa<PHINode>(User)) 1594 continue; 1595 1596 // Figure out which BB this cmp is used in. 1597 BasicBlock *UserBB = User->getParent(); 1598 BasicBlock *DefBB = Cmp->getParent(); 1599 1600 // If this user is in the same block as the cmp, don't change the cmp. 1601 if (UserBB == DefBB) continue; 1602 1603 // If we have already inserted a cmp into this block, use it. 1604 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1605 1606 if (!InsertedCmp) { 1607 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1608 assert(InsertPt != UserBB->end()); 1609 InsertedCmp = 1610 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1611 Cmp->getOperand(0), Cmp->getOperand(1), "", 1612 &*InsertPt); 1613 // Propagate the debug info. 1614 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1615 } 1616 1617 // Replace a use of the cmp with a use of the new cmp. 1618 TheUse = InsertedCmp; 1619 MadeChange = true; 1620 ++NumCmpUses; 1621 } 1622 1623 // If we removed all uses, nuke the cmp. 1624 if (Cmp->use_empty()) { 1625 Cmp->eraseFromParent(); 1626 MadeChange = true; 1627 } 1628 1629 return MadeChange; 1630 } 1631 1632 /// For pattern like: 1633 /// 1634 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1635 /// ... 1636 /// DomBB: 1637 /// ... 1638 /// br DomCond, TrueBB, CmpBB 1639 /// CmpBB: (with DomBB being the single predecessor) 1640 /// ... 1641 /// Cmp = icmp eq CmpOp0, CmpOp1 1642 /// ... 1643 /// 1644 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1645 /// different from lowering of icmp eq (PowerPC). This function try to convert 1646 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1647 /// After that, DomCond and Cmp can use the same comparison so reduce one 1648 /// comparison. 1649 /// 1650 /// Return true if any changes are made. 1651 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1652 const TargetLowering &TLI) { 1653 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1654 return false; 1655 1656 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1657 if (Pred != ICmpInst::ICMP_EQ) 1658 return false; 1659 1660 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1661 // icmp slt/sgt would introduce more redundant LLVM IR. 1662 for (User *U : Cmp->users()) { 1663 if (isa<BranchInst>(U)) 1664 continue; 1665 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1666 continue; 1667 return false; 1668 } 1669 1670 // This is a cheap/incomplete check for dominance - just match a single 1671 // predecessor with a conditional branch. 1672 BasicBlock *CmpBB = Cmp->getParent(); 1673 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1674 if (!DomBB) 1675 return false; 1676 1677 // We want to ensure that the only way control gets to the comparison of 1678 // interest is that a less/greater than comparison on the same operands is 1679 // false. 1680 Value *DomCond; 1681 BasicBlock *TrueBB, *FalseBB; 1682 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1683 return false; 1684 if (CmpBB != FalseBB) 1685 return false; 1686 1687 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1688 ICmpInst::Predicate DomPred; 1689 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1690 return false; 1691 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1692 return false; 1693 1694 // Convert the equality comparison to the opposite of the dominating 1695 // comparison and swap the direction for all branch/select users. 1696 // We have conceptually converted: 1697 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1698 // to 1699 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1700 // And similarly for branches. 1701 for (User *U : Cmp->users()) { 1702 if (auto *BI = dyn_cast<BranchInst>(U)) { 1703 assert(BI->isConditional() && "Must be conditional"); 1704 BI->swapSuccessors(); 1705 continue; 1706 } 1707 if (auto *SI = dyn_cast<SelectInst>(U)) { 1708 // Swap operands 1709 SI->swapValues(); 1710 SI->swapProfMetadata(); 1711 continue; 1712 } 1713 llvm_unreachable("Must be a branch or a select"); 1714 } 1715 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1716 return true; 1717 } 1718 1719 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1720 if (sinkCmpExpression(Cmp, *TLI)) 1721 return true; 1722 1723 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1724 return true; 1725 1726 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1727 return true; 1728 1729 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1730 return true; 1731 1732 return false; 1733 } 1734 1735 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1736 /// used in a compare to allow isel to generate better code for targets where 1737 /// this operation can be combined. 1738 /// 1739 /// Return true if any changes are made. 1740 static bool sinkAndCmp0Expression(Instruction *AndI, 1741 const TargetLowering &TLI, 1742 SetOfInstrs &InsertedInsts) { 1743 // Double-check that we're not trying to optimize an instruction that was 1744 // already optimized by some other part of this pass. 1745 assert(!InsertedInsts.count(AndI) && 1746 "Attempting to optimize already optimized and instruction"); 1747 (void) InsertedInsts; 1748 1749 // Nothing to do for single use in same basic block. 1750 if (AndI->hasOneUse() && 1751 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1752 return false; 1753 1754 // Try to avoid cases where sinking/duplicating is likely to increase register 1755 // pressure. 1756 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1757 !isa<ConstantInt>(AndI->getOperand(1)) && 1758 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1759 return false; 1760 1761 for (auto *U : AndI->users()) { 1762 Instruction *User = cast<Instruction>(U); 1763 1764 // Only sink 'and' feeding icmp with 0. 1765 if (!isa<ICmpInst>(User)) 1766 return false; 1767 1768 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1769 if (!CmpC || !CmpC->isZero()) 1770 return false; 1771 } 1772 1773 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1774 return false; 1775 1776 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1777 LLVM_DEBUG(AndI->getParent()->dump()); 1778 1779 // Push the 'and' into the same block as the icmp 0. There should only be 1780 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1781 // others, so we don't need to keep track of which BBs we insert into. 1782 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1783 UI != E; ) { 1784 Use &TheUse = UI.getUse(); 1785 Instruction *User = cast<Instruction>(*UI); 1786 1787 // Preincrement use iterator so we don't invalidate it. 1788 ++UI; 1789 1790 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1791 1792 // Keep the 'and' in the same place if the use is already in the same block. 1793 Instruction *InsertPt = 1794 User->getParent() == AndI->getParent() ? AndI : User; 1795 Instruction *InsertedAnd = 1796 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1797 AndI->getOperand(1), "", InsertPt); 1798 // Propagate the debug info. 1799 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1800 1801 // Replace a use of the 'and' with a use of the new 'and'. 1802 TheUse = InsertedAnd; 1803 ++NumAndUses; 1804 LLVM_DEBUG(User->getParent()->dump()); 1805 } 1806 1807 // We removed all uses, nuke the and. 1808 AndI->eraseFromParent(); 1809 return true; 1810 } 1811 1812 /// Check if the candidates could be combined with a shift instruction, which 1813 /// includes: 1814 /// 1. Truncate instruction 1815 /// 2. And instruction and the imm is a mask of the low bits: 1816 /// imm & (imm+1) == 0 1817 static bool isExtractBitsCandidateUse(Instruction *User) { 1818 if (!isa<TruncInst>(User)) { 1819 if (User->getOpcode() != Instruction::And || 1820 !isa<ConstantInt>(User->getOperand(1))) 1821 return false; 1822 1823 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1824 1825 if ((Cimm & (Cimm + 1)).getBoolValue()) 1826 return false; 1827 } 1828 return true; 1829 } 1830 1831 /// Sink both shift and truncate instruction to the use of truncate's BB. 1832 static bool 1833 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1834 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1835 const TargetLowering &TLI, const DataLayout &DL) { 1836 BasicBlock *UserBB = User->getParent(); 1837 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1838 auto *TruncI = cast<TruncInst>(User); 1839 bool MadeChange = false; 1840 1841 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1842 TruncE = TruncI->user_end(); 1843 TruncUI != TruncE;) { 1844 1845 Use &TruncTheUse = TruncUI.getUse(); 1846 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1847 // Preincrement use iterator so we don't invalidate it. 1848 1849 ++TruncUI; 1850 1851 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1852 if (!ISDOpcode) 1853 continue; 1854 1855 // If the use is actually a legal node, there will not be an 1856 // implicit truncate. 1857 // FIXME: always querying the result type is just an 1858 // approximation; some nodes' legality is determined by the 1859 // operand or other means. There's no good way to find out though. 1860 if (TLI.isOperationLegalOrCustom( 1861 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1862 continue; 1863 1864 // Don't bother for PHI nodes. 1865 if (isa<PHINode>(TruncUser)) 1866 continue; 1867 1868 BasicBlock *TruncUserBB = TruncUser->getParent(); 1869 1870 if (UserBB == TruncUserBB) 1871 continue; 1872 1873 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1874 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1875 1876 if (!InsertedShift && !InsertedTrunc) { 1877 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1878 assert(InsertPt != TruncUserBB->end()); 1879 // Sink the shift 1880 if (ShiftI->getOpcode() == Instruction::AShr) 1881 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1882 "", &*InsertPt); 1883 else 1884 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1885 "", &*InsertPt); 1886 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1887 1888 // Sink the trunc 1889 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1890 TruncInsertPt++; 1891 assert(TruncInsertPt != TruncUserBB->end()); 1892 1893 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1894 TruncI->getType(), "", &*TruncInsertPt); 1895 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1896 1897 MadeChange = true; 1898 1899 TruncTheUse = InsertedTrunc; 1900 } 1901 } 1902 return MadeChange; 1903 } 1904 1905 /// Sink the shift *right* instruction into user blocks if the uses could 1906 /// potentially be combined with this shift instruction and generate BitExtract 1907 /// instruction. It will only be applied if the architecture supports BitExtract 1908 /// instruction. Here is an example: 1909 /// BB1: 1910 /// %x.extract.shift = lshr i64 %arg1, 32 1911 /// BB2: 1912 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1913 /// ==> 1914 /// 1915 /// BB2: 1916 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1917 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1918 /// 1919 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1920 /// instruction. 1921 /// Return true if any changes are made. 1922 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1923 const TargetLowering &TLI, 1924 const DataLayout &DL) { 1925 BasicBlock *DefBB = ShiftI->getParent(); 1926 1927 /// Only insert instructions in each block once. 1928 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1929 1930 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1931 1932 bool MadeChange = false; 1933 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1934 UI != E;) { 1935 Use &TheUse = UI.getUse(); 1936 Instruction *User = cast<Instruction>(*UI); 1937 // Preincrement use iterator so we don't invalidate it. 1938 ++UI; 1939 1940 // Don't bother for PHI nodes. 1941 if (isa<PHINode>(User)) 1942 continue; 1943 1944 if (!isExtractBitsCandidateUse(User)) 1945 continue; 1946 1947 BasicBlock *UserBB = User->getParent(); 1948 1949 if (UserBB == DefBB) { 1950 // If the shift and truncate instruction are in the same BB. The use of 1951 // the truncate(TruncUse) may still introduce another truncate if not 1952 // legal. In this case, we would like to sink both shift and truncate 1953 // instruction to the BB of TruncUse. 1954 // for example: 1955 // BB1: 1956 // i64 shift.result = lshr i64 opnd, imm 1957 // trunc.result = trunc shift.result to i16 1958 // 1959 // BB2: 1960 // ----> We will have an implicit truncate here if the architecture does 1961 // not have i16 compare. 1962 // cmp i16 trunc.result, opnd2 1963 // 1964 if (isa<TruncInst>(User) && shiftIsLegal 1965 // If the type of the truncate is legal, no truncate will be 1966 // introduced in other basic blocks. 1967 && 1968 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1969 MadeChange = 1970 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1971 1972 continue; 1973 } 1974 // If we have already inserted a shift into this block, use it. 1975 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1976 1977 if (!InsertedShift) { 1978 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1979 assert(InsertPt != UserBB->end()); 1980 1981 if (ShiftI->getOpcode() == Instruction::AShr) 1982 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1983 "", &*InsertPt); 1984 else 1985 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1986 "", &*InsertPt); 1987 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1988 1989 MadeChange = true; 1990 } 1991 1992 // Replace a use of the shift with a use of the new shift. 1993 TheUse = InsertedShift; 1994 } 1995 1996 // If we removed all uses, or there are none, nuke the shift. 1997 if (ShiftI->use_empty()) { 1998 salvageDebugInfo(*ShiftI); 1999 ShiftI->eraseFromParent(); 2000 MadeChange = true; 2001 } 2002 2003 return MadeChange; 2004 } 2005 2006 /// If counting leading or trailing zeros is an expensive operation and a zero 2007 /// input is defined, add a check for zero to avoid calling the intrinsic. 2008 /// 2009 /// We want to transform: 2010 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2011 /// 2012 /// into: 2013 /// entry: 2014 /// %cmpz = icmp eq i64 %A, 0 2015 /// br i1 %cmpz, label %cond.end, label %cond.false 2016 /// cond.false: 2017 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2018 /// br label %cond.end 2019 /// cond.end: 2020 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2021 /// 2022 /// If the transform is performed, return true and set ModifiedDT to true. 2023 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2024 const TargetLowering *TLI, 2025 const DataLayout *DL, 2026 bool &ModifiedDT) { 2027 // If a zero input is undefined, it doesn't make sense to despeculate that. 2028 if (match(CountZeros->getOperand(1), m_One())) 2029 return false; 2030 2031 // If it's cheap to speculate, there's nothing to do. 2032 auto IntrinsicID = CountZeros->getIntrinsicID(); 2033 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2034 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2035 return false; 2036 2037 // Only handle legal scalar cases. Anything else requires too much work. 2038 Type *Ty = CountZeros->getType(); 2039 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2040 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2041 return false; 2042 2043 // Bail if the value is never zero. 2044 if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL)) 2045 return false; 2046 2047 // The intrinsic will be sunk behind a compare against zero and branch. 2048 BasicBlock *StartBlock = CountZeros->getParent(); 2049 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2050 2051 // Create another block after the count zero intrinsic. A PHI will be added 2052 // in this block to select the result of the intrinsic or the bit-width 2053 // constant if the input to the intrinsic is zero. 2054 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2055 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2056 2057 // Set up a builder to create a compare, conditional branch, and PHI. 2058 IRBuilder<> Builder(CountZeros->getContext()); 2059 Builder.SetInsertPoint(StartBlock->getTerminator()); 2060 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2061 2062 // Replace the unconditional branch that was created by the first split with 2063 // a compare against zero and a conditional branch. 2064 Value *Zero = Constant::getNullValue(Ty); 2065 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2066 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2067 StartBlock->getTerminator()->eraseFromParent(); 2068 2069 // Create a PHI in the end block to select either the output of the intrinsic 2070 // or the bit width of the operand. 2071 Builder.SetInsertPoint(&EndBlock->front()); 2072 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2073 CountZeros->replaceAllUsesWith(PN); 2074 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2075 PN->addIncoming(BitWidth, StartBlock); 2076 PN->addIncoming(CountZeros, CallBlock); 2077 2078 // We are explicitly handling the zero case, so we can set the intrinsic's 2079 // undefined zero argument to 'true'. This will also prevent reprocessing the 2080 // intrinsic; we only despeculate when a zero input is defined. 2081 CountZeros->setArgOperand(1, Builder.getTrue()); 2082 ModifiedDT = true; 2083 return true; 2084 } 2085 2086 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2087 BasicBlock *BB = CI->getParent(); 2088 2089 // Lower inline assembly if we can. 2090 // If we found an inline asm expession, and if the target knows how to 2091 // lower it to normal LLVM code, do so now. 2092 if (CI->isInlineAsm()) { 2093 if (TLI->ExpandInlineAsm(CI)) { 2094 // Avoid invalidating the iterator. 2095 CurInstIterator = BB->begin(); 2096 // Avoid processing instructions out of order, which could cause 2097 // reuse before a value is defined. 2098 SunkAddrs.clear(); 2099 return true; 2100 } 2101 // Sink address computing for memory operands into the block. 2102 if (optimizeInlineAsmInst(CI)) 2103 return true; 2104 } 2105 2106 // Align the pointer arguments to this call if the target thinks it's a good 2107 // idea 2108 unsigned MinSize, PrefAlign; 2109 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2110 for (auto &Arg : CI->args()) { 2111 // We want to align both objects whose address is used directly and 2112 // objects whose address is used in casts and GEPs, though it only makes 2113 // sense for GEPs if the offset is a multiple of the desired alignment and 2114 // if size - offset meets the size threshold. 2115 if (!Arg->getType()->isPointerTy()) 2116 continue; 2117 APInt Offset(DL->getIndexSizeInBits( 2118 cast<PointerType>(Arg->getType())->getAddressSpace()), 2119 0); 2120 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2121 uint64_t Offset2 = Offset.getLimitedValue(); 2122 if ((Offset2 & (PrefAlign-1)) != 0) 2123 continue; 2124 AllocaInst *AI; 2125 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2126 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2127 AI->setAlignment(Align(PrefAlign)); 2128 // Global variables can only be aligned if they are defined in this 2129 // object (i.e. they are uniquely initialized in this object), and 2130 // over-aligning global variables that have an explicit section is 2131 // forbidden. 2132 GlobalVariable *GV; 2133 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2134 GV->getPointerAlignment(*DL) < PrefAlign && 2135 DL->getTypeAllocSize(GV->getValueType()) >= 2136 MinSize + Offset2) 2137 GV->setAlignment(MaybeAlign(PrefAlign)); 2138 } 2139 // If this is a memcpy (or similar) then we may be able to improve the 2140 // alignment 2141 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2142 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2143 MaybeAlign MIDestAlign = MI->getDestAlign(); 2144 if (!MIDestAlign || DestAlign > *MIDestAlign) 2145 MI->setDestAlignment(DestAlign); 2146 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2147 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2148 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2149 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2150 MTI->setSourceAlignment(SrcAlign); 2151 } 2152 } 2153 } 2154 2155 // If we have a cold call site, try to sink addressing computation into the 2156 // cold block. This interacts with our handling for loads and stores to 2157 // ensure that we can fold all uses of a potential addressing computation 2158 // into their uses. TODO: generalize this to work over profiling data 2159 if (CI->hasFnAttr(Attribute::Cold) && 2160 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2161 for (auto &Arg : CI->args()) { 2162 if (!Arg->getType()->isPointerTy()) 2163 continue; 2164 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2165 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2166 } 2167 2168 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2169 if (II) { 2170 switch (II->getIntrinsicID()) { 2171 default: break; 2172 case Intrinsic::assume: 2173 llvm_unreachable("llvm.assume should have been removed already"); 2174 case Intrinsic::experimental_widenable_condition: { 2175 // Give up on future widening oppurtunties so that we can fold away dead 2176 // paths and merge blocks before going into block-local instruction 2177 // selection. 2178 if (II->use_empty()) { 2179 II->eraseFromParent(); 2180 return true; 2181 } 2182 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2183 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2184 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2185 }); 2186 return true; 2187 } 2188 case Intrinsic::objectsize: 2189 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2190 case Intrinsic::is_constant: 2191 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2192 case Intrinsic::aarch64_stlxr: 2193 case Intrinsic::aarch64_stxr: { 2194 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2195 if (!ExtVal || !ExtVal->hasOneUse() || 2196 ExtVal->getParent() == CI->getParent()) 2197 return false; 2198 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2199 ExtVal->moveBefore(CI); 2200 // Mark this instruction as "inserted by CGP", so that other 2201 // optimizations don't touch it. 2202 InsertedInsts.insert(ExtVal); 2203 return true; 2204 } 2205 2206 case Intrinsic::launder_invariant_group: 2207 case Intrinsic::strip_invariant_group: { 2208 Value *ArgVal = II->getArgOperand(0); 2209 auto it = LargeOffsetGEPMap.find(II); 2210 if (it != LargeOffsetGEPMap.end()) { 2211 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2212 // Make sure not to have to deal with iterator invalidation 2213 // after possibly adding ArgVal to LargeOffsetGEPMap. 2214 auto GEPs = std::move(it->second); 2215 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2216 LargeOffsetGEPMap.erase(II); 2217 } 2218 2219 II->replaceAllUsesWith(ArgVal); 2220 II->eraseFromParent(); 2221 return true; 2222 } 2223 case Intrinsic::cttz: 2224 case Intrinsic::ctlz: 2225 // If counting zeros is expensive, try to avoid it. 2226 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2227 case Intrinsic::fshl: 2228 case Intrinsic::fshr: 2229 return optimizeFunnelShift(II); 2230 case Intrinsic::dbg_value: 2231 return fixupDbgValue(II); 2232 case Intrinsic::vscale: { 2233 // If datalayout has no special restrictions on vector data layout, 2234 // replace `llvm.vscale` by an equivalent constant expression 2235 // to benefit from cheap constant propagation. 2236 Type *ScalableVectorTy = 2237 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2238 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2239 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2240 auto *One = ConstantInt::getSigned(II->getType(), 1); 2241 auto *CGep = 2242 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2243 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2244 II->eraseFromParent(); 2245 return true; 2246 } 2247 break; 2248 } 2249 case Intrinsic::masked_gather: 2250 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2251 case Intrinsic::masked_scatter: 2252 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2253 } 2254 2255 SmallVector<Value *, 2> PtrOps; 2256 Type *AccessTy; 2257 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2258 while (!PtrOps.empty()) { 2259 Value *PtrVal = PtrOps.pop_back_val(); 2260 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2261 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2262 return true; 2263 } 2264 } 2265 2266 // From here on out we're working with named functions. 2267 if (!CI->getCalledFunction()) return false; 2268 2269 // Lower all default uses of _chk calls. This is very similar 2270 // to what InstCombineCalls does, but here we are only lowering calls 2271 // to fortified library functions (e.g. __memcpy_chk) that have the default 2272 // "don't know" as the objectsize. Anything else should be left alone. 2273 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2274 IRBuilder<> Builder(CI); 2275 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2276 CI->replaceAllUsesWith(V); 2277 CI->eraseFromParent(); 2278 return true; 2279 } 2280 2281 return false; 2282 } 2283 2284 /// Look for opportunities to duplicate return instructions to the predecessor 2285 /// to enable tail call optimizations. The case it is currently looking for is: 2286 /// @code 2287 /// bb0: 2288 /// %tmp0 = tail call i32 @f0() 2289 /// br label %return 2290 /// bb1: 2291 /// %tmp1 = tail call i32 @f1() 2292 /// br label %return 2293 /// bb2: 2294 /// %tmp2 = tail call i32 @f2() 2295 /// br label %return 2296 /// return: 2297 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2298 /// ret i32 %retval 2299 /// @endcode 2300 /// 2301 /// => 2302 /// 2303 /// @code 2304 /// bb0: 2305 /// %tmp0 = tail call i32 @f0() 2306 /// ret i32 %tmp0 2307 /// bb1: 2308 /// %tmp1 = tail call i32 @f1() 2309 /// ret i32 %tmp1 2310 /// bb2: 2311 /// %tmp2 = tail call i32 @f2() 2312 /// ret i32 %tmp2 2313 /// @endcode 2314 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2315 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2316 if (!RetI) 2317 return false; 2318 2319 PHINode *PN = nullptr; 2320 ExtractValueInst *EVI = nullptr; 2321 BitCastInst *BCI = nullptr; 2322 Value *V = RetI->getReturnValue(); 2323 if (V) { 2324 BCI = dyn_cast<BitCastInst>(V); 2325 if (BCI) 2326 V = BCI->getOperand(0); 2327 2328 EVI = dyn_cast<ExtractValueInst>(V); 2329 if (EVI) { 2330 V = EVI->getOperand(0); 2331 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2332 return false; 2333 } 2334 2335 PN = dyn_cast<PHINode>(V); 2336 if (!PN) 2337 return false; 2338 } 2339 2340 if (PN && PN->getParent() != BB) 2341 return false; 2342 2343 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2344 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2345 if (BC && BC->hasOneUse()) 2346 Inst = BC->user_back(); 2347 2348 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2349 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2350 return false; 2351 }; 2352 2353 // Make sure there are no instructions between the first instruction 2354 // and return. 2355 const Instruction *BI = BB->getFirstNonPHI(); 2356 // Skip over debug and the bitcast. 2357 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2358 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2359 BI = BI->getNextNode(); 2360 if (BI != RetI) 2361 return false; 2362 2363 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2364 /// call. 2365 const Function *F = BB->getParent(); 2366 SmallVector<BasicBlock*, 4> TailCallBBs; 2367 if (PN) { 2368 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2369 // Look through bitcasts. 2370 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2371 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2372 BasicBlock *PredBB = PN->getIncomingBlock(I); 2373 // Make sure the phi value is indeed produced by the tail call. 2374 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2375 TLI->mayBeEmittedAsTailCall(CI) && 2376 attributesPermitTailCall(F, CI, RetI, *TLI)) 2377 TailCallBBs.push_back(PredBB); 2378 } 2379 } else { 2380 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2381 for (BasicBlock *Pred : predecessors(BB)) { 2382 if (!VisitedBBs.insert(Pred).second) 2383 continue; 2384 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2385 CallInst *CI = dyn_cast<CallInst>(I); 2386 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2387 attributesPermitTailCall(F, CI, RetI, *TLI)) 2388 TailCallBBs.push_back(Pred); 2389 } 2390 } 2391 } 2392 2393 bool Changed = false; 2394 for (auto const &TailCallBB : TailCallBBs) { 2395 // Make sure the call instruction is followed by an unconditional branch to 2396 // the return block. 2397 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2398 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2399 continue; 2400 2401 // Duplicate the return into TailCallBB. 2402 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2403 assert(!VerifyBFIUpdates || 2404 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2405 BFI->setBlockFreq( 2406 BB, 2407 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2408 ModifiedDT = Changed = true; 2409 ++NumRetsDup; 2410 } 2411 2412 // If we eliminated all predecessors of the block, delete the block now. 2413 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2414 BB->eraseFromParent(); 2415 2416 return Changed; 2417 } 2418 2419 //===----------------------------------------------------------------------===// 2420 // Memory Optimization 2421 //===----------------------------------------------------------------------===// 2422 2423 namespace { 2424 2425 /// This is an extended version of TargetLowering::AddrMode 2426 /// which holds actual Value*'s for register values. 2427 struct ExtAddrMode : public TargetLowering::AddrMode { 2428 Value *BaseReg = nullptr; 2429 Value *ScaledReg = nullptr; 2430 Value *OriginalValue = nullptr; 2431 bool InBounds = true; 2432 2433 enum FieldName { 2434 NoField = 0x00, 2435 BaseRegField = 0x01, 2436 BaseGVField = 0x02, 2437 BaseOffsField = 0x04, 2438 ScaledRegField = 0x08, 2439 ScaleField = 0x10, 2440 MultipleFields = 0xff 2441 }; 2442 2443 2444 ExtAddrMode() = default; 2445 2446 void print(raw_ostream &OS) const; 2447 void dump() const; 2448 2449 FieldName compare(const ExtAddrMode &other) { 2450 // First check that the types are the same on each field, as differing types 2451 // is something we can't cope with later on. 2452 if (BaseReg && other.BaseReg && 2453 BaseReg->getType() != other.BaseReg->getType()) 2454 return MultipleFields; 2455 if (BaseGV && other.BaseGV && 2456 BaseGV->getType() != other.BaseGV->getType()) 2457 return MultipleFields; 2458 if (ScaledReg && other.ScaledReg && 2459 ScaledReg->getType() != other.ScaledReg->getType()) 2460 return MultipleFields; 2461 2462 // Conservatively reject 'inbounds' mismatches. 2463 if (InBounds != other.InBounds) 2464 return MultipleFields; 2465 2466 // Check each field to see if it differs. 2467 unsigned Result = NoField; 2468 if (BaseReg != other.BaseReg) 2469 Result |= BaseRegField; 2470 if (BaseGV != other.BaseGV) 2471 Result |= BaseGVField; 2472 if (BaseOffs != other.BaseOffs) 2473 Result |= BaseOffsField; 2474 if (ScaledReg != other.ScaledReg) 2475 Result |= ScaledRegField; 2476 // Don't count 0 as being a different scale, because that actually means 2477 // unscaled (which will already be counted by having no ScaledReg). 