1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 static cl::opt<bool> OptimizePhiTypes( 249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 250 cl::desc("Enable converting phi types in CodeGenPrepare")); 251 252 namespace { 253 254 enum ExtType { 255 ZeroExtension, // Zero extension has been seen. 256 SignExtension, // Sign extension has been seen. 257 BothExtension // This extension type is used if we saw sext after 258 // ZeroExtension had been set, or if we saw zext after 259 // SignExtension had been set. It makes the type 260 // information of a promoted instruction invalid. 261 }; 262 263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 266 using SExts = SmallVector<Instruction *, 16>; 267 using ValueToSExts = DenseMap<Value *, SExts>; 268 269 class TypePromotionTransaction; 270 271 class CodeGenPrepare : public FunctionPass { 272 const TargetMachine *TM = nullptr; 273 const TargetSubtargetInfo *SubtargetInfo; 274 const TargetLowering *TLI = nullptr; 275 const TargetRegisterInfo *TRI; 276 const TargetTransformInfo *TTI = nullptr; 277 const TargetLibraryInfo *TLInfo; 278 const LoopInfo *LI; 279 std::unique_ptr<BlockFrequencyInfo> BFI; 280 std::unique_ptr<BranchProbabilityInfo> BPI; 281 ProfileSummaryInfo *PSI; 282 283 /// As we scan instructions optimizing them, this is the next instruction 284 /// to optimize. Transforms that can invalidate this should update it. 285 BasicBlock::iterator CurInstIterator; 286 287 /// Keeps track of non-local addresses that have been sunk into a block. 288 /// This allows us to avoid inserting duplicate code for blocks with 289 /// multiple load/stores of the same address. The usage of WeakTrackingVH 290 /// enables SunkAddrs to be treated as a cache whose entries can be 291 /// invalidated if a sunken address computation has been erased. 292 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 293 294 /// Keeps track of all instructions inserted for the current function. 295 SetOfInstrs InsertedInsts; 296 297 /// Keeps track of the type of the related instruction before their 298 /// promotion for the current function. 299 InstrToOrigTy PromotedInsts; 300 301 /// Keep track of instructions removed during promotion. 302 SetOfInstrs RemovedInsts; 303 304 /// Keep track of sext chains based on their initial value. 305 DenseMap<Value *, Instruction *> SeenChainsForSExt; 306 307 /// Keep track of GEPs accessing the same data structures such as structs or 308 /// arrays that are candidates to be split later because of their large 309 /// size. 310 MapVector< 311 AssertingVH<Value>, 312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 313 LargeOffsetGEPMap; 314 315 /// Keep track of new GEP base after splitting the GEPs having large offset. 316 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 317 318 /// Map serial numbers to Large offset GEPs. 319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 320 321 /// Keep track of SExt promoted. 322 ValueToSExts ValToSExtendedUses; 323 324 /// True if the function has the OptSize attribute. 325 bool OptSize; 326 327 /// DataLayout for the Function being processed. 328 const DataLayout *DL = nullptr; 329 330 /// Building the dominator tree can be expensive, so we only build it 331 /// lazily and update it when required. 332 std::unique_ptr<DominatorTree> DT; 333 334 public: 335 static char ID; // Pass identification, replacement for typeid 336 337 CodeGenPrepare() : FunctionPass(ID) { 338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 339 } 340 341 bool runOnFunction(Function &F) override; 342 343 StringRef getPassName() const override { return "CodeGen Prepare"; } 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 // FIXME: When we can selectively preserve passes, preserve the domtree. 347 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 348 AU.addRequired<TargetLibraryInfoWrapperPass>(); 349 AU.addRequired<TargetPassConfig>(); 350 AU.addRequired<TargetTransformInfoWrapperPass>(); 351 AU.addRequired<LoopInfoWrapperPass>(); 352 } 353 354 private: 355 template <typename F> 356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 357 // Substituting can cause recursive simplifications, which can invalidate 358 // our iterator. Use a WeakTrackingVH to hold onto it in case this 359 // happens. 360 Value *CurValue = &*CurInstIterator; 361 WeakTrackingVH IterHandle(CurValue); 362 363 f(); 364 365 // If the iterator instruction was recursively deleted, start over at the 366 // start of the block. 367 if (IterHandle != CurValue) { 368 CurInstIterator = BB->begin(); 369 SunkAddrs.clear(); 370 } 371 } 372 373 // Get the DominatorTree, building if necessary. 374 DominatorTree &getDT(Function &F) { 375 if (!DT) 376 DT = std::make_unique<DominatorTree>(F); 377 return *DT; 378 } 379 380 void removeAllAssertingVHReferences(Value *V); 381 bool eliminateAssumptions(Function &F); 382 bool eliminateFallThrough(Function &F); 383 bool eliminateMostlyEmptyBlocks(Function &F); 384 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 385 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 386 void eliminateMostlyEmptyBlock(BasicBlock *BB); 387 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 388 bool isPreheader); 389 bool makeBitReverse(Instruction &I); 390 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 391 bool optimizeInst(Instruction *I, bool &ModifiedDT); 392 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 393 Type *AccessTy, unsigned AddrSpace); 394 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 395 bool optimizeInlineAsmInst(CallInst *CS); 396 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 397 bool optimizeExt(Instruction *&I); 398 bool optimizeExtUses(Instruction *I); 399 bool optimizeLoadExt(LoadInst *Load); 400 bool optimizeShiftInst(BinaryOperator *BO); 401 bool optimizeFunnelShift(IntrinsicInst *Fsh); 402 bool optimizeSelectInst(SelectInst *SI); 403 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 404 bool optimizeSwitchInst(SwitchInst *SI); 405 bool optimizeExtractElementInst(Instruction *Inst); 406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 407 bool fixupDbgValue(Instruction *I); 408 bool placeDbgValues(Function &F); 409 bool placePseudoProbes(Function &F); 410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 412 bool tryToPromoteExts(TypePromotionTransaction &TPT, 413 const SmallVectorImpl<Instruction *> &Exts, 414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 415 unsigned CreatedInstsCost = 0); 416 bool mergeSExts(Function &F); 417 bool splitLargeGEPOffsets(); 418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 419 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 420 bool optimizePhiTypes(Function &F); 421 bool performAddressTypePromotion( 422 Instruction *&Inst, 423 bool AllowPromotionWithoutCommonHeader, 424 bool HasPromoted, TypePromotionTransaction &TPT, 425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 426 bool splitBranchCondition(Function &F, bool &ModifiedDT); 427 bool simplifyOffsetableRelocate(GCStatepointInst &I); 428 429 bool tryToSinkFreeOperands(Instruction *I); 430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 431 Value *Arg1, CmpInst *Cmp, 432 Intrinsic::ID IID); 433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 436 void verifyBFIUpdates(Function &F); 437 }; 438 439 } // end anonymous namespace 440 441 char CodeGenPrepare::ID = 0; 442 443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 444 "Optimize for code generation", false, false) 445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 451 "Optimize for code generation", false, false) 452 453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 454 455 bool CodeGenPrepare::runOnFunction(Function &F) { 456 if (skipFunction(F)) 457 return false; 458 459 DL = &F.getParent()->getDataLayout(); 460 461 bool EverMadeChange = false; 462 // Clear per function information. 463 InsertedInsts.clear(); 464 PromotedInsts.clear(); 465 466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 467 SubtargetInfo = TM->getSubtargetImpl(F); 468 TLI = SubtargetInfo->getTargetLowering(); 469 TRI = SubtargetInfo->getRegisterInfo(); 470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 BPI.reset(new BranchProbabilityInfo(F, *LI)); 474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 476 OptSize = F.hasOptSize(); 477 if (ProfileGuidedSectionPrefix) { 478 // The hot attribute overwrites profile count based hotness while profile 479 // counts based hotness overwrite the cold attribute. 480 // This is a conservative behabvior. 481 if (F.hasFnAttribute(Attribute::Hot) || 482 PSI->isFunctionHotInCallGraph(&F, *BFI)) 483 F.setSectionPrefix("hot"); 484 // If PSI shows this function is not hot, we will placed the function 485 // into unlikely section if (1) PSI shows this is a cold function, or 486 // (2) the function has a attribute of cold. 487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 488 F.hasFnAttribute(Attribute::Cold)) 489 F.setSectionPrefix("unlikely"); 490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 491 PSI->isFunctionHotnessUnknown(F)) 492 F.setSectionPrefix("unknown"); 493 } 494 495 /// This optimization identifies DIV instructions that can be 496 /// profitably bypassed and carried out with a shorter, faster divide. 497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 498 const DenseMap<unsigned int, unsigned int> &BypassWidths = 499 TLI->getBypassSlowDivWidths(); 500 BasicBlock* BB = &*F.begin(); 501 while (BB != nullptr) { 502 // bypassSlowDivision may create new BBs, but we don't want to reapply the 503 // optimization to those blocks. 504 BasicBlock* Next = BB->getNextNode(); 505 // F.hasOptSize is already checked in the outer if statement. 506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 508 BB = Next; 509 } 510 } 511 512 // Get rid of @llvm.assume builtins before attempting to eliminate empty 513 // blocks, since there might be blocks that only contain @llvm.assume calls 514 // (plus arguments that we can get rid of). 515 EverMadeChange |= eliminateAssumptions(F); 516 517 // Eliminate blocks that contain only PHI nodes and an 518 // unconditional branch. 519 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 520 521 bool ModifiedDT = false; 522 if (!DisableBranchOpts) 523 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 524 525 // Split some critical edges where one of the sources is an indirect branch, 526 // to help generate sane code for PHIs involving such edges. 527 EverMadeChange |= 528 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 529 530 bool MadeChange = true; 531 while (MadeChange) { 532 MadeChange = false; 533 DT.reset(); 534 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 535 bool ModifiedDTOnIteration = false; 536 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 537 538 // Restart BB iteration if the dominator tree of the Function was changed 539 if (ModifiedDTOnIteration) 540 break; 541 } 542 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 543 MadeChange |= mergeSExts(F); 544 if (!LargeOffsetGEPMap.empty()) 545 MadeChange |= splitLargeGEPOffsets(); 546 MadeChange |= optimizePhiTypes(F); 547 548 if (MadeChange) 549 eliminateFallThrough(F); 550 551 // Really free removed instructions during promotion. 552 for (Instruction *I : RemovedInsts) 553 I->deleteValue(); 554 555 EverMadeChange |= MadeChange; 556 SeenChainsForSExt.clear(); 557 ValToSExtendedUses.clear(); 558 RemovedInsts.clear(); 559 LargeOffsetGEPMap.clear(); 560 LargeOffsetGEPID.clear(); 561 } 562 563 NewGEPBases.clear(); 564 SunkAddrs.clear(); 565 566 if (!DisableBranchOpts) { 567 MadeChange = false; 568 // Use a set vector to get deterministic iteration order. The order the 569 // blocks are removed may affect whether or not PHI nodes in successors 570 // are removed. 571 SmallSetVector<BasicBlock*, 8> WorkList; 572 for (BasicBlock &BB : F) { 573 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 574 MadeChange |= ConstantFoldTerminator(&BB, true); 575 if (!MadeChange) continue; 576 577 for (BasicBlock *Succ : Successors) 578 if (pred_empty(Succ)) 579 WorkList.insert(Succ); 580 } 581 582 // Delete the dead blocks and any of their dead successors. 583 MadeChange |= !WorkList.empty(); 584 while (!WorkList.empty()) { 585 BasicBlock *BB = WorkList.pop_back_val(); 586 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 587 588 DeleteDeadBlock(BB); 589 590 for (BasicBlock *Succ : Successors) 591 if (pred_empty(Succ)) 592 WorkList.insert(Succ); 593 } 594 595 // Merge pairs of basic blocks with unconditional branches, connected by 596 // a single edge. 597 if (EverMadeChange || MadeChange) 598 MadeChange |= eliminateFallThrough(F); 599 600 EverMadeChange |= MadeChange; 601 } 602 603 if (!DisableGCOpts) { 604 SmallVector<GCStatepointInst *, 2> Statepoints; 605 for (BasicBlock &BB : F) 606 for (Instruction &I : BB) 607 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 608 Statepoints.push_back(SP); 609 for (auto &I : Statepoints) 610 EverMadeChange |= simplifyOffsetableRelocate(*I); 611 } 612 613 // Do this last to clean up use-before-def scenarios introduced by other 614 // preparatory transforms. 615 EverMadeChange |= placeDbgValues(F); 616 EverMadeChange |= placePseudoProbes(F); 617 618 #ifndef NDEBUG 619 if (VerifyBFIUpdates) 620 verifyBFIUpdates(F); 621 #endif 622 623 return EverMadeChange; 624 } 625 626 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 627 bool MadeChange = false; 628 for (BasicBlock &BB : F) { 629 CurInstIterator = BB.begin(); 630 while (CurInstIterator != BB.end()) { 631 Instruction *I = &*(CurInstIterator++); 632 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 633 MadeChange = true; 634 Value *Operand = Assume->getOperand(0); 635 Assume->eraseFromParent(); 636 637 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 638 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 639 }); 640 } 641 } 642 } 643 return MadeChange; 644 } 645 646 /// An instruction is about to be deleted, so remove all references to it in our 647 /// GEP-tracking data strcutures. 648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 649 LargeOffsetGEPMap.erase(V); 650 NewGEPBases.erase(V); 651 652 auto GEP = dyn_cast<GetElementPtrInst>(V); 653 if (!GEP) 654 return; 655 656 LargeOffsetGEPID.erase(GEP); 657 658 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 659 if (VecI == LargeOffsetGEPMap.end()) 660 return; 661 662 auto &GEPVector = VecI->second; 663 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 665 if (GEPVector.empty()) 666 LargeOffsetGEPMap.erase(VecI); 667 } 668 669 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 670 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 671 DominatorTree NewDT(F); 672 LoopInfo NewLI(NewDT); 673 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 674 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 675 NewBFI.verifyMatch(*BFI); 676 } 677 678 /// Merge basic blocks which are connected by a single edge, where one of the 679 /// basic blocks has a single successor pointing to the other basic block, 680 /// which has a single predecessor. 681 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 682 bool Changed = false; 683 // Scan all of the blocks in the function, except for the entry block. 684 // Use a temporary array to avoid iterator being invalidated when 685 // deleting blocks. 686 SmallVector<WeakTrackingVH, 16> Blocks; 687 for (auto &Block : llvm::drop_begin(F)) 688 Blocks.push_back(&Block); 689 690 SmallSet<WeakTrackingVH, 16> Preds; 691 for (auto &Block : Blocks) { 692 auto *BB = cast_or_null<BasicBlock>(Block); 693 if (!BB) 694 continue; 695 // If the destination block has a single pred, then this is a trivial 696 // edge, just collapse it. 697 BasicBlock *SinglePred = BB->getSinglePredecessor(); 698 699 // Don't merge if BB's address is taken. 700 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 701 702 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 703 if (Term && !Term->isConditional()) { 704 Changed = true; 705 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 706 707 // Merge BB into SinglePred and delete it. 708 MergeBlockIntoPredecessor(BB); 709 Preds.insert(SinglePred); 710 } 711 } 712 713 // (Repeatedly) merging blocks into their predecessors can create redundant 714 // debug intrinsics. 715 for (auto &Pred : Preds) 716 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 717 RemoveRedundantDbgInstrs(BB); 718 719 return Changed; 720 } 721 722 /// Find a destination block from BB if BB is mergeable empty block. 723 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 724 // If this block doesn't end with an uncond branch, ignore it. 725 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 726 if (!BI || !BI->isUnconditional()) 727 return nullptr; 728 729 // If the instruction before the branch (skipping debug info) isn't a phi 730 // node, then other stuff is happening here. 731 BasicBlock::iterator BBI = BI->getIterator(); 732 if (BBI != BB->begin()) { 733 --BBI; 734 while (isa<DbgInfoIntrinsic>(BBI)) { 735 if (BBI == BB->begin()) 736 break; 737 --BBI; 738 } 739 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 740 return nullptr; 741 } 742 743 // Do not break infinite loops. 744 BasicBlock *DestBB = BI->getSuccessor(0); 745 if (DestBB == BB) 746 return nullptr; 747 748 if (!canMergeBlocks(BB, DestBB)) 749 DestBB = nullptr; 750 751 return DestBB; 752 } 753 754 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 755 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 756 /// edges in ways that are non-optimal for isel. Start by eliminating these 757 /// blocks so we can split them the way we want them. 758 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 759 SmallPtrSet<BasicBlock *, 16> Preheaders; 760 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 761 while (!LoopList.empty()) { 762 Loop *L = LoopList.pop_back_val(); 763 llvm::append_range(LoopList, *L); 764 if (BasicBlock *Preheader = L->getLoopPreheader()) 765 Preheaders.insert(Preheader); 766 } 767 768 bool MadeChange = false; 769 // Copy blocks into a temporary array to avoid iterator invalidation issues 770 // as we remove them. 771 // Note that this intentionally skips the entry block. 772 SmallVector<WeakTrackingVH, 16> Blocks; 773 for (auto &Block : llvm::drop_begin(F)) 774 Blocks.push_back(&Block); 775 776 for (auto &Block : Blocks) { 777 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 778 if (!BB) 779 continue; 780 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 781 if (!DestBB || 782 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 783 continue; 784 785 eliminateMostlyEmptyBlock(BB); 786 MadeChange = true; 787 } 788 return MadeChange; 789 } 790 791 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 792 BasicBlock *DestBB, 793 bool isPreheader) { 794 // Do not delete loop preheaders if doing so would create a critical edge. 795 // Loop preheaders can be good locations to spill registers. If the 796 // preheader is deleted and we create a critical edge, registers may be 797 // spilled in the loop body instead. 798 if (!DisablePreheaderProtect && isPreheader && 799 !(BB->getSinglePredecessor() && 800 BB->getSinglePredecessor()->getSingleSuccessor())) 801 return false; 802 803 // Skip merging if the block's successor is also a successor to any callbr 804 // that leads to this block. 805 // FIXME: Is this really needed? Is this a correctness issue? 806 for (BasicBlock *Pred : predecessors(BB)) { 807 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 808 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 809 if (DestBB == CBI->getSuccessor(i)) 810 return false; 811 } 812 813 // Try to skip merging if the unique predecessor of BB is terminated by a 814 // switch or indirect branch instruction, and BB is used as an incoming block 815 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 816 // add COPY instructions in the predecessor of BB instead of BB (if it is not 817 // merged). Note that the critical edge created by merging such blocks wont be 818 // split in MachineSink because the jump table is not analyzable. By keeping 819 // such empty block (BB), ISel will place COPY instructions in BB, not in the 820 // predecessor of BB. 821 BasicBlock *Pred = BB->getUniquePredecessor(); 822 if (!Pred || 823 !(isa<SwitchInst>(Pred->getTerminator()) || 824 isa<IndirectBrInst>(Pred->getTerminator()))) 825 return true; 826 827 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 828 return true; 829 830 // We use a simple cost heuristic which determine skipping merging is 831 // profitable if the cost of skipping merging is less than the cost of 832 // merging : Cost(skipping merging) < Cost(merging BB), where the 833 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 834 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 835 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 836 // Freq(Pred) / Freq(BB) > 2. 837 // Note that if there are multiple empty blocks sharing the same incoming 838 // value for the PHIs in the DestBB, we consider them together. In such 839 // case, Cost(merging BB) will be the sum of their frequencies. 840 841 if (!isa<PHINode>(DestBB->begin())) 842 return true; 843 844 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 845 846 // Find all other incoming blocks from which incoming values of all PHIs in 847 // DestBB are the same as the ones from BB. 848 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 849 if (DestBBPred == BB) 850 continue; 851 852 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 853 return DestPN.getIncomingValueForBlock(BB) == 854 DestPN.getIncomingValueForBlock(DestBBPred); 855 })) 856 SameIncomingValueBBs.insert(DestBBPred); 857 } 858 859 // See if all BB's incoming values are same as the value from Pred. In this 860 // case, no reason to skip merging because COPYs are expected to be place in 861 // Pred already. 862 if (SameIncomingValueBBs.count(Pred)) 863 return true; 864 865 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 866 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 867 868 for (auto *SameValueBB : SameIncomingValueBBs) 869 if (SameValueBB->getUniquePredecessor() == Pred && 870 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 871 BBFreq += BFI->getBlockFreq(SameValueBB); 872 873 return PredFreq.getFrequency() <= 874 BBFreq.getFrequency() * FreqRatioToSkipMerge; 875 } 876 877 /// Return true if we can merge BB into DestBB if there is a single 878 /// unconditional branch between them, and BB contains no other non-phi 879 /// instructions. 880 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 881 const BasicBlock *DestBB) const { 882 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 883 // the successor. If there are more complex condition (e.g. preheaders), 884 // don't mess around with them. 885 for (const PHINode &PN : BB->phis()) { 886 for (const User *U : PN.users()) { 887 const Instruction *UI = cast<Instruction>(U); 888 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 889 return false; 890 // If User is inside DestBB block and it is a PHINode then check 891 // incoming value. If incoming value is not from BB then this is 892 // a complex condition (e.g. preheaders) we want to avoid here. 893 if (UI->getParent() == DestBB) { 894 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 895 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 896 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 897 if (Insn && Insn->getParent() == BB && 898 Insn->getParent() != UPN->getIncomingBlock(I)) 899 return false; 900 } 901 } 902 } 903 } 904 905 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 906 // and DestBB may have conflicting incoming values for the block. If so, we 907 // can't merge the block. 908 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 909 if (!DestBBPN) return true; // no conflict. 910 911 // Collect the preds of BB. 912 SmallPtrSet<const BasicBlock*, 16> BBPreds; 913 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 914 // It is faster to get preds from a PHI than with pred_iterator. 915 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 916 BBPreds.insert(BBPN->getIncomingBlock(i)); 917 } else { 918 BBPreds.insert(pred_begin(BB), pred_end(BB)); 919 } 920 921 // Walk the preds of DestBB. 922 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 923 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 924 if (BBPreds.count(Pred)) { // Common predecessor? 925 for (const PHINode &PN : DestBB->phis()) { 926 const Value *V1 = PN.getIncomingValueForBlock(Pred); 927 const Value *V2 = PN.getIncomingValueForBlock(BB); 928 929 // If V2 is a phi node in BB, look up what the mapped value will be. 930 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 931 if (V2PN->getParent() == BB) 932 V2 = V2PN->getIncomingValueForBlock(Pred); 933 934 // If there is a conflict, bail out. 935 if (V1 != V2) return false; 936 } 937 } 938 } 939 940 return true; 941 } 942 943 /// Eliminate a basic block that has only phi's and an unconditional branch in 944 /// it. 945 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 946 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 947 BasicBlock *DestBB = BI->getSuccessor(0); 948 949 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 950 << *BB << *DestBB); 951 952 // If the destination block has a single pred, then this is a trivial edge, 953 // just collapse it. 954 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 955 if (SinglePred != DestBB) { 956 assert(SinglePred == BB && 957 "Single predecessor not the same as predecessor"); 958 // Merge DestBB into SinglePred/BB and delete it. 959 MergeBlockIntoPredecessor(DestBB); 960 // Note: BB(=SinglePred) will not be deleted on this path. 961 // DestBB(=its single successor) is the one that was deleted. 962 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 963 return; 964 } 965 } 966 967 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 968 // to handle the new incoming edges it is about to have. 969 for (PHINode &PN : DestBB->phis()) { 970 // Remove the incoming value for BB, and remember it. 971 Value *InVal = PN.removeIncomingValue(BB, false); 972 973 // Two options: either the InVal is a phi node defined in BB or it is some 974 // value that dominates BB. 975 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 976 if (InValPhi && InValPhi->getParent() == BB) { 977 // Add all of the input values of the input PHI as inputs of this phi. 978 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 979 PN.addIncoming(InValPhi->getIncomingValue(i), 980 InValPhi->getIncomingBlock(i)); 981 } else { 982 // Otherwise, add one instance of the dominating value for each edge that 983 // we will be adding. 984 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 985 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 986 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 987 } else { 988 for (BasicBlock *Pred : predecessors(BB)) 989 PN.addIncoming(InVal, Pred); 990 } 991 } 992 } 993 994 // The PHIs are now updated, change everything that refers to BB to use 995 // DestBB and remove BB. 996 BB->replaceAllUsesWith(DestBB); 997 BB->eraseFromParent(); 998 ++NumBlocksElim; 999 1000 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1001 } 1002 1003 // Computes a map of base pointer relocation instructions to corresponding 1004 // derived pointer relocation instructions given a vector of all relocate calls 1005 static void computeBaseDerivedRelocateMap( 1006 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1007 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1008 &RelocateInstMap) { 1009 // Collect information in two maps: one primarily for locating the base object 1010 // while filling the second map; the second map is the final structure holding 1011 // a mapping between Base and corresponding Derived relocate calls 1012 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1013 for (auto *ThisRelocate : AllRelocateCalls) { 1014 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1015 ThisRelocate->getDerivedPtrIndex()); 1016 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1017 } 1018 for (auto &Item : RelocateIdxMap) { 1019 std::pair<unsigned, unsigned> Key = Item.first; 1020 if (Key.first == Key.second) 1021 // Base relocation: nothing to insert 1022 continue; 1023 1024 GCRelocateInst *I = Item.second; 1025 auto BaseKey = std::make_pair(Key.first, Key.first); 1026 1027 // We're iterating over RelocateIdxMap so we cannot modify it. 1028 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1029 if (MaybeBase == RelocateIdxMap.end()) 1030 // TODO: We might want to insert a new base object relocate and gep off 1031 // that, if there are enough derived object relocates. 1032 continue; 1033 1034 RelocateInstMap[MaybeBase->second].push_back(I); 1035 } 1036 } 1037 1038 // Accepts a GEP and extracts the operands into a vector provided they're all 1039 // small integer constants 1040 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1041 SmallVectorImpl<Value *> &OffsetV) { 1042 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1043 // Only accept small constant integer operands 1044 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1045 if (!Op || Op->getZExtValue() > 20) 1046 return false; 1047 } 1048 1049 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1050 OffsetV.push_back(GEP->getOperand(i)); 1051 return true; 1052 } 1053 1054 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1055 // replace, computes a replacement, and affects it. 1056 static bool 1057 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1058 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1059 bool MadeChange = false; 1060 // We must ensure the relocation of derived pointer is defined after 1061 // relocation of base pointer. If we find a relocation corresponding to base 1062 // defined earlier than relocation of base then we move relocation of base 1063 // right before found relocation. We consider only relocation in the same 1064 // basic block as relocation of base. Relocations from other basic block will 1065 // be skipped by optimization and we do not care about them. 1066 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1067 &*R != RelocatedBase; ++R) 1068 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1069 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1070 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1071 RelocatedBase->moveBefore(RI); 1072 break; 1073 } 1074 1075 for (GCRelocateInst *ToReplace : Targets) { 1076 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1077 "Not relocating a derived object of the original base object"); 1078 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1079 // A duplicate relocate call. TODO: coalesce duplicates. 1080 continue; 1081 } 1082 1083 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1084 // Base and derived relocates are in different basic blocks. 1085 // In this case transform is only valid when base dominates derived 1086 // relocate. However it would be too expensive to check dominance 1087 // for each such relocate, so we skip the whole transformation. 1088 continue; 1089 } 1090 1091 Value *Base = ToReplace->getBasePtr(); 1092 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1093 if (!Derived || Derived->getPointerOperand() != Base) 1094 continue; 1095 1096 SmallVector<Value *, 2> OffsetV; 1097 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1098 continue; 1099 1100 // Create a Builder and replace the target callsite with a gep 1101 assert(RelocatedBase->getNextNode() && 1102 "Should always have one since it's not a terminator"); 1103 1104 // Insert after RelocatedBase 1105 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1106 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1107 1108 // If gc_relocate does not match the actual type, cast it to the right type. 1109 // In theory, there must be a bitcast after gc_relocate if the type does not 1110 // match, and we should reuse it to get the derived pointer. But it could be 1111 // cases like this: 1112 // bb1: 1113 // ... 1114 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1115 // br label %merge 1116 // 1117 // bb2: 1118 // ... 1119 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1120 // br label %merge 1121 // 1122 // merge: 1123 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1124 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1125 // 1126 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1127 // no matter there is already one or not. In this way, we can handle all cases, and 1128 // the extra bitcast should be optimized away in later passes. 1129 Value *ActualRelocatedBase = RelocatedBase; 1130 if (RelocatedBase->getType() != Base->getType()) { 1131 ActualRelocatedBase = 1132 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1133 } 1134 Value *Replacement = Builder.CreateGEP( 1135 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1136 Replacement->takeName(ToReplace); 1137 // If the newly generated derived pointer's type does not match the original derived 1138 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1139 Value *ActualReplacement = Replacement; 1140 if (Replacement->getType() != ToReplace->getType()) { 1141 ActualReplacement = 1142 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1143 } 1144 ToReplace->replaceAllUsesWith(ActualReplacement); 1145 ToReplace->eraseFromParent(); 1146 1147 MadeChange = true; 1148 } 1149 return MadeChange; 1150 } 1151 1152 // Turns this: 1153 // 1154 // %base = ... 1155 // %ptr = gep %base + 15 1156 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1157 // %base' = relocate(%tok, i32 4, i32 4) 1158 // %ptr' = relocate(%tok, i32 4, i32 5) 1159 // %val = load %ptr' 1160 // 1161 // into this: 1162 // 1163 // %base = ... 1164 // %ptr = gep %base + 15 1165 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1166 // %base' = gc.relocate(%tok, i32 4, i32 4) 1167 // %ptr' = gep %base' + 15 1168 // %val = load %ptr' 1169 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1170 bool MadeChange = false; 1171 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1172 for (auto *U : I.users()) 1173 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1174 // Collect all the relocate calls associated with a statepoint 1175 AllRelocateCalls.push_back(Relocate); 1176 1177 // We need at least one base pointer relocation + one derived pointer 1178 // relocation to mangle 1179 if (AllRelocateCalls.size() < 2) 1180 return false; 1181 1182 // RelocateInstMap is a mapping from the base relocate instruction to the 1183 // corresponding derived relocate instructions 1184 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1185 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1186 if (RelocateInstMap.empty()) 1187 return false; 1188 1189 for (auto &Item : RelocateInstMap) 1190 // Item.first is the RelocatedBase to offset against 1191 // Item.second is the vector of Targets to replace 1192 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1193 return MadeChange; 1194 } 1195 1196 /// Sink the specified cast instruction into its user blocks. 1197 static bool SinkCast(CastInst *CI) { 1198 BasicBlock *DefBB = CI->getParent(); 1199 1200 /// InsertedCasts - Only insert a cast in each block once. 1201 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1202 1203 bool MadeChange = false; 1204 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1205 UI != E; ) { 1206 Use &TheUse = UI.getUse(); 1207 Instruction *User = cast<Instruction>(*UI); 1208 1209 // Figure out which BB this cast is used in. For PHI's this is the 1210 // appropriate predecessor block. 1211 BasicBlock *UserBB = User->getParent(); 1212 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1213 UserBB = PN->getIncomingBlock(TheUse); 1214 } 1215 1216 // Preincrement use iterator so we don't invalidate it. 1217 ++UI; 1218 1219 // The first insertion point of a block containing an EH pad is after the 1220 // pad. If the pad is the user, we cannot sink the cast past the pad. 1221 if (User->isEHPad()) 1222 continue; 1223 1224 // If the block selected to receive the cast is an EH pad that does not 1225 // allow non-PHI instructions before the terminator, we can't sink the 1226 // cast. 1227 if (UserBB->getTerminator()->isEHPad()) 1228 continue; 1229 1230 // If this user is in the same block as the cast, don't change the cast. 1231 if (UserBB == DefBB) continue; 1232 1233 // If we have already inserted a cast into this block, use it. 1234 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1235 1236 if (!InsertedCast) { 1237 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1238 assert(InsertPt != UserBB->end()); 1239 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1240 CI->getType(), "", &*InsertPt); 1241 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1242 } 1243 1244 // Replace a use of the cast with a use of the new cast. 1245 TheUse = InsertedCast; 1246 MadeChange = true; 1247 ++NumCastUses; 1248 } 1249 1250 // If we removed all uses, nuke the cast. 1251 if (CI->use_empty()) { 1252 salvageDebugInfo(*CI); 1253 CI->eraseFromParent(); 1254 MadeChange = true; 1255 } 1256 1257 return MadeChange; 1258 } 1259 1260 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1261 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1262 /// reduce the number of virtual registers that must be created and coalesced. 