1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<unsigned> FreqRatioToSkipMerge( 181 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 182 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 183 "(frequency of destination block) is greater than this ratio")); 184 185 static cl::opt<bool> ForceSplitStore( 186 "force-split-store", cl::Hidden, cl::init(false), 187 cl::desc("Force store splitting no matter what the target query says.")); 188 189 static cl::opt<bool> 190 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 191 cl::desc("Enable merging of redundant sexts when one is dominating" 192 " the other."), cl::init(true)); 193 194 static cl::opt<bool> DisableComplexAddrModes( 195 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 196 cl::desc("Disables combining addressing modes with different parts " 197 "in optimizeMemoryInst.")); 198 199 static cl::opt<bool> 200 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 201 cl::desc("Allow creation of Phis in Address sinking.")); 202 203 static cl::opt<bool> 204 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 205 cl::desc("Allow creation of selects in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseReg( 208 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseReg field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseGV( 212 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseGV field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineBaseOffs( 216 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 218 219 static cl::opt<bool> AddrSinkCombineScaledReg( 220 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 221 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 222 223 static cl::opt<bool> 224 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 225 cl::init(true), 226 cl::desc("Enable splitting large offset of GEP.")); 227 228 static cl::opt<bool> EnableICMP_EQToICMP_ST( 229 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 230 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 231 232 namespace { 233 234 enum ExtType { 235 ZeroExtension, // Zero extension has been seen. 236 SignExtension, // Sign extension has been seen. 237 BothExtension // This extension type is used if we saw sext after 238 // ZeroExtension had been set, or if we saw zext after 239 // SignExtension had been set. It makes the type 240 // information of a promoted instruction invalid. 241 }; 242 243 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 244 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 245 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 246 using SExts = SmallVector<Instruction *, 16>; 247 using ValueToSExts = DenseMap<Value *, SExts>; 248 249 class TypePromotionTransaction; 250 251 class CodeGenPrepare : public FunctionPass { 252 const TargetMachine *TM = nullptr; 253 const TargetSubtargetInfo *SubtargetInfo; 254 const TargetLowering *TLI = nullptr; 255 const TargetRegisterInfo *TRI; 256 const TargetTransformInfo *TTI = nullptr; 257 const TargetLibraryInfo *TLInfo; 258 const LoopInfo *LI; 259 std::unique_ptr<BlockFrequencyInfo> BFI; 260 std::unique_ptr<BranchProbabilityInfo> BPI; 261 ProfileSummaryInfo *PSI; 262 263 /// As we scan instructions optimizing them, this is the next instruction 264 /// to optimize. Transforms that can invalidate this should update it. 265 BasicBlock::iterator CurInstIterator; 266 267 /// Keeps track of non-local addresses that have been sunk into a block. 268 /// This allows us to avoid inserting duplicate code for blocks with 269 /// multiple load/stores of the same address. The usage of WeakTrackingVH 270 /// enables SunkAddrs to be treated as a cache whose entries can be 271 /// invalidated if a sunken address computation has been erased. 272 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 273 274 /// Keeps track of all instructions inserted for the current function. 275 SetOfInstrs InsertedInsts; 276 277 /// Keeps track of the type of the related instruction before their 278 /// promotion for the current function. 279 InstrToOrigTy PromotedInsts; 280 281 /// Keep track of instructions removed during promotion. 282 SetOfInstrs RemovedInsts; 283 284 /// Keep track of sext chains based on their initial value. 285 DenseMap<Value *, Instruction *> SeenChainsForSExt; 286 287 /// Keep track of GEPs accessing the same data structures such as structs or 288 /// arrays that are candidates to be split later because of their large 289 /// size. 290 MapVector< 291 AssertingVH<Value>, 292 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 293 LargeOffsetGEPMap; 294 295 /// Keep track of new GEP base after splitting the GEPs having large offset. 296 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 297 298 /// Map serial numbers to Large offset GEPs. 299 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 300 301 /// Keep track of SExt promoted. 302 ValueToSExts ValToSExtendedUses; 303 304 /// True if the function has the OptSize attribute. 305 bool OptSize; 306 307 /// DataLayout for the Function being processed. 308 const DataLayout *DL = nullptr; 309 310 /// Building the dominator tree can be expensive, so we only build it 311 /// lazily and update it when required. 312 std::unique_ptr<DominatorTree> DT; 313 314 public: 315 static char ID; // Pass identification, replacement for typeid 316 317 CodeGenPrepare() : FunctionPass(ID) { 318 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 319 } 320 321 bool runOnFunction(Function &F) override; 322 323 StringRef getPassName() const override { return "CodeGen Prepare"; } 324 325 void getAnalysisUsage(AnalysisUsage &AU) const override { 326 // FIXME: When we can selectively preserve passes, preserve the domtree. 327 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 328 AU.addRequired<TargetLibraryInfoWrapperPass>(); 329 AU.addRequired<TargetPassConfig>(); 330 AU.addRequired<TargetTransformInfoWrapperPass>(); 331 AU.addRequired<LoopInfoWrapperPass>(); 332 } 333 334 private: 335 template <typename F> 336 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 337 // Substituting can cause recursive simplifications, which can invalidate 338 // our iterator. Use a WeakTrackingVH to hold onto it in case this 339 // happens. 340 Value *CurValue = &*CurInstIterator; 341 WeakTrackingVH IterHandle(CurValue); 342 343 f(); 344 345 // If the iterator instruction was recursively deleted, start over at the 346 // start of the block. 347 if (IterHandle != CurValue) { 348 CurInstIterator = BB->begin(); 349 SunkAddrs.clear(); 350 } 351 } 352 353 // Get the DominatorTree, building if necessary. 354 DominatorTree &getDT(Function &F) { 355 if (!DT) 356 DT = std::make_unique<DominatorTree>(F); 357 return *DT; 358 } 359 360 bool eliminateFallThrough(Function &F); 361 bool eliminateMostlyEmptyBlocks(Function &F); 362 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 363 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 364 void eliminateMostlyEmptyBlock(BasicBlock *BB); 365 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 366 bool isPreheader); 367 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 368 bool optimizeInst(Instruction *I, bool &ModifiedDT); 369 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 370 Type *AccessTy, unsigned AddrSpace); 371 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 403 Value *Arg1, CmpInst *Cmp, 404 Intrinsic::ID IID); 405 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 408 }; 409 410 } // end anonymous namespace 411 412 char CodeGenPrepare::ID = 0; 413 414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 415 "Optimize for code generation", false, false) 416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 418 "Optimize for code generation", false, false) 419 420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 421 422 bool CodeGenPrepare::runOnFunction(Function &F) { 423 if (skipFunction(F)) 424 return false; 425 426 DL = &F.getParent()->getDataLayout(); 427 428 bool EverMadeChange = false; 429 // Clear per function information. 430 InsertedInsts.clear(); 431 PromotedInsts.clear(); 432 433 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 434 SubtargetInfo = TM->getSubtargetImpl(F); 435 TLI = SubtargetInfo->getTargetLowering(); 436 TRI = SubtargetInfo->getRegisterInfo(); 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 454 const DenseMap<unsigned int, unsigned int> &BypassWidths = 455 TLI->getBypassSlowDivWidths(); 456 BasicBlock* BB = &*F.begin(); 457 while (BB != nullptr) { 458 // bypassSlowDivision may create new BBs, but we don't want to reapply the 459 // optimization to those blocks. 460 BasicBlock* Next = BB->getNextNode(); 461 // F.hasOptSize is already checked in the outer if statement. 462 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 463 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 464 BB = Next; 465 } 466 } 467 468 // Eliminate blocks that contain only PHI nodes and an 469 // unconditional branch. 470 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 471 472 bool ModifiedDT = false; 473 if (!DisableBranchOpts) 474 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 475 476 // Split some critical edges where one of the sources is an indirect branch, 477 // to help generate sane code for PHIs involving such edges. 478 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 479 480 bool MadeChange = true; 481 while (MadeChange) { 482 MadeChange = false; 483 DT.reset(); 484 for (Function::iterator I = F.begin(); I != F.end(); ) { 485 BasicBlock *BB = &*I++; 486 bool ModifiedDTOnIteration = false; 487 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 488 489 // Restart BB iteration if the dominator tree of the Function was changed 490 if (ModifiedDTOnIteration) 491 break; 492 } 493 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 494 MadeChange |= mergeSExts(F); 495 if (!LargeOffsetGEPMap.empty()) 496 MadeChange |= splitLargeGEPOffsets(); 497 498 if (MadeChange) 499 eliminateFallThrough(F); 500 501 // Really free removed instructions during promotion. 502 for (Instruction *I : RemovedInsts) 503 I->deleteValue(); 504 505 EverMadeChange |= MadeChange; 506 SeenChainsForSExt.clear(); 507 ValToSExtendedUses.clear(); 508 RemovedInsts.clear(); 509 LargeOffsetGEPMap.clear(); 510 LargeOffsetGEPID.clear(); 511 } 512 513 SunkAddrs.clear(); 514 515 if (!DisableBranchOpts) { 516 MadeChange = false; 517 // Use a set vector to get deterministic iteration order. The order the 518 // blocks are removed may affect whether or not PHI nodes in successors 519 // are removed. 520 SmallSetVector<BasicBlock*, 8> WorkList; 521 for (BasicBlock &BB : F) { 522 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 523 MadeChange |= ConstantFoldTerminator(&BB, true); 524 if (!MadeChange) continue; 525 526 for (SmallVectorImpl<BasicBlock*>::iterator 527 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 528 if (pred_begin(*II) == pred_end(*II)) 529 WorkList.insert(*II); 530 } 531 532 // Delete the dead blocks and any of their dead successors. 533 MadeChange |= !WorkList.empty(); 534 while (!WorkList.empty()) { 535 BasicBlock *BB = WorkList.pop_back_val(); 536 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 537 538 DeleteDeadBlock(BB); 539 540 for (SmallVectorImpl<BasicBlock*>::iterator 541 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 542 if (pred_begin(*II) == pred_end(*II)) 543 WorkList.insert(*II); 544 } 545 546 // Merge pairs of basic blocks with unconditional branches, connected by 547 // a single edge. 548 if (EverMadeChange || MadeChange) 549 MadeChange |= eliminateFallThrough(F); 550 551 EverMadeChange |= MadeChange; 552 } 553 554 if (!DisableGCOpts) { 555 SmallVector<Instruction *, 2> Statepoints; 556 for (BasicBlock &BB : F) 557 for (Instruction &I : BB) 558 if (isStatepoint(I)) 559 Statepoints.push_back(&I); 560 for (auto &I : Statepoints) 561 EverMadeChange |= simplifyOffsetableRelocate(*I); 562 } 563 564 // Do this last to clean up use-before-def scenarios introduced by other 565 // preparatory transforms. 566 EverMadeChange |= placeDbgValues(F); 567 568 return EverMadeChange; 569 } 570 571 /// Merge basic blocks which are connected by a single edge, where one of the 572 /// basic blocks has a single successor pointing to the other basic block, 573 /// which has a single predecessor. 574 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 575 bool Changed = false; 576 // Scan all of the blocks in the function, except for the entry block. 577 // Use a temporary array to avoid iterator being invalidated when 578 // deleting blocks. 579 SmallVector<WeakTrackingVH, 16> Blocks; 580 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 581 Blocks.push_back(&Block); 582 583 for (auto &Block : Blocks) { 584 auto *BB = cast_or_null<BasicBlock>(Block); 585 if (!BB) 586 continue; 587 // If the destination block has a single pred, then this is a trivial 588 // edge, just collapse it. 589 BasicBlock *SinglePred = BB->getSinglePredecessor(); 590 591 // Don't merge if BB's address is taken. 592 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 593 594 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 595 if (Term && !Term->isConditional()) { 596 Changed = true; 597 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 598 599 // Merge BB into SinglePred and delete it. 600 MergeBlockIntoPredecessor(BB); 601 } 602 } 603 return Changed; 604 } 605 606 /// Find a destination block from BB if BB is mergeable empty block. 607 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 608 // If this block doesn't end with an uncond branch, ignore it. 609 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 610 if (!BI || !BI->isUnconditional()) 611 return nullptr; 612 613 // If the instruction before the branch (skipping debug info) isn't a phi 614 // node, then other stuff is happening here. 615 BasicBlock::iterator BBI = BI->getIterator(); 616 if (BBI != BB->begin()) { 617 --BBI; 618 while (isa<DbgInfoIntrinsic>(BBI)) { 619 if (BBI == BB->begin()) 620 break; 621 --BBI; 622 } 623 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 624 return nullptr; 625 } 626 627 // Do not break infinite loops. 628 BasicBlock *DestBB = BI->getSuccessor(0); 629 if (DestBB == BB) 630 return nullptr; 631 632 if (!canMergeBlocks(BB, DestBB)) 633 DestBB = nullptr; 634 635 return DestBB; 636 } 637 638 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 639 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 640 /// edges in ways that are non-optimal for isel. Start by eliminating these 641 /// blocks so we can split them the way we want them. 642 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 643 SmallPtrSet<BasicBlock *, 16> Preheaders; 644 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 645 while (!LoopList.empty()) { 646 Loop *L = LoopList.pop_back_val(); 647 LoopList.insert(LoopList.end(), L->begin(), L->end()); 648 if (BasicBlock *Preheader = L->getLoopPreheader()) 649 Preheaders.insert(Preheader); 650 } 651 652 bool MadeChange = false; 653 // Copy blocks into a temporary array to avoid iterator invalidation issues 654 // as we remove them. 655 // Note that this intentionally skips the entry block. 656 SmallVector<WeakTrackingVH, 16> Blocks; 657 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 658 Blocks.push_back(&Block); 659 660 for (auto &Block : Blocks) { 661 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 662 if (!BB) 663 continue; 664 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 665 if (!DestBB || 666 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 667 continue; 668 669 eliminateMostlyEmptyBlock(BB); 670 MadeChange = true; 671 } 672 return MadeChange; 673 } 674 675 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 676 BasicBlock *DestBB, 677 bool isPreheader) { 678 // Do not delete loop preheaders if doing so would create a critical edge. 679 // Loop preheaders can be good locations to spill registers. If the 680 // preheader is deleted and we create a critical edge, registers may be 681 // spilled in the loop body instead. 682 if (!DisablePreheaderProtect && isPreheader && 683 !(BB->getSinglePredecessor() && 684 BB->getSinglePredecessor()->getSingleSuccessor())) 685 return false; 686 687 // Skip merging if the block's successor is also a successor to any callbr 688 // that leads to this block. 689 // FIXME: Is this really needed? Is this a correctness issue? 690 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 691 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 692 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 693 if (DestBB == CBI->getSuccessor(i)) 694 return false; 695 } 696 697 // Try to skip merging if the unique predecessor of BB is terminated by a 698 // switch or indirect branch instruction, and BB is used as an incoming block 699 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 700 // add COPY instructions in the predecessor of BB instead of BB (if it is not 701 // merged). Note that the critical edge created by merging such blocks wont be 702 // split in MachineSink because the jump table is not analyzable. By keeping 703 // such empty block (BB), ISel will place COPY instructions in BB, not in the 704 // predecessor of BB. 705 BasicBlock *Pred = BB->getUniquePredecessor(); 706 if (!Pred || 707 !(isa<SwitchInst>(Pred->getTerminator()) || 708 isa<IndirectBrInst>(Pred->getTerminator()))) 709 return true; 710 711 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 712 return true; 713 714 // We use a simple cost heuristic which determine skipping merging is 715 // profitable if the cost of skipping merging is less than the cost of 716 // merging : Cost(skipping merging) < Cost(merging BB), where the 717 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 718 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 719 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 720 // Freq(Pred) / Freq(BB) > 2. 721 // Note that if there are multiple empty blocks sharing the same incoming 722 // value for the PHIs in the DestBB, we consider them together. In such 723 // case, Cost(merging BB) will be the sum of their frequencies. 724 725 if (!isa<PHINode>(DestBB->begin())) 726 return true; 727 728 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 729 730 // Find all other incoming blocks from which incoming values of all PHIs in 731 // DestBB are the same as the ones from BB. 732 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 733 ++PI) { 734 BasicBlock *DestBBPred = *PI; 735 if (DestBBPred == BB) 736 continue; 737 738 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 739 return DestPN.getIncomingValueForBlock(BB) == 740 DestPN.getIncomingValueForBlock(DestBBPred); 741 })) 742 SameIncomingValueBBs.insert(DestBBPred); 743 } 744 745 // See if all BB's incoming values are same as the value from Pred. In this 746 // case, no reason to skip merging because COPYs are expected to be place in 747 // Pred already. 748 if (SameIncomingValueBBs.count(Pred)) 749 return true; 750 751 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 752 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 753 754 for (auto SameValueBB : SameIncomingValueBBs) 755 if (SameValueBB->getUniquePredecessor() == Pred && 756 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 757 BBFreq += BFI->getBlockFreq(SameValueBB); 758 759 return PredFreq.getFrequency() <= 760 BBFreq.getFrequency() * FreqRatioToSkipMerge; 761 } 762 763 /// Return true if we can merge BB into DestBB if there is a single 764 /// unconditional branch between them, and BB contains no other non-phi 765 /// instructions. 766 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 767 const BasicBlock *DestBB) const { 768 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 769 // the successor. If there are more complex condition (e.g. preheaders), 770 // don't mess around with them. 771 for (const PHINode &PN : BB->phis()) { 772 for (const User *U : PN.users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 for (const PHINode &PN : DestBB->phis()) { 812 const Value *V1 = PN.getIncomingValueForBlock(Pred); 813 const Value *V2 = PN.getIncomingValueForBlock(BB); 814 815 // If V2 is a phi node in BB, look up what the mapped value will be. 816 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 817 if (V2PN->getParent() == BB) 818 V2 = V2PN->getIncomingValueForBlock(Pred); 819 820 // If there is a conflict, bail out. 821 if (V1 != V2) return false; 822 } 823 } 824 } 825 826 return true; 827 } 828 829 /// Eliminate a basic block that has only phi's and an unconditional branch in 830 /// it. 831 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 832 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 833 BasicBlock *DestBB = BI->getSuccessor(0); 834 835 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 836 << *BB << *DestBB); 837 838 // If the destination block has a single pred, then this is a trivial edge, 839 // just collapse it. 840 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 841 if (SinglePred != DestBB) { 842 assert(SinglePred == BB && 843 "Single predecessor not the same as predecessor"); 844 // Merge DestBB into SinglePred/BB and delete it. 845 MergeBlockIntoPredecessor(DestBB); 846 // Note: BB(=SinglePred) will not be deleted on this path. 847 // DestBB(=its single successor) is the one that was deleted. 848 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 849 return; 850 } 851 } 852 853 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 854 // to handle the new incoming edges it is about to have. 855 for (PHINode &PN : DestBB->phis()) { 856 // Remove the incoming value for BB, and remember it. 857 Value *InVal = PN.removeIncomingValue(BB, false); 858 859 // Two options: either the InVal is a phi node defined in BB or it is some 860 // value that dominates BB. 861 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 862 if (InValPhi && InValPhi->getParent() == BB) { 863 // Add all of the input values of the input PHI as inputs of this phi. 864 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 865 PN.addIncoming(InValPhi->getIncomingValue(i), 866 InValPhi->getIncomingBlock(i)); 867 } else { 868 // Otherwise, add one instance of the dominating value for each edge that 869 // we will be adding. 870 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 871 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 872 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 873 } else { 874 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 875 PN.addIncoming(InVal, *PI); 876 } 877 } 878 } 879 880 // The PHIs are now updated, change everything that refers to BB to use 881 // DestBB and remove BB. 882 BB->replaceAllUsesWith(DestBB); 883 BB->eraseFromParent(); 884 ++NumBlocksElim; 885 886 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 887 } 888 889 // Computes a map of base pointer relocation instructions to corresponding 890 // derived pointer relocation instructions given a vector of all relocate calls 891 static void computeBaseDerivedRelocateMap( 892 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 893 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 894 &RelocateInstMap) { 895 // Collect information in two maps: one primarily for locating the base object 896 // while filling the second map; the second map is the final structure holding 897 // a mapping between Base and corresponding Derived relocate calls 898 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 899 for (auto *ThisRelocate : AllRelocateCalls) { 900 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 901 ThisRelocate->getDerivedPtrIndex()); 902 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 903 } 904 for (auto &Item : RelocateIdxMap) { 905 std::pair<unsigned, unsigned> Key = Item.first; 906 if (Key.first == Key.second) 907 // Base relocation: nothing to insert 908 continue; 909 910 GCRelocateInst *I = Item.second; 911 auto BaseKey = std::make_pair(Key.first, Key.first); 912 913 // We're iterating over RelocateIdxMap so we cannot modify it. 914 auto MaybeBase = RelocateIdxMap.find(BaseKey); 915 if (MaybeBase == RelocateIdxMap.end()) 916 // TODO: We might want to insert a new base object relocate and gep off 917 // that, if there are enough derived object relocates. 918 continue; 919 920 RelocateInstMap[MaybeBase->second].push_back(I); 921 } 922 } 923 924 // Accepts a GEP and extracts the operands into a vector provided they're all 925 // small integer constants 926 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 927 SmallVectorImpl<Value *> &OffsetV) { 928 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 929 // Only accept small constant integer operands 930 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 931 if (!Op || Op->getZExtValue() > 20) 932 return false; 933 } 934 935 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 936 OffsetV.push_back(GEP->getOperand(i)); 937 return true; 938 } 939 940 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 941 // replace, computes a replacement, and affects it. 942 static bool 943 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 944 const SmallVectorImpl<GCRelocateInst *> &Targets) { 945 bool MadeChange = false; 946 // We must ensure the relocation of derived pointer is defined after 947 // relocation of base pointer. If we find a relocation corresponding to base 948 // defined earlier than relocation of base then we move relocation of base 949 // right before found relocation. We consider only relocation in the same 950 // basic block as relocation of base. Relocations from other basic block will 951 // be skipped by optimization and we do not care about them. 952 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 953 &*R != RelocatedBase; ++R) 954 if (auto RI = dyn_cast<GCRelocateInst>(R)) 955 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 956 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 957 RelocatedBase->moveBefore(RI); 958 break; 959 } 960 961 for (GCRelocateInst *ToReplace : Targets) { 962 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 963 "Not relocating a derived object of the original base object"); 964 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 965 // A duplicate relocate call. TODO: coalesce duplicates. 966 continue; 967 } 968 969 if (RelocatedBase->getParent() != ToReplace->getParent()) { 970 // Base and derived relocates are in different basic blocks. 971 // In this case transform is only valid when base dominates derived 972 // relocate. However it would be too expensive to check dominance 973 // for each such relocate, so we skip the whole transformation. 974 continue; 975 } 976 977 Value *Base = ToReplace->getBasePtr(); 978 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 979 if (!Derived || Derived->getPointerOperand() != Base) 980 continue; 981 982 SmallVector<Value *, 2> OffsetV; 983 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 984 continue; 985 986 // Create a Builder and replace the target callsite with a gep 987 assert(RelocatedBase->getNextNode() && 988 "Should always have one since it's not a terminator"); 989 990 // Insert after RelocatedBase 991 IRBuilder<> Builder(RelocatedBase->getNextNode()); 992 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 993 994 // If gc_relocate does not match the actual type, cast it to the right type. 995 // In theory, there must be a bitcast after gc_relocate if the type does not 996 // match, and we should reuse it to get the derived pointer. But it could be 997 // cases like this: 998 // bb1: 999 // ... 1000 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1001 // br label %merge 1002 // 1003 // bb2: 1004 // ... 1005 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1006 // br label %merge 1007 // 1008 // merge: 1009 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1010 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1011 // 1012 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1013 // no matter there is already one or not. In this way, we can handle all cases, and 1014 // the extra bitcast should be optimized away in later passes. 1015 Value *ActualRelocatedBase = RelocatedBase; 1016 if (RelocatedBase->getType() != Base->getType()) { 1017 ActualRelocatedBase = 1018 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1019 } 1020 Value *Replacement = Builder.CreateGEP( 1021 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1022 Replacement->takeName(ToReplace); 1023 // If the newly generated derived pointer's type does not match the original derived 1024 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1025 Value *ActualReplacement = Replacement; 1026 if (Replacement->getType() != ToReplace->getType()) { 1027 ActualReplacement = 1028 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1029 } 1030 ToReplace->replaceAllUsesWith(ActualReplacement); 1031 ToReplace->eraseFromParent(); 1032 1033 MadeChange = true; 1034 } 1035 return MadeChange; 1036 } 1037 1038 // Turns this: 1039 // 1040 // %base = ... 1041 // %ptr = gep %base + 15 1042 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1043 // %base' = relocate(%tok, i32 4, i32 4) 1044 // %ptr' = relocate(%tok, i32 4, i32 5) 1045 // %val = load %ptr' 1046 // 1047 // into this: 1048 // 1049 // %base = ... 1050 // %ptr = gep %base + 15 1051 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1052 // %base' = gc.relocate(%tok, i32 4, i32 4) 1053 // %ptr' = gep %base' + 15 1054 // %val = load %ptr' 1055 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1056 bool MadeChange = false; 1057 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1058 1059 for (auto *U : I.users()) 1060 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1061 // Collect all the relocate calls associated with a statepoint 1062 AllRelocateCalls.push_back(Relocate); 1063 1064 // We need at least one base pointer relocation + one derived pointer 1065 // relocation to mangle 1066 if (AllRelocateCalls.size() < 2) 1067 return false; 1068 1069 // RelocateInstMap is a mapping from the base relocate instruction to the 1070 // corresponding derived relocate instructions 1071 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1072 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1073 if (RelocateInstMap.empty()) 1074 return false; 1075 1076 for (auto &Item : RelocateInstMap) 1077 // Item.first is the RelocatedBase to offset against 1078 // Item.second is the vector of Targets to replace 1079 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1080 return MadeChange; 1081 } 1082 1083 /// Sink the specified cast instruction into its user blocks. 1084 static bool SinkCast(CastInst *CI) { 1085 BasicBlock *DefBB = CI->getParent(); 1086 1087 /// InsertedCasts - Only insert a cast in each block once. 1088 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1089 1090 bool MadeChange = false; 1091 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1092 UI != E; ) { 1093 Use &TheUse = UI.getUse(); 1094 Instruction *User = cast<Instruction>(*UI); 1095 1096 // Figure out which BB this cast is used in. For PHI's this is the 1097 // appropriate predecessor block. 1098 BasicBlock *UserBB = User->getParent(); 1099 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1100 UserBB = PN->getIncomingBlock(TheUse); 1101 } 1102 1103 // Preincrement use iterator so we don't invalidate it. 1104 ++UI; 1105 1106 // The first insertion point of a block containing an EH pad is after the 1107 // pad. If the pad is the user, we cannot sink the cast past the pad. 1108 if (User->isEHPad()) 1109 continue; 1110 1111 // If the block selected to receive the cast is an EH pad that does not 1112 // allow non-PHI instructions before the terminator, we can't sink the 1113 // cast. 1114 if (UserBB->getTerminator()->isEHPad()) 1115 continue; 1116 1117 // If this user is in the same block as the cast, don't change the cast. 1118 if (UserBB == DefBB) continue; 1119 1120 // If we have already inserted a cast into this block, use it. 1121 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1122 1123 if (!InsertedCast) { 1124 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1125 assert(InsertPt != UserBB->end()); 1126 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1127 CI->getType(), "", &*InsertPt); 1128 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1129 } 1130 1131 // Replace a use of the cast with a use of the new cast. 1132 TheUse = InsertedCast; 1133 MadeChange = true; 1134 ++NumCastUses; 1135 } 1136 1137 // If we removed all uses, nuke the cast. 1138 if (CI->use_empty()) { 1139 salvageDebugInfo(*CI); 1140 CI->eraseFromParent(); 1141 MadeChange = true; 1142 } 1143 1144 return MadeChange; 1145 } 1146 1147 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1148 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1149 /// reduce the number of virtual registers that must be created and coalesced. 1150 /// 1151 /// Return true if any changes are made. 1152 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1153 const DataLayout &DL) { 1154 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1155 // than sinking only nop casts, but is helpful on some platforms. 1156 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1157 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1158 ASC->getDestAddressSpace())) 1159 return false; 1160 } 1161 1162 // If this is a noop copy, 1163 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1164 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1165 1166 // This is an fp<->int conversion? 1167 if (SrcVT.isInteger() != DstVT.isInteger()) 1168 return false; 1169 1170 // If this is an extension, it will be a zero or sign extension, which 1171 // isn't a noop. 1172 if (SrcVT.bitsLT(DstVT)) return false; 1173 1174 // If these values will be promoted, find out what they will be promoted 1175 // to. This helps us consider truncates on PPC as noop copies when they 1176 // are. 1177 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1178 TargetLowering::TypePromoteInteger) 1179 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1180 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1181 TargetLowering::TypePromoteInteger) 1182 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1183 1184 // If, after promotion, these are the same types, this is a noop copy. 1185 if (SrcVT != DstVT) 1186 return false; 1187 1188 return SinkCast(CI); 1189 } 1190 1191 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1192 Value *Arg0, Value *Arg1, 1193 CmpInst *Cmp, 1194 Intrinsic::ID IID) { 1195 if (BO->getParent() != Cmp->getParent()) { 1196 // We used to use a dominator tree here to allow multi-block optimization. 