2478 if (Scale && other.Scale && Scale != other.Scale) 2479 Result |= ScaleField; 2480 2481 if (countPopulation(Result) > 1) 2482 return MultipleFields; 2483 else 2484 return static_cast<FieldName>(Result); 2485 } 2486 2487 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2488 // with no offset. 2489 bool isTrivial() { 2490 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2491 // trivial if at most one of these terms is nonzero, except that BaseGV and 2492 // BaseReg both being zero actually means a null pointer value, which we 2493 // consider to be 'non-zero' here. 2494 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2495 } 2496 2497 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2498 switch (Field) { 2499 default: 2500 return nullptr; 2501 case BaseRegField: 2502 return BaseReg; 2503 case BaseGVField: 2504 return BaseGV; 2505 case ScaledRegField: 2506 return ScaledReg; 2507 case BaseOffsField: 2508 return ConstantInt::get(IntPtrTy, BaseOffs); 2509 } 2510 } 2511 2512 void SetCombinedField(FieldName Field, Value *V, 2513 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2514 switch (Field) { 2515 default: 2516 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2517 break; 2518 case ExtAddrMode::BaseRegField: 2519 BaseReg = V; 2520 break; 2521 case ExtAddrMode::BaseGVField: 2522 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2523 // in the BaseReg field. 2524 assert(BaseReg == nullptr); 2525 BaseReg = V; 2526 BaseGV = nullptr; 2527 break; 2528 case ExtAddrMode::ScaledRegField: 2529 ScaledReg = V; 2530 // If we have a mix of scaled and unscaled addrmodes then we want scale 2531 // to be the scale and not zero. 2532 if (!Scale) 2533 for (const ExtAddrMode &AM : AddrModes) 2534 if (AM.Scale) { 2535 Scale = AM.Scale; 2536 break; 2537 } 2538 break; 2539 case ExtAddrMode::BaseOffsField: 2540 // The offset is no longer a constant, so it goes in ScaledReg with a 2541 // scale of 1. 2542 assert(ScaledReg == nullptr); 2543 ScaledReg = V; 2544 Scale = 1; 2545 BaseOffs = 0; 2546 break; 2547 } 2548 } 2549 }; 2550 2551 } // end anonymous namespace 2552 2553 #ifndef NDEBUG 2554 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2555 AM.print(OS); 2556 return OS; 2557 } 2558 #endif 2559 2560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2561 void ExtAddrMode::print(raw_ostream &OS) const { 2562 bool NeedPlus = false; 2563 OS << "["; 2564 if (InBounds) 2565 OS << "inbounds "; 2566 if (BaseGV) { 2567 OS << (NeedPlus ? " + " : "") 2568 << "GV:"; 2569 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2570 NeedPlus = true; 2571 } 2572 2573 if (BaseOffs) { 2574 OS << (NeedPlus ? " + " : "") 2575 << BaseOffs; 2576 NeedPlus = true; 2577 } 2578 2579 if (BaseReg) { 2580 OS << (NeedPlus ? " + " : "") 2581 << "Base:"; 2582 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2583 NeedPlus = true; 2584 } 2585 if (Scale) { 2586 OS << (NeedPlus ? " + " : "") 2587 << Scale << "*"; 2588 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2589 } 2590 2591 OS << ']'; 2592 } 2593 2594 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2595 print(dbgs()); 2596 dbgs() << '\n'; 2597 } 2598 #endif 2599 2600 namespace { 2601 2602 /// This class provides transaction based operation on the IR. 2603 /// Every change made through this class is recorded in the internal state and 2604 /// can be undone (rollback) until commit is called. 2605 /// CGP does not check if instructions could be speculatively executed when 2606 /// moved. Preserving the original location would pessimize the debugging 2607 /// experience, as well as negatively impact the quality of sample PGO. 2608 class TypePromotionTransaction { 2609 /// This represents the common interface of the individual transaction. 2610 /// Each class implements the logic for doing one specific modification on 2611 /// the IR via the TypePromotionTransaction. 2612 class TypePromotionAction { 2613 protected: 2614 /// The Instruction modified. 2615 Instruction *Inst; 2616 2617 public: 2618 /// Constructor of the action. 2619 /// The constructor performs the related action on the IR. 2620 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2621 2622 virtual ~TypePromotionAction() = default; 2623 2624 /// Undo the modification done by this action. 2625 /// When this method is called, the IR must be in the same state as it was 2626 /// before this action was applied. 2627 /// \pre Undoing the action works if and only if the IR is in the exact same 2628 /// state as it was directly after this action was applied. 2629 virtual void undo() = 0; 2630 2631 /// Advocate every change made by this action. 2632 /// When the results on the IR of the action are to be kept, it is important 2633 /// to call this function, otherwise hidden information may be kept forever. 2634 virtual void commit() { 2635 // Nothing to be done, this action is not doing anything. 2636 } 2637 }; 2638 2639 /// Utility to remember the position of an instruction. 2640 class InsertionHandler { 2641 /// Position of an instruction. 2642 /// Either an instruction: 2643 /// - Is the first in a basic block: BB is used. 2644 /// - Has a previous instruction: PrevInst is used. 2645 union { 2646 Instruction *PrevInst; 2647 BasicBlock *BB; 2648 } Point; 2649 2650 /// Remember whether or not the instruction had a previous instruction. 2651 bool HasPrevInstruction; 2652 2653 public: 2654 /// Record the position of \p Inst. 2655 InsertionHandler(Instruction *Inst) { 2656 BasicBlock::iterator It = Inst->getIterator(); 2657 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2658 if (HasPrevInstruction) 2659 Point.PrevInst = &*--It; 2660 else 2661 Point.BB = Inst->getParent(); 2662 } 2663 2664 /// Insert \p Inst at the recorded position. 2665 void insert(Instruction *Inst) { 2666 if (HasPrevInstruction) { 2667 if (Inst->getParent()) 2668 Inst->removeFromParent(); 2669 Inst->insertAfter(Point.PrevInst); 2670 } else { 2671 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2672 if (Inst->getParent()) 2673 Inst->moveBefore(Position); 2674 else 2675 Inst->insertBefore(Position); 2676 } 2677 } 2678 }; 2679 2680 /// Move an instruction before another. 2681 class InstructionMoveBefore : public TypePromotionAction { 2682 /// Original position of the instruction. 2683 InsertionHandler Position; 2684 2685 public: 2686 /// Move \p Inst before \p Before. 2687 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2688 : TypePromotionAction(Inst), Position(Inst) { 2689 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2690 << "\n"); 2691 Inst->moveBefore(Before); 2692 } 2693 2694 /// Move the instruction back to its original position. 2695 void undo() override { 2696 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2697 Position.insert(Inst); 2698 } 2699 }; 2700 2701 /// Set the operand of an instruction with a new value. 2702 class OperandSetter : public TypePromotionAction { 2703 /// Original operand of the instruction. 2704 Value *Origin; 2705 2706 /// Index of the modified instruction. 2707 unsigned Idx; 2708 2709 public: 2710 /// Set \p Idx operand of \p Inst with \p NewVal. 2711 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2712 : TypePromotionAction(Inst), Idx(Idx) { 2713 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2714 << "for:" << *Inst << "\n" 2715 << "with:" << *NewVal << "\n"); 2716 Origin = Inst->getOperand(Idx); 2717 Inst->setOperand(Idx, NewVal); 2718 } 2719 2720 /// Restore the original value of the instruction. 2721 void undo() override { 2722 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2723 << "for: " << *Inst << "\n" 2724 << "with: " << *Origin << "\n"); 2725 Inst->setOperand(Idx, Origin); 2726 } 2727 }; 2728 2729 /// Hide the operands of an instruction. 2730 /// Do as if this instruction was not using any of its operands. 2731 class OperandsHider : public TypePromotionAction { 2732 /// The list of original operands. 2733 SmallVector<Value *, 4> OriginalValues; 2734 2735 public: 2736 /// Remove \p Inst from the uses of the operands of \p Inst. 2737 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2738 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2739 unsigned NumOpnds = Inst->getNumOperands(); 2740 OriginalValues.reserve(NumOpnds); 2741 for (unsigned It = 0; It < NumOpnds; ++It) { 2742 // Save the current operand. 2743 Value *Val = Inst->getOperand(It); 2744 OriginalValues.push_back(Val); 2745 // Set a dummy one. 2746 // We could use OperandSetter here, but that would imply an overhead 2747 // that we are not willing to pay. 2748 Inst->setOperand(It, UndefValue::get(Val->getType())); 2749 } 2750 } 2751 2752 /// Restore the original list of uses. 2753 void undo() override { 2754 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2755 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2756 Inst->setOperand(It, OriginalValues[It]); 2757 } 2758 }; 2759 2760 /// Build a truncate instruction. 2761 class TruncBuilder : public TypePromotionAction { 2762 Value *Val; 2763 2764 public: 2765 /// Build a truncate instruction of \p Opnd producing a \p Ty 2766 /// result. 2767 /// trunc Opnd to Ty. 2768 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2769 IRBuilder<> Builder(Opnd); 2770 Builder.SetCurrentDebugLocation(DebugLoc()); 2771 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2772 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2773 } 2774 2775 /// Get the built value. 2776 Value *getBuiltValue() { return Val; } 2777 2778 /// Remove the built instruction. 2779 void undo() override { 2780 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2781 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2782 IVal->eraseFromParent(); 2783 } 2784 }; 2785 2786 /// Build a sign extension instruction. 2787 class SExtBuilder : public TypePromotionAction { 2788 Value *Val; 2789 2790 public: 2791 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2792 /// result. 2793 /// sext Opnd to Ty. 2794 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2795 : TypePromotionAction(InsertPt) { 2796 IRBuilder<> Builder(InsertPt); 2797 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2798 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2799 } 2800 2801 /// Get the built value. 2802 Value *getBuiltValue() { return Val; } 2803 2804 /// Remove the built instruction. 2805 void undo() override { 2806 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2807 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2808 IVal->eraseFromParent(); 2809 } 2810 }; 2811 2812 /// Build a zero extension instruction. 2813 class ZExtBuilder : public TypePromotionAction { 2814 Value *Val; 2815 2816 public: 2817 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2818 /// result. 2819 /// zext Opnd to Ty. 2820 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2821 : TypePromotionAction(InsertPt) { 2822 IRBuilder<> Builder(InsertPt); 2823 Builder.SetCurrentDebugLocation(DebugLoc()); 2824 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2825 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2826 } 2827 2828 /// Get the built value. 2829 Value *getBuiltValue() { return Val; } 2830 2831 /// Remove the built instruction. 2832 void undo() override { 2833 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2834 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2835 IVal->eraseFromParent(); 2836 } 2837 }; 2838 2839 /// Mutate an instruction to another type. 2840 class TypeMutator : public TypePromotionAction { 2841 /// Record the original type. 2842 Type *OrigTy; 2843 2844 public: 2845 /// Mutate the type of \p Inst into \p NewTy. 2846 TypeMutator(Instruction *Inst, Type *NewTy) 2847 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2848 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2849 << "\n"); 2850 Inst->mutateType(NewTy); 2851 } 2852 2853 /// Mutate the instruction back to its original type. 2854 void undo() override { 2855 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2856 << "\n"); 2857 Inst->mutateType(OrigTy); 2858 } 2859 }; 2860 2861 /// Replace the uses of an instruction by another instruction. 2862 class UsesReplacer : public TypePromotionAction { 2863 /// Helper structure to keep track of the replaced uses. 2864 struct InstructionAndIdx { 2865 /// The instruction using the instruction. 2866 Instruction *Inst; 2867 2868 /// The index where this instruction is used for Inst. 2869 unsigned Idx; 2870 2871 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2872 : Inst(Inst), Idx(Idx) {} 2873 }; 2874 2875 /// Keep track of the original uses (pair Instruction, Index). 2876 SmallVector<InstructionAndIdx, 4> OriginalUses; 2877 /// Keep track of the debug users. 2878 SmallVector<DbgValueInst *, 1> DbgValues; 2879 2880 /// Keep track of the new value so that we can undo it by replacing 2881 /// instances of the new value with the original value. 2882 Value *New; 2883 2884 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2885 2886 public: 2887 /// Replace all the use of \p Inst by \p New. 2888 UsesReplacer(Instruction *Inst, Value *New) 2889 : TypePromotionAction(Inst), New(New) { 2890 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2891 << "\n"); 2892 // Record the original uses. 2893 for (Use &U : Inst->uses()) { 2894 Instruction *UserI = cast<Instruction>(U.getUser()); 2895 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2896 } 2897 // Record the debug uses separately. They are not in the instruction's 2898 // use list, but they are replaced by RAUW. 2899 findDbgValues(DbgValues, Inst); 2900 2901 // Now, we can replace the uses. 2902 Inst->replaceAllUsesWith(New); 2903 } 2904 2905 /// Reassign the original uses of Inst to Inst. 2906 void undo() override { 2907 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2908 for (InstructionAndIdx &Use : OriginalUses) 2909 Use.Inst->setOperand(Use.Idx, Inst); 2910 // RAUW has replaced all original uses with references to the new value, 2911 // including the debug uses. Since we are undoing the replacements, 2912 // the original debug uses must also be reinstated to maintain the 2913 // correctness and utility of debug value instructions. 2914 for (auto *DVI : DbgValues) 2915 DVI->replaceVariableLocationOp(New, Inst); 2916 } 2917 }; 2918 2919 /// Remove an instruction from the IR. 2920 class InstructionRemover : public TypePromotionAction { 2921 /// Original position of the instruction. 2922 InsertionHandler Inserter; 2923 2924 /// Helper structure to hide all the link to the instruction. In other 2925 /// words, this helps to do as if the instruction was removed. 2926 OperandsHider Hider; 2927 2928 /// Keep track of the uses replaced, if any. 2929 UsesReplacer *Replacer = nullptr; 2930 2931 /// Keep track of instructions removed. 2932 SetOfInstrs &RemovedInsts; 2933 2934 public: 2935 /// Remove all reference of \p Inst and optionally replace all its 2936 /// uses with New. 2937 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2938 /// \pre If !Inst->use_empty(), then New != nullptr 2939 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2940 Value *New = nullptr) 2941 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2942 RemovedInsts(RemovedInsts) { 2943 if (New) 2944 Replacer = new UsesReplacer(Inst, New); 2945 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2946 RemovedInsts.insert(Inst); 2947 /// The instructions removed here will be freed after completing 2948 /// optimizeBlock() for all blocks as we need to keep track of the 2949 /// removed instructions during promotion. 2950 Inst->removeFromParent(); 2951 } 2952 2953 ~InstructionRemover() override { delete Replacer; } 2954 2955 /// Resurrect the instruction and reassign it to the proper uses if 2956 /// new value was provided when build this action. 2957 void undo() override { 2958 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2959 Inserter.insert(Inst); 2960 if (Replacer) 2961 Replacer->undo(); 2962 Hider.undo(); 2963 RemovedInsts.erase(Inst); 2964 } 2965 }; 2966 2967 public: 2968 /// Restoration point. 2969 /// The restoration point is a pointer to an action instead of an iterator 2970 /// because the iterator may be invalidated but not the pointer. 2971 using ConstRestorationPt = const TypePromotionAction *; 2972 2973 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2974 : RemovedInsts(RemovedInsts) {} 2975 2976 /// Advocate every changes made in that transaction. Return true if any change 2977 /// happen. 2978 bool commit(); 2979 2980 /// Undo all the changes made after the given point. 2981 void rollback(ConstRestorationPt Point); 2982 2983 /// Get the current restoration point. 2984 ConstRestorationPt getRestorationPoint() const; 2985 2986 /// \name API for IR modification with state keeping to support rollback. 2987 /// @{ 2988 /// Same as Instruction::setOperand. 2989 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2990 2991 /// Same as Instruction::eraseFromParent. 2992 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2993 2994 /// Same as Value::replaceAllUsesWith. 2995 void replaceAllUsesWith(Instruction *Inst, Value *New); 2996 2997 /// Same as Value::mutateType. 2998 void mutateType(Instruction *Inst, Type *NewTy); 2999 3000 /// Same as IRBuilder::createTrunc. 3001 Value *createTrunc(Instruction *Opnd, Type *Ty); 3002 3003 /// Same as IRBuilder::createSExt. 3004 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3005 3006 /// Same as IRBuilder::createZExt. 3007 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3008 3009 /// Same as Instruction::moveBefore. 3010 void moveBefore(Instruction *Inst, Instruction *Before); 3011 /// @} 3012 3013 private: 3014 /// The ordered list of actions made so far. 3015 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3016 3017 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3018 3019 SetOfInstrs &RemovedInsts; 3020 }; 3021 3022 } // end anonymous namespace 3023 3024 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3025 Value *NewVal) { 3026 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3027 Inst, Idx, NewVal)); 3028 } 3029 3030 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3031 Value *NewVal) { 3032 Actions.push_back( 3033 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3034 Inst, RemovedInsts, NewVal)); 3035 } 3036 3037 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3038 Value *New) { 3039 Actions.push_back( 3040 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3041 } 3042 3043 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3044 Actions.push_back( 3045 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3046 } 3047 3048 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3049 Type *Ty) { 3050 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3051 Value *Val = Ptr->getBuiltValue(); 3052 Actions.push_back(std::move(Ptr)); 3053 return Val; 3054 } 3055 3056 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3057 Value *Opnd, Type *Ty) { 3058 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3059 Value *Val = Ptr->getBuiltValue(); 3060 Actions.push_back(std::move(Ptr)); 3061 return Val; 3062 } 3063 3064 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3065 Value *Opnd, Type *Ty) { 3066 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3067 Value *Val = Ptr->getBuiltValue(); 3068 Actions.push_back(std::move(Ptr)); 3069 return Val; 3070 } 3071 3072 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3073 Instruction *Before) { 3074 Actions.push_back( 3075 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3076 Inst, Before)); 3077 } 3078 3079 TypePromotionTransaction::ConstRestorationPt 3080 TypePromotionTransaction::getRestorationPoint() const { 3081 return !Actions.empty() ? Actions.back().get() : nullptr; 3082 } 3083 3084 bool TypePromotionTransaction::commit() { 3085 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3086 Action->commit(); 3087 bool Modified = !Actions.empty(); 3088 Actions.clear(); 3089 return Modified; 3090 } 3091 3092 void TypePromotionTransaction::rollback( 3093 TypePromotionTransaction::ConstRestorationPt Point) { 3094 while (!Actions.empty() && Point != Actions.back().get()) { 3095 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3096 Curr->undo(); 3097 } 3098 } 3099 3100 namespace { 3101 3102 /// A helper class for matching addressing modes. 3103 /// 3104 /// This encapsulates the logic for matching the target-legal addressing modes. 3105 class AddressingModeMatcher { 3106 SmallVectorImpl<Instruction*> &AddrModeInsts; 3107 const TargetLowering &TLI; 3108 const TargetRegisterInfo &TRI; 3109 const DataLayout &DL; 3110 const LoopInfo &LI; 3111 const std::function<const DominatorTree &()> getDTFn; 3112 3113 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3114 /// the memory instruction that we're computing this address for. 3115 Type *AccessTy; 3116 unsigned AddrSpace; 3117 Instruction *MemoryInst; 3118 3119 /// This is the addressing mode that we're building up. This is 3120 /// part of the return value of this addressing mode matching stuff. 3121 ExtAddrMode &AddrMode; 3122 3123 /// The instructions inserted by other CodeGenPrepare optimizations. 3124 const SetOfInstrs &InsertedInsts; 3125 3126 /// A map from the instructions to their type before promotion. 3127 InstrToOrigTy &PromotedInsts; 3128 3129 /// The ongoing transaction where every action should be registered. 3130 TypePromotionTransaction &TPT; 3131 3132 // A GEP which has too large offset to be folded into the addressing mode. 3133 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3134 3135 /// This is set to true when we should not do profitability checks. 3136 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3137 bool IgnoreProfitability; 3138 3139 /// True if we are optimizing for size. 3140 bool OptSize; 3141 3142 ProfileSummaryInfo *PSI; 3143 BlockFrequencyInfo *BFI; 3144 3145 AddressingModeMatcher( 3146 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3147 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3148 const std::function<const DominatorTree &()> getDTFn, 3149 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3150 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3151 TypePromotionTransaction &TPT, 3152 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3153 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3154 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3155 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3156 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3157 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3158 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3159 IgnoreProfitability = false; 3160 } 3161 3162 public: 3163 /// Find the maximal addressing mode that a load/store of V can fold, 3164 /// give an access type of AccessTy. This returns a list of involved 3165 /// instructions in AddrModeInsts. 3166 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3167 /// optimizations. 3168 /// \p PromotedInsts maps the instructions to their type before promotion. 3169 /// \p The ongoing transaction where every action should be registered. 3170 static ExtAddrMode 3171 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3172 SmallVectorImpl<Instruction *> &AddrModeInsts, 3173 const TargetLowering &TLI, const LoopInfo &LI, 3174 const std::function<const DominatorTree &()> getDTFn, 3175 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3176 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3177 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3178 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3179 ExtAddrMode Result; 3180 3181 bool Success = AddressingModeMatcher( 3182 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3183 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3184 BFI).matchAddr(V, 0); 3185 (void)Success; assert(Success && "Couldn't select *anything*?"); 3186 return Result; 3187 } 3188 3189 private: 3190 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3191 bool matchAddr(Value *Addr, unsigned Depth); 3192 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3193 bool *MovedAway = nullptr); 3194 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3195 ExtAddrMode &AMBefore, 3196 ExtAddrMode &AMAfter); 3197 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3198 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3199 Value *PromotedOperand) const; 3200 }; 3201 3202 class PhiNodeSet; 3203 3204 /// An iterator for PhiNodeSet. 3205 class PhiNodeSetIterator { 3206 PhiNodeSet * const Set; 3207 size_t CurrentIndex = 0; 3208 3209 public: 3210 /// The constructor. Start should point to either a valid element, or be equal 3211 /// to the size of the underlying SmallVector of the PhiNodeSet. 3212 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3213 PHINode * operator*() const; 3214 PhiNodeSetIterator& operator++(); 3215 bool operator==(const PhiNodeSetIterator &RHS) const; 3216 bool operator!=(const PhiNodeSetIterator &RHS) const; 3217 }; 3218 3219 /// Keeps a set of PHINodes. 3220 /// 3221 /// This is a minimal set implementation for a specific use case: 3222 /// It is very fast when there are very few elements, but also provides good 3223 /// performance when there are many. It is similar to SmallPtrSet, but also 3224 /// provides iteration by insertion order, which is deterministic and stable 3225 /// across runs. It is also similar to SmallSetVector, but provides removing 3226 /// elements in O(1) time. This is achieved by not actually removing the element 3227 /// from the underlying vector, so comes at the cost of using more memory, but 3228 /// that is fine, since PhiNodeSets are used as short lived objects. 3229 class PhiNodeSet { 3230 friend class PhiNodeSetIterator; 3231 3232 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3233 using iterator = PhiNodeSetIterator; 3234 3235 /// Keeps the elements in the order of their insertion in the underlying 3236 /// vector. To achieve constant time removal, it never deletes any element. 3237 SmallVector<PHINode *, 32> NodeList; 3238 3239 /// Keeps the elements in the underlying set implementation. This (and not the 3240 /// NodeList defined above) is the source of truth on whether an element 3241 /// is actually in the collection. 3242 MapType NodeMap; 3243 3244 /// Points to the first valid (not deleted) element when the set is not empty 3245 /// and the value is not zero. Equals to the size of the underlying vector 3246 /// when the set is empty. When the value is 0, as in the beginning, the 3247 /// first element may or may not be valid. 3248 size_t FirstValidElement = 0; 3249 3250 public: 3251 /// Inserts a new element to the collection. 3252 /// \returns true if the element is actually added, i.e. was not in the 3253 /// collection before the operation. 3254 bool insert(PHINode *Ptr) { 3255 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3256 NodeList.push_back(Ptr); 3257 return true; 3258 } 3259 return false; 3260 } 3261 3262 /// Removes the element from the collection. 3263 /// \returns whether the element is actually removed, i.e. was in the 3264 /// collection before the operation. 3265 bool erase(PHINode *Ptr) { 3266 if (NodeMap.erase(Ptr)) { 3267 SkipRemovedElements(FirstValidElement); 3268 return true; 3269 } 3270 return false; 3271 } 3272 3273 /// Removes all elements and clears the collection. 3274 void clear() { 3275 NodeMap.clear(); 3276 NodeList.clear(); 3277 FirstValidElement = 0; 3278 } 3279 3280 /// \returns an iterator that will iterate the elements in the order of 3281 /// insertion. 3282 iterator begin() { 3283 if (FirstValidElement == 0) 3284 SkipRemovedElements(FirstValidElement); 3285 return PhiNodeSetIterator(this, FirstValidElement); 3286 } 3287 3288 /// \returns an iterator that points to the end of the collection. 3289 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3290 3291 /// Returns the number of elements in the collection. 3292 size_t size() const { 3293 return NodeMap.size(); 3294 } 3295 3296 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3297 size_t count(PHINode *Ptr) const { 3298 return NodeMap.count(Ptr); 3299 } 3300 3301 private: 3302 /// Updates the CurrentIndex so that it will point to a valid element. 3303 /// 3304 /// If the element of NodeList at CurrentIndex is valid, it does not 3305 /// change it. If there are no more valid elements, it updates CurrentIndex 3306 /// to point to the end of the NodeList. 3307 void SkipRemovedElements(size_t &CurrentIndex) { 3308 while (CurrentIndex < NodeList.size()) { 3309 auto it = NodeMap.find(NodeList[CurrentIndex]); 3310 // If the element has been deleted and added again later, NodeMap will 3311 // point to a different index, so CurrentIndex will still be invalid. 3312 if (it != NodeMap.end() && it->second == CurrentIndex) 3313 break; 3314 ++CurrentIndex; 3315 } 3316 } 3317 }; 3318 3319 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3320 : Set(Set), CurrentIndex(Start) {} 3321 3322 PHINode * PhiNodeSetIterator::operator*() const { 3323 assert(CurrentIndex < Set->NodeList.size() && 3324 "PhiNodeSet access out of range"); 3325 return Set->NodeList[CurrentIndex]; 3326 } 3327 3328 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3329 assert(CurrentIndex < Set->NodeList.size() && 3330 "PhiNodeSet access out of range"); 3331 ++CurrentIndex; 3332 Set->SkipRemovedElements(CurrentIndex); 3333 return *this; 3334 } 3335 3336 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3337 return CurrentIndex == RHS.CurrentIndex; 3338 } 3339 3340 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3341 return !((*this) == RHS); 3342 } 3343 3344 /// Keep track of simplification of Phi nodes. 3345 /// Accept the set of all phi nodes and erase phi node from this set 3346 /// if it is simplified. 3347 class SimplificationTracker { 3348 DenseMap<Value *, Value *> Storage; 3349 const SimplifyQuery &SQ; 3350 // Tracks newly created Phi nodes. The elements are iterated by insertion 3351 // order. 3352 PhiNodeSet AllPhiNodes; 3353 // Tracks newly created Select nodes. 