1263 /// 1264 /// Return true if any changes are made. 1265 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1266 const DataLayout &DL) { 1267 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1268 // than sinking only nop casts, but is helpful on some platforms. 1269 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1270 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1271 ASC->getDestAddressSpace())) 1272 return false; 1273 } 1274 1275 // If this is a noop copy, 1276 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1277 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1278 1279 // This is an fp<->int conversion? 1280 if (SrcVT.isInteger() != DstVT.isInteger()) 1281 return false; 1282 1283 // If this is an extension, it will be a zero or sign extension, which 1284 // isn't a noop. 1285 if (SrcVT.bitsLT(DstVT)) return false; 1286 1287 // If these values will be promoted, find out what they will be promoted 1288 // to. This helps us consider truncates on PPC as noop copies when they 1289 // are. 1290 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1291 TargetLowering::TypePromoteInteger) 1292 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1293 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1294 TargetLowering::TypePromoteInteger) 1295 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1296 1297 // If, after promotion, these are the same types, this is a noop copy. 1298 if (SrcVT != DstVT) 1299 return false; 1300 1301 return SinkCast(CI); 1302 } 1303 1304 // Match a simple increment by constant operation. Note that if a sub is 1305 // matched, the step is negated (as if the step had been canonicalized to 1306 // an add, even though we leave the instruction alone.) 1307 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1308 Constant *&Step) { 1309 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1310 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1311 m_Instruction(LHS), m_Constant(Step))))) 1312 return true; 1313 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1314 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1315 m_Instruction(LHS), m_Constant(Step))))) { 1316 Step = ConstantExpr::getNeg(Step); 1317 return true; 1318 } 1319 return false; 1320 } 1321 1322 /// If given \p PN is an inductive variable with value IVInc coming from the 1323 /// backedge, and on each iteration it gets increased by Step, return pair 1324 /// <IVInc, Step>. Otherwise, return None. 1325 static Optional<std::pair<Instruction *, Constant *> > 1326 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1327 const Loop *L = LI->getLoopFor(PN->getParent()); 1328 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1329 return None; 1330 auto *IVInc = 1331 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1332 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1333 return None; 1334 Instruction *LHS = nullptr; 1335 Constant *Step = nullptr; 1336 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1337 return std::make_pair(IVInc, Step); 1338 return None; 1339 } 1340 1341 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1342 auto *I = dyn_cast<Instruction>(V); 1343 if (!I) 1344 return false; 1345 Instruction *LHS = nullptr; 1346 Constant *Step = nullptr; 1347 if (!matchIncrement(I, LHS, Step)) 1348 return false; 1349 if (auto *PN = dyn_cast<PHINode>(LHS)) 1350 if (auto IVInc = getIVIncrement(PN, LI)) 1351 return IVInc->first == I; 1352 return false; 1353 } 1354 1355 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1356 Value *Arg0, Value *Arg1, 1357 CmpInst *Cmp, 1358 Intrinsic::ID IID) { 1359 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1360 if (!isIVIncrement(BO, LI)) 1361 return false; 1362 const Loop *L = LI->getLoopFor(BO->getParent()); 1363 assert(L && "L should not be null after isIVIncrement()"); 1364 // Do not risk on moving increment into a child loop. 1365 if (LI->getLoopFor(Cmp->getParent()) != L) 1366 return false; 1367 1368 // Finally, we need to ensure that the insert point will dominate all 1369 // existing uses of the increment. 1370 1371 auto &DT = getDT(*BO->getParent()->getParent()); 1372 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1373 // If we're moving up the dom tree, all uses are trivially dominated. 1374 // (This is the common case for code produced by LSR.) 1375 return true; 1376 1377 // Otherwise, special case the single use in the phi recurrence. 1378 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1379 }; 1380 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1381 // We used to use a dominator tree here to allow multi-block optimization. 1382 // But that was problematic because: 1383 // 1. It could cause a perf regression by hoisting the math op into the 1384 // critical path. 1385 // 2. It could cause a perf regression by creating a value that was live 1386 // across multiple blocks and increasing register pressure. 1387 // 3. Use of a dominator tree could cause large compile-time regression. 1388 // This is because we recompute the DT on every change in the main CGP 1389 // run-loop. The recomputing is probably unnecessary in many cases, so if 1390 // that was fixed, using a DT here would be ok. 1391 // 1392 // There is one important particular case we still want to handle: if BO is 1393 // the IV increment. Important properties that make it profitable: 1394 // - We can speculate IV increment anywhere in the loop (as long as the 1395 // indvar Phi is its only user); 1396 // - Upon computing Cmp, we effectively compute something equivalent to the 1397 // IV increment (despite it loops differently in the IR). So moving it up 1398 // to the cmp point does not really increase register pressure. 1399 return false; 1400 } 1401 1402 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1403 if (BO->getOpcode() == Instruction::Add && 1404 IID == Intrinsic::usub_with_overflow) { 1405 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1406 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1407 } 1408 1409 // Insert at the first instruction of the pair. 1410 Instruction *InsertPt = nullptr; 1411 for (Instruction &Iter : *Cmp->getParent()) { 1412 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1413 // the overflow intrinsic are defined. 1414 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1415 InsertPt = &Iter; 1416 break; 1417 } 1418 } 1419 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1420 1421 IRBuilder<> Builder(InsertPt); 1422 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1423 if (BO->getOpcode() != Instruction::Xor) { 1424 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1425 BO->replaceAllUsesWith(Math); 1426 } else 1427 assert(BO->hasOneUse() && 1428 "Patterns with XOr should use the BO only in the compare"); 1429 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1430 Cmp->replaceAllUsesWith(OV); 1431 Cmp->eraseFromParent(); 1432 BO->eraseFromParent(); 1433 return true; 1434 } 1435 1436 /// Match special-case patterns that check for unsigned add overflow. 1437 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1438 BinaryOperator *&Add) { 1439 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1440 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1441 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1442 1443 // We are not expecting non-canonical/degenerate code. Just bail out. 1444 if (isa<Constant>(A)) 1445 return false; 1446 1447 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1448 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1449 B = ConstantInt::get(B->getType(), 1); 1450 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1451 B = ConstantInt::get(B->getType(), -1); 1452 else 1453 return false; 1454 1455 // Check the users of the variable operand of the compare looking for an add 1456 // with the adjusted constant. 1457 for (User *U : A->users()) { 1458 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1459 Add = cast<BinaryOperator>(U); 1460 return true; 1461 } 1462 } 1463 return false; 1464 } 1465 1466 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1467 /// intrinsic. Return true if any changes were made. 1468 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1469 bool &ModifiedDT) { 1470 Value *A, *B; 1471 BinaryOperator *Add; 1472 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1473 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1474 return false; 1475 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1476 A = Add->getOperand(0); 1477 B = Add->getOperand(1); 1478 } 1479 1480 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1481 TLI->getValueType(*DL, Add->getType()), 1482 Add->hasNUsesOrMore(2))) 1483 return false; 1484 1485 // We don't want to move around uses of condition values this late, so we 1486 // check if it is legal to create the call to the intrinsic in the basic 1487 // block containing the icmp. 1488 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1489 return false; 1490 1491 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1492 Intrinsic::uadd_with_overflow)) 1493 return false; 1494 1495 // Reset callers - do not crash by iterating over a dead instruction. 1496 ModifiedDT = true; 1497 return true; 1498 } 1499 1500 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1501 bool &ModifiedDT) { 1502 // We are not expecting non-canonical/degenerate code. Just bail out. 1503 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1504 if (isa<Constant>(A) && isa<Constant>(B)) 1505 return false; 1506 1507 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1508 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1509 if (Pred == ICmpInst::ICMP_UGT) { 1510 std::swap(A, B); 1511 Pred = ICmpInst::ICMP_ULT; 1512 } 1513 // Convert special-case: (A == 0) is the same as (A u< 1). 1514 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1515 B = ConstantInt::get(B->getType(), 1); 1516 Pred = ICmpInst::ICMP_ULT; 1517 } 1518 // Convert special-case: (A != 0) is the same as (0 u< A). 1519 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1520 std::swap(A, B); 1521 Pred = ICmpInst::ICMP_ULT; 1522 } 1523 if (Pred != ICmpInst::ICMP_ULT) 1524 return false; 1525 1526 // Walk the users of a variable operand of a compare looking for a subtract or 1527 // add with that same operand. Also match the 2nd operand of the compare to 1528 // the add/sub, but that may be a negated constant operand of an add. 1529 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1530 BinaryOperator *Sub = nullptr; 1531 for (User *U : CmpVariableOperand->users()) { 1532 // A - B, A u< B --> usubo(A, B) 1533 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1534 Sub = cast<BinaryOperator>(U); 1535 break; 1536 } 1537 1538 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1539 const APInt *CmpC, *AddC; 1540 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1541 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1542 Sub = cast<BinaryOperator>(U); 1543 break; 1544 } 1545 } 1546 if (!Sub) 1547 return false; 1548 1549 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1550 TLI->getValueType(*DL, Sub->getType()), 1551 Sub->hasNUsesOrMore(2))) 1552 return false; 1553 1554 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1555 Cmp, Intrinsic::usub_with_overflow)) 1556 return false; 1557 1558 // Reset callers - do not crash by iterating over a dead instruction. 1559 ModifiedDT = true; 1560 return true; 1561 } 1562 1563 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1564 /// registers that must be created and coalesced. This is a clear win except on 1565 /// targets with multiple condition code registers (PowerPC), where it might 1566 /// lose; some adjustment may be wanted there. 1567 /// 1568 /// Return true if any changes are made. 1569 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1570 if (TLI.hasMultipleConditionRegisters()) 1571 return false; 1572 1573 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1574 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1575 return false; 1576 1577 // Only insert a cmp in each block once. 1578 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1579 1580 bool MadeChange = false; 1581 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1582 UI != E; ) { 1583 Use &TheUse = UI.getUse(); 1584 Instruction *User = cast<Instruction>(*UI); 1585 1586 // Preincrement use iterator so we don't invalidate it. 1587 ++UI; 1588 1589 // Don't bother for PHI nodes. 1590 if (isa<PHINode>(User)) 1591 continue; 1592 1593 // Figure out which BB this cmp is used in. 1594 BasicBlock *UserBB = User->getParent(); 1595 BasicBlock *DefBB = Cmp->getParent(); 1596 1597 // If this user is in the same block as the cmp, don't change the cmp. 1598 if (UserBB == DefBB) continue; 1599 1600 // If we have already inserted a cmp into this block, use it. 1601 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1602 1603 if (!InsertedCmp) { 1604 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1605 assert(InsertPt != UserBB->end()); 1606 InsertedCmp = 1607 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1608 Cmp->getOperand(0), Cmp->getOperand(1), "", 1609 &*InsertPt); 1610 // Propagate the debug info. 1611 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1612 } 1613 1614 // Replace a use of the cmp with a use of the new cmp. 1615 TheUse = InsertedCmp; 1616 MadeChange = true; 1617 ++NumCmpUses; 1618 } 1619 1620 // If we removed all uses, nuke the cmp. 1621 if (Cmp->use_empty()) { 1622 Cmp->eraseFromParent(); 1623 MadeChange = true; 1624 } 1625 1626 return MadeChange; 1627 } 1628 1629 /// For pattern like: 1630 /// 1631 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1632 /// ... 1633 /// DomBB: 1634 /// ... 1635 /// br DomCond, TrueBB, CmpBB 1636 /// CmpBB: (with DomBB being the single predecessor) 1637 /// ... 1638 /// Cmp = icmp eq CmpOp0, CmpOp1 1639 /// ... 1640 /// 1641 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1642 /// different from lowering of icmp eq (PowerPC). This function try to convert 1643 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1644 /// After that, DomCond and Cmp can use the same comparison so reduce one 1645 /// comparison. 1646 /// 1647 /// Return true if any changes are made. 1648 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1649 const TargetLowering &TLI) { 1650 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1651 return false; 1652 1653 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1654 if (Pred != ICmpInst::ICMP_EQ) 1655 return false; 1656 1657 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1658 // icmp slt/sgt would introduce more redundant LLVM IR. 1659 for (User *U : Cmp->users()) { 1660 if (isa<BranchInst>(U)) 1661 continue; 1662 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1663 continue; 1664 return false; 1665 } 1666 1667 // This is a cheap/incomplete check for dominance - just match a single 1668 // predecessor with a conditional branch. 1669 BasicBlock *CmpBB = Cmp->getParent(); 1670 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1671 if (!DomBB) 1672 return false; 1673 1674 // We want to ensure that the only way control gets to the comparison of 1675 // interest is that a less/greater than comparison on the same operands is 1676 // false. 1677 Value *DomCond; 1678 BasicBlock *TrueBB, *FalseBB; 1679 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1680 return false; 1681 if (CmpBB != FalseBB) 1682 return false; 1683 1684 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1685 ICmpInst::Predicate DomPred; 1686 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1687 return false; 1688 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1689 return false; 1690 1691 // Convert the equality comparison to the opposite of the dominating 1692 // comparison and swap the direction for all branch/select users. 1693 // We have conceptually converted: 1694 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1695 // to 1696 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1697 // And similarly for branches. 1698 for (User *U : Cmp->users()) { 1699 if (auto *BI = dyn_cast<BranchInst>(U)) { 1700 assert(BI->isConditional() && "Must be conditional"); 1701 BI->swapSuccessors(); 1702 continue; 1703 } 1704 if (auto *SI = dyn_cast<SelectInst>(U)) { 1705 // Swap operands 1706 SI->swapValues(); 1707 SI->swapProfMetadata(); 1708 continue; 1709 } 1710 llvm_unreachable("Must be a branch or a select"); 1711 } 1712 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1713 return true; 1714 } 1715 1716 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1717 if (sinkCmpExpression(Cmp, *TLI)) 1718 return true; 1719 1720 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1721 return true; 1722 1723 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1724 return true; 1725 1726 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1727 return true; 1728 1729 return false; 1730 } 1731 1732 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1733 /// used in a compare to allow isel to generate better code for targets where 1734 /// this operation can be combined. 1735 /// 1736 /// Return true if any changes are made. 1737 static bool sinkAndCmp0Expression(Instruction *AndI, 1738 const TargetLowering &TLI, 1739 SetOfInstrs &InsertedInsts) { 1740 // Double-check that we're not trying to optimize an instruction that was 1741 // already optimized by some other part of this pass. 1742 assert(!InsertedInsts.count(AndI) && 1743 "Attempting to optimize already optimized and instruction"); 1744 (void) InsertedInsts; 1745 1746 // Nothing to do for single use in same basic block. 1747 if (AndI->hasOneUse() && 1748 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1749 return false; 1750 1751 // Try to avoid cases where sinking/duplicating is likely to increase register 1752 // pressure. 1753 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1754 !isa<ConstantInt>(AndI->getOperand(1)) && 1755 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1756 return false; 1757 1758 for (auto *U : AndI->users()) { 1759 Instruction *User = cast<Instruction>(U); 1760 1761 // Only sink 'and' feeding icmp with 0. 1762 if (!isa<ICmpInst>(User)) 1763 return false; 1764 1765 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1766 if (!CmpC || !CmpC->isZero()) 1767 return false; 1768 } 1769 1770 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1771 return false; 1772 1773 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1774 LLVM_DEBUG(AndI->getParent()->dump()); 1775 1776 // Push the 'and' into the same block as the icmp 0. There should only be 1777 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1778 // others, so we don't need to keep track of which BBs we insert into. 1779 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1780 UI != E; ) { 1781 Use &TheUse = UI.getUse(); 1782 Instruction *User = cast<Instruction>(*UI); 1783 1784 // Preincrement use iterator so we don't invalidate it. 1785 ++UI; 1786 1787 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1788 1789 // Keep the 'and' in the same place if the use is already in the same block. 1790 Instruction *InsertPt = 1791 User->getParent() == AndI->getParent() ? AndI : User; 1792 Instruction *InsertedAnd = 1793 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1794 AndI->getOperand(1), "", InsertPt); 1795 // Propagate the debug info. 1796 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1797 1798 // Replace a use of the 'and' with a use of the new 'and'. 1799 TheUse = InsertedAnd; 1800 ++NumAndUses; 1801 LLVM_DEBUG(User->getParent()->dump()); 1802 } 1803 1804 // We removed all uses, nuke the and. 1805 AndI->eraseFromParent(); 1806 return true; 1807 } 1808 1809 /// Check if the candidates could be combined with a shift instruction, which 1810 /// includes: 1811 /// 1. Truncate instruction 1812 /// 2. And instruction and the imm is a mask of the low bits: 1813 /// imm & (imm+1) == 0 1814 static bool isExtractBitsCandidateUse(Instruction *User) { 1815 if (!isa<TruncInst>(User)) { 1816 if (User->getOpcode() != Instruction::And || 1817 !isa<ConstantInt>(User->getOperand(1))) 1818 return false; 1819 1820 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1821 1822 if ((Cimm & (Cimm + 1)).getBoolValue()) 1823 return false; 1824 } 1825 return true; 1826 } 1827 1828 /// Sink both shift and truncate instruction to the use of truncate's BB. 1829 static bool 1830 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1831 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1832 const TargetLowering &TLI, const DataLayout &DL) { 1833 BasicBlock *UserBB = User->getParent(); 1834 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1835 auto *TruncI = cast<TruncInst>(User); 1836 bool MadeChange = false; 1837 1838 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1839 TruncE = TruncI->user_end(); 1840 TruncUI != TruncE;) { 1841 1842 Use &TruncTheUse = TruncUI.getUse(); 1843 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1844 // Preincrement use iterator so we don't invalidate it. 1845 1846 ++TruncUI; 1847 1848 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1849 if (!ISDOpcode) 1850 continue; 1851 1852 // If the use is actually a legal node, there will not be an 1853 // implicit truncate. 1854 // FIXME: always querying the result type is just an 1855 // approximation; some nodes' legality is determined by the 1856 // operand or other means. There's no good way to find out though. 1857 if (TLI.isOperationLegalOrCustom( 1858 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1859 continue; 1860 1861 // Don't bother for PHI nodes. 1862 if (isa<PHINode>(TruncUser)) 1863 continue; 1864 1865 BasicBlock *TruncUserBB = TruncUser->getParent(); 1866 1867 if (UserBB == TruncUserBB) 1868 continue; 1869 1870 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1871 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1872 1873 if (!InsertedShift && !InsertedTrunc) { 1874 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1875 assert(InsertPt != TruncUserBB->end()); 1876 // Sink the shift 1877 if (ShiftI->getOpcode() == Instruction::AShr) 1878 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1879 "", &*InsertPt); 1880 else 1881 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1882 "", &*InsertPt); 1883 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1884 1885 // Sink the trunc 1886 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1887 TruncInsertPt++; 1888 assert(TruncInsertPt != TruncUserBB->end()); 1889 1890 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1891 TruncI->getType(), "", &*TruncInsertPt); 1892 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1893 1894 MadeChange = true; 1895 1896 TruncTheUse = InsertedTrunc; 1897 } 1898 } 1899 return MadeChange; 1900 } 1901 1902 /// Sink the shift *right* instruction into user blocks if the uses could 1903 /// potentially be combined with this shift instruction and generate BitExtract 1904 /// instruction. It will only be applied if the architecture supports BitExtract 1905 /// instruction. Here is an example: 1906 /// BB1: 1907 /// %x.extract.shift = lshr i64 %arg1, 32 1908 /// BB2: 1909 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1910 /// ==> 1911 /// 1912 /// BB2: 1913 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1914 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1915 /// 1916 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1917 /// instruction. 1918 /// Return true if any changes are made. 1919 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1920 const TargetLowering &TLI, 1921 const DataLayout &DL) { 1922 BasicBlock *DefBB = ShiftI->getParent(); 1923 1924 /// Only insert instructions in each block once. 1925 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1926 1927 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1928 1929 bool MadeChange = false; 1930 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1931 UI != E;) { 1932 Use &TheUse = UI.getUse(); 1933 Instruction *User = cast<Instruction>(*UI); 1934 // Preincrement use iterator so we don't invalidate it. 1935 ++UI; 1936 1937 // Don't bother for PHI nodes. 1938 if (isa<PHINode>(User)) 1939 continue; 1940 1941 if (!isExtractBitsCandidateUse(User)) 1942 continue; 1943 1944 BasicBlock *UserBB = User->getParent(); 1945 1946 if (UserBB == DefBB) { 1947 // If the shift and truncate instruction are in the same BB. The use of 1948 // the truncate(TruncUse) may still introduce another truncate if not 1949 // legal. In this case, we would like to sink both shift and truncate 1950 // instruction to the BB of TruncUse. 1951 // for example: 1952 // BB1: 1953 // i64 shift.result = lshr i64 opnd, imm 1954 // trunc.result = trunc shift.result to i16 1955 // 1956 // BB2: 1957 // ----> We will have an implicit truncate here if the architecture does 1958 // not have i16 compare. 1959 // cmp i16 trunc.result, opnd2 1960 // 1961 if (isa<TruncInst>(User) && shiftIsLegal 1962 // If the type of the truncate is legal, no truncate will be 1963 // introduced in other basic blocks. 1964 && 1965 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1966 MadeChange = 1967 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1968 1969 continue; 1970 } 1971 // If we have already inserted a shift into this block, use it. 1972 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1973 1974 if (!InsertedShift) { 1975 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1976 assert(InsertPt != UserBB->end()); 1977 1978 if (ShiftI->getOpcode() == Instruction::AShr) 1979 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1980 "", &*InsertPt); 1981 else 1982 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1983 "", &*InsertPt); 1984 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1985 1986 MadeChange = true; 1987 } 1988 1989 // Replace a use of the shift with a use of the new shift. 1990 TheUse = InsertedShift; 1991 } 1992 1993 // If we removed all uses, or there are none, nuke the shift. 1994 if (ShiftI->use_empty()) { 1995 salvageDebugInfo(*ShiftI); 1996 ShiftI->eraseFromParent(); 1997 MadeChange = true; 1998 } 1999 2000 return MadeChange; 2001 } 2002 2003 /// If counting leading or trailing zeros is an expensive operation and a zero 2004 /// input is defined, add a check for zero to avoid calling the intrinsic. 2005 /// 2006 /// We want to transform: 2007 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2008 /// 2009 /// into: 2010 /// entry: 2011 /// %cmpz = icmp eq i64 %A, 0 2012 /// br i1 %cmpz, label %cond.end, label %cond.false 2013 /// cond.false: 2014 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2015 /// br label %cond.end 2016 /// cond.end: 2017 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2018 /// 2019 /// If the transform is performed, return true and set ModifiedDT to true. 2020 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2021 const TargetLowering *TLI, 2022 const DataLayout *DL, 2023 bool &ModifiedDT) { 2024 // If a zero input is undefined, it doesn't make sense to despeculate that. 2025 if (match(CountZeros->getOperand(1), m_One())) 2026 return false; 2027 2028 // If it's cheap to speculate, there's nothing to do. 2029 auto IntrinsicID = CountZeros->getIntrinsicID(); 2030 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2031 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2032 return false; 2033 2034 // Only handle legal scalar cases. Anything else requires too much work. 2035 Type *Ty = CountZeros->getType(); 2036 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2037 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2038 return false; 2039 2040 // Bail if the value is never zero. 2041 if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL)) 2042 return false; 2043 2044 // The intrinsic will be sunk behind a compare against zero and branch. 2045 BasicBlock *StartBlock = CountZeros->getParent(); 2046 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2047 2048 // Create another block after the count zero intrinsic. A PHI will be added 2049 // in this block to select the result of the intrinsic or the bit-width 2050 // constant if the input to the intrinsic is zero. 2051 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2052 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2053 2054 // Set up a builder to create a compare, conditional branch, and PHI. 2055 IRBuilder<> Builder(CountZeros->getContext()); 2056 Builder.SetInsertPoint(StartBlock->getTerminator()); 2057 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2058 2059 // Replace the unconditional branch that was created by the first split with 2060 // a compare against zero and a conditional branch. 2061 Value *Zero = Constant::getNullValue(Ty); 2062 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2063 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2064 StartBlock->getTerminator()->eraseFromParent(); 2065 2066 // Create a PHI in the end block to select either the output of the intrinsic 2067 // or the bit width of the operand. 2068 Builder.SetInsertPoint(&EndBlock->front()); 2069 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2070 CountZeros->replaceAllUsesWith(PN); 2071 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2072 PN->addIncoming(BitWidth, StartBlock); 2073 PN->addIncoming(CountZeros, CallBlock); 2074 2075 // We are explicitly handling the zero case, so we can set the intrinsic's 2076 // undefined zero argument to 'true'. This will also prevent reprocessing the 2077 // intrinsic; we only despeculate when a zero input is defined. 2078 CountZeros->setArgOperand(1, Builder.getTrue()); 2079 ModifiedDT = true; 2080 return true; 2081 } 2082 2083 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2084 BasicBlock *BB = CI->getParent(); 2085 2086 // Lower inline assembly if we can. 2087 // If we found an inline asm expession, and if the target knows how to 2088 // lower it to normal LLVM code, do so now. 2089 if (CI->isInlineAsm()) { 2090 if (TLI->ExpandInlineAsm(CI)) { 2091 // Avoid invalidating the iterator. 2092 CurInstIterator = BB->begin(); 2093 // Avoid processing instructions out of order, which could cause 2094 // reuse before a value is defined. 2095 SunkAddrs.clear(); 2096 return true; 2097 } 2098 // Sink address computing for memory operands into the block. 2099 if (optimizeInlineAsmInst(CI)) 2100 return true; 2101 } 2102 2103 // Align the pointer arguments to this call if the target thinks it's a good 2104 // idea 2105 unsigned MinSize, PrefAlign; 2106 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2107 for (auto &Arg : CI->args()) { 2108 // We want to align both objects whose address is used directly and 2109 // objects whose address is used in casts and GEPs, though it only makes 2110 // sense for GEPs if the offset is a multiple of the desired alignment and 2111 // if size - offset meets the size threshold. 2112 if (!Arg->getType()->isPointerTy()) 2113 continue; 2114 APInt Offset(DL->getIndexSizeInBits( 2115 cast<PointerType>(Arg->getType())->getAddressSpace()), 2116 0); 2117 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2118 uint64_t Offset2 = Offset.getLimitedValue(); 2119 if ((Offset2 & (PrefAlign-1)) != 0) 2120 continue; 2121 AllocaInst *AI; 2122 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2123 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2124 AI->setAlignment(Align(PrefAlign)); 2125 // Global variables can only be aligned if they are defined in this 2126 // object (i.e. they are uniquely initialized in this object), and 2127 // over-aligning global variables that have an explicit section is 2128 // forbidden. 2129 GlobalVariable *GV; 2130 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2131 GV->getPointerAlignment(*DL) < PrefAlign && 2132 DL->getTypeAllocSize(GV->getValueType()) >= 2133 MinSize + Offset2) 2134 GV->setAlignment(MaybeAlign(PrefAlign)); 2135 } 2136 // If this is a memcpy (or similar) then we may be able to improve the 2137 // alignment 2138 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2139 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2140 MaybeAlign MIDestAlign = MI->getDestAlign(); 2141 if (!MIDestAlign || DestAlign > *MIDestAlign) 2142 MI->setDestAlignment(DestAlign); 2143 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2144 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2145 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2146 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2147 MTI->setSourceAlignment(SrcAlign); 2148 } 2149 } 2150 } 2151 2152 // If we have a cold call site, try to sink addressing computation into the 2153 // cold block. This interacts with our handling for loads and stores to 2154 // ensure that we can fold all uses of a potential addressing computation 2155 // into their uses. TODO: generalize this to work over profiling data 2156 if (CI->hasFnAttr(Attribute::Cold) && 2157 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2158 for (auto &Arg : CI->args()) { 2159 if (!Arg->getType()->isPointerTy()) 2160 continue; 2161 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2162 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2163 } 2164 2165 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2166 if (II) { 2167 switch (II->getIntrinsicID()) { 2168 default: break; 2169 case Intrinsic::assume: 2170 llvm_unreachable("llvm.assume should have been removed already"); 2171 case Intrinsic::experimental_widenable_condition: { 2172 // Give up on future widening oppurtunties so that we can fold away dead 2173 // paths and merge blocks before going into block-local instruction 2174 // selection. 2175 if (II->use_empty()) { 2176 II->eraseFromParent(); 2177 return true; 2178 } 2179 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2180 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2181 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2182 }); 2183 return true; 2184 } 2185 case Intrinsic::objectsize: 2186 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2187 case Intrinsic::is_constant: 2188 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2189 case Intrinsic::aarch64_stlxr: 2190 case Intrinsic::aarch64_stxr: { 2191 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2192 if (!ExtVal || !ExtVal->hasOneUse() || 2193 ExtVal->getParent() == CI->getParent()) 2194 return false; 2195 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2196 ExtVal->moveBefore(CI); 2197 // Mark this instruction as "inserted by CGP", so that other 2198 // optimizations don't touch it. 2199 InsertedInsts.insert(ExtVal); 2200 return true; 2201 } 2202 2203 case Intrinsic::launder_invariant_group: 2204 case Intrinsic::strip_invariant_group: { 2205 Value *ArgVal = II->getArgOperand(0); 2206 auto it = LargeOffsetGEPMap.find(II); 2207 if (it != LargeOffsetGEPMap.end()) { 2208 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2209 // Make sure not to have to deal with iterator invalidation 2210 // after possibly adding ArgVal to LargeOffsetGEPMap. 2211 auto GEPs = std::move(it->second); 2212 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2213 LargeOffsetGEPMap.erase(II); 2214 } 2215 2216 II->replaceAllUsesWith(ArgVal); 2217 II->eraseFromParent(); 2218 return true; 2219 } 2220 case Intrinsic::cttz: 2221 case Intrinsic::ctlz: 2222 // If counting zeros is expensive, try to avoid it. 2223 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2224 case Intrinsic::fshl: 2225 case Intrinsic::fshr: 2226 return optimizeFunnelShift(II); 2227 case Intrinsic::dbg_value: 2228 return fixupDbgValue(II); 2229 case Intrinsic::vscale: { 2230 // If datalayout has no special restrictions on vector data layout, 2231 // replace `llvm.vscale` by an equivalent constant expression 2232 // to benefit from cheap constant propagation. 2233 Type *ScalableVectorTy = 2234 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2235 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2236 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2237 auto *One = ConstantInt::getSigned(II->getType(), 1); 2238 auto *CGep = 2239 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2240 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2241 II->eraseFromParent(); 2242 return true; 2243 } 2244 break; 2245 } 2246 case Intrinsic::masked_gather: 2247 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2248 case Intrinsic::masked_scatter: 2249 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2250 } 2251 2252 SmallVector<Value *, 2> PtrOps; 2253 Type *AccessTy; 2254 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2255 while (!PtrOps.empty()) { 2256 Value *PtrVal = PtrOps.pop_back_val(); 2257 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2258 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2259 return true; 2260 } 2261 } 2262 2263 // From here on out we're working with named functions. 2264 if (!CI->getCalledFunction()) return false; 2265 2266 // Lower all default uses of _chk calls. This is very similar 2267 // to what InstCombineCalls does, but here we are only lowering calls 2268 // to fortified library functions (e.g. __memcpy_chk) that have the default 2269 // "don't know" as the objectsize. Anything else should be left alone. 