1197 // But that was problematic because: 1198 // 1. It could cause a perf regression by hoisting the math op into the 1199 // critical path. 1200 // 2. It could cause a perf regression by creating a value that was live 1201 // across multiple blocks and increasing register pressure. 1202 // 3. Use of a dominator tree could cause large compile-time regression. 1203 // This is because we recompute the DT on every change in the main CGP 1204 // run-loop. The recomputing is probably unnecessary in many cases, so if 1205 // that was fixed, using a DT here would be ok. 1206 return false; 1207 } 1208 1209 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1210 if (BO->getOpcode() == Instruction::Add && 1211 IID == Intrinsic::usub_with_overflow) { 1212 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1213 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1214 } 1215 1216 // Insert at the first instruction of the pair. 1217 Instruction *InsertPt = nullptr; 1218 for (Instruction &Iter : *Cmp->getParent()) { 1219 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1220 // the overflow intrinsic are defined. 1221 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1222 InsertPt = &Iter; 1223 break; 1224 } 1225 } 1226 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1227 1228 IRBuilder<> Builder(InsertPt); 1229 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1230 if (BO->getOpcode() != Instruction::Xor) { 1231 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1232 BO->replaceAllUsesWith(Math); 1233 } else 1234 assert(BO->hasOneUse() && 1235 "Patterns with XOr should use the BO only in the compare"); 1236 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1237 Cmp->replaceAllUsesWith(OV); 1238 Cmp->eraseFromParent(); 1239 BO->eraseFromParent(); 1240 return true; 1241 } 1242 1243 /// Match special-case patterns that check for unsigned add overflow. 1244 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1245 BinaryOperator *&Add) { 1246 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1247 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1248 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1249 1250 // We are not expecting non-canonical/degenerate code. Just bail out. 1251 if (isa<Constant>(A)) 1252 return false; 1253 1254 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1255 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1256 B = ConstantInt::get(B->getType(), 1); 1257 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1258 B = ConstantInt::get(B->getType(), -1); 1259 else 1260 return false; 1261 1262 // Check the users of the variable operand of the compare looking for an add 1263 // with the adjusted constant. 1264 for (User *U : A->users()) { 1265 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1266 Add = cast<BinaryOperator>(U); 1267 return true; 1268 } 1269 } 1270 return false; 1271 } 1272 1273 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1274 /// intrinsic. Return true if any changes were made. 1275 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1276 bool &ModifiedDT) { 1277 Value *A, *B; 1278 BinaryOperator *Add; 1279 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1280 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1281 return false; 1282 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1283 A = Add->getOperand(0); 1284 B = Add->getOperand(1); 1285 } 1286 1287 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1288 TLI->getValueType(*DL, Add->getType()), 1289 Add->hasNUsesOrMore(2))) 1290 return false; 1291 1292 // We don't want to move around uses of condition values this late, so we 1293 // check if it is legal to create the call to the intrinsic in the basic 1294 // block containing the icmp. 1295 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1296 return false; 1297 1298 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1299 Intrinsic::uadd_with_overflow)) 1300 return false; 1301 1302 // Reset callers - do not crash by iterating over a dead instruction. 1303 ModifiedDT = true; 1304 return true; 1305 } 1306 1307 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1308 bool &ModifiedDT) { 1309 // We are not expecting non-canonical/degenerate code. Just bail out. 1310 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1311 if (isa<Constant>(A) && isa<Constant>(B)) 1312 return false; 1313 1314 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1315 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1316 if (Pred == ICmpInst::ICMP_UGT) { 1317 std::swap(A, B); 1318 Pred = ICmpInst::ICMP_ULT; 1319 } 1320 // Convert special-case: (A == 0) is the same as (A u< 1). 1321 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1322 B = ConstantInt::get(B->getType(), 1); 1323 Pred = ICmpInst::ICMP_ULT; 1324 } 1325 // Convert special-case: (A != 0) is the same as (0 u< A). 1326 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1327 std::swap(A, B); 1328 Pred = ICmpInst::ICMP_ULT; 1329 } 1330 if (Pred != ICmpInst::ICMP_ULT) 1331 return false; 1332 1333 // Walk the users of a variable operand of a compare looking for a subtract or 1334 // add with that same operand. Also match the 2nd operand of the compare to 1335 // the add/sub, but that may be a negated constant operand of an add. 1336 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1337 BinaryOperator *Sub = nullptr; 1338 for (User *U : CmpVariableOperand->users()) { 1339 // A - B, A u< B --> usubo(A, B) 1340 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1341 Sub = cast<BinaryOperator>(U); 1342 break; 1343 } 1344 1345 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1346 const APInt *CmpC, *AddC; 1347 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1348 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1349 Sub = cast<BinaryOperator>(U); 1350 break; 1351 } 1352 } 1353 if (!Sub) 1354 return false; 1355 1356 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1357 TLI->getValueType(*DL, Sub->getType()), 1358 Sub->hasNUsesOrMore(2))) 1359 return false; 1360 1361 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1362 Cmp, Intrinsic::usub_with_overflow)) 1363 return false; 1364 1365 // Reset callers - do not crash by iterating over a dead instruction. 1366 ModifiedDT = true; 1367 return true; 1368 } 1369 1370 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1371 /// registers that must be created and coalesced. This is a clear win except on 1372 /// targets with multiple condition code registers (PowerPC), where it might 1373 /// lose; some adjustment may be wanted there. 1374 /// 1375 /// Return true if any changes are made. 1376 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1377 if (TLI.hasMultipleConditionRegisters()) 1378 return false; 1379 1380 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1381 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1382 return false; 1383 1384 // Only insert a cmp in each block once. 1385 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1386 1387 bool MadeChange = false; 1388 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1389 UI != E; ) { 1390 Use &TheUse = UI.getUse(); 1391 Instruction *User = cast<Instruction>(*UI); 1392 1393 // Preincrement use iterator so we don't invalidate it. 1394 ++UI; 1395 1396 // Don't bother for PHI nodes. 1397 if (isa<PHINode>(User)) 1398 continue; 1399 1400 // Figure out which BB this cmp is used in. 1401 BasicBlock *UserBB = User->getParent(); 1402 BasicBlock *DefBB = Cmp->getParent(); 1403 1404 // If this user is in the same block as the cmp, don't change the cmp. 1405 if (UserBB == DefBB) continue; 1406 1407 // If we have already inserted a cmp into this block, use it. 1408 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1409 1410 if (!InsertedCmp) { 1411 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1412 assert(InsertPt != UserBB->end()); 1413 InsertedCmp = 1414 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1415 Cmp->getOperand(0), Cmp->getOperand(1), "", 1416 &*InsertPt); 1417 // Propagate the debug info. 1418 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1419 } 1420 1421 // Replace a use of the cmp with a use of the new cmp. 1422 TheUse = InsertedCmp; 1423 MadeChange = true; 1424 ++NumCmpUses; 1425 } 1426 1427 // If we removed all uses, nuke the cmp. 1428 if (Cmp->use_empty()) { 1429 Cmp->eraseFromParent(); 1430 MadeChange = true; 1431 } 1432 1433 return MadeChange; 1434 } 1435 1436 /// For pattern like: 1437 /// 1438 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1439 /// ... 1440 /// DomBB: 1441 /// ... 1442 /// br DomCond, TrueBB, CmpBB 1443 /// CmpBB: (with DomBB being the single predecessor) 1444 /// ... 1445 /// Cmp = icmp eq CmpOp0, CmpOp1 1446 /// ... 1447 /// 1448 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1449 /// different from lowering of icmp eq (PowerPC). This function try to convert 1450 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1451 /// After that, DomCond and Cmp can use the same comparison so reduce one 1452 /// comparison. 1453 /// 1454 /// Return true if any changes are made. 1455 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1456 const TargetLowering &TLI) { 1457 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1458 return false; 1459 1460 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1461 if (Pred != ICmpInst::ICMP_EQ) 1462 return false; 1463 1464 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1465 // icmp slt/sgt would introduce more redundant LLVM IR. 1466 for (User *U : Cmp->users()) { 1467 if (isa<BranchInst>(U)) 1468 continue; 1469 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1470 continue; 1471 return false; 1472 } 1473 1474 // This is a cheap/incomplete check for dominance - just match a single 1475 // predecessor with a conditional branch. 1476 BasicBlock *CmpBB = Cmp->getParent(); 1477 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1478 if (!DomBB) 1479 return false; 1480 1481 // We want to ensure that the only way control gets to the comparison of 1482 // interest is that a less/greater than comparison on the same operands is 1483 // false. 1484 Value *DomCond; 1485 BasicBlock *TrueBB, *FalseBB; 1486 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1487 return false; 1488 if (CmpBB != FalseBB) 1489 return false; 1490 1491 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1492 ICmpInst::Predicate DomPred; 1493 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1494 return false; 1495 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1496 return false; 1497 1498 // Convert the equality comparison to the opposite of the dominating 1499 // comparison and swap the direction for all branch/select users. 1500 // We have conceptually converted: 1501 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1502 // to 1503 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1504 // And similarly for branches. 1505 for (User *U : Cmp->users()) { 1506 if (auto *BI = dyn_cast<BranchInst>(U)) { 1507 assert(BI->isConditional() && "Must be conditional"); 1508 BI->swapSuccessors(); 1509 continue; 1510 } 1511 if (auto *SI = dyn_cast<SelectInst>(U)) { 1512 // Swap operands 1513 SI->swapValues(); 1514 SI->swapProfMetadata(); 1515 continue; 1516 } 1517 llvm_unreachable("Must be a branch or a select"); 1518 } 1519 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1520 return true; 1521 } 1522 1523 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1524 if (sinkCmpExpression(Cmp, *TLI)) 1525 return true; 1526 1527 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1528 return true; 1529 1530 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1531 return true; 1532 1533 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1534 return true; 1535 1536 return false; 1537 } 1538 1539 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1540 /// used in a compare to allow isel to generate better code for targets where 1541 /// this operation can be combined. 1542 /// 1543 /// Return true if any changes are made. 1544 static bool sinkAndCmp0Expression(Instruction *AndI, 1545 const TargetLowering &TLI, 1546 SetOfInstrs &InsertedInsts) { 1547 // Double-check that we're not trying to optimize an instruction that was 1548 // already optimized by some other part of this pass. 1549 assert(!InsertedInsts.count(AndI) && 1550 "Attempting to optimize already optimized and instruction"); 1551 (void) InsertedInsts; 1552 1553 // Nothing to do for single use in same basic block. 1554 if (AndI->hasOneUse() && 1555 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1556 return false; 1557 1558 // Try to avoid cases where sinking/duplicating is likely to increase register 1559 // pressure. 1560 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1561 !isa<ConstantInt>(AndI->getOperand(1)) && 1562 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1563 return false; 1564 1565 for (auto *U : AndI->users()) { 1566 Instruction *User = cast<Instruction>(U); 1567 1568 // Only sink 'and' feeding icmp with 0. 1569 if (!isa<ICmpInst>(User)) 1570 return false; 1571 1572 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1573 if (!CmpC || !CmpC->isZero()) 1574 return false; 1575 } 1576 1577 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1578 return false; 1579 1580 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1581 LLVM_DEBUG(AndI->getParent()->dump()); 1582 1583 // Push the 'and' into the same block as the icmp 0. There should only be 1584 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1585 // others, so we don't need to keep track of which BBs we insert into. 1586 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1587 UI != E; ) { 1588 Use &TheUse = UI.getUse(); 1589 Instruction *User = cast<Instruction>(*UI); 1590 1591 // Preincrement use iterator so we don't invalidate it. 1592 ++UI; 1593 1594 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1595 1596 // Keep the 'and' in the same place if the use is already in the same block. 1597 Instruction *InsertPt = 1598 User->getParent() == AndI->getParent() ? AndI : User; 1599 Instruction *InsertedAnd = 1600 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1601 AndI->getOperand(1), "", InsertPt); 1602 // Propagate the debug info. 1603 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1604 1605 // Replace a use of the 'and' with a use of the new 'and'. 1606 TheUse = InsertedAnd; 1607 ++NumAndUses; 1608 LLVM_DEBUG(User->getParent()->dump()); 1609 } 1610 1611 // We removed all uses, nuke the and. 1612 AndI->eraseFromParent(); 1613 return true; 1614 } 1615 1616 /// Check if the candidates could be combined with a shift instruction, which 1617 /// includes: 1618 /// 1. Truncate instruction 1619 /// 2. And instruction and the imm is a mask of the low bits: 1620 /// imm & (imm+1) == 0 1621 static bool isExtractBitsCandidateUse(Instruction *User) { 1622 if (!isa<TruncInst>(User)) { 1623 if (User->getOpcode() != Instruction::And || 1624 !isa<ConstantInt>(User->getOperand(1))) 1625 return false; 1626 1627 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1628 1629 if ((Cimm & (Cimm + 1)).getBoolValue()) 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 /// Sink both shift and truncate instruction to the use of truncate's BB. 1636 static bool 1637 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1638 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1639 const TargetLowering &TLI, const DataLayout &DL) { 1640 BasicBlock *UserBB = User->getParent(); 1641 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1642 auto *TruncI = cast<TruncInst>(User); 1643 bool MadeChange = false; 1644 1645 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1646 TruncE = TruncI->user_end(); 1647 TruncUI != TruncE;) { 1648 1649 Use &TruncTheUse = TruncUI.getUse(); 1650 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1651 // Preincrement use iterator so we don't invalidate it. 1652 1653 ++TruncUI; 1654 1655 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1656 if (!ISDOpcode) 1657 continue; 1658 1659 // If the use is actually a legal node, there will not be an 1660 // implicit truncate. 1661 // FIXME: always querying the result type is just an 1662 // approximation; some nodes' legality is determined by the 1663 // operand or other means. There's no good way to find out though. 1664 if (TLI.isOperationLegalOrCustom( 1665 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1666 continue; 1667 1668 // Don't bother for PHI nodes. 1669 if (isa<PHINode>(TruncUser)) 1670 continue; 1671 1672 BasicBlock *TruncUserBB = TruncUser->getParent(); 1673 1674 if (UserBB == TruncUserBB) 1675 continue; 1676 1677 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1678 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1679 1680 if (!InsertedShift && !InsertedTrunc) { 1681 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1682 assert(InsertPt != TruncUserBB->end()); 1683 // Sink the shift 1684 if (ShiftI->getOpcode() == Instruction::AShr) 1685 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1686 "", &*InsertPt); 1687 else 1688 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1689 "", &*InsertPt); 1690 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1691 1692 // Sink the trunc 1693 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1694 TruncInsertPt++; 1695 assert(TruncInsertPt != TruncUserBB->end()); 1696 1697 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1698 TruncI->getType(), "", &*TruncInsertPt); 1699 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1700 1701 MadeChange = true; 1702 1703 TruncTheUse = InsertedTrunc; 1704 } 1705 } 1706 return MadeChange; 1707 } 1708 1709 /// Sink the shift *right* instruction into user blocks if the uses could 1710 /// potentially be combined with this shift instruction and generate BitExtract 1711 /// instruction. It will only be applied if the architecture supports BitExtract 1712 /// instruction. Here is an example: 1713 /// BB1: 1714 /// %x.extract.shift = lshr i64 %arg1, 32 1715 /// BB2: 1716 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1717 /// ==> 1718 /// 1719 /// BB2: 1720 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1721 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1722 /// 1723 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1724 /// instruction. 1725 /// Return true if any changes are made. 1726 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1727 const TargetLowering &TLI, 1728 const DataLayout &DL) { 1729 BasicBlock *DefBB = ShiftI->getParent(); 1730 1731 /// Only insert instructions in each block once. 1732 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1733 1734 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1735 1736 bool MadeChange = false; 1737 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1738 UI != E;) { 1739 Use &TheUse = UI.getUse(); 1740 Instruction *User = cast<Instruction>(*UI); 1741 // Preincrement use iterator so we don't invalidate it. 1742 ++UI; 1743 1744 // Don't bother for PHI nodes. 1745 if (isa<PHINode>(User)) 1746 continue; 1747 1748 if (!isExtractBitsCandidateUse(User)) 1749 continue; 1750 1751 BasicBlock *UserBB = User->getParent(); 1752 1753 if (UserBB == DefBB) { 1754 // If the shift and truncate instruction are in the same BB. The use of 1755 // the truncate(TruncUse) may still introduce another truncate if not 1756 // legal. In this case, we would like to sink both shift and truncate 1757 // instruction to the BB of TruncUse. 1758 // for example: 1759 // BB1: 1760 // i64 shift.result = lshr i64 opnd, imm 1761 // trunc.result = trunc shift.result to i16 1762 // 1763 // BB2: 1764 // ----> We will have an implicit truncate here if the architecture does 1765 // not have i16 compare. 1766 // cmp i16 trunc.result, opnd2 1767 // 1768 if (isa<TruncInst>(User) && shiftIsLegal 1769 // If the type of the truncate is legal, no truncate will be 1770 // introduced in other basic blocks. 1771 && 1772 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1773 MadeChange = 1774 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1775 1776 continue; 1777 } 1778 // If we have already inserted a shift into this block, use it. 1779 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1780 1781 if (!InsertedShift) { 1782 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1783 assert(InsertPt != UserBB->end()); 1784 1785 if (ShiftI->getOpcode() == Instruction::AShr) 1786 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1787 "", &*InsertPt); 1788 else 1789 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1790 "", &*InsertPt); 1791 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1792 1793 MadeChange = true; 1794 } 1795 1796 // Replace a use of the shift with a use of the new shift. 1797 TheUse = InsertedShift; 1798 } 1799 1800 // If we removed all uses, or there are none, nuke the shift. 1801 if (ShiftI->use_empty()) { 1802 salvageDebugInfo(*ShiftI); 1803 ShiftI->eraseFromParent(); 1804 MadeChange = true; 1805 } 1806 1807 return MadeChange; 1808 } 1809 1810 /// If counting leading or trailing zeros is an expensive operation and a zero 1811 /// input is defined, add a check for zero to avoid calling the intrinsic. 1812 /// 1813 /// We want to transform: 1814 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1815 /// 1816 /// into: 1817 /// entry: 1818 /// %cmpz = icmp eq i64 %A, 0 1819 /// br i1 %cmpz, label %cond.end, label %cond.false 1820 /// cond.false: 1821 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1822 /// br label %cond.end 1823 /// cond.end: 1824 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1825 /// 1826 /// If the transform is performed, return true and set ModifiedDT to true. 1827 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1828 const TargetLowering *TLI, 1829 const DataLayout *DL, 1830 bool &ModifiedDT) { 1831 // If a zero input is undefined, it doesn't make sense to despeculate that. 1832 if (match(CountZeros->getOperand(1), m_One())) 1833 return false; 1834 1835 // If it's cheap to speculate, there's nothing to do. 1836 auto IntrinsicID = CountZeros->getIntrinsicID(); 1837 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1838 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1839 return false; 1840 1841 // Only handle legal scalar cases. Anything else requires too much work. 1842 Type *Ty = CountZeros->getType(); 1843 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1844 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1845 return false; 1846 1847 // The intrinsic will be sunk behind a compare against zero and branch. 1848 BasicBlock *StartBlock = CountZeros->getParent(); 1849 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1850 1851 // Create another block after the count zero intrinsic. A PHI will be added 1852 // in this block to select the result of the intrinsic or the bit-width 1853 // constant if the input to the intrinsic is zero. 1854 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1855 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1856 1857 // Set up a builder to create a compare, conditional branch, and PHI. 1858 IRBuilder<> Builder(CountZeros->getContext()); 1859 Builder.SetInsertPoint(StartBlock->getTerminator()); 1860 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1861 1862 // Replace the unconditional branch that was created by the first split with 1863 // a compare against zero and a conditional branch. 1864 Value *Zero = Constant::getNullValue(Ty); 1865 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1866 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1867 StartBlock->getTerminator()->eraseFromParent(); 1868 1869 // Create a PHI in the end block to select either the output of the intrinsic 1870 // or the bit width of the operand. 1871 Builder.SetInsertPoint(&EndBlock->front()); 1872 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1873 CountZeros->replaceAllUsesWith(PN); 1874 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1875 PN->addIncoming(BitWidth, StartBlock); 1876 PN->addIncoming(CountZeros, CallBlock); 1877 1878 // We are explicitly handling the zero case, so we can set the intrinsic's 1879 // undefined zero argument to 'true'. This will also prevent reprocessing the 1880 // intrinsic; we only despeculate when a zero input is defined. 1881 CountZeros->setArgOperand(1, Builder.getTrue()); 1882 ModifiedDT = true; 1883 return true; 1884 } 1885 1886 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1887 BasicBlock *BB = CI->getParent(); 1888 1889 // Lower inline assembly if we can. 1890 // If we found an inline asm expession, and if the target knows how to 1891 // lower it to normal LLVM code, do so now. 1892 if (CI->isInlineAsm()) { 1893 if (TLI->ExpandInlineAsm(CI)) { 1894 // Avoid invalidating the iterator. 1895 CurInstIterator = BB->begin(); 1896 // Avoid processing instructions out of order, which could cause 1897 // reuse before a value is defined. 1898 SunkAddrs.clear(); 1899 return true; 1900 } 1901 // Sink address computing for memory operands into the block. 1902 if (optimizeInlineAsmInst(CI)) 1903 return true; 1904 } 1905 1906 // Align the pointer arguments to this call if the target thinks it's a good 1907 // idea 1908 unsigned MinSize, PrefAlign; 1909 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1910 for (auto &Arg : CI->arg_operands()) { 1911 // We want to align both objects whose address is used directly and 1912 // objects whose address is used in casts and GEPs, though it only makes 1913 // sense for GEPs if the offset is a multiple of the desired alignment and 1914 // if size - offset meets the size threshold. 1915 if (!Arg->getType()->isPointerTy()) 1916 continue; 1917 APInt Offset(DL->getIndexSizeInBits( 1918 cast<PointerType>(Arg->getType())->getAddressSpace()), 1919 0); 1920 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1921 uint64_t Offset2 = Offset.getLimitedValue(); 1922 if ((Offset2 & (PrefAlign-1)) != 0) 1923 continue; 1924 AllocaInst *AI; 1925 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1926 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1927 AI->setAlignment(MaybeAlign(PrefAlign)); 1928 // Global variables can only be aligned if they are defined in this 1929 // object (i.e. they are uniquely initialized in this object), and 1930 // over-aligning global variables that have an explicit section is 1931 // forbidden. 1932 GlobalVariable *GV; 1933 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1934 GV->getPointerAlignment(*DL) < PrefAlign && 1935 DL->getTypeAllocSize(GV->getValueType()) >= 1936 MinSize + Offset2) 1937 GV->setAlignment(MaybeAlign(PrefAlign)); 1938 } 1939 // If this is a memcpy (or similar) then we may be able to improve the 1940 // alignment 1941 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1942 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 1943 MaybeAlign MIDestAlign = MI->getDestAlign(); 1944 if (!MIDestAlign || DestAlign > *MIDestAlign) 1945 MI->setDestAlignment(DestAlign); 1946 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1947 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 1948 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1949 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 1950 MTI->setSourceAlignment(SrcAlign); 1951 } 1952 } 1953 } 1954 1955 // If we have a cold call site, try to sink addressing computation into the 1956 // cold block. This interacts with our handling for loads and stores to 1957 // ensure that we can fold all uses of a potential addressing computation 1958 // into their uses. TODO: generalize this to work over profiling data 1959 if (CI->hasFnAttr(Attribute::Cold) && 1960 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1961 for (auto &Arg : CI->arg_operands()) { 1962 if (!Arg->getType()->isPointerTy()) 1963 continue; 1964 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1965 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1966 } 1967 1968 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1969 if (II) { 1970 switch (II->getIntrinsicID()) { 1971 default: break; 1972 case Intrinsic::assume: { 1973 II->eraseFromParent(); 1974 return true; 1975 } 1976 1977 case Intrinsic::experimental_widenable_condition: { 1978 // Give up on future widening oppurtunties so that we can fold away dead 1979 // paths and merge blocks before going into block-local instruction 1980 // selection. 1981 if (II->use_empty()) { 1982 II->eraseFromParent(); 1983 return true; 1984 } 1985 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1986 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1987 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1988 }); 1989 return true; 1990 } 1991 case Intrinsic::objectsize: 1992 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1993 case Intrinsic::is_constant: 1994 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1995 case Intrinsic::aarch64_stlxr: 1996 case Intrinsic::aarch64_stxr: { 1997 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1998 if (!ExtVal || !ExtVal->hasOneUse() || 1999 ExtVal->getParent() == CI->getParent()) 2000 return false; 2001 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2002 ExtVal->moveBefore(CI); 2003 // Mark this instruction as "inserted by CGP", so that other 2004 // optimizations don't touch it. 2005 InsertedInsts.insert(ExtVal); 2006 return true; 2007 } 2008 2009 case Intrinsic::launder_invariant_group: 2010 case Intrinsic::strip_invariant_group: { 2011 Value *ArgVal = II->getArgOperand(0); 2012 auto it = LargeOffsetGEPMap.find(II); 2013 if (it != LargeOffsetGEPMap.end()) { 2014 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2015 // Make sure not to have to deal with iterator invalidation 2016 // after possibly adding ArgVal to LargeOffsetGEPMap. 2017 auto GEPs = std::move(it->second); 2018 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2019 LargeOffsetGEPMap.erase(II); 2020 } 2021 2022 II->replaceAllUsesWith(ArgVal); 2023 II->eraseFromParent(); 2024 return true; 2025 } 2026 case Intrinsic::cttz: 2027 case Intrinsic::ctlz: 2028 // If counting zeros is expensive, try to avoid it. 2029 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2030 case Intrinsic::dbg_value: 2031 return fixupDbgValue(II); 2032 case Intrinsic::vscale: { 2033 // If datalayout has no special restrictions on vector data layout, 2034 // replace `llvm.vscale` by an equivalent constant expression 2035 // to benefit from cheap constant propagation. 2036 Type *ScalableVectorTy = 2037 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2038 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2039 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2040 auto One = ConstantInt::getSigned(II->getType(), 1); 2041 auto *CGep = 2042 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2043 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2044 II->eraseFromParent(); 2045 return true; 2046 } 2047 break; 2048 } 2049 case Intrinsic::masked_gather: 2050 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2051 case Intrinsic::masked_scatter: 2052 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2053 } 2054 2055 SmallVector<Value *, 2> PtrOps; 2056 Type *AccessTy; 2057 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2058 while (!PtrOps.empty()) { 2059 Value *PtrVal = PtrOps.pop_back_val(); 2060 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2061 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2062 return true; 2063 } 2064 } 2065 2066 // From here on out we're working with named functions. 2067 if (!CI->getCalledFunction()) return false; 2068 2069 // Lower all default uses of _chk calls. This is very similar 2070 // to what InstCombineCalls does, but here we are only lowering calls 2071 // to fortified library functions (e.g. __memcpy_chk) that have the default 2072 // "don't know" as the objectsize. Anything else should be left alone. 2073 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2074 IRBuilder<> Builder(CI); 2075 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2076 CI->replaceAllUsesWith(V); 2077 CI->eraseFromParent(); 2078 return true; 2079 } 2080 2081 return false; 2082 } 2083 2084 /// Look for opportunities to duplicate return instructions to the predecessor 2085 /// to enable tail call optimizations. The case it is currently looking for is: 2086 /// @code 2087 /// bb0: 2088 /// %tmp0 = tail call i32 @f0() 2089 /// br label %return 2090 /// bb1: 2091 /// %tmp1 = tail call i32 @f1() 2092 /// br label %return 2093 /// bb2: 2094 /// %tmp2 = tail call i32 @f2() 2095 /// br label %return 2096 /// return: 2097 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2098 /// ret i32 %retval 2099 /// @endcode 2100 /// 2101 /// => 2102 /// 2103 /// @code 2104 /// bb0: 2105 /// %tmp0 = tail call i32 @f0() 2106 /// ret i32 %tmp0 2107 /// bb1: 2108 /// %tmp1 = tail call i32 @f1() 2109 /// ret i32 %tmp1 2110 /// bb2: 2111 /// %tmp2 = tail call i32 @f2() 2112 /// ret i32 %tmp2 2113 /// @endcode 2114 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2115 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2116 if (!RetI) 2117 return false; 2118 2119 PHINode *PN = nullptr; 2120 ExtractValueInst *EVI = nullptr; 2121 BitCastInst *BCI = nullptr; 2122 Value *V = RetI->getReturnValue(); 2123 if (V) { 2124 BCI = dyn_cast<BitCastInst>(V); 2125 if (BCI) 2126 V = BCI->getOperand(0); 2127 2128 EVI = dyn_cast<ExtractValueInst>(V); 2129 if (EVI) { 2130 V = EVI->getOperand(0); 2131 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2132 [](unsigned idx) { return idx == 0; })) 2133 return false; 2134 } 2135 2136 PN = dyn_cast<PHINode>(V); 2137 if (!PN) 2138 return false; 2139 } 2140 2141 if (PN && PN->getParent() != BB) 2142 return false; 2143 2144 // Make sure there are no instructions between the PHI and return, or that the 2145 // return is the first instruction in the block. 2146 if (PN) { 2147 BasicBlock::iterator BI = BB->begin(); 2148 // Skip over debug and the bitcast. 