3354 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3355 3356 public: 3357 SimplificationTracker(const SimplifyQuery &sq) 3358 : SQ(sq) {} 3359 3360 Value *Get(Value *V) { 3361 do { 3362 auto SV = Storage.find(V); 3363 if (SV == Storage.end()) 3364 return V; 3365 V = SV->second; 3366 } while (true); 3367 } 3368 3369 Value *Simplify(Value *Val) { 3370 SmallVector<Value *, 32> WorkList; 3371 SmallPtrSet<Value *, 32> Visited; 3372 WorkList.push_back(Val); 3373 while (!WorkList.empty()) { 3374 auto *P = WorkList.pop_back_val(); 3375 if (!Visited.insert(P).second) 3376 continue; 3377 if (auto *PI = dyn_cast<Instruction>(P)) 3378 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3379 for (auto *U : PI->users()) 3380 WorkList.push_back(cast<Value>(U)); 3381 Put(PI, V); 3382 PI->replaceAllUsesWith(V); 3383 if (auto *PHI = dyn_cast<PHINode>(PI)) 3384 AllPhiNodes.erase(PHI); 3385 if (auto *Select = dyn_cast<SelectInst>(PI)) 3386 AllSelectNodes.erase(Select); 3387 PI->eraseFromParent(); 3388 } 3389 } 3390 return Get(Val); 3391 } 3392 3393 void Put(Value *From, Value *To) { 3394 Storage.insert({ From, To }); 3395 } 3396 3397 void ReplacePhi(PHINode *From, PHINode *To) { 3398 Value* OldReplacement = Get(From); 3399 while (OldReplacement != From) { 3400 From = To; 3401 To = dyn_cast<PHINode>(OldReplacement); 3402 OldReplacement = Get(From); 3403 } 3404 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3405 Put(From, To); 3406 From->replaceAllUsesWith(To); 3407 AllPhiNodes.erase(From); 3408 From->eraseFromParent(); 3409 } 3410 3411 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3412 3413 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3414 3415 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3416 3417 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3418 3419 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3420 3421 void destroyNewNodes(Type *CommonType) { 3422 // For safe erasing, replace the uses with dummy value first. 3423 auto *Dummy = UndefValue::get(CommonType); 3424 for (auto *I : AllPhiNodes) { 3425 I->replaceAllUsesWith(Dummy); 3426 I->eraseFromParent(); 3427 } 3428 AllPhiNodes.clear(); 3429 for (auto *I : AllSelectNodes) { 3430 I->replaceAllUsesWith(Dummy); 3431 I->eraseFromParent(); 3432 } 3433 AllSelectNodes.clear(); 3434 } 3435 }; 3436 3437 /// A helper class for combining addressing modes. 3438 class AddressingModeCombiner { 3439 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3440 typedef std::pair<PHINode *, PHINode *> PHIPair; 3441 3442 private: 3443 /// The addressing modes we've collected. 3444 SmallVector<ExtAddrMode, 16> AddrModes; 3445 3446 /// The field in which the AddrModes differ, when we have more than one. 3447 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3448 3449 /// Are the AddrModes that we have all just equal to their original values? 3450 bool AllAddrModesTrivial = true; 3451 3452 /// Common Type for all different fields in addressing modes. 3453 Type *CommonType; 3454 3455 /// SimplifyQuery for simplifyInstruction utility. 3456 const SimplifyQuery &SQ; 3457 3458 /// Original Address. 3459 Value *Original; 3460 3461 public: 3462 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3463 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3464 3465 /// Get the combined AddrMode 3466 const ExtAddrMode &getAddrMode() const { 3467 return AddrModes[0]; 3468 } 3469 3470 /// Add a new AddrMode if it's compatible with the AddrModes we already 3471 /// have. 3472 /// \return True iff we succeeded in doing so. 3473 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3474 // Take note of if we have any non-trivial AddrModes, as we need to detect 3475 // when all AddrModes are trivial as then we would introduce a phi or select 3476 // which just duplicates what's already there. 3477 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3478 3479 // If this is the first addrmode then everything is fine. 3480 if (AddrModes.empty()) { 3481 AddrModes.emplace_back(NewAddrMode); 3482 return true; 3483 } 3484 3485 // Figure out how different this is from the other address modes, which we 3486 // can do just by comparing against the first one given that we only care 3487 // about the cumulative difference. 3488 ExtAddrMode::FieldName ThisDifferentField = 3489 AddrModes[0].compare(NewAddrMode); 3490 if (DifferentField == ExtAddrMode::NoField) 3491 DifferentField = ThisDifferentField; 3492 else if (DifferentField != ThisDifferentField) 3493 DifferentField = ExtAddrMode::MultipleFields; 3494 3495 // If NewAddrMode differs in more than one dimension we cannot handle it. 3496 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3497 3498 // If Scale Field is different then we reject. 3499 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3500 3501 // We also must reject the case when base offset is different and 3502 // scale reg is not null, we cannot handle this case due to merge of 3503 // different offsets will be used as ScaleReg. 3504 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3505 !NewAddrMode.ScaledReg); 3506 3507 // We also must reject the case when GV is different and BaseReg installed 3508 // due to we want to use base reg as a merge of GV values. 3509 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3510 !NewAddrMode.HasBaseReg); 3511 3512 // Even if NewAddMode is the same we still need to collect it due to 3513 // original value is different. And later we will need all original values 3514 // as anchors during finding the common Phi node. 3515 if (CanHandle) 3516 AddrModes.emplace_back(NewAddrMode); 3517 else 3518 AddrModes.clear(); 3519 3520 return CanHandle; 3521 } 3522 3523 /// Combine the addressing modes we've collected into a single 3524 /// addressing mode. 3525 /// \return True iff we successfully combined them or we only had one so 3526 /// didn't need to combine them anyway. 3527 bool combineAddrModes() { 3528 // If we have no AddrModes then they can't be combined. 3529 if (AddrModes.size() == 0) 3530 return false; 3531 3532 // A single AddrMode can trivially be combined. 3533 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3534 return true; 3535 3536 // If the AddrModes we collected are all just equal to the value they are 3537 // derived from then combining them wouldn't do anything useful. 3538 if (AllAddrModesTrivial) 3539 return false; 3540 3541 if (!addrModeCombiningAllowed()) 3542 return false; 3543 3544 // Build a map between <original value, basic block where we saw it> to 3545 // value of base register. 3546 // Bail out if there is no common type. 3547 FoldAddrToValueMapping Map; 3548 if (!initializeMap(Map)) 3549 return false; 3550 3551 Value *CommonValue = findCommon(Map); 3552 if (CommonValue) 3553 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3554 return CommonValue != nullptr; 3555 } 3556 3557 private: 3558 /// Initialize Map with anchor values. For address seen 3559 /// we set the value of different field saw in this address. 3560 /// At the same time we find a common type for different field we will 3561 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3562 /// Return false if there is no common type found. 3563 bool initializeMap(FoldAddrToValueMapping &Map) { 3564 // Keep track of keys where the value is null. We will need to replace it 3565 // with constant null when we know the common type. 3566 SmallVector<Value *, 2> NullValue; 3567 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3568 for (auto &AM : AddrModes) { 3569 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3570 if (DV) { 3571 auto *Type = DV->getType(); 3572 if (CommonType && CommonType != Type) 3573 return false; 3574 CommonType = Type; 3575 Map[AM.OriginalValue] = DV; 3576 } else { 3577 NullValue.push_back(AM.OriginalValue); 3578 } 3579 } 3580 assert(CommonType && "At least one non-null value must be!"); 3581 for (auto *V : NullValue) 3582 Map[V] = Constant::getNullValue(CommonType); 3583 return true; 3584 } 3585 3586 /// We have mapping between value A and other value B where B was a field in 3587 /// addressing mode represented by A. Also we have an original value C 3588 /// representing an address we start with. Traversing from C through phi and 3589 /// selects we ended up with A's in a map. This utility function tries to find 3590 /// a value V which is a field in addressing mode C and traversing through phi 3591 /// nodes and selects we will end up in corresponded values B in a map. 3592 /// The utility will create a new Phi/Selects if needed. 3593 // The simple example looks as follows: 3594 // BB1: 3595 // p1 = b1 + 40 3596 // br cond BB2, BB3 3597 // BB2: 3598 // p2 = b2 + 40 3599 // br BB3 3600 // BB3: 3601 // p = phi [p1, BB1], [p2, BB2] 3602 // v = load p 3603 // Map is 3604 // p1 -> b1 3605 // p2 -> b2 3606 // Request is 3607 // p -> ? 3608 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3609 Value *findCommon(FoldAddrToValueMapping &Map) { 3610 // Tracks the simplification of newly created phi nodes. The reason we use 3611 // this mapping is because we will add new created Phi nodes in AddrToBase. 3612 // Simplification of Phi nodes is recursive, so some Phi node may 3613 // be simplified after we added it to AddrToBase. In reality this 3614 // simplification is possible only if original phi/selects were not 3615 // simplified yet. 3616 // Using this mapping we can find the current value in AddrToBase. 3617 SimplificationTracker ST(SQ); 3618 3619 // First step, DFS to create PHI nodes for all intermediate blocks. 3620 // Also fill traverse order for the second step. 3621 SmallVector<Value *, 32> TraverseOrder; 3622 InsertPlaceholders(Map, TraverseOrder, ST); 3623 3624 // Second Step, fill new nodes by merged values and simplify if possible. 3625 FillPlaceholders(Map, TraverseOrder, ST); 3626 3627 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3628 ST.destroyNewNodes(CommonType); 3629 return nullptr; 3630 } 3631 3632 // Now we'd like to match New Phi nodes to existed ones. 3633 unsigned PhiNotMatchedCount = 0; 3634 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3635 ST.destroyNewNodes(CommonType); 3636 return nullptr; 3637 } 3638 3639 auto *Result = ST.Get(Map.find(Original)->second); 3640 if (Result) { 3641 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3642 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3643 } 3644 return Result; 3645 } 3646 3647 /// Try to match PHI node to Candidate. 3648 /// Matcher tracks the matched Phi nodes. 3649 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3650 SmallSetVector<PHIPair, 8> &Matcher, 3651 PhiNodeSet &PhiNodesToMatch) { 3652 SmallVector<PHIPair, 8> WorkList; 3653 Matcher.insert({ PHI, Candidate }); 3654 SmallSet<PHINode *, 8> MatchedPHIs; 3655 MatchedPHIs.insert(PHI); 3656 WorkList.push_back({ PHI, Candidate }); 3657 SmallSet<PHIPair, 8> Visited; 3658 while (!WorkList.empty()) { 3659 auto Item = WorkList.pop_back_val(); 3660 if (!Visited.insert(Item).second) 3661 continue; 3662 // We iterate over all incoming values to Phi to compare them. 3663 // If values are different and both of them Phi and the first one is a 3664 // Phi we added (subject to match) and both of them is in the same basic 3665 // block then we can match our pair if values match. So we state that 3666 // these values match and add it to work list to verify that. 3667 for (auto B : Item.first->blocks()) { 3668 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3669 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3670 if (FirstValue == SecondValue) 3671 continue; 3672 3673 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3674 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3675 3676 // One of them is not Phi or 3677 // The first one is not Phi node from the set we'd like to match or 3678 // Phi nodes from different basic blocks then 3679 // we will not be able to match. 3680 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3681 FirstPhi->getParent() != SecondPhi->getParent()) 3682 return false; 3683 3684 // If we already matched them then continue. 3685 if (Matcher.count({ FirstPhi, SecondPhi })) 3686 continue; 3687 // So the values are different and does not match. So we need them to 3688 // match. (But we register no more than one match per PHI node, so that 3689 // we won't later try to replace them twice.) 3690 if (MatchedPHIs.insert(FirstPhi).second) 3691 Matcher.insert({ FirstPhi, SecondPhi }); 3692 // But me must check it. 3693 WorkList.push_back({ FirstPhi, SecondPhi }); 3694 } 3695 } 3696 return true; 3697 } 3698 3699 /// For the given set of PHI nodes (in the SimplificationTracker) try 3700 /// to find their equivalents. 3701 /// Returns false if this matching fails and creation of new Phi is disabled. 3702 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3703 unsigned &PhiNotMatchedCount) { 3704 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3705 // order, so the replacements (ReplacePhi) are also done in a deterministic 3706 // order. 3707 SmallSetVector<PHIPair, 8> Matched; 3708 SmallPtrSet<PHINode *, 8> WillNotMatch; 3709 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3710 while (PhiNodesToMatch.size()) { 3711 PHINode *PHI = *PhiNodesToMatch.begin(); 3712 3713 // Add us, if no Phi nodes in the basic block we do not match. 3714 WillNotMatch.clear(); 3715 WillNotMatch.insert(PHI); 3716 3717 // Traverse all Phis until we found equivalent or fail to do that. 3718 bool IsMatched = false; 3719 for (auto &P : PHI->getParent()->phis()) { 3720 // Skip new Phi nodes. 3721 if (PhiNodesToMatch.count(&P)) 3722 continue; 3723 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3724 break; 3725 // If it does not match, collect all Phi nodes from matcher. 3726 // if we end up with no match, them all these Phi nodes will not match 3727 // later. 3728 for (auto M : Matched) 3729 WillNotMatch.insert(M.first); 3730 Matched.clear(); 3731 } 3732 if (IsMatched) { 3733 // Replace all matched values and erase them. 3734 for (auto MV : Matched) 3735 ST.ReplacePhi(MV.first, MV.second); 3736 Matched.clear(); 3737 continue; 3738 } 3739 // If we are not allowed to create new nodes then bail out. 3740 if (!AllowNewPhiNodes) 3741 return false; 3742 // Just remove all seen values in matcher. They will not match anything. 3743 PhiNotMatchedCount += WillNotMatch.size(); 3744 for (auto *P : WillNotMatch) 3745 PhiNodesToMatch.erase(P); 3746 } 3747 return true; 3748 } 3749 /// Fill the placeholders with values from predecessors and simplify them. 3750 void FillPlaceholders(FoldAddrToValueMapping &Map, 3751 SmallVectorImpl<Value *> &TraverseOrder, 3752 SimplificationTracker &ST) { 3753 while (!TraverseOrder.empty()) { 3754 Value *Current = TraverseOrder.pop_back_val(); 3755 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3756 Value *V = Map[Current]; 3757 3758 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3759 // CurrentValue also must be Select. 3760 auto *CurrentSelect = cast<SelectInst>(Current); 3761 auto *TrueValue = CurrentSelect->getTrueValue(); 3762 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3763 Select->setTrueValue(ST.Get(Map[TrueValue])); 3764 auto *FalseValue = CurrentSelect->getFalseValue(); 3765 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3766 Select->setFalseValue(ST.Get(Map[FalseValue])); 3767 } else { 3768 // Must be a Phi node then. 3769 auto *PHI = cast<PHINode>(V); 3770 // Fill the Phi node with values from predecessors. 3771 for (auto *B : predecessors(PHI->getParent())) { 3772 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3773 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3774 PHI->addIncoming(ST.Get(Map[PV]), B); 3775 } 3776 } 3777 Map[Current] = ST.Simplify(V); 3778 } 3779 } 3780 3781 /// Starting from original value recursively iterates over def-use chain up to 3782 /// known ending values represented in a map. For each traversed phi/select 3783 /// inserts a placeholder Phi or Select. 3784 /// Reports all new created Phi/Select nodes by adding them to set. 3785 /// Also reports and order in what values have been traversed. 3786 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3787 SmallVectorImpl<Value *> &TraverseOrder, 3788 SimplificationTracker &ST) { 3789 SmallVector<Value *, 32> Worklist; 3790 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3791 "Address must be a Phi or Select node"); 3792 auto *Dummy = UndefValue::get(CommonType); 3793 Worklist.push_back(Original); 3794 while (!Worklist.empty()) { 3795 Value *Current = Worklist.pop_back_val(); 3796 // if it is already visited or it is an ending value then skip it. 3797 if (Map.find(Current) != Map.end()) 3798 continue; 3799 TraverseOrder.push_back(Current); 3800 3801 // CurrentValue must be a Phi node or select. All others must be covered 3802 // by anchors. 3803 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3804 // Is it OK to get metadata from OrigSelect?! 3805 // Create a Select placeholder with dummy value. 3806 SelectInst *Select = SelectInst::Create( 3807 CurrentSelect->getCondition(), Dummy, Dummy, 3808 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3809 Map[Current] = Select; 3810 ST.insertNewSelect(Select); 3811 // We are interested in True and False values. 3812 Worklist.push_back(CurrentSelect->getTrueValue()); 3813 Worklist.push_back(CurrentSelect->getFalseValue()); 3814 } else { 3815 // It must be a Phi node then. 3816 PHINode *CurrentPhi = cast<PHINode>(Current); 3817 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3818 PHINode *PHI = 3819 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3820 Map[Current] = PHI; 3821 ST.insertNewPhi(PHI); 3822 append_range(Worklist, CurrentPhi->incoming_values()); 3823 } 3824 } 3825 } 3826 3827 bool addrModeCombiningAllowed() { 3828 if (DisableComplexAddrModes) 3829 return false; 3830 switch (DifferentField) { 3831 default: 3832 return false; 3833 case ExtAddrMode::BaseRegField: 3834 return AddrSinkCombineBaseReg; 3835 case ExtAddrMode::BaseGVField: 3836 return AddrSinkCombineBaseGV; 3837 case ExtAddrMode::BaseOffsField: 3838 return AddrSinkCombineBaseOffs; 3839 case ExtAddrMode::ScaledRegField: 3840 return AddrSinkCombineScaledReg; 3841 } 3842 } 3843 }; 3844 } // end anonymous namespace 3845 3846 /// Try adding ScaleReg*Scale to the current addressing mode. 3847 /// Return true and update AddrMode if this addr mode is legal for the target, 3848 /// false if not. 3849 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3850 unsigned Depth) { 3851 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3852 // mode. Just process that directly. 3853 if (Scale == 1) 3854 return matchAddr(ScaleReg, Depth); 3855 3856 // If the scale is 0, it takes nothing to add this. 3857 if (Scale == 0) 3858 return true; 3859 3860 // If we already have a scale of this value, we can add to it, otherwise, we 3861 // need an available scale field. 3862 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3863 return false; 3864 3865 ExtAddrMode TestAddrMode = AddrMode; 3866 3867 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3868 // [A+B + A*7] -> [B+A*8]. 3869 TestAddrMode.Scale += Scale; 3870 TestAddrMode.ScaledReg = ScaleReg; 3871 3872 // If the new address isn't legal, bail out. 3873 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3874 return false; 3875 3876 // It was legal, so commit it. 3877 AddrMode = TestAddrMode; 3878 3879 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3880 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3881 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3882 // go any further: we can reuse it and cannot eliminate it. 3883 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3884 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3885 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3886 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3887 TestAddrMode.InBounds = false; 3888 TestAddrMode.ScaledReg = AddLHS; 3889 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3890 3891 // If this addressing mode is legal, commit it and remember that we folded 3892 // this instruction. 3893 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3894 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3895 AddrMode = TestAddrMode; 3896 return true; 3897 } 3898 // Restore status quo. 3899 TestAddrMode = AddrMode; 3900 } 3901 3902 // If this is an add recurrence with a constant step, return the increment 3903 // instruction and the canonicalized step. 3904 auto GetConstantStep = [this](const Value * V) 3905 ->Optional<std::pair<Instruction *, APInt> > { 3906 auto *PN = dyn_cast<PHINode>(V); 3907 if (!PN) 3908 return None; 3909 auto IVInc = getIVIncrement(PN, &LI); 3910 if (!IVInc) 3911 return None; 3912 // TODO: The result of the intrinsics above is two-compliment. However when 3913 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3914 // If it has nuw or nsw flags, we need to make sure that these flags are 3915 // inferrable at the point of memory instruction. Otherwise we are replacing 3916 // well-defined two-compliment computation with poison. Currently, to avoid 3917 // potentially complex analysis needed to prove this, we reject such cases. 3918 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3919 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3920 return None; 3921 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3922 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3923 return None; 3924 }; 3925 3926 // Try to account for the following special case: 3927 // 1. ScaleReg is an inductive variable; 3928 // 2. We use it with non-zero offset; 3929 // 3. IV's increment is available at the point of memory instruction. 3930 // 3931 // In this case, we may reuse the IV increment instead of the IV Phi to 3932 // achieve the following advantages: 3933 // 1. If IV step matches the offset, we will have no need in the offset; 3934 // 2. Even if they don't match, we will reduce the overlap of living IV 3935 // and IV increment, that will potentially lead to better register 3936 // assignment. 3937 if (AddrMode.BaseOffs) { 3938 if (auto IVStep = GetConstantStep(ScaleReg)) { 3939 Instruction *IVInc = IVStep->first; 3940 // The following assert is important to ensure a lack of infinite loops. 3941 // This transforms is (intentionally) the inverse of the one just above. 3942 // If they don't agree on the definition of an increment, we'd alternate 3943 // back and forth indefinitely. 3944 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3945 APInt Step = IVStep->second; 3946 APInt Offset = Step * AddrMode.Scale; 3947 if (Offset.isSignedIntN(64)) { 3948 TestAddrMode.InBounds = false; 3949 TestAddrMode.ScaledReg = IVInc; 3950 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3951 // If this addressing mode is legal, commit it.. 3952 // (Note that we defer the (expensive) domtree base legality check 3953 // to the very last possible point.) 3954 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3955 getDTFn().dominates(IVInc, MemoryInst)) { 3956 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3957 AddrMode = TestAddrMode; 3958 return true; 3959 } 3960 // Restore status quo. 3961 TestAddrMode = AddrMode; 3962 } 3963 } 3964 } 3965 3966 // Otherwise, just return what we have. 3967 return true; 3968 } 3969 3970 /// This is a little filter, which returns true if an addressing computation 3971 /// involving I might be folded into a load/store accessing it. 3972 /// This doesn't need to be perfect, but needs to accept at least 3973 /// the set of instructions that MatchOperationAddr can. 3974 static bool MightBeFoldableInst(Instruction *I) { 3975 switch (I->getOpcode()) { 3976 case Instruction::BitCast: 3977 case Instruction::AddrSpaceCast: 3978 // Don't touch identity bitcasts. 3979 if (I->getType() == I->getOperand(0)->getType()) 3980 return false; 3981 return I->getType()->isIntOrPtrTy(); 3982 case Instruction::PtrToInt: 3983 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3984 return true; 3985 case Instruction::IntToPtr: 3986 // We know the input is intptr_t, so this is foldable. 3987 return true; 3988 case Instruction::Add: 3989 return true; 3990 case Instruction::Mul: 3991 case Instruction::Shl: 3992 // Can only handle X*C and X << C. 3993 return isa<ConstantInt>(I->getOperand(1)); 3994 case Instruction::GetElementPtr: 3995 return true; 3996 default: 3997 return false; 3998 } 3999 } 4000 4001 /// Check whether or not \p Val is a legal instruction for \p TLI. 4002 /// \note \p Val is assumed to be the product of some type promotion. 4003 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4004 /// to be legal, as the non-promoted value would have had the same state. 4005 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4006 const DataLayout &DL, Value *Val) { 4007 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4008 if (!PromotedInst) 4009 return false; 4010 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4011 // If the ISDOpcode is undefined, it was undefined before the promotion. 4012 if (!ISDOpcode) 4013 return true; 4014 // Otherwise, check if the promoted instruction is legal or not. 4015 return TLI.isOperationLegalOrCustom( 4016 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4017 } 4018 4019 namespace { 4020 4021 /// Hepler class to perform type promotion. 4022 class TypePromotionHelper { 4023 /// Utility function to add a promoted instruction \p ExtOpnd to 4024 /// \p PromotedInsts and record the type of extension we have seen. 4025 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4026 Instruction *ExtOpnd, 4027 bool IsSExt) { 4028 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4029 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4030 if (It != PromotedInsts.end()) { 4031 // If the new extension is same as original, the information in 4032 // PromotedInsts[ExtOpnd] is still correct. 4033 if (It->second.getInt() == ExtTy) 4034 return; 4035 4036 // Now the new extension is different from old extension, we make 4037 // the type information invalid by setting extension type to 4038 // BothExtension. 4039 ExtTy = BothExtension; 4040 } 4041 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4042 } 4043 4044 /// Utility function to query the original type of instruction \p Opnd 4045 /// with a matched extension type. If the extension doesn't match, we 4046 /// cannot use the information we had on the original type. 4047 /// BothExtension doesn't match any extension type. 4048 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4049 Instruction *Opnd, 4050 bool IsSExt) { 4051 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4052 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4053 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4054 return It->second.getPointer(); 4055 return nullptr; 4056 } 4057 4058 /// Utility function to check whether or not a sign or zero extension 4059 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4060 /// either using the operands of \p Inst or promoting \p Inst. 4061 /// The type of the extension is defined by \p IsSExt. 4062 /// In other words, check if: 4063 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4064 /// #1 Promotion applies: 4065 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4066 /// #2 Operand reuses: 4067 /// ext opnd1 to ConsideredExtType. 4068 /// \p PromotedInsts maps the instructions to their type before promotion. 4069 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4070 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4071 4072 /// Utility function to determine if \p OpIdx should be promoted when 4073 /// promoting \p Inst. 4074 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4075 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4076 } 4077 4078 /// Utility function to promote the operand of \p Ext when this 4079 /// operand is a promotable trunc or sext or zext. 4080 /// \p PromotedInsts maps the instructions to their type before promotion. 4081 /// \p CreatedInstsCost[out] contains the cost of all instructions 4082 /// created to promote the operand of Ext. 4083 /// Newly added extensions are inserted in \p Exts. 4084 /// Newly added truncates are inserted in \p Truncs. 4085 /// Should never be called directly. 4086 /// \return The promoted value which is used instead of Ext. 4087 static Value *promoteOperandForTruncAndAnyExt( 4088 Instruction *Ext, TypePromotionTransaction &TPT, 4089 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4090 SmallVectorImpl<Instruction *> *Exts, 4091 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4092 4093 /// Utility function to promote the operand of \p Ext when this 4094 /// operand is promotable and is not a supported trunc or sext. 4095 /// \p PromotedInsts maps the instructions to their type before promotion. 4096 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4097 /// created to promote the operand of Ext. 4098 /// Newly added extensions are inserted in \p Exts. 4099 /// Newly added truncates are inserted in \p Truncs. 4100 /// Should never be called directly. 4101 /// \return The promoted value which is used instead of Ext. 4102 static Value *promoteOperandForOther(Instruction *Ext, 4103 TypePromotionTransaction &TPT, 4104 InstrToOrigTy &PromotedInsts, 4105 unsigned &CreatedInstsCost, 4106 SmallVectorImpl<Instruction *> *Exts, 4107 SmallVectorImpl<Instruction *> *Truncs, 4108 const TargetLowering &TLI, bool IsSExt); 4109 4110 /// \see promoteOperandForOther. 4111 static Value *signExtendOperandForOther( 4112 Instruction *Ext, TypePromotionTransaction &TPT, 4113 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4114 SmallVectorImpl<Instruction *> *Exts, 4115 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4116 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4117 Exts, Truncs, TLI, true); 4118 } 4119 4120 /// \see promoteOperandForOther. 4121 static Value *zeroExtendOperandForOther( 4122 Instruction *Ext, TypePromotionTransaction &TPT, 4123 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4124 SmallVectorImpl<Instruction *> *Exts, 4125 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4126 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4127 Exts, Truncs, TLI, false); 4128 } 4129 4130 public: 4131 /// Type for the utility function that promotes the operand of Ext. 4132 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4133 InstrToOrigTy &PromotedInsts, 4134 unsigned &CreatedInstsCost, 4135 SmallVectorImpl<Instruction *> *Exts, 4136 SmallVectorImpl<Instruction *> *Truncs, 4137 const TargetLowering &TLI); 4138 4139 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4140 /// action to promote the operand of \p Ext instead of using Ext. 4141 /// \return NULL if no promotable action is possible with the current 4142 /// sign extension. 4143 /// \p InsertedInsts keeps track of all the instructions inserted by the 4144 /// other CodeGenPrepare optimizations. This information is important 4145 /// because we do not want to promote these instructions as CodeGenPrepare 4146 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4147 /// \p PromotedInsts maps the instructions to their type before promotion. 