1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <limits> 97 #include <memory> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define DEBUG_TYPE "codegenprepare" 105 106 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 110 "sunken Cmps"); 111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 112 "of sunken Casts"); 113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 114 "computations were sunk"); 115 STATISTIC(NumMemoryInstsPhiCreated, 116 "Number of phis created when address " 117 "computations were sunk to memory instructions"); 118 STATISTIC(NumMemoryInstsSelectCreated, 119 "Number of select created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 123 STATISTIC(NumAndsAdded, 124 "Number of and mask instructions added to form ext loads"); 125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 126 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 130 131 static cl::opt<bool> DisableBranchOpts( 132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 133 cl::desc("Disable branch optimizations in CodeGenPrepare")); 134 135 static cl::opt<bool> 136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable GC optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> DisableSelectToBranch( 140 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 141 cl::desc("Disable select to branch conversion.")); 142 143 static cl::opt<bool> AddrSinkUsingGEPs( 144 "addr-sink-using-gep", cl::Hidden, cl::init(true), 145 cl::desc("Address sinking in CGP using GEPs.")); 146 147 static cl::opt<bool> EnableAndCmpSinking( 148 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 149 cl::desc("Enable sinkinig and/cmp into branches.")); 150 151 static cl::opt<bool> DisableStoreExtract( 152 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 154 155 static cl::opt<bool> StressStoreExtract( 156 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> DisableExtLdPromotion( 160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 162 "CodeGenPrepare")); 163 164 static cl::opt<bool> StressExtLdPromotion( 165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 167 "optimization in CodeGenPrepare")); 168 169 static cl::opt<bool> DisablePreheaderProtect( 170 "disable-preheader-prot", cl::Hidden, cl::init(false), 171 cl::desc("Disable protection against removing loop preheaders")); 172 173 static cl::opt<bool> ProfileGuidedSectionPrefix( 174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 175 cl::desc("Use profile info to add section prefix for hot/cold functions")); 176 177 static cl::opt<unsigned> FreqRatioToSkipMerge( 178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 179 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 180 "(frequency of destination block) is greater than this ratio")); 181 182 static cl::opt<bool> ForceSplitStore( 183 "force-split-store", cl::Hidden, cl::init(false), 184 cl::desc("Force store splitting no matter what the target query says.")); 185 186 static cl::opt<bool> 187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 188 cl::desc("Enable merging of redundant sexts when one is dominating" 189 " the other."), cl::init(true)); 190 191 static cl::opt<bool> DisableComplexAddrModes( 192 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 193 cl::desc("Disables combining addressing modes with different parts " 194 "in optimizeMemoryInst.")); 195 196 static cl::opt<bool> 197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 198 cl::desc("Allow creation of Phis in Address sinking.")); 199 200 static cl::opt<bool> 201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 202 cl::desc("Allow creation of selects in Address sinking.")); 203 204 static cl::opt<bool> AddrSinkCombineBaseReg( 205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 206 cl::desc("Allow combining of BaseReg field in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseGV( 209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseGV field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseOffs( 213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineScaledReg( 217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 219 220 static cl::opt<bool> 221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 222 cl::init(true), 223 cl::desc("Enable splitting large offset of GEP.")); 224 225 namespace { 226 227 enum ExtType { 228 ZeroExtension, // Zero extension has been seen. 229 SignExtension, // Sign extension has been seen. 230 BothExtension // This extension type is used if we saw sext after 231 // ZeroExtension had been set, or if we saw zext after 232 // SignExtension had been set. It makes the type 233 // information of a promoted instruction invalid. 234 }; 235 236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 239 using SExts = SmallVector<Instruction *, 16>; 240 using ValueToSExts = DenseMap<Value *, SExts>; 241 242 class TypePromotionTransaction; 243 244 class CodeGenPrepare : public FunctionPass { 245 const TargetMachine *TM = nullptr; 246 const TargetSubtargetInfo *SubtargetInfo; 247 const TargetLowering *TLI = nullptr; 248 const TargetRegisterInfo *TRI; 249 const TargetTransformInfo *TTI = nullptr; 250 const TargetLibraryInfo *TLInfo; 251 const LoopInfo *LI; 252 std::unique_ptr<BlockFrequencyInfo> BFI; 253 std::unique_ptr<BranchProbabilityInfo> BPI; 254 255 /// As we scan instructions optimizing them, this is the next instruction 256 /// to optimize. Transforms that can invalidate this should update it. 257 BasicBlock::iterator CurInstIterator; 258 259 /// Keeps track of non-local addresses that have been sunk into a block. 260 /// This allows us to avoid inserting duplicate code for blocks with 261 /// multiple load/stores of the same address. The usage of WeakTrackingVH 262 /// enables SunkAddrs to be treated as a cache whose entries can be 263 /// invalidated if a sunken address computation has been erased. 264 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 265 266 /// Keeps track of all instructions inserted for the current function. 267 SetOfInstrs InsertedInsts; 268 269 /// Keeps track of the type of the related instruction before their 270 /// promotion for the current function. 271 InstrToOrigTy PromotedInsts; 272 273 /// Keep track of instructions removed during promotion. 274 SetOfInstrs RemovedInsts; 275 276 /// Keep track of sext chains based on their initial value. 277 DenseMap<Value *, Instruction *> SeenChainsForSExt; 278 279 /// Keep track of GEPs accessing the same data structures such as structs or 280 /// arrays that are candidates to be split later because of their large 281 /// size. 282 MapVector< 283 AssertingVH<Value>, 284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 285 LargeOffsetGEPMap; 286 287 /// Keep track of new GEP base after splitting the GEPs having large offset. 288 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 289 290 /// Map serial numbers to Large offset GEPs. 291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 292 293 /// Keep track of SExt promoted. 294 ValueToSExts ValToSExtendedUses; 295 296 /// True if optimizing for size. 297 bool OptSize; 298 299 /// DataLayout for the Function being processed. 300 const DataLayout *DL = nullptr; 301 302 /// Building the dominator tree can be expensive, so we only build it 303 /// lazily and update it when required. 304 std::unique_ptr<DominatorTree> DT; 305 306 public: 307 static char ID; // Pass identification, replacement for typeid 308 309 CodeGenPrepare() : FunctionPass(ID) { 310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 311 } 312 313 bool runOnFunction(Function &F) override; 314 315 StringRef getPassName() const override { return "CodeGen Prepare"; } 316 317 void getAnalysisUsage(AnalysisUsage &AU) const override { 318 // FIXME: When we can selectively preserve passes, preserve the domtree. 319 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 320 AU.addRequired<TargetLibraryInfoWrapperPass>(); 321 AU.addRequired<TargetTransformInfoWrapperPass>(); 322 AU.addRequired<LoopInfoWrapperPass>(); 323 } 324 325 private: 326 template <typename F> 327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 328 // Substituting can cause recursive simplifications, which can invalidate 329 // our iterator. Use a WeakTrackingVH to hold onto it in case this 330 // happens. 331 Value *CurValue = &*CurInstIterator; 332 WeakTrackingVH IterHandle(CurValue); 333 334 f(); 335 336 // If the iterator instruction was recursively deleted, start over at the 337 // start of the block. 338 if (IterHandle != CurValue) { 339 CurInstIterator = BB->begin(); 340 SunkAddrs.clear(); 341 } 342 } 343 344 // Get the DominatorTree, building if necessary. 345 DominatorTree &getDT(Function &F) { 346 if (!DT) 347 DT = std::make_unique<DominatorTree>(F); 348 return *DT; 349 } 350 351 bool eliminateFallThrough(Function &F); 352 bool eliminateMostlyEmptyBlocks(Function &F); 353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 355 void eliminateMostlyEmptyBlock(BasicBlock *BB); 356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 357 bool isPreheader); 358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 359 bool optimizeInst(Instruction *I, bool &ModifiedDT); 360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 361 Type *AccessTy, unsigned AddrSpace); 362 bool optimizeInlineAsmInst(CallInst *CS); 363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 364 bool optimizeExt(Instruction *&I); 365 bool optimizeExtUses(Instruction *I); 366 bool optimizeLoadExt(LoadInst *Load); 367 bool optimizeShiftInst(BinaryOperator *BO); 368 bool optimizeSelectInst(SelectInst *SI); 369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 370 bool optimizeSwitchInst(SwitchInst *SI); 371 bool optimizeExtractElementInst(Instruction *Inst); 372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 373 bool placeDbgValues(Function &F); 374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 376 bool tryToPromoteExts(TypePromotionTransaction &TPT, 377 const SmallVectorImpl<Instruction *> &Exts, 378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 379 unsigned CreatedInstsCost = 0); 380 bool mergeSExts(Function &F); 381 bool splitLargeGEPOffsets(); 382 bool performAddressTypePromotion( 383 Instruction *&Inst, 384 bool AllowPromotionWithoutCommonHeader, 385 bool HasPromoted, TypePromotionTransaction &TPT, 386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 387 bool splitBranchCondition(Function &F, bool &ModifiedDT); 388 bool simplifyOffsetableRelocate(Instruction &I); 389 390 bool tryToSinkFreeOperands(Instruction *I); 391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 392 Intrinsic::ID IID); 393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 396 }; 397 398 } // end anonymous namespace 399 400 char CodeGenPrepare::ID = 0; 401 402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 403 "Optimize for code generation", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 406 "Optimize for code generation", false, false) 407 408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 409 410 bool CodeGenPrepare::runOnFunction(Function &F) { 411 if (skipFunction(F)) 412 return false; 413 414 DL = &F.getParent()->getDataLayout(); 415 416 bool EverMadeChange = false; 417 // Clear per function information. 