2270 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2271 IRBuilder<> Builder(CI); 2272 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2273 CI->replaceAllUsesWith(V); 2274 CI->eraseFromParent(); 2275 return true; 2276 } 2277 2278 return false; 2279 } 2280 2281 /// Look for opportunities to duplicate return instructions to the predecessor 2282 /// to enable tail call optimizations. The case it is currently looking for is: 2283 /// @code 2284 /// bb0: 2285 /// %tmp0 = tail call i32 @f0() 2286 /// br label %return 2287 /// bb1: 2288 /// %tmp1 = tail call i32 @f1() 2289 /// br label %return 2290 /// bb2: 2291 /// %tmp2 = tail call i32 @f2() 2292 /// br label %return 2293 /// return: 2294 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2295 /// ret i32 %retval 2296 /// @endcode 2297 /// 2298 /// => 2299 /// 2300 /// @code 2301 /// bb0: 2302 /// %tmp0 = tail call i32 @f0() 2303 /// ret i32 %tmp0 2304 /// bb1: 2305 /// %tmp1 = tail call i32 @f1() 2306 /// ret i32 %tmp1 2307 /// bb2: 2308 /// %tmp2 = tail call i32 @f2() 2309 /// ret i32 %tmp2 2310 /// @endcode 2311 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2312 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2313 if (!RetI) 2314 return false; 2315 2316 PHINode *PN = nullptr; 2317 ExtractValueInst *EVI = nullptr; 2318 BitCastInst *BCI = nullptr; 2319 Value *V = RetI->getReturnValue(); 2320 if (V) { 2321 BCI = dyn_cast<BitCastInst>(V); 2322 if (BCI) 2323 V = BCI->getOperand(0); 2324 2325 EVI = dyn_cast<ExtractValueInst>(V); 2326 if (EVI) { 2327 V = EVI->getOperand(0); 2328 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2329 return false; 2330 } 2331 2332 PN = dyn_cast<PHINode>(V); 2333 if (!PN) 2334 return false; 2335 } 2336 2337 if (PN && PN->getParent() != BB) 2338 return false; 2339 2340 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2341 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2342 if (BC && BC->hasOneUse()) 2343 Inst = BC->user_back(); 2344 2345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2346 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2347 return false; 2348 }; 2349 2350 // Make sure there are no instructions between the first instruction 2351 // and return. 2352 const Instruction *BI = BB->getFirstNonPHI(); 2353 // Skip over debug and the bitcast. 2354 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2355 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2356 BI = BI->getNextNode(); 2357 if (BI != RetI) 2358 return false; 2359 2360 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2361 /// call. 2362 const Function *F = BB->getParent(); 2363 SmallVector<BasicBlock*, 4> TailCallBBs; 2364 if (PN) { 2365 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2366 // Look through bitcasts. 2367 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2368 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2369 BasicBlock *PredBB = PN->getIncomingBlock(I); 2370 // Make sure the phi value is indeed produced by the tail call. 2371 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2372 TLI->mayBeEmittedAsTailCall(CI) && 2373 attributesPermitTailCall(F, CI, RetI, *TLI)) 2374 TailCallBBs.push_back(PredBB); 2375 } 2376 } else { 2377 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2378 for (BasicBlock *Pred : predecessors(BB)) { 2379 if (!VisitedBBs.insert(Pred).second) 2380 continue; 2381 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2382 CallInst *CI = dyn_cast<CallInst>(I); 2383 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2384 attributesPermitTailCall(F, CI, RetI, *TLI)) 2385 TailCallBBs.push_back(Pred); 2386 } 2387 } 2388 } 2389 2390 bool Changed = false; 2391 for (auto const &TailCallBB : TailCallBBs) { 2392 // Make sure the call instruction is followed by an unconditional branch to 2393 // the return block. 2394 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2395 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2396 continue; 2397 2398 // Duplicate the return into TailCallBB. 2399 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2400 assert(!VerifyBFIUpdates || 2401 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2402 BFI->setBlockFreq( 2403 BB, 2404 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2405 ModifiedDT = Changed = true; 2406 ++NumRetsDup; 2407 } 2408 2409 // If we eliminated all predecessors of the block, delete the block now. 2410 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2411 BB->eraseFromParent(); 2412 2413 return Changed; 2414 } 2415 2416 //===----------------------------------------------------------------------===// 2417 // Memory Optimization 2418 //===----------------------------------------------------------------------===// 2419 2420 namespace { 2421 2422 /// This is an extended version of TargetLowering::AddrMode 2423 /// which holds actual Value*'s for register values. 2424 struct ExtAddrMode : public TargetLowering::AddrMode { 2425 Value *BaseReg = nullptr; 2426 Value *ScaledReg = nullptr; 2427 Value *OriginalValue = nullptr; 2428 bool InBounds = true; 2429 2430 enum FieldName { 2431 NoField = 0x00, 2432 BaseRegField = 0x01, 2433 BaseGVField = 0x02, 2434 BaseOffsField = 0x04, 2435 ScaledRegField = 0x08, 2436 ScaleField = 0x10, 2437 MultipleFields = 0xff 2438 }; 2439 2440 2441 ExtAddrMode() = default; 2442 2443 void print(raw_ostream &OS) const; 2444 void dump() const; 2445 2446 FieldName compare(const ExtAddrMode &other) { 2447 // First check that the types are the same on each field, as differing types 2448 // is something we can't cope with later on. 2449 if (BaseReg && other.BaseReg && 2450 BaseReg->getType() != other.BaseReg->getType()) 2451 return MultipleFields; 2452 if (BaseGV && other.BaseGV && 2453 BaseGV->getType() != other.BaseGV->getType()) 2454 return MultipleFields; 2455 if (ScaledReg && other.ScaledReg && 2456 ScaledReg->getType() != other.ScaledReg->getType()) 2457 return MultipleFields; 2458 2459 // Conservatively reject 'inbounds' mismatches. 2460 if (InBounds != other.InBounds) 2461 return MultipleFields; 2462 2463 // Check each field to see if it differs. 2464 unsigned Result = NoField; 2465 if (BaseReg != other.BaseReg) 2466 Result |= BaseRegField; 2467 if (BaseGV != other.BaseGV) 2468 Result |= BaseGVField; 2469 if (BaseOffs != other.BaseOffs) 2470 Result |= BaseOffsField; 2471 if (ScaledReg != other.ScaledReg) 2472 Result |= ScaledRegField; 2473 // Don't count 0 as being a different scale, because that actually means 2474 // unscaled (which will already be counted by having no ScaledReg). 2475 if (Scale && other.Scale && Scale != other.Scale) 2476 Result |= ScaleField; 2477 2478 if (countPopulation(Result) > 1) 2479 return MultipleFields; 2480 else 2481 return static_cast<FieldName>(Result); 2482 } 2483 2484 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2485 // with no offset. 2486 bool isTrivial() { 2487 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2488 // trivial if at most one of these terms is nonzero, except that BaseGV and 2489 // BaseReg both being zero actually means a null pointer value, which we 2490 // consider to be 'non-zero' here. 2491 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2492 } 2493 2494 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2495 switch (Field) { 2496 default: 2497 return nullptr; 2498 case BaseRegField: 2499 return BaseReg; 2500 case BaseGVField: 2501 return BaseGV; 2502 case ScaledRegField: 2503 return ScaledReg; 2504 case BaseOffsField: 2505 return ConstantInt::get(IntPtrTy, BaseOffs); 2506 } 2507 } 2508 2509 void SetCombinedField(FieldName Field, Value *V, 2510 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2511 switch (Field) { 2512 default: 2513 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2514 break; 2515 case ExtAddrMode::BaseRegField: 2516 BaseReg = V; 2517 break; 2518 case ExtAddrMode::BaseGVField: 2519 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2520 // in the BaseReg field. 2521 assert(BaseReg == nullptr); 2522 BaseReg = V; 2523 BaseGV = nullptr; 2524 break; 2525 case ExtAddrMode::ScaledRegField: 2526 ScaledReg = V; 2527 // If we have a mix of scaled and unscaled addrmodes then we want scale 2528 // to be the scale and not zero. 2529 if (!Scale) 2530 for (const ExtAddrMode &AM : AddrModes) 2531 if (AM.Scale) { 2532 Scale = AM.Scale; 2533 break; 2534 } 2535 break; 2536 case ExtAddrMode::BaseOffsField: 2537 // The offset is no longer a constant, so it goes in ScaledReg with a 2538 // scale of 1. 2539 assert(ScaledReg == nullptr); 2540 ScaledReg = V; 2541 Scale = 1; 2542 BaseOffs = 0; 2543 break; 2544 } 2545 } 2546 }; 2547 2548 } // end anonymous namespace 2549 2550 #ifndef NDEBUG 2551 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2552 AM.print(OS); 2553 return OS; 2554 } 2555 #endif 2556 2557 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2558 void ExtAddrMode::print(raw_ostream &OS) const { 2559 bool NeedPlus = false; 2560 OS << "["; 2561 if (InBounds) 2562 OS << "inbounds "; 2563 if (BaseGV) { 2564 OS << (NeedPlus ? " + " : "") 2565 << "GV:"; 2566 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2567 NeedPlus = true; 2568 } 2569 2570 if (BaseOffs) { 2571 OS << (NeedPlus ? " + " : "") 2572 << BaseOffs; 2573 NeedPlus = true; 2574 } 2575 2576 if (BaseReg) { 2577 OS << (NeedPlus ? " + " : "") 2578 << "Base:"; 2579 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2580 NeedPlus = true; 2581 } 2582 if (Scale) { 2583 OS << (NeedPlus ? " + " : "") 2584 << Scale << "*"; 2585 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2586 } 2587 2588 OS << ']'; 2589 } 2590 2591 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2592 print(dbgs()); 2593 dbgs() << '\n'; 2594 } 2595 #endif 2596 2597 namespace { 2598 2599 /// This class provides transaction based operation on the IR. 2600 /// Every change made through this class is recorded in the internal state and 2601 /// can be undone (rollback) until commit is called. 2602 /// CGP does not check if instructions could be speculatively executed when 2603 /// moved. Preserving the original location would pessimize the debugging 2604 /// experience, as well as negatively impact the quality of sample PGO. 2605 class TypePromotionTransaction { 2606 /// This represents the common interface of the individual transaction. 2607 /// Each class implements the logic for doing one specific modification on 2608 /// the IR via the TypePromotionTransaction. 2609 class TypePromotionAction { 2610 protected: 2611 /// The Instruction modified. 2612 Instruction *Inst; 2613 2614 public: 2615 /// Constructor of the action. 2616 /// The constructor performs the related action on the IR. 2617 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2618 2619 virtual ~TypePromotionAction() = default; 2620 2621 /// Undo the modification done by this action. 2622 /// When this method is called, the IR must be in the same state as it was 2623 /// before this action was applied. 2624 /// \pre Undoing the action works if and only if the IR is in the exact same 2625 /// state as it was directly after this action was applied. 2626 virtual void undo() = 0; 2627 2628 /// Advocate every change made by this action. 2629 /// When the results on the IR of the action are to be kept, it is important 2630 /// to call this function, otherwise hidden information may be kept forever. 2631 virtual void commit() { 2632 // Nothing to be done, this action is not doing anything. 2633 } 2634 }; 2635 2636 /// Utility to remember the position of an instruction. 2637 class InsertionHandler { 2638 /// Position of an instruction. 2639 /// Either an instruction: 2640 /// - Is the first in a basic block: BB is used. 2641 /// - Has a previous instruction: PrevInst is used. 2642 union { 2643 Instruction *PrevInst; 2644 BasicBlock *BB; 2645 } Point; 2646 2647 /// Remember whether or not the instruction had a previous instruction. 2648 bool HasPrevInstruction; 2649 2650 public: 2651 /// Record the position of \p Inst. 2652 InsertionHandler(Instruction *Inst) { 2653 BasicBlock::iterator It = Inst->getIterator(); 2654 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2655 if (HasPrevInstruction) 2656 Point.PrevInst = &*--It; 2657 else 2658 Point.BB = Inst->getParent(); 2659 } 2660 2661 /// Insert \p Inst at the recorded position. 2662 void insert(Instruction *Inst) { 2663 if (HasPrevInstruction) { 2664 if (Inst->getParent()) 2665 Inst->removeFromParent(); 2666 Inst->insertAfter(Point.PrevInst); 2667 } else { 2668 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2669 if (Inst->getParent()) 2670 Inst->moveBefore(Position); 2671 else 2672 Inst->insertBefore(Position); 2673 } 2674 } 2675 }; 2676 2677 /// Move an instruction before another. 2678 class InstructionMoveBefore : public TypePromotionAction { 2679 /// Original position of the instruction. 2680 InsertionHandler Position; 2681 2682 public: 2683 /// Move \p Inst before \p Before. 2684 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2685 : TypePromotionAction(Inst), Position(Inst) { 2686 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2687 << "\n"); 2688 Inst->moveBefore(Before); 2689 } 2690 2691 /// Move the instruction back to its original position. 2692 void undo() override { 2693 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2694 Position.insert(Inst); 2695 } 2696 }; 2697 2698 /// Set the operand of an instruction with a new value. 2699 class OperandSetter : public TypePromotionAction { 2700 /// Original operand of the instruction. 2701 Value *Origin; 2702 2703 /// Index of the modified instruction. 2704 unsigned Idx; 2705 2706 public: 2707 /// Set \p Idx operand of \p Inst with \p NewVal. 2708 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2709 : TypePromotionAction(Inst), Idx(Idx) { 2710 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2711 << "for:" << *Inst << "\n" 2712 << "with:" << *NewVal << "\n"); 2713 Origin = Inst->getOperand(Idx); 2714 Inst->setOperand(Idx, NewVal); 2715 } 2716 2717 /// Restore the original value of the instruction. 2718 void undo() override { 2719 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2720 << "for: " << *Inst << "\n" 2721 << "with: " << *Origin << "\n"); 2722 Inst->setOperand(Idx, Origin); 2723 } 2724 }; 2725 2726 /// Hide the operands of an instruction. 2727 /// Do as if this instruction was not using any of its operands. 2728 class OperandsHider : public TypePromotionAction { 2729 /// The list of original operands. 2730 SmallVector<Value *, 4> OriginalValues; 2731 2732 public: 2733 /// Remove \p Inst from the uses of the operands of \p Inst. 2734 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2735 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2736 unsigned NumOpnds = Inst->getNumOperands(); 2737 OriginalValues.reserve(NumOpnds); 2738 for (unsigned It = 0; It < NumOpnds; ++It) { 2739 // Save the current operand. 2740 Value *Val = Inst->getOperand(It); 2741 OriginalValues.push_back(Val); 2742 // Set a dummy one. 2743 // We could use OperandSetter here, but that would imply an overhead 2744 // that we are not willing to pay. 2745 Inst->setOperand(It, UndefValue::get(Val->getType())); 2746 } 2747 } 2748 2749 /// Restore the original list of uses. 2750 void undo() override { 2751 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2752 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2753 Inst->setOperand(It, OriginalValues[It]); 2754 } 2755 }; 2756 2757 /// Build a truncate instruction. 2758 class TruncBuilder : public TypePromotionAction { 2759 Value *Val; 2760 2761 public: 2762 /// Build a truncate instruction of \p Opnd producing a \p Ty 2763 /// result. 2764 /// trunc Opnd to Ty. 2765 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2766 IRBuilder<> Builder(Opnd); 2767 Builder.SetCurrentDebugLocation(DebugLoc()); 2768 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2769 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2770 } 2771 2772 /// Get the built value. 2773 Value *getBuiltValue() { return Val; } 2774 2775 /// Remove the built instruction. 2776 void undo() override { 2777 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2778 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2779 IVal->eraseFromParent(); 2780 } 2781 }; 2782 2783 /// Build a sign extension instruction. 2784 class SExtBuilder : public TypePromotionAction { 2785 Value *Val; 2786 2787 public: 2788 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2789 /// result. 2790 /// sext Opnd to Ty. 2791 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2792 : TypePromotionAction(InsertPt) { 2793 IRBuilder<> Builder(InsertPt); 2794 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2795 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2796 } 2797 2798 /// Get the built value. 2799 Value *getBuiltValue() { return Val; } 2800 2801 /// Remove the built instruction. 2802 void undo() override { 2803 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2804 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2805 IVal->eraseFromParent(); 2806 } 2807 }; 2808 2809 /// Build a zero extension instruction. 2810 class ZExtBuilder : public TypePromotionAction { 2811 Value *Val; 2812 2813 public: 2814 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2815 /// result. 2816 /// zext Opnd to Ty. 2817 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2818 : TypePromotionAction(InsertPt) { 2819 IRBuilder<> Builder(InsertPt); 2820 Builder.SetCurrentDebugLocation(DebugLoc()); 2821 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2822 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2823 } 2824 2825 /// Get the built value. 2826 Value *getBuiltValue() { return Val; } 2827 2828 /// Remove the built instruction. 2829 void undo() override { 2830 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2831 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2832 IVal->eraseFromParent(); 2833 } 2834 }; 2835 2836 /// Mutate an instruction to another type. 2837 class TypeMutator : public TypePromotionAction { 2838 /// Record the original type. 2839 Type *OrigTy; 2840 2841 public: 2842 /// Mutate the type of \p Inst into \p NewTy. 2843 TypeMutator(Instruction *Inst, Type *NewTy) 2844 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2845 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2846 << "\n"); 2847 Inst->mutateType(NewTy); 2848 } 2849 2850 /// Mutate the instruction back to its original type. 2851 void undo() override { 2852 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2853 << "\n"); 2854 Inst->mutateType(OrigTy); 2855 } 2856 }; 2857 2858 /// Replace the uses of an instruction by another instruction. 2859 class UsesReplacer : public TypePromotionAction { 2860 /// Helper structure to keep track of the replaced uses. 2861 struct InstructionAndIdx { 2862 /// The instruction using the instruction. 2863 Instruction *Inst; 2864 2865 /// The index where this instruction is used for Inst. 2866 unsigned Idx; 2867 2868 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2869 : Inst(Inst), Idx(Idx) {} 2870 }; 2871 2872 /// Keep track of the original uses (pair Instruction, Index). 2873 SmallVector<InstructionAndIdx, 4> OriginalUses; 2874 /// Keep track of the debug users. 2875 SmallVector<DbgValueInst *, 1> DbgValues; 2876 2877 /// Keep track of the new value so that we can undo it by replacing 2878 /// instances of the new value with the original value. 2879 Value *New; 2880 2881 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2882 2883 public: 2884 /// Replace all the use of \p Inst by \p New. 2885 UsesReplacer(Instruction *Inst, Value *New) 2886 : TypePromotionAction(Inst), New(New) { 2887 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2888 << "\n"); 2889 // Record the original uses. 2890 for (Use &U : Inst->uses()) { 2891 Instruction *UserI = cast<Instruction>(U.getUser()); 2892 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2893 } 2894 // Record the debug uses separately. They are not in the instruction's 2895 // use list, but they are replaced by RAUW. 2896 findDbgValues(DbgValues, Inst); 2897 2898 // Now, we can replace the uses. 2899 Inst->replaceAllUsesWith(New); 2900 } 2901 2902 /// Reassign the original uses of Inst to Inst. 2903 void undo() override { 2904 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2905 for (InstructionAndIdx &Use : OriginalUses) 2906 Use.Inst->setOperand(Use.Idx, Inst); 2907 // RAUW has replaced all original uses with references to the new value, 2908 // including the debug uses. Since we are undoing the replacements, 2909 // the original debug uses must also be reinstated to maintain the 2910 // correctness and utility of debug value instructions. 2911 for (auto *DVI : DbgValues) 2912 DVI->replaceVariableLocationOp(New, Inst); 2913 } 2914 }; 2915 2916 /// Remove an instruction from the IR. 2917 class InstructionRemover : public TypePromotionAction { 2918 /// Original position of the instruction. 2919 InsertionHandler Inserter; 2920 2921 /// Helper structure to hide all the link to the instruction. In other 2922 /// words, this helps to do as if the instruction was removed. 2923 OperandsHider Hider; 2924 2925 /// Keep track of the uses replaced, if any. 2926 UsesReplacer *Replacer = nullptr; 2927 2928 /// Keep track of instructions removed. 2929 SetOfInstrs &RemovedInsts; 2930 2931 public: 2932 /// Remove all reference of \p Inst and optionally replace all its 2933 /// uses with New. 2934 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2935 /// \pre If !Inst->use_empty(), then New != nullptr 2936 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2937 Value *New = nullptr) 2938 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2939 RemovedInsts(RemovedInsts) { 2940 if (New) 2941 Replacer = new UsesReplacer(Inst, New); 2942 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2943 RemovedInsts.insert(Inst); 2944 /// The instructions removed here will be freed after completing 2945 /// optimizeBlock() for all blocks as we need to keep track of the 2946 /// removed instructions during promotion. 2947 Inst->removeFromParent(); 2948 } 2949 2950 ~InstructionRemover() override { delete Replacer; } 2951 2952 /// Resurrect the instruction and reassign it to the proper uses if 2953 /// new value was provided when build this action. 2954 void undo() override { 2955 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2956 Inserter.insert(Inst); 2957 if (Replacer) 2958 Replacer->undo(); 2959 Hider.undo(); 2960 RemovedInsts.erase(Inst); 2961 } 2962 }; 2963 2964 public: 2965 /// Restoration point. 2966 /// The restoration point is a pointer to an action instead of an iterator 2967 /// because the iterator may be invalidated but not the pointer. 2968 using ConstRestorationPt = const TypePromotionAction *; 2969 2970 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2971 : RemovedInsts(RemovedInsts) {} 2972 2973 /// Advocate every changes made in that transaction. Return true if any change 2974 /// happen. 2975 bool commit(); 2976 2977 /// Undo all the changes made after the given point. 2978 void rollback(ConstRestorationPt Point); 2979 2980 /// Get the current restoration point. 2981 ConstRestorationPt getRestorationPoint() const; 2982 2983 /// \name API for IR modification with state keeping to support rollback. 2984 /// @{ 2985 /// Same as Instruction::setOperand. 2986 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2987 2988 /// Same as Instruction::eraseFromParent. 2989 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2990 2991 /// Same as Value::replaceAllUsesWith. 2992 void replaceAllUsesWith(Instruction *Inst, Value *New); 2993 2994 /// Same as Value::mutateType. 2995 void mutateType(Instruction *Inst, Type *NewTy); 2996 2997 /// Same as IRBuilder::createTrunc. 2998 Value *createTrunc(Instruction *Opnd, Type *Ty); 2999 3000 /// Same as IRBuilder::createSExt. 3001 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3002 3003 /// Same as IRBuilder::createZExt. 3004 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3005 3006 /// Same as Instruction::moveBefore. 3007 void moveBefore(Instruction *Inst, Instruction *Before); 3008 /// @} 3009 3010 private: 3011 /// The ordered list of actions made so far. 3012 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3013 3014 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3015 3016 SetOfInstrs &RemovedInsts; 3017 }; 3018 3019 } // end anonymous namespace 3020 3021 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3022 Value *NewVal) { 3023 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3024 Inst, Idx, NewVal)); 3025 } 3026 3027 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3028 Value *NewVal) { 3029 Actions.push_back( 3030 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3031 Inst, RemovedInsts, NewVal)); 3032 } 3033 3034 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3035 Value *New) { 3036 Actions.push_back( 3037 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3038 } 3039 3040 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3041 Actions.push_back( 3042 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3043 } 3044 3045 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3046 Type *Ty) { 3047 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3048 Value *Val = Ptr->getBuiltValue(); 3049 Actions.push_back(std::move(Ptr)); 3050 return Val; 3051 } 3052 3053 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3054 Value *Opnd, Type *Ty) { 3055 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3056 Value *Val = Ptr->getBuiltValue(); 3057 Actions.push_back(std::move(Ptr)); 3058 return Val; 3059 } 3060 3061 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3062 Value *Opnd, Type *Ty) { 3063 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3064 Value *Val = Ptr->getBuiltValue(); 3065 Actions.push_back(std::move(Ptr)); 3066 return Val; 3067 } 3068 3069 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3070 Instruction *Before) { 3071 Actions.push_back( 3072 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3073 Inst, Before)); 3074 } 3075 3076 TypePromotionTransaction::ConstRestorationPt 3077 TypePromotionTransaction::getRestorationPoint() const { 3078 return !Actions.empty() ? Actions.back().get() : nullptr; 3079 } 3080 3081 bool TypePromotionTransaction::commit() { 3082 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3083 Action->commit(); 3084 bool Modified = !Actions.empty(); 3085 Actions.clear(); 3086 return Modified; 3087 } 3088 3089 void TypePromotionTransaction::rollback( 3090 TypePromotionTransaction::ConstRestorationPt Point) { 3091 while (!Actions.empty() && Point != Actions.back().get()) { 3092 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3093 Curr->undo(); 3094 } 3095 } 3096 3097 namespace { 3098 3099 /// A helper class for matching addressing modes. 3100 /// 3101 /// This encapsulates the logic for matching the target-legal addressing modes. 3102 class AddressingModeMatcher { 3103 SmallVectorImpl<Instruction*> &AddrModeInsts; 3104 const TargetLowering &TLI; 3105 const TargetRegisterInfo &TRI; 3106 const DataLayout &DL; 3107 const LoopInfo &LI; 3108 const std::function<const DominatorTree &()> getDTFn; 3109 3110 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3111 /// the memory instruction that we're computing this address for. 3112 Type *AccessTy; 3113 unsigned AddrSpace; 3114 Instruction *MemoryInst; 3115 3116 /// This is the addressing mode that we're building up. This is 3117 /// part of the return value of this addressing mode matching stuff. 3118 ExtAddrMode &AddrMode; 3119 3120 /// The instructions inserted by other CodeGenPrepare optimizations. 3121 const SetOfInstrs &InsertedInsts; 3122 3123 /// A map from the instructions to their type before promotion. 3124 InstrToOrigTy &PromotedInsts; 3125 3126 /// The ongoing transaction where every action should be registered. 3127 TypePromotionTransaction &TPT; 3128 3129 // A GEP which has too large offset to be folded into the addressing mode. 3130 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3131 3132 /// This is set to true when we should not do profitability checks. 3133 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3134 bool IgnoreProfitability; 3135 3136 /// True if we are optimizing for size. 3137 bool OptSize; 3138 3139 ProfileSummaryInfo *PSI; 3140 BlockFrequencyInfo *BFI; 3141 3142 AddressingModeMatcher( 3143 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3144 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3145 const std::function<const DominatorTree &()> getDTFn, 3146 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3147 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3148 TypePromotionTransaction &TPT, 3149 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3150 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3151 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3152 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3153 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3154 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3155 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3156 IgnoreProfitability = false; 3157 } 3158 3159 public: 3160 /// Find the maximal addressing mode that a load/store of V can fold, 3161 /// give an access type of AccessTy. This returns a list of involved 3162 /// instructions in AddrModeInsts. 3163 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3164 /// optimizations. 3165 /// \p PromotedInsts maps the instructions to their type before promotion. 3166 /// \p The ongoing transaction where every action should be registered. 3167 static ExtAddrMode 3168 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3169 SmallVectorImpl<Instruction *> &AddrModeInsts, 3170 const TargetLowering &TLI, const LoopInfo &LI, 3171 const std::function<const DominatorTree &()> getDTFn, 3172 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3173 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3174 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3175 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3176 ExtAddrMode Result; 3177 3178 bool Success = AddressingModeMatcher( 3179 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3180 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3181 BFI).matchAddr(V, 0); 3182 (void)Success; assert(Success && "Couldn't select *anything*?"); 3183 return Result; 3184 } 3185 3186 private: 3187 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3188 bool matchAddr(Value *Addr, unsigned Depth); 3189 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3190 bool *MovedAway = nullptr); 3191 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3192 ExtAddrMode &AMBefore, 3193 ExtAddrMode &AMAfter); 3194 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3195 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3196 Value *PromotedOperand) const; 3197 }; 3198 3199 class PhiNodeSet; 3200 3201 /// An iterator for PhiNodeSet. 3202 class PhiNodeSetIterator { 3203 PhiNodeSet * const Set; 3204 size_t CurrentIndex = 0; 3205 3206 public: 3207 /// The constructor. Start should point to either a valid element, or be equal 3208 /// to the size of the underlying SmallVector of the PhiNodeSet. 3209 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3210 PHINode * operator*() const; 3211 PhiNodeSetIterator& operator++(); 3212 bool operator==(const PhiNodeSetIterator &RHS) const; 3213 bool operator!=(const PhiNodeSetIterator &RHS) const; 3214 }; 3215 3216 /// Keeps a set of PHINodes. 3217 /// 3218 /// This is a minimal set implementation for a specific use case: 3219 /// It is very fast when there are very few elements, but also provides good 3220 /// performance when there are many. It is similar to SmallPtrSet, but also 3221 /// provides iteration by insertion order, which is deterministic and stable 3222 /// across runs. It is also similar to SmallSetVector, but provides removing 3223 /// elements in O(1) time. This is achieved by not actually removing the element 3224 /// from the underlying vector, so comes at the cost of using more memory, but 3225 /// that is fine, since PhiNodeSets are used as short lived objects. 3226 class PhiNodeSet { 3227 friend class PhiNodeSetIterator; 3228 3229 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3230 using iterator = PhiNodeSetIterator; 3231 3232 /// Keeps the elements in the order of their insertion in the underlying 3233 /// vector. To achieve constant time removal, it never deletes any element. 3234 SmallVector<PHINode *, 32> NodeList; 3235 3236 /// Keeps the elements in the underlying set implementation. This (and not the 3237 /// NodeList defined above) is the source of truth on whether an element 3238 /// is actually in the collection. 3239 MapType NodeMap; 3240 3241 /// Points to the first valid (not deleted) element when the set is not empty 3242 /// and the value is not zero. Equals to the size of the underlying vector 3243 /// when the set is empty. When the value is 0, as in the beginning, the 3244 /// first element may or may not be valid. 3245 size_t FirstValidElement = 0; 3246 3247 public: 3248 /// Inserts a new element to the collection. 3249 /// \returns true if the element is actually added, i.e. was not in the 3250 /// collection before the operation. 3251 bool insert(PHINode *Ptr) { 3252 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3253 NodeList.push_back(Ptr); 3254 return true; 3255 } 3256 return false; 3257 } 3258 3259 /// Removes the element from the collection. 3260 /// \returns whether the element is actually removed, i.e. was in the 3261 /// collection before the operation. 3262 bool erase(PHINode *Ptr) { 3263 if (NodeMap.erase(Ptr)) { 3264 SkipRemovedElements(FirstValidElement); 3265 return true; 3266 } 3267 return false; 3268 } 3269 3270 /// Removes all elements and clears the collection. 3271 void clear() { 3272 NodeMap.clear(); 3273 NodeList.clear(); 3274 FirstValidElement = 0; 3275 } 3276 3277 /// \returns an iterator that will iterate the elements in the order of 3278 /// insertion. 3279 iterator begin() { 3280 if (FirstValidElement == 0) 3281 SkipRemovedElements(FirstValidElement); 3282 return PhiNodeSetIterator(this, FirstValidElement); 3283 } 3284 3285 /// \returns an iterator that points to the end of the collection. 3286 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3287 3288 /// Returns the number of elements in the collection. 3289 size_t size() const { 3290 return NodeMap.size(); 3291 } 3292 3293 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3294 size_t count(PHINode *Ptr) const { 3295 return NodeMap.count(Ptr); 3296 } 3297 3298 private: 3299 /// Updates the CurrentIndex so that it will point to a valid element. 3300 /// 3301 /// If the element of NodeList at CurrentIndex is valid, it does not 3302 /// change it. If there are no more valid elements, it updates CurrentIndex 3303 /// to point to the end of the NodeList. 3304 void SkipRemovedElements(size_t &CurrentIndex) { 3305 while (CurrentIndex < NodeList.size()) { 3306 auto it = NodeMap.find(NodeList[CurrentIndex]); 3307 // If the element has been deleted and added again later, NodeMap will 3308 // point to a different index, so CurrentIndex will still be invalid. 3309 if (it != NodeMap.end() && it->second == CurrentIndex) 3310 break; 3311 ++CurrentIndex; 3312 } 3313 } 3314 }; 3315 3316 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3317 : Set(Set), CurrentIndex(Start) {} 3318 3319 PHINode * PhiNodeSetIterator::operator*() const { 3320 assert(CurrentIndex < Set->NodeList.size() && 3321 "PhiNodeSet access out of range"); 3322 return Set->NodeList[CurrentIndex]; 3323 } 3324 3325 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3326 assert(CurrentIndex < Set->NodeList.size() && 3327 "PhiNodeSet access out of range"); 3328 ++CurrentIndex; 3329 Set->SkipRemovedElements(CurrentIndex); 3330 return *this; 3331 } 3332 3333 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3334 return CurrentIndex == RHS.CurrentIndex; 3335 } 3336 3337 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3338 return !((*this) == RHS); 3339 } 3340 3341 /// Keep track of simplification of Phi nodes. 3342 /// Accept the set of all phi nodes and erase phi node from this set 3343 /// if it is simplified. 3344 class SimplificationTracker { 3345 DenseMap<Value *, Value *> Storage; 3346 const SimplifyQuery &SQ; 3347 // Tracks newly created Phi nodes. The elements are iterated by insertion 3348 // order. 3349 PhiNodeSet AllPhiNodes; 3350 // Tracks newly created Select nodes. 