4148 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4149 const TargetLowering &TLI, 4150 const InstrToOrigTy &PromotedInsts); 4151 }; 4152 4153 } // end anonymous namespace 4154 4155 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4156 Type *ConsideredExtType, 4157 const InstrToOrigTy &PromotedInsts, 4158 bool IsSExt) { 4159 // The promotion helper does not know how to deal with vector types yet. 4160 // To be able to fix that, we would need to fix the places where we 4161 // statically extend, e.g., constants and such. 4162 if (Inst->getType()->isVectorTy()) 4163 return false; 4164 4165 // We can always get through zext. 4166 if (isa<ZExtInst>(Inst)) 4167 return true; 4168 4169 // sext(sext) is ok too. 4170 if (IsSExt && isa<SExtInst>(Inst)) 4171 return true; 4172 4173 // We can get through binary operator, if it is legal. In other words, the 4174 // binary operator must have a nuw or nsw flag. 4175 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4176 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4177 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4178 (IsSExt && BinOp->hasNoSignedWrap()))) 4179 return true; 4180 4181 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4182 if ((Inst->getOpcode() == Instruction::And || 4183 Inst->getOpcode() == Instruction::Or)) 4184 return true; 4185 4186 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4187 if (Inst->getOpcode() == Instruction::Xor) { 4188 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4189 // Make sure it is not a NOT. 4190 if (Cst && !Cst->getValue().isAllOnes()) 4191 return true; 4192 } 4193 4194 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4195 // It may change a poisoned value into a regular value, like 4196 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4197 // poisoned value regular value 4198 // It should be OK since undef covers valid value. 4199 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4200 return true; 4201 4202 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4203 // It may change a poisoned value into a regular value, like 4204 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4205 // poisoned value regular value 4206 // It should be OK since undef covers valid value. 4207 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4208 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4209 if (ExtInst->hasOneUse()) { 4210 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4211 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4212 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4213 if (Cst && 4214 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4215 return true; 4216 } 4217 } 4218 } 4219 4220 // Check if we can do the following simplification. 4221 // ext(trunc(opnd)) --> ext(opnd) 4222 if (!isa<TruncInst>(Inst)) 4223 return false; 4224 4225 Value *OpndVal = Inst->getOperand(0); 4226 // Check if we can use this operand in the extension. 4227 // If the type is larger than the result type of the extension, we cannot. 4228 if (!OpndVal->getType()->isIntegerTy() || 4229 OpndVal->getType()->getIntegerBitWidth() > 4230 ConsideredExtType->getIntegerBitWidth()) 4231 return false; 4232 4233 // If the operand of the truncate is not an instruction, we will not have 4234 // any information on the dropped bits. 4235 // (Actually we could for constant but it is not worth the extra logic). 4236 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4237 if (!Opnd) 4238 return false; 4239 4240 // Check if the source of the type is narrow enough. 4241 // I.e., check that trunc just drops extended bits of the same kind of 4242 // the extension. 4243 // #1 get the type of the operand and check the kind of the extended bits. 4244 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4245 if (OpndType) 4246 ; 4247 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4248 OpndType = Opnd->getOperand(0)->getType(); 4249 else 4250 return false; 4251 4252 // #2 check that the truncate just drops extended bits. 4253 return Inst->getType()->getIntegerBitWidth() >= 4254 OpndType->getIntegerBitWidth(); 4255 } 4256 4257 TypePromotionHelper::Action TypePromotionHelper::getAction( 4258 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4259 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4260 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4261 "Unexpected instruction type"); 4262 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4263 Type *ExtTy = Ext->getType(); 4264 bool IsSExt = isa<SExtInst>(Ext); 4265 // If the operand of the extension is not an instruction, we cannot 4266 // get through. 4267 // If it, check we can get through. 4268 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4269 return nullptr; 4270 4271 // Do not promote if the operand has been added by codegenprepare. 4272 // Otherwise, it means we are undoing an optimization that is likely to be 4273 // redone, thus causing potential infinite loop. 4274 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4275 return nullptr; 4276 4277 // SExt or Trunc instructions. 4278 // Return the related handler. 4279 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4280 isa<ZExtInst>(ExtOpnd)) 4281 return promoteOperandForTruncAndAnyExt; 4282 4283 // Regular instruction. 4284 // Abort early if we will have to insert non-free instructions. 4285 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4286 return nullptr; 4287 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4288 } 4289 4290 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4291 Instruction *SExt, TypePromotionTransaction &TPT, 4292 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4293 SmallVectorImpl<Instruction *> *Exts, 4294 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4295 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4296 // get through it and this method should not be called. 4297 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4298 Value *ExtVal = SExt; 4299 bool HasMergedNonFreeExt = false; 4300 if (isa<ZExtInst>(SExtOpnd)) { 4301 // Replace s|zext(zext(opnd)) 4302 // => zext(opnd). 4303 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4304 Value *ZExt = 4305 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4306 TPT.replaceAllUsesWith(SExt, ZExt); 4307 TPT.eraseInstruction(SExt); 4308 ExtVal = ZExt; 4309 } else { 4310 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4311 // => z|sext(opnd). 4312 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4313 } 4314 CreatedInstsCost = 0; 4315 4316 // Remove dead code. 4317 if (SExtOpnd->use_empty()) 4318 TPT.eraseInstruction(SExtOpnd); 4319 4320 // Check if the extension is still needed. 4321 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4322 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4323 if (ExtInst) { 4324 if (Exts) 4325 Exts->push_back(ExtInst); 4326 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4327 } 4328 return ExtVal; 4329 } 4330 4331 // At this point we have: ext ty opnd to ty. 4332 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4333 Value *NextVal = ExtInst->getOperand(0); 4334 TPT.eraseInstruction(ExtInst, NextVal); 4335 return NextVal; 4336 } 4337 4338 Value *TypePromotionHelper::promoteOperandForOther( 4339 Instruction *Ext, TypePromotionTransaction &TPT, 4340 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4341 SmallVectorImpl<Instruction *> *Exts, 4342 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4343 bool IsSExt) { 4344 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4345 // get through it and this method should not be called. 4346 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4347 CreatedInstsCost = 0; 4348 if (!ExtOpnd->hasOneUse()) { 4349 // ExtOpnd will be promoted. 4350 // All its uses, but Ext, will need to use a truncated value of the 4351 // promoted version. 4352 // Create the truncate now. 4353 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4354 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4355 // Insert it just after the definition. 4356 ITrunc->moveAfter(ExtOpnd); 4357 if (Truncs) 4358 Truncs->push_back(ITrunc); 4359 } 4360 4361 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4362 // Restore the operand of Ext (which has been replaced by the previous call 4363 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4364 TPT.setOperand(Ext, 0, ExtOpnd); 4365 } 4366 4367 // Get through the Instruction: 4368 // 1. Update its type. 4369 // 2. Replace the uses of Ext by Inst. 4370 // 3. Extend each operand that needs to be extended. 4371 4372 // Remember the original type of the instruction before promotion. 4373 // This is useful to know that the high bits are sign extended bits. 4374 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4375 // Step #1. 4376 TPT.mutateType(ExtOpnd, Ext->getType()); 4377 // Step #2. 4378 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4379 // Step #3. 4380 Instruction *ExtForOpnd = Ext; 4381 4382 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4383 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4384 ++OpIdx) { 4385 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4386 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4387 !shouldExtOperand(ExtOpnd, OpIdx)) { 4388 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4389 continue; 4390 } 4391 // Check if we can statically extend the operand. 4392 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4393 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4394 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4395 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4396 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4397 : Cst->getValue().zext(BitWidth); 4398 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4399 continue; 4400 } 4401 // UndefValue are typed, so we have to statically sign extend them. 4402 if (isa<UndefValue>(Opnd)) { 4403 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4404 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4405 continue; 4406 } 4407 4408 // Otherwise we have to explicitly sign extend the operand. 4409 // Check if Ext was reused to extend an operand. 4410 if (!ExtForOpnd) { 4411 // If yes, create a new one. 4412 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4413 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4414 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4415 if (!isa<Instruction>(ValForExtOpnd)) { 4416 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4417 continue; 4418 } 4419 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4420 } 4421 if (Exts) 4422 Exts->push_back(ExtForOpnd); 4423 TPT.setOperand(ExtForOpnd, 0, Opnd); 4424 4425 // Move the sign extension before the insertion point. 4426 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4427 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4428 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4429 // If more sext are required, new instructions will have to be created. 4430 ExtForOpnd = nullptr; 4431 } 4432 if (ExtForOpnd == Ext) { 4433 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4434 TPT.eraseInstruction(Ext); 4435 } 4436 return ExtOpnd; 4437 } 4438 4439 /// Check whether or not promoting an instruction to a wider type is profitable. 4440 /// \p NewCost gives the cost of extension instructions created by the 4441 /// promotion. 4442 /// \p OldCost gives the cost of extension instructions before the promotion 4443 /// plus the number of instructions that have been 4444 /// matched in the addressing mode the promotion. 4445 /// \p PromotedOperand is the value that has been promoted. 4446 /// \return True if the promotion is profitable, false otherwise. 4447 bool AddressingModeMatcher::isPromotionProfitable( 4448 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4449 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4450 << '\n'); 4451 // The cost of the new extensions is greater than the cost of the 4452 // old extension plus what we folded. 4453 // This is not profitable. 4454 if (NewCost > OldCost) 4455 return false; 4456 if (NewCost < OldCost) 4457 return true; 4458 // The promotion is neutral but it may help folding the sign extension in 4459 // loads for instance. 4460 // Check that we did not create an illegal instruction. 4461 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4462 } 4463 4464 /// Given an instruction or constant expr, see if we can fold the operation 4465 /// into the addressing mode. If so, update the addressing mode and return 4466 /// true, otherwise return false without modifying AddrMode. 4467 /// If \p MovedAway is not NULL, it contains the information of whether or 4468 /// not AddrInst has to be folded into the addressing mode on success. 4469 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4470 /// because it has been moved away. 4471 /// Thus AddrInst must not be added in the matched instructions. 4472 /// This state can happen when AddrInst is a sext, since it may be moved away. 4473 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4474 /// not be referenced anymore. 4475 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4476 unsigned Depth, 4477 bool *MovedAway) { 4478 // Avoid exponential behavior on extremely deep expression trees. 4479 if (Depth >= 5) return false; 4480 4481 // By default, all matched instructions stay in place. 4482 if (MovedAway) 4483 *MovedAway = false; 4484 4485 switch (Opcode) { 4486 case Instruction::PtrToInt: 4487 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4488 return matchAddr(AddrInst->getOperand(0), Depth); 4489 case Instruction::IntToPtr: { 4490 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4491 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4492 // This inttoptr is a no-op if the integer type is pointer sized. 4493 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4494 return matchAddr(AddrInst->getOperand(0), Depth); 4495 return false; 4496 } 4497 case Instruction::BitCast: 4498 // BitCast is always a noop, and we can handle it as long as it is 4499 // int->int or pointer->pointer (we don't want int<->fp or something). 4500 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4501 // Don't touch identity bitcasts. These were probably put here by LSR, 4502 // and we don't want to mess around with them. Assume it knows what it 4503 // is doing. 4504 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4505 return matchAddr(AddrInst->getOperand(0), Depth); 4506 return false; 4507 case Instruction::AddrSpaceCast: { 4508 unsigned SrcAS 4509 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4510 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4511 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4512 return matchAddr(AddrInst->getOperand(0), Depth); 4513 return false; 4514 } 4515 case Instruction::Add: { 4516 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4517 ExtAddrMode BackupAddrMode = AddrMode; 4518 unsigned OldSize = AddrModeInsts.size(); 4519 // Start a transaction at this point. 4520 // The LHS may match but not the RHS. 4521 // Therefore, we need a higher level restoration point to undo partially 4522 // matched operation. 4523 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4524 TPT.getRestorationPoint(); 4525 4526 AddrMode.InBounds = false; 4527 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4528 matchAddr(AddrInst->getOperand(0), Depth+1)) 4529 return true; 4530 4531 // Restore the old addr mode info. 4532 AddrMode = BackupAddrMode; 4533 AddrModeInsts.resize(OldSize); 4534 TPT.rollback(LastKnownGood); 4535 4536 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4537 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4538 matchAddr(AddrInst->getOperand(1), Depth+1)) 4539 return true; 4540 4541 // Otherwise we definitely can't merge the ADD in. 4542 AddrMode = BackupAddrMode; 4543 AddrModeInsts.resize(OldSize); 4544 TPT.rollback(LastKnownGood); 4545 break; 4546 } 4547 //case Instruction::Or: 4548 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4549 //break; 4550 case Instruction::Mul: 4551 case Instruction::Shl: { 4552 // Can only handle X*C and X << C. 4553 AddrMode.InBounds = false; 4554 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4555 if (!RHS || RHS->getBitWidth() > 64) 4556 return false; 4557 int64_t Scale = RHS->getSExtValue(); 4558 if (Opcode == Instruction::Shl) 4559 Scale = 1LL << Scale; 4560 4561 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4562 } 4563 case Instruction::GetElementPtr: { 4564 // Scan the GEP. We check it if it contains constant offsets and at most 4565 // one variable offset. 4566 int VariableOperand = -1; 4567 unsigned VariableScale = 0; 4568 4569 int64_t ConstantOffset = 0; 4570 gep_type_iterator GTI = gep_type_begin(AddrInst); 4571 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4572 if (StructType *STy = GTI.getStructTypeOrNull()) { 4573 const StructLayout *SL = DL.getStructLayout(STy); 4574 unsigned Idx = 4575 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4576 ConstantOffset += SL->getElementOffset(Idx); 4577 } else { 4578 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4579 if (TS.isNonZero()) { 4580 // The optimisations below currently only work for fixed offsets. 4581 if (TS.isScalable()) 4582 return false; 4583 int64_t TypeSize = TS.getFixedSize(); 4584 if (ConstantInt *CI = 4585 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4586 const APInt &CVal = CI->getValue(); 4587 if (CVal.getMinSignedBits() <= 64) { 4588 ConstantOffset += CVal.getSExtValue() * TypeSize; 4589 continue; 4590 } 4591 } 4592 // We only allow one variable index at the moment. 4593 if (VariableOperand != -1) 4594 return false; 4595 4596 // Remember the variable index. 4597 VariableOperand = i; 4598 VariableScale = TypeSize; 4599 } 4600 } 4601 } 4602 4603 // A common case is for the GEP to only do a constant offset. In this case, 4604 // just add it to the disp field and check validity. 4605 if (VariableOperand == -1) { 4606 AddrMode.BaseOffs += ConstantOffset; 4607 if (ConstantOffset == 0 || 4608 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4609 // Check to see if we can fold the base pointer in too. 4610 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4611 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4612 AddrMode.InBounds = false; 4613 return true; 4614 } 4615 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4616 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4617 ConstantOffset > 0) { 4618 // Record GEPs with non-zero offsets as candidates for splitting in the 4619 // event that the offset cannot fit into the r+i addressing mode. 4620 // Simple and common case that only one GEP is used in calculating the 4621 // address for the memory access. 4622 Value *Base = AddrInst->getOperand(0); 4623 auto *BaseI = dyn_cast<Instruction>(Base); 4624 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4625 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4626 (BaseI && !isa<CastInst>(BaseI) && 4627 !isa<GetElementPtrInst>(BaseI))) { 4628 // Make sure the parent block allows inserting non-PHI instructions 4629 // before the terminator. 4630 BasicBlock *Parent = 4631 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4632 if (!Parent->getTerminator()->isEHPad()) 4633 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4634 } 4635 } 4636 AddrMode.BaseOffs -= ConstantOffset; 4637 return false; 4638 } 4639 4640 // Save the valid addressing mode in case we can't match. 4641 ExtAddrMode BackupAddrMode = AddrMode; 4642 unsigned OldSize = AddrModeInsts.size(); 4643 4644 // See if the scale and offset amount is valid for this target. 4645 AddrMode.BaseOffs += ConstantOffset; 4646 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4647 AddrMode.InBounds = false; 4648 4649 // Match the base operand of the GEP. 4650 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4651 // If it couldn't be matched, just stuff the value in a register. 4652 if (AddrMode.HasBaseReg) { 4653 AddrMode = BackupAddrMode; 4654 AddrModeInsts.resize(OldSize); 4655 return false; 4656 } 4657 AddrMode.HasBaseReg = true; 4658 AddrMode.BaseReg = AddrInst->getOperand(0); 4659 } 4660 4661 // Match the remaining variable portion of the GEP. 4662 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4663 Depth)) { 4664 // If it couldn't be matched, try stuffing the base into a register 4665 // instead of matching it, and retrying the match of the scale. 4666 AddrMode = BackupAddrMode; 4667 AddrModeInsts.resize(OldSize); 4668 if (AddrMode.HasBaseReg) 4669 return false; 4670 AddrMode.HasBaseReg = true; 4671 AddrMode.BaseReg = AddrInst->getOperand(0); 4672 AddrMode.BaseOffs += ConstantOffset; 4673 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4674 VariableScale, Depth)) { 4675 // If even that didn't work, bail. 4676 AddrMode = BackupAddrMode; 4677 AddrModeInsts.resize(OldSize); 4678 return false; 4679 } 4680 } 4681 4682 return true; 4683 } 4684 case Instruction::SExt: 4685 case Instruction::ZExt: { 4686 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4687 if (!Ext) 4688 return false; 4689 4690 // Try to move this ext out of the way of the addressing mode. 4691 // Ask for a method for doing so. 4692 TypePromotionHelper::Action TPH = 4693 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4694 if (!TPH) 4695 return false; 4696 4697 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4698 TPT.getRestorationPoint(); 4699 unsigned CreatedInstsCost = 0; 4700 unsigned ExtCost = !TLI.isExtFree(Ext); 4701 Value *PromotedOperand = 4702 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4703 // SExt has been moved away. 4704 // Thus either it will be rematched later in the recursive calls or it is 4705 // gone. Anyway, we must not fold it into the addressing mode at this point. 4706 // E.g., 4707 // op = add opnd, 1 4708 // idx = ext op 4709 // addr = gep base, idx 4710 // is now: 4711 // promotedOpnd = ext opnd <- no match here 4712 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4713 // addr = gep base, op <- match 4714 if (MovedAway) 4715 *MovedAway = true; 4716 4717 assert(PromotedOperand && 4718 "TypePromotionHelper should have filtered out those cases"); 4719 4720 ExtAddrMode BackupAddrMode = AddrMode; 4721 unsigned OldSize = AddrModeInsts.size(); 4722 4723 if (!matchAddr(PromotedOperand, Depth) || 4724 // The total of the new cost is equal to the cost of the created 4725 // instructions. 4726 // The total of the old cost is equal to the cost of the extension plus 4727 // what we have saved in the addressing mode. 4728 !isPromotionProfitable(CreatedInstsCost, 4729 ExtCost + (AddrModeInsts.size() - OldSize), 4730 PromotedOperand)) { 4731 AddrMode = BackupAddrMode; 4732 AddrModeInsts.resize(OldSize); 4733 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4734 TPT.rollback(LastKnownGood); 4735 return false; 4736 } 4737 return true; 4738 } 4739 } 4740 return false; 4741 } 4742 4743 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4744 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4745 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4746 /// for the target. 4747 /// 4748 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4749 // Start a transaction at this point that we will rollback if the matching 4750 // fails. 4751 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4752 TPT.getRestorationPoint(); 4753 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4754 if (CI->getValue().isSignedIntN(64)) { 4755 // Fold in immediates if legal for the target. 4756 AddrMode.BaseOffs += CI->getSExtValue(); 4757 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4758 return true; 4759 AddrMode.BaseOffs -= CI->getSExtValue(); 4760 } 4761 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4762 // If this is a global variable, try to fold it into the addressing mode. 4763 if (!AddrMode.BaseGV) { 4764 AddrMode.BaseGV = GV; 4765 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4766 return true; 4767 AddrMode.BaseGV = nullptr; 4768 } 4769 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4770 ExtAddrMode BackupAddrMode = AddrMode; 4771 unsigned OldSize = AddrModeInsts.size(); 4772 4773 // Check to see if it is possible to fold this operation. 4774 bool MovedAway = false; 4775 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4776 // This instruction may have been moved away. If so, there is nothing 4777 // to check here. 4778 if (MovedAway) 4779 return true; 4780 // Okay, it's possible to fold this. Check to see if it is actually 4781 // *profitable* to do so. We use a simple cost model to avoid increasing 4782 // register pressure too much. 4783 if (I->hasOneUse() || 4784 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4785 AddrModeInsts.push_back(I); 4786 return true; 4787 } 4788 4789 // It isn't profitable to do this, roll back. 4790 //cerr << "NOT FOLDING: " << *I; 4791 AddrMode = BackupAddrMode; 4792 AddrModeInsts.resize(OldSize); 4793 TPT.rollback(LastKnownGood); 4794 } 4795 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4796 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4797 return true; 4798 TPT.rollback(LastKnownGood); 4799 } else if (isa<ConstantPointerNull>(Addr)) { 4800 // Null pointer gets folded without affecting the addressing mode. 4801 return true; 4802 } 4803 4804 // Worse case, the target should support [reg] addressing modes. :) 4805 if (!AddrMode.HasBaseReg) { 4806 AddrMode.HasBaseReg = true; 4807 AddrMode.BaseReg = Addr; 4808 // Still check for legality in case the target supports [imm] but not [i+r]. 4809 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4810 return true; 4811 AddrMode.HasBaseReg = false; 4812 AddrMode.BaseReg = nullptr; 4813 } 4814 4815 // If the base register is already taken, see if we can do [r+r]. 4816 if (AddrMode.Scale == 0) { 4817 AddrMode.Scale = 1; 4818 AddrMode.ScaledReg = Addr; 4819 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4820 return true; 4821 AddrMode.Scale = 0; 4822 AddrMode.ScaledReg = nullptr; 4823 } 4824 // Couldn't match. 4825 TPT.rollback(LastKnownGood); 4826 return false; 4827 } 4828 4829 /// Check to see if all uses of OpVal by the specified inline asm call are due 4830 /// to memory operands. If so, return true, otherwise return false. 4831 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4832 const TargetLowering &TLI, 4833 const TargetRegisterInfo &TRI) { 4834 const Function *F = CI->getFunction(); 4835 TargetLowering::AsmOperandInfoVector TargetConstraints = 4836 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4837 4838 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4839 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4840 4841 // Compute the constraint code and ConstraintType to use. 4842 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4843 4844 // If this asm operand is our Value*, and if it isn't an indirect memory 4845 // operand, we can't fold it! 4846 if (OpInfo.CallOperandVal == OpVal && 4847 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4848 !OpInfo.isIndirect)) 4849 return false; 4850 } 4851 4852 return true; 4853 } 4854 4855 // Max number of memory uses to look at before aborting the search to conserve 4856 // compile time. 4857 static constexpr int MaxMemoryUsesToScan = 20; 4858 4859 /// Recursively walk all the uses of I until we find a memory use. 4860 /// If we find an obviously non-foldable instruction, return true. 4861 /// Add accessed addresses and types to MemoryUses. 4862 static bool FindAllMemoryUses( 4863 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4864 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4865 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4866 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4867 // If we already considered this instruction, we're done. 4868 if (!ConsideredInsts.insert(I).second) 4869 return false; 4870 4871 // If this is an obviously unfoldable instruction, bail out. 4872 if (!MightBeFoldableInst(I)) 4873 return true; 4874 4875 // Loop over all the uses, recursively processing them. 4876 for (Use &U : I->uses()) { 4877 // Conservatively return true if we're seeing a large number or a deep chain 4878 // of users. This avoids excessive compilation times in pathological cases. 4879 if (SeenInsts++ >= MaxMemoryUsesToScan) 4880 return true; 4881 4882 Instruction *UserI = cast<Instruction>(U.getUser()); 4883 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4884 MemoryUses.push_back({U.get(), LI->getType()}); 4885 continue; 4886 } 4887 4888 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4889 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4890 return true; // Storing addr, not into addr. 4891 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4892 continue; 4893 } 4894 4895 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4896 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4897 return true; // Storing addr, not into addr. 4898 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4899 continue; 4900 } 4901 4902 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4903 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4904 return true; // Storing addr, not into addr. 4905 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4906 continue; 4907 } 4908 4909 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4910 if (CI->hasFnAttr(Attribute::Cold)) { 4911 // If this is a cold call, we can sink the addressing calculation into 4912 // the cold path. See optimizeCallInst 4913 bool OptForSize = OptSize || 4914 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4915 if (!OptForSize) 4916 continue; 4917 } 4918 4919 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4920 if (!IA) return true; 4921 4922 // If this is a memory operand, we're cool, otherwise bail out. 4923 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4924 return true; 4925 continue; 4926 } 4927 4928 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4929 PSI, BFI, SeenInsts)) 4930 return true; 4931 } 4932 4933 return false; 4934 } 4935 4936 /// Return true if Val is already known to be live at the use site that we're 4937 /// folding it into. If so, there is no cost to include it in the addressing 4938 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4939 /// instruction already. 4940 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4941 Value *KnownLive2) { 4942 // If Val is either of the known-live values, we know it is live! 4943 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4944 return true; 4945 4946 // All values other than instructions and arguments (e.g. constants) are live. 4947 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4948 4949 // If Val is a constant sized alloca in the entry block, it is live, this is 4950 // true because it is just a reference to the stack/frame pointer, which is 4951 // live for the whole function. 4952 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4953 if (AI->isStaticAlloca()) 4954 return true; 4955 4956 // Check to see if this value is already used in the memory instruction's 4957 // block. If so, it's already live into the block at the very least, so we 4958 // can reasonably fold it. 4959 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4960 } 4961 4962 /// It is possible for the addressing mode of the machine to fold the specified 4963 /// instruction into a load or store that ultimately uses it. 4964 /// However, the specified instruction has multiple uses. 4965 /// Given this, it may actually increase register pressure to fold it 4966 /// into the load. For example, consider this code: 4967 /// 4968 /// X = ... 4969 /// Y = X+1 4970 /// use(Y) -> nonload/store 4971 /// Z = Y+1 4972 /// load Z 4973 /// 4974 /// In this case, Y has multiple uses, and can be folded into the load of Z 4975 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4976 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4977 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4978 /// number of computations either. 