418 InsertedInsts.clear(); 419 PromotedInsts.clear(); 420 421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 422 TM = &TPC->getTM<TargetMachine>(); 423 SubtargetInfo = TM->getSubtargetImpl(F); 424 TLI = SubtargetInfo->getTargetLowering(); 425 TRI = SubtargetInfo->getRegisterInfo(); 426 } 427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 430 BPI.reset(new BranchProbabilityInfo(F, *LI)); 431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 432 OptSize = F.hasOptSize(); 433 434 ProfileSummaryInfo *PSI = 435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 436 if (ProfileGuidedSectionPrefix) { 437 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 438 F.setSectionPrefix(".hot"); 439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 440 F.setSectionPrefix(".unlikely"); 441 } 442 443 /// This optimization identifies DIV instructions that can be 444 /// profitably bypassed and carried out with a shorter, faster divide. 445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 446 TLI->isSlowDivBypassed()) { 447 const DenseMap<unsigned int, unsigned int> &BypassWidths = 448 TLI->getBypassSlowDivWidths(); 449 BasicBlock* BB = &*F.begin(); 450 while (BB != nullptr) { 451 // bypassSlowDivision may create new BBs, but we don't want to reapply the 452 // optimization to those blocks. 453 BasicBlock* Next = BB->getNextNode(); 454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 455 BB = Next; 456 } 457 } 458 459 // Eliminate blocks that contain only PHI nodes and an 460 // unconditional branch. 461 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 462 463 bool ModifiedDT = false; 464 if (!DisableBranchOpts) 465 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 466 467 // Split some critical edges where one of the sources is an indirect branch, 468 // to help generate sane code for PHIs involving such edges. 469 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 470 471 bool MadeChange = true; 472 while (MadeChange) { 473 MadeChange = false; 474 DT.reset(); 475 for (Function::iterator I = F.begin(); I != F.end(); ) { 476 BasicBlock *BB = &*I++; 477 bool ModifiedDTOnIteration = false; 478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 479 480 // Restart BB iteration if the dominator tree of the Function was changed 481 if (ModifiedDTOnIteration) 482 break; 483 } 484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 485 MadeChange |= mergeSExts(F); 486 if (!LargeOffsetGEPMap.empty()) 487 MadeChange |= splitLargeGEPOffsets(); 488 489 // Really free removed instructions during promotion. 490 for (Instruction *I : RemovedInsts) 491 I->deleteValue(); 492 493 EverMadeChange |= MadeChange; 494 SeenChainsForSExt.clear(); 495 ValToSExtendedUses.clear(); 496 RemovedInsts.clear(); 497 LargeOffsetGEPMap.clear(); 498 LargeOffsetGEPID.clear(); 499 } 500 501 SunkAddrs.clear(); 502 503 if (!DisableBranchOpts) { 504 MadeChange = false; 505 // Use a set vector to get deterministic iteration order. The order the 506 // blocks are removed may affect whether or not PHI nodes in successors 507 // are removed. 508 SmallSetVector<BasicBlock*, 8> WorkList; 509 for (BasicBlock &BB : F) { 510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 511 MadeChange |= ConstantFoldTerminator(&BB, true); 512 if (!MadeChange) continue; 513 514 for (SmallVectorImpl<BasicBlock*>::iterator 515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 516 if (pred_begin(*II) == pred_end(*II)) 517 WorkList.insert(*II); 518 } 519 520 // Delete the dead blocks and any of their dead successors. 521 MadeChange |= !WorkList.empty(); 522 while (!WorkList.empty()) { 523 BasicBlock *BB = WorkList.pop_back_val(); 524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 525 526 DeleteDeadBlock(BB); 527 528 for (SmallVectorImpl<BasicBlock*>::iterator 529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 530 if (pred_begin(*II) == pred_end(*II)) 531 WorkList.insert(*II); 532 } 533 534 // Merge pairs of basic blocks with unconditional branches, connected by 535 // a single edge. 536 if (EverMadeChange || MadeChange) 537 MadeChange |= eliminateFallThrough(F); 538 539 EverMadeChange |= MadeChange; 540 } 541 542 if (!DisableGCOpts) { 543 SmallVector<Instruction *, 2> Statepoints; 544 for (BasicBlock &BB : F) 545 for (Instruction &I : BB) 546 if (isStatepoint(I)) 547 Statepoints.push_back(&I); 548 for (auto &I : Statepoints) 549 EverMadeChange |= simplifyOffsetableRelocate(*I); 550 } 551 552 // Do this last to clean up use-before-def scenarios introduced by other 553 // preparatory transforms. 554 EverMadeChange |= placeDbgValues(F); 555 556 return EverMadeChange; 557 } 558 559 /// Merge basic blocks which are connected by a single edge, where one of the 560 /// basic blocks has a single successor pointing to the other basic block, 561 /// which has a single predecessor. 562 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 563 bool Changed = false; 564 // Scan all of the blocks in the function, except for the entry block. 565 // Use a temporary array to avoid iterator being invalidated when 566 // deleting blocks. 567 SmallVector<WeakTrackingVH, 16> Blocks; 568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 569 Blocks.push_back(&Block); 570 571 for (auto &Block : Blocks) { 572 auto *BB = cast_or_null<BasicBlock>(Block); 573 if (!BB) 574 continue; 575 // If the destination block has a single pred, then this is a trivial 576 // edge, just collapse it. 577 BasicBlock *SinglePred = BB->getSinglePredecessor(); 578 579 // Don't merge if BB's address is taken. 580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 581 582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 583 if (Term && !Term->isConditional()) { 584 Changed = true; 585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 586 587 // Merge BB into SinglePred and delete it. 588 MergeBlockIntoPredecessor(BB); 589 } 590 } 591 return Changed; 592 } 593 594 /// Find a destination block from BB if BB is mergeable empty block. 595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 596 // If this block doesn't end with an uncond branch, ignore it. 597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 598 if (!BI || !BI->isUnconditional()) 599 return nullptr; 600 601 // If the instruction before the branch (skipping debug info) isn't a phi 602 // node, then other stuff is happening here. 603 BasicBlock::iterator BBI = BI->getIterator(); 604 if (BBI != BB->begin()) { 605 --BBI; 606 while (isa<DbgInfoIntrinsic>(BBI)) { 607 if (BBI == BB->begin()) 608 break; 609 --BBI; 610 } 611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 612 return nullptr; 613 } 614 615 // Do not break infinite loops. 616 BasicBlock *DestBB = BI->getSuccessor(0); 617 if (DestBB == BB) 618 return nullptr; 619 620 if (!canMergeBlocks(BB, DestBB)) 621 DestBB = nullptr; 622 623 return DestBB; 624 } 625 626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 628 /// edges in ways that are non-optimal for isel. Start by eliminating these 629 /// blocks so we can split them the way we want them. 630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 631 SmallPtrSet<BasicBlock *, 16> Preheaders; 632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 633 while (!LoopList.empty()) { 634 Loop *L = LoopList.pop_back_val(); 635 LoopList.insert(LoopList.end(), L->begin(), L->end()); 636 if (BasicBlock *Preheader = L->getLoopPreheader()) 637 Preheaders.insert(Preheader); 638 } 639 640 bool MadeChange = false; 641 // Copy blocks into a temporary array to avoid iterator invalidation issues 642 // as we remove them. 643 // Note that this intentionally skips the entry block. 644 SmallVector<WeakTrackingVH, 16> Blocks; 645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 646 Blocks.push_back(&Block); 647 648 for (auto &Block : Blocks) { 649 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 650 if (!BB) 651 continue; 652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 653 if (!DestBB || 654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 655 continue; 656 657 eliminateMostlyEmptyBlock(BB); 658 MadeChange = true; 659 } 660 return MadeChange; 661 } 662 663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 664 BasicBlock *DestBB, 665 bool isPreheader) { 666 // Do not delete loop preheaders if doing so would create a critical edge. 667 // Loop preheaders can be good locations to spill registers. If the 668 // preheader is deleted and we create a critical edge, registers may be 669 // spilled in the loop body instead. 670 if (!DisablePreheaderProtect && isPreheader && 671 !(BB->getSinglePredecessor() && 672 BB->getSinglePredecessor()->getSingleSuccessor())) 673 return false; 674 675 // Skip merging if the block's successor is also a successor to any callbr 676 // that leads to this block. 677 // FIXME: Is this really needed? Is this a correctness issue? 678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 681 if (DestBB == CBI->getSuccessor(i)) 682 return false; 683 } 684 685 // Try to skip merging if the unique predecessor of BB is terminated by a 686 // switch or indirect branch instruction, and BB is used as an incoming block 687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 688 // add COPY instructions in the predecessor of BB instead of BB (if it is not 689 // merged). Note that the critical edge created by merging such blocks wont be 690 // split in MachineSink because the jump table is not analyzable. By keeping 691 // such empty block (BB), ISel will place COPY instructions in BB, not in the 692 // predecessor of BB. 693 BasicBlock *Pred = BB->getUniquePredecessor(); 694 if (!Pred || 695 !(isa<SwitchInst>(Pred->getTerminator()) || 696 isa<IndirectBrInst>(Pred->getTerminator()))) 697 return true; 698 699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 700 return true; 701 702 // We use a simple cost heuristic which determine skipping merging is 703 // profitable if the cost of skipping merging is less than the cost of 704 // merging : Cost(skipping merging) < Cost(merging BB), where the 705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 708 // Freq(Pred) / Freq(BB) > 2. 709 // Note that if there are multiple empty blocks sharing the same incoming 710 // value for the PHIs in the DestBB, we consider them together. In such 711 // case, Cost(merging BB) will be the sum of their frequencies. 712 713 if (!isa<PHINode>(DestBB->begin())) 714 return true; 715 716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 717 718 // Find all other incoming blocks from which incoming values of all PHIs in 719 // DestBB are the same as the ones from BB. 720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 721 ++PI) { 722 BasicBlock *DestBBPred = *PI; 723 if (DestBBPred == BB) 724 continue; 725 726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 727 return DestPN.getIncomingValueForBlock(BB) == 728 DestPN.getIncomingValueForBlock(DestBBPred); 729 })) 730 SameIncomingValueBBs.insert(DestBBPred); 731 } 732 733 // See if all BB's incoming values are same as the value from Pred. In this 734 // case, no reason to skip merging because COPYs are expected to be place in 735 // Pred already. 736 if (SameIncomingValueBBs.count(Pred)) 737 return true; 738 739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 740 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 741 742 for (auto SameValueBB : SameIncomingValueBBs) 743 if (SameValueBB->getUniquePredecessor() == Pred && 744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 745 BBFreq += BFI->getBlockFreq(SameValueBB); 746 747 return PredFreq.getFrequency() <= 748 BBFreq.getFrequency() * FreqRatioToSkipMerge; 749 } 750 751 /// Return true if we can merge BB into DestBB if there is a single 752 /// unconditional branch between them, and BB contains no other non-phi 753 /// instructions. 