2149 do { 2150 ++BI; 2151 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2152 if (&*BI != RetI) 2153 return false; 2154 } else { 2155 BasicBlock::iterator BI = BB->begin(); 2156 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2157 if (&*BI != RetI) 2158 return false; 2159 } 2160 2161 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2162 /// call. 2163 const Function *F = BB->getParent(); 2164 SmallVector<BasicBlock*, 4> TailCallBBs; 2165 if (PN) { 2166 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2167 // Look through bitcasts. 2168 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2169 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2170 BasicBlock *PredBB = PN->getIncomingBlock(I); 2171 // Make sure the phi value is indeed produced by the tail call. 2172 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2173 TLI->mayBeEmittedAsTailCall(CI) && 2174 attributesPermitTailCall(F, CI, RetI, *TLI)) 2175 TailCallBBs.push_back(PredBB); 2176 } 2177 } else { 2178 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2179 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2180 if (!VisitedBBs.insert(*PI).second) 2181 continue; 2182 2183 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2184 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2185 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2186 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2187 if (RI == RE) 2188 continue; 2189 2190 CallInst *CI = dyn_cast<CallInst>(&*RI); 2191 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2192 attributesPermitTailCall(F, CI, RetI, *TLI)) 2193 TailCallBBs.push_back(*PI); 2194 } 2195 } 2196 2197 bool Changed = false; 2198 for (auto const &TailCallBB : TailCallBBs) { 2199 // Make sure the call instruction is followed by an unconditional branch to 2200 // the return block. 2201 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2202 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2203 continue; 2204 2205 // Duplicate the return into TailCallBB. 2206 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2207 ModifiedDT = Changed = true; 2208 ++NumRetsDup; 2209 } 2210 2211 // If we eliminated all predecessors of the block, delete the block now. 2212 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2213 BB->eraseFromParent(); 2214 2215 return Changed; 2216 } 2217 2218 //===----------------------------------------------------------------------===// 2219 // Memory Optimization 2220 //===----------------------------------------------------------------------===// 2221 2222 namespace { 2223 2224 /// This is an extended version of TargetLowering::AddrMode 2225 /// which holds actual Value*'s for register values. 2226 struct ExtAddrMode : public TargetLowering::AddrMode { 2227 Value *BaseReg = nullptr; 2228 Value *ScaledReg = nullptr; 2229 Value *OriginalValue = nullptr; 2230 bool InBounds = true; 2231 2232 enum FieldName { 2233 NoField = 0x00, 2234 BaseRegField = 0x01, 2235 BaseGVField = 0x02, 2236 BaseOffsField = 0x04, 2237 ScaledRegField = 0x08, 2238 ScaleField = 0x10, 2239 MultipleFields = 0xff 2240 }; 2241 2242 2243 ExtAddrMode() = default; 2244 2245 void print(raw_ostream &OS) const; 2246 void dump() const; 2247 2248 FieldName compare(const ExtAddrMode &other) { 2249 // First check that the types are the same on each field, as differing types 2250 // is something we can't cope with later on. 2251 if (BaseReg && other.BaseReg && 2252 BaseReg->getType() != other.BaseReg->getType()) 2253 return MultipleFields; 2254 if (BaseGV && other.BaseGV && 2255 BaseGV->getType() != other.BaseGV->getType()) 2256 return MultipleFields; 2257 if (ScaledReg && other.ScaledReg && 2258 ScaledReg->getType() != other.ScaledReg->getType()) 2259 return MultipleFields; 2260 2261 // Conservatively reject 'inbounds' mismatches. 2262 if (InBounds != other.InBounds) 2263 return MultipleFields; 2264 2265 // Check each field to see if it differs. 2266 unsigned Result = NoField; 2267 if (BaseReg != other.BaseReg) 2268 Result |= BaseRegField; 2269 if (BaseGV != other.BaseGV) 2270 Result |= BaseGVField; 2271 if (BaseOffs != other.BaseOffs) 2272 Result |= BaseOffsField; 2273 if (ScaledReg != other.ScaledReg) 2274 Result |= ScaledRegField; 2275 // Don't count 0 as being a different scale, because that actually means 2276 // unscaled (which will already be counted by having no ScaledReg). 2277 if (Scale && other.Scale && Scale != other.Scale) 2278 Result |= ScaleField; 2279 2280 if (countPopulation(Result) > 1) 2281 return MultipleFields; 2282 else 2283 return static_cast<FieldName>(Result); 2284 } 2285 2286 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2287 // with no offset. 2288 bool isTrivial() { 2289 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2290 // trivial if at most one of these terms is nonzero, except that BaseGV and 2291 // BaseReg both being zero actually means a null pointer value, which we 2292 // consider to be 'non-zero' here. 2293 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2294 } 2295 2296 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2297 switch (Field) { 2298 default: 2299 return nullptr; 2300 case BaseRegField: 2301 return BaseReg; 2302 case BaseGVField: 2303 return BaseGV; 2304 case ScaledRegField: 2305 return ScaledReg; 2306 case BaseOffsField: 2307 return ConstantInt::get(IntPtrTy, BaseOffs); 2308 } 2309 } 2310 2311 void SetCombinedField(FieldName Field, Value *V, 2312 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2313 switch (Field) { 2314 default: 2315 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2316 break; 2317 case ExtAddrMode::BaseRegField: 2318 BaseReg = V; 2319 break; 2320 case ExtAddrMode::BaseGVField: 2321 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2322 // in the BaseReg field. 2323 assert(BaseReg == nullptr); 2324 BaseReg = V; 2325 BaseGV = nullptr; 2326 break; 2327 case ExtAddrMode::ScaledRegField: 2328 ScaledReg = V; 2329 // If we have a mix of scaled and unscaled addrmodes then we want scale 2330 // to be the scale and not zero. 2331 if (!Scale) 2332 for (const ExtAddrMode &AM : AddrModes) 2333 if (AM.Scale) { 2334 Scale = AM.Scale; 2335 break; 2336 } 2337 break; 2338 case ExtAddrMode::BaseOffsField: 2339 // The offset is no longer a constant, so it goes in ScaledReg with a 2340 // scale of 1. 2341 assert(ScaledReg == nullptr); 2342 ScaledReg = V; 2343 Scale = 1; 2344 BaseOffs = 0; 2345 break; 2346 } 2347 } 2348 }; 2349 2350 } // end anonymous namespace 2351 2352 #ifndef NDEBUG 2353 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2354 AM.print(OS); 2355 return OS; 2356 } 2357 #endif 2358 2359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2360 void ExtAddrMode::print(raw_ostream &OS) const { 2361 bool NeedPlus = false; 2362 OS << "["; 2363 if (InBounds) 2364 OS << "inbounds "; 2365 if (BaseGV) { 2366 OS << (NeedPlus ? " + " : "") 2367 << "GV:"; 2368 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2369 NeedPlus = true; 2370 } 2371 2372 if (BaseOffs) { 2373 OS << (NeedPlus ? " + " : "") 2374 << BaseOffs; 2375 NeedPlus = true; 2376 } 2377 2378 if (BaseReg) { 2379 OS << (NeedPlus ? " + " : "") 2380 << "Base:"; 2381 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2382 NeedPlus = true; 2383 } 2384 if (Scale) { 2385 OS << (NeedPlus ? " + " : "") 2386 << Scale << "*"; 2387 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2388 } 2389 2390 OS << ']'; 2391 } 2392 2393 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2394 print(dbgs()); 2395 dbgs() << '\n'; 2396 } 2397 #endif 2398 2399 namespace { 2400 2401 /// This class provides transaction based operation on the IR. 2402 /// Every change made through this class is recorded in the internal state and 2403 /// can be undone (rollback) until commit is called. 2404 class TypePromotionTransaction { 2405 /// This represents the common interface of the individual transaction. 2406 /// Each class implements the logic for doing one specific modification on 2407 /// the IR via the TypePromotionTransaction. 2408 class TypePromotionAction { 2409 protected: 2410 /// The Instruction modified. 2411 Instruction *Inst; 2412 2413 public: 2414 /// Constructor of the action. 2415 /// The constructor performs the related action on the IR. 2416 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2417 2418 virtual ~TypePromotionAction() = default; 2419 2420 /// Undo the modification done by this action. 2421 /// When this method is called, the IR must be in the same state as it was 2422 /// before this action was applied. 2423 /// \pre Undoing the action works if and only if the IR is in the exact same 2424 /// state as it was directly after this action was applied. 2425 virtual void undo() = 0; 2426 2427 /// Advocate every change made by this action. 2428 /// When the results on the IR of the action are to be kept, it is important 2429 /// to call this function, otherwise hidden information may be kept forever. 2430 virtual void commit() { 2431 // Nothing to be done, this action is not doing anything. 2432 } 2433 }; 2434 2435 /// Utility to remember the position of an instruction. 2436 class InsertionHandler { 2437 /// Position of an instruction. 2438 /// Either an instruction: 2439 /// - Is the first in a basic block: BB is used. 2440 /// - Has a previous instruction: PrevInst is used. 2441 union { 2442 Instruction *PrevInst; 2443 BasicBlock *BB; 2444 } Point; 2445 2446 /// Remember whether or not the instruction had a previous instruction. 2447 bool HasPrevInstruction; 2448 2449 public: 2450 /// Record the position of \p Inst. 2451 InsertionHandler(Instruction *Inst) { 2452 BasicBlock::iterator It = Inst->getIterator(); 2453 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2454 if (HasPrevInstruction) 2455 Point.PrevInst = &*--It; 2456 else 2457 Point.BB = Inst->getParent(); 2458 } 2459 2460 /// Insert \p Inst at the recorded position. 2461 void insert(Instruction *Inst) { 2462 if (HasPrevInstruction) { 2463 if (Inst->getParent()) 2464 Inst->removeFromParent(); 2465 Inst->insertAfter(Point.PrevInst); 2466 } else { 2467 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2468 if (Inst->getParent()) 2469 Inst->moveBefore(Position); 2470 else 2471 Inst->insertBefore(Position); 2472 } 2473 } 2474 }; 2475 2476 /// Move an instruction before another. 2477 class InstructionMoveBefore : public TypePromotionAction { 2478 /// Original position of the instruction. 2479 InsertionHandler Position; 2480 2481 public: 2482 /// Move \p Inst before \p Before. 2483 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2484 : TypePromotionAction(Inst), Position(Inst) { 2485 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2486 << "\n"); 2487 Inst->moveBefore(Before); 2488 } 2489 2490 /// Move the instruction back to its original position. 2491 void undo() override { 2492 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2493 Position.insert(Inst); 2494 } 2495 }; 2496 2497 /// Set the operand of an instruction with a new value. 2498 class OperandSetter : public TypePromotionAction { 2499 /// Original operand of the instruction. 2500 Value *Origin; 2501 2502 /// Index of the modified instruction. 2503 unsigned Idx; 2504 2505 public: 2506 /// Set \p Idx operand of \p Inst with \p NewVal. 2507 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2508 : TypePromotionAction(Inst), Idx(Idx) { 2509 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2510 << "for:" << *Inst << "\n" 2511 << "with:" << *NewVal << "\n"); 2512 Origin = Inst->getOperand(Idx); 2513 Inst->setOperand(Idx, NewVal); 2514 } 2515 2516 /// Restore the original value of the instruction. 2517 void undo() override { 2518 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2519 << "for: " << *Inst << "\n" 2520 << "with: " << *Origin << "\n"); 2521 Inst->setOperand(Idx, Origin); 2522 } 2523 }; 2524 2525 /// Hide the operands of an instruction. 2526 /// Do as if this instruction was not using any of its operands. 2527 class OperandsHider : public TypePromotionAction { 2528 /// The list of original operands. 2529 SmallVector<Value *, 4> OriginalValues; 2530 2531 public: 2532 /// Remove \p Inst from the uses of the operands of \p Inst. 2533 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2534 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2535 unsigned NumOpnds = Inst->getNumOperands(); 2536 OriginalValues.reserve(NumOpnds); 2537 for (unsigned It = 0; It < NumOpnds; ++It) { 2538 // Save the current operand. 2539 Value *Val = Inst->getOperand(It); 2540 OriginalValues.push_back(Val); 2541 // Set a dummy one. 2542 // We could use OperandSetter here, but that would imply an overhead 2543 // that we are not willing to pay. 2544 Inst->setOperand(It, UndefValue::get(Val->getType())); 2545 } 2546 } 2547 2548 /// Restore the original list of uses. 2549 void undo() override { 2550 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2551 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2552 Inst->setOperand(It, OriginalValues[It]); 2553 } 2554 }; 2555 2556 /// Build a truncate instruction. 2557 class TruncBuilder : public TypePromotionAction { 2558 Value *Val; 2559 2560 public: 2561 /// Build a truncate instruction of \p Opnd producing a \p Ty 2562 /// result. 2563 /// trunc Opnd to Ty. 2564 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2565 IRBuilder<> Builder(Opnd); 2566 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2567 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2568 } 2569 2570 /// Get the built value. 2571 Value *getBuiltValue() { return Val; } 2572 2573 /// Remove the built instruction. 2574 void undo() override { 2575 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2576 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2577 IVal->eraseFromParent(); 2578 } 2579 }; 2580 2581 /// Build a sign extension instruction. 2582 class SExtBuilder : public TypePromotionAction { 2583 Value *Val; 2584 2585 public: 2586 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2587 /// result. 2588 /// sext Opnd to Ty. 2589 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2590 : TypePromotionAction(InsertPt) { 2591 IRBuilder<> Builder(InsertPt); 2592 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2593 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2594 } 2595 2596 /// Get the built value. 2597 Value *getBuiltValue() { return Val; } 2598 2599 /// Remove the built instruction. 2600 void undo() override { 2601 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2602 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2603 IVal->eraseFromParent(); 2604 } 2605 }; 2606 2607 /// Build a zero extension instruction. 2608 class ZExtBuilder : public TypePromotionAction { 2609 Value *Val; 2610 2611 public: 2612 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2613 /// result. 2614 /// zext Opnd to Ty. 2615 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2616 : TypePromotionAction(InsertPt) { 2617 IRBuilder<> Builder(InsertPt); 2618 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2619 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2620 } 2621 2622 /// Get the built value. 2623 Value *getBuiltValue() { return Val; } 2624 2625 /// Remove the built instruction. 2626 void undo() override { 2627 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2628 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2629 IVal->eraseFromParent(); 2630 } 2631 }; 2632 2633 /// Mutate an instruction to another type. 2634 class TypeMutator : public TypePromotionAction { 2635 /// Record the original type. 2636 Type *OrigTy; 2637 2638 public: 2639 /// Mutate the type of \p Inst into \p NewTy. 2640 TypeMutator(Instruction *Inst, Type *NewTy) 2641 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2642 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2643 << "\n"); 2644 Inst->mutateType(NewTy); 2645 } 2646 2647 /// Mutate the instruction back to its original type. 2648 void undo() override { 2649 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2650 << "\n"); 2651 Inst->mutateType(OrigTy); 2652 } 2653 }; 2654 2655 /// Replace the uses of an instruction by another instruction. 2656 class UsesReplacer : public TypePromotionAction { 2657 /// Helper structure to keep track of the replaced uses. 2658 struct InstructionAndIdx { 2659 /// The instruction using the instruction. 2660 Instruction *Inst; 2661 2662 /// The index where this instruction is used for Inst. 2663 unsigned Idx; 2664 2665 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2666 : Inst(Inst), Idx(Idx) {} 2667 }; 2668 2669 /// Keep track of the original uses (pair Instruction, Index). 2670 SmallVector<InstructionAndIdx, 4> OriginalUses; 2671 /// Keep track of the debug users. 2672 SmallVector<DbgValueInst *, 1> DbgValues; 2673 2674 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2675 2676 public: 2677 /// Replace all the use of \p Inst by \p New. 2678 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2679 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2680 << "\n"); 2681 // Record the original uses. 2682 for (Use &U : Inst->uses()) { 2683 Instruction *UserI = cast<Instruction>(U.getUser()); 2684 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2685 } 2686 // Record the debug uses separately. They are not in the instruction's 2687 // use list, but they are replaced by RAUW. 2688 findDbgValues(DbgValues, Inst); 2689 2690 // Now, we can replace the uses. 2691 Inst->replaceAllUsesWith(New); 2692 } 2693 2694 /// Reassign the original uses of Inst to Inst. 2695 void undo() override { 2696 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2697 for (use_iterator UseIt = OriginalUses.begin(), 2698 EndIt = OriginalUses.end(); 2699 UseIt != EndIt; ++UseIt) { 2700 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2701 } 2702 // RAUW has replaced all original uses with references to the new value, 2703 // including the debug uses. Since we are undoing the replacements, 2704 // the original debug uses must also be reinstated to maintain the 2705 // correctness and utility of debug value instructions. 2706 for (auto *DVI: DbgValues) { 2707 LLVMContext &Ctx = Inst->getType()->getContext(); 2708 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2709 DVI->setOperand(0, MV); 2710 } 2711 } 2712 }; 2713 2714 /// Remove an instruction from the IR. 2715 class InstructionRemover : public TypePromotionAction { 2716 /// Original position of the instruction. 2717 InsertionHandler Inserter; 2718 2719 /// Helper structure to hide all the link to the instruction. In other 2720 /// words, this helps to do as if the instruction was removed. 2721 OperandsHider Hider; 2722 2723 /// Keep track of the uses replaced, if any. 2724 UsesReplacer *Replacer = nullptr; 2725 2726 /// Keep track of instructions removed. 2727 SetOfInstrs &RemovedInsts; 2728 2729 public: 2730 /// Remove all reference of \p Inst and optionally replace all its 2731 /// uses with New. 2732 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2733 /// \pre If !Inst->use_empty(), then New != nullptr 2734 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2735 Value *New = nullptr) 2736 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2737 RemovedInsts(RemovedInsts) { 2738 if (New) 2739 Replacer = new UsesReplacer(Inst, New); 2740 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2741 RemovedInsts.insert(Inst); 2742 /// The instructions removed here will be freed after completing 2743 /// optimizeBlock() for all blocks as we need to keep track of the 2744 /// removed instructions during promotion. 2745 Inst->removeFromParent(); 2746 } 2747 2748 ~InstructionRemover() override { delete Replacer; } 2749 2750 /// Resurrect the instruction and reassign it to the proper uses if 2751 /// new value was provided when build this action. 2752 void undo() override { 2753 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2754 Inserter.insert(Inst); 2755 if (Replacer) 2756 Replacer->undo(); 2757 Hider.undo(); 2758 RemovedInsts.erase(Inst); 2759 } 2760 }; 2761 2762 public: 2763 /// Restoration point. 2764 /// The restoration point is a pointer to an action instead of an iterator 2765 /// because the iterator may be invalidated but not the pointer. 2766 using ConstRestorationPt = const TypePromotionAction *; 2767 2768 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2769 : RemovedInsts(RemovedInsts) {} 2770 2771 /// Advocate every changes made in that transaction. 2772 void commit(); 2773 2774 /// Undo all the changes made after the given point. 2775 void rollback(ConstRestorationPt Point); 2776 2777 /// Get the current restoration point. 2778 ConstRestorationPt getRestorationPoint() const; 2779 2780 /// \name API for IR modification with state keeping to support rollback. 2781 /// @{ 2782 /// Same as Instruction::setOperand. 2783 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2784 2785 /// Same as Instruction::eraseFromParent. 2786 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2787 2788 /// Same as Value::replaceAllUsesWith. 2789 void replaceAllUsesWith(Instruction *Inst, Value *New); 2790 2791 /// Same as Value::mutateType. 2792 void mutateType(Instruction *Inst, Type *NewTy); 2793 2794 /// Same as IRBuilder::createTrunc. 2795 Value *createTrunc(Instruction *Opnd, Type *Ty); 2796 2797 /// Same as IRBuilder::createSExt. 2798 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2799 2800 /// Same as IRBuilder::createZExt. 2801 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2802 2803 /// Same as Instruction::moveBefore. 2804 void moveBefore(Instruction *Inst, Instruction *Before); 2805 /// @} 2806 2807 private: 2808 /// The ordered list of actions made so far. 2809 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2810 2811 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2812 2813 SetOfInstrs &RemovedInsts; 2814 }; 2815 2816 } // end anonymous namespace 2817 2818 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2819 Value *NewVal) { 2820 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2821 Inst, Idx, NewVal)); 2822 } 2823 2824 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2825 Value *NewVal) { 2826 Actions.push_back( 2827 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2828 Inst, RemovedInsts, NewVal)); 2829 } 2830 2831 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2832 Value *New) { 2833 Actions.push_back( 2834 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2835 } 2836 2837 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2838 Actions.push_back( 2839 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2840 } 2841 2842 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2843 Type *Ty) { 2844 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2845 Value *Val = Ptr->getBuiltValue(); 2846 Actions.push_back(std::move(Ptr)); 2847 return Val; 2848 } 2849 2850 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2851 Value *Opnd, Type *Ty) { 2852 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2853 Value *Val = Ptr->getBuiltValue(); 2854 Actions.push_back(std::move(Ptr)); 2855 return Val; 2856 } 2857 2858 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2859 Value *Opnd, Type *Ty) { 2860 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2861 Value *Val = Ptr->getBuiltValue(); 2862 Actions.push_back(std::move(Ptr)); 2863 return Val; 2864 } 2865 2866 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2867 Instruction *Before) { 2868 Actions.push_back( 2869 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2870 Inst, Before)); 2871 } 2872 2873 TypePromotionTransaction::ConstRestorationPt 2874 TypePromotionTransaction::getRestorationPoint() const { 2875 return !Actions.empty() ? Actions.back().get() : nullptr; 2876 } 2877 2878 void TypePromotionTransaction::commit() { 2879 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2880 ++It) 2881 (*It)->commit(); 2882 Actions.clear(); 2883 } 2884 2885 void TypePromotionTransaction::rollback( 2886 TypePromotionTransaction::ConstRestorationPt Point) { 2887 while (!Actions.empty() && Point != Actions.back().get()) { 2888 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2889 Curr->undo(); 2890 } 2891 } 2892 2893 namespace { 2894 2895 /// A helper class for matching addressing modes. 2896 /// 2897 /// This encapsulates the logic for matching the target-legal addressing modes. 2898 class AddressingModeMatcher { 2899 SmallVectorImpl<Instruction*> &AddrModeInsts; 2900 const TargetLowering &TLI; 2901 const TargetRegisterInfo &TRI; 2902 const DataLayout &DL; 2903 2904 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2905 /// the memory instruction that we're computing this address for. 2906 Type *AccessTy; 2907 unsigned AddrSpace; 2908 Instruction *MemoryInst; 2909 2910 /// This is the addressing mode that we're building up. This is 2911 /// part of the return value of this addressing mode matching stuff. 2912 ExtAddrMode &AddrMode; 2913 2914 /// The instructions inserted by other CodeGenPrepare optimizations. 2915 const SetOfInstrs &InsertedInsts; 2916 2917 /// A map from the instructions to their type before promotion. 2918 InstrToOrigTy &PromotedInsts; 2919 2920 /// The ongoing transaction where every action should be registered. 2921 TypePromotionTransaction &TPT; 2922 2923 // A GEP which has too large offset to be folded into the addressing mode. 2924 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2925 2926 /// This is set to true when we should not do profitability checks. 2927 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2928 bool IgnoreProfitability; 2929 2930 /// True if we are optimizing for size. 2931 bool OptSize; 2932 2933 ProfileSummaryInfo *PSI; 2934 BlockFrequencyInfo *BFI; 2935 2936 AddressingModeMatcher( 2937 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2938 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2939 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2940 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2941 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2942 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2943 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2944 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2945 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2946 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2947 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2948 IgnoreProfitability = false; 2949 } 2950 2951 public: 2952 /// Find the maximal addressing mode that a load/store of V can fold, 2953 /// give an access type of AccessTy. This returns a list of involved 2954 /// instructions in AddrModeInsts. 2955 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2956 /// optimizations. 2957 /// \p PromotedInsts maps the instructions to their type before promotion. 2958 /// \p The ongoing transaction where every action should be registered. 2959 static ExtAddrMode 2960 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2961 SmallVectorImpl<Instruction *> &AddrModeInsts, 2962 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2963 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2964 TypePromotionTransaction &TPT, 2965 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2966 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2967 ExtAddrMode Result; 2968 2969 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2970 MemoryInst, Result, InsertedInsts, 2971 PromotedInsts, TPT, LargeOffsetGEP, 2972 OptSize, PSI, BFI) 2973 .matchAddr(V, 0); 2974 (void)Success; assert(Success && "Couldn't select *anything*?"); 2975 return Result; 2976 } 2977 2978 private: 2979 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2980 bool matchAddr(Value *Addr, unsigned Depth); 2981 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2982 bool *MovedAway = nullptr); 2983 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2984 ExtAddrMode &AMBefore, 2985 ExtAddrMode &AMAfter); 2986 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2987 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2988 Value *PromotedOperand) const; 2989 }; 2990 2991 class PhiNodeSet; 2992 2993 /// An iterator for PhiNodeSet. 2994 class PhiNodeSetIterator { 2995 PhiNodeSet * const Set; 2996 size_t CurrentIndex = 0; 2997 2998 public: 2999 /// The constructor. Start should point to either a valid element, or be equal 3000 /// to the size of the underlying SmallVector of the PhiNodeSet. 3001 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3002 PHINode * operator*() const; 3003 PhiNodeSetIterator& operator++(); 3004 bool operator==(const PhiNodeSetIterator &RHS) const; 3005 bool operator!=(const PhiNodeSetIterator &RHS) const; 3006 }; 3007 3008 /// Keeps a set of PHINodes. 3009 /// 3010 /// This is a minimal set implementation for a specific use case: 3011 /// It is very fast when there are very few elements, but also provides good 3012 /// performance when there are many. It is similar to SmallPtrSet, but also 3013 /// provides iteration by insertion order, which is deterministic and stable 3014 /// across runs. It is also similar to SmallSetVector, but provides removing 3015 /// elements in O(1) time. This is achieved by not actually removing the element 3016 /// from the underlying vector, so comes at the cost of using more memory, but 3017 /// that is fine, since PhiNodeSets are used as short lived objects. 3018 class PhiNodeSet { 3019 friend class PhiNodeSetIterator; 3020 3021 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3022 using iterator = PhiNodeSetIterator; 3023 3024 /// Keeps the elements in the order of their insertion in the underlying 3025 /// vector. To achieve constant time removal, it never deletes any element. 3026 SmallVector<PHINode *, 32> NodeList; 3027 3028 /// Keeps the elements in the underlying set implementation. This (and not the 3029 /// NodeList defined above) is the source of truth on whether an element 3030 /// is actually in the collection. 3031 MapType NodeMap; 3032 3033 /// Points to the first valid (not deleted) element when the set is not empty 3034 /// and the value is not zero. Equals to the size of the underlying vector 3035 /// when the set is empty. When the value is 0, as in the beginning, the 3036 /// first element may or may not be valid. 3037 size_t FirstValidElement = 0; 3038 3039 public: 3040 /// Inserts a new element to the collection. 3041 /// \returns true if the element is actually added, i.e. was not in the 3042 /// collection before the operation. 3043 bool insert(PHINode *Ptr) { 3044 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3045 NodeList.push_back(Ptr); 3046 return true; 3047 } 3048 return false; 3049 } 3050 3051 /// Removes the element from the collection. 3052 /// \returns whether the element is actually removed, i.e. was in the 3053 /// collection before the operation. 3054 bool erase(PHINode *Ptr) { 3055 auto it = NodeMap.find(Ptr); 3056 if (it != NodeMap.end()) { 3057 NodeMap.erase(Ptr); 3058 SkipRemovedElements(FirstValidElement); 3059 return true; 3060 } 3061 return false; 3062 } 3063 3064 /// Removes all elements and clears the collection. 3065 void clear() { 3066 NodeMap.clear(); 3067 NodeList.clear(); 3068 FirstValidElement = 0; 3069 } 3070 3071 /// \returns an iterator that will iterate the elements in the order of 3072 /// insertion. 3073 iterator begin() { 3074 if (FirstValidElement == 0) 3075 SkipRemovedElements(FirstValidElement); 3076 return PhiNodeSetIterator(this, FirstValidElement); 3077 } 3078 3079 /// \returns an iterator that points to the end of the collection. 3080 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3081 3082 /// Returns the number of elements in the collection. 3083 size_t size() const { 3084 return NodeMap.size(); 3085 } 3086 3087 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3088 size_t count(PHINode *Ptr) const { 3089 return NodeMap.count(Ptr); 3090 } 3091 3092 private: 3093 /// Updates the CurrentIndex so that it will point to a valid element. 3094 /// 3095 /// If the element of NodeList at CurrentIndex is valid, it does not 3096 /// change it. If there are no more valid elements, it updates CurrentIndex 3097 /// to point to the end of the NodeList. 3098 void SkipRemovedElements(size_t &CurrentIndex) { 3099 while (CurrentIndex < NodeList.size()) { 3100 auto it = NodeMap.find(NodeList[CurrentIndex]); 3101 // If the element has been deleted and added again later, NodeMap will 3102 // point to a different index, so CurrentIndex will still be invalid. 3103 if (it != NodeMap.end() && it->second == CurrentIndex) 3104 break; 3105 ++CurrentIndex; 3106 } 3107 } 3108 }; 3109 3110 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3111 : Set(Set), CurrentIndex(Start) {} 3112 3113 PHINode * PhiNodeSetIterator::operator*() const { 3114 assert(CurrentIndex < Set->NodeList.size() && 3115 "PhiNodeSet access out of range"); 3116 return Set->NodeList[CurrentIndex]; 3117 } 3118 3119 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3120 assert(CurrentIndex < Set->NodeList.size() && 3121 "PhiNodeSet access out of range"); 3122 ++CurrentIndex; 3123 Set->SkipRemovedElements(CurrentIndex); 3124 return *this; 3125 } 3126 3127 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3128 return CurrentIndex == RHS.CurrentIndex; 3129 } 3130 3131 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3132 return !((*this) == RHS); 3133 } 3134 3135 /// Keep track of simplification of Phi nodes. 3136 /// Accept the set of all phi nodes and erase phi node from this set 3137 /// if it is simplified. 3138 class SimplificationTracker { 3139 DenseMap<Value *, Value *> Storage; 3140 const SimplifyQuery &SQ; 3141 // Tracks newly created Phi nodes. The elements are iterated by insertion 3142 // order. 3143 PhiNodeSet AllPhiNodes; 3144 // Tracks newly created Select nodes. 