4979 /// 4980 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4981 /// X was live across 'load Z' for other reasons, we actually *would* want to 4982 /// fold the addressing mode in the Z case. This would make Y die earlier. 4983 bool AddressingModeMatcher:: 4984 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4985 ExtAddrMode &AMAfter) { 4986 if (IgnoreProfitability) return true; 4987 4988 // AMBefore is the addressing mode before this instruction was folded into it, 4989 // and AMAfter is the addressing mode after the instruction was folded. Get 4990 // the set of registers referenced by AMAfter and subtract out those 4991 // referenced by AMBefore: this is the set of values which folding in this 4992 // address extends the lifetime of. 4993 // 4994 // Note that there are only two potential values being referenced here, 4995 // BaseReg and ScaleReg (global addresses are always available, as are any 4996 // folded immediates). 4997 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4998 4999 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5000 // lifetime wasn't extended by adding this instruction. 5001 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5002 BaseReg = nullptr; 5003 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5004 ScaledReg = nullptr; 5005 5006 // If folding this instruction (and it's subexprs) didn't extend any live 5007 // ranges, we're ok with it. 5008 if (!BaseReg && !ScaledReg) 5009 return true; 5010 5011 // If all uses of this instruction can have the address mode sunk into them, 5012 // we can remove the addressing mode and effectively trade one live register 5013 // for another (at worst.) In this context, folding an addressing mode into 5014 // the use is just a particularly nice way of sinking it. 5015 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5016 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5017 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5018 PSI, BFI)) 5019 return false; // Has a non-memory, non-foldable use! 5020 5021 // Now that we know that all uses of this instruction are part of a chain of 5022 // computation involving only operations that could theoretically be folded 5023 // into a memory use, loop over each of these memory operation uses and see 5024 // if they could *actually* fold the instruction. The assumption is that 5025 // addressing modes are cheap and that duplicating the computation involved 5026 // many times is worthwhile, even on a fastpath. For sinking candidates 5027 // (i.e. cold call sites), this serves as a way to prevent excessive code 5028 // growth since most architectures have some reasonable small and fast way to 5029 // compute an effective address. (i.e LEA on x86) 5030 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5031 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5032 Value *Address = Pair.first; 5033 Type *AddressAccessTy = Pair.second; 5034 unsigned AS = Address->getType()->getPointerAddressSpace(); 5035 5036 // Do a match against the root of this address, ignoring profitability. This 5037 // will tell us if the addressing mode for the memory operation will 5038 // *actually* cover the shared instruction. 5039 ExtAddrMode Result; 5040 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5041 0); 5042 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5043 TPT.getRestorationPoint(); 5044 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5045 AddressAccessTy, AS, MemoryInst, Result, 5046 InsertedInsts, PromotedInsts, TPT, 5047 LargeOffsetGEP, OptSize, PSI, BFI); 5048 Matcher.IgnoreProfitability = true; 5049 bool Success = Matcher.matchAddr(Address, 0); 5050 (void)Success; assert(Success && "Couldn't select *anything*?"); 5051 5052 // The match was to check the profitability, the changes made are not 5053 // part of the original matcher. Therefore, they should be dropped 5054 // otherwise the original matcher will not present the right state. 5055 TPT.rollback(LastKnownGood); 5056 5057 // If the match didn't cover I, then it won't be shared by it. 5058 if (!is_contained(MatchedAddrModeInsts, I)) 5059 return false; 5060 5061 MatchedAddrModeInsts.clear(); 5062 } 5063 5064 return true; 5065 } 5066 5067 /// Return true if the specified values are defined in a 5068 /// different basic block than BB. 5069 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5070 if (Instruction *I = dyn_cast<Instruction>(V)) 5071 return I->getParent() != BB; 5072 return false; 5073 } 5074 5075 /// Sink addressing mode computation immediate before MemoryInst if doing so 5076 /// can be done without increasing register pressure. The need for the 5077 /// register pressure constraint means this can end up being an all or nothing 5078 /// decision for all uses of the same addressing computation. 5079 /// 5080 /// Load and Store Instructions often have addressing modes that can do 5081 /// significant amounts of computation. As such, instruction selection will try 5082 /// to get the load or store to do as much computation as possible for the 5083 /// program. The problem is that isel can only see within a single block. As 5084 /// such, we sink as much legal addressing mode work into the block as possible. 5085 /// 5086 /// This method is used to optimize both load/store and inline asms with memory 5087 /// operands. It's also used to sink addressing computations feeding into cold 5088 /// call sites into their (cold) basic block. 5089 /// 5090 /// The motivation for handling sinking into cold blocks is that doing so can 5091 /// both enable other address mode sinking (by satisfying the register pressure 5092 /// constraint above), and reduce register pressure globally (by removing the 5093 /// addressing mode computation from the fast path entirely.). 5094 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5095 Type *AccessTy, unsigned AddrSpace) { 5096 Value *Repl = Addr; 5097 5098 // Try to collapse single-value PHI nodes. This is necessary to undo 5099 // unprofitable PRE transformations. 5100 SmallVector<Value*, 8> worklist; 5101 SmallPtrSet<Value*, 16> Visited; 5102 worklist.push_back(Addr); 5103 5104 // Use a worklist to iteratively look through PHI and select nodes, and 5105 // ensure that the addressing mode obtained from the non-PHI/select roots of 5106 // the graph are compatible. 5107 bool PhiOrSelectSeen = false; 5108 SmallVector<Instruction*, 16> AddrModeInsts; 5109 const SimplifyQuery SQ(*DL, TLInfo); 5110 AddressingModeCombiner AddrModes(SQ, Addr); 5111 TypePromotionTransaction TPT(RemovedInsts); 5112 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5113 TPT.getRestorationPoint(); 5114 while (!worklist.empty()) { 5115 Value *V = worklist.pop_back_val(); 5116 5117 // We allow traversing cyclic Phi nodes. 5118 // In case of success after this loop we ensure that traversing through 5119 // Phi nodes ends up with all cases to compute address of the form 5120 // BaseGV + Base + Scale * Index + Offset 5121 // where Scale and Offset are constans and BaseGV, Base and Index 5122 // are exactly the same Values in all cases. 5123 // It means that BaseGV, Scale and Offset dominate our memory instruction 5124 // and have the same value as they had in address computation represented 5125 // as Phi. So we can safely sink address computation to memory instruction. 5126 if (!Visited.insert(V).second) 5127 continue; 5128 5129 // For a PHI node, push all of its incoming values. 5130 if (PHINode *P = dyn_cast<PHINode>(V)) { 5131 append_range(worklist, P->incoming_values()); 5132 PhiOrSelectSeen = true; 5133 continue; 5134 } 5135 // Similar for select. 5136 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5137 worklist.push_back(SI->getFalseValue()); 5138 worklist.push_back(SI->getTrueValue()); 5139 PhiOrSelectSeen = true; 5140 continue; 5141 } 5142 5143 // For non-PHIs, determine the addressing mode being computed. Note that 5144 // the result may differ depending on what other uses our candidate 5145 // addressing instructions might have. 5146 AddrModeInsts.clear(); 5147 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5148 0); 5149 // Defer the query (and possible computation of) the dom tree to point of 5150 // actual use. It's expected that most address matches don't actually need 5151 // the domtree. 5152 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5153 Function *F = MemoryInst->getParent()->getParent(); 5154 return this->getDT(*F); 5155 }; 5156 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5157 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5158 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5159 BFI.get()); 5160 5161 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5162 if (GEP && !NewGEPBases.count(GEP)) { 5163 // If splitting the underlying data structure can reduce the offset of a 5164 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5165 // previously split data structures. 5166 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5167 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5168 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5169 } 5170 5171 NewAddrMode.OriginalValue = V; 5172 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5173 break; 5174 } 5175 5176 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5177 // or we have multiple but either couldn't combine them or combining them 5178 // wouldn't do anything useful, bail out now. 5179 if (!AddrModes.combineAddrModes()) { 5180 TPT.rollback(LastKnownGood); 5181 return false; 5182 } 5183 bool Modified = TPT.commit(); 5184 5185 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5186 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5187 5188 // If all the instructions matched are already in this BB, don't do anything. 5189 // If we saw a Phi node then it is not local definitely, and if we saw a select 5190 // then we want to push the address calculation past it even if it's already 5191 // in this BB. 5192 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5193 return IsNonLocalValue(V, MemoryInst->getParent()); 5194 })) { 5195 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5196 << "\n"); 5197 return Modified; 5198 } 5199 5200 // Insert this computation right after this user. Since our caller is 5201 // scanning from the top of the BB to the bottom, reuse of the expr are 5202 // guaranteed to happen later. 5203 IRBuilder<> Builder(MemoryInst); 5204 5205 // Now that we determined the addressing expression we want to use and know 5206 // that we have to sink it into this block. Check to see if we have already 5207 // done this for some other load/store instr in this block. If so, reuse 5208 // the computation. Before attempting reuse, check if the address is valid 5209 // as it may have been erased. 5210 5211 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5212 5213 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5214 if (SunkAddr) { 5215 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5216 << " for " << *MemoryInst << "\n"); 5217 if (SunkAddr->getType() != Addr->getType()) 5218 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5219 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5220 SubtargetInfo->addrSinkUsingGEPs())) { 5221 // By default, we use the GEP-based method when AA is used later. This 5222 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5223 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5224 << " for " << *MemoryInst << "\n"); 5225 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5226 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5227 5228 // First, find the pointer. 5229 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5230 ResultPtr = AddrMode.BaseReg; 5231 AddrMode.BaseReg = nullptr; 5232 } 5233 5234 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5235 // We can't add more than one pointer together, nor can we scale a 5236 // pointer (both of which seem meaningless). 5237 if (ResultPtr || AddrMode.Scale != 1) 5238 return Modified; 5239 5240 ResultPtr = AddrMode.ScaledReg; 5241 AddrMode.Scale = 0; 5242 } 5243 5244 // It is only safe to sign extend the BaseReg if we know that the math 5245 // required to create it did not overflow before we extend it. Since 5246 // the original IR value was tossed in favor of a constant back when 5247 // the AddrMode was created we need to bail out gracefully if widths 5248 // do not match instead of extending it. 5249 // 5250 // (See below for code to add the scale.) 5251 if (AddrMode.Scale) { 5252 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5253 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5254 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5255 return Modified; 5256 } 5257 5258 if (AddrMode.BaseGV) { 5259 if (ResultPtr) 5260 return Modified; 5261 5262 ResultPtr = AddrMode.BaseGV; 5263 } 5264 5265 // If the real base value actually came from an inttoptr, then the matcher 5266 // will look through it and provide only the integer value. In that case, 5267 // use it here. 5268 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5269 if (!ResultPtr && AddrMode.BaseReg) { 5270 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5271 "sunkaddr"); 5272 AddrMode.BaseReg = nullptr; 5273 } else if (!ResultPtr && AddrMode.Scale == 1) { 5274 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5275 "sunkaddr"); 5276 AddrMode.Scale = 0; 5277 } 5278 } 5279 5280 if (!ResultPtr && 5281 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5282 SunkAddr = Constant::getNullValue(Addr->getType()); 5283 } else if (!ResultPtr) { 5284 return Modified; 5285 } else { 5286 Type *I8PtrTy = 5287 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5288 Type *I8Ty = Builder.getInt8Ty(); 5289 5290 // Start with the base register. Do this first so that subsequent address 5291 // matching finds it last, which will prevent it from trying to match it 5292 // as the scaled value in case it happens to be a mul. That would be 5293 // problematic if we've sunk a different mul for the scale, because then 5294 // we'd end up sinking both muls. 5295 if (AddrMode.BaseReg) { 5296 Value *V = AddrMode.BaseReg; 5297 if (V->getType() != IntPtrTy) 5298 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5299 5300 ResultIndex = V; 5301 } 5302 5303 // Add the scale value. 5304 if (AddrMode.Scale) { 5305 Value *V = AddrMode.ScaledReg; 5306 if (V->getType() == IntPtrTy) { 5307 // done. 5308 } else { 5309 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5310 cast<IntegerType>(V->getType())->getBitWidth() && 5311 "We can't transform if ScaledReg is too narrow"); 5312 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5313 } 5314 5315 if (AddrMode.Scale != 1) 5316 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5317 "sunkaddr"); 5318 if (ResultIndex) 5319 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5320 else 5321 ResultIndex = V; 5322 } 5323 5324 // Add in the Base Offset if present. 5325 if (AddrMode.BaseOffs) { 5326 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5327 if (ResultIndex) { 5328 // We need to add this separately from the scale above to help with 5329 // SDAG consecutive load/store merging. 5330 if (ResultPtr->getType() != I8PtrTy) 5331 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5332 ResultPtr = 5333 AddrMode.InBounds 5334 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5335 "sunkaddr") 5336 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5337 } 5338 5339 ResultIndex = V; 5340 } 5341 5342 if (!ResultIndex) { 5343 SunkAddr = ResultPtr; 5344 } else { 5345 if (ResultPtr->getType() != I8PtrTy) 5346 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5347 SunkAddr = 5348 AddrMode.InBounds 5349 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5350 "sunkaddr") 5351 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5352 } 5353 5354 if (SunkAddr->getType() != Addr->getType()) 5355 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5356 } 5357 } else { 5358 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5359 // non-integral pointers, so in that case bail out now. 5360 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5361 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5362 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5363 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5364 if (DL->isNonIntegralPointerType(Addr->getType()) || 5365 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5366 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5367 (AddrMode.BaseGV && 5368 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5369 return Modified; 5370 5371 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5372 << " for " << *MemoryInst << "\n"); 5373 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5374 Value *Result = nullptr; 5375 5376 // Start with the base register. Do this first so that subsequent address 5377 // matching finds it last, which will prevent it from trying to match it 5378 // as the scaled value in case it happens to be a mul. That would be 5379 // problematic if we've sunk a different mul for the scale, because then 5380 // we'd end up sinking both muls. 5381 if (AddrMode.BaseReg) { 5382 Value *V = AddrMode.BaseReg; 5383 if (V->getType()->isPointerTy()) 5384 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5385 if (V->getType() != IntPtrTy) 5386 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5387 Result = V; 5388 } 5389 5390 // Add the scale value. 5391 if (AddrMode.Scale) { 5392 Value *V = AddrMode.ScaledReg; 5393 if (V->getType() == IntPtrTy) { 5394 // done. 5395 } else if (V->getType()->isPointerTy()) { 5396 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5397 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5398 cast<IntegerType>(V->getType())->getBitWidth()) { 5399 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5400 } else { 5401 // It is only safe to sign extend the BaseReg if we know that the math 5402 // required to create it did not overflow before we extend it. Since 5403 // the original IR value was tossed in favor of a constant back when 5404 // the AddrMode was created we need to bail out gracefully if widths 5405 // do not match instead of extending it. 5406 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5407 if (I && (Result != AddrMode.BaseReg)) 5408 I->eraseFromParent(); 5409 return Modified; 5410 } 5411 if (AddrMode.Scale != 1) 5412 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5413 "sunkaddr"); 5414 if (Result) 5415 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5416 else 5417 Result = V; 5418 } 5419 5420 // Add in the BaseGV if present. 5421 if (AddrMode.BaseGV) { 5422 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5423 if (Result) 5424 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5425 else 5426 Result = V; 5427 } 5428 5429 // Add in the Base Offset if present. 5430 if (AddrMode.BaseOffs) { 5431 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5432 if (Result) 5433 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5434 else 5435 Result = V; 5436 } 5437 5438 if (!Result) 5439 SunkAddr = Constant::getNullValue(Addr->getType()); 5440 else 5441 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5442 } 5443 5444 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5445 // Store the newly computed address into the cache. In the case we reused a 5446 // value, this should be idempotent. 5447 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5448 5449 // If we have no uses, recursively delete the value and all dead instructions 5450 // using it. 5451 if (Repl->use_empty()) { 5452 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5453 RecursivelyDeleteTriviallyDeadInstructions( 5454 Repl, TLInfo, nullptr, 5455 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5456 }); 5457 } 5458 ++NumMemoryInsts; 5459 return true; 5460 } 5461 5462 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5463 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5464 /// only handle a 2 operand GEP in the same basic block or a splat constant 5465 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5466 /// index. 5467 /// 5468 /// If the existing GEP has a vector base pointer that is splat, we can look 5469 /// through the splat to find the scalar pointer. If we can't find a scalar 5470 /// pointer there's nothing we can do. 5471 /// 5472 /// If we have a GEP with more than 2 indices where the middle indices are all 5473 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5474 /// 5475 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5476 /// followed by a GEP with an all zeroes vector index. This will enable 5477 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5478 /// zero index. 5479 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5480 Value *Ptr) { 5481 Value *NewAddr; 5482 5483 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5484 // Don't optimize GEPs that don't have indices. 5485 if (!GEP->hasIndices()) 5486 return false; 5487 5488 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5489 // FIXME: We should support this by sinking the GEP. 5490 if (MemoryInst->getParent() != GEP->getParent()) 5491 return false; 5492 5493 SmallVector<Value *, 2> Ops(GEP->operands()); 5494 5495 bool RewriteGEP = false; 5496 5497 if (Ops[0]->getType()->isVectorTy()) { 5498 Ops[0] = getSplatValue(Ops[0]); 5499 if (!Ops[0]) 5500 return false; 5501 RewriteGEP = true; 5502 } 5503 5504 unsigned FinalIndex = Ops.size() - 1; 5505 5506 // Ensure all but the last index is 0. 5507 // FIXME: This isn't strictly required. All that's required is that they are 5508 // all scalars or splats. 5509 for (unsigned i = 1; i < FinalIndex; ++i) { 5510 auto *C = dyn_cast<Constant>(Ops[i]); 5511 if (!C) 5512 return false; 5513 if (isa<VectorType>(C->getType())) 5514 C = C->getSplatValue(); 5515 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5516 if (!CI || !CI->isZero()) 5517 return false; 5518 // Scalarize the index if needed. 5519 Ops[i] = CI; 5520 } 5521 5522 // Try to scalarize the final index. 5523 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5524 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5525 auto *C = dyn_cast<ConstantInt>(V); 5526 // Don't scalarize all zeros vector. 5527 if (!C || !C->isZero()) { 5528 Ops[FinalIndex] = V; 5529 RewriteGEP = true; 5530 } 5531 } 5532 } 5533 5534 // If we made any changes or the we have extra operands, we need to generate 5535 // new instructions. 5536 if (!RewriteGEP && Ops.size() == 2) 5537 return false; 5538 5539 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5540 5541 IRBuilder<> Builder(MemoryInst); 5542 5543 Type *SourceTy = GEP->getSourceElementType(); 5544 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5545 5546 // If the final index isn't a vector, emit a scalar GEP containing all ops 5547 // and a vector GEP with all zeroes final index. 5548 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5549 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5550 makeArrayRef(Ops).drop_front()); 5551 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5552 auto *SecondTy = GetElementPtrInst::getIndexedType( 5553 SourceTy, makeArrayRef(Ops).drop_front()); 5554 NewAddr = 5555 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5556 } else { 5557 Value *Base = Ops[0]; 5558 Value *Index = Ops[FinalIndex]; 5559 5560 // Create a scalar GEP if there are more than 2 operands. 5561 if (Ops.size() != 2) { 5562 // Replace the last index with 0. 5563 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5564 Base = Builder.CreateGEP(SourceTy, Base, 5565 makeArrayRef(Ops).drop_front()); 5566 SourceTy = GetElementPtrInst::getIndexedType( 5567 SourceTy, makeArrayRef(Ops).drop_front()); 5568 } 5569 5570 // Now create the GEP with scalar pointer and vector index. 5571 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5572 } 5573 } else if (!isa<Constant>(Ptr)) { 5574 // Not a GEP, maybe its a splat and we can create a GEP to enable 5575 // SelectionDAGBuilder to use it as a uniform base. 5576 Value *V = getSplatValue(Ptr); 5577 if (!V) 5578 return false; 5579 5580 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5581 5582 IRBuilder<> Builder(MemoryInst); 5583 5584 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5585 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5586 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5587 Type *ScalarTy; 5588 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5589 Intrinsic::masked_gather) { 5590 ScalarTy = MemoryInst->getType()->getScalarType(); 5591 } else { 5592 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5593 Intrinsic::masked_scatter); 5594 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5595 } 5596 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5597 } else { 5598 // Constant, SelectionDAGBuilder knows to check if its a splat. 5599 return false; 5600 } 5601 5602 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5603 5604 // If we have no uses, recursively delete the value and all dead instructions 5605 // using it. 5606 if (Ptr->use_empty()) 5607 RecursivelyDeleteTriviallyDeadInstructions( 5608 Ptr, TLInfo, nullptr, 5609 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5610 5611 return true; 5612 } 5613 5614 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5615 /// address computing into the block when possible / profitable. 5616 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5617 bool MadeChange = false; 5618 5619 const TargetRegisterInfo *TRI = 5620 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5621 TargetLowering::AsmOperandInfoVector TargetConstraints = 5622 TLI->ParseConstraints(*DL, TRI, *CS); 5623 unsigned ArgNo = 0; 5624 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5625 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5626 5627 // Compute the constraint code and ConstraintType to use. 5628 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5629 5630 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5631 OpInfo.isIndirect) { 5632 Value *OpVal = CS->getArgOperand(ArgNo++); 5633 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5634 } else if (OpInfo.Type == InlineAsm::isInput) 5635 ArgNo++; 5636 } 5637 5638 return MadeChange; 5639 } 5640 5641 /// Check if all the uses of \p Val are equivalent (or free) zero or 5642 /// sign extensions. 5643 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5644 assert(!Val->use_empty() && "Input must have at least one use"); 5645 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5646 bool IsSExt = isa<SExtInst>(FirstUser); 5647 Type *ExtTy = FirstUser->getType(); 5648 for (const User *U : Val->users()) { 5649 const Instruction *UI = cast<Instruction>(U); 5650 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5651 return false; 5652 Type *CurTy = UI->getType(); 5653 // Same input and output types: Same instruction after CSE. 5654 if (CurTy == ExtTy) 5655 continue; 5656 5657 // If IsSExt is true, we are in this situation: 5658 // a = Val 5659 // b = sext ty1 a to ty2 5660 // c = sext ty1 a to ty3 5661 // Assuming ty2 is shorter than ty3, this could be turned into: 5662 // a = Val 5663 // b = sext ty1 a to ty2 5664 // c = sext ty2 b to ty3 5665 // However, the last sext is not free. 5666 if (IsSExt) 5667 return false; 5668 5669 // This is a ZExt, maybe this is free to extend from one type to another. 5670 // In that case, we would not account for a different use. 5671 Type *NarrowTy; 5672 Type *LargeTy; 5673 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5674 CurTy->getScalarType()->getIntegerBitWidth()) { 5675 NarrowTy = CurTy; 5676 LargeTy = ExtTy; 5677 } else { 5678 NarrowTy = ExtTy; 5679 LargeTy = CurTy; 5680 } 5681 5682 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5683 return false; 5684 } 5685 // All uses are the same or can be derived from one another for free. 5686 return true; 5687 } 5688 5689 /// Try to speculatively promote extensions in \p Exts and continue 5690 /// promoting through newly promoted operands recursively as far as doing so is 5691 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5692 /// When some promotion happened, \p TPT contains the proper state to revert 5693 /// them. 5694 /// 5695 /// \return true if some promotion happened, false otherwise. 5696 bool CodeGenPrepare::tryToPromoteExts( 5697 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5698 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5699 unsigned CreatedInstsCost) { 5700 bool Promoted = false; 5701 5702 // Iterate over all the extensions to try to promote them. 5703 for (auto *I : Exts) { 5704 // Early check if we directly have ext(load). 5705 if (isa<LoadInst>(I->getOperand(0))) { 5706 ProfitablyMovedExts.push_back(I); 5707 continue; 5708 } 5709 5710 // Check whether or not we want to do any promotion. The reason we have 5711 // this check inside the for loop is to catch the case where an extension 5712 // is directly fed by a load because in such case the extension can be moved 5713 // up without any promotion on its operands. 5714 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5715 return false; 5716 5717 // Get the action to perform the promotion. 5718 TypePromotionHelper::Action TPH = 5719 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5720 // Check if we can promote. 5721 if (!TPH) { 5722 // Save the current extension as we cannot move up through its operand. 5723 ProfitablyMovedExts.push_back(I); 5724 continue; 5725 } 5726 5727 // Save the current state. 5728 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5729 TPT.getRestorationPoint(); 5730 SmallVector<Instruction *, 4> NewExts; 5731 unsigned NewCreatedInstsCost = 0; 5732 unsigned ExtCost = !TLI->isExtFree(I); 5733 // Promote. 5734 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5735 &NewExts, nullptr, *TLI); 5736 assert(PromotedVal && 5737 "TypePromotionHelper should have filtered out those cases"); 5738 5739 // We would be able to merge only one extension in a load. 5740 // Therefore, if we have more than 1 new extension we heuristically 5741 // cut this search path, because it means we degrade the code quality. 5742 // With exactly 2, the transformation is neutral, because we will merge 5743 // one extension but leave one. However, we optimistically keep going, 5744 // because the new extension may be removed too. 5745 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5746 // FIXME: It would be possible to propagate a negative value instead of 5747 // conservatively ceiling it to 0. 5748 TotalCreatedInstsCost = 5749 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5750 if (!StressExtLdPromotion && 5751 (TotalCreatedInstsCost > 1 || 5752 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5753 // This promotion is not profitable, rollback to the previous state, and 5754 // save the current extension in ProfitablyMovedExts as the latest 5755 // speculative promotion turned out to be unprofitable. 