754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 755 const BasicBlock *DestBB) const { 756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 757 // the successor. If there are more complex condition (e.g. preheaders), 758 // don't mess around with them. 759 for (const PHINode &PN : BB->phis()) { 760 for (const User *U : PN.users()) { 761 const Instruction *UI = cast<Instruction>(U); 762 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 763 return false; 764 // If User is inside DestBB block and it is a PHINode then check 765 // incoming value. If incoming value is not from BB then this is 766 // a complex condition (e.g. preheaders) we want to avoid here. 767 if (UI->getParent() == DestBB) { 768 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 771 if (Insn && Insn->getParent() == BB && 772 Insn->getParent() != UPN->getIncomingBlock(I)) 773 return false; 774 } 775 } 776 } 777 } 778 779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 780 // and DestBB may have conflicting incoming values for the block. If so, we 781 // can't merge the block. 782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 783 if (!DestBBPN) return true; // no conflict. 784 785 // Collect the preds of BB. 786 SmallPtrSet<const BasicBlock*, 16> BBPreds; 787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 788 // It is faster to get preds from a PHI than with pred_iterator. 789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 790 BBPreds.insert(BBPN->getIncomingBlock(i)); 791 } else { 792 BBPreds.insert(pred_begin(BB), pred_end(BB)); 793 } 794 795 // Walk the preds of DestBB. 796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 798 if (BBPreds.count(Pred)) { // Common predecessor? 799 for (const PHINode &PN : DestBB->phis()) { 800 const Value *V1 = PN.getIncomingValueForBlock(Pred); 801 const Value *V2 = PN.getIncomingValueForBlock(BB); 802 803 // If V2 is a phi node in BB, look up what the mapped value will be. 804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 805 if (V2PN->getParent() == BB) 806 V2 = V2PN->getIncomingValueForBlock(Pred); 807 808 // If there is a conflict, bail out. 809 if (V1 != V2) return false; 810 } 811 } 812 } 813 814 return true; 815 } 816 817 /// Eliminate a basic block that has only phi's and an unconditional branch in 818 /// it. 819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 820 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 821 BasicBlock *DestBB = BI->getSuccessor(0); 822 823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 824 << *BB << *DestBB); 825 826 // If the destination block has a single pred, then this is a trivial edge, 827 // just collapse it. 828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 829 if (SinglePred != DestBB) { 830 assert(SinglePred == BB && 831 "Single predecessor not the same as predecessor"); 832 // Merge DestBB into SinglePred/BB and delete it. 833 MergeBlockIntoPredecessor(DestBB); 834 // Note: BB(=SinglePred) will not be deleted on this path. 835 // DestBB(=its single successor) is the one that was deleted. 836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 837 return; 838 } 839 } 840 841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 842 // to handle the new incoming edges it is about to have. 843 for (PHINode &PN : DestBB->phis()) { 844 // Remove the incoming value for BB, and remember it. 845 Value *InVal = PN.removeIncomingValue(BB, false); 846 847 // Two options: either the InVal is a phi node defined in BB or it is some 848 // value that dominates BB. 849 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 850 if (InValPhi && InValPhi->getParent() == BB) { 851 // Add all of the input values of the input PHI as inputs of this phi. 852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 853 PN.addIncoming(InValPhi->getIncomingValue(i), 854 InValPhi->getIncomingBlock(i)); 855 } else { 856 // Otherwise, add one instance of the dominating value for each edge that 857 // we will be adding. 858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 861 } else { 862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 863 PN.addIncoming(InVal, *PI); 864 } 865 } 866 } 867 868 // The PHIs are now updated, change everything that refers to BB to use 869 // DestBB and remove BB. 870 BB->replaceAllUsesWith(DestBB); 871 BB->eraseFromParent(); 872 ++NumBlocksElim; 873 874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 875 } 876 877 // Computes a map of base pointer relocation instructions to corresponding 878 // derived pointer relocation instructions given a vector of all relocate calls 879 static void computeBaseDerivedRelocateMap( 880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 882 &RelocateInstMap) { 883 // Collect information in two maps: one primarily for locating the base object 884 // while filling the second map; the second map is the final structure holding 885 // a mapping between Base and corresponding Derived relocate calls 886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 887 for (auto *ThisRelocate : AllRelocateCalls) { 888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 889 ThisRelocate->getDerivedPtrIndex()); 890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 891 } 892 for (auto &Item : RelocateIdxMap) { 893 std::pair<unsigned, unsigned> Key = Item.first; 894 if (Key.first == Key.second) 895 // Base relocation: nothing to insert 896 continue; 897 898 GCRelocateInst *I = Item.second; 899 auto BaseKey = std::make_pair(Key.first, Key.first); 900 901 // We're iterating over RelocateIdxMap so we cannot modify it. 902 auto MaybeBase = RelocateIdxMap.find(BaseKey); 903 if (MaybeBase == RelocateIdxMap.end()) 904 // TODO: We might want to insert a new base object relocate and gep off 905 // that, if there are enough derived object relocates. 906 continue; 907 908 RelocateInstMap[MaybeBase->second].push_back(I); 909 } 910 } 911 912 // Accepts a GEP and extracts the operands into a vector provided they're all 913 // small integer constants 914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 915 SmallVectorImpl<Value *> &OffsetV) { 916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 917 // Only accept small constant integer operands 918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 919 if (!Op || Op->getZExtValue() > 20) 920 return false; 921 } 922 923 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 924 OffsetV.push_back(GEP->getOperand(i)); 925 return true; 926 } 927 928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 929 // replace, computes a replacement, and affects it. 930 static bool 931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 932 const SmallVectorImpl<GCRelocateInst *> &Targets) { 933 bool MadeChange = false; 934 // We must ensure the relocation of derived pointer is defined after 935 // relocation of base pointer. If we find a relocation corresponding to base 936 // defined earlier than relocation of base then we move relocation of base 937 // right before found relocation. We consider only relocation in the same 938 // basic block as relocation of base. Relocations from other basic block will 939 // be skipped by optimization and we do not care about them. 940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 941 &*R != RelocatedBase; ++R) 942 if (auto RI = dyn_cast<GCRelocateInst>(R)) 943 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 945 RelocatedBase->moveBefore(RI); 946 break; 947 } 948 949 for (GCRelocateInst *ToReplace : Targets) { 950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 951 "Not relocating a derived object of the original base object"); 952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 953 // A duplicate relocate call. TODO: coalesce duplicates. 954 continue; 955 } 956 957 if (RelocatedBase->getParent() != ToReplace->getParent()) { 958 // Base and derived relocates are in different basic blocks. 959 // In this case transform is only valid when base dominates derived 960 // relocate. However it would be too expensive to check dominance 961 // for each such relocate, so we skip the whole transformation. 962 continue; 963 } 964 965 Value *Base = ToReplace->getBasePtr(); 966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 967 if (!Derived || Derived->getPointerOperand() != Base) 968 continue; 969 970 SmallVector<Value *, 2> OffsetV; 971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 972 continue; 973 974 // Create a Builder and replace the target callsite with a gep 975 assert(RelocatedBase->getNextNode() && 976 "Should always have one since it's not a terminator"); 977 978 // Insert after RelocatedBase 979 IRBuilder<> Builder(RelocatedBase->getNextNode()); 980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 981 982 // If gc_relocate does not match the actual type, cast it to the right type. 983 // In theory, there must be a bitcast after gc_relocate if the type does not 984 // match, and we should reuse it to get the derived pointer. But it could be 985 // cases like this: 986 // bb1: 987 // ... 988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 989 // br label %merge 990 // 991 // bb2: 992 // ... 993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 994 // br label %merge 995 // 996 // merge: 997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 999 // 1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1001 // no matter there is already one or not. In this way, we can handle all cases, and 1002 // the extra bitcast should be optimized away in later passes. 1003 Value *ActualRelocatedBase = RelocatedBase; 1004 if (RelocatedBase->getType() != Base->getType()) { 1005 ActualRelocatedBase = 1006 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1007 } 1008 Value *Replacement = Builder.CreateGEP( 1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1010 Replacement->takeName(ToReplace); 1011 // If the newly generated derived pointer's type does not match the original derived 1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1013 Value *ActualReplacement = Replacement; 1014 if (Replacement->getType() != ToReplace->getType()) { 1015 ActualReplacement = 1016 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1017 } 1018 ToReplace->replaceAllUsesWith(ActualReplacement); 1019 ToReplace->eraseFromParent(); 1020 1021 MadeChange = true; 1022 } 1023 return MadeChange; 1024 } 1025 1026 // Turns this: 1027 // 1028 // %base = ... 1029 // %ptr = gep %base + 15 1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1031 // %base' = relocate(%tok, i32 4, i32 4) 1032 // %ptr' = relocate(%tok, i32 4, i32 5) 1033 // %val = load %ptr' 1034 // 1035 // into this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = gc.relocate(%tok, i32 4, i32 4) 1041 // %ptr' = gep %base' + 15 1042 // %val = load %ptr' 1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1044 bool MadeChange = false; 1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1046 1047 for (auto *U : I.users()) 1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1049 // Collect all the relocate calls associated with a statepoint 1050 AllRelocateCalls.push_back(Relocate); 1051 1052 // We need atleast one base pointer relocation + one derived pointer 1053 // relocation to mangle 1054 if (AllRelocateCalls.size() < 2) 1055 return false; 1056 1057 // RelocateInstMap is a mapping from the base relocate instruction to the 1058 // corresponding derived relocate instructions 1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1061 if (RelocateInstMap.empty()) 1062 return false; 1063 1064 for (auto &Item : RelocateInstMap) 1065 // Item.first is the RelocatedBase to offset against 1066 // Item.second is the vector of Targets to replace 1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1068 return MadeChange; 1069 } 1070 1071 /// Sink the specified cast instruction into its user blocks. 