3145 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3146 3147 public: 3148 SimplificationTracker(const SimplifyQuery &sq) 3149 : SQ(sq) {} 3150 3151 Value *Get(Value *V) { 3152 do { 3153 auto SV = Storage.find(V); 3154 if (SV == Storage.end()) 3155 return V; 3156 V = SV->second; 3157 } while (true); 3158 } 3159 3160 Value *Simplify(Value *Val) { 3161 SmallVector<Value *, 32> WorkList; 3162 SmallPtrSet<Value *, 32> Visited; 3163 WorkList.push_back(Val); 3164 while (!WorkList.empty()) { 3165 auto P = WorkList.pop_back_val(); 3166 if (!Visited.insert(P).second) 3167 continue; 3168 if (auto *PI = dyn_cast<Instruction>(P)) 3169 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3170 for (auto *U : PI->users()) 3171 WorkList.push_back(cast<Value>(U)); 3172 Put(PI, V); 3173 PI->replaceAllUsesWith(V); 3174 if (auto *PHI = dyn_cast<PHINode>(PI)) 3175 AllPhiNodes.erase(PHI); 3176 if (auto *Select = dyn_cast<SelectInst>(PI)) 3177 AllSelectNodes.erase(Select); 3178 PI->eraseFromParent(); 3179 } 3180 } 3181 return Get(Val); 3182 } 3183 3184 void Put(Value *From, Value *To) { 3185 Storage.insert({ From, To }); 3186 } 3187 3188 void ReplacePhi(PHINode *From, PHINode *To) { 3189 Value* OldReplacement = Get(From); 3190 while (OldReplacement != From) { 3191 From = To; 3192 To = dyn_cast<PHINode>(OldReplacement); 3193 OldReplacement = Get(From); 3194 } 3195 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3196 Put(From, To); 3197 From->replaceAllUsesWith(To); 3198 AllPhiNodes.erase(From); 3199 From->eraseFromParent(); 3200 } 3201 3202 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3203 3204 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3205 3206 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3207 3208 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3209 3210 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3211 3212 void destroyNewNodes(Type *CommonType) { 3213 // For safe erasing, replace the uses with dummy value first. 3214 auto Dummy = UndefValue::get(CommonType); 3215 for (auto I : AllPhiNodes) { 3216 I->replaceAllUsesWith(Dummy); 3217 I->eraseFromParent(); 3218 } 3219 AllPhiNodes.clear(); 3220 for (auto I : AllSelectNodes) { 3221 I->replaceAllUsesWith(Dummy); 3222 I->eraseFromParent(); 3223 } 3224 AllSelectNodes.clear(); 3225 } 3226 }; 3227 3228 /// A helper class for combining addressing modes. 3229 class AddressingModeCombiner { 3230 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3231 typedef std::pair<PHINode *, PHINode *> PHIPair; 3232 3233 private: 3234 /// The addressing modes we've collected. 3235 SmallVector<ExtAddrMode, 16> AddrModes; 3236 3237 /// The field in which the AddrModes differ, when we have more than one. 3238 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3239 3240 /// Are the AddrModes that we have all just equal to their original values? 3241 bool AllAddrModesTrivial = true; 3242 3243 /// Common Type for all different fields in addressing modes. 3244 Type *CommonType; 3245 3246 /// SimplifyQuery for simplifyInstruction utility. 3247 const SimplifyQuery &SQ; 3248 3249 /// Original Address. 3250 Value *Original; 3251 3252 public: 3253 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3254 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3255 3256 /// Get the combined AddrMode 3257 const ExtAddrMode &getAddrMode() const { 3258 return AddrModes[0]; 3259 } 3260 3261 /// Add a new AddrMode if it's compatible with the AddrModes we already 3262 /// have. 3263 /// \return True iff we succeeded in doing so. 3264 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3265 // Take note of if we have any non-trivial AddrModes, as we need to detect 3266 // when all AddrModes are trivial as then we would introduce a phi or select 3267 // which just duplicates what's already there. 3268 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3269 3270 // If this is the first addrmode then everything is fine. 3271 if (AddrModes.empty()) { 3272 AddrModes.emplace_back(NewAddrMode); 3273 return true; 3274 } 3275 3276 // Figure out how different this is from the other address modes, which we 3277 // can do just by comparing against the first one given that we only care 3278 // about the cumulative difference. 3279 ExtAddrMode::FieldName ThisDifferentField = 3280 AddrModes[0].compare(NewAddrMode); 3281 if (DifferentField == ExtAddrMode::NoField) 3282 DifferentField = ThisDifferentField; 3283 else if (DifferentField != ThisDifferentField) 3284 DifferentField = ExtAddrMode::MultipleFields; 3285 3286 // If NewAddrMode differs in more than one dimension we cannot handle it. 3287 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3288 3289 // If Scale Field is different then we reject. 3290 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3291 3292 // We also must reject the case when base offset is different and 3293 // scale reg is not null, we cannot handle this case due to merge of 3294 // different offsets will be used as ScaleReg. 3295 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3296 !NewAddrMode.ScaledReg); 3297 3298 // We also must reject the case when GV is different and BaseReg installed 3299 // due to we want to use base reg as a merge of GV values. 3300 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3301 !NewAddrMode.HasBaseReg); 3302 3303 // Even if NewAddMode is the same we still need to collect it due to 3304 // original value is different. And later we will need all original values 3305 // as anchors during finding the common Phi node. 3306 if (CanHandle) 3307 AddrModes.emplace_back(NewAddrMode); 3308 else 3309 AddrModes.clear(); 3310 3311 return CanHandle; 3312 } 3313 3314 /// Combine the addressing modes we've collected into a single 3315 /// addressing mode. 3316 /// \return True iff we successfully combined them or we only had one so 3317 /// didn't need to combine them anyway. 3318 bool combineAddrModes() { 3319 // If we have no AddrModes then they can't be combined. 3320 if (AddrModes.size() == 0) 3321 return false; 3322 3323 // A single AddrMode can trivially be combined. 3324 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3325 return true; 3326 3327 // If the AddrModes we collected are all just equal to the value they are 3328 // derived from then combining them wouldn't do anything useful. 3329 if (AllAddrModesTrivial) 3330 return false; 3331 3332 if (!addrModeCombiningAllowed()) 3333 return false; 3334 3335 // Build a map between <original value, basic block where we saw it> to 3336 // value of base register. 3337 // Bail out if there is no common type. 3338 FoldAddrToValueMapping Map; 3339 if (!initializeMap(Map)) 3340 return false; 3341 3342 Value *CommonValue = findCommon(Map); 3343 if (CommonValue) 3344 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3345 return CommonValue != nullptr; 3346 } 3347 3348 private: 3349 /// Initialize Map with anchor values. For address seen 3350 /// we set the value of different field saw in this address. 3351 /// At the same time we find a common type for different field we will 3352 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3353 /// Return false if there is no common type found. 3354 bool initializeMap(FoldAddrToValueMapping &Map) { 3355 // Keep track of keys where the value is null. We will need to replace it 3356 // with constant null when we know the common type. 3357 SmallVector<Value *, 2> NullValue; 3358 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3359 for (auto &AM : AddrModes) { 3360 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3361 if (DV) { 3362 auto *Type = DV->getType(); 3363 if (CommonType && CommonType != Type) 3364 return false; 3365 CommonType = Type; 3366 Map[AM.OriginalValue] = DV; 3367 } else { 3368 NullValue.push_back(AM.OriginalValue); 3369 } 3370 } 3371 assert(CommonType && "At least one non-null value must be!"); 3372 for (auto *V : NullValue) 3373 Map[V] = Constant::getNullValue(CommonType); 3374 return true; 3375 } 3376 3377 /// We have mapping between value A and other value B where B was a field in 3378 /// addressing mode represented by A. Also we have an original value C 3379 /// representing an address we start with. Traversing from C through phi and 3380 /// selects we ended up with A's in a map. This utility function tries to find 3381 /// a value V which is a field in addressing mode C and traversing through phi 3382 /// nodes and selects we will end up in corresponded values B in a map. 3383 /// The utility will create a new Phi/Selects if needed. 3384 // The simple example looks as follows: 3385 // BB1: 3386 // p1 = b1 + 40 3387 // br cond BB2, BB3 3388 // BB2: 3389 // p2 = b2 + 40 3390 // br BB3 3391 // BB3: 3392 // p = phi [p1, BB1], [p2, BB2] 3393 // v = load p 3394 // Map is 3395 // p1 -> b1 3396 // p2 -> b2 3397 // Request is 3398 // p -> ? 3399 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3400 Value *findCommon(FoldAddrToValueMapping &Map) { 3401 // Tracks the simplification of newly created phi nodes. The reason we use 3402 // this mapping is because we will add new created Phi nodes in AddrToBase. 3403 // Simplification of Phi nodes is recursive, so some Phi node may 3404 // be simplified after we added it to AddrToBase. In reality this 3405 // simplification is possible only if original phi/selects were not 3406 // simplified yet. 3407 // Using this mapping we can find the current value in AddrToBase. 3408 SimplificationTracker ST(SQ); 3409 3410 // First step, DFS to create PHI nodes for all intermediate blocks. 3411 // Also fill traverse order for the second step. 3412 SmallVector<Value *, 32> TraverseOrder; 3413 InsertPlaceholders(Map, TraverseOrder, ST); 3414 3415 // Second Step, fill new nodes by merged values and simplify if possible. 3416 FillPlaceholders(Map, TraverseOrder, ST); 3417 3418 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3419 ST.destroyNewNodes(CommonType); 3420 return nullptr; 3421 } 3422 3423 // Now we'd like to match New Phi nodes to existed ones. 3424 unsigned PhiNotMatchedCount = 0; 3425 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3426 ST.destroyNewNodes(CommonType); 3427 return nullptr; 3428 } 3429 3430 auto *Result = ST.Get(Map.find(Original)->second); 3431 if (Result) { 3432 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3433 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3434 } 3435 return Result; 3436 } 3437 3438 /// Try to match PHI node to Candidate. 3439 /// Matcher tracks the matched Phi nodes. 3440 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3441 SmallSetVector<PHIPair, 8> &Matcher, 3442 PhiNodeSet &PhiNodesToMatch) { 3443 SmallVector<PHIPair, 8> WorkList; 3444 Matcher.insert({ PHI, Candidate }); 3445 SmallSet<PHINode *, 8> MatchedPHIs; 3446 MatchedPHIs.insert(PHI); 3447 WorkList.push_back({ PHI, Candidate }); 3448 SmallSet<PHIPair, 8> Visited; 3449 while (!WorkList.empty()) { 3450 auto Item = WorkList.pop_back_val(); 3451 if (!Visited.insert(Item).second) 3452 continue; 3453 // We iterate over all incoming values to Phi to compare them. 3454 // If values are different and both of them Phi and the first one is a 3455 // Phi we added (subject to match) and both of them is in the same basic 3456 // block then we can match our pair if values match. So we state that 3457 // these values match and add it to work list to verify that. 3458 for (auto B : Item.first->blocks()) { 3459 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3460 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3461 if (FirstValue == SecondValue) 3462 continue; 3463 3464 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3465 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3466 3467 // One of them is not Phi or 3468 // The first one is not Phi node from the set we'd like to match or 3469 // Phi nodes from different basic blocks then 3470 // we will not be able to match. 3471 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3472 FirstPhi->getParent() != SecondPhi->getParent()) 3473 return false; 3474 3475 // If we already matched them then continue. 3476 if (Matcher.count({ FirstPhi, SecondPhi })) 3477 continue; 3478 // So the values are different and does not match. So we need them to 3479 // match. (But we register no more than one match per PHI node, so that 3480 // we won't later try to replace them twice.) 3481 if (MatchedPHIs.insert(FirstPhi).second) 3482 Matcher.insert({ FirstPhi, SecondPhi }); 3483 // But me must check it. 3484 WorkList.push_back({ FirstPhi, SecondPhi }); 3485 } 3486 } 3487 return true; 3488 } 3489 3490 /// For the given set of PHI nodes (in the SimplificationTracker) try 3491 /// to find their equivalents. 3492 /// Returns false if this matching fails and creation of new Phi is disabled. 3493 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3494 unsigned &PhiNotMatchedCount) { 3495 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3496 // order, so the replacements (ReplacePhi) are also done in a deterministic 3497 // order. 3498 SmallSetVector<PHIPair, 8> Matched; 3499 SmallPtrSet<PHINode *, 8> WillNotMatch; 3500 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3501 while (PhiNodesToMatch.size()) { 3502 PHINode *PHI = *PhiNodesToMatch.begin(); 3503 3504 // Add us, if no Phi nodes in the basic block we do not match. 3505 WillNotMatch.clear(); 3506 WillNotMatch.insert(PHI); 3507 3508 // Traverse all Phis until we found equivalent or fail to do that. 3509 bool IsMatched = false; 3510 for (auto &P : PHI->getParent()->phis()) { 3511 if (&P == PHI) 3512 continue; 3513 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3514 break; 3515 // If it does not match, collect all Phi nodes from matcher. 3516 // if we end up with no match, them all these Phi nodes will not match 3517 // later. 3518 for (auto M : Matched) 3519 WillNotMatch.insert(M.first); 3520 Matched.clear(); 3521 } 3522 if (IsMatched) { 3523 // Replace all matched values and erase them. 3524 for (auto MV : Matched) 3525 ST.ReplacePhi(MV.first, MV.second); 3526 Matched.clear(); 3527 continue; 3528 } 3529 // If we are not allowed to create new nodes then bail out. 3530 if (!AllowNewPhiNodes) 3531 return false; 3532 // Just remove all seen values in matcher. They will not match anything. 3533 PhiNotMatchedCount += WillNotMatch.size(); 3534 for (auto *P : WillNotMatch) 3535 PhiNodesToMatch.erase(P); 3536 } 3537 return true; 3538 } 3539 /// Fill the placeholders with values from predecessors and simplify them. 3540 void FillPlaceholders(FoldAddrToValueMapping &Map, 3541 SmallVectorImpl<Value *> &TraverseOrder, 3542 SimplificationTracker &ST) { 3543 while (!TraverseOrder.empty()) { 3544 Value *Current = TraverseOrder.pop_back_val(); 3545 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3546 Value *V = Map[Current]; 3547 3548 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3549 // CurrentValue also must be Select. 3550 auto *CurrentSelect = cast<SelectInst>(Current); 3551 auto *TrueValue = CurrentSelect->getTrueValue(); 3552 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3553 Select->setTrueValue(ST.Get(Map[TrueValue])); 3554 auto *FalseValue = CurrentSelect->getFalseValue(); 3555 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3556 Select->setFalseValue(ST.Get(Map[FalseValue])); 3557 } else { 3558 // Must be a Phi node then. 3559 auto *PHI = cast<PHINode>(V); 3560 // Fill the Phi node with values from predecessors. 3561 for (auto B : predecessors(PHI->getParent())) { 3562 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3563 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3564 PHI->addIncoming(ST.Get(Map[PV]), B); 3565 } 3566 } 3567 Map[Current] = ST.Simplify(V); 3568 } 3569 } 3570 3571 /// Starting from original value recursively iterates over def-use chain up to 3572 /// known ending values represented in a map. For each traversed phi/select 3573 /// inserts a placeholder Phi or Select. 3574 /// Reports all new created Phi/Select nodes by adding them to set. 3575 /// Also reports and order in what values have been traversed. 3576 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3577 SmallVectorImpl<Value *> &TraverseOrder, 3578 SimplificationTracker &ST) { 3579 SmallVector<Value *, 32> Worklist; 3580 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3581 "Address must be a Phi or Select node"); 3582 auto *Dummy = UndefValue::get(CommonType); 3583 Worklist.push_back(Original); 3584 while (!Worklist.empty()) { 3585 Value *Current = Worklist.pop_back_val(); 3586 // if it is already visited or it is an ending value then skip it. 3587 if (Map.find(Current) != Map.end()) 3588 continue; 3589 TraverseOrder.push_back(Current); 3590 3591 // CurrentValue must be a Phi node or select. All others must be covered 3592 // by anchors. 3593 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3594 // Is it OK to get metadata from OrigSelect?! 3595 // Create a Select placeholder with dummy value. 3596 SelectInst *Select = SelectInst::Create( 3597 CurrentSelect->getCondition(), Dummy, Dummy, 3598 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3599 Map[Current] = Select; 3600 ST.insertNewSelect(Select); 3601 // We are interested in True and False values. 3602 Worklist.push_back(CurrentSelect->getTrueValue()); 3603 Worklist.push_back(CurrentSelect->getFalseValue()); 3604 } else { 3605 // It must be a Phi node then. 3606 PHINode *CurrentPhi = cast<PHINode>(Current); 3607 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3608 PHINode *PHI = 3609 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3610 Map[Current] = PHI; 3611 ST.insertNewPhi(PHI); 3612 for (Value *P : CurrentPhi->incoming_values()) 3613 Worklist.push_back(P); 3614 } 3615 } 3616 } 3617 3618 bool addrModeCombiningAllowed() { 3619 if (DisableComplexAddrModes) 3620 return false; 3621 switch (DifferentField) { 3622 default: 3623 return false; 3624 case ExtAddrMode::BaseRegField: 3625 return AddrSinkCombineBaseReg; 3626 case ExtAddrMode::BaseGVField: 3627 return AddrSinkCombineBaseGV; 3628 case ExtAddrMode::BaseOffsField: 3629 return AddrSinkCombineBaseOffs; 3630 case ExtAddrMode::ScaledRegField: 3631 return AddrSinkCombineScaledReg; 3632 } 3633 } 3634 }; 3635 } // end anonymous namespace 3636 3637 /// Try adding ScaleReg*Scale to the current addressing mode. 3638 /// Return true and update AddrMode if this addr mode is legal for the target, 3639 /// false if not. 3640 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3641 unsigned Depth) { 3642 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3643 // mode. Just process that directly. 3644 if (Scale == 1) 3645 return matchAddr(ScaleReg, Depth); 3646 3647 // If the scale is 0, it takes nothing to add this. 3648 if (Scale == 0) 3649 return true; 3650 3651 // If we already have a scale of this value, we can add to it, otherwise, we 3652 // need an available scale field. 3653 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3654 return false; 3655 3656 ExtAddrMode TestAddrMode = AddrMode; 3657 3658 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3659 // [A+B + A*7] -> [B+A*8]. 3660 TestAddrMode.Scale += Scale; 3661 TestAddrMode.ScaledReg = ScaleReg; 3662 3663 // If the new address isn't legal, bail out. 3664 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3665 return false; 3666 3667 // It was legal, so commit it. 3668 AddrMode = TestAddrMode; 3669 3670 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3671 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3672 // X*Scale + C*Scale to addr mode. 3673 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3674 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3675 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3676 TestAddrMode.InBounds = false; 3677 TestAddrMode.ScaledReg = AddLHS; 3678 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3679 3680 // If this addressing mode is legal, commit it and remember that we folded 3681 // this instruction. 3682 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3683 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3684 AddrMode = TestAddrMode; 3685 return true; 3686 } 3687 } 3688 3689 // Otherwise, not (x+c)*scale, just return what we have. 3690 return true; 3691 } 3692 3693 /// This is a little filter, which returns true if an addressing computation 3694 /// involving I might be folded into a load/store accessing it. 3695 /// This doesn't need to be perfect, but needs to accept at least 3696 /// the set of instructions that MatchOperationAddr can. 3697 static bool MightBeFoldableInst(Instruction *I) { 3698 switch (I->getOpcode()) { 3699 case Instruction::BitCast: 3700 case Instruction::AddrSpaceCast: 3701 // Don't touch identity bitcasts. 3702 if (I->getType() == I->getOperand(0)->getType()) 3703 return false; 3704 return I->getType()->isIntOrPtrTy(); 3705 case Instruction::PtrToInt: 3706 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3707 return true; 3708 case Instruction::IntToPtr: 3709 // We know the input is intptr_t, so this is foldable. 3710 return true; 3711 case Instruction::Add: 3712 return true; 3713 case Instruction::Mul: 3714 case Instruction::Shl: 3715 // Can only handle X*C and X << C. 3716 return isa<ConstantInt>(I->getOperand(1)); 3717 case Instruction::GetElementPtr: 3718 return true; 3719 default: 3720 return false; 3721 } 3722 } 3723 3724 /// Check whether or not \p Val is a legal instruction for \p TLI. 3725 /// \note \p Val is assumed to be the product of some type promotion. 3726 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3727 /// to be legal, as the non-promoted value would have had the same state. 3728 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3729 const DataLayout &DL, Value *Val) { 3730 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3731 if (!PromotedInst) 3732 return false; 3733 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3734 // If the ISDOpcode is undefined, it was undefined before the promotion. 3735 if (!ISDOpcode) 3736 return true; 3737 // Otherwise, check if the promoted instruction is legal or not. 3738 return TLI.isOperationLegalOrCustom( 3739 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3740 } 3741 3742 namespace { 3743 3744 /// Hepler class to perform type promotion. 3745 class TypePromotionHelper { 3746 /// Utility function to add a promoted instruction \p ExtOpnd to 3747 /// \p PromotedInsts and record the type of extension we have seen. 3748 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3749 Instruction *ExtOpnd, 3750 bool IsSExt) { 3751 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3752 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3753 if (It != PromotedInsts.end()) { 3754 // If the new extension is same as original, the information in 3755 // PromotedInsts[ExtOpnd] is still correct. 3756 if (It->second.getInt() == ExtTy) 3757 return; 3758 3759 // Now the new extension is different from old extension, we make 3760 // the type information invalid by setting extension type to 3761 // BothExtension. 3762 ExtTy = BothExtension; 3763 } 3764 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3765 } 3766 3767 /// Utility function to query the original type of instruction \p Opnd 3768 /// with a matched extension type. If the extension doesn't match, we 3769 /// cannot use the information we had on the original type. 3770 /// BothExtension doesn't match any extension type. 3771 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3772 Instruction *Opnd, 3773 bool IsSExt) { 3774 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3775 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3776 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3777 return It->second.getPointer(); 3778 return nullptr; 3779 } 3780 3781 /// Utility function to check whether or not a sign or zero extension 3782 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3783 /// either using the operands of \p Inst or promoting \p Inst. 3784 /// The type of the extension is defined by \p IsSExt. 3785 /// In other words, check if: 3786 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3787 /// #1 Promotion applies: 3788 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3789 /// #2 Operand reuses: 3790 /// ext opnd1 to ConsideredExtType. 3791 /// \p PromotedInsts maps the instructions to their type before promotion. 3792 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3793 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3794 3795 /// Utility function to determine if \p OpIdx should be promoted when 3796 /// promoting \p Inst. 3797 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3798 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3799 } 3800 3801 /// Utility function to promote the operand of \p Ext when this 3802 /// operand is a promotable trunc or sext or zext. 3803 /// \p PromotedInsts maps the instructions to their type before promotion. 3804 /// \p CreatedInstsCost[out] contains the cost of all instructions 3805 /// created to promote the operand of Ext. 3806 /// Newly added extensions are inserted in \p Exts. 3807 /// Newly added truncates are inserted in \p Truncs. 3808 /// Should never be called directly. 3809 /// \return The promoted value which is used instead of Ext. 3810 static Value *promoteOperandForTruncAndAnyExt( 3811 Instruction *Ext, TypePromotionTransaction &TPT, 3812 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3813 SmallVectorImpl<Instruction *> *Exts, 3814 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3815 3816 /// Utility function to promote the operand of \p Ext when this 3817 /// operand is promotable and is not a supported trunc or sext. 3818 /// \p PromotedInsts maps the instructions to their type before promotion. 3819 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3820 /// created to promote the operand of Ext. 3821 /// Newly added extensions are inserted in \p Exts. 3822 /// Newly added truncates are inserted in \p Truncs. 3823 /// Should never be called directly. 3824 /// \return The promoted value which is used instead of Ext. 3825 static Value *promoteOperandForOther(Instruction *Ext, 3826 TypePromotionTransaction &TPT, 3827 InstrToOrigTy &PromotedInsts, 3828 unsigned &CreatedInstsCost, 3829 SmallVectorImpl<Instruction *> *Exts, 3830 SmallVectorImpl<Instruction *> *Truncs, 3831 const TargetLowering &TLI, bool IsSExt); 3832 3833 /// \see promoteOperandForOther. 3834 static Value *signExtendOperandForOther( 3835 Instruction *Ext, TypePromotionTransaction &TPT, 3836 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3837 SmallVectorImpl<Instruction *> *Exts, 3838 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3839 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3840 Exts, Truncs, TLI, true); 3841 } 3842 3843 /// \see promoteOperandForOther. 3844 static Value *zeroExtendOperandForOther( 3845 Instruction *Ext, TypePromotionTransaction &TPT, 3846 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3847 SmallVectorImpl<Instruction *> *Exts, 3848 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3849 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3850 Exts, Truncs, TLI, false); 3851 } 3852 3853 public: 3854 /// Type for the utility function that promotes the operand of Ext. 3855 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3856 InstrToOrigTy &PromotedInsts, 3857 unsigned &CreatedInstsCost, 3858 SmallVectorImpl<Instruction *> *Exts, 3859 SmallVectorImpl<Instruction *> *Truncs, 3860 const TargetLowering &TLI); 3861 3862 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3863 /// action to promote the operand of \p Ext instead of using Ext. 3864 /// \return NULL if no promotable action is possible with the current 3865 /// sign extension. 3866 /// \p InsertedInsts keeps track of all the instructions inserted by the 3867 /// other CodeGenPrepare optimizations. This information is important 3868 /// because we do not want to promote these instructions as CodeGenPrepare 3869 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3870 /// \p PromotedInsts maps the instructions to their type before promotion. 3871 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3872 const TargetLowering &TLI, 3873 const InstrToOrigTy &PromotedInsts); 3874 }; 3875 3876 } // end anonymous namespace 3877 3878 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3879 Type *ConsideredExtType, 3880 const InstrToOrigTy &PromotedInsts, 3881 bool IsSExt) { 3882 // The promotion helper does not know how to deal with vector types yet. 3883 // To be able to fix that, we would need to fix the places where we 3884 // statically extend, e.g., constants and such. 3885 if (Inst->getType()->isVectorTy()) 3886 return false; 3887 3888 // We can always get through zext. 3889 if (isa<ZExtInst>(Inst)) 3890 return true; 3891 3892 // sext(sext) is ok too. 3893 if (IsSExt && isa<SExtInst>(Inst)) 3894 return true; 3895 3896 // We can get through binary operator, if it is legal. In other words, the 3897 // binary operator must have a nuw or nsw flag. 3898 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3899 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3900 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3901 (IsSExt && BinOp->hasNoSignedWrap()))) 3902 return true; 3903 3904 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3905 if ((Inst->getOpcode() == Instruction::And || 3906 Inst->getOpcode() == Instruction::Or)) 3907 return true; 3908 3909 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3910 if (Inst->getOpcode() == Instruction::Xor) { 3911 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3912 // Make sure it is not a NOT. 3913 if (Cst && !Cst->getValue().isAllOnesValue()) 3914 return true; 3915 } 3916 3917 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3918 // It may change a poisoned value into a regular value, like 3919 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3920 // poisoned value regular value 3921 // It should be OK since undef covers valid value. 3922 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3923 return true; 3924 3925 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3926 // It may change a poisoned value into a regular value, like 3927 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3928 // poisoned value regular value 3929 // It should be OK since undef covers valid value. 3930 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3931 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3932 if (ExtInst->hasOneUse()) { 3933 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3934 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3935 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3936 if (Cst && 3937 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3938 return true; 3939 } 3940 } 3941 } 3942 3943 // Check if we can do the following simplification. 3944 // ext(trunc(opnd)) --> ext(opnd) 3945 if (!isa<TruncInst>(Inst)) 3946 return false; 3947 3948 Value *OpndVal = Inst->getOperand(0); 3949 // Check if we can use this operand in the extension. 3950 // If the type is larger than the result type of the extension, we cannot. 3951 if (!OpndVal->getType()->isIntegerTy() || 3952 OpndVal->getType()->getIntegerBitWidth() > 3953 ConsideredExtType->getIntegerBitWidth()) 3954 return false; 3955 3956 // If the operand of the truncate is not an instruction, we will not have 3957 // any information on the dropped bits. 3958 // (Actually we could for constant but it is not worth the extra logic). 3959 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3960 if (!Opnd) 3961 return false; 3962 3963 // Check if the source of the type is narrow enough. 3964 // I.e., check that trunc just drops extended bits of the same kind of 3965 // the extension. 3966 // #1 get the type of the operand and check the kind of the extended bits. 3967 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3968 if (OpndType) 3969 ; 3970 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3971 OpndType = Opnd->getOperand(0)->getType(); 3972 else 3973 return false; 3974 3975 // #2 check that the truncate just drops extended bits. 3976 return Inst->getType()->getIntegerBitWidth() >= 3977 OpndType->getIntegerBitWidth(); 3978 } 3979 3980 TypePromotionHelper::Action TypePromotionHelper::getAction( 3981 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3982 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3983 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3984 "Unexpected instruction type"); 3985 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3986 Type *ExtTy = Ext->getType(); 3987 bool IsSExt = isa<SExtInst>(Ext); 3988 // If the operand of the extension is not an instruction, we cannot 3989 // get through. 3990 // If it, check we can get through. 3991 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3992 return nullptr; 3993 3994 // Do not promote if the operand has been added by codegenprepare. 3995 // Otherwise, it means we are undoing an optimization that is likely to be 3996 // redone, thus causing potential infinite loop. 3997 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3998 return nullptr; 3999 4000 // SExt or Trunc instructions. 4001 // Return the related handler. 4002 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4003 isa<ZExtInst>(ExtOpnd)) 4004 return promoteOperandForTruncAndAnyExt; 4005 4006 // Regular instruction. 4007 // Abort early if we will have to insert non-free instructions. 4008 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4009 return nullptr; 4010 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4011 } 4012 4013 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4014 Instruction *SExt, TypePromotionTransaction &TPT, 4015 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4016 SmallVectorImpl<Instruction *> *Exts, 4017 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4018 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4019 // get through it and this method should not be called. 4020 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4021 Value *ExtVal = SExt; 4022 bool HasMergedNonFreeExt = false; 4023 if (isa<ZExtInst>(SExtOpnd)) { 4024 // Replace s|zext(zext(opnd)) 4025 // => zext(opnd). 4026 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4027 Value *ZExt = 4028 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4029 TPT.replaceAllUsesWith(SExt, ZExt); 4030 TPT.eraseInstruction(SExt); 4031 ExtVal = ZExt; 4032 } else { 4033 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4034 // => z|sext(opnd). 4035 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4036 } 4037 CreatedInstsCost = 0; 4038 4039 // Remove dead code. 4040 if (SExtOpnd->use_empty()) 4041 TPT.eraseInstruction(SExtOpnd); 4042 4043 // Check if the extension is still needed. 