5756 TPT.rollback(LastKnownGood); 5757 ProfitablyMovedExts.push_back(I); 5758 continue; 5759 } 5760 // Continue promoting NewExts as far as doing so is profitable. 5761 SmallVector<Instruction *, 2> NewlyMovedExts; 5762 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5763 bool NewPromoted = false; 5764 for (auto *ExtInst : NewlyMovedExts) { 5765 Instruction *MovedExt = cast<Instruction>(ExtInst); 5766 Value *ExtOperand = MovedExt->getOperand(0); 5767 // If we have reached to a load, we need this extra profitability check 5768 // as it could potentially be merged into an ext(load). 5769 if (isa<LoadInst>(ExtOperand) && 5770 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5771 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5772 continue; 5773 5774 ProfitablyMovedExts.push_back(MovedExt); 5775 NewPromoted = true; 5776 } 5777 5778 // If none of speculative promotions for NewExts is profitable, rollback 5779 // and save the current extension (I) as the last profitable extension. 5780 if (!NewPromoted) { 5781 TPT.rollback(LastKnownGood); 5782 ProfitablyMovedExts.push_back(I); 5783 continue; 5784 } 5785 // The promotion is profitable. 5786 Promoted = true; 5787 } 5788 return Promoted; 5789 } 5790 5791 /// Merging redundant sexts when one is dominating the other. 5792 bool CodeGenPrepare::mergeSExts(Function &F) { 5793 bool Changed = false; 5794 for (auto &Entry : ValToSExtendedUses) { 5795 SExts &Insts = Entry.second; 5796 SExts CurPts; 5797 for (Instruction *Inst : Insts) { 5798 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5799 Inst->getOperand(0) != Entry.first) 5800 continue; 5801 bool inserted = false; 5802 for (auto &Pt : CurPts) { 5803 if (getDT(F).dominates(Inst, Pt)) { 5804 Pt->replaceAllUsesWith(Inst); 5805 RemovedInsts.insert(Pt); 5806 Pt->removeFromParent(); 5807 Pt = Inst; 5808 inserted = true; 5809 Changed = true; 5810 break; 5811 } 5812 if (!getDT(F).dominates(Pt, Inst)) 5813 // Give up if we need to merge in a common dominator as the 5814 // experiments show it is not profitable. 5815 continue; 5816 Inst->replaceAllUsesWith(Pt); 5817 RemovedInsts.insert(Inst); 5818 Inst->removeFromParent(); 5819 inserted = true; 5820 Changed = true; 5821 break; 5822 } 5823 if (!inserted) 5824 CurPts.push_back(Inst); 5825 } 5826 } 5827 return Changed; 5828 } 5829 5830 // Splitting large data structures so that the GEPs accessing them can have 5831 // smaller offsets so that they can be sunk to the same blocks as their users. 5832 // For example, a large struct starting from %base is split into two parts 5833 // where the second part starts from %new_base. 5834 // 5835 // Before: 5836 // BB0: 5837 // %base = 5838 // 5839 // BB1: 5840 // %gep0 = gep %base, off0 5841 // %gep1 = gep %base, off1 5842 // %gep2 = gep %base, off2 5843 // 5844 // BB2: 5845 // %load1 = load %gep0 5846 // %load2 = load %gep1 5847 // %load3 = load %gep2 5848 // 5849 // After: 5850 // BB0: 5851 // %base = 5852 // %new_base = gep %base, off0 5853 // 5854 // BB1: 5855 // %new_gep0 = %new_base 5856 // %new_gep1 = gep %new_base, off1 - off0 5857 // %new_gep2 = gep %new_base, off2 - off0 5858 // 5859 // BB2: 5860 // %load1 = load i32, i32* %new_gep0 5861 // %load2 = load i32, i32* %new_gep1 5862 // %load3 = load i32, i32* %new_gep2 5863 // 5864 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5865 // their offsets are smaller enough to fit into the addressing mode. 5866 bool CodeGenPrepare::splitLargeGEPOffsets() { 5867 bool Changed = false; 5868 for (auto &Entry : LargeOffsetGEPMap) { 5869 Value *OldBase = Entry.first; 5870 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5871 &LargeOffsetGEPs = Entry.second; 5872 auto compareGEPOffset = 5873 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5874 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5875 if (LHS.first == RHS.first) 5876 return false; 5877 if (LHS.second != RHS.second) 5878 return LHS.second < RHS.second; 5879 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5880 }; 5881 // Sorting all the GEPs of the same data structures based on the offsets. 5882 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5883 LargeOffsetGEPs.erase( 5884 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5885 LargeOffsetGEPs.end()); 5886 // Skip if all the GEPs have the same offsets. 5887 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5888 continue; 5889 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5890 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5891 Value *NewBaseGEP = nullptr; 5892 5893 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5894 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5895 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5896 int64_t Offset = LargeOffsetGEP->second; 5897 if (Offset != BaseOffset) { 5898 TargetLowering::AddrMode AddrMode; 5899 AddrMode.BaseOffs = Offset - BaseOffset; 5900 // The result type of the GEP might not be the type of the memory 5901 // access. 5902 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5903 GEP->getResultElementType(), 5904 GEP->getAddressSpace())) { 5905 // We need to create a new base if the offset to the current base is 5906 // too large to fit into the addressing mode. So, a very large struct 5907 // may be split into several parts. 5908 BaseGEP = GEP; 5909 BaseOffset = Offset; 5910 NewBaseGEP = nullptr; 5911 } 5912 } 5913 5914 // Generate a new GEP to replace the current one. 5915 LLVMContext &Ctx = GEP->getContext(); 5916 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5917 Type *I8PtrTy = 5918 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5919 Type *I8Ty = Type::getInt8Ty(Ctx); 5920 5921 if (!NewBaseGEP) { 5922 // Create a new base if we don't have one yet. Find the insertion 5923 // pointer for the new base first. 5924 BasicBlock::iterator NewBaseInsertPt; 5925 BasicBlock *NewBaseInsertBB; 5926 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5927 // If the base of the struct is an instruction, the new base will be 5928 // inserted close to it. 5929 NewBaseInsertBB = BaseI->getParent(); 5930 if (isa<PHINode>(BaseI)) 5931 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5932 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5933 NewBaseInsertBB = 5934 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5935 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5936 } else 5937 NewBaseInsertPt = std::next(BaseI->getIterator()); 5938 } else { 5939 // If the current base is an argument or global value, the new base 5940 // will be inserted to the entry block. 5941 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5942 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5943 } 5944 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5945 // Create a new base. 5946 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5947 NewBaseGEP = OldBase; 5948 if (NewBaseGEP->getType() != I8PtrTy) 5949 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5950 NewBaseGEP = 5951 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5952 NewGEPBases.insert(NewBaseGEP); 5953 } 5954 5955 IRBuilder<> Builder(GEP); 5956 Value *NewGEP = NewBaseGEP; 5957 if (Offset == BaseOffset) { 5958 if (GEP->getType() != I8PtrTy) 5959 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5960 } else { 5961 // Calculate the new offset for the new GEP. 5962 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5963 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5964 5965 if (GEP->getType() != I8PtrTy) 5966 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5967 } 5968 GEP->replaceAllUsesWith(NewGEP); 5969 LargeOffsetGEPID.erase(GEP); 5970 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5971 GEP->eraseFromParent(); 5972 Changed = true; 5973 } 5974 } 5975 return Changed; 5976 } 5977 5978 bool CodeGenPrepare::optimizePhiType( 5979 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5980 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5981 // We are looking for a collection on interconnected phi nodes that together 5982 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5983 // are of the same type. Convert the whole set of nodes to the type of the 5984 // bitcast. 5985 Type *PhiTy = I->getType(); 5986 Type *ConvertTy = nullptr; 5987 if (Visited.count(I) || 5988 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5989 return false; 5990 5991 SmallVector<Instruction *, 4> Worklist; 5992 Worklist.push_back(cast<Instruction>(I)); 5993 SmallPtrSet<PHINode *, 4> PhiNodes; 5994 PhiNodes.insert(I); 5995 Visited.insert(I); 5996 SmallPtrSet<Instruction *, 4> Defs; 5997 SmallPtrSet<Instruction *, 4> Uses; 5998 // This works by adding extra bitcasts between load/stores and removing 5999 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6000 // we can get in the situation where we remove a bitcast in one iteration 6001 // just to add it again in the next. We need to ensure that at least one 6002 // bitcast we remove are anchored to something that will not change back. 6003 bool AnyAnchored = false; 6004 6005 while (!Worklist.empty()) { 6006 Instruction *II = Worklist.pop_back_val(); 6007 6008 if (auto *Phi = dyn_cast<PHINode>(II)) { 6009 // Handle Defs, which might also be PHI's 6010 for (Value *V : Phi->incoming_values()) { 6011 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6012 if (!PhiNodes.count(OpPhi)) { 6013 if (Visited.count(OpPhi)) 6014 return false; 6015 PhiNodes.insert(OpPhi); 6016 Visited.insert(OpPhi); 6017 Worklist.push_back(OpPhi); 6018 } 6019 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6020 if (!OpLoad->isSimple()) 6021 return false; 6022 if (!Defs.count(OpLoad)) { 6023 Defs.insert(OpLoad); 6024 Worklist.push_back(OpLoad); 6025 } 6026 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6027 if (!Defs.count(OpEx)) { 6028 Defs.insert(OpEx); 6029 Worklist.push_back(OpEx); 6030 } 6031 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6032 if (!ConvertTy) 6033 ConvertTy = OpBC->getOperand(0)->getType(); 6034 if (OpBC->getOperand(0)->getType() != ConvertTy) 6035 return false; 6036 if (!Defs.count(OpBC)) { 6037 Defs.insert(OpBC); 6038 Worklist.push_back(OpBC); 6039 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6040 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6041 } 6042 } else if (!isa<UndefValue>(V)) { 6043 return false; 6044 } 6045 } 6046 } 6047 6048 // Handle uses which might also be phi's 6049 for (User *V : II->users()) { 6050 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6051 if (!PhiNodes.count(OpPhi)) { 6052 if (Visited.count(OpPhi)) 6053 return false; 6054 PhiNodes.insert(OpPhi); 6055 Visited.insert(OpPhi); 6056 Worklist.push_back(OpPhi); 6057 } 6058 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6059 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6060 return false; 6061 Uses.insert(OpStore); 6062 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6063 if (!ConvertTy) 6064 ConvertTy = OpBC->getType(); 6065 if (OpBC->getType() != ConvertTy) 6066 return false; 6067 Uses.insert(OpBC); 6068 AnyAnchored |= 6069 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6070 } else { 6071 return false; 6072 } 6073 } 6074 } 6075 6076 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6077 return false; 6078 6079 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6080 << *ConvertTy << "\n"); 6081 6082 // Create all the new phi nodes of the new type, and bitcast any loads to the 6083 // correct type. 6084 ValueToValueMap ValMap; 6085 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6086 for (Instruction *D : Defs) { 6087 if (isa<BitCastInst>(D)) { 6088 ValMap[D] = D->getOperand(0); 6089 DeletedInstrs.insert(D); 6090 } else { 6091 ValMap[D] = 6092 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6093 } 6094 } 6095 for (PHINode *Phi : PhiNodes) 6096 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6097 Phi->getName() + ".tc", Phi); 6098 // Pipe together all the PhiNodes. 6099 for (PHINode *Phi : PhiNodes) { 6100 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6101 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6102 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6103 Phi->getIncomingBlock(i)); 6104 Visited.insert(NewPhi); 6105 } 6106 // And finally pipe up the stores and bitcasts 6107 for (Instruction *U : Uses) { 6108 if (isa<BitCastInst>(U)) { 6109 DeletedInstrs.insert(U); 6110 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6111 } else { 6112 U->setOperand(0, 6113 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6114 } 6115 } 6116 6117 // Save the removed phis to be deleted later. 6118 for (PHINode *Phi : PhiNodes) 6119 DeletedInstrs.insert(Phi); 6120 return true; 6121 } 6122 6123 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6124 if (!OptimizePhiTypes) 6125 return false; 6126 6127 bool Changed = false; 6128 SmallPtrSet<PHINode *, 4> Visited; 6129 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6130 6131 // Attempt to optimize all the phis in the functions to the correct type. 6132 for (auto &BB : F) 6133 for (auto &Phi : BB.phis()) 6134 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6135 6136 // Remove any old phi's that have been converted. 6137 for (auto *I : DeletedInstrs) { 6138 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6139 I->eraseFromParent(); 6140 } 6141 6142 return Changed; 6143 } 6144 6145 /// Return true, if an ext(load) can be formed from an extension in 6146 /// \p MovedExts. 6147 bool CodeGenPrepare::canFormExtLd( 6148 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6149 Instruction *&Inst, bool HasPromoted) { 6150 for (auto *MovedExtInst : MovedExts) { 6151 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6152 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6153 Inst = MovedExtInst; 6154 break; 6155 } 6156 } 6157 if (!LI) 6158 return false; 6159 6160 // If they're already in the same block, there's nothing to do. 6161 // Make the cheap checks first if we did not promote. 6162 // If we promoted, we need to check if it is indeed profitable. 6163 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6164 return false; 6165 6166 return TLI->isExtLoad(LI, Inst, *DL); 6167 } 6168 6169 /// Move a zext or sext fed by a load into the same basic block as the load, 6170 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6171 /// extend into the load. 6172 /// 6173 /// E.g., 6174 /// \code 6175 /// %ld = load i32* %addr 6176 /// %add = add nuw i32 %ld, 4 6177 /// %zext = zext i32 %add to i64 6178 // \endcode 6179 /// => 6180 /// \code 6181 /// %ld = load i32* %addr 6182 /// %zext = zext i32 %ld to i64 6183 /// %add = add nuw i64 %zext, 4 6184 /// \encode 6185 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6186 /// allow us to match zext(load i32*) to i64. 6187 /// 6188 /// Also, try to promote the computations used to obtain a sign extended 6189 /// value used into memory accesses. 6190 /// E.g., 6191 /// \code 6192 /// a = add nsw i32 b, 3 6193 /// d = sext i32 a to i64 6194 /// e = getelementptr ..., i64 d 6195 /// \endcode 6196 /// => 6197 /// \code 6198 /// f = sext i32 b to i64 6199 /// a = add nsw i64 f, 3 6200 /// e = getelementptr ..., i64 a 6201 /// \endcode 6202 /// 6203 /// \p Inst[in/out] the extension may be modified during the process if some 6204 /// promotions apply. 6205 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6206 bool AllowPromotionWithoutCommonHeader = false; 6207 /// See if it is an interesting sext operations for the address type 6208 /// promotion before trying to promote it, e.g., the ones with the right 6209 /// type and used in memory accesses. 6210 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6211 *Inst, AllowPromotionWithoutCommonHeader); 6212 TypePromotionTransaction TPT(RemovedInsts); 6213 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6214 TPT.getRestorationPoint(); 6215 SmallVector<Instruction *, 1> Exts; 6216 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6217 Exts.push_back(Inst); 6218 6219 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6220 6221 // Look for a load being extended. 6222 LoadInst *LI = nullptr; 6223 Instruction *ExtFedByLoad; 6224 6225 // Try to promote a chain of computation if it allows to form an extended 6226 // load. 6227 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6228 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6229 TPT.commit(); 6230 // Move the extend into the same block as the load. 6231 ExtFedByLoad->moveAfter(LI); 6232 ++NumExtsMoved; 6233 Inst = ExtFedByLoad; 6234 return true; 6235 } 6236 6237 // Continue promoting SExts if known as considerable depending on targets. 6238 if (ATPConsiderable && 6239 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6240 HasPromoted, TPT, SpeculativelyMovedExts)) 6241 return true; 6242 6243 TPT.rollback(LastKnownGood); 6244 return false; 6245 } 6246 6247 // Perform address type promotion if doing so is profitable. 6248 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6249 // instructions that sign extended the same initial value. However, if 6250 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6251 // extension is just profitable. 6252 bool CodeGenPrepare::performAddressTypePromotion( 6253 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6254 bool HasPromoted, TypePromotionTransaction &TPT, 6255 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6256 bool Promoted = false; 6257 SmallPtrSet<Instruction *, 1> UnhandledExts; 6258 bool AllSeenFirst = true; 6259 for (auto *I : SpeculativelyMovedExts) { 6260 Value *HeadOfChain = I->getOperand(0); 6261 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6262 SeenChainsForSExt.find(HeadOfChain); 6263 // If there is an unhandled SExt which has the same header, try to promote 6264 // it as well. 6265 if (AlreadySeen != SeenChainsForSExt.end()) { 6266 if (AlreadySeen->second != nullptr) 6267 UnhandledExts.insert(AlreadySeen->second); 6268 AllSeenFirst = false; 6269 } 6270 } 6271 6272 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6273 SpeculativelyMovedExts.size() == 1)) { 6274 TPT.commit(); 6275 if (HasPromoted) 6276 Promoted = true; 6277 for (auto *I : SpeculativelyMovedExts) { 6278 Value *HeadOfChain = I->getOperand(0); 6279 SeenChainsForSExt[HeadOfChain] = nullptr; 6280 ValToSExtendedUses[HeadOfChain].push_back(I); 6281 } 6282 // Update Inst as promotion happen. 6283 Inst = SpeculativelyMovedExts.pop_back_val(); 6284 } else { 6285 // This is the first chain visited from the header, keep the current chain 6286 // as unhandled. Defer to promote this until we encounter another SExt 6287 // chain derived from the same header. 6288 for (auto *I : SpeculativelyMovedExts) { 6289 Value *HeadOfChain = I->getOperand(0); 6290 SeenChainsForSExt[HeadOfChain] = Inst; 6291 } 6292 return false; 6293 } 6294 6295 if (!AllSeenFirst && !UnhandledExts.empty()) 6296 for (auto *VisitedSExt : UnhandledExts) { 6297 if (RemovedInsts.count(VisitedSExt)) 6298 continue; 6299 TypePromotionTransaction TPT(RemovedInsts); 6300 SmallVector<Instruction *, 1> Exts; 6301 SmallVector<Instruction *, 2> Chains; 6302 Exts.push_back(VisitedSExt); 6303 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6304 TPT.commit(); 6305 if (HasPromoted) 6306 Promoted = true; 6307 for (auto *I : Chains) { 6308 Value *HeadOfChain = I->getOperand(0); 6309 // Mark this as handled. 6310 SeenChainsForSExt[HeadOfChain] = nullptr; 6311 ValToSExtendedUses[HeadOfChain].push_back(I); 6312 } 6313 } 6314 return Promoted; 6315 } 6316 6317 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6318 BasicBlock *DefBB = I->getParent(); 6319 6320 // If the result of a {s|z}ext and its source are both live out, rewrite all 6321 // other uses of the source with result of extension. 6322 Value *Src = I->getOperand(0); 6323 if (Src->hasOneUse()) 6324 return false; 6325 6326 // Only do this xform if truncating is free. 6327 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6328 return false; 6329 6330 // Only safe to perform the optimization if the source is also defined in 6331 // this block. 6332 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6333 return false; 6334 6335 bool DefIsLiveOut = false; 6336 for (User *U : I->users()) { 6337 Instruction *UI = cast<Instruction>(U); 6338 6339 // Figure out which BB this ext is used in. 6340 BasicBlock *UserBB = UI->getParent(); 6341 if (UserBB == DefBB) continue; 6342 DefIsLiveOut = true; 6343 break; 6344 } 6345 if (!DefIsLiveOut) 6346 return false; 6347 6348 // Make sure none of the uses are PHI nodes. 6349 for (User *U : Src->users()) { 6350 Instruction *UI = cast<Instruction>(U); 6351 BasicBlock *UserBB = UI->getParent(); 6352 if (UserBB == DefBB) continue; 6353 // Be conservative. We don't want this xform to end up introducing 6354 // reloads just before load / store instructions. 6355 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6356 return false; 6357 } 6358 6359 // InsertedTruncs - Only insert one trunc in each block once. 6360 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6361 6362 bool MadeChange = false; 6363 for (Use &U : Src->uses()) { 6364 Instruction *User = cast<Instruction>(U.getUser()); 6365 6366 // Figure out which BB this ext is used in. 6367 BasicBlock *UserBB = User->getParent(); 6368 if (UserBB == DefBB) continue; 6369 6370 // Both src and def are live in this block. Rewrite the use. 6371 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6372 6373 if (!InsertedTrunc) { 6374 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6375 assert(InsertPt != UserBB->end()); 6376 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6377 InsertedInsts.insert(InsertedTrunc); 6378 } 6379 6380 // Replace a use of the {s|z}ext source with a use of the result. 6381 U = InsertedTrunc; 6382 ++NumExtUses; 6383 MadeChange = true; 6384 } 6385 6386 return MadeChange; 6387 } 6388 6389 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6390 // just after the load if the target can fold this into one extload instruction, 6391 // with the hope of eliminating some of the other later "and" instructions using 6392 // the loaded value. "and"s that are made trivially redundant by the insertion 6393 // of the new "and" are removed by this function, while others (e.g. those whose 6394 // path from the load goes through a phi) are left for isel to potentially 6395 // remove. 6396 // 6397 // For example: 6398 // 6399 // b0: 6400 // x = load i32 6401 // ... 6402 // b1: 6403 // y = and x, 0xff 6404 // z = use y 6405 // 6406 // becomes: 6407 // 6408 // b0: 6409 // x = load i32 6410 // x' = and x, 0xff 6411 // ... 6412 // b1: 6413 // z = use x' 6414 // 6415 // whereas: 6416 // 6417 // b0: 6418 // x1 = load i32 6419 // ... 6420 // b1: 6421 // x2 = load i32 6422 // ... 6423 // b2: 6424 // x = phi x1, x2 6425 // y = and x, 0xff 6426 // 6427 // becomes (after a call to optimizeLoadExt for each load): 6428 // 6429 // b0: 6430 // x1 = load i32 6431 // x1' = and x1, 0xff 6432 // ... 6433 // b1: 6434 // x2 = load i32 6435 // x2' = and x2, 0xff 6436 // ... 6437 // b2: 6438 // x = phi x1', x2' 6439 // y = and x, 0xff 6440 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6441 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6442 return false; 6443 6444 // Skip loads we've already transformed. 6445 if (Load->hasOneUse() && 6446 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6447 return false; 6448 6449 // Look at all uses of Load, looking through phis, to determine how many bits 6450 // of the loaded value are needed. 6451 SmallVector<Instruction *, 8> WorkList; 6452 SmallPtrSet<Instruction *, 16> Visited; 6453 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6454 for (auto *U : Load->users()) 6455 WorkList.push_back(cast<Instruction>(U)); 6456 6457 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6458 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6459 // If the BitWidth is 0, do not try to optimize the type 6460 if (BitWidth == 0) 6461 return false; 6462 6463 APInt DemandBits(BitWidth, 0); 6464 APInt WidestAndBits(BitWidth, 0); 6465 6466 while (!WorkList.empty()) { 6467 Instruction *I = WorkList.pop_back_val(); 6468 6469 // Break use-def graph loops. 6470 if (!Visited.insert(I).second) 6471 continue; 6472 6473 // For a PHI node, push all of its users. 6474 if (auto *Phi = dyn_cast<PHINode>(I)) { 6475 for (auto *U : Phi->users()) 6476 WorkList.push_back(cast<Instruction>(U)); 6477 continue; 6478 } 6479 6480 switch (I->getOpcode()) { 6481 case Instruction::And: { 6482 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6483 if (!AndC) 6484 return false; 6485 APInt AndBits = AndC->getValue(); 6486 DemandBits |= AndBits; 6487 // Keep track of the widest and mask we see. 6488 if (AndBits.ugt(WidestAndBits)) 6489 WidestAndBits = AndBits; 6490 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6491 AndsToMaybeRemove.push_back(I); 6492 break; 6493 } 6494 6495 case Instruction::Shl: { 6496 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6497 if (!ShlC) 6498 return false; 6499 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6500 DemandBits.setLowBits(BitWidth - ShiftAmt); 6501 break; 6502 } 6503 6504 case Instruction::Trunc: { 6505 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6506 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6507 DemandBits.setLowBits(TruncBitWidth); 6508 break; 6509 } 6510 6511 default: 6512 return false; 6513 } 6514 } 6515 6516 uint32_t ActiveBits = DemandBits.getActiveBits(); 6517 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6518 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6519 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6520 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6521 // followed by an AND. 6522 // TODO: Look into removing this restriction by fixing backends to either 6523 // return false for isLoadExtLegal for i1 or have them select this pattern to 6524 // a single instruction. 6525 // 6526 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6527 // mask, since these are the only ands that will be removed by isel. 6528 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6529 WidestAndBits != DemandBits) 6530 return false; 6531 6532 LLVMContext &Ctx = Load->getType()->getContext(); 6533 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6534 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6535 6536 // Reject cases that won't be matched as extloads. 6537 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6538 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6539 return false; 6540 6541 IRBuilder<> Builder(Load->getNextNode()); 6542 auto *NewAnd = cast<Instruction>( 6543 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6544 // Mark this instruction as "inserted by CGP", so that other 6545 // optimizations don't touch it. 6546 InsertedInsts.insert(NewAnd); 6547 6548 // Replace all uses of load with new and (except for the use of load in the 6549 // new and itself). 6550 Load->replaceAllUsesWith(NewAnd); 6551 NewAnd->setOperand(0, Load); 6552 6553 // Remove any and instructions that are now redundant. 6554 for (auto *And : AndsToMaybeRemove) 6555 // Check that the and mask is the same as the one we decided to put on the 6556 // new and. 6557 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6558 And->replaceAllUsesWith(NewAnd); 6559 if (&*CurInstIterator == And) 6560 CurInstIterator = std::next(And->getIterator()); 6561 And->eraseFromParent(); 6562 ++NumAndUses; 6563 } 6564 6565 ++NumAndsAdded; 6566 return true; 6567 } 6568 6569 /// Check if V (an operand of a select instruction) is an expensive instruction 6570 /// that is only used once. 6571 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6572 auto *I = dyn_cast<Instruction>(V); 6573 // If it's safe to speculatively execute, then it should not have side 6574 // effects; therefore, it's safe to sink and possibly *not* execute. 6575 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6576 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6577 TargetTransformInfo::TCC_Expensive; 6578 } 6579 6580 /// Returns true if a SelectInst should be turned into an explicit branch. 6581 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6582 const TargetLowering *TLI, 6583 SelectInst *SI) { 6584 // If even a predictable select is cheap, then a branch can't be cheaper. 6585 if (!TLI->isPredictableSelectExpensive()) 6586 return false; 6587 6588 // FIXME: This should use the same heuristics as IfConversion to determine 6589 // whether a select is better represented as a branch. 6590 6591 // If metadata tells us that the select condition is obviously predictable, 6592 // then we want to replace the select with a branch. 6593 uint64_t TrueWeight, FalseWeight; 6594 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6595 uint64_t Max = std::max(TrueWeight, FalseWeight); 6596 uint64_t Sum = TrueWeight + FalseWeight; 6597 if (Sum != 0) { 6598 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6599 if (Probability > TTI->getPredictableBranchThreshold()) 6600 return true; 6601 } 6602 } 6603 6604 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6605 6606 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6607 // comparison condition. If the compare has more than one use, there's 6608 // probably another cmov or setcc around, so it's not worth emitting a branch. 6609 if (!Cmp || !Cmp->hasOneUse()) 6610 return false; 6611 6612 // If either operand of the select is expensive and only needed on one side 6613 // of the select, we should form a branch. 6614 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6615 sinkSelectOperand(TTI, SI->getFalseValue())) 6616 return true; 6617 6618 return false; 6619 } 6620 6621 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6622 /// false value of \p SI. If the true/false value of \p SI is defined by any 6623 /// select instructions in \p Selects, look through the defining select 6624 /// instruction until the true/false value is not defined in \p Selects. 6625 static Value *getTrueOrFalseValue( 6626 SelectInst *SI, bool isTrue, 6627 const SmallPtrSet<const Instruction *, 2> &Selects) { 6628 Value *V = nullptr; 6629 6630 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6631 DefSI = dyn_cast<SelectInst>(V)) { 6632 assert(DefSI->getCondition() == SI->getCondition() && 6633 "The condition of DefSI does not match with SI"); 6634 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6635 } 6636 6637 assert(V && "Failed to get select true/false value"); 6638 return V; 6639 } 6640 6641 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6642 assert(Shift->isShift() && "Expected a shift"); 6643 6644 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6645 // general vector shifts, and (3) the shift amount is a select-of-splatted 6646 // values, hoist the shifts before the select: 6647 // shift Op0, (select Cond, TVal, FVal) --> 6648 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6649 // 6650 // This is inverting a generic IR transform when we know that the cost of a 6651 // general vector shift is more than the cost of 2 shift-by-scalars. 