1072 static bool SinkCast(CastInst *CI) { 1073 BasicBlock *DefBB = CI->getParent(); 1074 1075 /// InsertedCasts - Only insert a cast in each block once. 1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1077 1078 bool MadeChange = false; 1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1080 UI != E; ) { 1081 Use &TheUse = UI.getUse(); 1082 Instruction *User = cast<Instruction>(*UI); 1083 1084 // Figure out which BB this cast is used in. For PHI's this is the 1085 // appropriate predecessor block. 1086 BasicBlock *UserBB = User->getParent(); 1087 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1088 UserBB = PN->getIncomingBlock(TheUse); 1089 } 1090 1091 // Preincrement use iterator so we don't invalidate it. 1092 ++UI; 1093 1094 // The first insertion point of a block containing an EH pad is after the 1095 // pad. If the pad is the user, we cannot sink the cast past the pad. 1096 if (User->isEHPad()) 1097 continue; 1098 1099 // If the block selected to receive the cast is an EH pad that does not 1100 // allow non-PHI instructions before the terminator, we can't sink the 1101 // cast. 1102 if (UserBB->getTerminator()->isEHPad()) 1103 continue; 1104 1105 // If this user is in the same block as the cast, don't change the cast. 1106 if (UserBB == DefBB) continue; 1107 1108 // If we have already inserted a cast into this block, use it. 1109 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1110 1111 if (!InsertedCast) { 1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1113 assert(InsertPt != UserBB->end()); 1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1115 CI->getType(), "", &*InsertPt); 1116 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1117 } 1118 1119 // Replace a use of the cast with a use of the new cast. 1120 TheUse = InsertedCast; 1121 MadeChange = true; 1122 ++NumCastUses; 1123 } 1124 1125 // If we removed all uses, nuke the cast. 1126 if (CI->use_empty()) { 1127 salvageDebugInfo(*CI); 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1141 const DataLayout &DL) { 1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1143 // than sinking only nop casts, but is helpful on some platforms. 1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1146 ASC->getDestAddressSpace())) 1147 return false; 1148 } 1149 1150 // If this is a noop copy, 1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1152 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1153 1154 // This is an fp<->int conversion? 1155 if (SrcVT.isInteger() != DstVT.isInteger()) 1156 return false; 1157 1158 // If this is an extension, it will be a zero or sign extension, which 1159 // isn't a noop. 1160 if (SrcVT.bitsLT(DstVT)) return false; 1161 1162 // If these values will be promoted, find out what they will be promoted 1163 // to. This helps us consider truncates on PPC as noop copies when they 1164 // are. 1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1166 TargetLowering::TypePromoteInteger) 1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1168 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1169 TargetLowering::TypePromoteInteger) 1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1171 1172 // If, after promotion, these are the same types, this is a noop copy. 1173 if (SrcVT != DstVT) 1174 return false; 1175 1176 return SinkCast(CI); 1177 } 1178 1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1180 CmpInst *Cmp, 1181 Intrinsic::ID IID) { 1182 if (BO->getParent() != Cmp->getParent()) { 1183 // We used to use a dominator tree here to allow multi-block optimization. 1184 // But that was problematic because: 1185 // 1. It could cause a perf regression by hoisting the math op into the 1186 // critical path. 1187 // 2. It could cause a perf regression by creating a value that was live 1188 // across multiple blocks and increasing register pressure. 1189 // 3. Use of a dominator tree could cause large compile-time regression. 1190 // This is because we recompute the DT on every change in the main CGP 1191 // run-loop. The recomputing is probably unnecessary in many cases, so if 1192 // that was fixed, using a DT here would be ok. 1193 return false; 1194 } 1195 1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1197 Value *Arg0 = BO->getOperand(0); 1198 Value *Arg1 = BO->getOperand(1); 1199 if (BO->getOpcode() == Instruction::Add && 1200 IID == Intrinsic::usub_with_overflow) { 1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1203 } 1204 1205 // Insert at the first instruction of the pair. 1206 Instruction *InsertPt = nullptr; 1207 for (Instruction &Iter : *Cmp->getParent()) { 1208 if (&Iter == BO || &Iter == Cmp) { 1209 InsertPt = &Iter; 1210 break; 1211 } 1212 } 1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1214 1215 IRBuilder<> Builder(InsertPt); 1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1219 BO->replaceAllUsesWith(Math); 1220 Cmp->replaceAllUsesWith(OV); 1221 BO->eraseFromParent(); 1222 Cmp->eraseFromParent(); 1223 return true; 1224 } 1225 1226 /// Match special-case patterns that check for unsigned add overflow. 1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1228 BinaryOperator *&Add) { 1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1232 1233 // We are not expecting non-canonical/degenerate code. Just bail out. 1234 if (isa<Constant>(A)) 1235 return false; 1236 1237 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1239 B = ConstantInt::get(B->getType(), 1); 1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1241 B = ConstantInt::get(B->getType(), -1); 1242 else 1243 return false; 1244 1245 // Check the users of the variable operand of the compare looking for an add 1246 // with the adjusted constant. 1247 for (User *U : A->users()) { 1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1249 Add = cast<BinaryOperator>(U); 1250 return true; 1251 } 1252 } 1253 return false; 1254 } 1255 1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1257 /// intrinsic. Return true if any changes were made. 1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1259 bool &ModifiedDT) { 1260 Value *A, *B; 1261 BinaryOperator *Add; 1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1264 return false; 1265 1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1267 TLI->getValueType(*DL, Add->getType()))) 1268 return false; 1269 1270 // We don't want to move around uses of condition values this late, so we 1271 // check if it is legal to create the call to the intrinsic in the basic 1272 // block containing the icmp. 1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1274 return false; 1275 1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1277 return false; 1278 1279 // Reset callers - do not crash by iterating over a dead instruction. 1280 ModifiedDT = true; 1281 return true; 1282 } 1283 1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1285 bool &ModifiedDT) { 1286 // We are not expecting non-canonical/degenerate code. Just bail out. 1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1288 if (isa<Constant>(A) && isa<Constant>(B)) 1289 return false; 1290 1291 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1292 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1293 if (Pred == ICmpInst::ICMP_UGT) { 1294 std::swap(A, B); 1295 Pred = ICmpInst::ICMP_ULT; 1296 } 1297 // Convert special-case: (A == 0) is the same as (A u< 1). 1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1299 B = ConstantInt::get(B->getType(), 1); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A != 0) is the same as (0 u< A). 1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 if (Pred != ICmpInst::ICMP_ULT) 1308 return false; 1309 1310 // Walk the users of a variable operand of a compare looking for a subtract or 1311 // add with that same operand. Also match the 2nd operand of the compare to 1312 // the add/sub, but that may be a negated constant operand of an add. 1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1314 BinaryOperator *Sub = nullptr; 1315 for (User *U : CmpVariableOperand->users()) { 1316 // A - B, A u< B --> usubo(A, B) 1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1318 Sub = cast<BinaryOperator>(U); 1319 break; 1320 } 1321 1322 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1323 const APInt *CmpC, *AddC; 1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 } 1330 if (!Sub) 1331 return false; 1332 1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1334 TLI->getValueType(*DL, Sub->getType()))) 1335 return false; 1336 1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1338 return false; 1339 1340 // Reset callers - do not crash by iterating over a dead instruction. 1341 ModifiedDT = true; 1342 return true; 1343 } 1344 1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1346 /// registers that must be created and coalesced. This is a clear win except on 1347 /// targets with multiple condition code registers (PowerPC), where it might 1348 /// lose; some adjustment may be wanted there. 1349 /// 1350 /// Return true if any changes are made. 1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1352 if (TLI.hasMultipleConditionRegisters()) 1353 return false; 1354 1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1357 return false; 1358 1359 // Only insert a cmp in each block once. 1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1361 1362 bool MadeChange = false; 1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1364 UI != E; ) { 1365 Use &TheUse = UI.getUse(); 1366 Instruction *User = cast<Instruction>(*UI); 1367 1368 // Preincrement use iterator so we don't invalidate it. 1369 ++UI; 1370 1371 // Don't bother for PHI nodes. 1372 if (isa<PHINode>(User)) 1373 continue; 1374 1375 // Figure out which BB this cmp is used in. 1376 BasicBlock *UserBB = User->getParent(); 1377 BasicBlock *DefBB = Cmp->getParent(); 1378 1379 // If this user is in the same block as the cmp, don't change the cmp. 1380 if (UserBB == DefBB) continue; 1381 1382 // If we have already inserted a cmp into this block, use it. 1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1384 1385 if (!InsertedCmp) { 1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1387 assert(InsertPt != UserBB->end()); 1388 InsertedCmp = 1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1390 Cmp->getOperand(0), Cmp->getOperand(1), "", 1391 &*InsertPt); 1392 // Propagate the debug info. 1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1394 } 1395 1396 // Replace a use of the cmp with a use of the new cmp. 1397 TheUse = InsertedCmp; 1398 MadeChange = true; 1399 ++NumCmpUses; 1400 } 1401 1402 // If we removed all uses, nuke the cmp. 1403 if (Cmp->use_empty()) { 1404 Cmp->eraseFromParent(); 1405 MadeChange = true; 1406 } 1407 1408 return MadeChange; 1409 } 1410 1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1412 if (sinkCmpExpression(Cmp, *TLI)) 1413 return true; 1414 1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1416 return true; 1417 1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1425 /// used in a compare to allow isel to generate better code for targets where 1426 /// this operation can be combined. 1427 /// 1428 /// Return true if any changes are made. 1429 static bool sinkAndCmp0Expression(Instruction *AndI, 1430 const TargetLowering &TLI, 1431 SetOfInstrs &InsertedInsts) { 1432 // Double-check that we're not trying to optimize an instruction that was 1433 // already optimized by some other part of this pass. 1434 assert(!InsertedInsts.count(AndI) && 1435 "Attempting to optimize already optimized and instruction"); 1436 (void) InsertedInsts; 1437 1438 // Nothing to do for single use in same basic block. 