4044 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4045 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4046 if (ExtInst) { 4047 if (Exts) 4048 Exts->push_back(ExtInst); 4049 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4050 } 4051 return ExtVal; 4052 } 4053 4054 // At this point we have: ext ty opnd to ty. 4055 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4056 Value *NextVal = ExtInst->getOperand(0); 4057 TPT.eraseInstruction(ExtInst, NextVal); 4058 return NextVal; 4059 } 4060 4061 Value *TypePromotionHelper::promoteOperandForOther( 4062 Instruction *Ext, TypePromotionTransaction &TPT, 4063 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4064 SmallVectorImpl<Instruction *> *Exts, 4065 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4066 bool IsSExt) { 4067 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4068 // get through it and this method should not be called. 4069 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4070 CreatedInstsCost = 0; 4071 if (!ExtOpnd->hasOneUse()) { 4072 // ExtOpnd will be promoted. 4073 // All its uses, but Ext, will need to use a truncated value of the 4074 // promoted version. 4075 // Create the truncate now. 4076 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4077 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4078 // Insert it just after the definition. 4079 ITrunc->moveAfter(ExtOpnd); 4080 if (Truncs) 4081 Truncs->push_back(ITrunc); 4082 } 4083 4084 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4085 // Restore the operand of Ext (which has been replaced by the previous call 4086 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4087 TPT.setOperand(Ext, 0, ExtOpnd); 4088 } 4089 4090 // Get through the Instruction: 4091 // 1. Update its type. 4092 // 2. Replace the uses of Ext by Inst. 4093 // 3. Extend each operand that needs to be extended. 4094 4095 // Remember the original type of the instruction before promotion. 4096 // This is useful to know that the high bits are sign extended bits. 4097 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4098 // Step #1. 4099 TPT.mutateType(ExtOpnd, Ext->getType()); 4100 // Step #2. 4101 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4102 // Step #3. 4103 Instruction *ExtForOpnd = Ext; 4104 4105 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4106 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4107 ++OpIdx) { 4108 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4109 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4110 !shouldExtOperand(ExtOpnd, OpIdx)) { 4111 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4112 continue; 4113 } 4114 // Check if we can statically extend the operand. 4115 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4116 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4117 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4118 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4119 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4120 : Cst->getValue().zext(BitWidth); 4121 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4122 continue; 4123 } 4124 // UndefValue are typed, so we have to statically sign extend them. 4125 if (isa<UndefValue>(Opnd)) { 4126 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4127 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4128 continue; 4129 } 4130 4131 // Otherwise we have to explicitly sign extend the operand. 4132 // Check if Ext was reused to extend an operand. 4133 if (!ExtForOpnd) { 4134 // If yes, create a new one. 4135 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4136 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4137 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4138 if (!isa<Instruction>(ValForExtOpnd)) { 4139 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4140 continue; 4141 } 4142 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4143 } 4144 if (Exts) 4145 Exts->push_back(ExtForOpnd); 4146 TPT.setOperand(ExtForOpnd, 0, Opnd); 4147 4148 // Move the sign extension before the insertion point. 4149 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4150 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4151 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4152 // If more sext are required, new instructions will have to be created. 4153 ExtForOpnd = nullptr; 4154 } 4155 if (ExtForOpnd == Ext) { 4156 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4157 TPT.eraseInstruction(Ext); 4158 } 4159 return ExtOpnd; 4160 } 4161 4162 /// Check whether or not promoting an instruction to a wider type is profitable. 4163 /// \p NewCost gives the cost of extension instructions created by the 4164 /// promotion. 4165 /// \p OldCost gives the cost of extension instructions before the promotion 4166 /// plus the number of instructions that have been 4167 /// matched in the addressing mode the promotion. 4168 /// \p PromotedOperand is the value that has been promoted. 4169 /// \return True if the promotion is profitable, false otherwise. 4170 bool AddressingModeMatcher::isPromotionProfitable( 4171 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4172 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4173 << '\n'); 4174 // The cost of the new extensions is greater than the cost of the 4175 // old extension plus what we folded. 4176 // This is not profitable. 4177 if (NewCost > OldCost) 4178 return false; 4179 if (NewCost < OldCost) 4180 return true; 4181 // The promotion is neutral but it may help folding the sign extension in 4182 // loads for instance. 4183 // Check that we did not create an illegal instruction. 4184 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4185 } 4186 4187 /// Given an instruction or constant expr, see if we can fold the operation 4188 /// into the addressing mode. If so, update the addressing mode and return 4189 /// true, otherwise return false without modifying AddrMode. 4190 /// If \p MovedAway is not NULL, it contains the information of whether or 4191 /// not AddrInst has to be folded into the addressing mode on success. 4192 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4193 /// because it has been moved away. 4194 /// Thus AddrInst must not be added in the matched instructions. 4195 /// This state can happen when AddrInst is a sext, since it may be moved away. 4196 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4197 /// not be referenced anymore. 4198 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4199 unsigned Depth, 4200 bool *MovedAway) { 4201 // Avoid exponential behavior on extremely deep expression trees. 4202 if (Depth >= 5) return false; 4203 4204 // By default, all matched instructions stay in place. 4205 if (MovedAway) 4206 *MovedAway = false; 4207 4208 switch (Opcode) { 4209 case Instruction::PtrToInt: 4210 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4211 return matchAddr(AddrInst->getOperand(0), Depth); 4212 case Instruction::IntToPtr: { 4213 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4214 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4215 // This inttoptr is a no-op if the integer type is pointer sized. 4216 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4217 return matchAddr(AddrInst->getOperand(0), Depth); 4218 return false; 4219 } 4220 case Instruction::BitCast: 4221 // BitCast is always a noop, and we can handle it as long as it is 4222 // int->int or pointer->pointer (we don't want int<->fp or something). 4223 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4224 // Don't touch identity bitcasts. These were probably put here by LSR, 4225 // and we don't want to mess around with them. Assume it knows what it 4226 // is doing. 4227 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4228 return matchAddr(AddrInst->getOperand(0), Depth); 4229 return false; 4230 case Instruction::AddrSpaceCast: { 4231 unsigned SrcAS 4232 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4233 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4234 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4235 return matchAddr(AddrInst->getOperand(0), Depth); 4236 return false; 4237 } 4238 case Instruction::Add: { 4239 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4240 ExtAddrMode BackupAddrMode = AddrMode; 4241 unsigned OldSize = AddrModeInsts.size(); 4242 // Start a transaction at this point. 4243 // The LHS may match but not the RHS. 4244 // Therefore, we need a higher level restoration point to undo partially 4245 // matched operation. 4246 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4247 TPT.getRestorationPoint(); 4248 4249 AddrMode.InBounds = false; 4250 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4251 matchAddr(AddrInst->getOperand(0), Depth+1)) 4252 return true; 4253 4254 // Restore the old addr mode info. 4255 AddrMode = BackupAddrMode; 4256 AddrModeInsts.resize(OldSize); 4257 TPT.rollback(LastKnownGood); 4258 4259 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4260 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4261 matchAddr(AddrInst->getOperand(1), Depth+1)) 4262 return true; 4263 4264 // Otherwise we definitely can't merge the ADD in. 4265 AddrMode = BackupAddrMode; 4266 AddrModeInsts.resize(OldSize); 4267 TPT.rollback(LastKnownGood); 4268 break; 4269 } 4270 //case Instruction::Or: 4271 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4272 //break; 4273 case Instruction::Mul: 4274 case Instruction::Shl: { 4275 // Can only handle X*C and X << C. 4276 AddrMode.InBounds = false; 4277 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4278 if (!RHS || RHS->getBitWidth() > 64) 4279 return false; 4280 int64_t Scale = RHS->getSExtValue(); 4281 if (Opcode == Instruction::Shl) 4282 Scale = 1LL << Scale; 4283 4284 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4285 } 4286 case Instruction::GetElementPtr: { 4287 // Scan the GEP. We check it if it contains constant offsets and at most 4288 // one variable offset. 4289 int VariableOperand = -1; 4290 unsigned VariableScale = 0; 4291 4292 int64_t ConstantOffset = 0; 4293 gep_type_iterator GTI = gep_type_begin(AddrInst); 4294 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4295 if (StructType *STy = GTI.getStructTypeOrNull()) { 4296 const StructLayout *SL = DL.getStructLayout(STy); 4297 unsigned Idx = 4298 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4299 ConstantOffset += SL->getElementOffset(Idx); 4300 } else { 4301 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4302 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4303 const APInt &CVal = CI->getValue(); 4304 if (CVal.getMinSignedBits() <= 64) { 4305 ConstantOffset += CVal.getSExtValue() * TypeSize; 4306 continue; 4307 } 4308 } 4309 if (TypeSize) { // Scales of zero don't do anything. 4310 // We only allow one variable index at the moment. 4311 if (VariableOperand != -1) 4312 return false; 4313 4314 // Remember the variable index. 4315 VariableOperand = i; 4316 VariableScale = TypeSize; 4317 } 4318 } 4319 } 4320 4321 // A common case is for the GEP to only do a constant offset. In this case, 4322 // just add it to the disp field and check validity. 4323 if (VariableOperand == -1) { 4324 AddrMode.BaseOffs += ConstantOffset; 4325 if (ConstantOffset == 0 || 4326 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4327 // Check to see if we can fold the base pointer in too. 4328 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4329 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4330 AddrMode.InBounds = false; 4331 return true; 4332 } 4333 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4334 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4335 ConstantOffset > 0) { 4336 // Record GEPs with non-zero offsets as candidates for splitting in the 4337 // event that the offset cannot fit into the r+i addressing mode. 4338 // Simple and common case that only one GEP is used in calculating the 4339 // address for the memory access. 4340 Value *Base = AddrInst->getOperand(0); 4341 auto *BaseI = dyn_cast<Instruction>(Base); 4342 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4343 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4344 (BaseI && !isa<CastInst>(BaseI) && 4345 !isa<GetElementPtrInst>(BaseI))) { 4346 // Make sure the parent block allows inserting non-PHI instructions 4347 // before the terminator. 4348 BasicBlock *Parent = 4349 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4350 if (!Parent->getTerminator()->isEHPad()) 4351 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4352 } 4353 } 4354 AddrMode.BaseOffs -= ConstantOffset; 4355 return false; 4356 } 4357 4358 // Save the valid addressing mode in case we can't match. 4359 ExtAddrMode BackupAddrMode = AddrMode; 4360 unsigned OldSize = AddrModeInsts.size(); 4361 4362 // See if the scale and offset amount is valid for this target. 4363 AddrMode.BaseOffs += ConstantOffset; 4364 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4365 AddrMode.InBounds = false; 4366 4367 // Match the base operand of the GEP. 4368 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4369 // If it couldn't be matched, just stuff the value in a register. 4370 if (AddrMode.HasBaseReg) { 4371 AddrMode = BackupAddrMode; 4372 AddrModeInsts.resize(OldSize); 4373 return false; 4374 } 4375 AddrMode.HasBaseReg = true; 4376 AddrMode.BaseReg = AddrInst->getOperand(0); 4377 } 4378 4379 // Match the remaining variable portion of the GEP. 4380 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4381 Depth)) { 4382 // If it couldn't be matched, try stuffing the base into a register 4383 // instead of matching it, and retrying the match of the scale. 4384 AddrMode = BackupAddrMode; 4385 AddrModeInsts.resize(OldSize); 4386 if (AddrMode.HasBaseReg) 4387 return false; 4388 AddrMode.HasBaseReg = true; 4389 AddrMode.BaseReg = AddrInst->getOperand(0); 4390 AddrMode.BaseOffs += ConstantOffset; 4391 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4392 VariableScale, Depth)) { 4393 // If even that didn't work, bail. 4394 AddrMode = BackupAddrMode; 4395 AddrModeInsts.resize(OldSize); 4396 return false; 4397 } 4398 } 4399 4400 return true; 4401 } 4402 case Instruction::SExt: 4403 case Instruction::ZExt: { 4404 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4405 if (!Ext) 4406 return false; 4407 4408 // Try to move this ext out of the way of the addressing mode. 4409 // Ask for a method for doing so. 4410 TypePromotionHelper::Action TPH = 4411 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4412 if (!TPH) 4413 return false; 4414 4415 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4416 TPT.getRestorationPoint(); 4417 unsigned CreatedInstsCost = 0; 4418 unsigned ExtCost = !TLI.isExtFree(Ext); 4419 Value *PromotedOperand = 4420 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4421 // SExt has been moved away. 4422 // Thus either it will be rematched later in the recursive calls or it is 4423 // gone. Anyway, we must not fold it into the addressing mode at this point. 4424 // E.g., 4425 // op = add opnd, 1 4426 // idx = ext op 4427 // addr = gep base, idx 4428 // is now: 4429 // promotedOpnd = ext opnd <- no match here 4430 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4431 // addr = gep base, op <- match 4432 if (MovedAway) 4433 *MovedAway = true; 4434 4435 assert(PromotedOperand && 4436 "TypePromotionHelper should have filtered out those cases"); 4437 4438 ExtAddrMode BackupAddrMode = AddrMode; 4439 unsigned OldSize = AddrModeInsts.size(); 4440 4441 if (!matchAddr(PromotedOperand, Depth) || 4442 // The total of the new cost is equal to the cost of the created 4443 // instructions. 4444 // The total of the old cost is equal to the cost of the extension plus 4445 // what we have saved in the addressing mode. 4446 !isPromotionProfitable(CreatedInstsCost, 4447 ExtCost + (AddrModeInsts.size() - OldSize), 4448 PromotedOperand)) { 4449 AddrMode = BackupAddrMode; 4450 AddrModeInsts.resize(OldSize); 4451 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4452 TPT.rollback(LastKnownGood); 4453 return false; 4454 } 4455 return true; 4456 } 4457 } 4458 return false; 4459 } 4460 4461 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4462 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4463 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4464 /// for the target. 4465 /// 4466 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4467 // Start a transaction at this point that we will rollback if the matching 4468 // fails. 4469 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4470 TPT.getRestorationPoint(); 4471 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4472 // Fold in immediates if legal for the target. 4473 AddrMode.BaseOffs += CI->getSExtValue(); 4474 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4475 return true; 4476 AddrMode.BaseOffs -= CI->getSExtValue(); 4477 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4478 // If this is a global variable, try to fold it into the addressing mode. 4479 if (!AddrMode.BaseGV) { 4480 AddrMode.BaseGV = GV; 4481 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4482 return true; 4483 AddrMode.BaseGV = nullptr; 4484 } 4485 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4486 ExtAddrMode BackupAddrMode = AddrMode; 4487 unsigned OldSize = AddrModeInsts.size(); 4488 4489 // Check to see if it is possible to fold this operation. 4490 bool MovedAway = false; 4491 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4492 // This instruction may have been moved away. If so, there is nothing 4493 // to check here. 4494 if (MovedAway) 4495 return true; 4496 // Okay, it's possible to fold this. Check to see if it is actually 4497 // *profitable* to do so. We use a simple cost model to avoid increasing 4498 // register pressure too much. 4499 if (I->hasOneUse() || 4500 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4501 AddrModeInsts.push_back(I); 4502 return true; 4503 } 4504 4505 // It isn't profitable to do this, roll back. 4506 //cerr << "NOT FOLDING: " << *I; 4507 AddrMode = BackupAddrMode; 4508 AddrModeInsts.resize(OldSize); 4509 TPT.rollback(LastKnownGood); 4510 } 4511 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4512 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4513 return true; 4514 TPT.rollback(LastKnownGood); 4515 } else if (isa<ConstantPointerNull>(Addr)) { 4516 // Null pointer gets folded without affecting the addressing mode. 4517 return true; 4518 } 4519 4520 // Worse case, the target should support [reg] addressing modes. :) 4521 if (!AddrMode.HasBaseReg) { 4522 AddrMode.HasBaseReg = true; 4523 AddrMode.BaseReg = Addr; 4524 // Still check for legality in case the target supports [imm] but not [i+r]. 4525 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4526 return true; 4527 AddrMode.HasBaseReg = false; 4528 AddrMode.BaseReg = nullptr; 4529 } 4530 4531 // If the base register is already taken, see if we can do [r+r]. 4532 if (AddrMode.Scale == 0) { 4533 AddrMode.Scale = 1; 4534 AddrMode.ScaledReg = Addr; 4535 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4536 return true; 4537 AddrMode.Scale = 0; 4538 AddrMode.ScaledReg = nullptr; 4539 } 4540 // Couldn't match. 4541 TPT.rollback(LastKnownGood); 4542 return false; 4543 } 4544 4545 /// Check to see if all uses of OpVal by the specified inline asm call are due 4546 /// to memory operands. If so, return true, otherwise return false. 4547 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4548 const TargetLowering &TLI, 4549 const TargetRegisterInfo &TRI) { 4550 const Function *F = CI->getFunction(); 4551 TargetLowering::AsmOperandInfoVector TargetConstraints = 4552 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4553 4554 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4555 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4556 4557 // Compute the constraint code and ConstraintType to use. 4558 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4559 4560 // If this asm operand is our Value*, and if it isn't an indirect memory 4561 // operand, we can't fold it! 4562 if (OpInfo.CallOperandVal == OpVal && 4563 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4564 !OpInfo.isIndirect)) 4565 return false; 4566 } 4567 4568 return true; 4569 } 4570 4571 // Max number of memory uses to look at before aborting the search to conserve 4572 // compile time. 4573 static constexpr int MaxMemoryUsesToScan = 20; 4574 4575 /// Recursively walk all the uses of I until we find a memory use. 4576 /// If we find an obviously non-foldable instruction, return true. 4577 /// Add the ultimately found memory instructions to MemoryUses. 4578 static bool FindAllMemoryUses( 4579 Instruction *I, 4580 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4581 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4582 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4583 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4584 // If we already considered this instruction, we're done. 4585 if (!ConsideredInsts.insert(I).second) 4586 return false; 4587 4588 // If this is an obviously unfoldable instruction, bail out. 4589 if (!MightBeFoldableInst(I)) 4590 return true; 4591 4592 // Loop over all the uses, recursively processing them. 4593 for (Use &U : I->uses()) { 4594 // Conservatively return true if we're seeing a large number or a deep chain 4595 // of users. This avoids excessive compilation times in pathological cases. 4596 if (SeenInsts++ >= MaxMemoryUsesToScan) 4597 return true; 4598 4599 Instruction *UserI = cast<Instruction>(U.getUser()); 4600 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4601 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4602 continue; 4603 } 4604 4605 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4606 unsigned opNo = U.getOperandNo(); 4607 if (opNo != StoreInst::getPointerOperandIndex()) 4608 return true; // Storing addr, not into addr. 4609 MemoryUses.push_back(std::make_pair(SI, opNo)); 4610 continue; 4611 } 4612 4613 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4614 unsigned opNo = U.getOperandNo(); 4615 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4616 return true; // Storing addr, not into addr. 4617 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4618 continue; 4619 } 4620 4621 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4622 unsigned opNo = U.getOperandNo(); 4623 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4624 return true; // Storing addr, not into addr. 4625 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4626 continue; 4627 } 4628 4629 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4630 if (CI->hasFnAttr(Attribute::Cold)) { 4631 // If this is a cold call, we can sink the addressing calculation into 4632 // the cold path. See optimizeCallInst 4633 bool OptForSize = OptSize || 4634 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4635 if (!OptForSize) 4636 continue; 4637 } 4638 4639 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4640 if (!IA) return true; 4641 4642 // If this is a memory operand, we're cool, otherwise bail out. 4643 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4644 return true; 4645 continue; 4646 } 4647 4648 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4649 PSI, BFI, SeenInsts)) 4650 return true; 4651 } 4652 4653 return false; 4654 } 4655 4656 /// Return true if Val is already known to be live at the use site that we're 4657 /// folding it into. If so, there is no cost to include it in the addressing 4658 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4659 /// instruction already. 4660 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4661 Value *KnownLive2) { 4662 // If Val is either of the known-live values, we know it is live! 4663 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4664 return true; 4665 4666 // All values other than instructions and arguments (e.g. constants) are live. 4667 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4668 4669 // If Val is a constant sized alloca in the entry block, it is live, this is 4670 // true because it is just a reference to the stack/frame pointer, which is 4671 // live for the whole function. 4672 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4673 if (AI->isStaticAlloca()) 4674 return true; 4675 4676 // Check to see if this value is already used in the memory instruction's 4677 // block. If so, it's already live into the block at the very least, so we 4678 // can reasonably fold it. 4679 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4680 } 4681 4682 /// It is possible for the addressing mode of the machine to fold the specified 4683 /// instruction into a load or store that ultimately uses it. 4684 /// However, the specified instruction has multiple uses. 4685 /// Given this, it may actually increase register pressure to fold it 4686 /// into the load. For example, consider this code: 4687 /// 4688 /// X = ... 4689 /// Y = X+1 4690 /// use(Y) -> nonload/store 4691 /// Z = Y+1 4692 /// load Z 4693 /// 4694 /// In this case, Y has multiple uses, and can be folded into the load of Z 4695 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4696 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4697 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4698 /// number of computations either. 4699 /// 4700 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4701 /// X was live across 'load Z' for other reasons, we actually *would* want to 4702 /// fold the addressing mode in the Z case. This would make Y die earlier. 4703 bool AddressingModeMatcher:: 4704 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4705 ExtAddrMode &AMAfter) { 4706 if (IgnoreProfitability) return true; 4707 4708 // AMBefore is the addressing mode before this instruction was folded into it, 4709 // and AMAfter is the addressing mode after the instruction was folded. Get 4710 // the set of registers referenced by AMAfter and subtract out those 4711 // referenced by AMBefore: this is the set of values which folding in this 4712 // address extends the lifetime of. 4713 // 4714 // Note that there are only two potential values being referenced here, 4715 // BaseReg and ScaleReg (global addresses are always available, as are any 4716 // folded immediates). 4717 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4718 4719 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4720 // lifetime wasn't extended by adding this instruction. 4721 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4722 BaseReg = nullptr; 4723 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4724 ScaledReg = nullptr; 4725 4726 // If folding this instruction (and it's subexprs) didn't extend any live 4727 // ranges, we're ok with it. 4728 if (!BaseReg && !ScaledReg) 4729 return true; 4730 4731 // If all uses of this instruction can have the address mode sunk into them, 4732 // we can remove the addressing mode and effectively trade one live register 4733 // for another (at worst.) In this context, folding an addressing mode into 4734 // the use is just a particularly nice way of sinking it. 4735 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4736 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4737 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4738 PSI, BFI)) 4739 return false; // Has a non-memory, non-foldable use! 4740 4741 // Now that we know that all uses of this instruction are part of a chain of 4742 // computation involving only operations that could theoretically be folded 4743 // into a memory use, loop over each of these memory operation uses and see 4744 // if they could *actually* fold the instruction. The assumption is that 4745 // addressing modes are cheap and that duplicating the computation involved 4746 // many times is worthwhile, even on a fastpath. For sinking candidates 4747 // (i.e. cold call sites), this serves as a way to prevent excessive code 4748 // growth since most architectures have some reasonable small and fast way to 4749 // compute an effective address. (i.e LEA on x86) 4750 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4751 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4752 Instruction *User = MemoryUses[i].first; 4753 unsigned OpNo = MemoryUses[i].second; 4754 4755 // Get the access type of this use. If the use isn't a pointer, we don't 4756 // know what it accesses. 4757 Value *Address = User->getOperand(OpNo); 4758 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4759 if (!AddrTy) 4760 return false; 4761 Type *AddressAccessTy = AddrTy->getElementType(); 4762 unsigned AS = AddrTy->getAddressSpace(); 4763 4764 // Do a match against the root of this address, ignoring profitability. This 4765 // will tell us if the addressing mode for the memory operation will 4766 // *actually* cover the shared instruction. 4767 ExtAddrMode Result; 4768 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4769 0); 4770 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4771 TPT.getRestorationPoint(); 4772 AddressingModeMatcher Matcher( 4773 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4774 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4775 Matcher.IgnoreProfitability = true; 4776 bool Success = Matcher.matchAddr(Address, 0); 4777 (void)Success; assert(Success && "Couldn't select *anything*?"); 4778 4779 // The match was to check the profitability, the changes made are not 4780 // part of the original matcher. Therefore, they should be dropped 4781 // otherwise the original matcher will not present the right state. 4782 TPT.rollback(LastKnownGood); 4783 4784 // If the match didn't cover I, then it won't be shared by it. 4785 if (!is_contained(MatchedAddrModeInsts, I)) 4786 return false; 4787 4788 MatchedAddrModeInsts.clear(); 4789 } 4790 4791 return true; 4792 } 4793 4794 /// Return true if the specified values are defined in a 4795 /// different basic block than BB. 4796 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4797 if (Instruction *I = dyn_cast<Instruction>(V)) 4798 return I->getParent() != BB; 4799 return false; 4800 } 4801 4802 /// Sink addressing mode computation immediate before MemoryInst if doing so 4803 /// can be done without increasing register pressure. The need for the 4804 /// register pressure constraint means this can end up being an all or nothing 4805 /// decision for all uses of the same addressing computation. 4806 /// 4807 /// Load and Store Instructions often have addressing modes that can do 4808 /// significant amounts of computation. As such, instruction selection will try 4809 /// to get the load or store to do as much computation as possible for the 4810 /// program. The problem is that isel can only see within a single block. As 4811 /// such, we sink as much legal addressing mode work into the block as possible. 4812 /// 4813 /// This method is used to optimize both load/store and inline asms with memory 4814 /// operands. It's also used to sink addressing computations feeding into cold 4815 /// call sites into their (cold) basic block. 4816 /// 4817 /// The motivation for handling sinking into cold blocks is that doing so can 4818 /// both enable other address mode sinking (by satisfying the register pressure 4819 /// constraint above), and reduce register pressure globally (by removing the 4820 /// addressing mode computation from the fast path entirely.). 4821 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4822 Type *AccessTy, unsigned AddrSpace) { 4823 Value *Repl = Addr; 4824 4825 // Try to collapse single-value PHI nodes. This is necessary to undo 4826 // unprofitable PRE transformations. 4827 SmallVector<Value*, 8> worklist; 4828 SmallPtrSet<Value*, 16> Visited; 4829 worklist.push_back(Addr); 4830 4831 // Use a worklist to iteratively look through PHI and select nodes, and 4832 // ensure that the addressing mode obtained from the non-PHI/select roots of 4833 // the graph are compatible. 4834 bool PhiOrSelectSeen = false; 4835 SmallVector<Instruction*, 16> AddrModeInsts; 4836 const SimplifyQuery SQ(*DL, TLInfo); 4837 AddressingModeCombiner AddrModes(SQ, Addr); 4838 TypePromotionTransaction TPT(RemovedInsts); 4839 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4840 TPT.getRestorationPoint(); 4841 while (!worklist.empty()) { 4842 Value *V = worklist.back(); 4843 worklist.pop_back(); 4844 4845 // We allow traversing cyclic Phi nodes. 4846 // In case of success after this loop we ensure that traversing through 4847 // Phi nodes ends up with all cases to compute address of the form 4848 // BaseGV + Base + Scale * Index + Offset 4849 // where Scale and Offset are constans and BaseGV, Base and Index 4850 // are exactly the same Values in all cases. 4851 // It means that BaseGV, Scale and Offset dominate our memory instruction 4852 // and have the same value as they had in address computation represented 4853 // as Phi. So we can safely sink address computation to memory instruction. 4854 if (!Visited.insert(V).second) 4855 continue; 4856 4857 // For a PHI node, push all of its incoming values. 4858 if (PHINode *P = dyn_cast<PHINode>(V)) { 4859 for (Value *IncValue : P->incoming_values()) 4860 worklist.push_back(IncValue); 4861 PhiOrSelectSeen = true; 4862 continue; 4863 } 4864 // Similar for select. 4865 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4866 worklist.push_back(SI->getFalseValue()); 4867 worklist.push_back(SI->getTrueValue()); 4868 PhiOrSelectSeen = true; 4869 continue; 4870 } 4871 4872 // For non-PHIs, determine the addressing mode being computed. Note that 4873 // the result may differ depending on what other uses our candidate 4874 // addressing instructions might have. 4875 AddrModeInsts.clear(); 4876 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4877 0); 4878 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4879 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4880 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4881 BFI.get()); 4882 4883 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4884 if (GEP && !NewGEPBases.count(GEP)) { 4885 // If splitting the underlying data structure can reduce the offset of a 4886 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4887 // previously split data structures. 4888 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4889 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4890 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4891 } 4892 4893 NewAddrMode.OriginalValue = V; 4894 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4895 break; 4896 } 4897 4898 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4899 // or we have multiple but either couldn't combine them or combining them 4900 // wouldn't do anything useful, bail out now. 4901 if (!AddrModes.combineAddrModes()) { 4902 TPT.rollback(LastKnownGood); 4903 return false; 4904 } 4905 TPT.commit(); 4906 4907 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4908 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4909 4910 // If all the instructions matched are already in this BB, don't do anything. 