3351 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3352 3353 public: 3354 SimplificationTracker(const SimplifyQuery &sq) 3355 : SQ(sq) {} 3356 3357 Value *Get(Value *V) { 3358 do { 3359 auto SV = Storage.find(V); 3360 if (SV == Storage.end()) 3361 return V; 3362 V = SV->second; 3363 } while (true); 3364 } 3365 3366 Value *Simplify(Value *Val) { 3367 SmallVector<Value *, 32> WorkList; 3368 SmallPtrSet<Value *, 32> Visited; 3369 WorkList.push_back(Val); 3370 while (!WorkList.empty()) { 3371 auto *P = WorkList.pop_back_val(); 3372 if (!Visited.insert(P).second) 3373 continue; 3374 if (auto *PI = dyn_cast<Instruction>(P)) 3375 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3376 for (auto *U : PI->users()) 3377 WorkList.push_back(cast<Value>(U)); 3378 Put(PI, V); 3379 PI->replaceAllUsesWith(V); 3380 if (auto *PHI = dyn_cast<PHINode>(PI)) 3381 AllPhiNodes.erase(PHI); 3382 if (auto *Select = dyn_cast<SelectInst>(PI)) 3383 AllSelectNodes.erase(Select); 3384 PI->eraseFromParent(); 3385 } 3386 } 3387 return Get(Val); 3388 } 3389 3390 void Put(Value *From, Value *To) { 3391 Storage.insert({ From, To }); 3392 } 3393 3394 void ReplacePhi(PHINode *From, PHINode *To) { 3395 Value* OldReplacement = Get(From); 3396 while (OldReplacement != From) { 3397 From = To; 3398 To = dyn_cast<PHINode>(OldReplacement); 3399 OldReplacement = Get(From); 3400 } 3401 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3402 Put(From, To); 3403 From->replaceAllUsesWith(To); 3404 AllPhiNodes.erase(From); 3405 From->eraseFromParent(); 3406 } 3407 3408 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3409 3410 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3411 3412 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3413 3414 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3415 3416 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3417 3418 void destroyNewNodes(Type *CommonType) { 3419 // For safe erasing, replace the uses with dummy value first. 3420 auto *Dummy = UndefValue::get(CommonType); 3421 for (auto *I : AllPhiNodes) { 3422 I->replaceAllUsesWith(Dummy); 3423 I->eraseFromParent(); 3424 } 3425 AllPhiNodes.clear(); 3426 for (auto *I : AllSelectNodes) { 3427 I->replaceAllUsesWith(Dummy); 3428 I->eraseFromParent(); 3429 } 3430 AllSelectNodes.clear(); 3431 } 3432 }; 3433 3434 /// A helper class for combining addressing modes. 3435 class AddressingModeCombiner { 3436 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3437 typedef std::pair<PHINode *, PHINode *> PHIPair; 3438 3439 private: 3440 /// The addressing modes we've collected. 3441 SmallVector<ExtAddrMode, 16> AddrModes; 3442 3443 /// The field in which the AddrModes differ, when we have more than one. 3444 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3445 3446 /// Are the AddrModes that we have all just equal to their original values? 3447 bool AllAddrModesTrivial = true; 3448 3449 /// Common Type for all different fields in addressing modes. 3450 Type *CommonType = nullptr; 3451 3452 /// SimplifyQuery for simplifyInstruction utility. 3453 const SimplifyQuery &SQ; 3454 3455 /// Original Address. 3456 Value *Original; 3457 3458 public: 3459 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3460 : SQ(_SQ), Original(OriginalValue) {} 3461 3462 /// Get the combined AddrMode 3463 const ExtAddrMode &getAddrMode() const { 3464 return AddrModes[0]; 3465 } 3466 3467 /// Add a new AddrMode if it's compatible with the AddrModes we already 3468 /// have. 3469 /// \return True iff we succeeded in doing so. 3470 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3471 // Take note of if we have any non-trivial AddrModes, as we need to detect 3472 // when all AddrModes are trivial as then we would introduce a phi or select 3473 // which just duplicates what's already there. 3474 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3475 3476 // If this is the first addrmode then everything is fine. 3477 if (AddrModes.empty()) { 3478 AddrModes.emplace_back(NewAddrMode); 3479 return true; 3480 } 3481 3482 // Figure out how different this is from the other address modes, which we 3483 // can do just by comparing against the first one given that we only care 3484 // about the cumulative difference. 3485 ExtAddrMode::FieldName ThisDifferentField = 3486 AddrModes[0].compare(NewAddrMode); 3487 if (DifferentField == ExtAddrMode::NoField) 3488 DifferentField = ThisDifferentField; 3489 else if (DifferentField != ThisDifferentField) 3490 DifferentField = ExtAddrMode::MultipleFields; 3491 3492 // If NewAddrMode differs in more than one dimension we cannot handle it. 3493 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3494 3495 // If Scale Field is different then we reject. 3496 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3497 3498 // We also must reject the case when base offset is different and 3499 // scale reg is not null, we cannot handle this case due to merge of 3500 // different offsets will be used as ScaleReg. 3501 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3502 !NewAddrMode.ScaledReg); 3503 3504 // We also must reject the case when GV is different and BaseReg installed 3505 // due to we want to use base reg as a merge of GV values. 3506 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3507 !NewAddrMode.HasBaseReg); 3508 3509 // Even if NewAddMode is the same we still need to collect it due to 3510 // original value is different. And later we will need all original values 3511 // as anchors during finding the common Phi node. 3512 if (CanHandle) 3513 AddrModes.emplace_back(NewAddrMode); 3514 else 3515 AddrModes.clear(); 3516 3517 return CanHandle; 3518 } 3519 3520 /// Combine the addressing modes we've collected into a single 3521 /// addressing mode. 3522 /// \return True iff we successfully combined them or we only had one so 3523 /// didn't need to combine them anyway. 3524 bool combineAddrModes() { 3525 // If we have no AddrModes then they can't be combined. 3526 if (AddrModes.size() == 0) 3527 return false; 3528 3529 // A single AddrMode can trivially be combined. 3530 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3531 return true; 3532 3533 // If the AddrModes we collected are all just equal to the value they are 3534 // derived from then combining them wouldn't do anything useful. 3535 if (AllAddrModesTrivial) 3536 return false; 3537 3538 if (!addrModeCombiningAllowed()) 3539 return false; 3540 3541 // Build a map between <original value, basic block where we saw it> to 3542 // value of base register. 3543 // Bail out if there is no common type. 3544 FoldAddrToValueMapping Map; 3545 if (!initializeMap(Map)) 3546 return false; 3547 3548 Value *CommonValue = findCommon(Map); 3549 if (CommonValue) 3550 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3551 return CommonValue != nullptr; 3552 } 3553 3554 private: 3555 /// Initialize Map with anchor values. For address seen 3556 /// we set the value of different field saw in this address. 3557 /// At the same time we find a common type for different field we will 3558 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3559 /// Return false if there is no common type found. 3560 bool initializeMap(FoldAddrToValueMapping &Map) { 3561 // Keep track of keys where the value is null. We will need to replace it 3562 // with constant null when we know the common type. 3563 SmallVector<Value *, 2> NullValue; 3564 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3565 for (auto &AM : AddrModes) { 3566 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3567 if (DV) { 3568 auto *Type = DV->getType(); 3569 if (CommonType && CommonType != Type) 3570 return false; 3571 CommonType = Type; 3572 Map[AM.OriginalValue] = DV; 3573 } else { 3574 NullValue.push_back(AM.OriginalValue); 3575 } 3576 } 3577 assert(CommonType && "At least one non-null value must be!"); 3578 for (auto *V : NullValue) 3579 Map[V] = Constant::getNullValue(CommonType); 3580 return true; 3581 } 3582 3583 /// We have mapping between value A and other value B where B was a field in 3584 /// addressing mode represented by A. Also we have an original value C 3585 /// representing an address we start with. Traversing from C through phi and 3586 /// selects we ended up with A's in a map. This utility function tries to find 3587 /// a value V which is a field in addressing mode C and traversing through phi 3588 /// nodes and selects we will end up in corresponded values B in a map. 3589 /// The utility will create a new Phi/Selects if needed. 3590 // The simple example looks as follows: 3591 // BB1: 3592 // p1 = b1 + 40 3593 // br cond BB2, BB3 3594 // BB2: 3595 // p2 = b2 + 40 3596 // br BB3 3597 // BB3: 3598 // p = phi [p1, BB1], [p2, BB2] 3599 // v = load p 3600 // Map is 3601 // p1 -> b1 3602 // p2 -> b2 3603 // Request is 3604 // p -> ? 3605 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3606 Value *findCommon(FoldAddrToValueMapping &Map) { 3607 // Tracks the simplification of newly created phi nodes. The reason we use 3608 // this mapping is because we will add new created Phi nodes in AddrToBase. 3609 // Simplification of Phi nodes is recursive, so some Phi node may 3610 // be simplified after we added it to AddrToBase. In reality this 3611 // simplification is possible only if original phi/selects were not 3612 // simplified yet. 3613 // Using this mapping we can find the current value in AddrToBase. 3614 SimplificationTracker ST(SQ); 3615 3616 // First step, DFS to create PHI nodes for all intermediate blocks. 3617 // Also fill traverse order for the second step. 3618 SmallVector<Value *, 32> TraverseOrder; 3619 InsertPlaceholders(Map, TraverseOrder, ST); 3620 3621 // Second Step, fill new nodes by merged values and simplify if possible. 3622 FillPlaceholders(Map, TraverseOrder, ST); 3623 3624 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3625 ST.destroyNewNodes(CommonType); 3626 return nullptr; 3627 } 3628 3629 // Now we'd like to match New Phi nodes to existed ones. 3630 unsigned PhiNotMatchedCount = 0; 3631 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3632 ST.destroyNewNodes(CommonType); 3633 return nullptr; 3634 } 3635 3636 auto *Result = ST.Get(Map.find(Original)->second); 3637 if (Result) { 3638 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3639 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3640 } 3641 return Result; 3642 } 3643 3644 /// Try to match PHI node to Candidate. 3645 /// Matcher tracks the matched Phi nodes. 3646 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3647 SmallSetVector<PHIPair, 8> &Matcher, 3648 PhiNodeSet &PhiNodesToMatch) { 3649 SmallVector<PHIPair, 8> WorkList; 3650 Matcher.insert({ PHI, Candidate }); 3651 SmallSet<PHINode *, 8> MatchedPHIs; 3652 MatchedPHIs.insert(PHI); 3653 WorkList.push_back({ PHI, Candidate }); 3654 SmallSet<PHIPair, 8> Visited; 3655 while (!WorkList.empty()) { 3656 auto Item = WorkList.pop_back_val(); 3657 if (!Visited.insert(Item).second) 3658 continue; 3659 // We iterate over all incoming values to Phi to compare them. 3660 // If values are different and both of them Phi and the first one is a 3661 // Phi we added (subject to match) and both of them is in the same basic 3662 // block then we can match our pair if values match. So we state that 3663 // these values match and add it to work list to verify that. 3664 for (auto B : Item.first->blocks()) { 3665 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3666 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3667 if (FirstValue == SecondValue) 3668 continue; 3669 3670 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3671 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3672 3673 // One of them is not Phi or 3674 // The first one is not Phi node from the set we'd like to match or 3675 // Phi nodes from different basic blocks then 3676 // we will not be able to match. 3677 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3678 FirstPhi->getParent() != SecondPhi->getParent()) 3679 return false; 3680 3681 // If we already matched them then continue. 3682 if (Matcher.count({ FirstPhi, SecondPhi })) 3683 continue; 3684 // So the values are different and does not match. So we need them to 3685 // match. (But we register no more than one match per PHI node, so that 3686 // we won't later try to replace them twice.) 3687 if (MatchedPHIs.insert(FirstPhi).second) 3688 Matcher.insert({ FirstPhi, SecondPhi }); 3689 // But me must check it. 3690 WorkList.push_back({ FirstPhi, SecondPhi }); 3691 } 3692 } 3693 return true; 3694 } 3695 3696 /// For the given set of PHI nodes (in the SimplificationTracker) try 3697 /// to find their equivalents. 3698 /// Returns false if this matching fails and creation of new Phi is disabled. 3699 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3700 unsigned &PhiNotMatchedCount) { 3701 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3702 // order, so the replacements (ReplacePhi) are also done in a deterministic 3703 // order. 3704 SmallSetVector<PHIPair, 8> Matched; 3705 SmallPtrSet<PHINode *, 8> WillNotMatch; 3706 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3707 while (PhiNodesToMatch.size()) { 3708 PHINode *PHI = *PhiNodesToMatch.begin(); 3709 3710 // Add us, if no Phi nodes in the basic block we do not match. 3711 WillNotMatch.clear(); 3712 WillNotMatch.insert(PHI); 3713 3714 // Traverse all Phis until we found equivalent or fail to do that. 3715 bool IsMatched = false; 3716 for (auto &P : PHI->getParent()->phis()) { 3717 // Skip new Phi nodes. 3718 if (PhiNodesToMatch.count(&P)) 3719 continue; 3720 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3721 break; 3722 // If it does not match, collect all Phi nodes from matcher. 3723 // if we end up with no match, them all these Phi nodes will not match 3724 // later. 3725 for (auto M : Matched) 3726 WillNotMatch.insert(M.first); 3727 Matched.clear(); 3728 } 3729 if (IsMatched) { 3730 // Replace all matched values and erase them. 3731 for (auto MV : Matched) 3732 ST.ReplacePhi(MV.first, MV.second); 3733 Matched.clear(); 3734 continue; 3735 } 3736 // If we are not allowed to create new nodes then bail out. 3737 if (!AllowNewPhiNodes) 3738 return false; 3739 // Just remove all seen values in matcher. They will not match anything. 3740 PhiNotMatchedCount += WillNotMatch.size(); 3741 for (auto *P : WillNotMatch) 3742 PhiNodesToMatch.erase(P); 3743 } 3744 return true; 3745 } 3746 /// Fill the placeholders with values from predecessors and simplify them. 3747 void FillPlaceholders(FoldAddrToValueMapping &Map, 3748 SmallVectorImpl<Value *> &TraverseOrder, 3749 SimplificationTracker &ST) { 3750 while (!TraverseOrder.empty()) { 3751 Value *Current = TraverseOrder.pop_back_val(); 3752 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3753 Value *V = Map[Current]; 3754 3755 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3756 // CurrentValue also must be Select. 3757 auto *CurrentSelect = cast<SelectInst>(Current); 3758 auto *TrueValue = CurrentSelect->getTrueValue(); 3759 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3760 Select->setTrueValue(ST.Get(Map[TrueValue])); 3761 auto *FalseValue = CurrentSelect->getFalseValue(); 3762 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3763 Select->setFalseValue(ST.Get(Map[FalseValue])); 3764 } else { 3765 // Must be a Phi node then. 3766 auto *PHI = cast<PHINode>(V); 3767 // Fill the Phi node with values from predecessors. 3768 for (auto *B : predecessors(PHI->getParent())) { 3769 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3770 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3771 PHI->addIncoming(ST.Get(Map[PV]), B); 3772 } 3773 } 3774 Map[Current] = ST.Simplify(V); 3775 } 3776 } 3777 3778 /// Starting from original value recursively iterates over def-use chain up to 3779 /// known ending values represented in a map. For each traversed phi/select 3780 /// inserts a placeholder Phi or Select. 3781 /// Reports all new created Phi/Select nodes by adding them to set. 3782 /// Also reports and order in what values have been traversed. 3783 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3784 SmallVectorImpl<Value *> &TraverseOrder, 3785 SimplificationTracker &ST) { 3786 SmallVector<Value *, 32> Worklist; 3787 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3788 "Address must be a Phi or Select node"); 3789 auto *Dummy = UndefValue::get(CommonType); 3790 Worklist.push_back(Original); 3791 while (!Worklist.empty()) { 3792 Value *Current = Worklist.pop_back_val(); 3793 // if it is already visited or it is an ending value then skip it. 3794 if (Map.find(Current) != Map.end()) 3795 continue; 3796 TraverseOrder.push_back(Current); 3797 3798 // CurrentValue must be a Phi node or select. All others must be covered 3799 // by anchors. 3800 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3801 // Is it OK to get metadata from OrigSelect?! 3802 // Create a Select placeholder with dummy value. 3803 SelectInst *Select = SelectInst::Create( 3804 CurrentSelect->getCondition(), Dummy, Dummy, 3805 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3806 Map[Current] = Select; 3807 ST.insertNewSelect(Select); 3808 // We are interested in True and False values. 3809 Worklist.push_back(CurrentSelect->getTrueValue()); 3810 Worklist.push_back(CurrentSelect->getFalseValue()); 3811 } else { 3812 // It must be a Phi node then. 3813 PHINode *CurrentPhi = cast<PHINode>(Current); 3814 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3815 PHINode *PHI = 3816 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3817 Map[Current] = PHI; 3818 ST.insertNewPhi(PHI); 3819 append_range(Worklist, CurrentPhi->incoming_values()); 3820 } 3821 } 3822 } 3823 3824 bool addrModeCombiningAllowed() { 3825 if (DisableComplexAddrModes) 3826 return false; 3827 switch (DifferentField) { 3828 default: 3829 return false; 3830 case ExtAddrMode::BaseRegField: 3831 return AddrSinkCombineBaseReg; 3832 case ExtAddrMode::BaseGVField: 3833 return AddrSinkCombineBaseGV; 3834 case ExtAddrMode::BaseOffsField: 3835 return AddrSinkCombineBaseOffs; 3836 case ExtAddrMode::ScaledRegField: 3837 return AddrSinkCombineScaledReg; 3838 } 3839 } 3840 }; 3841 } // end anonymous namespace 3842 3843 /// Try adding ScaleReg*Scale to the current addressing mode. 3844 /// Return true and update AddrMode if this addr mode is legal for the target, 3845 /// false if not. 3846 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3847 unsigned Depth) { 3848 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3849 // mode. Just process that directly. 3850 if (Scale == 1) 3851 return matchAddr(ScaleReg, Depth); 3852 3853 // If the scale is 0, it takes nothing to add this. 3854 if (Scale == 0) 3855 return true; 3856 3857 // If we already have a scale of this value, we can add to it, otherwise, we 3858 // need an available scale field. 3859 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3860 return false; 3861 3862 ExtAddrMode TestAddrMode = AddrMode; 3863 3864 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3865 // [A+B + A*7] -> [B+A*8]. 3866 TestAddrMode.Scale += Scale; 3867 TestAddrMode.ScaledReg = ScaleReg; 3868 3869 // If the new address isn't legal, bail out. 3870 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3871 return false; 3872 3873 // It was legal, so commit it. 3874 AddrMode = TestAddrMode; 3875 3876 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3877 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3878 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3879 // go any further: we can reuse it and cannot eliminate it. 3880 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3881 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3882 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3883 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3884 TestAddrMode.InBounds = false; 3885 TestAddrMode.ScaledReg = AddLHS; 3886 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3887 3888 // If this addressing mode is legal, commit it and remember that we folded 3889 // this instruction. 3890 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3891 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3892 AddrMode = TestAddrMode; 3893 return true; 3894 } 3895 // Restore status quo. 3896 TestAddrMode = AddrMode; 3897 } 3898 3899 // If this is an add recurrence with a constant step, return the increment 3900 // instruction and the canonicalized step. 3901 auto GetConstantStep = [this](const Value * V) 3902 ->Optional<std::pair<Instruction *, APInt> > { 3903 auto *PN = dyn_cast<PHINode>(V); 3904 if (!PN) 3905 return None; 3906 auto IVInc = getIVIncrement(PN, &LI); 3907 if (!IVInc) 3908 return None; 3909 // TODO: The result of the intrinsics above is two-compliment. However when 3910 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3911 // If it has nuw or nsw flags, we need to make sure that these flags are 3912 // inferrable at the point of memory instruction. Otherwise we are replacing 3913 // well-defined two-compliment computation with poison. Currently, to avoid 3914 // potentially complex analysis needed to prove this, we reject such cases. 3915 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3916 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3917 return None; 3918 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3919 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3920 return None; 3921 }; 3922 3923 // Try to account for the following special case: 3924 // 1. ScaleReg is an inductive variable; 3925 // 2. We use it with non-zero offset; 3926 // 3. IV's increment is available at the point of memory instruction. 3927 // 3928 // In this case, we may reuse the IV increment instead of the IV Phi to 3929 // achieve the following advantages: 3930 // 1. If IV step matches the offset, we will have no need in the offset; 3931 // 2. Even if they don't match, we will reduce the overlap of living IV 3932 // and IV increment, that will potentially lead to better register 3933 // assignment. 3934 if (AddrMode.BaseOffs) { 3935 if (auto IVStep = GetConstantStep(ScaleReg)) { 3936 Instruction *IVInc = IVStep->first; 3937 // The following assert is important to ensure a lack of infinite loops. 3938 // This transforms is (intentionally) the inverse of the one just above. 3939 // If they don't agree on the definition of an increment, we'd alternate 3940 // back and forth indefinitely. 3941 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3942 APInt Step = IVStep->second; 3943 APInt Offset = Step * AddrMode.Scale; 3944 if (Offset.isSignedIntN(64)) { 3945 TestAddrMode.InBounds = false; 3946 TestAddrMode.ScaledReg = IVInc; 3947 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3948 // If this addressing mode is legal, commit it.. 3949 // (Note that we defer the (expensive) domtree base legality check 3950 // to the very last possible point.) 3951 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3952 getDTFn().dominates(IVInc, MemoryInst)) { 3953 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3954 AddrMode = TestAddrMode; 3955 return true; 3956 } 3957 // Restore status quo. 3958 TestAddrMode = AddrMode; 3959 } 3960 } 3961 } 3962 3963 // Otherwise, just return what we have. 3964 return true; 3965 } 3966 3967 /// This is a little filter, which returns true if an addressing computation 3968 /// involving I might be folded into a load/store accessing it. 3969 /// This doesn't need to be perfect, but needs to accept at least 3970 /// the set of instructions that MatchOperationAddr can. 3971 static bool MightBeFoldableInst(Instruction *I) { 3972 switch (I->getOpcode()) { 3973 case Instruction::BitCast: 3974 case Instruction::AddrSpaceCast: 3975 // Don't touch identity bitcasts. 3976 if (I->getType() == I->getOperand(0)->getType()) 3977 return false; 3978 return I->getType()->isIntOrPtrTy(); 3979 case Instruction::PtrToInt: 3980 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3981 return true; 3982 case Instruction::IntToPtr: 3983 // We know the input is intptr_t, so this is foldable. 3984 return true; 3985 case Instruction::Add: 3986 return true; 3987 case Instruction::Mul: 3988 case Instruction::Shl: 3989 // Can only handle X*C and X << C. 3990 return isa<ConstantInt>(I->getOperand(1)); 3991 case Instruction::GetElementPtr: 3992 return true; 3993 default: 3994 return false; 3995 } 3996 } 3997 3998 /// Check whether or not \p Val is a legal instruction for \p TLI. 3999 /// \note \p Val is assumed to be the product of some type promotion. 4000 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4001 /// to be legal, as the non-promoted value would have had the same state. 4002 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4003 const DataLayout &DL, Value *Val) { 4004 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4005 if (!PromotedInst) 4006 return false; 4007 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4008 // If the ISDOpcode is undefined, it was undefined before the promotion. 4009 if (!ISDOpcode) 4010 return true; 4011 // Otherwise, check if the promoted instruction is legal or not. 4012 return TLI.isOperationLegalOrCustom( 4013 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4014 } 4015 4016 namespace { 4017 4018 /// Hepler class to perform type promotion. 4019 class TypePromotionHelper { 4020 /// Utility function to add a promoted instruction \p ExtOpnd to 4021 /// \p PromotedInsts and record the type of extension we have seen. 4022 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4023 Instruction *ExtOpnd, 4024 bool IsSExt) { 4025 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4026 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4027 if (It != PromotedInsts.end()) { 4028 // If the new extension is same as original, the information in 4029 // PromotedInsts[ExtOpnd] is still correct. 4030 if (It->second.getInt() == ExtTy) 4031 return; 4032 4033 // Now the new extension is different from old extension, we make 4034 // the type information invalid by setting extension type to 4035 // BothExtension. 4036 ExtTy = BothExtension; 4037 } 4038 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4039 } 4040 4041 /// Utility function to query the original type of instruction \p Opnd 4042 /// with a matched extension type. If the extension doesn't match, we 4043 /// cannot use the information we had on the original type. 4044 /// BothExtension doesn't match any extension type. 4045 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4046 Instruction *Opnd, 4047 bool IsSExt) { 4048 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4049 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4050 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4051 return It->second.getPointer(); 4052 return nullptr; 4053 } 4054 4055 /// Utility function to check whether or not a sign or zero extension 4056 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4057 /// either using the operands of \p Inst or promoting \p Inst. 4058 /// The type of the extension is defined by \p IsSExt. 4059 /// In other words, check if: 4060 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4061 /// #1 Promotion applies: 4062 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4063 /// #2 Operand reuses: 4064 /// ext opnd1 to ConsideredExtType. 4065 /// \p PromotedInsts maps the instructions to their type before promotion. 4066 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4067 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4068 4069 /// Utility function to determine if \p OpIdx should be promoted when 4070 /// promoting \p Inst. 4071 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4072 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4073 } 4074 4075 /// Utility function to promote the operand of \p Ext when this 4076 /// operand is a promotable trunc or sext or zext. 4077 /// \p PromotedInsts maps the instructions to their type before promotion. 4078 /// \p CreatedInstsCost[out] contains the cost of all instructions 4079 /// created to promote the operand of Ext. 4080 /// Newly added extensions are inserted in \p Exts. 4081 /// Newly added truncates are inserted in \p Truncs. 4082 /// Should never be called directly. 4083 /// \return The promoted value which is used instead of Ext. 4084 static Value *promoteOperandForTruncAndAnyExt( 4085 Instruction *Ext, TypePromotionTransaction &TPT, 4086 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4087 SmallVectorImpl<Instruction *> *Exts, 4088 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4089 4090 /// Utility function to promote the operand of \p Ext when this 4091 /// operand is promotable and is not a supported trunc or sext. 4092 /// \p PromotedInsts maps the instructions to their type before promotion. 4093 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4094 /// created to promote the operand of Ext. 4095 /// Newly added extensions are inserted in \p Exts. 4096 /// Newly added truncates are inserted in \p Truncs. 4097 /// Should never be called directly. 4098 /// \return The promoted value which is used instead of Ext. 4099 static Value *promoteOperandForOther(Instruction *Ext, 4100 TypePromotionTransaction &TPT, 4101 InstrToOrigTy &PromotedInsts, 4102 unsigned &CreatedInstsCost, 4103 SmallVectorImpl<Instruction *> *Exts, 4104 SmallVectorImpl<Instruction *> *Truncs, 4105 const TargetLowering &TLI, bool IsSExt); 4106 4107 /// \see promoteOperandForOther. 4108 static Value *signExtendOperandForOther( 4109 Instruction *Ext, TypePromotionTransaction &TPT, 4110 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4111 SmallVectorImpl<Instruction *> *Exts, 4112 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4113 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4114 Exts, Truncs, TLI, true); 4115 } 4116 4117 /// \see promoteOperandForOther. 4118 static Value *zeroExtendOperandForOther( 4119 Instruction *Ext, TypePromotionTransaction &TPT, 4120 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4121 SmallVectorImpl<Instruction *> *Exts, 4122 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4123 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4124 Exts, Truncs, TLI, false); 4125 } 4126 4127 public: 4128 /// Type for the utility function that promotes the operand of Ext. 4129 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4130 InstrToOrigTy &PromotedInsts, 4131 unsigned &CreatedInstsCost, 4132 SmallVectorImpl<Instruction *> *Exts, 4133 SmallVectorImpl<Instruction *> *Truncs, 4134 const TargetLowering &TLI); 4135 4136 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4137 /// action to promote the operand of \p Ext instead of using Ext. 4138 /// \return NULL if no promotable action is possible with the current 4139 /// sign extension. 4140 /// \p InsertedInsts keeps track of all the instructions inserted by the 4141 /// other CodeGenPrepare optimizations. This information is important 4142 /// because we do not want to promote these instructions as CodeGenPrepare 4143 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4144 /// \p PromotedInsts maps the instructions to their type before promotion. 4145 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4146 const TargetLowering &TLI, 4147 const InstrToOrigTy &PromotedInsts); 4148 }; 4149 4150 } // end anonymous namespace 4151 4152 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4153 Type *ConsideredExtType, 4154 const InstrToOrigTy &PromotedInsts, 4155 bool IsSExt) { 4156 // The promotion helper does not know how to deal with vector types yet. 4157 // To be able to fix that, we would need to fix the places where we 4158 // statically extend, e.g., constants and such. 4159 if (Inst->getType()->isVectorTy()) 4160 return false; 4161 4162 // We can always get through zext. 4163 if (isa<ZExtInst>(Inst)) 4164 return true; 4165 4166 // sext(sext) is ok too. 4167 if (IsSExt && isa<SExtInst>(Inst)) 4168 return true; 4169 4170 // We can get through binary operator, if it is legal. In other words, the 4171 // binary operator must have a nuw or nsw flag. 4172 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4173 if (isa<OverflowingBinaryOperator>(BinOp) && 4174 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4175 (IsSExt && BinOp->hasNoSignedWrap()))) 4176 return true; 4177 4178 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4179 if ((Inst->getOpcode() == Instruction::And || 4180 Inst->getOpcode() == Instruction::Or)) 4181 return true; 4182 4183 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4184 if (Inst->getOpcode() == Instruction::Xor) { 4185 // Make sure it is not a NOT. 4186 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4187 if (!Cst->getValue().isAllOnes()) 4188 return true; 4189 } 4190 4191 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4192 // It may change a poisoned value into a regular value, like 4193 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4194 // poisoned value regular value 4195 // It should be OK since undef covers valid value. 4196 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4197 return true; 4198 4199 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4200 // It may change a poisoned value into a regular value, like 4201 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4202 // poisoned value regular value 4203 // It should be OK since undef covers valid value. 4204 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4205 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4206 if (ExtInst->hasOneUse()) { 4207 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4208 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4209 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4210 if (Cst && 4211 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4212 return true; 4213 } 4214 } 4215 } 4216 4217 // Check if we can do the following simplification. 4218 // ext(trunc(opnd)) --> ext(opnd) 4219 if (!isa<TruncInst>(Inst)) 4220 return false; 4221 4222 Value *OpndVal = Inst->getOperand(0); 4223 // Check if we can use this operand in the extension. 4224 // If the type is larger than the result type of the extension, we cannot. 4225 if (!OpndVal->getType()->isIntegerTy() || 4226 OpndVal->getType()->getIntegerBitWidth() > 4227 ConsideredExtType->getIntegerBitWidth()) 4228 return false; 4229 4230 // If the operand of the truncate is not an instruction, we will not have 4231 // any information on the dropped bits. 4232 // (Actually we could for constant but it is not worth the extra logic). 4233 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4234 if (!Opnd) 4235 return false; 4236 4237 // Check if the source of the type is narrow enough. 4238 // I.e., check that trunc just drops extended bits of the same kind of 4239 // the extension. 4240 // #1 get the type of the operand and check the kind of the extended bits. 4241 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4242 if (OpndType) 4243 ; 4244 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4245 OpndType = Opnd->getOperand(0)->getType(); 4246 else 4247 return false; 4248 4249 // #2 check that the truncate just drops extended bits. 4250 return Inst->getType()->getIntegerBitWidth() >= 4251 OpndType->getIntegerBitWidth(); 4252 } 4253 4254 TypePromotionHelper::Action TypePromotionHelper::getAction( 4255 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4256 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4257 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4258 "Unexpected instruction type"); 4259 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4260 Type *ExtTy = Ext->getType(); 4261 bool IsSExt = isa<SExtInst>(Ext); 4262 // If the operand of the extension is not an instruction, we cannot 4263 // get through. 4264 // If it, check we can get through. 4265 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4266 return nullptr; 4267 4268 // Do not promote if the operand has been added by codegenprepare. 4269 // Otherwise, it means we are undoing an optimization that is likely to be 4270 // redone, thus causing potential infinite loop. 4271 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4272 return nullptr; 4273 4274 // SExt or Trunc instructions. 4275 // Return the related handler. 4276 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4277 isa<ZExtInst>(ExtOpnd)) 4278 return promoteOperandForTruncAndAnyExt; 4279 4280 // Regular instruction. 4281 // Abort early if we will have to insert non-free instructions. 4282 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4283 return nullptr; 4284 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4285 } 4286 4287 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4288 Instruction *SExt, TypePromotionTransaction &TPT, 4289 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4290 SmallVectorImpl<Instruction *> *Exts, 4291 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4292 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4293 // get through it and this method should not be called. 4294 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4295 Value *ExtVal = SExt; 4296 bool HasMergedNonFreeExt = false; 4297 if (isa<ZExtInst>(SExtOpnd)) { 4298 // Replace s|zext(zext(opnd)) 4299 // => zext(opnd). 4300 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4301 Value *ZExt = 4302 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4303 TPT.replaceAllUsesWith(SExt, ZExt); 4304 TPT.eraseInstruction(SExt); 4305 ExtVal = ZExt; 4306 } else { 4307 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4308 // => z|sext(opnd). 4309 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4310 } 4311 CreatedInstsCost = 0; 4312 4313 // Remove dead code. 4314 if (SExtOpnd->use_empty()) 4315 TPT.eraseInstruction(SExtOpnd); 4316 4317 // Check if the extension is still needed. 