1439 if (AndI->hasOneUse() && 1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1441 return false; 1442 1443 // Try to avoid cases where sinking/duplicating is likely to increase register 1444 // pressure. 1445 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1446 !isa<ConstantInt>(AndI->getOperand(1)) && 1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1448 return false; 1449 1450 for (auto *U : AndI->users()) { 1451 Instruction *User = cast<Instruction>(U); 1452 1453 // Only sink 'and' feeding icmp with 0. 1454 if (!isa<ICmpInst>(User)) 1455 return false; 1456 1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1458 if (!CmpC || !CmpC->isZero()) 1459 return false; 1460 } 1461 1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1463 return false; 1464 1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1466 LLVM_DEBUG(AndI->getParent()->dump()); 1467 1468 // Push the 'and' into the same block as the icmp 0. There should only be 1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1470 // others, so we don't need to keep track of which BBs we insert into. 1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1472 UI != E; ) { 1473 Use &TheUse = UI.getUse(); 1474 Instruction *User = cast<Instruction>(*UI); 1475 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1480 1481 // Keep the 'and' in the same place if the use is already in the same block. 1482 Instruction *InsertPt = 1483 User->getParent() == AndI->getParent() ? AndI : User; 1484 Instruction *InsertedAnd = 1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1486 AndI->getOperand(1), "", InsertPt); 1487 // Propagate the debug info. 1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1489 1490 // Replace a use of the 'and' with a use of the new 'and'. 1491 TheUse = InsertedAnd; 1492 ++NumAndUses; 1493 LLVM_DEBUG(User->getParent()->dump()); 1494 } 1495 1496 // We removed all uses, nuke the and. 1497 AndI->eraseFromParent(); 1498 return true; 1499 } 1500 1501 /// Check if the candidates could be combined with a shift instruction, which 1502 /// includes: 1503 /// 1. Truncate instruction 1504 /// 2. And instruction and the imm is a mask of the low bits: 1505 /// imm & (imm+1) == 0 1506 static bool isExtractBitsCandidateUse(Instruction *User) { 1507 if (!isa<TruncInst>(User)) { 1508 if (User->getOpcode() != Instruction::And || 1509 !isa<ConstantInt>(User->getOperand(1))) 1510 return false; 1511 1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1513 1514 if ((Cimm & (Cimm + 1)).getBoolValue()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 /// Sink both shift and truncate instruction to the use of truncate's BB. 1521 static bool 1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1524 const TargetLowering &TLI, const DataLayout &DL) { 1525 BasicBlock *UserBB = User->getParent(); 1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1527 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1528 bool MadeChange = false; 1529 1530 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1531 TruncE = TruncI->user_end(); 1532 TruncUI != TruncE;) { 1533 1534 Use &TruncTheUse = TruncUI.getUse(); 1535 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1536 // Preincrement use iterator so we don't invalidate it. 1537 1538 ++TruncUI; 1539 1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1541 if (!ISDOpcode) 1542 continue; 1543 1544 // If the use is actually a legal node, there will not be an 1545 // implicit truncate. 1546 // FIXME: always querying the result type is just an 1547 // approximation; some nodes' legality is determined by the 1548 // operand or other means. There's no good way to find out though. 1549 if (TLI.isOperationLegalOrCustom( 1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1551 continue; 1552 1553 // Don't bother for PHI nodes. 1554 if (isa<PHINode>(TruncUser)) 1555 continue; 1556 1557 BasicBlock *TruncUserBB = TruncUser->getParent(); 1558 1559 if (UserBB == TruncUserBB) 1560 continue; 1561 1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1564 1565 if (!InsertedShift && !InsertedTrunc) { 1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1567 assert(InsertPt != TruncUserBB->end()); 1568 // Sink the shift 1569 if (ShiftI->getOpcode() == Instruction::AShr) 1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1571 "", &*InsertPt); 1572 else 1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1574 "", &*InsertPt); 1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1576 1577 // Sink the trunc 1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1579 TruncInsertPt++; 1580 assert(TruncInsertPt != TruncUserBB->end()); 1581 1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1583 TruncI->getType(), "", &*TruncInsertPt); 1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1585 1586 MadeChange = true; 1587 1588 TruncTheUse = InsertedTrunc; 1589 } 1590 } 1591 return MadeChange; 1592 } 1593 1594 /// Sink the shift *right* instruction into user blocks if the uses could 1595 /// potentially be combined with this shift instruction and generate BitExtract 1596 /// instruction. It will only be applied if the architecture supports BitExtract 1597 /// instruction. Here is an example: 1598 /// BB1: 1599 /// %x.extract.shift = lshr i64 %arg1, 32 1600 /// BB2: 1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1602 /// ==> 1603 /// 1604 /// BB2: 1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1607 /// 1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1609 /// instruction. 1610 /// Return true if any changes are made. 1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1612 const TargetLowering &TLI, 1613 const DataLayout &DL) { 1614 BasicBlock *DefBB = ShiftI->getParent(); 1615 1616 /// Only insert instructions in each block once. 1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1618 1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1620 1621 bool MadeChange = false; 1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1623 UI != E;) { 1624 Use &TheUse = UI.getUse(); 1625 Instruction *User = cast<Instruction>(*UI); 1626 // Preincrement use iterator so we don't invalidate it. 1627 ++UI; 1628 1629 // Don't bother for PHI nodes. 1630 if (isa<PHINode>(User)) 1631 continue; 1632 1633 if (!isExtractBitsCandidateUse(User)) 1634 continue; 1635 1636 BasicBlock *UserBB = User->getParent(); 1637 1638 if (UserBB == DefBB) { 1639 // If the shift and truncate instruction are in the same BB. The use of 1640 // the truncate(TruncUse) may still introduce another truncate if not 1641 // legal. In this case, we would like to sink both shift and truncate 1642 // instruction to the BB of TruncUse. 1643 // for example: 1644 // BB1: 1645 // i64 shift.result = lshr i64 opnd, imm 1646 // trunc.result = trunc shift.result to i16 1647 // 1648 // BB2: 1649 // ----> We will have an implicit truncate here if the architecture does 1650 // not have i16 compare. 1651 // cmp i16 trunc.result, opnd2 1652 // 1653 if (isa<TruncInst>(User) && shiftIsLegal 1654 // If the type of the truncate is legal, no truncate will be 1655 // introduced in other basic blocks. 1656 && 1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1658 MadeChange = 1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1660 1661 continue; 1662 } 1663 // If we have already inserted a shift into this block, use it. 1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1665 1666 if (!InsertedShift) { 1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1668 assert(InsertPt != UserBB->end()); 1669 1670 if (ShiftI->getOpcode() == Instruction::AShr) 1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 else 1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1675 "", &*InsertPt); 1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1677 1678 MadeChange = true; 1679 } 1680 1681 // Replace a use of the shift with a use of the new shift. 1682 TheUse = InsertedShift; 1683 } 1684 1685 // If we removed all uses, or there are none, nuke the shift. 1686 if (ShiftI->use_empty()) { 1687 salvageDebugInfo(*ShiftI); 1688 ShiftI->eraseFromParent(); 1689 MadeChange = true; 1690 } 1691 1692 return MadeChange; 1693 } 1694 1695 /// If counting leading or trailing zeros is an expensive operation and a zero 1696 /// input is defined, add a check for zero to avoid calling the intrinsic. 1697 /// 1698 /// We want to transform: 1699 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1700 /// 1701 /// into: 1702 /// entry: 1703 /// %cmpz = icmp eq i64 %A, 0 1704 /// br i1 %cmpz, label %cond.end, label %cond.false 1705 /// cond.false: 1706 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1707 /// br label %cond.end 1708 /// cond.end: 1709 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1710 /// 1711 /// If the transform is performed, return true and set ModifiedDT to true. 1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1713 const TargetLowering *TLI, 1714 const DataLayout *DL, 1715 bool &ModifiedDT) { 1716 if (!TLI || !DL) 1717 return false; 1718 1719 // If a zero input is undefined, it doesn't make sense to despeculate that. 1720 if (match(CountZeros->getOperand(1), m_One())) 1721 return false; 1722 1723 // If it's cheap to speculate, there's nothing to do. 1724 auto IntrinsicID = CountZeros->getIntrinsicID(); 1725 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1726 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1727 return false; 1728 1729 // Only handle legal scalar cases. Anything else requires too much work. 1730 Type *Ty = CountZeros->getType(); 1731 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1732 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1733 return false; 1734 1735 // The intrinsic will be sunk behind a compare against zero and branch. 1736 BasicBlock *StartBlock = CountZeros->getParent(); 1737 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1738 1739 // Create another block after the count zero intrinsic. A PHI will be added 1740 // in this block to select the result of the intrinsic or the bit-width 1741 // constant if the input to the intrinsic is zero. 1742 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1743 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1744 1745 // Set up a builder to create a compare, conditional branch, and PHI. 1746 IRBuilder<> Builder(CountZeros->getContext()); 1747 Builder.SetInsertPoint(StartBlock->getTerminator()); 1748 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1749 1750 // Replace the unconditional branch that was created by the first split with 1751 // a compare against zero and a conditional branch. 1752 Value *Zero = Constant::getNullValue(Ty); 1753 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1754 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1755 StartBlock->getTerminator()->eraseFromParent(); 1756 1757 // Create a PHI in the end block to select either the output of the intrinsic 1758 // or the bit width of the operand. 1759 Builder.SetInsertPoint(&EndBlock->front()); 1760 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1761 CountZeros->replaceAllUsesWith(PN); 1762 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1763 PN->addIncoming(BitWidth, StartBlock); 1764 PN->addIncoming(CountZeros, CallBlock); 1765 1766 // We are explicitly handling the zero case, so we can set the intrinsic's 1767 // undefined zero argument to 'true'. This will also prevent reprocessing the 1768 // intrinsic; we only despeculate when a zero input is defined. 