4911 // If we saw a Phi node then it is not local definitely, and if we saw a select 4912 // then we want to push the address calculation past it even if it's already 4913 // in this BB. 4914 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4915 return IsNonLocalValue(V, MemoryInst->getParent()); 4916 })) { 4917 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4918 << "\n"); 4919 return false; 4920 } 4921 4922 // Insert this computation right after this user. Since our caller is 4923 // scanning from the top of the BB to the bottom, reuse of the expr are 4924 // guaranteed to happen later. 4925 IRBuilder<> Builder(MemoryInst); 4926 4927 // Now that we determined the addressing expression we want to use and know 4928 // that we have to sink it into this block. Check to see if we have already 4929 // done this for some other load/store instr in this block. If so, reuse 4930 // the computation. Before attempting reuse, check if the address is valid 4931 // as it may have been erased. 4932 4933 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4934 4935 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4936 if (SunkAddr) { 4937 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4938 << " for " << *MemoryInst << "\n"); 4939 if (SunkAddr->getType() != Addr->getType()) 4940 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4941 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4942 SubtargetInfo->addrSinkUsingGEPs())) { 4943 // By default, we use the GEP-based method when AA is used later. This 4944 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4945 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4946 << " for " << *MemoryInst << "\n"); 4947 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4948 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4949 4950 // First, find the pointer. 4951 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4952 ResultPtr = AddrMode.BaseReg; 4953 AddrMode.BaseReg = nullptr; 4954 } 4955 4956 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4957 // We can't add more than one pointer together, nor can we scale a 4958 // pointer (both of which seem meaningless). 4959 if (ResultPtr || AddrMode.Scale != 1) 4960 return false; 4961 4962 ResultPtr = AddrMode.ScaledReg; 4963 AddrMode.Scale = 0; 4964 } 4965 4966 // It is only safe to sign extend the BaseReg if we know that the math 4967 // required to create it did not overflow before we extend it. Since 4968 // the original IR value was tossed in favor of a constant back when 4969 // the AddrMode was created we need to bail out gracefully if widths 4970 // do not match instead of extending it. 4971 // 4972 // (See below for code to add the scale.) 4973 if (AddrMode.Scale) { 4974 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4975 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4976 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4977 return false; 4978 } 4979 4980 if (AddrMode.BaseGV) { 4981 if (ResultPtr) 4982 return false; 4983 4984 ResultPtr = AddrMode.BaseGV; 4985 } 4986 4987 // If the real base value actually came from an inttoptr, then the matcher 4988 // will look through it and provide only the integer value. In that case, 4989 // use it here. 4990 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4991 if (!ResultPtr && AddrMode.BaseReg) { 4992 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4993 "sunkaddr"); 4994 AddrMode.BaseReg = nullptr; 4995 } else if (!ResultPtr && AddrMode.Scale == 1) { 4996 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4997 "sunkaddr"); 4998 AddrMode.Scale = 0; 4999 } 5000 } 5001 5002 if (!ResultPtr && 5003 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5004 SunkAddr = Constant::getNullValue(Addr->getType()); 5005 } else if (!ResultPtr) { 5006 return false; 5007 } else { 5008 Type *I8PtrTy = 5009 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5010 Type *I8Ty = Builder.getInt8Ty(); 5011 5012 // Start with the base register. Do this first so that subsequent address 5013 // matching finds it last, which will prevent it from trying to match it 5014 // as the scaled value in case it happens to be a mul. That would be 5015 // problematic if we've sunk a different mul for the scale, because then 5016 // we'd end up sinking both muls. 5017 if (AddrMode.BaseReg) { 5018 Value *V = AddrMode.BaseReg; 5019 if (V->getType() != IntPtrTy) 5020 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5021 5022 ResultIndex = V; 5023 } 5024 5025 // Add the scale value. 5026 if (AddrMode.Scale) { 5027 Value *V = AddrMode.ScaledReg; 5028 if (V->getType() == IntPtrTy) { 5029 // done. 5030 } else { 5031 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5032 cast<IntegerType>(V->getType())->getBitWidth() && 5033 "We can't transform if ScaledReg is too narrow"); 5034 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5035 } 5036 5037 if (AddrMode.Scale != 1) 5038 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5039 "sunkaddr"); 5040 if (ResultIndex) 5041 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5042 else 5043 ResultIndex = V; 5044 } 5045 5046 // Add in the Base Offset if present. 5047 if (AddrMode.BaseOffs) { 5048 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5049 if (ResultIndex) { 5050 // We need to add this separately from the scale above to help with 5051 // SDAG consecutive load/store merging. 5052 if (ResultPtr->getType() != I8PtrTy) 5053 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5054 ResultPtr = 5055 AddrMode.InBounds 5056 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5057 "sunkaddr") 5058 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5059 } 5060 5061 ResultIndex = V; 5062 } 5063 5064 if (!ResultIndex) { 5065 SunkAddr = ResultPtr; 5066 } else { 5067 if (ResultPtr->getType() != I8PtrTy) 5068 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5069 SunkAddr = 5070 AddrMode.InBounds 5071 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5072 "sunkaddr") 5073 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5074 } 5075 5076 if (SunkAddr->getType() != Addr->getType()) 5077 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5078 } 5079 } else { 5080 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5081 // non-integral pointers, so in that case bail out now. 5082 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5083 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5084 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5085 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5086 if (DL->isNonIntegralPointerType(Addr->getType()) || 5087 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5088 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5089 (AddrMode.BaseGV && 5090 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5091 return false; 5092 5093 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5094 << " for " << *MemoryInst << "\n"); 5095 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5096 Value *Result = nullptr; 5097 5098 // Start with the base register. Do this first so that subsequent address 5099 // matching finds it last, which will prevent it from trying to match it 5100 // as the scaled value in case it happens to be a mul. That would be 5101 // problematic if we've sunk a different mul for the scale, because then 5102 // we'd end up sinking both muls. 5103 if (AddrMode.BaseReg) { 5104 Value *V = AddrMode.BaseReg; 5105 if (V->getType()->isPointerTy()) 5106 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5107 if (V->getType() != IntPtrTy) 5108 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5109 Result = V; 5110 } 5111 5112 // Add the scale value. 5113 if (AddrMode.Scale) { 5114 Value *V = AddrMode.ScaledReg; 5115 if (V->getType() == IntPtrTy) { 5116 // done. 5117 } else if (V->getType()->isPointerTy()) { 5118 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5119 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5120 cast<IntegerType>(V->getType())->getBitWidth()) { 5121 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5122 } else { 5123 // It is only safe to sign extend the BaseReg if we know that the math 5124 // required to create it did not overflow before we extend it. Since 5125 // the original IR value was tossed in favor of a constant back when 5126 // the AddrMode was created we need to bail out gracefully if widths 5127 // do not match instead of extending it. 5128 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5129 if (I && (Result != AddrMode.BaseReg)) 5130 I->eraseFromParent(); 5131 return false; 5132 } 5133 if (AddrMode.Scale != 1) 5134 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5135 "sunkaddr"); 5136 if (Result) 5137 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5138 else 5139 Result = V; 5140 } 5141 5142 // Add in the BaseGV if present. 5143 if (AddrMode.BaseGV) { 5144 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5145 if (Result) 5146 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5147 else 5148 Result = V; 5149 } 5150 5151 // Add in the Base Offset if present. 5152 if (AddrMode.BaseOffs) { 5153 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5154 if (Result) 5155 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5156 else 5157 Result = V; 5158 } 5159 5160 if (!Result) 5161 SunkAddr = Constant::getNullValue(Addr->getType()); 5162 else 5163 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5164 } 5165 5166 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5167 // Store the newly computed address into the cache. In the case we reused a 5168 // value, this should be idempotent. 5169 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5170 5171 // If we have no uses, recursively delete the value and all dead instructions 5172 // using it. 5173 if (Repl->use_empty()) { 5174 // This can cause recursive deletion, which can invalidate our iterator. 5175 // Use a WeakTrackingVH to hold onto it in case this happens. 5176 Value *CurValue = &*CurInstIterator; 5177 WeakTrackingVH IterHandle(CurValue); 5178 BasicBlock *BB = CurInstIterator->getParent(); 5179 5180 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5181 5182 if (IterHandle != CurValue) { 5183 // If the iterator instruction was recursively deleted, start over at the 5184 // start of the block. 5185 CurInstIterator = BB->begin(); 5186 SunkAddrs.clear(); 5187 } 5188 } 5189 ++NumMemoryInsts; 5190 return true; 5191 } 5192 5193 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5194 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5195 /// only handle a 2 operand GEP in the same basic block or a splat constant 5196 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5197 /// index. 5198 /// 5199 /// If the existing GEP has a vector base pointer that is splat, we can look 5200 /// through the splat to find the scalar pointer. If we can't find a scalar 5201 /// pointer there's nothing we can do. 5202 /// 5203 /// If we have a GEP with more than 2 indices where the middle indices are all 5204 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5205 /// 5206 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5207 /// followed by a GEP with an all zeroes vector index. This will enable 5208 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5209 /// zero index. 5210 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5211 Value *Ptr) { 5212 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5213 if (!GEP || !GEP->hasIndices()) 5214 return false; 5215 5216 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5217 // FIXME: We should support this by sinking the GEP. 5218 if (MemoryInst->getParent() != GEP->getParent()) 5219 return false; 5220 5221 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5222 5223 bool RewriteGEP = false; 5224 5225 if (Ops[0]->getType()->isVectorTy()) { 5226 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5227 if (!Ops[0]) 5228 return false; 5229 RewriteGEP = true; 5230 } 5231 5232 unsigned FinalIndex = Ops.size() - 1; 5233 5234 // Ensure all but the last index is 0. 5235 // FIXME: This isn't strictly required. All that's required is that they are 5236 // all scalars or splats. 5237 for (unsigned i = 1; i < FinalIndex; ++i) { 5238 auto *C = dyn_cast<Constant>(Ops[i]); 5239 if (!C) 5240 return false; 5241 if (isa<VectorType>(C->getType())) 5242 C = C->getSplatValue(); 5243 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5244 if (!CI || !CI->isZero()) 5245 return false; 5246 // Scalarize the index if needed. 5247 Ops[i] = CI; 5248 } 5249 5250 // Try to scalarize the final index. 5251 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5252 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5253 auto *C = dyn_cast<ConstantInt>(V); 5254 // Don't scalarize all zeros vector. 5255 if (!C || !C->isZero()) { 5256 Ops[FinalIndex] = V; 5257 RewriteGEP = true; 5258 } 5259 } 5260 } 5261 5262 // If we made any changes or the we have extra operands, we need to generate 5263 // new instructions. 5264 if (!RewriteGEP && Ops.size() == 2) 5265 return false; 5266 5267 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 5268 5269 IRBuilder<> Builder(MemoryInst); 5270 5271 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5272 5273 Value *NewAddr; 5274 5275 // If the final index isn't a vector, emit a scalar GEP containing all ops 5276 // and a vector GEP with all zeroes final index. 5277 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5278 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5279 Type *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5280 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5281 } else { 5282 Value *Base = Ops[0]; 5283 Value *Index = Ops[FinalIndex]; 5284 5285 // Create a scalar GEP if there are more than 2 operands. 5286 if (Ops.size() != 2) { 5287 // Replace the last index with 0. 5288 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5289 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5290 } 5291 5292 // Now create the GEP with scalar pointer and vector index. 5293 NewAddr = Builder.CreateGEP(Base, Index); 5294 } 5295 5296 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5297 5298 // If we have no uses, recursively delete the value and all dead instructions 5299 // using it. 5300 if (Ptr->use_empty()) 5301 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5302 5303 return true; 5304 } 5305 5306 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5307 /// address computing into the block when possible / profitable. 5308 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5309 bool MadeChange = false; 5310 5311 const TargetRegisterInfo *TRI = 5312 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5313 TargetLowering::AsmOperandInfoVector TargetConstraints = 5314 TLI->ParseConstraints(*DL, TRI, *CS); 5315 unsigned ArgNo = 0; 5316 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5317 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5318 5319 // Compute the constraint code and ConstraintType to use. 5320 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5321 5322 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5323 OpInfo.isIndirect) { 5324 Value *OpVal = CS->getArgOperand(ArgNo++); 5325 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5326 } else if (OpInfo.Type == InlineAsm::isInput) 5327 ArgNo++; 5328 } 5329 5330 return MadeChange; 5331 } 5332 5333 /// Check if all the uses of \p Val are equivalent (or free) zero or 5334 /// sign extensions. 5335 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5336 assert(!Val->use_empty() && "Input must have at least one use"); 5337 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5338 bool IsSExt = isa<SExtInst>(FirstUser); 5339 Type *ExtTy = FirstUser->getType(); 5340 for (const User *U : Val->users()) { 5341 const Instruction *UI = cast<Instruction>(U); 5342 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5343 return false; 5344 Type *CurTy = UI->getType(); 5345 // Same input and output types: Same instruction after CSE. 5346 if (CurTy == ExtTy) 5347 continue; 5348 5349 // If IsSExt is true, we are in this situation: 5350 // a = Val 5351 // b = sext ty1 a to ty2 5352 // c = sext ty1 a to ty3 5353 // Assuming ty2 is shorter than ty3, this could be turned into: 5354 // a = Val 5355 // b = sext ty1 a to ty2 5356 // c = sext ty2 b to ty3 5357 // However, the last sext is not free. 5358 if (IsSExt) 5359 return false; 5360 5361 // This is a ZExt, maybe this is free to extend from one type to another. 5362 // In that case, we would not account for a different use. 5363 Type *NarrowTy; 5364 Type *LargeTy; 5365 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5366 CurTy->getScalarType()->getIntegerBitWidth()) { 5367 NarrowTy = CurTy; 5368 LargeTy = ExtTy; 5369 } else { 5370 NarrowTy = ExtTy; 5371 LargeTy = CurTy; 5372 } 5373 5374 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5375 return false; 5376 } 5377 // All uses are the same or can be derived from one another for free. 5378 return true; 5379 } 5380 5381 /// Try to speculatively promote extensions in \p Exts and continue 5382 /// promoting through newly promoted operands recursively as far as doing so is 5383 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5384 /// When some promotion happened, \p TPT contains the proper state to revert 5385 /// them. 5386 /// 5387 /// \return true if some promotion happened, false otherwise. 5388 bool CodeGenPrepare::tryToPromoteExts( 5389 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5390 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5391 unsigned CreatedInstsCost) { 5392 bool Promoted = false; 5393 5394 // Iterate over all the extensions to try to promote them. 5395 for (auto I : Exts) { 5396 // Early check if we directly have ext(load). 5397 if (isa<LoadInst>(I->getOperand(0))) { 5398 ProfitablyMovedExts.push_back(I); 5399 continue; 5400 } 5401 5402 // Check whether or not we want to do any promotion. The reason we have 5403 // this check inside the for loop is to catch the case where an extension 5404 // is directly fed by a load because in such case the extension can be moved 5405 // up without any promotion on its operands. 5406 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5407 return false; 5408 5409 // Get the action to perform the promotion. 5410 TypePromotionHelper::Action TPH = 5411 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5412 // Check if we can promote. 5413 if (!TPH) { 5414 // Save the current extension as we cannot move up through its operand. 5415 ProfitablyMovedExts.push_back(I); 5416 continue; 5417 } 5418 5419 // Save the current state. 5420 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5421 TPT.getRestorationPoint(); 5422 SmallVector<Instruction *, 4> NewExts; 5423 unsigned NewCreatedInstsCost = 0; 5424 unsigned ExtCost = !TLI->isExtFree(I); 5425 // Promote. 5426 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5427 &NewExts, nullptr, *TLI); 5428 assert(PromotedVal && 5429 "TypePromotionHelper should have filtered out those cases"); 5430 5431 // We would be able to merge only one extension in a load. 5432 // Therefore, if we have more than 1 new extension we heuristically 5433 // cut this search path, because it means we degrade the code quality. 5434 // With exactly 2, the transformation is neutral, because we will merge 5435 // one extension but leave one. However, we optimistically keep going, 5436 // because the new extension may be removed too. 5437 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5438 // FIXME: It would be possible to propagate a negative value instead of 5439 // conservatively ceiling it to 0. 5440 TotalCreatedInstsCost = 5441 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5442 if (!StressExtLdPromotion && 5443 (TotalCreatedInstsCost > 1 || 5444 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5445 // This promotion is not profitable, rollback to the previous state, and 5446 // save the current extension in ProfitablyMovedExts as the latest 5447 // speculative promotion turned out to be unprofitable. 5448 TPT.rollback(LastKnownGood); 5449 ProfitablyMovedExts.push_back(I); 5450 continue; 5451 } 5452 // Continue promoting NewExts as far as doing so is profitable. 5453 SmallVector<Instruction *, 2> NewlyMovedExts; 5454 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5455 bool NewPromoted = false; 5456 for (auto ExtInst : NewlyMovedExts) { 5457 Instruction *MovedExt = cast<Instruction>(ExtInst); 5458 Value *ExtOperand = MovedExt->getOperand(0); 5459 // If we have reached to a load, we need this extra profitability check 5460 // as it could potentially be merged into an ext(load). 5461 if (isa<LoadInst>(ExtOperand) && 5462 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5463 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5464 continue; 5465 5466 ProfitablyMovedExts.push_back(MovedExt); 5467 NewPromoted = true; 5468 } 5469 5470 // If none of speculative promotions for NewExts is profitable, rollback 5471 // and save the current extension (I) as the last profitable extension. 5472 if (!NewPromoted) { 5473 TPT.rollback(LastKnownGood); 5474 ProfitablyMovedExts.push_back(I); 5475 continue; 5476 } 5477 // The promotion is profitable. 5478 Promoted = true; 5479 } 5480 return Promoted; 5481 } 5482 5483 /// Merging redundant sexts when one is dominating the other. 5484 bool CodeGenPrepare::mergeSExts(Function &F) { 5485 bool Changed = false; 5486 for (auto &Entry : ValToSExtendedUses) { 5487 SExts &Insts = Entry.second; 5488 SExts CurPts; 5489 for (Instruction *Inst : Insts) { 5490 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5491 Inst->getOperand(0) != Entry.first) 5492 continue; 5493 bool inserted = false; 5494 for (auto &Pt : CurPts) { 5495 if (getDT(F).dominates(Inst, Pt)) { 5496 Pt->replaceAllUsesWith(Inst); 5497 RemovedInsts.insert(Pt); 5498 Pt->removeFromParent(); 5499 Pt = Inst; 5500 inserted = true; 5501 Changed = true; 5502 break; 5503 } 5504 if (!getDT(F).dominates(Pt, Inst)) 5505 // Give up if we need to merge in a common dominator as the 5506 // experiments show it is not profitable. 5507 continue; 5508 Inst->replaceAllUsesWith(Pt); 5509 RemovedInsts.insert(Inst); 5510 Inst->removeFromParent(); 5511 inserted = true; 5512 Changed = true; 5513 break; 5514 } 5515 if (!inserted) 5516 CurPts.push_back(Inst); 5517 } 5518 } 5519 return Changed; 5520 } 5521 5522 // Spliting large data structures so that the GEPs accessing them can have 5523 // smaller offsets so that they can be sunk to the same blocks as their users. 5524 // For example, a large struct starting from %base is splitted into two parts 5525 // where the second part starts from %new_base. 5526 // 5527 // Before: 5528 // BB0: 5529 // %base = 5530 // 5531 // BB1: 5532 // %gep0 = gep %base, off0 5533 // %gep1 = gep %base, off1 5534 // %gep2 = gep %base, off2 5535 // 5536 // BB2: 5537 // %load1 = load %gep0 5538 // %load2 = load %gep1 5539 // %load3 = load %gep2 5540 // 5541 // After: 5542 // BB0: 5543 // %base = 5544 // %new_base = gep %base, off0 5545 // 5546 // BB1: 5547 // %new_gep0 = %new_base 5548 // %new_gep1 = gep %new_base, off1 - off0 5549 // %new_gep2 = gep %new_base, off2 - off0 5550 // 5551 // BB2: 5552 // %load1 = load i32, i32* %new_gep0 5553 // %load2 = load i32, i32* %new_gep1 5554 // %load3 = load i32, i32* %new_gep2 5555 // 5556 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5557 // their offsets are smaller enough to fit into the addressing mode. 5558 bool CodeGenPrepare::splitLargeGEPOffsets() { 5559 bool Changed = false; 5560 for (auto &Entry : LargeOffsetGEPMap) { 5561 Value *OldBase = Entry.first; 5562 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5563 &LargeOffsetGEPs = Entry.second; 5564 auto compareGEPOffset = 5565 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5566 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5567 if (LHS.first == RHS.first) 5568 return false; 5569 if (LHS.second != RHS.second) 5570 return LHS.second < RHS.second; 5571 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5572 }; 5573 // Sorting all the GEPs of the same data structures based on the offsets. 5574 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5575 LargeOffsetGEPs.erase( 5576 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5577 LargeOffsetGEPs.end()); 5578 // Skip if all the GEPs have the same offsets. 5579 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5580 continue; 5581 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5582 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5583 Value *NewBaseGEP = nullptr; 5584 5585 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5586 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5587 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5588 int64_t Offset = LargeOffsetGEP->second; 5589 if (Offset != BaseOffset) { 5590 TargetLowering::AddrMode AddrMode; 5591 AddrMode.BaseOffs = Offset - BaseOffset; 5592 // The result type of the GEP might not be the type of the memory 5593 // access. 5594 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5595 GEP->getResultElementType(), 5596 GEP->getAddressSpace())) { 5597 // We need to create a new base if the offset to the current base is 5598 // too large to fit into the addressing mode. So, a very large struct 5599 // may be splitted into several parts. 5600 BaseGEP = GEP; 5601 BaseOffset = Offset; 5602 NewBaseGEP = nullptr; 5603 } 5604 } 5605 5606 // Generate a new GEP to replace the current one. 5607 LLVMContext &Ctx = GEP->getContext(); 5608 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5609 Type *I8PtrTy = 5610 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5611 Type *I8Ty = Type::getInt8Ty(Ctx); 5612 5613 if (!NewBaseGEP) { 5614 // Create a new base if we don't have one yet. Find the insertion 5615 // pointer for the new base first. 5616 BasicBlock::iterator NewBaseInsertPt; 5617 BasicBlock *NewBaseInsertBB; 5618 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5619 // If the base of the struct is an instruction, the new base will be 5620 // inserted close to it. 5621 NewBaseInsertBB = BaseI->getParent(); 5622 if (isa<PHINode>(BaseI)) 5623 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5624 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5625 NewBaseInsertBB = 5626 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5627 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5628 } else 5629 NewBaseInsertPt = std::next(BaseI->getIterator()); 5630 } else { 5631 // If the current base is an argument or global value, the new base 5632 // will be inserted to the entry block. 5633 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5634 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5635 } 5636 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5637 // Create a new base. 5638 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5639 NewBaseGEP = OldBase; 5640 if (NewBaseGEP->getType() != I8PtrTy) 5641 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5642 NewBaseGEP = 5643 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5644 NewGEPBases.insert(NewBaseGEP); 5645 } 5646 5647 IRBuilder<> Builder(GEP); 5648 Value *NewGEP = NewBaseGEP; 5649 if (Offset == BaseOffset) { 5650 if (GEP->getType() != I8PtrTy) 5651 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5652 } else { 5653 // Calculate the new offset for the new GEP. 5654 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5655 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5656 5657 if (GEP->getType() != I8PtrTy) 5658 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5659 } 5660 GEP->replaceAllUsesWith(NewGEP); 5661 LargeOffsetGEPID.erase(GEP); 5662 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5663 GEP->eraseFromParent(); 5664 Changed = true; 5665 } 5666 } 5667 return Changed; 5668 } 5669 5670 /// Return true, if an ext(load) can be formed from an extension in 5671 /// \p MovedExts. 5672 bool CodeGenPrepare::canFormExtLd( 5673 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5674 Instruction *&Inst, bool HasPromoted) { 5675 for (auto *MovedExtInst : MovedExts) { 5676 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5677 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5678 Inst = MovedExtInst; 5679 break; 5680 } 5681 } 5682 if (!LI) 5683 return false; 5684 5685 // If they're already in the same block, there's nothing to do. 5686 // Make the cheap checks first if we did not promote. 5687 // If we promoted, we need to check if it is indeed profitable. 5688 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5689 return false; 5690 5691 return TLI->isExtLoad(LI, Inst, *DL); 5692 } 5693 5694 /// Move a zext or sext fed by a load into the same basic block as the load, 5695 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5696 /// extend into the load. 5697 /// 5698 /// E.g., 5699 /// \code 5700 /// %ld = load i32* %addr 5701 /// %add = add nuw i32 %ld, 4 5702 /// %zext = zext i32 %add to i64 5703 // \endcode 5704 /// => 5705 /// \code 5706 /// %ld = load i32* %addr 5707 /// %zext = zext i32 %ld to i64 5708 /// %add = add nuw i64 %zext, 4 5709 /// \encode 5710 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5711 /// allow us to match zext(load i32*) to i64. 5712 /// 5713 /// Also, try to promote the computations used to obtain a sign extended 5714 /// value used into memory accesses. 5715 /// E.g., 5716 /// \code 5717 /// a = add nsw i32 b, 3 5718 /// d = sext i32 a to i64 5719 /// e = getelementptr ..., i64 d 5720 /// \endcode 5721 /// => 5722 /// \code 5723 /// f = sext i32 b to i64 5724 /// a = add nsw i64 f, 3 5725 /// e = getelementptr ..., i64 a 5726 /// \endcode 5727 /// 5728 /// \p Inst[in/out] the extension may be modified during the process if some 5729 /// promotions apply. 5730 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5731 bool AllowPromotionWithoutCommonHeader = false; 5732 /// See if it is an interesting sext operations for the address type 5733 /// promotion before trying to promote it, e.g., the ones with the right 5734 /// type and used in memory accesses. 5735 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5736 *Inst, AllowPromotionWithoutCommonHeader); 5737 TypePromotionTransaction TPT(RemovedInsts); 5738 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5739 TPT.getRestorationPoint(); 5740 SmallVector<Instruction *, 1> Exts; 5741 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5742 Exts.push_back(Inst); 5743 5744 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5745 5746 // Look for a load being extended. 5747 LoadInst *LI = nullptr; 5748 Instruction *ExtFedByLoad; 5749 5750 // Try to promote a chain of computation if it allows to form an extended 5751 // load. 5752 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5753 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5754 TPT.commit(); 5755 // Move the extend into the same block as the load 5756 ExtFedByLoad->moveAfter(LI); 5757 // CGP does not check if the zext would be speculatively executed when moved 5758 // to the same basic block as the load. Preserving its original location 5759 // would pessimize the debugging experience, as well as negatively impact 5760 // the quality of sample pgo. We don't want to use "line 0" as that has a 5761 // size cost in the line-table section and logically the zext can be seen as 5762 // part of the load. Therefore we conservatively reuse the same debug 5763 // location for the load and the zext. 5764 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5765 ++NumExtsMoved; 5766 Inst = ExtFedByLoad; 5767 return true; 5768 } 5769 5770 // Continue promoting SExts if known as considerable depending on targets. 5771 if (ATPConsiderable && 5772 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5773 HasPromoted, TPT, SpeculativelyMovedExts)) 5774 return true; 5775 5776 TPT.rollback(LastKnownGood); 5777 return false; 5778 } 5779 5780 // Perform address type promotion if doing so is profitable. 5781 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5782 // instructions that sign extended the same initial value. However, if 5783 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5784 // extension is just profitable. 5785 bool CodeGenPrepare::performAddressTypePromotion( 5786 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5787 bool HasPromoted, TypePromotionTransaction &TPT, 5788 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5789 bool Promoted = false; 5790 SmallPtrSet<Instruction *, 1> UnhandledExts; 5791 bool AllSeenFirst = true; 5792 for (auto I : SpeculativelyMovedExts) { 5793 Value *HeadOfChain = I->getOperand(0); 5794 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5795 SeenChainsForSExt.find(HeadOfChain); 5796 // If there is an unhandled SExt which has the same header, try to promote 5797 // it as well. 5798 if (AlreadySeen != SeenChainsForSExt.end()) { 5799 if (AlreadySeen->second != nullptr) 5800 UnhandledExts.insert(AlreadySeen->second); 5801 AllSeenFirst = false; 5802 } 5803 } 5804 5805 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5806 SpeculativelyMovedExts.size() == 1)) { 5807 TPT.commit(); 5808 if (HasPromoted) 5809 Promoted = true; 5810 for (auto I : SpeculativelyMovedExts) { 5811 Value *HeadOfChain = I->getOperand(0); 5812 SeenChainsForSExt[HeadOfChain] = nullptr; 5813 ValToSExtendedUses[HeadOfChain].push_back(I); 5814 } 5815 // Update Inst as promotion happen. 5816 Inst = SpeculativelyMovedExts.pop_back_val(); 5817 } else { 5818 // This is the first chain visited from the header, keep the current chain 5819 // as unhandled. Defer to promote this until we encounter another SExt 5820 // chain derived from the same header. 5821 for (auto I : SpeculativelyMovedExts) { 5822 Value *HeadOfChain = I->getOperand(0); 5823 SeenChainsForSExt[HeadOfChain] = Inst; 5824 } 5825 return false; 5826 } 5827 5828 if (!AllSeenFirst && !UnhandledExts.empty()) 5829 for (auto VisitedSExt : UnhandledExts) { 5830 if (RemovedInsts.count(VisitedSExt)) 5831 continue; 5832 TypePromotionTransaction TPT(RemovedInsts); 5833 SmallVector<Instruction *, 1> Exts; 5834 SmallVector<Instruction *, 2> Chains; 5835 Exts.push_back(VisitedSExt); 5836 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5837 TPT.commit(); 5838 if (HasPromoted) 5839 Promoted = true; 5840 for (auto I : Chains) { 5841 Value *HeadOfChain = I->getOperand(0); 5842 // Mark this as handled. 