6652 // We can't do this effectively in SDAG because we may not be able to 6653 // determine if the select operands are splats from within a basic block. 6654 Type *Ty = Shift->getType(); 6655 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6656 return false; 6657 Value *Cond, *TVal, *FVal; 6658 if (!match(Shift->getOperand(1), 6659 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6660 return false; 6661 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6662 return false; 6663 6664 IRBuilder<> Builder(Shift); 6665 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6666 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6667 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6668 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6669 Shift->replaceAllUsesWith(NewSel); 6670 Shift->eraseFromParent(); 6671 return true; 6672 } 6673 6674 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6675 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6676 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6677 "Expected a funnel shift"); 6678 6679 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6680 // than general vector shifts, and (3) the shift amount is select-of-splatted 6681 // values, hoist the funnel shifts before the select: 6682 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6683 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6684 // 6685 // This is inverting a generic IR transform when we know that the cost of a 6686 // general vector shift is more than the cost of 2 shift-by-scalars. 6687 // We can't do this effectively in SDAG because we may not be able to 6688 // determine if the select operands are splats from within a basic block. 6689 Type *Ty = Fsh->getType(); 6690 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6691 return false; 6692 Value *Cond, *TVal, *FVal; 6693 if (!match(Fsh->getOperand(2), 6694 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6695 return false; 6696 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6697 return false; 6698 6699 IRBuilder<> Builder(Fsh); 6700 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6701 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6702 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6703 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6704 Fsh->replaceAllUsesWith(NewSel); 6705 Fsh->eraseFromParent(); 6706 return true; 6707 } 6708 6709 /// If we have a SelectInst that will likely profit from branch prediction, 6710 /// turn it into a branch. 6711 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6712 if (DisableSelectToBranch) 6713 return false; 6714 6715 // Find all consecutive select instructions that share the same condition. 6716 SmallVector<SelectInst *, 2> ASI; 6717 ASI.push_back(SI); 6718 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6719 It != SI->getParent()->end(); ++It) { 6720 SelectInst *I = dyn_cast<SelectInst>(&*It); 6721 if (I && SI->getCondition() == I->getCondition()) { 6722 ASI.push_back(I); 6723 } else { 6724 break; 6725 } 6726 } 6727 6728 SelectInst *LastSI = ASI.back(); 6729 // Increment the current iterator to skip all the rest of select instructions 6730 // because they will be either "not lowered" or "all lowered" to branch. 6731 CurInstIterator = std::next(LastSI->getIterator()); 6732 6733 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6734 6735 // Can we convert the 'select' to CF ? 6736 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6737 return false; 6738 6739 TargetLowering::SelectSupportKind SelectKind; 6740 if (VectorCond) 6741 SelectKind = TargetLowering::VectorMaskSelect; 6742 else if (SI->getType()->isVectorTy()) 6743 SelectKind = TargetLowering::ScalarCondVectorVal; 6744 else 6745 SelectKind = TargetLowering::ScalarValSelect; 6746 6747 if (TLI->isSelectSupported(SelectKind) && 6748 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6749 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6750 return false; 6751 6752 // The DominatorTree needs to be rebuilt by any consumers after this 6753 // transformation. We simply reset here rather than setting the ModifiedDT 6754 // flag to avoid restarting the function walk in runOnFunction for each 6755 // select optimized. 6756 DT.reset(); 6757 6758 // Transform a sequence like this: 6759 // start: 6760 // %cmp = cmp uge i32 %a, %b 6761 // %sel = select i1 %cmp, i32 %c, i32 %d 6762 // 6763 // Into: 6764 // start: 6765 // %cmp = cmp uge i32 %a, %b 6766 // %cmp.frozen = freeze %cmp 6767 // br i1 %cmp.frozen, label %select.true, label %select.false 6768 // select.true: 6769 // br label %select.end 6770 // select.false: 6771 // br label %select.end 6772 // select.end: 6773 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6774 // 6775 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6776 // In addition, we may sink instructions that produce %c or %d from 6777 // the entry block into the destination(s) of the new branch. 6778 // If the true or false blocks do not contain a sunken instruction, that 6779 // block and its branch may be optimized away. In that case, one side of the 6780 // first branch will point directly to select.end, and the corresponding PHI 6781 // predecessor block will be the start block. 6782 6783 // First, we split the block containing the select into 2 blocks. 6784 BasicBlock *StartBlock = SI->getParent(); 6785 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6786 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6787 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6788 6789 // Delete the unconditional branch that was just created by the split. 6790 StartBlock->getTerminator()->eraseFromParent(); 6791 6792 // These are the new basic blocks for the conditional branch. 6793 // At least one will become an actual new basic block. 6794 BasicBlock *TrueBlock = nullptr; 6795 BasicBlock *FalseBlock = nullptr; 6796 BranchInst *TrueBranch = nullptr; 6797 BranchInst *FalseBranch = nullptr; 6798 6799 // Sink expensive instructions into the conditional blocks to avoid executing 6800 // them speculatively. 6801 for (SelectInst *SI : ASI) { 6802 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6803 if (TrueBlock == nullptr) { 6804 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6805 EndBlock->getParent(), EndBlock); 6806 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6807 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6808 } 6809 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6810 TrueInst->moveBefore(TrueBranch); 6811 } 6812 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6813 if (FalseBlock == nullptr) { 6814 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6815 EndBlock->getParent(), EndBlock); 6816 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6817 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6818 } 6819 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6820 FalseInst->moveBefore(FalseBranch); 6821 } 6822 } 6823 6824 // If there was nothing to sink, then arbitrarily choose the 'false' side 6825 // for a new input value to the PHI. 6826 if (TrueBlock == FalseBlock) { 6827 assert(TrueBlock == nullptr && 6828 "Unexpected basic block transform while optimizing select"); 6829 6830 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6831 EndBlock->getParent(), EndBlock); 6832 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6833 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6834 } 6835 6836 // Insert the real conditional branch based on the original condition. 6837 // If we did not create a new block for one of the 'true' or 'false' paths 6838 // of the condition, it means that side of the branch goes to the end block 6839 // directly and the path originates from the start block from the point of 6840 // view of the new PHI. 6841 BasicBlock *TT, *FT; 6842 if (TrueBlock == nullptr) { 6843 TT = EndBlock; 6844 FT = FalseBlock; 6845 TrueBlock = StartBlock; 6846 } else if (FalseBlock == nullptr) { 6847 TT = TrueBlock; 6848 FT = EndBlock; 6849 FalseBlock = StartBlock; 6850 } else { 6851 TT = TrueBlock; 6852 FT = FalseBlock; 6853 } 6854 IRBuilder<> IB(SI); 6855 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6856 IB.CreateCondBr(CondFr, TT, FT, SI); 6857 6858 SmallPtrSet<const Instruction *, 2> INS; 6859 INS.insert(ASI.begin(), ASI.end()); 6860 // Use reverse iterator because later select may use the value of the 6861 // earlier select, and we need to propagate value through earlier select 6862 // to get the PHI operand. 6863 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6864 SelectInst *SI = *It; 6865 // The select itself is replaced with a PHI Node. 6866 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6867 PN->takeName(SI); 6868 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6869 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6870 PN->setDebugLoc(SI->getDebugLoc()); 6871 6872 SI->replaceAllUsesWith(PN); 6873 SI->eraseFromParent(); 6874 INS.erase(SI); 6875 ++NumSelectsExpanded; 6876 } 6877 6878 // Instruct OptimizeBlock to skip to the next block. 6879 CurInstIterator = StartBlock->end(); 6880 return true; 6881 } 6882 6883 /// Some targets only accept certain types for splat inputs. For example a VDUP 6884 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6885 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6886 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6887 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6888 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6889 m_Undef(), m_ZeroMask()))) 6890 return false; 6891 Type *NewType = TLI->shouldConvertSplatType(SVI); 6892 if (!NewType) 6893 return false; 6894 6895 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6896 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6897 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6898 "Expected a type of the same size!"); 6899 auto *NewVecType = 6900 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6901 6902 // Create a bitcast (shuffle (insert (bitcast(..)))) 6903 IRBuilder<> Builder(SVI->getContext()); 6904 Builder.SetInsertPoint(SVI); 6905 Value *BC1 = Builder.CreateBitCast( 6906 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6907 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6908 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6909 6910 SVI->replaceAllUsesWith(BC2); 6911 RecursivelyDeleteTriviallyDeadInstructions( 6912 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6913 6914 // Also hoist the bitcast up to its operand if it they are not in the same 6915 // block. 6916 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6917 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6918 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6919 !Op->isTerminator() && !Op->isEHPad()) 6920 BCI->moveAfter(Op); 6921 6922 return true; 6923 } 6924 6925 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6926 // If the operands of I can be folded into a target instruction together with 6927 // I, duplicate and sink them. 6928 SmallVector<Use *, 4> OpsToSink; 6929 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6930 return false; 6931 6932 // OpsToSink can contain multiple uses in a use chain (e.g. 6933 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6934 // uses must come first, so we process the ops in reverse order so as to not 6935 // create invalid IR. 6936 BasicBlock *TargetBB = I->getParent(); 6937 bool Changed = false; 6938 SmallVector<Use *, 4> ToReplace; 6939 Instruction *InsertPoint = I; 6940 DenseMap<const Instruction *, unsigned long> InstOrdering; 6941 unsigned long InstNumber = 0; 6942 for (const auto &I : *TargetBB) 6943 InstOrdering[&I] = InstNumber++; 6944 6945 for (Use *U : reverse(OpsToSink)) { 6946 auto *UI = cast<Instruction>(U->get()); 6947 if (isa<PHINode>(UI)) 6948 continue; 6949 if (UI->getParent() == TargetBB) { 6950 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6951 InsertPoint = UI; 6952 continue; 6953 } 6954 ToReplace.push_back(U); 6955 } 6956 6957 SetVector<Instruction *> MaybeDead; 6958 DenseMap<Instruction *, Instruction *> NewInstructions; 6959 for (Use *U : ToReplace) { 6960 auto *UI = cast<Instruction>(U->get()); 6961 Instruction *NI = UI->clone(); 6962 NewInstructions[UI] = NI; 6963 MaybeDead.insert(UI); 6964 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6965 NI->insertBefore(InsertPoint); 6966 InsertPoint = NI; 6967 InsertedInsts.insert(NI); 6968 6969 // Update the use for the new instruction, making sure that we update the 6970 // sunk instruction uses, if it is part of a chain that has already been 6971 // sunk. 6972 Instruction *OldI = cast<Instruction>(U->getUser()); 6973 if (NewInstructions.count(OldI)) 6974 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6975 else 6976 U->set(NI); 6977 Changed = true; 6978 } 6979 6980 // Remove instructions that are dead after sinking. 6981 for (auto *I : MaybeDead) { 6982 if (!I->hasNUsesOrMore(1)) { 6983 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6984 I->eraseFromParent(); 6985 } 6986 } 6987 6988 return Changed; 6989 } 6990 6991 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6992 Value *Cond = SI->getCondition(); 6993 Type *OldType = Cond->getType(); 6994 LLVMContext &Context = Cond->getContext(); 6995 EVT OldVT = TLI->getValueType(*DL, OldType); 6996 MVT RegType = TLI->getRegisterType(Context, OldVT); 6997 unsigned RegWidth = RegType.getSizeInBits(); 6998 6999 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7000 return false; 7001 7002 // If the register width is greater than the type width, expand the condition 7003 // of the switch instruction and each case constant to the width of the 7004 // register. By widening the type of the switch condition, subsequent 7005 // comparisons (for case comparisons) will not need to be extended to the 7006 // preferred register width, so we will potentially eliminate N-1 extends, 7007 // where N is the number of cases in the switch. 7008 auto *NewType = Type::getIntNTy(Context, RegWidth); 7009 7010 // Extend the switch condition and case constants using the target preferred 7011 // extend unless the switch condition is a function argument with an extend 7012 // attribute. In that case, we can avoid an unnecessary mask/extension by 7013 // matching the argument extension instead. 7014 Instruction::CastOps ExtType = Instruction::ZExt; 7015 // Some targets prefer SExt over ZExt. 7016 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7017 ExtType = Instruction::SExt; 7018 7019 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7020 if (Arg->hasSExtAttr()) 7021 ExtType = Instruction::SExt; 7022 if (Arg->hasZExtAttr()) 7023 ExtType = Instruction::ZExt; 7024 } 7025 7026 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7027 ExtInst->insertBefore(SI); 7028 ExtInst->setDebugLoc(SI->getDebugLoc()); 7029 SI->setCondition(ExtInst); 7030 for (auto Case : SI->cases()) { 7031 APInt NarrowConst = Case.getCaseValue()->getValue(); 7032 APInt WideConst = (ExtType == Instruction::ZExt) ? 7033 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7034 Case.setValue(ConstantInt::get(Context, WideConst)); 7035 } 7036 7037 return true; 7038 } 7039 7040 7041 namespace { 7042 7043 /// Helper class to promote a scalar operation to a vector one. 7044 /// This class is used to move downward extractelement transition. 7045 /// E.g., 7046 /// a = vector_op <2 x i32> 7047 /// b = extractelement <2 x i32> a, i32 0 7048 /// c = scalar_op b 7049 /// store c 7050 /// 7051 /// => 7052 /// a = vector_op <2 x i32> 7053 /// c = vector_op a (equivalent to scalar_op on the related lane) 7054 /// * d = extractelement <2 x i32> c, i32 0 7055 /// * store d 7056 /// Assuming both extractelement and store can be combine, we get rid of the 7057 /// transition. 7058 class VectorPromoteHelper { 7059 /// DataLayout associated with the current module. 7060 const DataLayout &DL; 7061 7062 /// Used to perform some checks on the legality of vector operations. 7063 const TargetLowering &TLI; 7064 7065 /// Used to estimated the cost of the promoted chain. 7066 const TargetTransformInfo &TTI; 7067 7068 /// The transition being moved downwards. 7069 Instruction *Transition; 7070 7071 /// The sequence of instructions to be promoted. 7072 SmallVector<Instruction *, 4> InstsToBePromoted; 7073 7074 /// Cost of combining a store and an extract. 7075 unsigned StoreExtractCombineCost; 7076 7077 /// Instruction that will be combined with the transition. 7078 Instruction *CombineInst = nullptr; 7079 7080 /// The instruction that represents the current end of the transition. 7081 /// Since we are faking the promotion until we reach the end of the chain 7082 /// of computation, we need a way to get the current end of the transition. 7083 Instruction *getEndOfTransition() const { 7084 if (InstsToBePromoted.empty()) 7085 return Transition; 7086 return InstsToBePromoted.back(); 7087 } 7088 7089 /// Return the index of the original value in the transition. 7090 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7091 /// c, is at index 0. 7092 unsigned getTransitionOriginalValueIdx() const { 7093 assert(isa<ExtractElementInst>(Transition) && 7094 "Other kind of transitions are not supported yet"); 7095 return 0; 7096 } 7097 7098 /// Return the index of the index in the transition. 7099 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7100 /// is at index 1. 7101 unsigned getTransitionIdx() const { 7102 assert(isa<ExtractElementInst>(Transition) && 7103 "Other kind of transitions are not supported yet"); 7104 return 1; 7105 } 7106 7107 /// Get the type of the transition. 7108 /// This is the type of the original value. 7109 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7110 /// transition is <2 x i32>. 7111 Type *getTransitionType() const { 7112 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7113 } 7114 7115 /// Promote \p ToBePromoted by moving \p Def downward through. 7116 /// I.e., we have the following sequence: 7117 /// Def = Transition <ty1> a to <ty2> 7118 /// b = ToBePromoted <ty2> Def, ... 7119 /// => 7120 /// b = ToBePromoted <ty1> a, ... 7121 /// Def = Transition <ty1> ToBePromoted to <ty2> 7122 void promoteImpl(Instruction *ToBePromoted); 7123 7124 /// Check whether or not it is profitable to promote all the 7125 /// instructions enqueued to be promoted. 7126 bool isProfitableToPromote() { 7127 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7128 unsigned Index = isa<ConstantInt>(ValIdx) 7129 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7130 : -1; 7131 Type *PromotedType = getTransitionType(); 7132 7133 StoreInst *ST = cast<StoreInst>(CombineInst); 7134 unsigned AS = ST->getPointerAddressSpace(); 7135 // Check if this store is supported. 7136 if (!TLI.allowsMisalignedMemoryAccesses( 7137 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7138 ST->getAlign())) { 7139 // If this is not supported, there is no way we can combine 7140 // the extract with the store. 7141 return false; 7142 } 7143 7144 // The scalar chain of computation has to pay for the transition 7145 // scalar to vector. 7146 // The vector chain has to account for the combining cost. 7147 InstructionCost ScalarCost = 7148 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7149 InstructionCost VectorCost = StoreExtractCombineCost; 7150 enum TargetTransformInfo::TargetCostKind CostKind = 7151 TargetTransformInfo::TCK_RecipThroughput; 7152 for (const auto &Inst : InstsToBePromoted) { 7153 // Compute the cost. 7154 // By construction, all instructions being promoted are arithmetic ones. 7155 // Moreover, one argument is a constant that can be viewed as a splat 7156 // constant. 7157 Value *Arg0 = Inst->getOperand(0); 7158 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7159 isa<ConstantFP>(Arg0); 7160 TargetTransformInfo::OperandValueKind Arg0OVK = 7161 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7162 : TargetTransformInfo::OK_AnyValue; 7163 TargetTransformInfo::OperandValueKind Arg1OVK = 7164 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7165 : TargetTransformInfo::OK_AnyValue; 7166 ScalarCost += TTI.getArithmeticInstrCost( 7167 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7168 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7169 CostKind, 7170 Arg0OVK, Arg1OVK); 7171 } 7172 LLVM_DEBUG( 7173 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7174 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7175 return ScalarCost > VectorCost; 7176 } 7177 7178 /// Generate a constant vector with \p Val with the same 7179 /// number of elements as the transition. 7180 /// \p UseSplat defines whether or not \p Val should be replicated 7181 /// across the whole vector. 7182 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7183 /// otherwise we generate a vector with as many undef as possible: 7184 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7185 /// used at the index of the extract. 7186 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7187 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7188 if (!UseSplat) { 7189 // If we cannot determine where the constant must be, we have to 7190 // use a splat constant. 7191 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7192 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7193 ExtractIdx = CstVal->getSExtValue(); 7194 else 7195 UseSplat = true; 7196 } 7197 7198 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7199 if (UseSplat) 7200 return ConstantVector::getSplat(EC, Val); 7201 7202 if (!EC.isScalable()) { 7203 SmallVector<Constant *, 4> ConstVec; 7204 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7205 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7206 if (Idx == ExtractIdx) 7207 ConstVec.push_back(Val); 7208 else 7209 ConstVec.push_back(UndefVal); 7210 } 7211 return ConstantVector::get(ConstVec); 7212 } else 7213 llvm_unreachable( 7214 "Generate scalable vector for non-splat is unimplemented"); 7215 } 7216 7217 /// Check if promoting to a vector type an operand at \p OperandIdx 7218 /// in \p Use can trigger undefined behavior. 7219 static bool canCauseUndefinedBehavior(const Instruction *Use, 7220 unsigned OperandIdx) { 7221 // This is not safe to introduce undef when the operand is on 7222 // the right hand side of a division-like instruction. 7223 if (OperandIdx != 1) 7224 return false; 7225 switch (Use->getOpcode()) { 7226 default: 7227 return false; 7228 case Instruction::SDiv: 7229 case Instruction::UDiv: 7230 case Instruction::SRem: 7231 case Instruction::URem: 7232 return true; 7233 case Instruction::FDiv: 7234 case Instruction::FRem: 7235 return !Use->hasNoNaNs(); 7236 } 7237 llvm_unreachable(nullptr); 7238 } 7239 7240 public: 7241 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7242 const TargetTransformInfo &TTI, Instruction *Transition, 7243 unsigned CombineCost) 7244 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7245 StoreExtractCombineCost(CombineCost) { 7246 assert(Transition && "Do not know how to promote null"); 7247 } 7248 7249 /// Check if we can promote \p ToBePromoted to \p Type. 7250 bool canPromote(const Instruction *ToBePromoted) const { 7251 // We could support CastInst too. 7252 return isa<BinaryOperator>(ToBePromoted); 7253 } 7254 7255 /// Check if it is profitable to promote \p ToBePromoted 7256 /// by moving downward the transition through. 7257 bool shouldPromote(const Instruction *ToBePromoted) const { 7258 // Promote only if all the operands can be statically expanded. 7259 // Indeed, we do not want to introduce any new kind of transitions. 7260 for (const Use &U : ToBePromoted->operands()) { 7261 const Value *Val = U.get(); 7262 if (Val == getEndOfTransition()) { 7263 // If the use is a division and the transition is on the rhs, 7264 // we cannot promote the operation, otherwise we may create a 7265 // division by zero. 7266 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7267 return false; 7268 continue; 7269 } 7270 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7271 !isa<ConstantFP>(Val)) 7272 return false; 7273 } 7274 // Check that the resulting operation is legal. 7275 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7276 if (!ISDOpcode) 7277 return false; 7278 return StressStoreExtract || 7279 TLI.isOperationLegalOrCustom( 7280 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7281 } 7282 7283 /// Check whether or not \p Use can be combined 7284 /// with the transition. 7285 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7286 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7287 7288 /// Record \p ToBePromoted as part of the chain to be promoted. 7289 void enqueueForPromotion(Instruction *ToBePromoted) { 7290 InstsToBePromoted.push_back(ToBePromoted); 7291 } 7292 7293 /// Set the instruction that will be combined with the transition. 7294 void recordCombineInstruction(Instruction *ToBeCombined) { 7295 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7296 CombineInst = ToBeCombined; 7297 } 7298 7299 /// Promote all the instructions enqueued for promotion if it is 7300 /// is profitable. 7301 /// \return True if the promotion happened, false otherwise. 7302 bool promote() { 7303 // Check if there is something to promote. 7304 // Right now, if we do not have anything to combine with, 7305 // we assume the promotion is not profitable. 7306 if (InstsToBePromoted.empty() || !CombineInst) 7307 return false; 7308 7309 // Check cost. 7310 if (!StressStoreExtract && !isProfitableToPromote()) 7311 return false; 7312 7313 // Promote. 7314 for (auto &ToBePromoted : InstsToBePromoted) 7315 promoteImpl(ToBePromoted); 7316 InstsToBePromoted.clear(); 7317 return true; 7318 } 7319 }; 7320 7321 } // end anonymous namespace 7322 7323 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7324 // At this point, we know that all the operands of ToBePromoted but Def 7325 // can be statically promoted. 7326 // For Def, we need to use its parameter in ToBePromoted: 7327 // b = ToBePromoted ty1 a 7328 // Def = Transition ty1 b to ty2 7329 // Move the transition down. 7330 // 1. Replace all uses of the promoted operation by the transition. 7331 // = ... b => = ... Def. 7332 assert(ToBePromoted->getType() == Transition->getType() && 7333 "The type of the result of the transition does not match " 7334 "the final type"); 7335 ToBePromoted->replaceAllUsesWith(Transition); 7336 // 2. Update the type of the uses. 7337 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7338 Type *TransitionTy = getTransitionType(); 7339 ToBePromoted->mutateType(TransitionTy); 7340 // 3. Update all the operands of the promoted operation with promoted 7341 // operands. 7342 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7343 for (Use &U : ToBePromoted->operands()) { 7344 Value *Val = U.get(); 7345 Value *NewVal = nullptr; 7346 if (Val == Transition) 7347 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7348 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7349 isa<ConstantFP>(Val)) { 7350 // Use a splat constant if it is not safe to use undef. 7351 NewVal = getConstantVector( 7352 cast<Constant>(Val), 7353 isa<UndefValue>(Val) || 7354 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7355 } else 7356 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7357 "this?"); 7358 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7359 } 7360 Transition->moveAfter(ToBePromoted); 7361 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7362 } 7363 7364 /// Some targets can do store(extractelement) with one instruction. 7365 /// Try to push the extractelement towards the stores when the target 7366 /// has this feature and this is profitable. 7367 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7368 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7369 if (DisableStoreExtract || 7370 (!StressStoreExtract && 7371 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7372 Inst->getOperand(1), CombineCost))) 7373 return false; 7374 7375 // At this point we know that Inst is a vector to scalar transition. 7376 // Try to move it down the def-use chain, until: 7377 // - We can combine the transition with its single use 7378 // => we got rid of the transition. 7379 // - We escape the current basic block 7380 // => we would need to check that we are moving it at a cheaper place and 7381 // we do not do that for now. 7382 BasicBlock *Parent = Inst->getParent(); 7383 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7384 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7385 // If the transition has more than one use, assume this is not going to be 7386 // beneficial. 7387 while (Inst->hasOneUse()) { 7388 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7389 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7390 7391 if (ToBePromoted->getParent() != Parent) { 7392 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7393 << ToBePromoted->getParent()->getName() 7394 << ") than the transition (" << Parent->getName() 7395 << ").\n"); 7396 return false; 7397 } 7398 7399 if (VPH.canCombine(ToBePromoted)) { 7400 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7401 << "will be combined with: " << *ToBePromoted << '\n'); 7402 VPH.recordCombineInstruction(ToBePromoted); 7403 bool Changed = VPH.promote(); 7404 NumStoreExtractExposed += Changed; 7405 return Changed; 7406 } 7407 7408 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7409 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7410 return false; 7411 7412 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7413 7414 VPH.enqueueForPromotion(ToBePromoted); 7415 Inst = ToBePromoted; 7416 } 7417 return false; 7418 } 7419 7420 /// For the instruction sequence of store below, F and I values 7421 /// are bundled together as an i64 value before being stored into memory. 7422 /// Sometimes it is more efficient to generate separate stores for F and I, 7423 /// which can remove the bitwise instructions or sink them to colder places. 7424 /// 7425 /// (store (or (zext (bitcast F to i32) to i64), 7426 /// (shl (zext I to i64), 32)), addr) --> 7427 /// (store F, addr) and (store I, addr+4) 7428 /// 7429 /// Similarly, splitting for other merged store can also be beneficial, like: 7430 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7431 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7432 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7433 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7434 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7435 /// 7436 /// We allow each target to determine specifically which kind of splitting is 7437 /// supported. 7438 /// 7439 /// The store patterns are commonly seen from the simple code snippet below 7440 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7441 /// void goo(const std::pair<int, float> &); 7442 /// hoo() { 7443 /// ... 7444 /// goo(std::make_pair(tmp, ftmp)); 7445 /// ... 7446 /// } 7447 /// 7448 /// Although we already have similar splitting in DAG Combine, we duplicate 7449 /// it in CodeGenPrepare to catch the case in which pattern is across 7450 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7451 /// during code expansion. 