4318 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4319 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4320 if (ExtInst) { 4321 if (Exts) 4322 Exts->push_back(ExtInst); 4323 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4324 } 4325 return ExtVal; 4326 } 4327 4328 // At this point we have: ext ty opnd to ty. 4329 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4330 Value *NextVal = ExtInst->getOperand(0); 4331 TPT.eraseInstruction(ExtInst, NextVal); 4332 return NextVal; 4333 } 4334 4335 Value *TypePromotionHelper::promoteOperandForOther( 4336 Instruction *Ext, TypePromotionTransaction &TPT, 4337 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4338 SmallVectorImpl<Instruction *> *Exts, 4339 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4340 bool IsSExt) { 4341 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4342 // get through it and this method should not be called. 4343 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4344 CreatedInstsCost = 0; 4345 if (!ExtOpnd->hasOneUse()) { 4346 // ExtOpnd will be promoted. 4347 // All its uses, but Ext, will need to use a truncated value of the 4348 // promoted version. 4349 // Create the truncate now. 4350 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4351 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4352 // Insert it just after the definition. 4353 ITrunc->moveAfter(ExtOpnd); 4354 if (Truncs) 4355 Truncs->push_back(ITrunc); 4356 } 4357 4358 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4359 // Restore the operand of Ext (which has been replaced by the previous call 4360 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4361 TPT.setOperand(Ext, 0, ExtOpnd); 4362 } 4363 4364 // Get through the Instruction: 4365 // 1. Update its type. 4366 // 2. Replace the uses of Ext by Inst. 4367 // 3. Extend each operand that needs to be extended. 4368 4369 // Remember the original type of the instruction before promotion. 4370 // This is useful to know that the high bits are sign extended bits. 4371 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4372 // Step #1. 4373 TPT.mutateType(ExtOpnd, Ext->getType()); 4374 // Step #2. 4375 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4376 // Step #3. 4377 Instruction *ExtForOpnd = Ext; 4378 4379 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4380 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4381 ++OpIdx) { 4382 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4383 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4384 !shouldExtOperand(ExtOpnd, OpIdx)) { 4385 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4386 continue; 4387 } 4388 // Check if we can statically extend the operand. 4389 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4390 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4391 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4392 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4393 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4394 : Cst->getValue().zext(BitWidth); 4395 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4396 continue; 4397 } 4398 // UndefValue are typed, so we have to statically sign extend them. 4399 if (isa<UndefValue>(Opnd)) { 4400 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4401 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4402 continue; 4403 } 4404 4405 // Otherwise we have to explicitly sign extend the operand. 4406 // Check if Ext was reused to extend an operand. 4407 if (!ExtForOpnd) { 4408 // If yes, create a new one. 4409 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4410 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4411 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4412 if (!isa<Instruction>(ValForExtOpnd)) { 4413 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4414 continue; 4415 } 4416 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4417 } 4418 if (Exts) 4419 Exts->push_back(ExtForOpnd); 4420 TPT.setOperand(ExtForOpnd, 0, Opnd); 4421 4422 // Move the sign extension before the insertion point. 4423 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4424 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4425 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4426 // If more sext are required, new instructions will have to be created. 4427 ExtForOpnd = nullptr; 4428 } 4429 if (ExtForOpnd == Ext) { 4430 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4431 TPT.eraseInstruction(Ext); 4432 } 4433 return ExtOpnd; 4434 } 4435 4436 /// Check whether or not promoting an instruction to a wider type is profitable. 4437 /// \p NewCost gives the cost of extension instructions created by the 4438 /// promotion. 4439 /// \p OldCost gives the cost of extension instructions before the promotion 4440 /// plus the number of instructions that have been 4441 /// matched in the addressing mode the promotion. 4442 /// \p PromotedOperand is the value that has been promoted. 4443 /// \return True if the promotion is profitable, false otherwise. 4444 bool AddressingModeMatcher::isPromotionProfitable( 4445 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4446 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4447 << '\n'); 4448 // The cost of the new extensions is greater than the cost of the 4449 // old extension plus what we folded. 4450 // This is not profitable. 4451 if (NewCost > OldCost) 4452 return false; 4453 if (NewCost < OldCost) 4454 return true; 4455 // The promotion is neutral but it may help folding the sign extension in 4456 // loads for instance. 4457 // Check that we did not create an illegal instruction. 4458 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4459 } 4460 4461 /// Given an instruction or constant expr, see if we can fold the operation 4462 /// into the addressing mode. If so, update the addressing mode and return 4463 /// true, otherwise return false without modifying AddrMode. 4464 /// If \p MovedAway is not NULL, it contains the information of whether or 4465 /// not AddrInst has to be folded into the addressing mode on success. 4466 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4467 /// because it has been moved away. 4468 /// Thus AddrInst must not be added in the matched instructions. 4469 /// This state can happen when AddrInst is a sext, since it may be moved away. 4470 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4471 /// not be referenced anymore. 4472 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4473 unsigned Depth, 4474 bool *MovedAway) { 4475 // Avoid exponential behavior on extremely deep expression trees. 4476 if (Depth >= 5) return false; 4477 4478 // By default, all matched instructions stay in place. 4479 if (MovedAway) 4480 *MovedAway = false; 4481 4482 switch (Opcode) { 4483 case Instruction::PtrToInt: 4484 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4485 return matchAddr(AddrInst->getOperand(0), Depth); 4486 case Instruction::IntToPtr: { 4487 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4488 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4489 // This inttoptr is a no-op if the integer type is pointer sized. 4490 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4491 return matchAddr(AddrInst->getOperand(0), Depth); 4492 return false; 4493 } 4494 case Instruction::BitCast: 4495 // BitCast is always a noop, and we can handle it as long as it is 4496 // int->int or pointer->pointer (we don't want int<->fp or something). 4497 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4498 // Don't touch identity bitcasts. These were probably put here by LSR, 4499 // and we don't want to mess around with them. Assume it knows what it 4500 // is doing. 4501 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4502 return matchAddr(AddrInst->getOperand(0), Depth); 4503 return false; 4504 case Instruction::AddrSpaceCast: { 4505 unsigned SrcAS 4506 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4507 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4508 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4509 return matchAddr(AddrInst->getOperand(0), Depth); 4510 return false; 4511 } 4512 case Instruction::Add: { 4513 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4514 ExtAddrMode BackupAddrMode = AddrMode; 4515 unsigned OldSize = AddrModeInsts.size(); 4516 // Start a transaction at this point. 4517 // The LHS may match but not the RHS. 4518 // Therefore, we need a higher level restoration point to undo partially 4519 // matched operation. 4520 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4521 TPT.getRestorationPoint(); 4522 4523 AddrMode.InBounds = false; 4524 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4525 matchAddr(AddrInst->getOperand(0), Depth+1)) 4526 return true; 4527 4528 // Restore the old addr mode info. 4529 AddrMode = BackupAddrMode; 4530 AddrModeInsts.resize(OldSize); 4531 TPT.rollback(LastKnownGood); 4532 4533 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4534 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4535 matchAddr(AddrInst->getOperand(1), Depth+1)) 4536 return true; 4537 4538 // Otherwise we definitely can't merge the ADD in. 4539 AddrMode = BackupAddrMode; 4540 AddrModeInsts.resize(OldSize); 4541 TPT.rollback(LastKnownGood); 4542 break; 4543 } 4544 //case Instruction::Or: 4545 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4546 //break; 4547 case Instruction::Mul: 4548 case Instruction::Shl: { 4549 // Can only handle X*C and X << C. 4550 AddrMode.InBounds = false; 4551 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4552 if (!RHS || RHS->getBitWidth() > 64) 4553 return false; 4554 int64_t Scale = Opcode == Instruction::Shl 4555 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4556 : RHS->getSExtValue(); 4557 4558 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4559 } 4560 case Instruction::GetElementPtr: { 4561 // Scan the GEP. We check it if it contains constant offsets and at most 4562 // one variable offset. 4563 int VariableOperand = -1; 4564 unsigned VariableScale = 0; 4565 4566 int64_t ConstantOffset = 0; 4567 gep_type_iterator GTI = gep_type_begin(AddrInst); 4568 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4569 if (StructType *STy = GTI.getStructTypeOrNull()) { 4570 const StructLayout *SL = DL.getStructLayout(STy); 4571 unsigned Idx = 4572 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4573 ConstantOffset += SL->getElementOffset(Idx); 4574 } else { 4575 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4576 if (TS.isNonZero()) { 4577 // The optimisations below currently only work for fixed offsets. 4578 if (TS.isScalable()) 4579 return false; 4580 int64_t TypeSize = TS.getFixedSize(); 4581 if (ConstantInt *CI = 4582 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4583 const APInt &CVal = CI->getValue(); 4584 if (CVal.getMinSignedBits() <= 64) { 4585 ConstantOffset += CVal.getSExtValue() * TypeSize; 4586 continue; 4587 } 4588 } 4589 // We only allow one variable index at the moment. 4590 if (VariableOperand != -1) 4591 return false; 4592 4593 // Remember the variable index. 4594 VariableOperand = i; 4595 VariableScale = TypeSize; 4596 } 4597 } 4598 } 4599 4600 // A common case is for the GEP to only do a constant offset. In this case, 4601 // just add it to the disp field and check validity. 4602 if (VariableOperand == -1) { 4603 AddrMode.BaseOffs += ConstantOffset; 4604 if (ConstantOffset == 0 || 4605 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4606 // Check to see if we can fold the base pointer in too. 4607 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4608 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4609 AddrMode.InBounds = false; 4610 return true; 4611 } 4612 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4613 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4614 ConstantOffset > 0) { 4615 // Record GEPs with non-zero offsets as candidates for splitting in the 4616 // event that the offset cannot fit into the r+i addressing mode. 4617 // Simple and common case that only one GEP is used in calculating the 4618 // address for the memory access. 4619 Value *Base = AddrInst->getOperand(0); 4620 auto *BaseI = dyn_cast<Instruction>(Base); 4621 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4622 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4623 (BaseI && !isa<CastInst>(BaseI) && 4624 !isa<GetElementPtrInst>(BaseI))) { 4625 // Make sure the parent block allows inserting non-PHI instructions 4626 // before the terminator. 4627 BasicBlock *Parent = 4628 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4629 if (!Parent->getTerminator()->isEHPad()) 4630 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4631 } 4632 } 4633 AddrMode.BaseOffs -= ConstantOffset; 4634 return false; 4635 } 4636 4637 // Save the valid addressing mode in case we can't match. 4638 ExtAddrMode BackupAddrMode = AddrMode; 4639 unsigned OldSize = AddrModeInsts.size(); 4640 4641 // See if the scale and offset amount is valid for this target. 4642 AddrMode.BaseOffs += ConstantOffset; 4643 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4644 AddrMode.InBounds = false; 4645 4646 // Match the base operand of the GEP. 4647 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4648 // If it couldn't be matched, just stuff the value in a register. 4649 if (AddrMode.HasBaseReg) { 4650 AddrMode = BackupAddrMode; 4651 AddrModeInsts.resize(OldSize); 4652 return false; 4653 } 4654 AddrMode.HasBaseReg = true; 4655 AddrMode.BaseReg = AddrInst->getOperand(0); 4656 } 4657 4658 // Match the remaining variable portion of the GEP. 4659 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4660 Depth)) { 4661 // If it couldn't be matched, try stuffing the base into a register 4662 // instead of matching it, and retrying the match of the scale. 4663 AddrMode = BackupAddrMode; 4664 AddrModeInsts.resize(OldSize); 4665 if (AddrMode.HasBaseReg) 4666 return false; 4667 AddrMode.HasBaseReg = true; 4668 AddrMode.BaseReg = AddrInst->getOperand(0); 4669 AddrMode.BaseOffs += ConstantOffset; 4670 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4671 VariableScale, Depth)) { 4672 // If even that didn't work, bail. 4673 AddrMode = BackupAddrMode; 4674 AddrModeInsts.resize(OldSize); 4675 return false; 4676 } 4677 } 4678 4679 return true; 4680 } 4681 case Instruction::SExt: 4682 case Instruction::ZExt: { 4683 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4684 if (!Ext) 4685 return false; 4686 4687 // Try to move this ext out of the way of the addressing mode. 4688 // Ask for a method for doing so. 4689 TypePromotionHelper::Action TPH = 4690 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4691 if (!TPH) 4692 return false; 4693 4694 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4695 TPT.getRestorationPoint(); 4696 unsigned CreatedInstsCost = 0; 4697 unsigned ExtCost = !TLI.isExtFree(Ext); 4698 Value *PromotedOperand = 4699 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4700 // SExt has been moved away. 4701 // Thus either it will be rematched later in the recursive calls or it is 4702 // gone. Anyway, we must not fold it into the addressing mode at this point. 4703 // E.g., 4704 // op = add opnd, 1 4705 // idx = ext op 4706 // addr = gep base, idx 4707 // is now: 4708 // promotedOpnd = ext opnd <- no match here 4709 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4710 // addr = gep base, op <- match 4711 if (MovedAway) 4712 *MovedAway = true; 4713 4714 assert(PromotedOperand && 4715 "TypePromotionHelper should have filtered out those cases"); 4716 4717 ExtAddrMode BackupAddrMode = AddrMode; 4718 unsigned OldSize = AddrModeInsts.size(); 4719 4720 if (!matchAddr(PromotedOperand, Depth) || 4721 // The total of the new cost is equal to the cost of the created 4722 // instructions. 4723 // The total of the old cost is equal to the cost of the extension plus 4724 // what we have saved in the addressing mode. 4725 !isPromotionProfitable(CreatedInstsCost, 4726 ExtCost + (AddrModeInsts.size() - OldSize), 4727 PromotedOperand)) { 4728 AddrMode = BackupAddrMode; 4729 AddrModeInsts.resize(OldSize); 4730 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4731 TPT.rollback(LastKnownGood); 4732 return false; 4733 } 4734 return true; 4735 } 4736 } 4737 return false; 4738 } 4739 4740 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4741 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4742 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4743 /// for the target. 4744 /// 4745 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4746 // Start a transaction at this point that we will rollback if the matching 4747 // fails. 4748 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4749 TPT.getRestorationPoint(); 4750 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4751 if (CI->getValue().isSignedIntN(64)) { 4752 // Fold in immediates if legal for the target. 4753 AddrMode.BaseOffs += CI->getSExtValue(); 4754 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4755 return true; 4756 AddrMode.BaseOffs -= CI->getSExtValue(); 4757 } 4758 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4759 // If this is a global variable, try to fold it into the addressing mode. 4760 if (!AddrMode.BaseGV) { 4761 AddrMode.BaseGV = GV; 4762 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4763 return true; 4764 AddrMode.BaseGV = nullptr; 4765 } 4766 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4767 ExtAddrMode BackupAddrMode = AddrMode; 4768 unsigned OldSize = AddrModeInsts.size(); 4769 4770 // Check to see if it is possible to fold this operation. 4771 bool MovedAway = false; 4772 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4773 // This instruction may have been moved away. If so, there is nothing 4774 // to check here. 4775 if (MovedAway) 4776 return true; 4777 // Okay, it's possible to fold this. Check to see if it is actually 4778 // *profitable* to do so. We use a simple cost model to avoid increasing 4779 // register pressure too much. 4780 if (I->hasOneUse() || 4781 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4782 AddrModeInsts.push_back(I); 4783 return true; 4784 } 4785 4786 // It isn't profitable to do this, roll back. 4787 //cerr << "NOT FOLDING: " << *I; 4788 AddrMode = BackupAddrMode; 4789 AddrModeInsts.resize(OldSize); 4790 TPT.rollback(LastKnownGood); 4791 } 4792 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4793 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4794 return true; 4795 TPT.rollback(LastKnownGood); 4796 } else if (isa<ConstantPointerNull>(Addr)) { 4797 // Null pointer gets folded without affecting the addressing mode. 4798 return true; 4799 } 4800 4801 // Worse case, the target should support [reg] addressing modes. :) 4802 if (!AddrMode.HasBaseReg) { 4803 AddrMode.HasBaseReg = true; 4804 AddrMode.BaseReg = Addr; 4805 // Still check for legality in case the target supports [imm] but not [i+r]. 4806 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4807 return true; 4808 AddrMode.HasBaseReg = false; 4809 AddrMode.BaseReg = nullptr; 4810 } 4811 4812 // If the base register is already taken, see if we can do [r+r]. 4813 if (AddrMode.Scale == 0) { 4814 AddrMode.Scale = 1; 4815 AddrMode.ScaledReg = Addr; 4816 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4817 return true; 4818 AddrMode.Scale = 0; 4819 AddrMode.ScaledReg = nullptr; 4820 } 4821 // Couldn't match. 4822 TPT.rollback(LastKnownGood); 4823 return false; 4824 } 4825 4826 /// Check to see if all uses of OpVal by the specified inline asm call are due 4827 /// to memory operands. If so, return true, otherwise return false. 4828 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4829 const TargetLowering &TLI, 4830 const TargetRegisterInfo &TRI) { 4831 const Function *F = CI->getFunction(); 4832 TargetLowering::AsmOperandInfoVector TargetConstraints = 4833 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4834 4835 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4836 // Compute the constraint code and ConstraintType to use. 4837 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4838 4839 // If this asm operand is our Value*, and if it isn't an indirect memory 4840 // operand, we can't fold it! 4841 if (OpInfo.CallOperandVal == OpVal && 4842 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4843 !OpInfo.isIndirect)) 4844 return false; 4845 } 4846 4847 return true; 4848 } 4849 4850 // Max number of memory uses to look at before aborting the search to conserve 4851 // compile time. 4852 static constexpr int MaxMemoryUsesToScan = 20; 4853 4854 /// Recursively walk all the uses of I until we find a memory use. 4855 /// If we find an obviously non-foldable instruction, return true. 4856 /// Add accessed addresses and types to MemoryUses. 4857 static bool FindAllMemoryUses( 4858 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4859 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4860 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4861 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4862 // If we already considered this instruction, we're done. 4863 if (!ConsideredInsts.insert(I).second) 4864 return false; 4865 4866 // If this is an obviously unfoldable instruction, bail out. 4867 if (!MightBeFoldableInst(I)) 4868 return true; 4869 4870 // Loop over all the uses, recursively processing them. 4871 for (Use &U : I->uses()) { 4872 // Conservatively return true if we're seeing a large number or a deep chain 4873 // of users. This avoids excessive compilation times in pathological cases. 4874 if (SeenInsts++ >= MaxMemoryUsesToScan) 4875 return true; 4876 4877 Instruction *UserI = cast<Instruction>(U.getUser()); 4878 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4879 MemoryUses.push_back({U.get(), LI->getType()}); 4880 continue; 4881 } 4882 4883 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4884 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4885 return true; // Storing addr, not into addr. 4886 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4887 continue; 4888 } 4889 4890 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4891 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4892 return true; // Storing addr, not into addr. 4893 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4894 continue; 4895 } 4896 4897 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4898 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4899 return true; // Storing addr, not into addr. 4900 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4901 continue; 4902 } 4903 4904 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4905 if (CI->hasFnAttr(Attribute::Cold)) { 4906 // If this is a cold call, we can sink the addressing calculation into 4907 // the cold path. See optimizeCallInst 4908 bool OptForSize = OptSize || 4909 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4910 if (!OptForSize) 4911 continue; 4912 } 4913 4914 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4915 if (!IA) return true; 4916 4917 // If this is a memory operand, we're cool, otherwise bail out. 4918 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4919 return true; 4920 continue; 4921 } 4922 4923 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4924 PSI, BFI, SeenInsts)) 4925 return true; 4926 } 4927 4928 return false; 4929 } 4930 4931 /// Return true if Val is already known to be live at the use site that we're 4932 /// folding it into. If so, there is no cost to include it in the addressing 4933 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4934 /// instruction already. 4935 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4936 Value *KnownLive2) { 4937 // If Val is either of the known-live values, we know it is live! 4938 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4939 return true; 4940 4941 // All values other than instructions and arguments (e.g. constants) are live. 4942 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4943 4944 // If Val is a constant sized alloca in the entry block, it is live, this is 4945 // true because it is just a reference to the stack/frame pointer, which is 4946 // live for the whole function. 4947 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4948 if (AI->isStaticAlloca()) 4949 return true; 4950 4951 // Check to see if this value is already used in the memory instruction's 4952 // block. If so, it's already live into the block at the very least, so we 4953 // can reasonably fold it. 4954 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4955 } 4956 4957 /// It is possible for the addressing mode of the machine to fold the specified 4958 /// instruction into a load or store that ultimately uses it. 4959 /// However, the specified instruction has multiple uses. 4960 /// Given this, it may actually increase register pressure to fold it 4961 /// into the load. For example, consider this code: 4962 /// 4963 /// X = ... 4964 /// Y = X+1 4965 /// use(Y) -> nonload/store 4966 /// Z = Y+1 4967 /// load Z 4968 /// 4969 /// In this case, Y has multiple uses, and can be folded into the load of Z 4970 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4971 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4972 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4973 /// number of computations either. 4974 /// 4975 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4976 /// X was live across 'load Z' for other reasons, we actually *would* want to 4977 /// fold the addressing mode in the Z case. This would make Y die earlier. 4978 bool AddressingModeMatcher:: 4979 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4980 ExtAddrMode &AMAfter) { 4981 if (IgnoreProfitability) return true; 4982 4983 // AMBefore is the addressing mode before this instruction was folded into it, 4984 // and AMAfter is the addressing mode after the instruction was folded. Get 4985 // the set of registers referenced by AMAfter and subtract out those 4986 // referenced by AMBefore: this is the set of values which folding in this 4987 // address extends the lifetime of. 4988 // 4989 // Note that there are only two potential values being referenced here, 4990 // BaseReg and ScaleReg (global addresses are always available, as are any 4991 // folded immediates). 4992 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4993 4994 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4995 // lifetime wasn't extended by adding this instruction. 4996 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4997 BaseReg = nullptr; 4998 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4999 ScaledReg = nullptr; 5000 5001 // If folding this instruction (and it's subexprs) didn't extend any live 5002 // ranges, we're ok with it. 5003 if (!BaseReg && !ScaledReg) 5004 return true; 5005 5006 // If all uses of this instruction can have the address mode sunk into them, 5007 // we can remove the addressing mode and effectively trade one live register 5008 // for another (at worst.) In this context, folding an addressing mode into 5009 // the use is just a particularly nice way of sinking it. 5010 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5011 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5012 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5013 PSI, BFI)) 5014 return false; // Has a non-memory, non-foldable use! 5015 5016 // Now that we know that all uses of this instruction are part of a chain of 5017 // computation involving only operations that could theoretically be folded 5018 // into a memory use, loop over each of these memory operation uses and see 5019 // if they could *actually* fold the instruction. The assumption is that 5020 // addressing modes are cheap and that duplicating the computation involved 5021 // many times is worthwhile, even on a fastpath. For sinking candidates 5022 // (i.e. cold call sites), this serves as a way to prevent excessive code 5023 // growth since most architectures have some reasonable small and fast way to 5024 // compute an effective address. (i.e LEA on x86) 5025 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5026 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5027 Value *Address = Pair.first; 5028 Type *AddressAccessTy = Pair.second; 5029 unsigned AS = Address->getType()->getPointerAddressSpace(); 5030 5031 // Do a match against the root of this address, ignoring profitability. This 5032 // will tell us if the addressing mode for the memory operation will 5033 // *actually* cover the shared instruction. 5034 ExtAddrMode Result; 5035 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5036 0); 5037 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5038 TPT.getRestorationPoint(); 5039 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5040 AddressAccessTy, AS, MemoryInst, Result, 5041 InsertedInsts, PromotedInsts, TPT, 5042 LargeOffsetGEP, OptSize, PSI, BFI); 5043 Matcher.IgnoreProfitability = true; 5044 bool Success = Matcher.matchAddr(Address, 0); 5045 (void)Success; assert(Success && "Couldn't select *anything*?"); 5046 5047 // The match was to check the profitability, the changes made are not 5048 // part of the original matcher. Therefore, they should be dropped 5049 // otherwise the original matcher will not present the right state. 5050 TPT.rollback(LastKnownGood); 5051 5052 // If the match didn't cover I, then it won't be shared by it. 5053 if (!is_contained(MatchedAddrModeInsts, I)) 5054 return false; 5055 5056 MatchedAddrModeInsts.clear(); 5057 } 5058 5059 return true; 5060 } 5061 5062 /// Return true if the specified values are defined in a 5063 /// different basic block than BB. 5064 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5065 if (Instruction *I = dyn_cast<Instruction>(V)) 5066 return I->getParent() != BB; 5067 return false; 5068 } 5069 5070 /// Sink addressing mode computation immediate before MemoryInst if doing so 5071 /// can be done without increasing register pressure. The need for the 5072 /// register pressure constraint means this can end up being an all or nothing 5073 /// decision for all uses of the same addressing computation. 5074 /// 5075 /// Load and Store Instructions often have addressing modes that can do 5076 /// significant amounts of computation. As such, instruction selection will try 5077 /// to get the load or store to do as much computation as possible for the 5078 /// program. The problem is that isel can only see within a single block. As 5079 /// such, we sink as much legal addressing mode work into the block as possible. 5080 /// 5081 /// This method is used to optimize both load/store and inline asms with memory 5082 /// operands. It's also used to sink addressing computations feeding into cold 5083 /// call sites into their (cold) basic block. 5084 /// 5085 /// The motivation for handling sinking into cold blocks is that doing so can 5086 /// both enable other address mode sinking (by satisfying the register pressure 5087 /// constraint above), and reduce register pressure globally (by removing the 5088 /// addressing mode computation from the fast path entirely.). 5089 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5090 Type *AccessTy, unsigned AddrSpace) { 5091 Value *Repl = Addr; 5092 5093 // Try to collapse single-value PHI nodes. This is necessary to undo 5094 // unprofitable PRE transformations. 5095 SmallVector<Value*, 8> worklist; 5096 SmallPtrSet<Value*, 16> Visited; 5097 worklist.push_back(Addr); 5098 5099 // Use a worklist to iteratively look through PHI and select nodes, and 5100 // ensure that the addressing mode obtained from the non-PHI/select roots of 5101 // the graph are compatible. 5102 bool PhiOrSelectSeen = false; 5103 SmallVector<Instruction*, 16> AddrModeInsts; 5104 const SimplifyQuery SQ(*DL, TLInfo); 5105 AddressingModeCombiner AddrModes(SQ, Addr); 5106 TypePromotionTransaction TPT(RemovedInsts); 5107 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5108 TPT.getRestorationPoint(); 5109 while (!worklist.empty()) { 5110 Value *V = worklist.pop_back_val(); 5111 5112 // We allow traversing cyclic Phi nodes. 5113 // In case of success after this loop we ensure that traversing through 5114 // Phi nodes ends up with all cases to compute address of the form 5115 // BaseGV + Base + Scale * Index + Offset 5116 // where Scale and Offset are constans and BaseGV, Base and Index 5117 // are exactly the same Values in all cases. 5118 // It means that BaseGV, Scale and Offset dominate our memory instruction 5119 // and have the same value as they had in address computation represented 5120 // as Phi. So we can safely sink address computation to memory instruction. 5121 if (!Visited.insert(V).second) 5122 continue; 5123 5124 // For a PHI node, push all of its incoming values. 5125 if (PHINode *P = dyn_cast<PHINode>(V)) { 5126 append_range(worklist, P->incoming_values()); 5127 PhiOrSelectSeen = true; 5128 continue; 5129 } 5130 // Similar for select. 5131 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5132 worklist.push_back(SI->getFalseValue()); 5133 worklist.push_back(SI->getTrueValue()); 5134 PhiOrSelectSeen = true; 5135 continue; 5136 } 5137 5138 // For non-PHIs, determine the addressing mode being computed. Note that 5139 // the result may differ depending on what other uses our candidate 5140 // addressing instructions might have. 5141 AddrModeInsts.clear(); 5142 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5143 0); 5144 // Defer the query (and possible computation of) the dom tree to point of 5145 // actual use. It's expected that most address matches don't actually need 5146 // the domtree. 5147 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5148 Function *F = MemoryInst->getParent()->getParent(); 5149 return this->getDT(*F); 5150 }; 5151 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5152 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5153 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5154 BFI.get()); 5155 5156 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5157 if (GEP && !NewGEPBases.count(GEP)) { 5158 // If splitting the underlying data structure can reduce the offset of a 5159 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5160 // previously split data structures. 5161 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5162 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5163 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5164 } 5165 5166 NewAddrMode.OriginalValue = V; 5167 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5168 break; 5169 } 5170 5171 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5172 // or we have multiple but either couldn't combine them or combining them 5173 // wouldn't do anything useful, bail out now. 5174 if (!AddrModes.combineAddrModes()) { 5175 TPT.rollback(LastKnownGood); 5176 return false; 5177 } 5178 bool Modified = TPT.commit(); 5179 5180 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5181 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5182 5183 // If all the instructions matched are already in this BB, don't do anything. 5184 // If we saw a Phi node then it is not local definitely, and if we saw a select 5185 // then we want to push the address calculation past it even if it's already 5186 // in this BB. 5187 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5188 return IsNonLocalValue(V, MemoryInst->getParent()); 5189 })) { 5190 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5191 << "\n"); 5192 return Modified; 5193 } 5194 5195 // Insert this computation right after this user. Since our caller is 5196 // scanning from the top of the BB to the bottom, reuse of the expr are 5197 // guaranteed to happen later. 5198 IRBuilder<> Builder(MemoryInst); 5199 5200 // Now that we determined the addressing expression we want to use and know 5201 // that we have to sink it into this block. Check to see if we have already 5202 // done this for some other load/store instr in this block. If so, reuse 5203 // the computation. Before attempting reuse, check if the address is valid 5204 // as it may have been erased. 5205 5206 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5207 5208 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5209 if (SunkAddr) { 5210 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5211 << " for " << *MemoryInst << "\n"); 5212 if (SunkAddr->getType() != Addr->getType()) 5213 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5214 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5215 SubtargetInfo->addrSinkUsingGEPs())) { 5216 // By default, we use the GEP-based method when AA is used later. This 5217 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5218 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5219 << " for " << *MemoryInst << "\n"); 5220 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5221 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5222 5223 // First, find the pointer. 5224 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5225 ResultPtr = AddrMode.BaseReg; 5226 AddrMode.BaseReg = nullptr; 5227 } 5228 5229 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5230 // We can't add more than one pointer together, nor can we scale a 5231 // pointer (both of which seem meaningless). 