1769 CountZeros->setArgOperand(1, Builder.getTrue()); 1770 ModifiedDT = true; 1771 return true; 1772 } 1773 1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1775 BasicBlock *BB = CI->getParent(); 1776 1777 // Lower inline assembly if we can. 1778 // If we found an inline asm expession, and if the target knows how to 1779 // lower it to normal LLVM code, do so now. 1780 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1781 if (TLI->ExpandInlineAsm(CI)) { 1782 // Avoid invalidating the iterator. 1783 CurInstIterator = BB->begin(); 1784 // Avoid processing instructions out of order, which could cause 1785 // reuse before a value is defined. 1786 SunkAddrs.clear(); 1787 return true; 1788 } 1789 // Sink address computing for memory operands into the block. 1790 if (optimizeInlineAsmInst(CI)) 1791 return true; 1792 } 1793 1794 // Align the pointer arguments to this call if the target thinks it's a good 1795 // idea 1796 unsigned MinSize, PrefAlign; 1797 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1798 for (auto &Arg : CI->arg_operands()) { 1799 // We want to align both objects whose address is used directly and 1800 // objects whose address is used in casts and GEPs, though it only makes 1801 // sense for GEPs if the offset is a multiple of the desired alignment and 1802 // if size - offset meets the size threshold. 1803 if (!Arg->getType()->isPointerTy()) 1804 continue; 1805 APInt Offset(DL->getIndexSizeInBits( 1806 cast<PointerType>(Arg->getType())->getAddressSpace()), 1807 0); 1808 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1809 uint64_t Offset2 = Offset.getLimitedValue(); 1810 if ((Offset2 & (PrefAlign-1)) != 0) 1811 continue; 1812 AllocaInst *AI; 1813 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1814 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1815 AI->setAlignment(PrefAlign); 1816 // Global variables can only be aligned if they are defined in this 1817 // object (i.e. they are uniquely initialized in this object), and 1818 // over-aligning global variables that have an explicit section is 1819 // forbidden. 1820 GlobalVariable *GV; 1821 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1822 GV->getPointerAlignment(*DL) < PrefAlign && 1823 DL->getTypeAllocSize(GV->getValueType()) >= 1824 MinSize + Offset2) 1825 GV->setAlignment(PrefAlign); 1826 } 1827 // If this is a memcpy (or similar) then we may be able to improve the 1828 // alignment 1829 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1830 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1831 if (DestAlign > MI->getDestAlignment()) 1832 MI->setDestAlignment(DestAlign); 1833 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1834 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1835 if (SrcAlign > MTI->getSourceAlignment()) 1836 MTI->setSourceAlignment(SrcAlign); 1837 } 1838 } 1839 } 1840 1841 // If we have a cold call site, try to sink addressing computation into the 1842 // cold block. This interacts with our handling for loads and stores to 1843 // ensure that we can fold all uses of a potential addressing computation 1844 // into their uses. TODO: generalize this to work over profiling data 1845 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1846 for (auto &Arg : CI->arg_operands()) { 1847 if (!Arg->getType()->isPointerTy()) 1848 continue; 1849 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1850 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1851 } 1852 1853 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1854 if (II) { 1855 switch (II->getIntrinsicID()) { 1856 default: break; 1857 case Intrinsic::experimental_widenable_condition: { 1858 // Give up on future widening oppurtunties so that we can fold away dead 1859 // paths and merge blocks before going into block-local instruction 1860 // selection. 1861 if (II->use_empty()) { 1862 II->eraseFromParent(); 1863 return true; 1864 } 1865 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1868 }); 1869 return true; 1870 } 1871 case Intrinsic::objectsize: { 1872 // Lower all uses of llvm.objectsize.* 1873 Value *RetVal = 1874 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1875 1876 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1877 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1878 }); 1879 return true; 1880 } 1881 case Intrinsic::is_constant: { 1882 // If is_constant hasn't folded away yet, lower it to false now. 1883 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1884 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1885 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1886 }); 1887 return true; 1888 } 1889 case Intrinsic::aarch64_stlxr: 1890 case Intrinsic::aarch64_stxr: { 1891 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1892 if (!ExtVal || !ExtVal->hasOneUse() || 1893 ExtVal->getParent() == CI->getParent()) 1894 return false; 1895 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1896 ExtVal->moveBefore(CI); 1897 // Mark this instruction as "inserted by CGP", so that other 1898 // optimizations don't touch it. 1899 InsertedInsts.insert(ExtVal); 1900 return true; 1901 } 1902 1903 case Intrinsic::launder_invariant_group: 1904 case Intrinsic::strip_invariant_group: { 1905 Value *ArgVal = II->getArgOperand(0); 1906 auto it = LargeOffsetGEPMap.find(II); 1907 if (it != LargeOffsetGEPMap.end()) { 1908 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1909 // Make sure not to have to deal with iterator invalidation 1910 // after possibly adding ArgVal to LargeOffsetGEPMap. 1911 auto GEPs = std::move(it->second); 1912 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1913 LargeOffsetGEPMap.erase(II); 1914 } 1915 1916 II->replaceAllUsesWith(ArgVal); 1917 II->eraseFromParent(); 1918 return true; 1919 } 1920 case Intrinsic::cttz: 1921 case Intrinsic::ctlz: 1922 // If counting zeros is expensive, try to avoid it. 1923 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1924 } 1925 1926 if (TLI) { 1927 SmallVector<Value*, 2> PtrOps; 1928 Type *AccessTy; 1929 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1930 while (!PtrOps.empty()) { 1931 Value *PtrVal = PtrOps.pop_back_val(); 1932 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1933 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1934 return true; 1935 } 1936 } 1937 } 1938 1939 // From here on out we're working with named functions. 1940 if (!CI->getCalledFunction()) return false; 1941 1942 // Lower all default uses of _chk calls. This is very similar 1943 // to what InstCombineCalls does, but here we are only lowering calls 1944 // to fortified library functions (e.g. __memcpy_chk) that have the default 1945 // "don't know" as the objectsize. Anything else should be left alone. 1946 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1947 if (Value *V = Simplifier.optimizeCall(CI)) { 1948 CI->replaceAllUsesWith(V); 1949 CI->eraseFromParent(); 1950 return true; 1951 } 1952 1953 return false; 1954 } 1955 1956 /// Look for opportunities to duplicate return instructions to the predecessor 1957 /// to enable tail call optimizations. The case it is currently looking for is: 1958 /// @code 1959 /// bb0: 1960 /// %tmp0 = tail call i32 @f0() 1961 /// br label %return 1962 /// bb1: 1963 /// %tmp1 = tail call i32 @f1() 1964 /// br label %return 1965 /// bb2: 1966 /// %tmp2 = tail call i32 @f2() 1967 /// br label %return 1968 /// return: 1969 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1970 /// ret i32 %retval 1971 /// @endcode 1972 /// 1973 /// => 1974 /// 1975 /// @code 1976 /// bb0: 1977 /// %tmp0 = tail call i32 @f0() 1978 /// ret i32 %tmp0 1979 /// bb1: 1980 /// %tmp1 = tail call i32 @f1() 1981 /// ret i32 %tmp1 1982 /// bb2: 1983 /// %tmp2 = tail call i32 @f2() 1984 /// ret i32 %tmp2 1985 /// @endcode 1986 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1987 if (!TLI) 1988 return false; 1989 1990 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1991 if (!RetI) 1992 return false; 1993 1994 PHINode *PN = nullptr; 1995 BitCastInst *BCI = nullptr; 1996 Value *V = RetI->getReturnValue(); 1997 if (V) { 1998 BCI = dyn_cast<BitCastInst>(V); 1999 if (BCI) 2000 V = BCI->getOperand(0); 2001 2002 PN = dyn_cast<PHINode>(V); 2003 if (!PN) 2004 return false; 2005 } 2006 2007 if (PN && PN->getParent() != BB) 2008 return false; 2009 2010 // Make sure there are no instructions between the PHI and return, or that the 2011 // return is the first instruction in the block. 2012 if (PN) { 2013 BasicBlock::iterator BI = BB->begin(); 2014 // Skip over debug and the bitcast. 2015 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2016 if (&*BI != RetI) 2017 return false; 2018 } else { 2019 BasicBlock::iterator BI = BB->begin(); 2020 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2021 if (&*BI != RetI) 2022 return false; 2023 } 2024 2025 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2026 /// call. 2027 const Function *F = BB->getParent(); 2028 SmallVector<BasicBlock*, 4> TailCallBBs; 2029 if (PN) { 2030 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2031 // Look through bitcasts. 2032 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2033 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2034 BasicBlock *PredBB = PN->getIncomingBlock(I); 2035 // Make sure the phi value is indeed produced by the tail call. 2036 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2037 TLI->mayBeEmittedAsTailCall(CI) && 2038 attributesPermitTailCall(F, CI, RetI, *TLI)) 2039 TailCallBBs.push_back(PredBB); 2040 } 2041 } else { 2042 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2043 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2044 if (!VisitedBBs.insert(*PI).second) 2045 continue; 2046 2047 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2048 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2049 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2050 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2051 if (RI == RE) 2052 continue; 2053 2054 CallInst *CI = dyn_cast<CallInst>(&*RI); 2055 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2056 attributesPermitTailCall(F, CI, RetI, *TLI)) 2057 TailCallBBs.push_back(*PI); 2058 } 2059 } 2060 2061 bool Changed = false; 2062 for (auto const &TailCallBB : TailCallBBs) { 2063 // Make sure the call instruction is followed by an unconditional branch to 2064 // the return block. 2065 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2066 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2067 continue; 2068 2069 // Duplicate the return into TailCallBB. 2070 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2071 ModifiedDT = Changed = true; 2072 ++NumRetsDup; 2073 } 2074 2075 // If we eliminated all predecessors of the block, delete the block now. 2076 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2077 BB->eraseFromParent(); 2078 2079 return Changed; 2080 } 2081 2082 //===----------------------------------------------------------------------===// 2083 // Memory Optimization 2084 //===----------------------------------------------------------------------===// 2085 2086 namespace { 2087 2088 /// This is an extended version of TargetLowering::AddrMode 2089 /// which holds actual Value*'s for register values. 