5843 SeenChainsForSExt[HeadOfChain] = nullptr; 5844 ValToSExtendedUses[HeadOfChain].push_back(I); 5845 } 5846 } 5847 return Promoted; 5848 } 5849 5850 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5851 BasicBlock *DefBB = I->getParent(); 5852 5853 // If the result of a {s|z}ext and its source are both live out, rewrite all 5854 // other uses of the source with result of extension. 5855 Value *Src = I->getOperand(0); 5856 if (Src->hasOneUse()) 5857 return false; 5858 5859 // Only do this xform if truncating is free. 5860 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5861 return false; 5862 5863 // Only safe to perform the optimization if the source is also defined in 5864 // this block. 5865 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5866 return false; 5867 5868 bool DefIsLiveOut = false; 5869 for (User *U : I->users()) { 5870 Instruction *UI = cast<Instruction>(U); 5871 5872 // Figure out which BB this ext is used in. 5873 BasicBlock *UserBB = UI->getParent(); 5874 if (UserBB == DefBB) continue; 5875 DefIsLiveOut = true; 5876 break; 5877 } 5878 if (!DefIsLiveOut) 5879 return false; 5880 5881 // Make sure none of the uses are PHI nodes. 5882 for (User *U : Src->users()) { 5883 Instruction *UI = cast<Instruction>(U); 5884 BasicBlock *UserBB = UI->getParent(); 5885 if (UserBB == DefBB) continue; 5886 // Be conservative. We don't want this xform to end up introducing 5887 // reloads just before load / store instructions. 5888 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5889 return false; 5890 } 5891 5892 // InsertedTruncs - Only insert one trunc in each block once. 5893 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5894 5895 bool MadeChange = false; 5896 for (Use &U : Src->uses()) { 5897 Instruction *User = cast<Instruction>(U.getUser()); 5898 5899 // Figure out which BB this ext is used in. 5900 BasicBlock *UserBB = User->getParent(); 5901 if (UserBB == DefBB) continue; 5902 5903 // Both src and def are live in this block. Rewrite the use. 5904 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5905 5906 if (!InsertedTrunc) { 5907 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5908 assert(InsertPt != UserBB->end()); 5909 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5910 InsertedInsts.insert(InsertedTrunc); 5911 } 5912 5913 // Replace a use of the {s|z}ext source with a use of the result. 5914 U = InsertedTrunc; 5915 ++NumExtUses; 5916 MadeChange = true; 5917 } 5918 5919 return MadeChange; 5920 } 5921 5922 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5923 // just after the load if the target can fold this into one extload instruction, 5924 // with the hope of eliminating some of the other later "and" instructions using 5925 // the loaded value. "and"s that are made trivially redundant by the insertion 5926 // of the new "and" are removed by this function, while others (e.g. those whose 5927 // path from the load goes through a phi) are left for isel to potentially 5928 // remove. 5929 // 5930 // For example: 5931 // 5932 // b0: 5933 // x = load i32 5934 // ... 5935 // b1: 5936 // y = and x, 0xff 5937 // z = use y 5938 // 5939 // becomes: 5940 // 5941 // b0: 5942 // x = load i32 5943 // x' = and x, 0xff 5944 // ... 5945 // b1: 5946 // z = use x' 5947 // 5948 // whereas: 5949 // 5950 // b0: 5951 // x1 = load i32 5952 // ... 5953 // b1: 5954 // x2 = load i32 5955 // ... 5956 // b2: 5957 // x = phi x1, x2 5958 // y = and x, 0xff 5959 // 5960 // becomes (after a call to optimizeLoadExt for each load): 5961 // 5962 // b0: 5963 // x1 = load i32 5964 // x1' = and x1, 0xff 5965 // ... 5966 // b1: 5967 // x2 = load i32 5968 // x2' = and x2, 0xff 5969 // ... 5970 // b2: 5971 // x = phi x1', x2' 5972 // y = and x, 0xff 5973 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5974 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5975 return false; 5976 5977 // Skip loads we've already transformed. 5978 if (Load->hasOneUse() && 5979 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5980 return false; 5981 5982 // Look at all uses of Load, looking through phis, to determine how many bits 5983 // of the loaded value are needed. 5984 SmallVector<Instruction *, 8> WorkList; 5985 SmallPtrSet<Instruction *, 16> Visited; 5986 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5987 for (auto *U : Load->users()) 5988 WorkList.push_back(cast<Instruction>(U)); 5989 5990 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5991 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5992 APInt DemandBits(BitWidth, 0); 5993 APInt WidestAndBits(BitWidth, 0); 5994 5995 while (!WorkList.empty()) { 5996 Instruction *I = WorkList.back(); 5997 WorkList.pop_back(); 5998 5999 // Break use-def graph loops. 6000 if (!Visited.insert(I).second) 6001 continue; 6002 6003 // For a PHI node, push all of its users. 6004 if (auto *Phi = dyn_cast<PHINode>(I)) { 6005 for (auto *U : Phi->users()) 6006 WorkList.push_back(cast<Instruction>(U)); 6007 continue; 6008 } 6009 6010 switch (I->getOpcode()) { 6011 case Instruction::And: { 6012 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6013 if (!AndC) 6014 return false; 6015 APInt AndBits = AndC->getValue(); 6016 DemandBits |= AndBits; 6017 // Keep track of the widest and mask we see. 6018 if (AndBits.ugt(WidestAndBits)) 6019 WidestAndBits = AndBits; 6020 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6021 AndsToMaybeRemove.push_back(I); 6022 break; 6023 } 6024 6025 case Instruction::Shl: { 6026 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6027 if (!ShlC) 6028 return false; 6029 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6030 DemandBits.setLowBits(BitWidth - ShiftAmt); 6031 break; 6032 } 6033 6034 case Instruction::Trunc: { 6035 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6036 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6037 DemandBits.setLowBits(TruncBitWidth); 6038 break; 6039 } 6040 6041 default: 6042 return false; 6043 } 6044 } 6045 6046 uint32_t ActiveBits = DemandBits.getActiveBits(); 6047 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6048 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6049 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6050 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6051 // followed by an AND. 6052 // TODO: Look into removing this restriction by fixing backends to either 6053 // return false for isLoadExtLegal for i1 or have them select this pattern to 6054 // a single instruction. 6055 // 6056 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6057 // mask, since these are the only ands that will be removed by isel. 6058 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6059 WidestAndBits != DemandBits) 6060 return false; 6061 6062 LLVMContext &Ctx = Load->getType()->getContext(); 6063 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6064 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6065 6066 // Reject cases that won't be matched as extloads. 6067 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6068 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6069 return false; 6070 6071 IRBuilder<> Builder(Load->getNextNode()); 6072 auto *NewAnd = cast<Instruction>( 6073 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6074 // Mark this instruction as "inserted by CGP", so that other 6075 // optimizations don't touch it. 6076 InsertedInsts.insert(NewAnd); 6077 6078 // Replace all uses of load with new and (except for the use of load in the 6079 // new and itself). 6080 Load->replaceAllUsesWith(NewAnd); 6081 NewAnd->setOperand(0, Load); 6082 6083 // Remove any and instructions that are now redundant. 6084 for (auto *And : AndsToMaybeRemove) 6085 // Check that the and mask is the same as the one we decided to put on the 6086 // new and. 6087 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6088 And->replaceAllUsesWith(NewAnd); 6089 if (&*CurInstIterator == And) 6090 CurInstIterator = std::next(And->getIterator()); 6091 And->eraseFromParent(); 6092 ++NumAndUses; 6093 } 6094 6095 ++NumAndsAdded; 6096 return true; 6097 } 6098 6099 /// Check if V (an operand of a select instruction) is an expensive instruction 6100 /// that is only used once. 6101 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6102 auto *I = dyn_cast<Instruction>(V); 6103 // If it's safe to speculatively execute, then it should not have side 6104 // effects; therefore, it's safe to sink and possibly *not* execute. 6105 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6106 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6107 TargetTransformInfo::TCC_Expensive; 6108 } 6109 6110 /// Returns true if a SelectInst should be turned into an explicit branch. 6111 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6112 const TargetLowering *TLI, 6113 SelectInst *SI) { 6114 // If even a predictable select is cheap, then a branch can't be cheaper. 6115 if (!TLI->isPredictableSelectExpensive()) 6116 return false; 6117 6118 // FIXME: This should use the same heuristics as IfConversion to determine 6119 // whether a select is better represented as a branch. 6120 6121 // If metadata tells us that the select condition is obviously predictable, 6122 // then we want to replace the select with a branch. 6123 uint64_t TrueWeight, FalseWeight; 6124 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6125 uint64_t Max = std::max(TrueWeight, FalseWeight); 6126 uint64_t Sum = TrueWeight + FalseWeight; 6127 if (Sum != 0) { 6128 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6129 if (Probability > TLI->getPredictableBranchThreshold()) 6130 return true; 6131 } 6132 } 6133 6134 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6135 6136 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6137 // comparison condition. If the compare has more than one use, there's 6138 // probably another cmov or setcc around, so it's not worth emitting a branch. 6139 if (!Cmp || !Cmp->hasOneUse()) 6140 return false; 6141 6142 // If either operand of the select is expensive and only needed on one side 6143 // of the select, we should form a branch. 6144 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6145 sinkSelectOperand(TTI, SI->getFalseValue())) 6146 return true; 6147 6148 return false; 6149 } 6150 6151 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6152 /// false value of \p SI. If the true/false value of \p SI is defined by any 6153 /// select instructions in \p Selects, look through the defining select 6154 /// instruction until the true/false value is not defined in \p Selects. 6155 static Value *getTrueOrFalseValue( 6156 SelectInst *SI, bool isTrue, 6157 const SmallPtrSet<const Instruction *, 2> &Selects) { 6158 Value *V = nullptr; 6159 6160 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6161 DefSI = dyn_cast<SelectInst>(V)) { 6162 assert(DefSI->getCondition() == SI->getCondition() && 6163 "The condition of DefSI does not match with SI"); 6164 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6165 } 6166 6167 assert(V && "Failed to get select true/false value"); 6168 return V; 6169 } 6170 6171 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6172 assert(Shift->isShift() && "Expected a shift"); 6173 6174 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6175 // general vector shifts, and (3) the shift amount is a select-of-splatted 6176 // values, hoist the shifts before the select: 6177 // shift Op0, (select Cond, TVal, FVal) --> 6178 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6179 // 6180 // This is inverting a generic IR transform when we know that the cost of a 6181 // general vector shift is more than the cost of 2 shift-by-scalars. 6182 // We can't do this effectively in SDAG because we may not be able to 6183 // determine if the select operands are splats from within a basic block. 6184 Type *Ty = Shift->getType(); 6185 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6186 return false; 6187 Value *Cond, *TVal, *FVal; 6188 if (!match(Shift->getOperand(1), 6189 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6190 return false; 6191 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6192 return false; 6193 6194 IRBuilder<> Builder(Shift); 6195 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6196 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6197 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6198 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6199 Shift->replaceAllUsesWith(NewSel); 6200 Shift->eraseFromParent(); 6201 return true; 6202 } 6203 6204 /// If we have a SelectInst that will likely profit from branch prediction, 6205 /// turn it into a branch. 6206 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6207 // If branch conversion isn't desirable, exit early. 6208 if (DisableSelectToBranch || OptSize || 6209 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6210 return false; 6211 6212 // Find all consecutive select instructions that share the same condition. 6213 SmallVector<SelectInst *, 2> ASI; 6214 ASI.push_back(SI); 6215 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6216 It != SI->getParent()->end(); ++It) { 6217 SelectInst *I = dyn_cast<SelectInst>(&*It); 6218 if (I && SI->getCondition() == I->getCondition()) { 6219 ASI.push_back(I); 6220 } else { 6221 break; 6222 } 6223 } 6224 6225 SelectInst *LastSI = ASI.back(); 6226 // Increment the current iterator to skip all the rest of select instructions 6227 // because they will be either "not lowered" or "all lowered" to branch. 6228 CurInstIterator = std::next(LastSI->getIterator()); 6229 6230 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6231 6232 // Can we convert the 'select' to CF ? 6233 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6234 return false; 6235 6236 TargetLowering::SelectSupportKind SelectKind; 6237 if (VectorCond) 6238 SelectKind = TargetLowering::VectorMaskSelect; 6239 else if (SI->getType()->isVectorTy()) 6240 SelectKind = TargetLowering::ScalarCondVectorVal; 6241 else 6242 SelectKind = TargetLowering::ScalarValSelect; 6243 6244 if (TLI->isSelectSupported(SelectKind) && 6245 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6246 return false; 6247 6248 // The DominatorTree needs to be rebuilt by any consumers after this 6249 // transformation. We simply reset here rather than setting the ModifiedDT 6250 // flag to avoid restarting the function walk in runOnFunction for each 6251 // select optimized. 6252 DT.reset(); 6253 6254 // Transform a sequence like this: 6255 // start: 6256 // %cmp = cmp uge i32 %a, %b 6257 // %sel = select i1 %cmp, i32 %c, i32 %d 6258 // 6259 // Into: 6260 // start: 6261 // %cmp = cmp uge i32 %a, %b 6262 // %cmp.frozen = freeze %cmp 6263 // br i1 %cmp.frozen, label %select.true, label %select.false 6264 // select.true: 6265 // br label %select.end 6266 // select.false: 6267 // br label %select.end 6268 // select.end: 6269 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6270 // 6271 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6272 // In addition, we may sink instructions that produce %c or %d from 6273 // the entry block into the destination(s) of the new branch. 6274 // If the true or false blocks do not contain a sunken instruction, that 6275 // block and its branch may be optimized away. In that case, one side of the 6276 // first branch will point directly to select.end, and the corresponding PHI 6277 // predecessor block will be the start block. 6278 6279 // First, we split the block containing the select into 2 blocks. 6280 BasicBlock *StartBlock = SI->getParent(); 6281 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6282 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6283 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6284 6285 // Delete the unconditional branch that was just created by the split. 6286 StartBlock->getTerminator()->eraseFromParent(); 6287 6288 // These are the new basic blocks for the conditional branch. 6289 // At least one will become an actual new basic block. 6290 BasicBlock *TrueBlock = nullptr; 6291 BasicBlock *FalseBlock = nullptr; 6292 BranchInst *TrueBranch = nullptr; 6293 BranchInst *FalseBranch = nullptr; 6294 6295 // Sink expensive instructions into the conditional blocks to avoid executing 6296 // them speculatively. 6297 for (SelectInst *SI : ASI) { 6298 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6299 if (TrueBlock == nullptr) { 6300 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6301 EndBlock->getParent(), EndBlock); 6302 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6303 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6304 } 6305 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6306 TrueInst->moveBefore(TrueBranch); 6307 } 6308 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6309 if (FalseBlock == nullptr) { 6310 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6311 EndBlock->getParent(), EndBlock); 6312 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6313 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6314 } 6315 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6316 FalseInst->moveBefore(FalseBranch); 6317 } 6318 } 6319 6320 // If there was nothing to sink, then arbitrarily choose the 'false' side 6321 // for a new input value to the PHI. 6322 if (TrueBlock == FalseBlock) { 6323 assert(TrueBlock == nullptr && 6324 "Unexpected basic block transform while optimizing select"); 6325 6326 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6327 EndBlock->getParent(), EndBlock); 6328 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6329 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6330 } 6331 6332 // Insert the real conditional branch based on the original condition. 6333 // If we did not create a new block for one of the 'true' or 'false' paths 6334 // of the condition, it means that side of the branch goes to the end block 6335 // directly and the path originates from the start block from the point of 6336 // view of the new PHI. 6337 BasicBlock *TT, *FT; 6338 if (TrueBlock == nullptr) { 6339 TT = EndBlock; 6340 FT = FalseBlock; 6341 TrueBlock = StartBlock; 6342 } else if (FalseBlock == nullptr) { 6343 TT = TrueBlock; 6344 FT = EndBlock; 6345 FalseBlock = StartBlock; 6346 } else { 6347 TT = TrueBlock; 6348 FT = FalseBlock; 6349 } 6350 IRBuilder<> IB(SI); 6351 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6352 IB.CreateCondBr(CondFr, TT, FT, SI); 6353 6354 SmallPtrSet<const Instruction *, 2> INS; 6355 INS.insert(ASI.begin(), ASI.end()); 6356 // Use reverse iterator because later select may use the value of the 6357 // earlier select, and we need to propagate value through earlier select 6358 // to get the PHI operand. 6359 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6360 SelectInst *SI = *It; 6361 // The select itself is replaced with a PHI Node. 6362 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6363 PN->takeName(SI); 6364 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6365 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6366 PN->setDebugLoc(SI->getDebugLoc()); 6367 6368 SI->replaceAllUsesWith(PN); 6369 SI->eraseFromParent(); 6370 INS.erase(SI); 6371 ++NumSelectsExpanded; 6372 } 6373 6374 // Instruct OptimizeBlock to skip to the next block. 6375 CurInstIterator = StartBlock->end(); 6376 return true; 6377 } 6378 6379 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6380 ArrayRef<int> Mask(SVI->getShuffleMask()); 6381 int SplatElem = -1; 6382 for (unsigned i = 0; i < Mask.size(); ++i) { 6383 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6384 return false; 6385 SplatElem = Mask[i]; 6386 } 6387 6388 return true; 6389 } 6390 6391 /// Some targets have expensive vector shifts if the lanes aren't all the same 6392 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6393 /// it's often worth sinking a shufflevector splat down to its use so that 6394 /// codegen can spot all lanes are identical. 6395 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6396 BasicBlock *DefBB = SVI->getParent(); 6397 6398 // Only do this xform if variable vector shifts are particularly expensive. 6399 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6400 return false; 6401 6402 // We only expect better codegen by sinking a shuffle if we can recognise a 6403 // constant splat. 6404 if (!isBroadcastShuffle(SVI)) 6405 return false; 6406 6407 // InsertedShuffles - Only insert a shuffle in each block once. 6408 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6409 6410 bool MadeChange = false; 6411 for (User *U : SVI->users()) { 6412 Instruction *UI = cast<Instruction>(U); 6413 6414 // Figure out which BB this ext is used in. 6415 BasicBlock *UserBB = UI->getParent(); 6416 if (UserBB == DefBB) continue; 6417 6418 // For now only apply this when the splat is used by a shift instruction. 6419 if (!UI->isShift()) continue; 6420 6421 // Everything checks out, sink the shuffle if the user's block doesn't 6422 // already have a copy. 6423 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6424 6425 if (!InsertedShuffle) { 6426 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6427 assert(InsertPt != UserBB->end()); 6428 InsertedShuffle = 6429 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6430 SVI->getShuffleMask(), "", &*InsertPt); 6431 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6432 } 6433 6434 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6435 MadeChange = true; 6436 } 6437 6438 // If we removed all uses, nuke the shuffle. 6439 if (SVI->use_empty()) { 6440 SVI->eraseFromParent(); 6441 MadeChange = true; 6442 } 6443 6444 return MadeChange; 6445 } 6446 6447 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6448 // If the operands of I can be folded into a target instruction together with 6449 // I, duplicate and sink them. 6450 SmallVector<Use *, 4> OpsToSink; 6451 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6452 return false; 6453 6454 // OpsToSink can contain multiple uses in a use chain (e.g. 6455 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6456 // uses must come first, so we process the ops in reverse order so as to not 6457 // create invalid IR. 6458 BasicBlock *TargetBB = I->getParent(); 6459 bool Changed = false; 6460 SmallVector<Use *, 4> ToReplace; 6461 for (Use *U : reverse(OpsToSink)) { 6462 auto *UI = cast<Instruction>(U->get()); 6463 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6464 continue; 6465 ToReplace.push_back(U); 6466 } 6467 6468 SetVector<Instruction *> MaybeDead; 6469 DenseMap<Instruction *, Instruction *> NewInstructions; 6470 Instruction *InsertPoint = I; 6471 for (Use *U : ToReplace) { 6472 auto *UI = cast<Instruction>(U->get()); 6473 Instruction *NI = UI->clone(); 6474 NewInstructions[UI] = NI; 6475 MaybeDead.insert(UI); 6476 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6477 NI->insertBefore(InsertPoint); 6478 InsertPoint = NI; 6479 InsertedInsts.insert(NI); 6480 6481 // Update the use for the new instruction, making sure that we update the 6482 // sunk instruction uses, if it is part of a chain that has already been 6483 // sunk. 6484 Instruction *OldI = cast<Instruction>(U->getUser()); 6485 if (NewInstructions.count(OldI)) 6486 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6487 else 6488 U->set(NI); 6489 Changed = true; 6490 } 6491 6492 // Remove instructions that are dead after sinking. 6493 for (auto *I : MaybeDead) { 6494 if (!I->hasNUsesOrMore(1)) { 6495 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6496 I->eraseFromParent(); 6497 } 6498 } 6499 6500 return Changed; 6501 } 6502 6503 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6504 Value *Cond = SI->getCondition(); 6505 Type *OldType = Cond->getType(); 6506 LLVMContext &Context = Cond->getContext(); 6507 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6508 unsigned RegWidth = RegType.getSizeInBits(); 6509 6510 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6511 return false; 6512 6513 // If the register width is greater than the type width, expand the condition 6514 // of the switch instruction and each case constant to the width of the 6515 // register. By widening the type of the switch condition, subsequent 6516 // comparisons (for case comparisons) will not need to be extended to the 6517 // preferred register width, so we will potentially eliminate N-1 extends, 6518 // where N is the number of cases in the switch. 6519 auto *NewType = Type::getIntNTy(Context, RegWidth); 6520 6521 // Zero-extend the switch condition and case constants unless the switch 6522 // condition is a function argument that is already being sign-extended. 6523 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6524 // everything instead. 6525 Instruction::CastOps ExtType = Instruction::ZExt; 6526 if (auto *Arg = dyn_cast<Argument>(Cond)) 6527 if (Arg->hasSExtAttr()) 6528 ExtType = Instruction::SExt; 6529 6530 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6531 ExtInst->insertBefore(SI); 6532 ExtInst->setDebugLoc(SI->getDebugLoc()); 6533 SI->setCondition(ExtInst); 6534 for (auto Case : SI->cases()) { 6535 APInt NarrowConst = Case.getCaseValue()->getValue(); 6536 APInt WideConst = (ExtType == Instruction::ZExt) ? 6537 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6538 Case.setValue(ConstantInt::get(Context, WideConst)); 6539 } 6540 6541 return true; 6542 } 6543 6544 6545 namespace { 6546 6547 /// Helper class to promote a scalar operation to a vector one. 6548 /// This class is used to move downward extractelement transition. 6549 /// E.g., 6550 /// a = vector_op <2 x i32> 6551 /// b = extractelement <2 x i32> a, i32 0 6552 /// c = scalar_op b 6553 /// store c 6554 /// 6555 /// => 6556 /// a = vector_op <2 x i32> 6557 /// c = vector_op a (equivalent to scalar_op on the related lane) 6558 /// * d = extractelement <2 x i32> c, i32 0 6559 /// * store d 6560 /// Assuming both extractelement and store can be combine, we get rid of the 6561 /// transition. 6562 class VectorPromoteHelper { 6563 /// DataLayout associated with the current module. 6564 const DataLayout &DL; 6565 6566 /// Used to perform some checks on the legality of vector operations. 6567 const TargetLowering &TLI; 6568 6569 /// Used to estimated the cost of the promoted chain. 6570 const TargetTransformInfo &TTI; 6571 6572 /// The transition being moved downwards. 6573 Instruction *Transition; 6574 6575 /// The sequence of instructions to be promoted. 6576 SmallVector<Instruction *, 4> InstsToBePromoted; 6577 6578 /// Cost of combining a store and an extract. 6579 unsigned StoreExtractCombineCost; 6580 6581 /// Instruction that will be combined with the transition. 6582 Instruction *CombineInst = nullptr; 6583 6584 /// The instruction that represents the current end of the transition. 6585 /// Since we are faking the promotion until we reach the end of the chain 6586 /// of computation, we need a way to get the current end of the transition. 6587 Instruction *getEndOfTransition() const { 6588 if (InstsToBePromoted.empty()) 6589 return Transition; 6590 return InstsToBePromoted.back(); 6591 } 6592 6593 /// Return the index of the original value in the transition. 6594 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6595 /// c, is at index 0. 6596 unsigned getTransitionOriginalValueIdx() const { 6597 assert(isa<ExtractElementInst>(Transition) && 6598 "Other kind of transitions are not supported yet"); 6599 return 0; 6600 } 6601 6602 /// Return the index of the index in the transition. 6603 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6604 /// is at index 1. 6605 unsigned getTransitionIdx() const { 6606 assert(isa<ExtractElementInst>(Transition) && 6607 "Other kind of transitions are not supported yet"); 6608 return 1; 6609 } 6610 6611 /// Get the type of the transition. 6612 /// This is the type of the original value. 6613 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6614 /// transition is <2 x i32>. 6615 Type *getTransitionType() const { 6616 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6617 } 6618 6619 /// Promote \p ToBePromoted by moving \p Def downward through. 6620 /// I.e., we have the following sequence: 6621 /// Def = Transition <ty1> a to <ty2> 6622 /// b = ToBePromoted <ty2> Def, ... 6623 /// => 6624 /// b = ToBePromoted <ty1> a, ... 6625 /// Def = Transition <ty1> ToBePromoted to <ty2> 6626 void promoteImpl(Instruction *ToBePromoted); 6627 6628 /// Check whether or not it is profitable to promote all the 6629 /// instructions enqueued to be promoted. 6630 bool isProfitableToPromote() { 6631 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6632 unsigned Index = isa<ConstantInt>(ValIdx) 6633 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6634 : -1; 6635 Type *PromotedType = getTransitionType(); 6636 6637 StoreInst *ST = cast<StoreInst>(CombineInst); 6638 unsigned AS = ST->getPointerAddressSpace(); 6639 unsigned Align = ST->getAlignment(); 6640 // Check if this store is supported. 6641 if (!TLI.allowsMisalignedMemoryAccesses( 6642 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6643 Align)) { 6644 // If this is not supported, there is no way we can combine 6645 // the extract with the store. 6646 return false; 6647 } 6648 6649 // The scalar chain of computation has to pay for the transition 6650 // scalar to vector. 6651 // The vector chain has to account for the combining cost. 6652 uint64_t ScalarCost = 6653 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6654 uint64_t VectorCost = StoreExtractCombineCost; 6655 enum TargetTransformInfo::TargetCostKind CostKind = 6656 TargetTransformInfo::TCK_RecipThroughput; 6657 for (const auto &Inst : InstsToBePromoted) { 6658 // Compute the cost. 6659 // By construction, all instructions being promoted are arithmetic ones. 6660 // Moreover, one argument is a constant that can be viewed as a splat 6661 // constant. 6662 Value *Arg0 = Inst->getOperand(0); 6663 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6664 isa<ConstantFP>(Arg0); 6665 TargetTransformInfo::OperandValueKind Arg0OVK = 6666 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6667 : TargetTransformInfo::OK_AnyValue; 6668 TargetTransformInfo::OperandValueKind Arg1OVK = 6669 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6670 : TargetTransformInfo::OK_AnyValue; 6671 ScalarCost += TTI.getArithmeticInstrCost( 6672 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6673 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6674 CostKind, 6675 Arg0OVK, Arg1OVK); 6676 } 6677 LLVM_DEBUG( 6678 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6679 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6680 return ScalarCost > VectorCost; 6681 } 6682 6683 /// Generate a constant vector with \p Val with the same 6684 /// number of elements as the transition. 6685 /// \p UseSplat defines whether or not \p Val should be replicated 6686 /// across the whole vector. 6687 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6688 /// otherwise we generate a vector with as many undef as possible: 6689 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6690 /// used at the index of the extract. 6691 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6692 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6693 if (!UseSplat) { 6694 // If we cannot determine where the constant must be, we have to 6695 // use a splat constant. 6696 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6697 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6698 ExtractIdx = CstVal->getSExtValue(); 6699 else 6700 UseSplat = true; 6701 } 6702 6703 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6704 if (UseSplat) 6705 return ConstantVector::getSplat(EC, Val); 6706 6707 if (!EC.Scalable) { 6708 SmallVector<Constant *, 4> ConstVec; 6709 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6710 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6711 if (Idx == ExtractIdx) 6712 ConstVec.push_back(Val); 6713 else 6714 ConstVec.push_back(UndefVal); 6715 } 6716 return ConstantVector::get(ConstVec); 6717 } else 6718 llvm_unreachable( 6719 "Generate scalable vector for non-splat is unimplemented"); 6720 } 6721 6722 /// Check if promoting to a vector type an operand at \p OperandIdx 6723 /// in \p Use can trigger undefined behavior. 6724 static bool canCauseUndefinedBehavior(const Instruction *Use, 6725 unsigned OperandIdx) { 6726 // This is not safe to introduce undef when the operand is on 6727 // the right hand side of a division-like instruction. 6728 if (OperandIdx != 1) 6729 return false; 6730 switch (Use->getOpcode()) { 6731 default: 6732 return false; 6733 case Instruction::SDiv: 6734 case Instruction::UDiv: 6735 case Instruction::SRem: 6736 case Instruction::URem: 6737 return true; 6738 case Instruction::FDiv: 6739 case Instruction::FRem: 6740 return !Use->hasNoNaNs(); 6741 } 6742 llvm_unreachable(nullptr); 6743 } 6744 6745 public: 6746 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6747 const TargetTransformInfo &TTI, Instruction *Transition, 6748 unsigned CombineCost) 6749 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6750 StoreExtractCombineCost(CombineCost) { 6751 assert(Transition && "Do not know how to promote null"); 6752 } 6753 6754 /// Check if we can promote \p ToBePromoted to \p Type. 6755 bool canPromote(const Instruction *ToBePromoted) const { 6756 // We could support CastInst too. 6757 return isa<BinaryOperator>(ToBePromoted); 6758 } 6759 6760 /// Check if it is profitable to promote \p ToBePromoted 6761 /// by moving downward the transition through. 6762 bool shouldPromote(const Instruction *ToBePromoted) const { 6763 // Promote only if all the operands can be statically expanded. 6764 // Indeed, we do not want to introduce any new kind of transitions. 6765 for (const Use &U : ToBePromoted->operands()) { 6766 const Value *Val = U.get(); 6767 if (Val == getEndOfTransition()) { 6768 // If the use is a division and the transition is on the rhs, 6769 // we cannot promote the operation, otherwise we may create a 6770 // division by zero. 6771 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6772 return false; 6773 continue; 6774 } 6775 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6776 !isa<ConstantFP>(Val)) 6777 return false; 6778 } 6779 // Check that the resulting operation is legal. 