5232 if (ResultPtr || AddrMode.Scale != 1) 5233 return Modified; 5234 5235 ResultPtr = AddrMode.ScaledReg; 5236 AddrMode.Scale = 0; 5237 } 5238 5239 // It is only safe to sign extend the BaseReg if we know that the math 5240 // required to create it did not overflow before we extend it. Since 5241 // the original IR value was tossed in favor of a constant back when 5242 // the AddrMode was created we need to bail out gracefully if widths 5243 // do not match instead of extending it. 5244 // 5245 // (See below for code to add the scale.) 5246 if (AddrMode.Scale) { 5247 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5248 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5249 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5250 return Modified; 5251 } 5252 5253 if (AddrMode.BaseGV) { 5254 if (ResultPtr) 5255 return Modified; 5256 5257 ResultPtr = AddrMode.BaseGV; 5258 } 5259 5260 // If the real base value actually came from an inttoptr, then the matcher 5261 // will look through it and provide only the integer value. In that case, 5262 // use it here. 5263 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5264 if (!ResultPtr && AddrMode.BaseReg) { 5265 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5266 "sunkaddr"); 5267 AddrMode.BaseReg = nullptr; 5268 } else if (!ResultPtr && AddrMode.Scale == 1) { 5269 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5270 "sunkaddr"); 5271 AddrMode.Scale = 0; 5272 } 5273 } 5274 5275 if (!ResultPtr && 5276 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5277 SunkAddr = Constant::getNullValue(Addr->getType()); 5278 } else if (!ResultPtr) { 5279 return Modified; 5280 } else { 5281 Type *I8PtrTy = 5282 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5283 Type *I8Ty = Builder.getInt8Ty(); 5284 5285 // Start with the base register. Do this first so that subsequent address 5286 // matching finds it last, which will prevent it from trying to match it 5287 // as the scaled value in case it happens to be a mul. That would be 5288 // problematic if we've sunk a different mul for the scale, because then 5289 // we'd end up sinking both muls. 5290 if (AddrMode.BaseReg) { 5291 Value *V = AddrMode.BaseReg; 5292 if (V->getType() != IntPtrTy) 5293 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5294 5295 ResultIndex = V; 5296 } 5297 5298 // Add the scale value. 5299 if (AddrMode.Scale) { 5300 Value *V = AddrMode.ScaledReg; 5301 if (V->getType() == IntPtrTy) { 5302 // done. 5303 } else { 5304 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5305 cast<IntegerType>(V->getType())->getBitWidth() && 5306 "We can't transform if ScaledReg is too narrow"); 5307 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5308 } 5309 5310 if (AddrMode.Scale != 1) 5311 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5312 "sunkaddr"); 5313 if (ResultIndex) 5314 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5315 else 5316 ResultIndex = V; 5317 } 5318 5319 // Add in the Base Offset if present. 5320 if (AddrMode.BaseOffs) { 5321 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5322 if (ResultIndex) { 5323 // We need to add this separately from the scale above to help with 5324 // SDAG consecutive load/store merging. 5325 if (ResultPtr->getType() != I8PtrTy) 5326 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5327 ResultPtr = 5328 AddrMode.InBounds 5329 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5330 "sunkaddr") 5331 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5332 } 5333 5334 ResultIndex = V; 5335 } 5336 5337 if (!ResultIndex) { 5338 SunkAddr = ResultPtr; 5339 } else { 5340 if (ResultPtr->getType() != I8PtrTy) 5341 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5342 SunkAddr = 5343 AddrMode.InBounds 5344 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5345 "sunkaddr") 5346 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5347 } 5348 5349 if (SunkAddr->getType() != Addr->getType()) 5350 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5351 } 5352 } else { 5353 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5354 // non-integral pointers, so in that case bail out now. 5355 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5356 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5357 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5358 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5359 if (DL->isNonIntegralPointerType(Addr->getType()) || 5360 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5361 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5362 (AddrMode.BaseGV && 5363 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5364 return Modified; 5365 5366 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5367 << " for " << *MemoryInst << "\n"); 5368 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5369 Value *Result = nullptr; 5370 5371 // Start with the base register. Do this first so that subsequent address 5372 // matching finds it last, which will prevent it from trying to match it 5373 // as the scaled value in case it happens to be a mul. That would be 5374 // problematic if we've sunk a different mul for the scale, because then 5375 // we'd end up sinking both muls. 5376 if (AddrMode.BaseReg) { 5377 Value *V = AddrMode.BaseReg; 5378 if (V->getType()->isPointerTy()) 5379 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5380 if (V->getType() != IntPtrTy) 5381 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5382 Result = V; 5383 } 5384 5385 // Add the scale value. 5386 if (AddrMode.Scale) { 5387 Value *V = AddrMode.ScaledReg; 5388 if (V->getType() == IntPtrTy) { 5389 // done. 5390 } else if (V->getType()->isPointerTy()) { 5391 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5392 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5393 cast<IntegerType>(V->getType())->getBitWidth()) { 5394 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5395 } else { 5396 // It is only safe to sign extend the BaseReg if we know that the math 5397 // required to create it did not overflow before we extend it. Since 5398 // the original IR value was tossed in favor of a constant back when 5399 // the AddrMode was created we need to bail out gracefully if widths 5400 // do not match instead of extending it. 5401 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5402 if (I && (Result != AddrMode.BaseReg)) 5403 I->eraseFromParent(); 5404 return Modified; 5405 } 5406 if (AddrMode.Scale != 1) 5407 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5408 "sunkaddr"); 5409 if (Result) 5410 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5411 else 5412 Result = V; 5413 } 5414 5415 // Add in the BaseGV if present. 5416 if (AddrMode.BaseGV) { 5417 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5418 if (Result) 5419 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5420 else 5421 Result = V; 5422 } 5423 5424 // Add in the Base Offset if present. 5425 if (AddrMode.BaseOffs) { 5426 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5427 if (Result) 5428 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5429 else 5430 Result = V; 5431 } 5432 5433 if (!Result) 5434 SunkAddr = Constant::getNullValue(Addr->getType()); 5435 else 5436 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5437 } 5438 5439 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5440 // Store the newly computed address into the cache. In the case we reused a 5441 // value, this should be idempotent. 5442 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5443 5444 // If we have no uses, recursively delete the value and all dead instructions 5445 // using it. 5446 if (Repl->use_empty()) { 5447 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5448 RecursivelyDeleteTriviallyDeadInstructions( 5449 Repl, TLInfo, nullptr, 5450 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5451 }); 5452 } 5453 ++NumMemoryInsts; 5454 return true; 5455 } 5456 5457 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5458 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5459 /// only handle a 2 operand GEP in the same basic block or a splat constant 5460 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5461 /// index. 5462 /// 5463 /// If the existing GEP has a vector base pointer that is splat, we can look 5464 /// through the splat to find the scalar pointer. If we can't find a scalar 5465 /// pointer there's nothing we can do. 5466 /// 5467 /// If we have a GEP with more than 2 indices where the middle indices are all 5468 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5469 /// 5470 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5471 /// followed by a GEP with an all zeroes vector index. This will enable 5472 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5473 /// zero index. 5474 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5475 Value *Ptr) { 5476 Value *NewAddr; 5477 5478 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5479 // Don't optimize GEPs that don't have indices. 5480 if (!GEP->hasIndices()) 5481 return false; 5482 5483 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5484 // FIXME: We should support this by sinking the GEP. 5485 if (MemoryInst->getParent() != GEP->getParent()) 5486 return false; 5487 5488 SmallVector<Value *, 2> Ops(GEP->operands()); 5489 5490 bool RewriteGEP = false; 5491 5492 if (Ops[0]->getType()->isVectorTy()) { 5493 Ops[0] = getSplatValue(Ops[0]); 5494 if (!Ops[0]) 5495 return false; 5496 RewriteGEP = true; 5497 } 5498 5499 unsigned FinalIndex = Ops.size() - 1; 5500 5501 // Ensure all but the last index is 0. 5502 // FIXME: This isn't strictly required. All that's required is that they are 5503 // all scalars or splats. 5504 for (unsigned i = 1; i < FinalIndex; ++i) { 5505 auto *C = dyn_cast<Constant>(Ops[i]); 5506 if (!C) 5507 return false; 5508 if (isa<VectorType>(C->getType())) 5509 C = C->getSplatValue(); 5510 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5511 if (!CI || !CI->isZero()) 5512 return false; 5513 // Scalarize the index if needed. 5514 Ops[i] = CI; 5515 } 5516 5517 // Try to scalarize the final index. 5518 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5519 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5520 auto *C = dyn_cast<ConstantInt>(V); 5521 // Don't scalarize all zeros vector. 5522 if (!C || !C->isZero()) { 5523 Ops[FinalIndex] = V; 5524 RewriteGEP = true; 5525 } 5526 } 5527 } 5528 5529 // If we made any changes or the we have extra operands, we need to generate 5530 // new instructions. 5531 if (!RewriteGEP && Ops.size() == 2) 5532 return false; 5533 5534 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5535 5536 IRBuilder<> Builder(MemoryInst); 5537 5538 Type *SourceTy = GEP->getSourceElementType(); 5539 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5540 5541 // If the final index isn't a vector, emit a scalar GEP containing all ops 5542 // and a vector GEP with all zeroes final index. 5543 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5544 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5545 makeArrayRef(Ops).drop_front()); 5546 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5547 auto *SecondTy = GetElementPtrInst::getIndexedType( 5548 SourceTy, makeArrayRef(Ops).drop_front()); 5549 NewAddr = 5550 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5551 } else { 5552 Value *Base = Ops[0]; 5553 Value *Index = Ops[FinalIndex]; 5554 5555 // Create a scalar GEP if there are more than 2 operands. 5556 if (Ops.size() != 2) { 5557 // Replace the last index with 0. 5558 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5559 Base = Builder.CreateGEP(SourceTy, Base, 5560 makeArrayRef(Ops).drop_front()); 5561 SourceTy = GetElementPtrInst::getIndexedType( 5562 SourceTy, makeArrayRef(Ops).drop_front()); 5563 } 5564 5565 // Now create the GEP with scalar pointer and vector index. 5566 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5567 } 5568 } else if (!isa<Constant>(Ptr)) { 5569 // Not a GEP, maybe its a splat and we can create a GEP to enable 5570 // SelectionDAGBuilder to use it as a uniform base. 5571 Value *V = getSplatValue(Ptr); 5572 if (!V) 5573 return false; 5574 5575 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5576 5577 IRBuilder<> Builder(MemoryInst); 5578 5579 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5580 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5581 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5582 Type *ScalarTy; 5583 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5584 Intrinsic::masked_gather) { 5585 ScalarTy = MemoryInst->getType()->getScalarType(); 5586 } else { 5587 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5588 Intrinsic::masked_scatter); 5589 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5590 } 5591 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5592 } else { 5593 // Constant, SelectionDAGBuilder knows to check if its a splat. 5594 return false; 5595 } 5596 5597 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5598 5599 // If we have no uses, recursively delete the value and all dead instructions 5600 // using it. 5601 if (Ptr->use_empty()) 5602 RecursivelyDeleteTriviallyDeadInstructions( 5603 Ptr, TLInfo, nullptr, 5604 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5605 5606 return true; 5607 } 5608 5609 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5610 /// address computing into the block when possible / profitable. 5611 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5612 bool MadeChange = false; 5613 5614 const TargetRegisterInfo *TRI = 5615 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5616 TargetLowering::AsmOperandInfoVector TargetConstraints = 5617 TLI->ParseConstraints(*DL, TRI, *CS); 5618 unsigned ArgNo = 0; 5619 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5620 // Compute the constraint code and ConstraintType to use. 5621 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5622 5623 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5624 OpInfo.isIndirect) { 5625 Value *OpVal = CS->getArgOperand(ArgNo++); 5626 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5627 } else if (OpInfo.Type == InlineAsm::isInput) 5628 ArgNo++; 5629 } 5630 5631 return MadeChange; 5632 } 5633 5634 /// Check if all the uses of \p Val are equivalent (or free) zero or 5635 /// sign extensions. 5636 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5637 assert(!Val->use_empty() && "Input must have at least one use"); 5638 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5639 bool IsSExt = isa<SExtInst>(FirstUser); 5640 Type *ExtTy = FirstUser->getType(); 5641 for (const User *U : Val->users()) { 5642 const Instruction *UI = cast<Instruction>(U); 5643 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5644 return false; 5645 Type *CurTy = UI->getType(); 5646 // Same input and output types: Same instruction after CSE. 5647 if (CurTy == ExtTy) 5648 continue; 5649 5650 // If IsSExt is true, we are in this situation: 5651 // a = Val 5652 // b = sext ty1 a to ty2 5653 // c = sext ty1 a to ty3 5654 // Assuming ty2 is shorter than ty3, this could be turned into: 5655 // a = Val 5656 // b = sext ty1 a to ty2 5657 // c = sext ty2 b to ty3 5658 // However, the last sext is not free. 5659 if (IsSExt) 5660 return false; 5661 5662 // This is a ZExt, maybe this is free to extend from one type to another. 5663 // In that case, we would not account for a different use. 5664 Type *NarrowTy; 5665 Type *LargeTy; 5666 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5667 CurTy->getScalarType()->getIntegerBitWidth()) { 5668 NarrowTy = CurTy; 5669 LargeTy = ExtTy; 5670 } else { 5671 NarrowTy = ExtTy; 5672 LargeTy = CurTy; 5673 } 5674 5675 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5676 return false; 5677 } 5678 // All uses are the same or can be derived from one another for free. 5679 return true; 5680 } 5681 5682 /// Try to speculatively promote extensions in \p Exts and continue 5683 /// promoting through newly promoted operands recursively as far as doing so is 5684 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5685 /// When some promotion happened, \p TPT contains the proper state to revert 5686 /// them. 5687 /// 5688 /// \return true if some promotion happened, false otherwise. 5689 bool CodeGenPrepare::tryToPromoteExts( 5690 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5691 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5692 unsigned CreatedInstsCost) { 5693 bool Promoted = false; 5694 5695 // Iterate over all the extensions to try to promote them. 5696 for (auto *I : Exts) { 5697 // Early check if we directly have ext(load). 5698 if (isa<LoadInst>(I->getOperand(0))) { 5699 ProfitablyMovedExts.push_back(I); 5700 continue; 5701 } 5702 5703 // Check whether or not we want to do any promotion. The reason we have 5704 // this check inside the for loop is to catch the case where an extension 5705 // is directly fed by a load because in such case the extension can be moved 5706 // up without any promotion on its operands. 5707 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5708 return false; 5709 5710 // Get the action to perform the promotion. 5711 TypePromotionHelper::Action TPH = 5712 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5713 // Check if we can promote. 5714 if (!TPH) { 5715 // Save the current extension as we cannot move up through its operand. 5716 ProfitablyMovedExts.push_back(I); 5717 continue; 5718 } 5719 5720 // Save the current state. 5721 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5722 TPT.getRestorationPoint(); 5723 SmallVector<Instruction *, 4> NewExts; 5724 unsigned NewCreatedInstsCost = 0; 5725 unsigned ExtCost = !TLI->isExtFree(I); 5726 // Promote. 5727 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5728 &NewExts, nullptr, *TLI); 5729 assert(PromotedVal && 5730 "TypePromotionHelper should have filtered out those cases"); 5731 5732 // We would be able to merge only one extension in a load. 5733 // Therefore, if we have more than 1 new extension we heuristically 5734 // cut this search path, because it means we degrade the code quality. 5735 // With exactly 2, the transformation is neutral, because we will merge 5736 // one extension but leave one. However, we optimistically keep going, 5737 // because the new extension may be removed too. 5738 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5739 // FIXME: It would be possible to propagate a negative value instead of 5740 // conservatively ceiling it to 0. 5741 TotalCreatedInstsCost = 5742 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5743 if (!StressExtLdPromotion && 5744 (TotalCreatedInstsCost > 1 || 5745 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5746 // This promotion is not profitable, rollback to the previous state, and 5747 // save the current extension in ProfitablyMovedExts as the latest 5748 // speculative promotion turned out to be unprofitable. 5749 TPT.rollback(LastKnownGood); 5750 ProfitablyMovedExts.push_back(I); 5751 continue; 5752 } 5753 // Continue promoting NewExts as far as doing so is profitable. 5754 SmallVector<Instruction *, 2> NewlyMovedExts; 5755 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5756 bool NewPromoted = false; 5757 for (auto *ExtInst : NewlyMovedExts) { 5758 Instruction *MovedExt = cast<Instruction>(ExtInst); 5759 Value *ExtOperand = MovedExt->getOperand(0); 5760 // If we have reached to a load, we need this extra profitability check 5761 // as it could potentially be merged into an ext(load). 5762 if (isa<LoadInst>(ExtOperand) && 5763 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5764 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5765 continue; 5766 5767 ProfitablyMovedExts.push_back(MovedExt); 5768 NewPromoted = true; 5769 } 5770 5771 // If none of speculative promotions for NewExts is profitable, rollback 5772 // and save the current extension (I) as the last profitable extension. 5773 if (!NewPromoted) { 5774 TPT.rollback(LastKnownGood); 5775 ProfitablyMovedExts.push_back(I); 5776 continue; 5777 } 5778 // The promotion is profitable. 5779 Promoted = true; 5780 } 5781 return Promoted; 5782 } 5783 5784 /// Merging redundant sexts when one is dominating the other. 5785 bool CodeGenPrepare::mergeSExts(Function &F) { 5786 bool Changed = false; 5787 for (auto &Entry : ValToSExtendedUses) { 5788 SExts &Insts = Entry.second; 5789 SExts CurPts; 5790 for (Instruction *Inst : Insts) { 5791 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5792 Inst->getOperand(0) != Entry.first) 5793 continue; 5794 bool inserted = false; 5795 for (auto &Pt : CurPts) { 5796 if (getDT(F).dominates(Inst, Pt)) { 5797 Pt->replaceAllUsesWith(Inst); 5798 RemovedInsts.insert(Pt); 5799 Pt->removeFromParent(); 5800 Pt = Inst; 5801 inserted = true; 5802 Changed = true; 5803 break; 5804 } 5805 if (!getDT(F).dominates(Pt, Inst)) 5806 // Give up if we need to merge in a common dominator as the 5807 // experiments show it is not profitable. 5808 continue; 5809 Inst->replaceAllUsesWith(Pt); 5810 RemovedInsts.insert(Inst); 5811 Inst->removeFromParent(); 5812 inserted = true; 5813 Changed = true; 5814 break; 5815 } 5816 if (!inserted) 5817 CurPts.push_back(Inst); 5818 } 5819 } 5820 return Changed; 5821 } 5822 5823 // Splitting large data structures so that the GEPs accessing them can have 5824 // smaller offsets so that they can be sunk to the same blocks as their users. 5825 // For example, a large struct starting from %base is split into two parts 5826 // where the second part starts from %new_base. 5827 // 5828 // Before: 5829 // BB0: 5830 // %base = 5831 // 5832 // BB1: 5833 // %gep0 = gep %base, off0 5834 // %gep1 = gep %base, off1 5835 // %gep2 = gep %base, off2 5836 // 5837 // BB2: 5838 // %load1 = load %gep0 5839 // %load2 = load %gep1 5840 // %load3 = load %gep2 5841 // 5842 // After: 5843 // BB0: 5844 // %base = 5845 // %new_base = gep %base, off0 5846 // 5847 // BB1: 5848 // %new_gep0 = %new_base 5849 // %new_gep1 = gep %new_base, off1 - off0 5850 // %new_gep2 = gep %new_base, off2 - off0 5851 // 5852 // BB2: 5853 // %load1 = load i32, i32* %new_gep0 5854 // %load2 = load i32, i32* %new_gep1 5855 // %load3 = load i32, i32* %new_gep2 5856 // 5857 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5858 // their offsets are smaller enough to fit into the addressing mode. 5859 bool CodeGenPrepare::splitLargeGEPOffsets() { 5860 bool Changed = false; 5861 for (auto &Entry : LargeOffsetGEPMap) { 5862 Value *OldBase = Entry.first; 5863 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5864 &LargeOffsetGEPs = Entry.second; 5865 auto compareGEPOffset = 5866 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5867 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5868 if (LHS.first == RHS.first) 5869 return false; 5870 if (LHS.second != RHS.second) 5871 return LHS.second < RHS.second; 5872 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5873 }; 5874 // Sorting all the GEPs of the same data structures based on the offsets. 5875 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5876 LargeOffsetGEPs.erase( 5877 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5878 LargeOffsetGEPs.end()); 5879 // Skip if all the GEPs have the same offsets. 5880 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5881 continue; 5882 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5883 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5884 Value *NewBaseGEP = nullptr; 5885 5886 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5887 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5888 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5889 int64_t Offset = LargeOffsetGEP->second; 5890 if (Offset != BaseOffset) { 5891 TargetLowering::AddrMode AddrMode; 5892 AddrMode.BaseOffs = Offset - BaseOffset; 5893 // The result type of the GEP might not be the type of the memory 5894 // access. 5895 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5896 GEP->getResultElementType(), 5897 GEP->getAddressSpace())) { 5898 // We need to create a new base if the offset to the current base is 5899 // too large to fit into the addressing mode. So, a very large struct 5900 // may be split into several parts. 5901 BaseGEP = GEP; 5902 BaseOffset = Offset; 5903 NewBaseGEP = nullptr; 5904 } 5905 } 5906 5907 // Generate a new GEP to replace the current one. 5908 LLVMContext &Ctx = GEP->getContext(); 5909 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5910 Type *I8PtrTy = 5911 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5912 Type *I8Ty = Type::getInt8Ty(Ctx); 5913 5914 if (!NewBaseGEP) { 5915 // Create a new base if we don't have one yet. Find the insertion 5916 // pointer for the new base first. 5917 BasicBlock::iterator NewBaseInsertPt; 5918 BasicBlock *NewBaseInsertBB; 5919 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5920 // If the base of the struct is an instruction, the new base will be 5921 // inserted close to it. 5922 NewBaseInsertBB = BaseI->getParent(); 5923 if (isa<PHINode>(BaseI)) 5924 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5925 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5926 NewBaseInsertBB = 5927 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5928 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5929 } else 5930 NewBaseInsertPt = std::next(BaseI->getIterator()); 5931 } else { 5932 // If the current base is an argument or global value, the new base 5933 // will be inserted to the entry block. 5934 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5935 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5936 } 5937 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5938 // Create a new base. 5939 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5940 NewBaseGEP = OldBase; 5941 if (NewBaseGEP->getType() != I8PtrTy) 5942 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5943 NewBaseGEP = 5944 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5945 NewGEPBases.insert(NewBaseGEP); 5946 } 5947 5948 IRBuilder<> Builder(GEP); 5949 Value *NewGEP = NewBaseGEP; 5950 if (Offset == BaseOffset) { 5951 if (GEP->getType() != I8PtrTy) 5952 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5953 } else { 5954 // Calculate the new offset for the new GEP. 5955 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5956 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5957 5958 if (GEP->getType() != I8PtrTy) 5959 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5960 } 5961 GEP->replaceAllUsesWith(NewGEP); 5962 LargeOffsetGEPID.erase(GEP); 5963 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5964 GEP->eraseFromParent(); 5965 Changed = true; 5966 } 5967 } 5968 return Changed; 5969 } 5970 5971 bool CodeGenPrepare::optimizePhiType( 5972 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5973 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5974 // We are looking for a collection on interconnected phi nodes that together 5975 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5976 // are of the same type. Convert the whole set of nodes to the type of the 5977 // bitcast. 5978 Type *PhiTy = I->getType(); 5979 Type *ConvertTy = nullptr; 5980 if (Visited.count(I) || 5981 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5982 return false; 5983 5984 SmallVector<Instruction *, 4> Worklist; 5985 Worklist.push_back(cast<Instruction>(I)); 5986 SmallPtrSet<PHINode *, 4> PhiNodes; 5987 PhiNodes.insert(I); 5988 Visited.insert(I); 5989 SmallPtrSet<Instruction *, 4> Defs; 5990 SmallPtrSet<Instruction *, 4> Uses; 5991 // This works by adding extra bitcasts between load/stores and removing 5992 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5993 // we can get in the situation where we remove a bitcast in one iteration 5994 // just to add it again in the next. We need to ensure that at least one 5995 // bitcast we remove are anchored to something that will not change back. 5996 bool AnyAnchored = false; 5997 5998 while (!Worklist.empty()) { 5999 Instruction *II = Worklist.pop_back_val(); 6000 6001 if (auto *Phi = dyn_cast<PHINode>(II)) { 6002 // Handle Defs, which might also be PHI's 6003 for (Value *V : Phi->incoming_values()) { 6004 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6005 if (!PhiNodes.count(OpPhi)) { 6006 if (Visited.count(OpPhi)) 6007 return false; 6008 PhiNodes.insert(OpPhi); 6009 Visited.insert(OpPhi); 6010 Worklist.push_back(OpPhi); 6011 } 6012 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6013 if (!OpLoad->isSimple()) 6014 return false; 6015 if (!Defs.count(OpLoad)) { 6016 Defs.insert(OpLoad); 6017 Worklist.push_back(OpLoad); 6018 } 6019 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6020 if (!Defs.count(OpEx)) { 6021 Defs.insert(OpEx); 6022 Worklist.push_back(OpEx); 6023 } 6024 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6025 if (!ConvertTy) 6026 ConvertTy = OpBC->getOperand(0)->getType(); 6027 if (OpBC->getOperand(0)->getType() != ConvertTy) 6028 return false; 6029 if (!Defs.count(OpBC)) { 6030 Defs.insert(OpBC); 6031 Worklist.push_back(OpBC); 6032 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6033 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6034 } 6035 } else if (!isa<UndefValue>(V)) { 6036 return false; 6037 } 6038 } 6039 } 6040 6041 // Handle uses which might also be phi's 6042 for (User *V : II->users()) { 6043 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6044 if (!PhiNodes.count(OpPhi)) { 6045 if (Visited.count(OpPhi)) 6046 return false; 6047 PhiNodes.insert(OpPhi); 6048 Visited.insert(OpPhi); 6049 Worklist.push_back(OpPhi); 6050 } 6051 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6052 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6053 return false; 6054 Uses.insert(OpStore); 6055 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6056 if (!ConvertTy) 6057 ConvertTy = OpBC->getType(); 6058 if (OpBC->getType() != ConvertTy) 6059 return false; 6060 Uses.insert(OpBC); 6061 AnyAnchored |= 6062 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6063 } else { 6064 return false; 6065 } 6066 } 6067 } 6068 6069 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6070 return false; 6071 6072 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6073 << *ConvertTy << "\n"); 6074 6075 // Create all the new phi nodes of the new type, and bitcast any loads to the 6076 // correct type. 6077 ValueToValueMap ValMap; 6078 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6079 for (Instruction *D : Defs) { 6080 if (isa<BitCastInst>(D)) { 6081 ValMap[D] = D->getOperand(0); 6082 DeletedInstrs.insert(D); 6083 } else { 6084 ValMap[D] = 6085 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6086 } 6087 } 6088 for (PHINode *Phi : PhiNodes) 6089 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6090 Phi->getName() + ".tc", Phi); 6091 // Pipe together all the PhiNodes. 6092 for (PHINode *Phi : PhiNodes) { 6093 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6094 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6095 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6096 Phi->getIncomingBlock(i)); 6097 Visited.insert(NewPhi); 6098 } 6099 // And finally pipe up the stores and bitcasts 6100 for (Instruction *U : Uses) { 6101 if (isa<BitCastInst>(U)) { 6102 DeletedInstrs.insert(U); 6103 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6104 } else { 6105 U->setOperand(0, 6106 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6107 } 6108 } 6109 6110 // Save the removed phis to be deleted later. 6111 for (PHINode *Phi : PhiNodes) 6112 DeletedInstrs.insert(Phi); 6113 return true; 6114 } 6115 6116 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6117 if (!OptimizePhiTypes) 6118 return false; 6119 6120 bool Changed = false; 6121 SmallPtrSet<PHINode *, 4> Visited; 6122 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6123 6124 // Attempt to optimize all the phis in the functions to the correct type. 6125 for (auto &BB : F) 6126 for (auto &Phi : BB.phis()) 6127 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6128 6129 // Remove any old phi's that have been converted. 6130 for (auto *I : DeletedInstrs) { 6131 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6132 I->eraseFromParent(); 6133 } 6134 6135 return Changed; 6136 } 6137 6138 /// Return true, if an ext(load) can be formed from an extension in 6139 /// \p MovedExts. 6140 bool CodeGenPrepare::canFormExtLd( 6141 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6142 Instruction *&Inst, bool HasPromoted) { 6143 for (auto *MovedExtInst : MovedExts) { 6144 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6145 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6146 Inst = MovedExtInst; 6147 break; 6148 } 6149 } 6150 if (!LI) 6151 return false; 6152 6153 // If they're already in the same block, there's nothing to do. 6154 // Make the cheap checks first if we did not promote. 6155 // If we promoted, we need to check if it is indeed profitable. 6156 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6157 return false; 6158 6159 return TLI->isExtLoad(LI, Inst, *DL); 6160 } 6161 6162 /// Move a zext or sext fed by a load into the same basic block as the load, 6163 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6164 /// extend into the load. 6165 /// 6166 /// E.g., 6167 /// \code 6168 /// %ld = load i32* %addr 6169 /// %add = add nuw i32 %ld, 4 6170 /// %zext = zext i32 %add to i64 6171 // \endcode 6172 /// => 6173 /// \code 6174 /// %ld = load i32* %addr 6175 /// %zext = zext i32 %ld to i64 6176 /// %add = add nuw i64 %zext, 4 6177 /// \encode 6178 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6179 /// allow us to match zext(load i32*) to i64. 6180 /// 6181 /// Also, try to promote the computations used to obtain a sign extended 6182 /// value used into memory accesses. 6183 /// E.g., 6184 /// \code 6185 /// a = add nsw i32 b, 3 6186 /// d = sext i32 a to i64 6187 /// e = getelementptr ..., i64 d 6188 /// \endcode 6189 /// => 6190 /// \code 6191 /// f = sext i32 b to i64 6192 /// a = add nsw i64 f, 3 6193 /// e = getelementptr ..., i64 a 6194 /// \endcode 6195 /// 6196 /// \p Inst[in/out] the extension may be modified during the process if some 6197 /// promotions apply. 6198 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6199 bool AllowPromotionWithoutCommonHeader = false; 6200 /// See if it is an interesting sext operations for the address type 6201 /// promotion before trying to promote it, e.g., the ones with the right 6202 /// type and used in memory accesses. 6203 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6204 *Inst, AllowPromotionWithoutCommonHeader); 6205 TypePromotionTransaction TPT(RemovedInsts); 6206 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6207 TPT.getRestorationPoint(); 6208 SmallVector<Instruction *, 1> Exts; 6209 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6210 Exts.push_back(Inst); 6211 6212 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6213 6214 // Look for a load being extended. 6215 LoadInst *LI = nullptr; 6216 Instruction *ExtFedByLoad; 6217 6218 // Try to promote a chain of computation if it allows to form an extended 6219 // load. 6220 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6221 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6222 TPT.commit(); 6223 // Move the extend into the same block as the load. 6224 ExtFedByLoad->moveAfter(LI); 6225 ++NumExtsMoved; 6226 Inst = ExtFedByLoad; 6227 return true; 6228 } 6229 6230 // Continue promoting SExts if known as considerable depending on targets. 6231 if (ATPConsiderable && 6232 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6233 HasPromoted, TPT, SpeculativelyMovedExts)) 6234 return true; 6235 6236 TPT.rollback(LastKnownGood); 6237 return false; 6238 } 6239 6240 // Perform address type promotion if doing so is profitable. 6241 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6242 // instructions that sign extended the same initial value. However, if 6243 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6244 // extension is just profitable. 6245 bool CodeGenPrepare::performAddressTypePromotion( 6246 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6247 bool HasPromoted, TypePromotionTransaction &TPT, 6248 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6249 bool Promoted = false; 6250 SmallPtrSet<Instruction *, 1> UnhandledExts; 6251 bool AllSeenFirst = true; 6252 for (auto *I : SpeculativelyMovedExts) { 6253 Value *HeadOfChain = I->getOperand(0); 6254 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6255 SeenChainsForSExt.find(HeadOfChain); 6256 // If there is an unhandled SExt which has the same header, try to promote 6257 // it as well. 6258 if (AlreadySeen != SeenChainsForSExt.end()) { 6259 if (AlreadySeen->second != nullptr) 6260 UnhandledExts.insert(AlreadySeen->second); 6261 AllSeenFirst = false; 6262 } 6263 } 6264 6265 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6266 SpeculativelyMovedExts.size() == 1)) { 6267 TPT.commit(); 6268 if (HasPromoted) 6269 Promoted = true; 6270 for (auto *I : SpeculativelyMovedExts) { 6271 Value *HeadOfChain = I->getOperand(0); 6272 SeenChainsForSExt[HeadOfChain] = nullptr; 6273 ValToSExtendedUses[HeadOfChain].push_back(I); 6274 } 6275 // Update Inst as promotion happen. 6276 Inst = SpeculativelyMovedExts.pop_back_val(); 6277 } else { 6278 // This is the first chain visited from the header, keep the current chain 6279 // as unhandled. Defer to promote this until we encounter another SExt 6280 // chain derived from the same header. 