7452 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7453 const TargetLowering &TLI) { 7454 // Handle simple but common cases only. 7455 Type *StoreType = SI.getValueOperand()->getType(); 7456 7457 // The code below assumes shifting a value by <number of bits>, 7458 // whereas scalable vectors would have to be shifted by 7459 // <2log(vscale) + number of bits> in order to store the 7460 // low/high parts. Bailing out for now. 7461 if (isa<ScalableVectorType>(StoreType)) 7462 return false; 7463 7464 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7465 DL.getTypeSizeInBits(StoreType) == 0) 7466 return false; 7467 7468 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7469 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7470 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7471 return false; 7472 7473 // Don't split the store if it is volatile. 7474 if (SI.isVolatile()) 7475 return false; 7476 7477 // Match the following patterns: 7478 // (store (or (zext LValue to i64), 7479 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7480 // or 7481 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7482 // (zext LValue to i64), 7483 // Expect both operands of OR and the first operand of SHL have only 7484 // one use. 7485 Value *LValue, *HValue; 7486 if (!match(SI.getValueOperand(), 7487 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7488 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7489 m_SpecificInt(HalfValBitSize)))))) 7490 return false; 7491 7492 // Check LValue and HValue are int with size less or equal than 32. 7493 if (!LValue->getType()->isIntegerTy() || 7494 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7495 !HValue->getType()->isIntegerTy() || 7496 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7497 return false; 7498 7499 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7500 // as the input of target query. 7501 auto *LBC = dyn_cast<BitCastInst>(LValue); 7502 auto *HBC = dyn_cast<BitCastInst>(HValue); 7503 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7504 : EVT::getEVT(LValue->getType()); 7505 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7506 : EVT::getEVT(HValue->getType()); 7507 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7508 return false; 7509 7510 // Start to split store. 7511 IRBuilder<> Builder(SI.getContext()); 7512 Builder.SetInsertPoint(&SI); 7513 7514 // If LValue/HValue is a bitcast in another BB, create a new one in current 7515 // BB so it may be merged with the splitted stores by dag combiner. 7516 if (LBC && LBC->getParent() != SI.getParent()) 7517 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7518 if (HBC && HBC->getParent() != SI.getParent()) 7519 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7520 7521 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7522 auto CreateSplitStore = [&](Value *V, bool Upper) { 7523 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7524 Value *Addr = Builder.CreateBitCast( 7525 SI.getOperand(1), 7526 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7527 Align Alignment = SI.getAlign(); 7528 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7529 if (IsOffsetStore) { 7530 Addr = Builder.CreateGEP( 7531 SplitStoreType, Addr, 7532 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7533 7534 // When splitting the store in half, naturally one half will retain the 7535 // alignment of the original wider store, regardless of whether it was 7536 // over-aligned or not, while the other will require adjustment. 7537 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7538 } 7539 Builder.CreateAlignedStore(V, Addr, Alignment); 7540 }; 7541 7542 CreateSplitStore(LValue, false); 7543 CreateSplitStore(HValue, true); 7544 7545 // Delete the old store. 7546 SI.eraseFromParent(); 7547 return true; 7548 } 7549 7550 // Return true if the GEP has two operands, the first operand is of a sequential 7551 // type, and the second operand is a constant. 7552 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7553 gep_type_iterator I = gep_type_begin(*GEP); 7554 return GEP->getNumOperands() == 2 && 7555 I.isSequential() && 7556 isa<ConstantInt>(GEP->getOperand(1)); 7557 } 7558 7559 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7560 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7561 // reducing liveness interference across those edges benefits global register 7562 // allocation. Currently handles only certain cases. 7563 // 7564 // For example, unmerge %GEPI and %UGEPI as below. 7565 // 7566 // ---------- BEFORE ---------- 7567 // SrcBlock: 7568 // ... 7569 // %GEPIOp = ... 7570 // ... 7571 // %GEPI = gep %GEPIOp, Idx 7572 // ... 7573 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7574 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7575 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7576 // %UGEPI) 7577 // 7578 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7579 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7580 // ... 7581 // 7582 // DstBi: 7583 // ... 7584 // %UGEPI = gep %GEPIOp, UIdx 7585 // ... 7586 // --------------------------- 7587 // 7588 // ---------- AFTER ---------- 7589 // SrcBlock: 7590 // ... (same as above) 7591 // (* %GEPI is still alive on the indirectbr edges) 7592 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7593 // unmerging) 7594 // ... 7595 // 7596 // DstBi: 7597 // ... 7598 // %UGEPI = gep %GEPI, (UIdx-Idx) 7599 // ... 7600 // --------------------------- 7601 // 7602 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7603 // no longer alive on them. 7604 // 7605 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7606 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7607 // not to disable further simplications and optimizations as a result of GEP 7608 // merging. 7609 // 7610 // Note this unmerging may increase the length of the data flow critical path 7611 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7612 // between the register pressure and the length of data-flow critical 7613 // path. Restricting this to the uncommon IndirectBr case would minimize the 7614 // impact of potentially longer critical path, if any, and the impact on compile 7615 // time. 7616 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7617 const TargetTransformInfo *TTI) { 7618 BasicBlock *SrcBlock = GEPI->getParent(); 7619 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7620 // (non-IndirectBr) cases exit early here. 7621 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7622 return false; 7623 // Check that GEPI is a simple gep with a single constant index. 7624 if (!GEPSequentialConstIndexed(GEPI)) 7625 return false; 7626 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7627 // Check that GEPI is a cheap one. 7628 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7629 TargetTransformInfo::TCK_SizeAndLatency) 7630 > TargetTransformInfo::TCC_Basic) 7631 return false; 7632 Value *GEPIOp = GEPI->getOperand(0); 7633 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7634 if (!isa<Instruction>(GEPIOp)) 7635 return false; 7636 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7637 if (GEPIOpI->getParent() != SrcBlock) 7638 return false; 7639 // Check that GEP is used outside the block, meaning it's alive on the 7640 // IndirectBr edge(s). 7641 if (find_if(GEPI->users(), [&](User *Usr) { 7642 if (auto *I = dyn_cast<Instruction>(Usr)) { 7643 if (I->getParent() != SrcBlock) { 7644 return true; 7645 } 7646 } 7647 return false; 7648 }) == GEPI->users().end()) 7649 return false; 7650 // The second elements of the GEP chains to be unmerged. 7651 std::vector<GetElementPtrInst *> UGEPIs; 7652 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7653 // on IndirectBr edges. 7654 for (User *Usr : GEPIOp->users()) { 7655 if (Usr == GEPI) continue; 7656 // Check if Usr is an Instruction. If not, give up. 7657 if (!isa<Instruction>(Usr)) 7658 return false; 7659 auto *UI = cast<Instruction>(Usr); 7660 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7661 if (UI->getParent() == SrcBlock) 7662 continue; 7663 // Check if Usr is a GEP. If not, give up. 7664 if (!isa<GetElementPtrInst>(Usr)) 7665 return false; 7666 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7667 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7668 // the pointer operand to it. If so, record it in the vector. If not, give 7669 // up. 7670 if (!GEPSequentialConstIndexed(UGEPI)) 7671 return false; 7672 if (UGEPI->getOperand(0) != GEPIOp) 7673 return false; 7674 if (GEPIIdx->getType() != 7675 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7676 return false; 7677 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7678 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7679 TargetTransformInfo::TCK_SizeAndLatency) 7680 > TargetTransformInfo::TCC_Basic) 7681 return false; 7682 UGEPIs.push_back(UGEPI); 7683 } 7684 if (UGEPIs.size() == 0) 7685 return false; 7686 // Check the materializing cost of (Uidx-Idx). 7687 for (GetElementPtrInst *UGEPI : UGEPIs) { 7688 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7689 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7690 InstructionCost ImmCost = TTI->getIntImmCost( 7691 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7692 if (ImmCost > TargetTransformInfo::TCC_Basic) 7693 return false; 7694 } 7695 // Now unmerge between GEPI and UGEPIs. 7696 for (GetElementPtrInst *UGEPI : UGEPIs) { 7697 UGEPI->setOperand(0, GEPI); 7698 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7699 Constant *NewUGEPIIdx = 7700 ConstantInt::get(GEPIIdx->getType(), 7701 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7702 UGEPI->setOperand(1, NewUGEPIIdx); 7703 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7704 // inbounds to avoid UB. 7705 if (!GEPI->isInBounds()) { 7706 UGEPI->setIsInBounds(false); 7707 } 7708 } 7709 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7710 // alive on IndirectBr edges). 7711 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7712 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7713 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7714 return true; 7715 } 7716 7717 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7718 // Try and convert 7719 // %c = icmp ult %x, 8 7720 // br %c, bla, blb 7721 // %tc = lshr %x, 3 7722 // to 7723 // %tc = lshr %x, 3 7724 // %c = icmp eq %tc, 0 7725 // br %c, bla, blb 7726 // Creating the cmp to zero can be better for the backend, especially if the 7727 // lshr produces flags that can be used automatically. 7728 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7729 return false; 7730 7731 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7732 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7733 return false; 7734 7735 Value *X = Cmp->getOperand(0); 7736 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7737 7738 for (auto *U : X->users()) { 7739 Instruction *UI = dyn_cast<Instruction>(U); 7740 // A quick dominance check 7741 if (!UI || 7742 (UI->getParent() != Branch->getParent() && 7743 UI->getParent() != Branch->getSuccessor(0) && 7744 UI->getParent() != Branch->getSuccessor(1)) || 7745 (UI->getParent() != Branch->getParent() && 7746 !UI->getParent()->getSinglePredecessor())) 7747 continue; 7748 7749 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7750 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7751 IRBuilder<> Builder(Branch); 7752 if (UI->getParent() != Branch->getParent()) 7753 UI->moveBefore(Branch); 7754 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7755 ConstantInt::get(UI->getType(), 0)); 7756 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7757 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7758 Cmp->replaceAllUsesWith(NewCmp); 7759 return true; 7760 } 7761 if (Cmp->isEquality() && 7762 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7763 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7764 IRBuilder<> Builder(Branch); 7765 if (UI->getParent() != Branch->getParent()) 7766 UI->moveBefore(Branch); 7767 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7768 ConstantInt::get(UI->getType(), 0)); 7769 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7770 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7771 Cmp->replaceAllUsesWith(NewCmp); 7772 return true; 7773 } 7774 } 7775 return false; 7776 } 7777 7778 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7779 // Bail out if we inserted the instruction to prevent optimizations from 7780 // stepping on each other's toes. 7781 if (InsertedInsts.count(I)) 7782 return false; 7783 7784 // TODO: Move into the switch on opcode below here. 7785 if (PHINode *P = dyn_cast<PHINode>(I)) { 7786 // It is possible for very late stage optimizations (such as SimplifyCFG) 7787 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7788 // trivial PHI, go ahead and zap it here. 7789 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7790 LargeOffsetGEPMap.erase(P); 7791 P->replaceAllUsesWith(V); 7792 P->eraseFromParent(); 7793 ++NumPHIsElim; 7794 return true; 7795 } 7796 return false; 7797 } 7798 7799 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7800 // If the source of the cast is a constant, then this should have 7801 // already been constant folded. The only reason NOT to constant fold 7802 // it is if something (e.g. LSR) was careful to place the constant 7803 // evaluation in a block other than then one that uses it (e.g. to hoist 7804 // the address of globals out of a loop). If this is the case, we don't 7805 // want to forward-subst the cast. 7806 if (isa<Constant>(CI->getOperand(0))) 7807 return false; 7808 7809 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7810 return true; 7811 7812 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7813 /// Sink a zext or sext into its user blocks if the target type doesn't 7814 /// fit in one register 7815 if (TLI->getTypeAction(CI->getContext(), 7816 TLI->getValueType(*DL, CI->getType())) == 7817 TargetLowering::TypeExpandInteger) { 7818 return SinkCast(CI); 7819 } else { 7820 bool MadeChange = optimizeExt(I); 7821 return MadeChange | optimizeExtUses(I); 7822 } 7823 } 7824 return false; 7825 } 7826 7827 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7828 if (optimizeCmp(Cmp, ModifiedDT)) 7829 return true; 7830 7831 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7832 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7833 bool Modified = optimizeLoadExt(LI); 7834 unsigned AS = LI->getPointerAddressSpace(); 7835 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7836 return Modified; 7837 } 7838 7839 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7840 if (splitMergedValStore(*SI, *DL, *TLI)) 7841 return true; 7842 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7843 unsigned AS = SI->getPointerAddressSpace(); 7844 return optimizeMemoryInst(I, SI->getOperand(1), 7845 SI->getOperand(0)->getType(), AS); 7846 } 7847 7848 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7849 unsigned AS = RMW->getPointerAddressSpace(); 7850 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7851 RMW->getType(), AS); 7852 } 7853 7854 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7855 unsigned AS = CmpX->getPointerAddressSpace(); 7856 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7857 CmpX->getCompareOperand()->getType(), AS); 7858 } 7859 7860 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7861 7862 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7863 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7864 return true; 7865 7866 // TODO: Move this into the switch on opcode - it handles shifts already. 7867 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7868 BinOp->getOpcode() == Instruction::LShr)) { 7869 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7870 if (CI && TLI->hasExtractBitsInsn()) 7871 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7872 return true; 7873 } 7874 7875 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7876 if (GEPI->hasAllZeroIndices()) { 7877 /// The GEP operand must be a pointer, so must its result -> BitCast 7878 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7879 GEPI->getName(), GEPI); 7880 NC->setDebugLoc(GEPI->getDebugLoc()); 7881 GEPI->replaceAllUsesWith(NC); 7882 GEPI->eraseFromParent(); 7883 ++NumGEPsElim; 7884 optimizeInst(NC, ModifiedDT); 7885 return true; 7886 } 7887 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7888 return true; 7889 } 7890 return false; 7891 } 7892 7893 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7894 // freeze(icmp a, const)) -> icmp (freeze a), const 7895 // This helps generate efficient conditional jumps. 7896 Instruction *CmpI = nullptr; 7897 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7898 CmpI = II; 7899 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7900 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7901 7902 if (CmpI && CmpI->hasOneUse()) { 7903 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7904 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7905 isa<ConstantPointerNull>(Op0); 7906 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7907 isa<ConstantPointerNull>(Op1); 7908 if (Const0 || Const1) { 7909 if (!Const0 || !Const1) { 7910 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7911 F->takeName(FI); 7912 CmpI->setOperand(Const0 ? 1 : 0, F); 7913 } 7914 FI->replaceAllUsesWith(CmpI); 7915 FI->eraseFromParent(); 7916 return true; 7917 } 7918 } 7919 return false; 7920 } 7921 7922 if (tryToSinkFreeOperands(I)) 7923 return true; 7924 7925 switch (I->getOpcode()) { 7926 case Instruction::Shl: 7927 case Instruction::LShr: 7928 case Instruction::AShr: 7929 return optimizeShiftInst(cast<BinaryOperator>(I)); 7930 case Instruction::Call: 7931 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7932 case Instruction::Select: 7933 return optimizeSelectInst(cast<SelectInst>(I)); 7934 case Instruction::ShuffleVector: 7935 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7936 case Instruction::Switch: 7937 return optimizeSwitchInst(cast<SwitchInst>(I)); 7938 case Instruction::ExtractElement: 7939 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7940 case Instruction::Br: 7941 return optimizeBranch(cast<BranchInst>(I), *TLI); 7942 } 7943 7944 return false; 7945 } 7946 7947 /// Given an OR instruction, check to see if this is a bitreverse 7948 /// idiom. If so, insert the new intrinsic and return true. 7949 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7950 if (!I.getType()->isIntegerTy() || 7951 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7952 TLI->getValueType(*DL, I.getType(), true))) 7953 return false; 7954 7955 SmallVector<Instruction*, 4> Insts; 7956 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7957 return false; 7958 Instruction *LastInst = Insts.back(); 7959 I.replaceAllUsesWith(LastInst); 7960 RecursivelyDeleteTriviallyDeadInstructions( 7961 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7962 return true; 7963 } 7964 7965 // In this pass we look for GEP and cast instructions that are used 7966 // across basic blocks and rewrite them to improve basic-block-at-a-time 7967 // selection. 7968 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7969 SunkAddrs.clear(); 7970 bool MadeChange = false; 7971 7972 CurInstIterator = BB.begin(); 7973 while (CurInstIterator != BB.end()) { 7974 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7975 if (ModifiedDT) 7976 return true; 7977 } 7978 7979 bool MadeBitReverse = true; 7980 while (MadeBitReverse) { 7981 MadeBitReverse = false; 7982 for (auto &I : reverse(BB)) { 7983 if (makeBitReverse(I)) { 7984 MadeBitReverse = MadeChange = true; 7985 break; 7986 } 7987 } 7988 } 7989 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7990 7991 return MadeChange; 7992 } 7993 7994 // Some CGP optimizations may move or alter what's computed in a block. Check 7995 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7996 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7997 assert(isa<DbgValueInst>(I)); 7998 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7999 8000 // Does this dbg.value refer to a sunk address calculation? 8001 bool AnyChange = false; 8002 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8003 DVI.location_ops().end()); 8004 for (Value *Location : LocationOps) { 8005 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8006 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8007 if (SunkAddr) { 8008 // Point dbg.value at locally computed address, which should give the best 8009 // opportunity to be accurately lowered. This update may change the type 8010 // of pointer being referred to; however this makes no difference to 8011 // debugging information, and we can't generate bitcasts that may affect 8012 // codegen. 8013 DVI.replaceVariableLocationOp(Location, SunkAddr); 8014 AnyChange = true; 8015 } 8016 } 8017 return AnyChange; 8018 } 8019 8020 // A llvm.dbg.value may be using a value before its definition, due to 8021 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8022 // them by moving the dbg.value to immediately after the value definition. 8023 // FIXME: Ideally this should never be necessary, and this has the potential 8024 // to re-order dbg.value intrinsics. 8025 bool CodeGenPrepare::placeDbgValues(Function &F) { 8026 bool MadeChange = false; 8027 DominatorTree DT(F); 8028 8029 for (BasicBlock &BB : F) { 8030 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8031 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8032 if (!DVI) 8033 continue; 8034 8035 SmallVector<Instruction *, 4> VIs; 8036 for (Value *V : DVI->getValues()) 8037 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8038 VIs.push_back(VI); 8039 8040 // This DVI may depend on multiple instructions, complicating any 8041 // potential sink. This block takes the defensive approach, opting to 8042 // "undef" the DVI if it has more than one instruction and any of them do 8043 // not dominate DVI. 8044 for (Instruction *VI : VIs) { 8045 if (VI->isTerminator()) 8046 continue; 8047 8048 // If VI is a phi in a block with an EHPad terminator, we can't insert 8049 // after it. 8050 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8051 continue; 8052 8053 // If the defining instruction dominates the dbg.value, we do not need 8054 // to move the dbg.value. 8055 if (DT.dominates(VI, DVI)) 8056 continue; 8057 8058 // If we depend on multiple instructions and any of them doesn't 8059 // dominate this DVI, we probably can't salvage it: moving it to 8060 // after any of the instructions could cause us to lose the others. 8061 if (VIs.size() > 1) { 8062 LLVM_DEBUG( 8063 dbgs() 8064 << "Unable to find valid location for Debug Value, undefing:\n" 8065 << *DVI); 8066 DVI->setUndef(); 8067 break; 8068 } 8069 8070 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8071 << *DVI << ' ' << *VI); 8072 DVI->removeFromParent(); 8073 if (isa<PHINode>(VI)) 8074 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8075 else 8076 DVI->insertAfter(VI); 8077 MadeChange = true; 8078 ++NumDbgValueMoved; 8079 } 8080 } 8081 } 8082 return MadeChange; 8083 } 8084 8085 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8086 // probes can be chained dependencies of other regular DAG nodes and block DAG 8087 // combine optimizations. 8088 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8089 bool MadeChange = false; 8090 for (auto &Block : F) { 8091 // Move the rest probes to the beginning of the block. 8092 auto FirstInst = Block.getFirstInsertionPt(); 8093 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8094 ++FirstInst; 8095 BasicBlock::iterator I(FirstInst); 8096 I++; 8097 while (I != Block.end()) { 8098 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8099 II->moveBefore(&*FirstInst); 8100 MadeChange = true; 8101 } 8102 } 8103 } 8104 return MadeChange; 8105 } 8106 8107 /// Scale down both weights to fit into uint32_t. 8108 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8109 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8110 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8111 NewTrue = NewTrue / Scale; 8112 NewFalse = NewFalse / Scale; 8113 } 8114 8115 /// Some targets prefer to split a conditional branch like: 8116 /// \code 8117 /// %0 = icmp ne i32 %a, 0 8118 /// %1 = icmp ne i32 %b, 0 8119 /// %or.cond = or i1 %0, %1 8120 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8121 /// \endcode 8122 /// into multiple branch instructions like: 8123 /// \code 8124 /// bb1: 8125 /// %0 = icmp ne i32 %a, 0 8126 /// br i1 %0, label %TrueBB, label %bb2 8127 /// bb2: 8128 /// %1 = icmp ne i32 %b, 0 8129 /// br i1 %1, label %TrueBB, label %FalseBB 8130 /// \endcode 8131 /// This usually allows instruction selection to do even further optimizations 8132 /// and combine the compare with the branch instruction. Currently this is 8133 /// applied for targets which have "cheap" jump instructions. 8134 /// 8135 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8136 /// 8137 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8138 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8139 return false; 8140 8141 bool MadeChange = false; 8142 for (auto &BB : F) { 8143 // Does this BB end with the following? 8144 // %cond1 = icmp|fcmp|binary instruction ... 8145 // %cond2 = icmp|fcmp|binary instruction ... 8146 // %cond.or = or|and i1 %cond1, cond2 8147 // br i1 %cond.or label %dest1, label %dest2" 8148 Instruction *LogicOp; 8149 BasicBlock *TBB, *FBB; 8150 if (!match(BB.getTerminator(), 8151 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8152 continue; 8153 8154 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8155 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8156 continue; 8157 8158 // The merging of mostly empty BB can cause a degenerate branch. 8159 if (TBB == FBB) 8160 continue; 8161 8162 unsigned Opc; 8163 Value *Cond1, *Cond2; 8164 if (match(LogicOp, 8165 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8166 Opc = Instruction::And; 8167 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8168 m_OneUse(m_Value(Cond2))))) 8169 Opc = Instruction::Or; 8170 else 8171 continue; 8172 8173 auto IsGoodCond = [](Value *Cond) { 8174 return match( 8175 Cond, 8176 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8177 m_LogicalOr(m_Value(), m_Value())))); 8178 }; 8179 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8180 continue; 8181 8182 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8183 8184 // Create a new BB. 8185 auto *TmpBB = 8186 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8187 BB.getParent(), BB.getNextNode()); 8188 8189 // Update original basic block by using the first condition directly by the 8190 // branch instruction and removing the no longer needed and/or instruction. 8191 Br1->setCondition(Cond1); 8192 LogicOp->eraseFromParent(); 8193 8194 // Depending on the condition we have to either replace the true or the 8195 // false successor of the original branch instruction. 8196 if (Opc == Instruction::And) 8197 Br1->setSuccessor(0, TmpBB); 8198 else 8199 Br1->setSuccessor(1, TmpBB); 8200 8201 // Fill in the new basic block. 8202 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8203 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8204 I->removeFromParent(); 8205 I->insertBefore(Br2); 8206 } 8207 8208 // Update PHI nodes in both successors. The original BB needs to be 8209 // replaced in one successor's PHI nodes, because the branch comes now from 8210 // the newly generated BB (NewBB). In the other successor we need to add one 8211 // incoming edge to the PHI nodes, because both branch instructions target 8212 // now the same successor. Depending on the original branch condition 8213 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8214 // we perform the correct update for the PHI nodes. 8215 // This doesn't change the successor order of the just created branch 8216 // instruction (or any other instruction). 8217 if (Opc == Instruction::Or) 8218 std::swap(TBB, FBB); 8219 8220 // Replace the old BB with the new BB. 8221 TBB->replacePhiUsesWith(&BB, TmpBB); 8222 8223 // Add another incoming edge form the new BB. 8224 for (PHINode &PN : FBB->phis()) { 8225 auto *Val = PN.getIncomingValueForBlock(&BB); 8226 PN.addIncoming(Val, TmpBB); 8227 } 8228 8229 // Update the branch weights (from SelectionDAGBuilder:: 8230 // FindMergedConditions). 8231 if (Opc == Instruction::Or) { 8232 // Codegen X | Y as: 8233 // BB1: 8234 // jmp_if_X TBB 8235 // jmp TmpBB 8236 // TmpBB: 8237 // jmp_if_Y TBB 8238 // jmp FBB 8239 // 8240 8241 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8242 // The requirement is that 8243 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8244 // = TrueProb for original BB. 8245 // Assuming the original weights are A and B, one choice is to set BB1's 8246 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8247 // assumes that 8248 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8249 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8250 // TmpBB, but the math is more complicated. 8251 uint64_t TrueWeight, FalseWeight; 8252 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8253 uint64_t NewTrueWeight = TrueWeight; 8254 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8255 scaleWeights(NewTrueWeight, NewFalseWeight); 8256 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8257 .createBranchWeights(TrueWeight, FalseWeight)); 8258 8259 NewTrueWeight = TrueWeight; 8260 NewFalseWeight = 2 * FalseWeight; 8261 scaleWeights(NewTrueWeight, NewFalseWeight); 8262 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8263 .createBranchWeights(TrueWeight, FalseWeight)); 8264 } 8265 } else { 8266 // Codegen X & Y as: 8267 // BB1: 8268 // jmp_if_X TmpBB 8269 // jmp FBB 8270 // TmpBB: 8271 // jmp_if_Y TBB 8272 // jmp FBB 8273 // 8274 // This requires creation of TmpBB after CurBB. 8275 8276 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8277 // The requirement is that 8278 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8279 // = FalseProb for original BB. 8280 // Assuming the original weights are A and B, one choice is to set BB1's 8281 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8282 // assumes that 8283 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8284 uint64_t TrueWeight, FalseWeight; 8285 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8286 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8287 uint64_t NewFalseWeight = FalseWeight; 8288 scaleWeights(NewTrueWeight, NewFalseWeight); 8289 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8290 .createBranchWeights(TrueWeight, FalseWeight)); 8291 8292 NewTrueWeight = 2 * TrueWeight; 8293 NewFalseWeight = FalseWeight; 8294 scaleWeights(NewTrueWeight, NewFalseWeight); 8295 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8296 .createBranchWeights(TrueWeight, FalseWeight)); 8297 } 8298 } 8299 8300 ModifiedDT = true; 8301 MadeChange = true; 8302 8303 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8304 TmpBB->dump()); 8305 } 8306 return MadeChange; 8307 } 8308