2090 struct ExtAddrMode : public TargetLowering::AddrMode { 2091 Value *BaseReg = nullptr; 2092 Value *ScaledReg = nullptr; 2093 Value *OriginalValue = nullptr; 2094 bool InBounds = true; 2095 2096 enum FieldName { 2097 NoField = 0x00, 2098 BaseRegField = 0x01, 2099 BaseGVField = 0x02, 2100 BaseOffsField = 0x04, 2101 ScaledRegField = 0x08, 2102 ScaleField = 0x10, 2103 MultipleFields = 0xff 2104 }; 2105 2106 2107 ExtAddrMode() = default; 2108 2109 void print(raw_ostream &OS) const; 2110 void dump() const; 2111 2112 FieldName compare(const ExtAddrMode &other) { 2113 // First check that the types are the same on each field, as differing types 2114 // is something we can't cope with later on. 2115 if (BaseReg && other.BaseReg && 2116 BaseReg->getType() != other.BaseReg->getType()) 2117 return MultipleFields; 2118 if (BaseGV && other.BaseGV && 2119 BaseGV->getType() != other.BaseGV->getType()) 2120 return MultipleFields; 2121 if (ScaledReg && other.ScaledReg && 2122 ScaledReg->getType() != other.ScaledReg->getType()) 2123 return MultipleFields; 2124 2125 // Conservatively reject 'inbounds' mismatches. 2126 if (InBounds != other.InBounds) 2127 return MultipleFields; 2128 2129 // Check each field to see if it differs. 2130 unsigned Result = NoField; 2131 if (BaseReg != other.BaseReg) 2132 Result |= BaseRegField; 2133 if (BaseGV != other.BaseGV) 2134 Result |= BaseGVField; 2135 if (BaseOffs != other.BaseOffs) 2136 Result |= BaseOffsField; 2137 if (ScaledReg != other.ScaledReg) 2138 Result |= ScaledRegField; 2139 // Don't count 0 as being a different scale, because that actually means 2140 // unscaled (which will already be counted by having no ScaledReg). 2141 if (Scale && other.Scale && Scale != other.Scale) 2142 Result |= ScaleField; 2143 2144 if (countPopulation(Result) > 1) 2145 return MultipleFields; 2146 else 2147 return static_cast<FieldName>(Result); 2148 } 2149 2150 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2151 // with no offset. 2152 bool isTrivial() { 2153 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2154 // trivial if at most one of these terms is nonzero, except that BaseGV and 2155 // BaseReg both being zero actually means a null pointer value, which we 2156 // consider to be 'non-zero' here. 2157 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2158 } 2159 2160 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2161 switch (Field) { 2162 default: 2163 return nullptr; 2164 case BaseRegField: 2165 return BaseReg; 2166 case BaseGVField: 2167 return BaseGV; 2168 case ScaledRegField: 2169 return ScaledReg; 2170 case BaseOffsField: 2171 return ConstantInt::get(IntPtrTy, BaseOffs); 2172 } 2173 } 2174 2175 void SetCombinedField(FieldName Field, Value *V, 2176 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2177 switch (Field) { 2178 default: 2179 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2180 break; 2181 case ExtAddrMode::BaseRegField: 2182 BaseReg = V; 2183 break; 2184 case ExtAddrMode::BaseGVField: 2185 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2186 // in the BaseReg field. 2187 assert(BaseReg == nullptr); 2188 BaseReg = V; 2189 BaseGV = nullptr; 2190 break; 2191 case ExtAddrMode::ScaledRegField: 2192 ScaledReg = V; 2193 // If we have a mix of scaled and unscaled addrmodes then we want scale 2194 // to be the scale and not zero. 2195 if (!Scale) 2196 for (const ExtAddrMode &AM : AddrModes) 2197 if (AM.Scale) { 2198 Scale = AM.Scale; 2199 break; 2200 } 2201 break; 2202 case ExtAddrMode::BaseOffsField: 2203 // The offset is no longer a constant, so it goes in ScaledReg with a 2204 // scale of 1. 2205 assert(ScaledReg == nullptr); 2206 ScaledReg = V; 2207 Scale = 1; 2208 BaseOffs = 0; 2209 break; 2210 } 2211 } 2212 }; 2213 2214 } // end anonymous namespace 2215 2216 #ifndef NDEBUG 2217 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2218 AM.print(OS); 2219 return OS; 2220 } 2221 #endif 2222 2223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2224 void ExtAddrMode::print(raw_ostream &OS) const { 2225 bool NeedPlus = false; 2226 OS << "["; 2227 if (InBounds) 2228 OS << "inbounds "; 2229 if (BaseGV) { 2230 OS << (NeedPlus ? " + " : "") 2231 << "GV:"; 2232 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2233 NeedPlus = true; 2234 } 2235 2236 if (BaseOffs) { 2237 OS << (NeedPlus ? " + " : "") 2238 << BaseOffs; 2239 NeedPlus = true; 2240 } 2241 2242 if (BaseReg) { 2243 OS << (NeedPlus ? " + " : "") 2244 << "Base:"; 2245 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2246 NeedPlus = true; 2247 } 2248 if (Scale) { 2249 OS << (NeedPlus ? " + " : "") 2250 << Scale << "*"; 2251 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2252 } 2253 2254 OS << ']'; 2255 } 2256 2257 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2258 print(dbgs()); 2259 dbgs() << '\n'; 2260 } 2261 #endif 2262 2263 namespace { 2264 2265 /// This class provides transaction based operation on the IR. 2266 /// Every change made through this class is recorded in the internal state and 2267 /// can be undone (rollback) until commit is called. 2268 class TypePromotionTransaction { 2269 /// This represents the common interface of the individual transaction. 2270 /// Each class implements the logic for doing one specific modification on 2271 /// the IR via the TypePromotionTransaction. 2272 class TypePromotionAction { 2273 protected: 2274 /// The Instruction modified. 2275 Instruction *Inst; 2276 2277 public: 2278 /// Constructor of the action. 2279 /// The constructor performs the related action on the IR. 2280 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2281 2282 virtual ~TypePromotionAction() = default; 2283 2284 /// Undo the modification done by this action. 2285 /// When this method is called, the IR must be in the same state as it was 2286 /// before this action was applied. 2287 /// \pre Undoing the action works if and only if the IR is in the exact same 2288 /// state as it was directly after this action was applied. 2289 virtual void undo() = 0; 2290 2291 /// Advocate every change made by this action. 2292 /// When the results on the IR of the action are to be kept, it is important 2293 /// to call this function, otherwise hidden information may be kept forever. 2294 virtual void commit() { 2295 // Nothing to be done, this action is not doing anything. 2296 } 2297 }; 2298 2299 /// Utility to remember the position of an instruction. 2300 class InsertionHandler { 2301 /// Position of an instruction. 2302 /// Either an instruction: 2303 /// - Is the first in a basic block: BB is used. 2304 /// - Has a previous instruction: PrevInst is used. 2305 union { 2306 Instruction *PrevInst; 2307 BasicBlock *BB; 2308 } Point; 2309 2310 /// Remember whether or not the instruction had a previous instruction. 2311 bool HasPrevInstruction; 2312 2313 public: 2314 /// Record the position of \p Inst. 2315 InsertionHandler(Instruction *Inst) { 2316 BasicBlock::iterator It = Inst->getIterator(); 2317 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2318 if (HasPrevInstruction) 2319 Point.PrevInst = &*--It; 2320 else 2321 Point.BB = Inst->getParent(); 2322 } 2323 2324 /// Insert \p Inst at the recorded position. 2325 void insert(Instruction *Inst) { 2326 if (HasPrevInstruction) { 2327 if (Inst->getParent()) 2328 Inst->removeFromParent(); 2329 Inst->insertAfter(Point.PrevInst); 2330 } else { 2331 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2332 if (Inst->getParent()) 2333 Inst->moveBefore(Position); 2334 else 2335 Inst->insertBefore(Position); 2336 } 2337 } 2338 }; 2339 2340 /// Move an instruction before another. 2341 class InstructionMoveBefore : public TypePromotionAction { 2342 /// Original position of the instruction. 2343 InsertionHandler Position; 2344 2345 public: 2346 /// Move \p Inst before \p Before. 2347 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2348 : TypePromotionAction(Inst), Position(Inst) { 2349 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2350 << "\n"); 2351 Inst->moveBefore(Before); 2352 } 2353 2354 /// Move the instruction back to its original position. 2355 void undo() override { 2356 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2357 Position.insert(Inst); 2358 } 2359 }; 2360 2361 /// Set the operand of an instruction with a new value. 2362 class OperandSetter : public TypePromotionAction { 2363 /// Original operand of the instruction. 2364 Value *Origin; 2365 2366 /// Index of the modified instruction. 2367 unsigned Idx; 2368 2369 public: 2370 /// Set \p Idx operand of \p Inst with \p NewVal. 2371 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2372 : TypePromotionAction(Inst), Idx(Idx) { 2373 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2374 << "for:" << *Inst << "\n" 2375 << "with:" << *NewVal << "\n"); 2376 Origin = Inst->getOperand(Idx); 2377 Inst->setOperand(Idx, NewVal); 2378 } 2379 2380 /// Restore the original value of the instruction. 2381 void undo() override { 2382 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2383 << "for: " << *Inst << "\n" 2384 << "with: " << *Origin << "\n"); 2385 Inst->setOperand(Idx, Origin); 2386 } 2387 }; 2388 2389 /// Hide the operands of an instruction. 2390 /// Do as if this instruction was not using any of its operands. 2391 class OperandsHider : public TypePromotionAction { 2392 /// The list of original operands. 2393 SmallVector<Value *, 4> OriginalValues; 2394 2395 public: 2396 /// Remove \p Inst from the uses of the operands of \p Inst. 2397 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2398 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2399 unsigned NumOpnds = Inst->getNumOperands(); 2400 OriginalValues.reserve(NumOpnds); 2401 for (unsigned It = 0; It < NumOpnds; ++It) { 2402 // Save the current operand. 2403 Value *Val = Inst->getOperand(It); 2404 OriginalValues.push_back(Val); 2405 // Set a dummy one. 2406 // We could use OperandSetter here, but that would imply an overhead 2407 // that we are not willing to pay. 2408 Inst->setOperand(It, UndefValue::get(Val->getType())); 2409 } 2410 } 2411 2412 /// Restore the original list of uses. 2413 void undo() override { 2414 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2415 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2416 Inst->setOperand(It, OriginalValues[It]); 2417 } 2418 }; 2419 2420 /// Build a truncate instruction. 2421 class TruncBuilder : public TypePromotionAction { 2422 Value *Val; 2423 2424 public: 2425 /// Build a truncate instruction of \p Opnd producing a \p Ty 2426 /// result. 2427 /// trunc Opnd to Ty. 2428 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2429 IRBuilder<> Builder(Opnd); 2430 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2431 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2432 } 2433 2434 /// Get the built value. 2435 Value *getBuiltValue() { return Val; } 2436 2437 /// Remove the built instruction. 2438 void undo() override { 2439 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2440 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2441 IVal->eraseFromParent(); 2442 } 2443 }; 2444 2445 /// Build a sign extension instruction. 2446 class SExtBuilder : public TypePromotionAction { 2447 Value *Val; 2448 2449 public: 2450 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2451 /// result. 2452 /// sext Opnd to Ty. 2453 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2454 : TypePromotionAction(InsertPt) { 2455 IRBuilder<> Builder(InsertPt); 2456 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2457 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2458 } 2459 2460 /// Get the built value. 2461 Value *getBuiltValue() { return Val; } 2462 2463 /// Remove the built instruction. 2464 void undo() override { 2465 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2466 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2467 IVal->eraseFromParent(); 2468 } 2469 }; 2470 2471 /// Build a zero extension instruction. 