6281 for (auto *I : SpeculativelyMovedExts) { 6282 Value *HeadOfChain = I->getOperand(0); 6283 SeenChainsForSExt[HeadOfChain] = Inst; 6284 } 6285 return false; 6286 } 6287 6288 if (!AllSeenFirst && !UnhandledExts.empty()) 6289 for (auto *VisitedSExt : UnhandledExts) { 6290 if (RemovedInsts.count(VisitedSExt)) 6291 continue; 6292 TypePromotionTransaction TPT(RemovedInsts); 6293 SmallVector<Instruction *, 1> Exts; 6294 SmallVector<Instruction *, 2> Chains; 6295 Exts.push_back(VisitedSExt); 6296 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6297 TPT.commit(); 6298 if (HasPromoted) 6299 Promoted = true; 6300 for (auto *I : Chains) { 6301 Value *HeadOfChain = I->getOperand(0); 6302 // Mark this as handled. 6303 SeenChainsForSExt[HeadOfChain] = nullptr; 6304 ValToSExtendedUses[HeadOfChain].push_back(I); 6305 } 6306 } 6307 return Promoted; 6308 } 6309 6310 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6311 BasicBlock *DefBB = I->getParent(); 6312 6313 // If the result of a {s|z}ext and its source are both live out, rewrite all 6314 // other uses of the source with result of extension. 6315 Value *Src = I->getOperand(0); 6316 if (Src->hasOneUse()) 6317 return false; 6318 6319 // Only do this xform if truncating is free. 6320 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6321 return false; 6322 6323 // Only safe to perform the optimization if the source is also defined in 6324 // this block. 6325 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6326 return false; 6327 6328 bool DefIsLiveOut = false; 6329 for (User *U : I->users()) { 6330 Instruction *UI = cast<Instruction>(U); 6331 6332 // Figure out which BB this ext is used in. 6333 BasicBlock *UserBB = UI->getParent(); 6334 if (UserBB == DefBB) continue; 6335 DefIsLiveOut = true; 6336 break; 6337 } 6338 if (!DefIsLiveOut) 6339 return false; 6340 6341 // Make sure none of the uses are PHI nodes. 6342 for (User *U : Src->users()) { 6343 Instruction *UI = cast<Instruction>(U); 6344 BasicBlock *UserBB = UI->getParent(); 6345 if (UserBB == DefBB) continue; 6346 // Be conservative. We don't want this xform to end up introducing 6347 // reloads just before load / store instructions. 6348 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6349 return false; 6350 } 6351 6352 // InsertedTruncs - Only insert one trunc in each block once. 6353 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6354 6355 bool MadeChange = false; 6356 for (Use &U : Src->uses()) { 6357 Instruction *User = cast<Instruction>(U.getUser()); 6358 6359 // Figure out which BB this ext is used in. 6360 BasicBlock *UserBB = User->getParent(); 6361 if (UserBB == DefBB) continue; 6362 6363 // Both src and def are live in this block. Rewrite the use. 6364 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6365 6366 if (!InsertedTrunc) { 6367 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6368 assert(InsertPt != UserBB->end()); 6369 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6370 InsertedInsts.insert(InsertedTrunc); 6371 } 6372 6373 // Replace a use of the {s|z}ext source with a use of the result. 6374 U = InsertedTrunc; 6375 ++NumExtUses; 6376 MadeChange = true; 6377 } 6378 6379 return MadeChange; 6380 } 6381 6382 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6383 // just after the load if the target can fold this into one extload instruction, 6384 // with the hope of eliminating some of the other later "and" instructions using 6385 // the loaded value. "and"s that are made trivially redundant by the insertion 6386 // of the new "and" are removed by this function, while others (e.g. those whose 6387 // path from the load goes through a phi) are left for isel to potentially 6388 // remove. 6389 // 6390 // For example: 6391 // 6392 // b0: 6393 // x = load i32 6394 // ... 6395 // b1: 6396 // y = and x, 0xff 6397 // z = use y 6398 // 6399 // becomes: 6400 // 6401 // b0: 6402 // x = load i32 6403 // x' = and x, 0xff 6404 // ... 6405 // b1: 6406 // z = use x' 6407 // 6408 // whereas: 6409 // 6410 // b0: 6411 // x1 = load i32 6412 // ... 6413 // b1: 6414 // x2 = load i32 6415 // ... 6416 // b2: 6417 // x = phi x1, x2 6418 // y = and x, 0xff 6419 // 6420 // becomes (after a call to optimizeLoadExt for each load): 6421 // 6422 // b0: 6423 // x1 = load i32 6424 // x1' = and x1, 0xff 6425 // ... 6426 // b1: 6427 // x2 = load i32 6428 // x2' = and x2, 0xff 6429 // ... 6430 // b2: 6431 // x = phi x1', x2' 6432 // y = and x, 0xff 6433 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6434 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6435 return false; 6436 6437 // Skip loads we've already transformed. 6438 if (Load->hasOneUse() && 6439 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6440 return false; 6441 6442 // Look at all uses of Load, looking through phis, to determine how many bits 6443 // of the loaded value are needed. 6444 SmallVector<Instruction *, 8> WorkList; 6445 SmallPtrSet<Instruction *, 16> Visited; 6446 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6447 for (auto *U : Load->users()) 6448 WorkList.push_back(cast<Instruction>(U)); 6449 6450 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6451 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6452 // If the BitWidth is 0, do not try to optimize the type 6453 if (BitWidth == 0) 6454 return false; 6455 6456 APInt DemandBits(BitWidth, 0); 6457 APInt WidestAndBits(BitWidth, 0); 6458 6459 while (!WorkList.empty()) { 6460 Instruction *I = WorkList.pop_back_val(); 6461 6462 // Break use-def graph loops. 6463 if (!Visited.insert(I).second) 6464 continue; 6465 6466 // For a PHI node, push all of its users. 6467 if (auto *Phi = dyn_cast<PHINode>(I)) { 6468 for (auto *U : Phi->users()) 6469 WorkList.push_back(cast<Instruction>(U)); 6470 continue; 6471 } 6472 6473 switch (I->getOpcode()) { 6474 case Instruction::And: { 6475 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6476 if (!AndC) 6477 return false; 6478 APInt AndBits = AndC->getValue(); 6479 DemandBits |= AndBits; 6480 // Keep track of the widest and mask we see. 6481 if (AndBits.ugt(WidestAndBits)) 6482 WidestAndBits = AndBits; 6483 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6484 AndsToMaybeRemove.push_back(I); 6485 break; 6486 } 6487 6488 case Instruction::Shl: { 6489 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6490 if (!ShlC) 6491 return false; 6492 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6493 DemandBits.setLowBits(BitWidth - ShiftAmt); 6494 break; 6495 } 6496 6497 case Instruction::Trunc: { 6498 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6499 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6500 DemandBits.setLowBits(TruncBitWidth); 6501 break; 6502 } 6503 6504 default: 6505 return false; 6506 } 6507 } 6508 6509 uint32_t ActiveBits = DemandBits.getActiveBits(); 6510 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6511 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6512 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6513 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6514 // followed by an AND. 6515 // TODO: Look into removing this restriction by fixing backends to either 6516 // return false for isLoadExtLegal for i1 or have them select this pattern to 6517 // a single instruction. 6518 // 6519 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6520 // mask, since these are the only ands that will be removed by isel. 6521 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6522 WidestAndBits != DemandBits) 6523 return false; 6524 6525 LLVMContext &Ctx = Load->getType()->getContext(); 6526 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6527 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6528 6529 // Reject cases that won't be matched as extloads. 6530 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6531 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6532 return false; 6533 6534 IRBuilder<> Builder(Load->getNextNode()); 6535 auto *NewAnd = cast<Instruction>( 6536 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6537 // Mark this instruction as "inserted by CGP", so that other 6538 // optimizations don't touch it. 6539 InsertedInsts.insert(NewAnd); 6540 6541 // Replace all uses of load with new and (except for the use of load in the 6542 // new and itself). 6543 Load->replaceAllUsesWith(NewAnd); 6544 NewAnd->setOperand(0, Load); 6545 6546 // Remove any and instructions that are now redundant. 6547 for (auto *And : AndsToMaybeRemove) 6548 // Check that the and mask is the same as the one we decided to put on the 6549 // new and. 6550 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6551 And->replaceAllUsesWith(NewAnd); 6552 if (&*CurInstIterator == And) 6553 CurInstIterator = std::next(And->getIterator()); 6554 And->eraseFromParent(); 6555 ++NumAndUses; 6556 } 6557 6558 ++NumAndsAdded; 6559 return true; 6560 } 6561 6562 /// Check if V (an operand of a select instruction) is an expensive instruction 6563 /// that is only used once. 6564 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6565 auto *I = dyn_cast<Instruction>(V); 6566 // If it's safe to speculatively execute, then it should not have side 6567 // effects; therefore, it's safe to sink and possibly *not* execute. 6568 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6569 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6570 TargetTransformInfo::TCC_Expensive; 6571 } 6572 6573 /// Returns true if a SelectInst should be turned into an explicit branch. 6574 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6575 const TargetLowering *TLI, 6576 SelectInst *SI) { 6577 // If even a predictable select is cheap, then a branch can't be cheaper. 6578 if (!TLI->isPredictableSelectExpensive()) 6579 return false; 6580 6581 // FIXME: This should use the same heuristics as IfConversion to determine 6582 // whether a select is better represented as a branch. 6583 6584 // If metadata tells us that the select condition is obviously predictable, 6585 // then we want to replace the select with a branch. 6586 uint64_t TrueWeight, FalseWeight; 6587 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6588 uint64_t Max = std::max(TrueWeight, FalseWeight); 6589 uint64_t Sum = TrueWeight + FalseWeight; 6590 if (Sum != 0) { 6591 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6592 if (Probability > TTI->getPredictableBranchThreshold()) 6593 return true; 6594 } 6595 } 6596 6597 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6598 6599 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6600 // comparison condition. If the compare has more than one use, there's 6601 // probably another cmov or setcc around, so it's not worth emitting a branch. 6602 if (!Cmp || !Cmp->hasOneUse()) 6603 return false; 6604 6605 // If either operand of the select is expensive and only needed on one side 6606 // of the select, we should form a branch. 6607 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6608 sinkSelectOperand(TTI, SI->getFalseValue())) 6609 return true; 6610 6611 return false; 6612 } 6613 6614 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6615 /// false value of \p SI. If the true/false value of \p SI is defined by any 6616 /// select instructions in \p Selects, look through the defining select 6617 /// instruction until the true/false value is not defined in \p Selects. 6618 static Value *getTrueOrFalseValue( 6619 SelectInst *SI, bool isTrue, 6620 const SmallPtrSet<const Instruction *, 2> &Selects) { 6621 Value *V = nullptr; 6622 6623 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6624 DefSI = dyn_cast<SelectInst>(V)) { 6625 assert(DefSI->getCondition() == SI->getCondition() && 6626 "The condition of DefSI does not match with SI"); 6627 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6628 } 6629 6630 assert(V && "Failed to get select true/false value"); 6631 return V; 6632 } 6633 6634 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6635 assert(Shift->isShift() && "Expected a shift"); 6636 6637 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6638 // general vector shifts, and (3) the shift amount is a select-of-splatted 6639 // values, hoist the shifts before the select: 6640 // shift Op0, (select Cond, TVal, FVal) --> 6641 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6642 // 6643 // This is inverting a generic IR transform when we know that the cost of a 6644 // general vector shift is more than the cost of 2 shift-by-scalars. 6645 // We can't do this effectively in SDAG because we may not be able to 6646 // determine if the select operands are splats from within a basic block. 6647 Type *Ty = Shift->getType(); 6648 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6649 return false; 6650 Value *Cond, *TVal, *FVal; 6651 if (!match(Shift->getOperand(1), 6652 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6653 return false; 6654 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6655 return false; 6656 6657 IRBuilder<> Builder(Shift); 6658 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6659 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6660 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6661 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6662 Shift->replaceAllUsesWith(NewSel); 6663 Shift->eraseFromParent(); 6664 return true; 6665 } 6666 6667 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6668 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6669 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6670 "Expected a funnel shift"); 6671 6672 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6673 // than general vector shifts, and (3) the shift amount is select-of-splatted 6674 // values, hoist the funnel shifts before the select: 6675 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6676 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6677 // 6678 // This is inverting a generic IR transform when we know that the cost of a 6679 // general vector shift is more than the cost of 2 shift-by-scalars. 6680 // We can't do this effectively in SDAG because we may not be able to 6681 // determine if the select operands are splats from within a basic block. 6682 Type *Ty = Fsh->getType(); 6683 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6684 return false; 6685 Value *Cond, *TVal, *FVal; 6686 if (!match(Fsh->getOperand(2), 6687 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6688 return false; 6689 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6690 return false; 6691 6692 IRBuilder<> Builder(Fsh); 6693 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6694 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6695 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6696 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6697 Fsh->replaceAllUsesWith(NewSel); 6698 Fsh->eraseFromParent(); 6699 return true; 6700 } 6701 6702 /// If we have a SelectInst that will likely profit from branch prediction, 6703 /// turn it into a branch. 6704 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6705 if (DisableSelectToBranch) 6706 return false; 6707 6708 // Find all consecutive select instructions that share the same condition. 6709 SmallVector<SelectInst *, 2> ASI; 6710 ASI.push_back(SI); 6711 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6712 It != SI->getParent()->end(); ++It) { 6713 SelectInst *I = dyn_cast<SelectInst>(&*It); 6714 if (I && SI->getCondition() == I->getCondition()) { 6715 ASI.push_back(I); 6716 } else { 6717 break; 6718 } 6719 } 6720 6721 SelectInst *LastSI = ASI.back(); 6722 // Increment the current iterator to skip all the rest of select instructions 6723 // because they will be either "not lowered" or "all lowered" to branch. 6724 CurInstIterator = std::next(LastSI->getIterator()); 6725 6726 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6727 6728 // Can we convert the 'select' to CF ? 6729 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6730 return false; 6731 6732 TargetLowering::SelectSupportKind SelectKind; 6733 if (VectorCond) 6734 SelectKind = TargetLowering::VectorMaskSelect; 6735 else if (SI->getType()->isVectorTy()) 6736 SelectKind = TargetLowering::ScalarCondVectorVal; 6737 else 6738 SelectKind = TargetLowering::ScalarValSelect; 6739 6740 if (TLI->isSelectSupported(SelectKind) && 6741 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6742 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6743 return false; 6744 6745 // The DominatorTree needs to be rebuilt by any consumers after this 6746 // transformation. We simply reset here rather than setting the ModifiedDT 6747 // flag to avoid restarting the function walk in runOnFunction for each 6748 // select optimized. 6749 DT.reset(); 6750 6751 // Transform a sequence like this: 6752 // start: 6753 // %cmp = cmp uge i32 %a, %b 6754 // %sel = select i1 %cmp, i32 %c, i32 %d 6755 // 6756 // Into: 6757 // start: 6758 // %cmp = cmp uge i32 %a, %b 6759 // %cmp.frozen = freeze %cmp 6760 // br i1 %cmp.frozen, label %select.true, label %select.false 6761 // select.true: 6762 // br label %select.end 6763 // select.false: 6764 // br label %select.end 6765 // select.end: 6766 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6767 // 6768 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6769 // In addition, we may sink instructions that produce %c or %d from 6770 // the entry block into the destination(s) of the new branch. 6771 // If the true or false blocks do not contain a sunken instruction, that 6772 // block and its branch may be optimized away. In that case, one side of the 6773 // first branch will point directly to select.end, and the corresponding PHI 6774 // predecessor block will be the start block. 6775 6776 // First, we split the block containing the select into 2 blocks. 6777 BasicBlock *StartBlock = SI->getParent(); 6778 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6779 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6780 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6781 6782 // Delete the unconditional branch that was just created by the split. 6783 StartBlock->getTerminator()->eraseFromParent(); 6784 6785 // These are the new basic blocks for the conditional branch. 6786 // At least one will become an actual new basic block. 6787 BasicBlock *TrueBlock = nullptr; 6788 BasicBlock *FalseBlock = nullptr; 6789 BranchInst *TrueBranch = nullptr; 6790 BranchInst *FalseBranch = nullptr; 6791 6792 // Sink expensive instructions into the conditional blocks to avoid executing 6793 // them speculatively. 6794 for (SelectInst *SI : ASI) { 6795 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6796 if (TrueBlock == nullptr) { 6797 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6798 EndBlock->getParent(), EndBlock); 6799 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6800 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6801 } 6802 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6803 TrueInst->moveBefore(TrueBranch); 6804 } 6805 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6806 if (FalseBlock == nullptr) { 6807 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6808 EndBlock->getParent(), EndBlock); 6809 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6810 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6811 } 6812 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6813 FalseInst->moveBefore(FalseBranch); 6814 } 6815 } 6816 6817 // If there was nothing to sink, then arbitrarily choose the 'false' side 6818 // for a new input value to the PHI. 6819 if (TrueBlock == FalseBlock) { 6820 assert(TrueBlock == nullptr && 6821 "Unexpected basic block transform while optimizing select"); 6822 6823 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6824 EndBlock->getParent(), EndBlock); 6825 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6826 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6827 } 6828 6829 // Insert the real conditional branch based on the original condition. 6830 // If we did not create a new block for one of the 'true' or 'false' paths 6831 // of the condition, it means that side of the branch goes to the end block 6832 // directly and the path originates from the start block from the point of 6833 // view of the new PHI. 6834 BasicBlock *TT, *FT; 6835 if (TrueBlock == nullptr) { 6836 TT = EndBlock; 6837 FT = FalseBlock; 6838 TrueBlock = StartBlock; 6839 } else if (FalseBlock == nullptr) { 6840 TT = TrueBlock; 6841 FT = EndBlock; 6842 FalseBlock = StartBlock; 6843 } else { 6844 TT = TrueBlock; 6845 FT = FalseBlock; 6846 } 6847 IRBuilder<> IB(SI); 6848 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6849 IB.CreateCondBr(CondFr, TT, FT, SI); 6850 6851 SmallPtrSet<const Instruction *, 2> INS; 6852 INS.insert(ASI.begin(), ASI.end()); 6853 // Use reverse iterator because later select may use the value of the 6854 // earlier select, and we need to propagate value through earlier select 6855 // to get the PHI operand. 6856 for (SelectInst *SI : llvm::reverse(ASI)) { 6857 // The select itself is replaced with a PHI Node. 6858 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6859 PN->takeName(SI); 6860 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6861 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6862 PN->setDebugLoc(SI->getDebugLoc()); 6863 6864 SI->replaceAllUsesWith(PN); 6865 SI->eraseFromParent(); 6866 INS.erase(SI); 6867 ++NumSelectsExpanded; 6868 } 6869 6870 // Instruct OptimizeBlock to skip to the next block. 6871 CurInstIterator = StartBlock->end(); 6872 return true; 6873 } 6874 6875 /// Some targets only accept certain types for splat inputs. For example a VDUP 6876 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6877 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6878 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6879 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6880 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6881 m_Undef(), m_ZeroMask()))) 6882 return false; 6883 Type *NewType = TLI->shouldConvertSplatType(SVI); 6884 if (!NewType) 6885 return false; 6886 6887 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6888 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6889 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6890 "Expected a type of the same size!"); 6891 auto *NewVecType = 6892 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6893 6894 // Create a bitcast (shuffle (insert (bitcast(..)))) 6895 IRBuilder<> Builder(SVI->getContext()); 6896 Builder.SetInsertPoint(SVI); 6897 Value *BC1 = Builder.CreateBitCast( 6898 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6899 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6900 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6901 6902 SVI->replaceAllUsesWith(BC2); 6903 RecursivelyDeleteTriviallyDeadInstructions( 6904 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6905 6906 // Also hoist the bitcast up to its operand if it they are not in the same 6907 // block. 6908 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6909 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6910 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6911 !Op->isTerminator() && !Op->isEHPad()) 6912 BCI->moveAfter(Op); 6913 6914 return true; 6915 } 6916 6917 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6918 // If the operands of I can be folded into a target instruction together with 6919 // I, duplicate and sink them. 6920 SmallVector<Use *, 4> OpsToSink; 6921 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6922 return false; 6923 6924 // OpsToSink can contain multiple uses in a use chain (e.g. 6925 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6926 // uses must come first, so we process the ops in reverse order so as to not 6927 // create invalid IR. 6928 BasicBlock *TargetBB = I->getParent(); 6929 bool Changed = false; 6930 SmallVector<Use *, 4> ToReplace; 6931 Instruction *InsertPoint = I; 6932 DenseMap<const Instruction *, unsigned long> InstOrdering; 6933 unsigned long InstNumber = 0; 6934 for (const auto &I : *TargetBB) 6935 InstOrdering[&I] = InstNumber++; 6936 6937 for (Use *U : reverse(OpsToSink)) { 6938 auto *UI = cast<Instruction>(U->get()); 6939 if (isa<PHINode>(UI)) 6940 continue; 6941 if (UI->getParent() == TargetBB) { 6942 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6943 InsertPoint = UI; 6944 continue; 6945 } 6946 ToReplace.push_back(U); 6947 } 6948 6949 SetVector<Instruction *> MaybeDead; 6950 DenseMap<Instruction *, Instruction *> NewInstructions; 6951 for (Use *U : ToReplace) { 6952 auto *UI = cast<Instruction>(U->get()); 6953 Instruction *NI = UI->clone(); 6954 NewInstructions[UI] = NI; 6955 MaybeDead.insert(UI); 6956 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6957 NI->insertBefore(InsertPoint); 6958 InsertPoint = NI; 6959 InsertedInsts.insert(NI); 6960 6961 // Update the use for the new instruction, making sure that we update the 6962 // sunk instruction uses, if it is part of a chain that has already been 6963 // sunk. 6964 Instruction *OldI = cast<Instruction>(U->getUser()); 6965 if (NewInstructions.count(OldI)) 6966 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6967 else 6968 U->set(NI); 6969 Changed = true; 6970 } 6971 6972 // Remove instructions that are dead after sinking. 6973 for (auto *I : MaybeDead) { 6974 if (!I->hasNUsesOrMore(1)) { 6975 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6976 I->eraseFromParent(); 6977 } 6978 } 6979 6980 return Changed; 6981 } 6982 6983 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6984 Value *Cond = SI->getCondition(); 6985 Type *OldType = Cond->getType(); 6986 LLVMContext &Context = Cond->getContext(); 6987 EVT OldVT = TLI->getValueType(*DL, OldType); 6988 MVT RegType = TLI->getRegisterType(Context, OldVT); 6989 unsigned RegWidth = RegType.getSizeInBits(); 6990 6991 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6992 return false; 6993 6994 // If the register width is greater than the type width, expand the condition 6995 // of the switch instruction and each case constant to the width of the 6996 // register. By widening the type of the switch condition, subsequent 6997 // comparisons (for case comparisons) will not need to be extended to the 6998 // preferred register width, so we will potentially eliminate N-1 extends, 6999 // where N is the number of cases in the switch. 7000 auto *NewType = Type::getIntNTy(Context, RegWidth); 7001 7002 // Extend the switch condition and case constants using the target preferred 7003 // extend unless the switch condition is a function argument with an extend 7004 // attribute. In that case, we can avoid an unnecessary mask/extension by 7005 // matching the argument extension instead. 7006 Instruction::CastOps ExtType = Instruction::ZExt; 7007 // Some targets prefer SExt over ZExt. 7008 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7009 ExtType = Instruction::SExt; 7010 7011 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7012 if (Arg->hasSExtAttr()) 7013 ExtType = Instruction::SExt; 7014 if (Arg->hasZExtAttr()) 7015 ExtType = Instruction::ZExt; 7016 } 7017 7018 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7019 ExtInst->insertBefore(SI); 7020 ExtInst->setDebugLoc(SI->getDebugLoc()); 7021 SI->setCondition(ExtInst); 7022 for (auto Case : SI->cases()) { 7023 APInt NarrowConst = Case.getCaseValue()->getValue(); 7024 APInt WideConst = (ExtType == Instruction::ZExt) ? 7025 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7026 Case.setValue(ConstantInt::get(Context, WideConst)); 7027 } 7028 7029 return true; 7030 } 7031 7032 7033 namespace { 7034 7035 /// Helper class to promote a scalar operation to a vector one. 7036 /// This class is used to move downward extractelement transition. 7037 /// E.g., 7038 /// a = vector_op <2 x i32> 7039 /// b = extractelement <2 x i32> a, i32 0 7040 /// c = scalar_op b 7041 /// store c 7042 /// 7043 /// => 7044 /// a = vector_op <2 x i32> 7045 /// c = vector_op a (equivalent to scalar_op on the related lane) 7046 /// * d = extractelement <2 x i32> c, i32 0 7047 /// * store d 7048 /// Assuming both extractelement and store can be combine, we get rid of the 7049 /// transition. 7050 class VectorPromoteHelper { 7051 /// DataLayout associated with the current module. 7052 const DataLayout &DL; 7053 7054 /// Used to perform some checks on the legality of vector operations. 7055 const TargetLowering &TLI; 7056 7057 /// Used to estimated the cost of the promoted chain. 7058 const TargetTransformInfo &TTI; 7059 7060 /// The transition being moved downwards. 7061 Instruction *Transition; 7062 7063 /// The sequence of instructions to be promoted. 7064 SmallVector<Instruction *, 4> InstsToBePromoted; 7065 7066 /// Cost of combining a store and an extract. 7067 unsigned StoreExtractCombineCost; 7068 7069 /// Instruction that will be combined with the transition. 7070 Instruction *CombineInst = nullptr; 7071 7072 /// The instruction that represents the current end of the transition. 7073 /// Since we are faking the promotion until we reach the end of the chain 7074 /// of computation, we need a way to get the current end of the transition. 7075 Instruction *getEndOfTransition() const { 7076 if (InstsToBePromoted.empty()) 7077 return Transition; 7078 return InstsToBePromoted.back(); 7079 } 7080 7081 /// Return the index of the original value in the transition. 7082 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7083 /// c, is at index 0. 7084 unsigned getTransitionOriginalValueIdx() const { 7085 assert(isa<ExtractElementInst>(Transition) && 7086 "Other kind of transitions are not supported yet"); 7087 return 0; 7088 } 7089 7090 /// Return the index of the index in the transition. 7091 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7092 /// is at index 1. 7093 unsigned getTransitionIdx() const { 7094 assert(isa<ExtractElementInst>(Transition) && 7095 "Other kind of transitions are not supported yet"); 7096 return 1; 7097 } 7098 7099 /// Get the type of the transition. 7100 /// This is the type of the original value. 7101 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7102 /// transition is <2 x i32>. 7103 Type *getTransitionType() const { 7104 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7105 } 7106 7107 /// Promote \p ToBePromoted by moving \p Def downward through. 7108 /// I.e., we have the following sequence: 7109 /// Def = Transition <ty1> a to <ty2> 7110 /// b = ToBePromoted <ty2> Def, ... 7111 /// => 7112 /// b = ToBePromoted <ty1> a, ... 7113 /// Def = Transition <ty1> ToBePromoted to <ty2> 7114 void promoteImpl(Instruction *ToBePromoted); 7115 7116 /// Check whether or not it is profitable to promote all the 7117 /// instructions enqueued to be promoted. 7118 bool isProfitableToPromote() { 7119 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7120 unsigned Index = isa<ConstantInt>(ValIdx) 7121 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7122 : -1; 7123 Type *PromotedType = getTransitionType(); 7124 7125 StoreInst *ST = cast<StoreInst>(CombineInst); 7126 unsigned AS = ST->getPointerAddressSpace(); 7127 // Check if this store is supported. 7128 if (!TLI.allowsMisalignedMemoryAccesses( 7129 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7130 ST->getAlign())) { 7131 // If this is not supported, there is no way we can combine 7132 // the extract with the store. 7133 return false; 7134 } 7135 7136 // The scalar chain of computation has to pay for the transition 7137 // scalar to vector. 7138 // The vector chain has to account for the combining cost. 7139 InstructionCost ScalarCost = 7140 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7141 InstructionCost VectorCost = StoreExtractCombineCost; 7142 enum TargetTransformInfo::TargetCostKind CostKind = 7143 TargetTransformInfo::TCK_RecipThroughput; 7144 for (const auto &Inst : InstsToBePromoted) { 7145 // Compute the cost. 7146 // By construction, all instructions being promoted are arithmetic ones. 7147 // Moreover, one argument is a constant that can be viewed as a splat 7148 // constant. 7149 Value *Arg0 = Inst->getOperand(0); 7150 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7151 isa<ConstantFP>(Arg0); 7152 TargetTransformInfo::OperandValueKind Arg0OVK = 7153 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7154 : TargetTransformInfo::OK_AnyValue; 7155 TargetTransformInfo::OperandValueKind Arg1OVK = 7156 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7157 : TargetTransformInfo::OK_AnyValue; 7158 ScalarCost += TTI.getArithmeticInstrCost( 7159 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7160 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7161 CostKind, 7162 Arg0OVK, Arg1OVK); 7163 } 7164 LLVM_DEBUG( 7165 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7166 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7167 return ScalarCost > VectorCost; 7168 } 7169 7170 /// Generate a constant vector with \p Val with the same 7171 /// number of elements as the transition. 7172 /// \p UseSplat defines whether or not \p Val should be replicated 7173 /// across the whole vector. 7174 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7175 /// otherwise we generate a vector with as many undef as possible: 7176 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7177 /// used at the index of the extract. 7178 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7179 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7180 if (!UseSplat) { 7181 // If we cannot determine where the constant must be, we have to 7182 // use a splat constant. 7183 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7184 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7185 ExtractIdx = CstVal->getSExtValue(); 7186 else 7187 UseSplat = true; 7188 } 7189 7190 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7191 if (UseSplat) 7192 return ConstantVector::getSplat(EC, Val); 7193 7194 if (!EC.isScalable()) { 7195 SmallVector<Constant *, 4> ConstVec; 7196 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7197 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7198 if (Idx == ExtractIdx) 7199 ConstVec.push_back(Val); 7200 else 7201 ConstVec.push_back(UndefVal); 7202 } 7203 return ConstantVector::get(ConstVec); 7204 } else 7205 llvm_unreachable( 7206 "Generate scalable vector for non-splat is unimplemented"); 7207 } 7208 7209 /// Check if promoting to a vector type an operand at \p OperandIdx 7210 /// in \p Use can trigger undefined behavior. 7211 static bool canCauseUndefinedBehavior(const Instruction *Use, 7212 unsigned OperandIdx) { 7213 // This is not safe to introduce undef when the operand is on 7214 // the right hand side of a division-like instruction. 7215 if (OperandIdx != 1) 7216 return false; 7217 switch (Use->getOpcode()) { 7218 default: 7219 return false; 7220 case Instruction::SDiv: 7221 case Instruction::UDiv: 7222 case Instruction::SRem: 7223 case Instruction::URem: 7224 return true; 7225 case Instruction::FDiv: 7226 case Instruction::FRem: 7227 return !Use->hasNoNaNs(); 7228 } 7229 llvm_unreachable(nullptr); 7230 } 7231 7232 public: 7233 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7234 const TargetTransformInfo &TTI, Instruction *Transition, 7235 unsigned CombineCost) 7236 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7237 StoreExtractCombineCost(CombineCost) { 7238 assert(Transition && "Do not know how to promote null"); 7239 } 7240 7241 /// Check if we can promote \p ToBePromoted to \p Type. 7242 bool canPromote(const Instruction *ToBePromoted) const { 7243 // We could support CastInst too. 7244 return isa<BinaryOperator>(ToBePromoted); 7245 } 7246 7247 /// Check if it is profitable to promote \p ToBePromoted 7248 /// by moving downward the transition through. 7249 bool shouldPromote(const Instruction *ToBePromoted) const { 7250 // Promote only if all the operands can be statically expanded. 7251 // Indeed, we do not want to introduce any new kind of transitions. 7252 for (const Use &U : ToBePromoted->operands()) { 7253 const Value *Val = U.get(); 7254 if (Val == getEndOfTransition()) { 7255 // If the use is a division and the transition is on the rhs, 7256 // we cannot promote the operation, otherwise we may create a 7257 // division by zero. 7258 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7259 return false; 7260 continue; 7261 } 7262 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7263 !isa<ConstantFP>(Val)) 7264 return false; 7265 } 7266 // Check that the resulting operation is legal. 7267 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7268 if (!ISDOpcode) 7269 return false; 7270 return StressStoreExtract || 7271 TLI.isOperationLegalOrCustom( 7272 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7273 } 7274 7275 /// Check whether or not \p Use can be combined 7276 /// with the transition. 7277 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7278 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7279 7280 /// Record \p ToBePromoted as part of the chain to be promoted. 7281 void enqueueForPromotion(Instruction *ToBePromoted) { 7282 InstsToBePromoted.push_back(ToBePromoted); 7283 } 7284 7285 /// Set the instruction that will be combined with the transition. 