6780 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6781 if (!ISDOpcode) 6782 return false; 6783 return StressStoreExtract || 6784 TLI.isOperationLegalOrCustom( 6785 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6786 } 6787 6788 /// Check whether or not \p Use can be combined 6789 /// with the transition. 6790 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6791 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6792 6793 /// Record \p ToBePromoted as part of the chain to be promoted. 6794 void enqueueForPromotion(Instruction *ToBePromoted) { 6795 InstsToBePromoted.push_back(ToBePromoted); 6796 } 6797 6798 /// Set the instruction that will be combined with the transition. 6799 void recordCombineInstruction(Instruction *ToBeCombined) { 6800 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6801 CombineInst = ToBeCombined; 6802 } 6803 6804 /// Promote all the instructions enqueued for promotion if it is 6805 /// is profitable. 6806 /// \return True if the promotion happened, false otherwise. 6807 bool promote() { 6808 // Check if there is something to promote. 6809 // Right now, if we do not have anything to combine with, 6810 // we assume the promotion is not profitable. 6811 if (InstsToBePromoted.empty() || !CombineInst) 6812 return false; 6813 6814 // Check cost. 6815 if (!StressStoreExtract && !isProfitableToPromote()) 6816 return false; 6817 6818 // Promote. 6819 for (auto &ToBePromoted : InstsToBePromoted) 6820 promoteImpl(ToBePromoted); 6821 InstsToBePromoted.clear(); 6822 return true; 6823 } 6824 }; 6825 6826 } // end anonymous namespace 6827 6828 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6829 // At this point, we know that all the operands of ToBePromoted but Def 6830 // can be statically promoted. 6831 // For Def, we need to use its parameter in ToBePromoted: 6832 // b = ToBePromoted ty1 a 6833 // Def = Transition ty1 b to ty2 6834 // Move the transition down. 6835 // 1. Replace all uses of the promoted operation by the transition. 6836 // = ... b => = ... Def. 6837 assert(ToBePromoted->getType() == Transition->getType() && 6838 "The type of the result of the transition does not match " 6839 "the final type"); 6840 ToBePromoted->replaceAllUsesWith(Transition); 6841 // 2. Update the type of the uses. 6842 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6843 Type *TransitionTy = getTransitionType(); 6844 ToBePromoted->mutateType(TransitionTy); 6845 // 3. Update all the operands of the promoted operation with promoted 6846 // operands. 6847 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6848 for (Use &U : ToBePromoted->operands()) { 6849 Value *Val = U.get(); 6850 Value *NewVal = nullptr; 6851 if (Val == Transition) 6852 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6853 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6854 isa<ConstantFP>(Val)) { 6855 // Use a splat constant if it is not safe to use undef. 6856 NewVal = getConstantVector( 6857 cast<Constant>(Val), 6858 isa<UndefValue>(Val) || 6859 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6860 } else 6861 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6862 "this?"); 6863 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6864 } 6865 Transition->moveAfter(ToBePromoted); 6866 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6867 } 6868 6869 /// Some targets can do store(extractelement) with one instruction. 6870 /// Try to push the extractelement towards the stores when the target 6871 /// has this feature and this is profitable. 6872 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6873 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6874 if (DisableStoreExtract || 6875 (!StressStoreExtract && 6876 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6877 Inst->getOperand(1), CombineCost))) 6878 return false; 6879 6880 // At this point we know that Inst is a vector to scalar transition. 6881 // Try to move it down the def-use chain, until: 6882 // - We can combine the transition with its single use 6883 // => we got rid of the transition. 6884 // - We escape the current basic block 6885 // => we would need to check that we are moving it at a cheaper place and 6886 // we do not do that for now. 6887 BasicBlock *Parent = Inst->getParent(); 6888 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6889 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6890 // If the transition has more than one use, assume this is not going to be 6891 // beneficial. 6892 while (Inst->hasOneUse()) { 6893 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6894 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6895 6896 if (ToBePromoted->getParent() != Parent) { 6897 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6898 << ToBePromoted->getParent()->getName() 6899 << ") than the transition (" << Parent->getName() 6900 << ").\n"); 6901 return false; 6902 } 6903 6904 if (VPH.canCombine(ToBePromoted)) { 6905 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6906 << "will be combined with: " << *ToBePromoted << '\n'); 6907 VPH.recordCombineInstruction(ToBePromoted); 6908 bool Changed = VPH.promote(); 6909 NumStoreExtractExposed += Changed; 6910 return Changed; 6911 } 6912 6913 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6914 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6915 return false; 6916 6917 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6918 6919 VPH.enqueueForPromotion(ToBePromoted); 6920 Inst = ToBePromoted; 6921 } 6922 return false; 6923 } 6924 6925 /// For the instruction sequence of store below, F and I values 6926 /// are bundled together as an i64 value before being stored into memory. 6927 /// Sometimes it is more efficient to generate separate stores for F and I, 6928 /// which can remove the bitwise instructions or sink them to colder places. 6929 /// 6930 /// (store (or (zext (bitcast F to i32) to i64), 6931 /// (shl (zext I to i64), 32)), addr) --> 6932 /// (store F, addr) and (store I, addr+4) 6933 /// 6934 /// Similarly, splitting for other merged store can also be beneficial, like: 6935 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6936 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6937 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6938 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6939 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6940 /// 6941 /// We allow each target to determine specifically which kind of splitting is 6942 /// supported. 6943 /// 6944 /// The store patterns are commonly seen from the simple code snippet below 6945 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6946 /// void goo(const std::pair<int, float> &); 6947 /// hoo() { 6948 /// ... 6949 /// goo(std::make_pair(tmp, ftmp)); 6950 /// ... 6951 /// } 6952 /// 6953 /// Although we already have similar splitting in DAG Combine, we duplicate 6954 /// it in CodeGenPrepare to catch the case in which pattern is across 6955 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6956 /// during code expansion. 6957 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6958 const TargetLowering &TLI) { 6959 // Handle simple but common cases only. 6960 Type *StoreType = SI.getValueOperand()->getType(); 6961 6962 // The code below assumes shifting a value by <number of bits>, 6963 // whereas scalable vectors would have to be shifted by 6964 // <2log(vscale) + number of bits> in order to store the 6965 // low/high parts. Bailing out for now. 6966 if (isa<ScalableVectorType>(StoreType)) 6967 return false; 6968 6969 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6970 DL.getTypeSizeInBits(StoreType) == 0) 6971 return false; 6972 6973 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6974 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6975 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6976 return false; 6977 6978 // Don't split the store if it is volatile. 6979 if (SI.isVolatile()) 6980 return false; 6981 6982 // Match the following patterns: 6983 // (store (or (zext LValue to i64), 6984 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6985 // or 6986 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6987 // (zext LValue to i64), 6988 // Expect both operands of OR and the first operand of SHL have only 6989 // one use. 6990 Value *LValue, *HValue; 6991 if (!match(SI.getValueOperand(), 6992 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6993 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6994 m_SpecificInt(HalfValBitSize)))))) 6995 return false; 6996 6997 // Check LValue and HValue are int with size less or equal than 32. 6998 if (!LValue->getType()->isIntegerTy() || 6999 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7000 !HValue->getType()->isIntegerTy() || 7001 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7002 return false; 7003 7004 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7005 // as the input of target query. 7006 auto *LBC = dyn_cast<BitCastInst>(LValue); 7007 auto *HBC = dyn_cast<BitCastInst>(HValue); 7008 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7009 : EVT::getEVT(LValue->getType()); 7010 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7011 : EVT::getEVT(HValue->getType()); 7012 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7013 return false; 7014 7015 // Start to split store. 7016 IRBuilder<> Builder(SI.getContext()); 7017 Builder.SetInsertPoint(&SI); 7018 7019 // If LValue/HValue is a bitcast in another BB, create a new one in current 7020 // BB so it may be merged with the splitted stores by dag combiner. 7021 if (LBC && LBC->getParent() != SI.getParent()) 7022 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7023 if (HBC && HBC->getParent() != SI.getParent()) 7024 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7025 7026 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7027 auto CreateSplitStore = [&](Value *V, bool Upper) { 7028 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7029 Value *Addr = Builder.CreateBitCast( 7030 SI.getOperand(1), 7031 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7032 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7033 if (IsOffsetStore) 7034 Addr = Builder.CreateGEP( 7035 SplitStoreType, Addr, 7036 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7037 MaybeAlign Alignment = SI.getAlign(); 7038 if (IsOffsetStore && Alignment) { 7039 // When splitting the store in half, naturally one half will retain the 7040 // alignment of the original wider store, regardless of whether it was 7041 // over-aligned or not, while the other will require adjustment. 7042 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7043 } 7044 Builder.CreateAlignedStore(V, Addr, Alignment); 7045 }; 7046 7047 CreateSplitStore(LValue, false); 7048 CreateSplitStore(HValue, true); 7049 7050 // Delete the old store. 7051 SI.eraseFromParent(); 7052 return true; 7053 } 7054 7055 // Return true if the GEP has two operands, the first operand is of a sequential 7056 // type, and the second operand is a constant. 7057 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7058 gep_type_iterator I = gep_type_begin(*GEP); 7059 return GEP->getNumOperands() == 2 && 7060 I.isSequential() && 7061 isa<ConstantInt>(GEP->getOperand(1)); 7062 } 7063 7064 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7065 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7066 // reducing liveness interference across those edges benefits global register 7067 // allocation. Currently handles only certain cases. 7068 // 7069 // For example, unmerge %GEPI and %UGEPI as below. 7070 // 7071 // ---------- BEFORE ---------- 7072 // SrcBlock: 7073 // ... 7074 // %GEPIOp = ... 7075 // ... 7076 // %GEPI = gep %GEPIOp, Idx 7077 // ... 7078 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7079 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7080 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7081 // %UGEPI) 7082 // 7083 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7084 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7085 // ... 7086 // 7087 // DstBi: 7088 // ... 7089 // %UGEPI = gep %GEPIOp, UIdx 7090 // ... 7091 // --------------------------- 7092 // 7093 // ---------- AFTER ---------- 7094 // SrcBlock: 7095 // ... (same as above) 7096 // (* %GEPI is still alive on the indirectbr edges) 7097 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7098 // unmerging) 7099 // ... 7100 // 7101 // DstBi: 7102 // ... 7103 // %UGEPI = gep %GEPI, (UIdx-Idx) 7104 // ... 7105 // --------------------------- 7106 // 7107 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7108 // no longer alive on them. 7109 // 7110 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7111 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7112 // not to disable further simplications and optimizations as a result of GEP 7113 // merging. 7114 // 7115 // Note this unmerging may increase the length of the data flow critical path 7116 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7117 // between the register pressure and the length of data-flow critical 7118 // path. Restricting this to the uncommon IndirectBr case would minimize the 7119 // impact of potentially longer critical path, if any, and the impact on compile 7120 // time. 7121 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7122 const TargetTransformInfo *TTI) { 7123 BasicBlock *SrcBlock = GEPI->getParent(); 7124 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7125 // (non-IndirectBr) cases exit early here. 7126 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7127 return false; 7128 // Check that GEPI is a simple gep with a single constant index. 7129 if (!GEPSequentialConstIndexed(GEPI)) 7130 return false; 7131 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7132 // Check that GEPI is a cheap one. 7133 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7134 TargetTransformInfo::TCK_SizeAndLatency) 7135 > TargetTransformInfo::TCC_Basic) 7136 return false; 7137 Value *GEPIOp = GEPI->getOperand(0); 7138 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7139 if (!isa<Instruction>(GEPIOp)) 7140 return false; 7141 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7142 if (GEPIOpI->getParent() != SrcBlock) 7143 return false; 7144 // Check that GEP is used outside the block, meaning it's alive on the 7145 // IndirectBr edge(s). 7146 if (find_if(GEPI->users(), [&](User *Usr) { 7147 if (auto *I = dyn_cast<Instruction>(Usr)) { 7148 if (I->getParent() != SrcBlock) { 7149 return true; 7150 } 7151 } 7152 return false; 7153 }) == GEPI->users().end()) 7154 return false; 7155 // The second elements of the GEP chains to be unmerged. 7156 std::vector<GetElementPtrInst *> UGEPIs; 7157 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7158 // on IndirectBr edges. 7159 for (User *Usr : GEPIOp->users()) { 7160 if (Usr == GEPI) continue; 7161 // Check if Usr is an Instruction. If not, give up. 7162 if (!isa<Instruction>(Usr)) 7163 return false; 7164 auto *UI = cast<Instruction>(Usr); 7165 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7166 if (UI->getParent() == SrcBlock) 7167 continue; 7168 // Check if Usr is a GEP. If not, give up. 7169 if (!isa<GetElementPtrInst>(Usr)) 7170 return false; 7171 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7172 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7173 // the pointer operand to it. If so, record it in the vector. If not, give 7174 // up. 7175 if (!GEPSequentialConstIndexed(UGEPI)) 7176 return false; 7177 if (UGEPI->getOperand(0) != GEPIOp) 7178 return false; 7179 if (GEPIIdx->getType() != 7180 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7181 return false; 7182 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7183 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7184 TargetTransformInfo::TCK_SizeAndLatency) 7185 > TargetTransformInfo::TCC_Basic) 7186 return false; 7187 UGEPIs.push_back(UGEPI); 7188 } 7189 if (UGEPIs.size() == 0) 7190 return false; 7191 // Check the materializing cost of (Uidx-Idx). 7192 for (GetElementPtrInst *UGEPI : UGEPIs) { 7193 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7194 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7195 unsigned ImmCost = 7196 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7197 TargetTransformInfo::TCK_SizeAndLatency); 7198 if (ImmCost > TargetTransformInfo::TCC_Basic) 7199 return false; 7200 } 7201 // Now unmerge between GEPI and UGEPIs. 7202 for (GetElementPtrInst *UGEPI : UGEPIs) { 7203 UGEPI->setOperand(0, GEPI); 7204 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7205 Constant *NewUGEPIIdx = 7206 ConstantInt::get(GEPIIdx->getType(), 7207 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7208 UGEPI->setOperand(1, NewUGEPIIdx); 7209 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7210 // inbounds to avoid UB. 7211 if (!GEPI->isInBounds()) { 7212 UGEPI->setIsInBounds(false); 7213 } 7214 } 7215 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7216 // alive on IndirectBr edges). 7217 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7218 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7219 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7220 return true; 7221 } 7222 7223 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7224 // Bail out if we inserted the instruction to prevent optimizations from 7225 // stepping on each other's toes. 7226 if (InsertedInsts.count(I)) 7227 return false; 7228 7229 // TODO: Move into the switch on opcode below here. 7230 if (PHINode *P = dyn_cast<PHINode>(I)) { 7231 // It is possible for very late stage optimizations (such as SimplifyCFG) 7232 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7233 // trivial PHI, go ahead and zap it here. 7234 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7235 LargeOffsetGEPMap.erase(P); 7236 P->replaceAllUsesWith(V); 7237 P->eraseFromParent(); 7238 ++NumPHIsElim; 7239 return true; 7240 } 7241 return false; 7242 } 7243 7244 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7245 // If the source of the cast is a constant, then this should have 7246 // already been constant folded. The only reason NOT to constant fold 7247 // it is if something (e.g. LSR) was careful to place the constant 7248 // evaluation in a block other than then one that uses it (e.g. to hoist 7249 // the address of globals out of a loop). If this is the case, we don't 7250 // want to forward-subst the cast. 7251 if (isa<Constant>(CI->getOperand(0))) 7252 return false; 7253 7254 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7255 return true; 7256 7257 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7258 /// Sink a zext or sext into its user blocks if the target type doesn't 7259 /// fit in one register 7260 if (TLI->getTypeAction(CI->getContext(), 7261 TLI->getValueType(*DL, CI->getType())) == 7262 TargetLowering::TypeExpandInteger) { 7263 return SinkCast(CI); 7264 } else { 7265 bool MadeChange = optimizeExt(I); 7266 return MadeChange | optimizeExtUses(I); 7267 } 7268 } 7269 return false; 7270 } 7271 7272 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7273 if (optimizeCmp(Cmp, ModifiedDT)) 7274 return true; 7275 7276 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7277 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7278 bool Modified = optimizeLoadExt(LI); 7279 unsigned AS = LI->getPointerAddressSpace(); 7280 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7281 return Modified; 7282 } 7283 7284 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7285 if (splitMergedValStore(*SI, *DL, *TLI)) 7286 return true; 7287 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7288 unsigned AS = SI->getPointerAddressSpace(); 7289 return optimizeMemoryInst(I, SI->getOperand(1), 7290 SI->getOperand(0)->getType(), AS); 7291 } 7292 7293 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7294 unsigned AS = RMW->getPointerAddressSpace(); 7295 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7296 RMW->getType(), AS); 7297 } 7298 7299 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7300 unsigned AS = CmpX->getPointerAddressSpace(); 7301 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7302 CmpX->getCompareOperand()->getType(), AS); 7303 } 7304 7305 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7306 7307 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7308 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7309 7310 // TODO: Move this into the switch on opcode - it handles shifts already. 7311 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7312 BinOp->getOpcode() == Instruction::LShr)) { 7313 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7314 if (CI && TLI->hasExtractBitsInsn()) 7315 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7316 return true; 7317 } 7318 7319 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7320 if (GEPI->hasAllZeroIndices()) { 7321 /// The GEP operand must be a pointer, so must its result -> BitCast 7322 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7323 GEPI->getName(), GEPI); 7324 NC->setDebugLoc(GEPI->getDebugLoc()); 7325 GEPI->replaceAllUsesWith(NC); 7326 GEPI->eraseFromParent(); 7327 ++NumGEPsElim; 7328 optimizeInst(NC, ModifiedDT); 7329 return true; 7330 } 7331 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7332 return true; 7333 } 7334 return false; 7335 } 7336 7337 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7338 // freeze(icmp a, const)) -> icmp (freeze a), const 7339 // This helps generate efficient conditional jumps. 7340 Instruction *CmpI = nullptr; 7341 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7342 CmpI = II; 7343 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7344 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7345 7346 if (CmpI && CmpI->hasOneUse()) { 7347 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7348 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7349 isa<ConstantPointerNull>(Op0); 7350 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7351 isa<ConstantPointerNull>(Op1); 7352 if (Const0 || Const1) { 7353 if (!Const0 || !Const1) { 7354 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7355 F->takeName(FI); 7356 CmpI->setOperand(Const0 ? 1 : 0, F); 7357 } 7358 FI->replaceAllUsesWith(CmpI); 7359 FI->eraseFromParent(); 7360 return true; 7361 } 7362 } 7363 return false; 7364 } 7365 7366 if (tryToSinkFreeOperands(I)) 7367 return true; 7368 7369 switch (I->getOpcode()) { 7370 case Instruction::Shl: 7371 case Instruction::LShr: 7372 case Instruction::AShr: 7373 return optimizeShiftInst(cast<BinaryOperator>(I)); 7374 case Instruction::Call: 7375 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7376 case Instruction::Select: 7377 return optimizeSelectInst(cast<SelectInst>(I)); 7378 case Instruction::ShuffleVector: 7379 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7380 case Instruction::Switch: 7381 return optimizeSwitchInst(cast<SwitchInst>(I)); 7382 case Instruction::ExtractElement: 7383 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7384 } 7385 7386 return false; 7387 } 7388 7389 /// Given an OR instruction, check to see if this is a bitreverse 7390 /// idiom. If so, insert the new intrinsic and return true. 7391 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7392 const TargetLowering &TLI) { 7393 if (!I.getType()->isIntegerTy() || 7394 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7395 TLI.getValueType(DL, I.getType(), true))) 7396 return false; 7397 7398 SmallVector<Instruction*, 4> Insts; 7399 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7400 return false; 7401 Instruction *LastInst = Insts.back(); 7402 I.replaceAllUsesWith(LastInst); 7403 RecursivelyDeleteTriviallyDeadInstructions(&I); 7404 return true; 7405 } 7406 7407 // In this pass we look for GEP and cast instructions that are used 7408 // across basic blocks and rewrite them to improve basic-block-at-a-time 7409 // selection. 7410 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7411 SunkAddrs.clear(); 7412 bool MadeChange = false; 7413 7414 CurInstIterator = BB.begin(); 7415 while (CurInstIterator != BB.end()) { 7416 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7417 if (ModifiedDT) 7418 return true; 7419 } 7420 7421 bool MadeBitReverse = true; 7422 while (MadeBitReverse) { 7423 MadeBitReverse = false; 7424 for (auto &I : reverse(BB)) { 7425 if (makeBitReverse(I, *DL, *TLI)) { 7426 MadeBitReverse = MadeChange = true; 7427 break; 7428 } 7429 } 7430 } 7431 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7432 7433 return MadeChange; 7434 } 7435 7436 // Some CGP optimizations may move or alter what's computed in a block. Check 7437 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7438 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7439 assert(isa<DbgValueInst>(I)); 7440 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7441 7442 // Does this dbg.value refer to a sunk address calculation? 7443 Value *Location = DVI.getVariableLocation(); 7444 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7445 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7446 if (SunkAddr) { 7447 // Point dbg.value at locally computed address, which should give the best 7448 // opportunity to be accurately lowered. This update may change the type of 7449 // pointer being referred to; however this makes no difference to debugging 7450 // information, and we can't generate bitcasts that may affect codegen. 7451 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7452 ValueAsMetadata::get(SunkAddr))); 7453 return true; 7454 } 7455 return false; 7456 } 7457 7458 // A llvm.dbg.value may be using a value before its definition, due to 7459 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7460 // them by moving the dbg.value to immediately after the value definition. 7461 // FIXME: Ideally this should never be necessary, and this has the potential 7462 // to re-order dbg.value intrinsics. 7463 bool CodeGenPrepare::placeDbgValues(Function &F) { 7464 bool MadeChange = false; 7465 DominatorTree DT(F); 7466 7467 for (BasicBlock &BB : F) { 7468 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7469 Instruction *Insn = &*BI++; 7470 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7471 if (!DVI) 7472 continue; 7473 7474 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7475 7476 if (!VI || VI->isTerminator()) 7477 continue; 7478 7479 // If VI is a phi in a block with an EHPad terminator, we can't insert 7480 // after it. 7481 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7482 continue; 7483 7484 // If the defining instruction dominates the dbg.value, we do not need 7485 // to move the dbg.value. 7486 if (DT.dominates(VI, DVI)) 7487 continue; 7488 7489 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7490 << *DVI << ' ' << *VI); 7491 DVI->removeFromParent(); 7492 if (isa<PHINode>(VI)) 7493 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7494 else 7495 DVI->insertAfter(VI); 7496 MadeChange = true; 7497 ++NumDbgValueMoved; 7498 } 7499 } 7500 return MadeChange; 7501 } 7502 7503 /// Scale down both weights to fit into uint32_t. 7504 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7505 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7506 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7507 NewTrue = NewTrue / Scale; 7508 NewFalse = NewFalse / Scale; 7509 } 7510 7511 /// Some targets prefer to split a conditional branch like: 7512 /// \code 7513 /// %0 = icmp ne i32 %a, 0 7514 /// %1 = icmp ne i32 %b, 0 7515 /// %or.cond = or i1 %0, %1 7516 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7517 /// \endcode 7518 /// into multiple branch instructions like: 7519 /// \code 7520 /// bb1: 7521 /// %0 = icmp ne i32 %a, 0 7522 /// br i1 %0, label %TrueBB, label %bb2 7523 /// bb2: 7524 /// %1 = icmp ne i32 %b, 0 7525 /// br i1 %1, label %TrueBB, label %FalseBB 7526 /// \endcode 7527 /// This usually allows instruction selection to do even further optimizations 7528 /// and combine the compare with the branch instruction. Currently this is 7529 /// applied for targets which have "cheap" jump instructions. 7530 /// 7531 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7532 /// 7533 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7534 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7535 return false; 7536 7537 bool MadeChange = false; 7538 for (auto &BB : F) { 7539 // Does this BB end with the following? 7540 // %cond1 = icmp|fcmp|binary instruction ... 7541 // %cond2 = icmp|fcmp|binary instruction ... 7542 // %cond.or = or|and i1 %cond1, cond2 7543 // br i1 %cond.or label %dest1, label %dest2" 7544 BinaryOperator *LogicOp; 7545 BasicBlock *TBB, *FBB; 7546 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7547 continue; 7548 7549 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7550 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7551 continue; 7552 7553 // The merging of mostly empty BB can cause a degenerate branch. 7554 if (TBB == FBB) 7555 continue; 7556 7557 unsigned Opc; 7558 Value *Cond1, *Cond2; 7559 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7560 m_OneUse(m_Value(Cond2))))) 7561 Opc = Instruction::And; 7562 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7563 m_OneUse(m_Value(Cond2))))) 7564 Opc = Instruction::Or; 7565 else 7566 continue; 7567 7568 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7569 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7570 continue; 7571 7572 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7573 7574 // Create a new BB. 7575 auto TmpBB = 7576 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7577 BB.getParent(), BB.getNextNode()); 7578 7579 // Update original basic block by using the first condition directly by the 7580 // branch instruction and removing the no longer needed and/or instruction. 7581 Br1->setCondition(Cond1); 7582 LogicOp->eraseFromParent(); 7583 7584 // Depending on the condition we have to either replace the true or the 7585 // false successor of the original branch instruction. 7586 if (Opc == Instruction::And) 7587 Br1->setSuccessor(0, TmpBB); 7588 else 7589 Br1->setSuccessor(1, TmpBB); 7590 7591 // Fill in the new basic block. 7592 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7593 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7594 I->removeFromParent(); 7595 I->insertBefore(Br2); 7596 } 7597 7598 // Update PHI nodes in both successors. The original BB needs to be 7599 // replaced in one successor's PHI nodes, because the branch comes now from 7600 // the newly generated BB (NewBB). In the other successor we need to add one 7601 // incoming edge to the PHI nodes, because both branch instructions target 7602 // now the same successor. Depending on the original branch condition 7603 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7604 // we perform the correct update for the PHI nodes. 7605 // This doesn't change the successor order of the just created branch 7606 // instruction (or any other instruction). 7607 if (Opc == Instruction::Or) 7608 std::swap(TBB, FBB); 7609 7610 // Replace the old BB with the new BB. 7611 TBB->replacePhiUsesWith(&BB, TmpBB); 7612 7613 // Add another incoming edge form the new BB. 7614 for (PHINode &PN : FBB->phis()) { 7615 auto *Val = PN.getIncomingValueForBlock(&BB); 7616 PN.addIncoming(Val, TmpBB); 7617 } 7618 7619 // Update the branch weights (from SelectionDAGBuilder:: 7620 // FindMergedConditions). 7621 if (Opc == Instruction::Or) { 7622 // Codegen X | Y as: 7623 // BB1: 7624 // jmp_if_X TBB 7625 // jmp TmpBB 7626 // TmpBB: 7627 // jmp_if_Y TBB 7628 // jmp FBB 7629 // 7630 7631 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7632 // The requirement is that 7633 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7634 // = TrueProb for original BB. 7635 // Assuming the original weights are A and B, one choice is to set BB1's 7636 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7637 // assumes that 7638 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7639 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7640 // TmpBB, but the math is more complicated. 7641 uint64_t TrueWeight, FalseWeight; 7642 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7643 uint64_t NewTrueWeight = TrueWeight; 7644 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7645 scaleWeights(NewTrueWeight, NewFalseWeight); 7646 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7647 .createBranchWeights(TrueWeight, FalseWeight)); 7648 7649 NewTrueWeight = TrueWeight; 7650 NewFalseWeight = 2 * FalseWeight; 7651 scaleWeights(NewTrueWeight, NewFalseWeight); 7652 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7653 .createBranchWeights(TrueWeight, FalseWeight)); 7654 } 7655 } else { 7656 // Codegen X & Y as: 7657 // BB1: 7658 // jmp_if_X TmpBB 7659 // jmp FBB 7660 // TmpBB: 7661 // jmp_if_Y TBB 7662 // jmp FBB 7663 // 7664 // This requires creation of TmpBB after CurBB. 7665 7666 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7667 // The requirement is that 7668 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7669 // = FalseProb for original BB. 7670 // Assuming the original weights are A and B, one choice is to set BB1's 7671 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7672 // assumes that 7673 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7674 uint64_t TrueWeight, FalseWeight; 7675 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7676 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7677 uint64_t NewFalseWeight = FalseWeight; 7678 scaleWeights(NewTrueWeight, NewFalseWeight); 7679 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7680 .createBranchWeights(TrueWeight, FalseWeight)); 7681 7682 NewTrueWeight = 2 * TrueWeight; 7683 NewFalseWeight = FalseWeight; 7684 scaleWeights(NewTrueWeight, NewFalseWeight); 7685 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7686 .createBranchWeights(TrueWeight, FalseWeight)); 7687 } 7688 } 7689 7690 ModifiedDT = true; 7691 MadeChange = true; 7692 7693 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7694 TmpBB->dump()); 7695 } 7696 return MadeChange; 7697 } 7698