7286 void recordCombineInstruction(Instruction *ToBeCombined) { 7287 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7288 CombineInst = ToBeCombined; 7289 } 7290 7291 /// Promote all the instructions enqueued for promotion if it is 7292 /// is profitable. 7293 /// \return True if the promotion happened, false otherwise. 7294 bool promote() { 7295 // Check if there is something to promote. 7296 // Right now, if we do not have anything to combine with, 7297 // we assume the promotion is not profitable. 7298 if (InstsToBePromoted.empty() || !CombineInst) 7299 return false; 7300 7301 // Check cost. 7302 if (!StressStoreExtract && !isProfitableToPromote()) 7303 return false; 7304 7305 // Promote. 7306 for (auto &ToBePromoted : InstsToBePromoted) 7307 promoteImpl(ToBePromoted); 7308 InstsToBePromoted.clear(); 7309 return true; 7310 } 7311 }; 7312 7313 } // end anonymous namespace 7314 7315 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7316 // At this point, we know that all the operands of ToBePromoted but Def 7317 // can be statically promoted. 7318 // For Def, we need to use its parameter in ToBePromoted: 7319 // b = ToBePromoted ty1 a 7320 // Def = Transition ty1 b to ty2 7321 // Move the transition down. 7322 // 1. Replace all uses of the promoted operation by the transition. 7323 // = ... b => = ... Def. 7324 assert(ToBePromoted->getType() == Transition->getType() && 7325 "The type of the result of the transition does not match " 7326 "the final type"); 7327 ToBePromoted->replaceAllUsesWith(Transition); 7328 // 2. Update the type of the uses. 7329 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7330 Type *TransitionTy = getTransitionType(); 7331 ToBePromoted->mutateType(TransitionTy); 7332 // 3. Update all the operands of the promoted operation with promoted 7333 // operands. 7334 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7335 for (Use &U : ToBePromoted->operands()) { 7336 Value *Val = U.get(); 7337 Value *NewVal = nullptr; 7338 if (Val == Transition) 7339 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7340 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7341 isa<ConstantFP>(Val)) { 7342 // Use a splat constant if it is not safe to use undef. 7343 NewVal = getConstantVector( 7344 cast<Constant>(Val), 7345 isa<UndefValue>(Val) || 7346 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7347 } else 7348 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7349 "this?"); 7350 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7351 } 7352 Transition->moveAfter(ToBePromoted); 7353 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7354 } 7355 7356 /// Some targets can do store(extractelement) with one instruction. 7357 /// Try to push the extractelement towards the stores when the target 7358 /// has this feature and this is profitable. 7359 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7360 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7361 if (DisableStoreExtract || 7362 (!StressStoreExtract && 7363 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7364 Inst->getOperand(1), CombineCost))) 7365 return false; 7366 7367 // At this point we know that Inst is a vector to scalar transition. 7368 // Try to move it down the def-use chain, until: 7369 // - We can combine the transition with its single use 7370 // => we got rid of the transition. 7371 // - We escape the current basic block 7372 // => we would need to check that we are moving it at a cheaper place and 7373 // we do not do that for now. 7374 BasicBlock *Parent = Inst->getParent(); 7375 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7376 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7377 // If the transition has more than one use, assume this is not going to be 7378 // beneficial. 7379 while (Inst->hasOneUse()) { 7380 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7381 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7382 7383 if (ToBePromoted->getParent() != Parent) { 7384 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7385 << ToBePromoted->getParent()->getName() 7386 << ") than the transition (" << Parent->getName() 7387 << ").\n"); 7388 return false; 7389 } 7390 7391 if (VPH.canCombine(ToBePromoted)) { 7392 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7393 << "will be combined with: " << *ToBePromoted << '\n'); 7394 VPH.recordCombineInstruction(ToBePromoted); 7395 bool Changed = VPH.promote(); 7396 NumStoreExtractExposed += Changed; 7397 return Changed; 7398 } 7399 7400 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7401 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7402 return false; 7403 7404 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7405 7406 VPH.enqueueForPromotion(ToBePromoted); 7407 Inst = ToBePromoted; 7408 } 7409 return false; 7410 } 7411 7412 /// For the instruction sequence of store below, F and I values 7413 /// are bundled together as an i64 value before being stored into memory. 7414 /// Sometimes it is more efficient to generate separate stores for F and I, 7415 /// which can remove the bitwise instructions or sink them to colder places. 7416 /// 7417 /// (store (or (zext (bitcast F to i32) to i64), 7418 /// (shl (zext I to i64), 32)), addr) --> 7419 /// (store F, addr) and (store I, addr+4) 7420 /// 7421 /// Similarly, splitting for other merged store can also be beneficial, like: 7422 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7423 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7424 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7425 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7426 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7427 /// 7428 /// We allow each target to determine specifically which kind of splitting is 7429 /// supported. 7430 /// 7431 /// The store patterns are commonly seen from the simple code snippet below 7432 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7433 /// void goo(const std::pair<int, float> &); 7434 /// hoo() { 7435 /// ... 7436 /// goo(std::make_pair(tmp, ftmp)); 7437 /// ... 7438 /// } 7439 /// 7440 /// Although we already have similar splitting in DAG Combine, we duplicate 7441 /// it in CodeGenPrepare to catch the case in which pattern is across 7442 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7443 /// during code expansion. 7444 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7445 const TargetLowering &TLI) { 7446 // Handle simple but common cases only. 7447 Type *StoreType = SI.getValueOperand()->getType(); 7448 7449 // The code below assumes shifting a value by <number of bits>, 7450 // whereas scalable vectors would have to be shifted by 7451 // <2log(vscale) + number of bits> in order to store the 7452 // low/high parts. Bailing out for now. 7453 if (isa<ScalableVectorType>(StoreType)) 7454 return false; 7455 7456 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7457 DL.getTypeSizeInBits(StoreType) == 0) 7458 return false; 7459 7460 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7461 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7462 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7463 return false; 7464 7465 // Don't split the store if it is volatile. 7466 if (SI.isVolatile()) 7467 return false; 7468 7469 // Match the following patterns: 7470 // (store (or (zext LValue to i64), 7471 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7472 // or 7473 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7474 // (zext LValue to i64), 7475 // Expect both operands of OR and the first operand of SHL have only 7476 // one use. 7477 Value *LValue, *HValue; 7478 if (!match(SI.getValueOperand(), 7479 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7480 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7481 m_SpecificInt(HalfValBitSize)))))) 7482 return false; 7483 7484 // Check LValue and HValue are int with size less or equal than 32. 7485 if (!LValue->getType()->isIntegerTy() || 7486 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7487 !HValue->getType()->isIntegerTy() || 7488 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7489 return false; 7490 7491 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7492 // as the input of target query. 7493 auto *LBC = dyn_cast<BitCastInst>(LValue); 7494 auto *HBC = dyn_cast<BitCastInst>(HValue); 7495 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7496 : EVT::getEVT(LValue->getType()); 7497 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7498 : EVT::getEVT(HValue->getType()); 7499 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7500 return false; 7501 7502 // Start to split store. 7503 IRBuilder<> Builder(SI.getContext()); 7504 Builder.SetInsertPoint(&SI); 7505 7506 // If LValue/HValue is a bitcast in another BB, create a new one in current 7507 // BB so it may be merged with the splitted stores by dag combiner. 7508 if (LBC && LBC->getParent() != SI.getParent()) 7509 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7510 if (HBC && HBC->getParent() != SI.getParent()) 7511 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7512 7513 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7514 auto CreateSplitStore = [&](Value *V, bool Upper) { 7515 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7516 Value *Addr = Builder.CreateBitCast( 7517 SI.getOperand(1), 7518 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7519 Align Alignment = SI.getAlign(); 7520 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7521 if (IsOffsetStore) { 7522 Addr = Builder.CreateGEP( 7523 SplitStoreType, Addr, 7524 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7525 7526 // When splitting the store in half, naturally one half will retain the 7527 // alignment of the original wider store, regardless of whether it was 7528 // over-aligned or not, while the other will require adjustment. 7529 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7530 } 7531 Builder.CreateAlignedStore(V, Addr, Alignment); 7532 }; 7533 7534 CreateSplitStore(LValue, false); 7535 CreateSplitStore(HValue, true); 7536 7537 // Delete the old store. 7538 SI.eraseFromParent(); 7539 return true; 7540 } 7541 7542 // Return true if the GEP has two operands, the first operand is of a sequential 7543 // type, and the second operand is a constant. 7544 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7545 gep_type_iterator I = gep_type_begin(*GEP); 7546 return GEP->getNumOperands() == 2 && 7547 I.isSequential() && 7548 isa<ConstantInt>(GEP->getOperand(1)); 7549 } 7550 7551 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7552 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7553 // reducing liveness interference across those edges benefits global register 7554 // allocation. Currently handles only certain cases. 7555 // 7556 // For example, unmerge %GEPI and %UGEPI as below. 7557 // 7558 // ---------- BEFORE ---------- 7559 // SrcBlock: 7560 // ... 7561 // %GEPIOp = ... 7562 // ... 7563 // %GEPI = gep %GEPIOp, Idx 7564 // ... 7565 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7566 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7567 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7568 // %UGEPI) 7569 // 7570 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7571 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7572 // ... 7573 // 7574 // DstBi: 7575 // ... 7576 // %UGEPI = gep %GEPIOp, UIdx 7577 // ... 7578 // --------------------------- 7579 // 7580 // ---------- AFTER ---------- 7581 // SrcBlock: 7582 // ... (same as above) 7583 // (* %GEPI is still alive on the indirectbr edges) 7584 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7585 // unmerging) 7586 // ... 7587 // 7588 // DstBi: 7589 // ... 7590 // %UGEPI = gep %GEPI, (UIdx-Idx) 7591 // ... 7592 // --------------------------- 7593 // 7594 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7595 // no longer alive on them. 7596 // 7597 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7598 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7599 // not to disable further simplications and optimizations as a result of GEP 7600 // merging. 7601 // 7602 // Note this unmerging may increase the length of the data flow critical path 7603 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7604 // between the register pressure and the length of data-flow critical 7605 // path. Restricting this to the uncommon IndirectBr case would minimize the 7606 // impact of potentially longer critical path, if any, and the impact on compile 7607 // time. 7608 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7609 const TargetTransformInfo *TTI) { 7610 BasicBlock *SrcBlock = GEPI->getParent(); 7611 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7612 // (non-IndirectBr) cases exit early here. 7613 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7614 return false; 7615 // Check that GEPI is a simple gep with a single constant index. 7616 if (!GEPSequentialConstIndexed(GEPI)) 7617 return false; 7618 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7619 // Check that GEPI is a cheap one. 7620 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7621 TargetTransformInfo::TCK_SizeAndLatency) 7622 > TargetTransformInfo::TCC_Basic) 7623 return false; 7624 Value *GEPIOp = GEPI->getOperand(0); 7625 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7626 if (!isa<Instruction>(GEPIOp)) 7627 return false; 7628 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7629 if (GEPIOpI->getParent() != SrcBlock) 7630 return false; 7631 // Check that GEP is used outside the block, meaning it's alive on the 7632 // IndirectBr edge(s). 7633 if (find_if(GEPI->users(), [&](User *Usr) { 7634 if (auto *I = dyn_cast<Instruction>(Usr)) { 7635 if (I->getParent() != SrcBlock) { 7636 return true; 7637 } 7638 } 7639 return false; 7640 }) == GEPI->users().end()) 7641 return false; 7642 // The second elements of the GEP chains to be unmerged. 7643 std::vector<GetElementPtrInst *> UGEPIs; 7644 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7645 // on IndirectBr edges. 7646 for (User *Usr : GEPIOp->users()) { 7647 if (Usr == GEPI) continue; 7648 // Check if Usr is an Instruction. If not, give up. 7649 if (!isa<Instruction>(Usr)) 7650 return false; 7651 auto *UI = cast<Instruction>(Usr); 7652 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7653 if (UI->getParent() == SrcBlock) 7654 continue; 7655 // Check if Usr is a GEP. If not, give up. 7656 if (!isa<GetElementPtrInst>(Usr)) 7657 return false; 7658 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7659 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7660 // the pointer operand to it. If so, record it in the vector. If not, give 7661 // up. 7662 if (!GEPSequentialConstIndexed(UGEPI)) 7663 return false; 7664 if (UGEPI->getOperand(0) != GEPIOp) 7665 return false; 7666 if (GEPIIdx->getType() != 7667 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7668 return false; 7669 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7670 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7671 TargetTransformInfo::TCK_SizeAndLatency) 7672 > TargetTransformInfo::TCC_Basic) 7673 return false; 7674 UGEPIs.push_back(UGEPI); 7675 } 7676 if (UGEPIs.size() == 0) 7677 return false; 7678 // Check the materializing cost of (Uidx-Idx). 7679 for (GetElementPtrInst *UGEPI : UGEPIs) { 7680 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7681 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7682 InstructionCost ImmCost = TTI->getIntImmCost( 7683 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7684 if (ImmCost > TargetTransformInfo::TCC_Basic) 7685 return false; 7686 } 7687 // Now unmerge between GEPI and UGEPIs. 7688 for (GetElementPtrInst *UGEPI : UGEPIs) { 7689 UGEPI->setOperand(0, GEPI); 7690 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7691 Constant *NewUGEPIIdx = 7692 ConstantInt::get(GEPIIdx->getType(), 7693 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7694 UGEPI->setOperand(1, NewUGEPIIdx); 7695 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7696 // inbounds to avoid UB. 7697 if (!GEPI->isInBounds()) { 7698 UGEPI->setIsInBounds(false); 7699 } 7700 } 7701 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7702 // alive on IndirectBr edges). 7703 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7704 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7705 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7706 return true; 7707 } 7708 7709 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7710 // Try and convert 7711 // %c = icmp ult %x, 8 7712 // br %c, bla, blb 7713 // %tc = lshr %x, 3 7714 // to 7715 // %tc = lshr %x, 3 7716 // %c = icmp eq %tc, 0 7717 // br %c, bla, blb 7718 // Creating the cmp to zero can be better for the backend, especially if the 7719 // lshr produces flags that can be used automatically. 7720 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7721 return false; 7722 7723 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7724 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7725 return false; 7726 7727 Value *X = Cmp->getOperand(0); 7728 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7729 7730 for (auto *U : X->users()) { 7731 Instruction *UI = dyn_cast<Instruction>(U); 7732 // A quick dominance check 7733 if (!UI || 7734 (UI->getParent() != Branch->getParent() && 7735 UI->getParent() != Branch->getSuccessor(0) && 7736 UI->getParent() != Branch->getSuccessor(1)) || 7737 (UI->getParent() != Branch->getParent() && 7738 !UI->getParent()->getSinglePredecessor())) 7739 continue; 7740 7741 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7742 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7743 IRBuilder<> Builder(Branch); 7744 if (UI->getParent() != Branch->getParent()) 7745 UI->moveBefore(Branch); 7746 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7747 ConstantInt::get(UI->getType(), 0)); 7748 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7749 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7750 Cmp->replaceAllUsesWith(NewCmp); 7751 return true; 7752 } 7753 if (Cmp->isEquality() && 7754 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7755 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7756 IRBuilder<> Builder(Branch); 7757 if (UI->getParent() != Branch->getParent()) 7758 UI->moveBefore(Branch); 7759 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7760 ConstantInt::get(UI->getType(), 0)); 7761 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7762 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7763 Cmp->replaceAllUsesWith(NewCmp); 7764 return true; 7765 } 7766 } 7767 return false; 7768 } 7769 7770 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7771 // Bail out if we inserted the instruction to prevent optimizations from 7772 // stepping on each other's toes. 7773 if (InsertedInsts.count(I)) 7774 return false; 7775 7776 // TODO: Move into the switch on opcode below here. 7777 if (PHINode *P = dyn_cast<PHINode>(I)) { 7778 // It is possible for very late stage optimizations (such as SimplifyCFG) 7779 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7780 // trivial PHI, go ahead and zap it here. 7781 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7782 LargeOffsetGEPMap.erase(P); 7783 P->replaceAllUsesWith(V); 7784 P->eraseFromParent(); 7785 ++NumPHIsElim; 7786 return true; 7787 } 7788 return false; 7789 } 7790 7791 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7792 // If the source of the cast is a constant, then this should have 7793 // already been constant folded. The only reason NOT to constant fold 7794 // it is if something (e.g. LSR) was careful to place the constant 7795 // evaluation in a block other than then one that uses it (e.g. to hoist 7796 // the address of globals out of a loop). If this is the case, we don't 7797 // want to forward-subst the cast. 7798 if (isa<Constant>(CI->getOperand(0))) 7799 return false; 7800 7801 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7802 return true; 7803 7804 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7805 /// Sink a zext or sext into its user blocks if the target type doesn't 7806 /// fit in one register 7807 if (TLI->getTypeAction(CI->getContext(), 7808 TLI->getValueType(*DL, CI->getType())) == 7809 TargetLowering::TypeExpandInteger) { 7810 return SinkCast(CI); 7811 } else { 7812 bool MadeChange = optimizeExt(I); 7813 return MadeChange | optimizeExtUses(I); 7814 } 7815 } 7816 return false; 7817 } 7818 7819 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7820 if (optimizeCmp(Cmp, ModifiedDT)) 7821 return true; 7822 7823 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7824 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7825 bool Modified = optimizeLoadExt(LI); 7826 unsigned AS = LI->getPointerAddressSpace(); 7827 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7828 return Modified; 7829 } 7830 7831 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7832 if (splitMergedValStore(*SI, *DL, *TLI)) 7833 return true; 7834 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7835 unsigned AS = SI->getPointerAddressSpace(); 7836 return optimizeMemoryInst(I, SI->getOperand(1), 7837 SI->getOperand(0)->getType(), AS); 7838 } 7839 7840 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7841 unsigned AS = RMW->getPointerAddressSpace(); 7842 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7843 RMW->getType(), AS); 7844 } 7845 7846 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7847 unsigned AS = CmpX->getPointerAddressSpace(); 7848 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7849 CmpX->getCompareOperand()->getType(), AS); 7850 } 7851 7852 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7853 7854 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7855 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7856 return true; 7857 7858 // TODO: Move this into the switch on opcode - it handles shifts already. 7859 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7860 BinOp->getOpcode() == Instruction::LShr)) { 7861 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7862 if (CI && TLI->hasExtractBitsInsn()) 7863 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7864 return true; 7865 } 7866 7867 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7868 if (GEPI->hasAllZeroIndices()) { 7869 /// The GEP operand must be a pointer, so must its result -> BitCast 7870 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7871 GEPI->getName(), GEPI); 7872 NC->setDebugLoc(GEPI->getDebugLoc()); 7873 GEPI->replaceAllUsesWith(NC); 7874 GEPI->eraseFromParent(); 7875 ++NumGEPsElim; 7876 optimizeInst(NC, ModifiedDT); 7877 return true; 7878 } 7879 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7880 return true; 7881 } 7882 return false; 7883 } 7884 7885 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7886 // freeze(icmp a, const)) -> icmp (freeze a), const 7887 // This helps generate efficient conditional jumps. 7888 Instruction *CmpI = nullptr; 7889 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7890 CmpI = II; 7891 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7892 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7893 7894 if (CmpI && CmpI->hasOneUse()) { 7895 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7896 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7897 isa<ConstantPointerNull>(Op0); 7898 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7899 isa<ConstantPointerNull>(Op1); 7900 if (Const0 || Const1) { 7901 if (!Const0 || !Const1) { 7902 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7903 F->takeName(FI); 7904 CmpI->setOperand(Const0 ? 1 : 0, F); 7905 } 7906 FI->replaceAllUsesWith(CmpI); 7907 FI->eraseFromParent(); 7908 return true; 7909 } 7910 } 7911 return false; 7912 } 7913 7914 if (tryToSinkFreeOperands(I)) 7915 return true; 7916 7917 switch (I->getOpcode()) { 7918 case Instruction::Shl: 7919 case Instruction::LShr: 7920 case Instruction::AShr: 7921 return optimizeShiftInst(cast<BinaryOperator>(I)); 7922 case Instruction::Call: 7923 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7924 case Instruction::Select: 7925 return optimizeSelectInst(cast<SelectInst>(I)); 7926 case Instruction::ShuffleVector: 7927 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7928 case Instruction::Switch: 7929 return optimizeSwitchInst(cast<SwitchInst>(I)); 7930 case Instruction::ExtractElement: 7931 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7932 case Instruction::Br: 7933 return optimizeBranch(cast<BranchInst>(I), *TLI); 7934 } 7935 7936 return false; 7937 } 7938 7939 /// Given an OR instruction, check to see if this is a bitreverse 7940 /// idiom. If so, insert the new intrinsic and return true. 7941 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7942 if (!I.getType()->isIntegerTy() || 7943 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7944 TLI->getValueType(*DL, I.getType(), true))) 7945 return false; 7946 7947 SmallVector<Instruction*, 4> Insts; 7948 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7949 return false; 7950 Instruction *LastInst = Insts.back(); 7951 I.replaceAllUsesWith(LastInst); 7952 RecursivelyDeleteTriviallyDeadInstructions( 7953 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7954 return true; 7955 } 7956 7957 // In this pass we look for GEP and cast instructions that are used 7958 // across basic blocks and rewrite them to improve basic-block-at-a-time 7959 // selection. 7960 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7961 SunkAddrs.clear(); 7962 bool MadeChange = false; 7963 7964 CurInstIterator = BB.begin(); 7965 while (CurInstIterator != BB.end()) { 7966 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7967 if (ModifiedDT) 7968 return true; 7969 } 7970 7971 bool MadeBitReverse = true; 7972 while (MadeBitReverse) { 7973 MadeBitReverse = false; 7974 for (auto &I : reverse(BB)) { 7975 if (makeBitReverse(I)) { 7976 MadeBitReverse = MadeChange = true; 7977 break; 7978 } 7979 } 7980 } 7981 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7982 7983 return MadeChange; 7984 } 7985 7986 // Some CGP optimizations may move or alter what's computed in a block. Check 7987 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7988 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7989 assert(isa<DbgValueInst>(I)); 7990 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7991 7992 // Does this dbg.value refer to a sunk address calculation? 7993 bool AnyChange = false; 7994 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 7995 DVI.location_ops().end()); 7996 for (Value *Location : LocationOps) { 7997 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7998 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7999 if (SunkAddr) { 8000 // Point dbg.value at locally computed address, which should give the best 8001 // opportunity to be accurately lowered. This update may change the type 8002 // of pointer being referred to; however this makes no difference to 8003 // debugging information, and we can't generate bitcasts that may affect 8004 // codegen. 8005 DVI.replaceVariableLocationOp(Location, SunkAddr); 8006 AnyChange = true; 8007 } 8008 } 8009 return AnyChange; 8010 } 8011 8012 // A llvm.dbg.value may be using a value before its definition, due to 8013 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8014 // them by moving the dbg.value to immediately after the value definition. 8015 // FIXME: Ideally this should never be necessary, and this has the potential 8016 // to re-order dbg.value intrinsics. 8017 bool CodeGenPrepare::placeDbgValues(Function &F) { 8018 bool MadeChange = false; 8019 DominatorTree DT(F); 8020 8021 for (BasicBlock &BB : F) { 8022 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8023 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8024 if (!DVI) 8025 continue; 8026 8027 SmallVector<Instruction *, 4> VIs; 8028 for (Value *V : DVI->getValues()) 8029 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8030 VIs.push_back(VI); 8031 8032 // This DVI may depend on multiple instructions, complicating any 8033 // potential sink. This block takes the defensive approach, opting to 8034 // "undef" the DVI if it has more than one instruction and any of them do 8035 // not dominate DVI. 8036 for (Instruction *VI : VIs) { 8037 if (VI->isTerminator()) 8038 continue; 8039 8040 // If VI is a phi in a block with an EHPad terminator, we can't insert 8041 // after it. 8042 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8043 continue; 8044 8045 // If the defining instruction dominates the dbg.value, we do not need 8046 // to move the dbg.value. 8047 if (DT.dominates(VI, DVI)) 8048 continue; 8049 8050 // If we depend on multiple instructions and any of them doesn't 8051 // dominate this DVI, we probably can't salvage it: moving it to 8052 // after any of the instructions could cause us to lose the others. 8053 if (VIs.size() > 1) { 8054 LLVM_DEBUG( 8055 dbgs() 8056 << "Unable to find valid location for Debug Value, undefing:\n" 8057 << *DVI); 8058 DVI->setUndef(); 8059 break; 8060 } 8061 8062 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8063 << *DVI << ' ' << *VI); 8064 DVI->removeFromParent(); 8065 if (isa<PHINode>(VI)) 8066 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8067 else 8068 DVI->insertAfter(VI); 8069 MadeChange = true; 8070 ++NumDbgValueMoved; 8071 } 8072 } 8073 } 8074 return MadeChange; 8075 } 8076 8077 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8078 // probes can be chained dependencies of other regular DAG nodes and block DAG 8079 // combine optimizations. 8080 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8081 bool MadeChange = false; 8082 for (auto &Block : F) { 8083 // Move the rest probes to the beginning of the block. 8084 auto FirstInst = Block.getFirstInsertionPt(); 8085 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8086 ++FirstInst; 8087 BasicBlock::iterator I(FirstInst); 8088 I++; 8089 while (I != Block.end()) { 8090 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8091 II->moveBefore(&*FirstInst); 8092 MadeChange = true; 8093 } 8094 } 8095 } 8096 return MadeChange; 8097 } 8098 8099 /// Scale down both weights to fit into uint32_t. 8100 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8101 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8102 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8103 NewTrue = NewTrue / Scale; 8104 NewFalse = NewFalse / Scale; 8105 } 8106 8107 /// Some targets prefer to split a conditional branch like: 8108 /// \code 8109 /// %0 = icmp ne i32 %a, 0 8110 /// %1 = icmp ne i32 %b, 0 8111 /// %or.cond = or i1 %0, %1 8112 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8113 /// \endcode 8114 /// into multiple branch instructions like: 8115 /// \code 8116 /// bb1: 8117 /// %0 = icmp ne i32 %a, 0 8118 /// br i1 %0, label %TrueBB, label %bb2 8119 /// bb2: 8120 /// %1 = icmp ne i32 %b, 0 8121 /// br i1 %1, label %TrueBB, label %FalseBB 8122 /// \endcode 8123 /// This usually allows instruction selection to do even further optimizations 8124 /// and combine the compare with the branch instruction. Currently this is 8125 /// applied for targets which have "cheap" jump instructions. 8126 /// 8127 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8128 /// 8129 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8130 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8131 return false; 8132 8133 bool MadeChange = false; 8134 for (auto &BB : F) { 8135 // Does this BB end with the following? 8136 // %cond1 = icmp|fcmp|binary instruction ... 8137 // %cond2 = icmp|fcmp|binary instruction ... 8138 // %cond.or = or|and i1 %cond1, cond2 8139 // br i1 %cond.or label %dest1, label %dest2" 8140 Instruction *LogicOp; 8141 BasicBlock *TBB, *FBB; 8142 if (!match(BB.getTerminator(), 8143 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8144 continue; 8145 8146 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8147 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8148 continue; 8149 8150 // The merging of mostly empty BB can cause a degenerate branch. 8151 if (TBB == FBB) 8152 continue; 8153 8154 unsigned Opc; 8155 Value *Cond1, *Cond2; 8156 if (match(LogicOp, 8157 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8158 Opc = Instruction::And; 8159 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8160 m_OneUse(m_Value(Cond2))))) 8161 Opc = Instruction::Or; 8162 else 8163 continue; 8164 8165 auto IsGoodCond = [](Value *Cond) { 8166 return match( 8167 Cond, 8168 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8169 m_LogicalOr(m_Value(), m_Value())))); 8170 }; 8171 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8172 continue; 8173 8174 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8175 8176 // Create a new BB. 8177 auto *TmpBB = 8178 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8179 BB.getParent(), BB.getNextNode()); 8180 8181 // Update original basic block by using the first condition directly by the 8182 // branch instruction and removing the no longer needed and/or instruction. 8183 Br1->setCondition(Cond1); 8184 LogicOp->eraseFromParent(); 8185 8186 // Depending on the condition we have to either replace the true or the 8187 // false successor of the original branch instruction. 8188 if (Opc == Instruction::And) 8189 Br1->setSuccessor(0, TmpBB); 8190 else 8191 Br1->setSuccessor(1, TmpBB); 8192 8193 // Fill in the new basic block. 8194 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8195 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8196 I->removeFromParent(); 8197 I->insertBefore(Br2); 8198 } 8199 8200 // Update PHI nodes in both successors. The original BB needs to be 8201 // replaced in one successor's PHI nodes, because the branch comes now from 8202 // the newly generated BB (NewBB). In the other successor we need to add one 8203 // incoming edge to the PHI nodes, because both branch instructions target 8204 // now the same successor. Depending on the original branch condition 8205 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8206 // we perform the correct update for the PHI nodes. 8207 // This doesn't change the successor order of the just created branch 8208 // instruction (or any other instruction). 8209 if (Opc == Instruction::Or) 8210 std::swap(TBB, FBB); 8211 8212 // Replace the old BB with the new BB. 8213 TBB->replacePhiUsesWith(&BB, TmpBB); 8214 8215 // Add another incoming edge form the new BB. 8216 for (PHINode &PN : FBB->phis()) { 8217 auto *Val = PN.getIncomingValueForBlock(&BB); 8218 PN.addIncoming(Val, TmpBB); 8219 } 8220 8221 // Update the branch weights (from SelectionDAGBuilder:: 8222 // FindMergedConditions). 8223 if (Opc == Instruction::Or) { 8224 // Codegen X | Y as: 8225 // BB1: 8226 // jmp_if_X TBB 8227 // jmp TmpBB 8228 // TmpBB: 8229 // jmp_if_Y TBB 8230 // jmp FBB 8231 // 8232 8233 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8234 // The requirement is that 8235 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8236 // = TrueProb for original BB. 8237 // Assuming the original weights are A and B, one choice is to set BB1's 8238 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8239 // assumes that 8240 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8241 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8242 // TmpBB, but the math is more complicated. 8243 uint64_t TrueWeight, FalseWeight; 8244 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8245 uint64_t NewTrueWeight = TrueWeight; 8246 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8247 scaleWeights(NewTrueWeight, NewFalseWeight); 8248 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8249 .createBranchWeights(TrueWeight, FalseWeight)); 8250 8251 NewTrueWeight = TrueWeight; 8252 NewFalseWeight = 2 * FalseWeight; 8253 scaleWeights(NewTrueWeight, NewFalseWeight); 8254 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8255 .createBranchWeights(TrueWeight, FalseWeight)); 8256 } 8257 } else { 8258 // Codegen X & Y as: 8259 // BB1: 8260 // jmp_if_X TmpBB 8261 // jmp FBB 8262 // TmpBB: 8263 // jmp_if_Y TBB 8264 // jmp FBB 8265 // 8266 // This requires creation of TmpBB after CurBB. 8267 8268 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8269 // The requirement is that 8270 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8271 // = FalseProb for original BB. 8272 // Assuming the original weights are A and B, one choice is to set BB1's 8273 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8274 // assumes that 8275 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8276 uint64_t TrueWeight, FalseWeight; 8277 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8278 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8279 uint64_t NewFalseWeight = FalseWeight; 8280 scaleWeights(NewTrueWeight, NewFalseWeight); 8281 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8282 .createBranchWeights(TrueWeight, FalseWeight)); 8283 8284 NewTrueWeight = 2 * TrueWeight; 8285 NewFalseWeight = FalseWeight; 8286 scaleWeights(NewTrueWeight, NewFalseWeight); 8287 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8288 .createBranchWeights(TrueWeight, FalseWeight)); 8289 } 8290 } 8291 8292 ModifiedDT = true; 8293 MadeChange = true; 8294 8295 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8296 TmpBB->dump()); 8297 } 8298 return MadeChange; 8299 } 8300