2472 class ZExtBuilder : public TypePromotionAction { 2473 Value *Val; 2474 2475 public: 2476 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2477 /// result. 2478 /// zext Opnd to Ty. 2479 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2480 : TypePromotionAction(InsertPt) { 2481 IRBuilder<> Builder(InsertPt); 2482 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2483 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2484 } 2485 2486 /// Get the built value. 2487 Value *getBuiltValue() { return Val; } 2488 2489 /// Remove the built instruction. 2490 void undo() override { 2491 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2492 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2493 IVal->eraseFromParent(); 2494 } 2495 }; 2496 2497 /// Mutate an instruction to another type. 2498 class TypeMutator : public TypePromotionAction { 2499 /// Record the original type. 2500 Type *OrigTy; 2501 2502 public: 2503 /// Mutate the type of \p Inst into \p NewTy. 2504 TypeMutator(Instruction *Inst, Type *NewTy) 2505 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2506 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2507 << "\n"); 2508 Inst->mutateType(NewTy); 2509 } 2510 2511 /// Mutate the instruction back to its original type. 2512 void undo() override { 2513 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2514 << "\n"); 2515 Inst->mutateType(OrigTy); 2516 } 2517 }; 2518 2519 /// Replace the uses of an instruction by another instruction. 2520 class UsesReplacer : public TypePromotionAction { 2521 /// Helper structure to keep track of the replaced uses. 2522 struct InstructionAndIdx { 2523 /// The instruction using the instruction. 2524 Instruction *Inst; 2525 2526 /// The index where this instruction is used for Inst. 2527 unsigned Idx; 2528 2529 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2530 : Inst(Inst), Idx(Idx) {} 2531 }; 2532 2533 /// Keep track of the original uses (pair Instruction, Index). 2534 SmallVector<InstructionAndIdx, 4> OriginalUses; 2535 /// Keep track of the debug users. 2536 SmallVector<DbgValueInst *, 1> DbgValues; 2537 2538 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2539 2540 public: 2541 /// Replace all the use of \p Inst by \p New. 2542 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2543 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2544 << "\n"); 2545 // Record the original uses. 2546 for (Use &U : Inst->uses()) { 2547 Instruction *UserI = cast<Instruction>(U.getUser()); 2548 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2549 } 2550 // Record the debug uses separately. They are not in the instruction's 2551 // use list, but they are replaced by RAUW. 2552 findDbgValues(DbgValues, Inst); 2553 2554 // Now, we can replace the uses. 2555 Inst->replaceAllUsesWith(New); 2556 } 2557 2558 /// Reassign the original uses of Inst to Inst. 2559 void undo() override { 2560 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2561 for (use_iterator UseIt = OriginalUses.begin(), 2562 EndIt = OriginalUses.end(); 2563 UseIt != EndIt; ++UseIt) { 2564 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2565 } 2566 // RAUW has replaced all original uses with references to the new value, 2567 // including the debug uses. Since we are undoing the replacements, 2568 // the original debug uses must also be reinstated to maintain the 2569 // correctness and utility of debug value instructions. 2570 for (auto *DVI: DbgValues) { 2571 LLVMContext &Ctx = Inst->getType()->getContext(); 2572 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2573 DVI->setOperand(0, MV); 2574 } 2575 } 2576 }; 2577 2578 /// Remove an instruction from the IR. 2579 class InstructionRemover : public TypePromotionAction { 2580 /// Original position of the instruction. 2581 InsertionHandler Inserter; 2582 2583 /// Helper structure to hide all the link to the instruction. In other 2584 /// words, this helps to do as if the instruction was removed. 2585 OperandsHider Hider; 2586 2587 /// Keep track of the uses replaced, if any. 2588 UsesReplacer *Replacer = nullptr; 2589 2590 /// Keep track of instructions removed. 2591 SetOfInstrs &RemovedInsts; 2592 2593 public: 2594 /// Remove all reference of \p Inst and optionally replace all its 2595 /// uses with New. 2596 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2597 /// \pre If !Inst->use_empty(), then New != nullptr 2598 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2599 Value *New = nullptr) 2600 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2601 RemovedInsts(RemovedInsts) { 2602 if (New) 2603 Replacer = new UsesReplacer(Inst, New); 2604 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2605 RemovedInsts.insert(Inst); 2606 /// The instructions removed here will be freed after completing 2607 /// optimizeBlock() for all blocks as we need to keep track of the 2608 /// removed instructions during promotion. 2609 Inst->removeFromParent(); 2610 } 2611 2612 ~InstructionRemover() override { delete Replacer; } 2613 2614 /// Resurrect the instruction and reassign it to the proper uses if 2615 /// new value was provided when build this action. 2616 void undo() override { 2617 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2618 Inserter.insert(Inst); 2619 if (Replacer) 2620 Replacer->undo(); 2621 Hider.undo(); 2622 RemovedInsts.erase(Inst); 2623 } 2624 }; 2625 2626 public: 2627 /// Restoration point. 2628 /// The restoration point is a pointer to an action instead of an iterator 2629 /// because the iterator may be invalidated but not the pointer. 2630 using ConstRestorationPt = const TypePromotionAction *; 2631 2632 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2633 : RemovedInsts(RemovedInsts) {} 2634 2635 /// Advocate every changes made in that transaction. 2636 void commit(); 2637 2638 /// Undo all the changes made after the given point. 2639 void rollback(ConstRestorationPt Point); 2640 2641 /// Get the current restoration point. 2642 ConstRestorationPt getRestorationPoint() const; 2643 2644 /// \name API for IR modification with state keeping to support rollback. 2645 /// @{ 2646 /// Same as Instruction::setOperand. 2647 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2648 2649 /// Same as Instruction::eraseFromParent. 2650 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2651 2652 /// Same as Value::replaceAllUsesWith. 2653 void replaceAllUsesWith(Instruction *Inst, Value *New); 2654 2655 /// Same as Value::mutateType. 2656 void mutateType(Instruction *Inst, Type *NewTy); 2657 2658 /// Same as IRBuilder::createTrunc. 2659 Value *createTrunc(Instruction *Opnd, Type *Ty); 2660 2661 /// Same as IRBuilder::createSExt. 2662 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2663 2664 /// Same as IRBuilder::createZExt. 2665 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2666 2667 /// Same as Instruction::moveBefore. 2668 void moveBefore(Instruction *Inst, Instruction *Before); 2669 /// @} 2670 2671 private: 2672 /// The ordered list of actions made so far. 2673 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2674 2675 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2676 2677 SetOfInstrs &RemovedInsts; 2678 }; 2679 2680 } // end anonymous namespace 2681 2682 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2683 Value *NewVal) { 2684 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2685 Inst, Idx, NewVal)); 2686 } 2687 2688 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2689 Value *NewVal) { 2690 Actions.push_back( 2691 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2692 Inst, RemovedInsts, NewVal)); 2693 } 2694 2695 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2696 Value *New) { 2697 Actions.push_back( 2698 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2699 } 2700 2701 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2702 Actions.push_back( 2703 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2704 } 2705 2706 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2707 Type *Ty) { 2708 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2709 Value *Val = Ptr->getBuiltValue(); 2710 Actions.push_back(std::move(Ptr)); 2711 return Val; 2712 } 2713 2714 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2715 Value *Opnd, Type *Ty) { 2716 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2717 Value *Val = Ptr->getBuiltValue(); 2718 Actions.push_back(std::move(Ptr)); 2719 return Val; 2720 } 2721 2722 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2723 Value *Opnd, Type *Ty) { 2724 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2725 Value *Val = Ptr->getBuiltValue(); 2726 Actions.push_back(std::move(Ptr)); 2727 return Val; 2728 } 2729 2730 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2731 Instruction *Before) { 2732 Actions.push_back( 2733 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2734 Inst, Before)); 2735 } 2736 2737 TypePromotionTransaction::ConstRestorationPt 2738 TypePromotionTransaction::getRestorationPoint() const { 2739 return !Actions.empty() ? Actions.back().get() : nullptr; 2740 } 2741 2742 void TypePromotionTransaction::commit() { 2743 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2744 ++It) 2745 (*It)->commit(); 2746 Actions.clear(); 2747 } 2748 2749 void TypePromotionTransaction::rollback( 2750 TypePromotionTransaction::ConstRestorationPt Point) { 2751 while (!Actions.empty() && Point != Actions.back().get()) { 2752 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2753 Curr->undo(); 2754 } 2755 } 2756 2757 namespace { 2758 2759 /// A helper class for matching addressing modes. 2760 /// 2761 /// This encapsulates the logic for matching the target-legal addressing modes. 2762 class AddressingModeMatcher { 2763 SmallVectorImpl<Instruction*> &AddrModeInsts; 2764 const TargetLowering &TLI; 2765 const TargetRegisterInfo &TRI; 2766 const DataLayout &DL; 2767 2768 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2769 /// the memory instruction that we're computing this address for. 2770 Type *AccessTy; 2771 unsigned AddrSpace; 2772 Instruction *MemoryInst; 2773 2774 /// This is the addressing mode that we're building up. This is 2775 /// part of the return value of this addressing mode matching stuff. 2776 ExtAddrMode &AddrMode; 2777 2778 /// The instructions inserted by other CodeGenPrepare optimizations. 2779 const SetOfInstrs &InsertedInsts; 2780 2781 /// A map from the instructions to their type before promotion. 2782 InstrToOrigTy &PromotedInsts; 2783 2784 /// The ongoing transaction where every action should be registered. 2785 TypePromotionTransaction &TPT; 2786 2787 // A GEP which has too large offset to be folded into the addressing mode. 2788 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2789 2790 /// This is set to true when we should not do profitability checks. 2791 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2792 bool IgnoreProfitability; 2793 2794 AddressingModeMatcher( 2795 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2796 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2797 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2798 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2799 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2800 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2801 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2802 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2803 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2804 IgnoreProfitability = false; 2805 } 2806 2807 public: 2808 /// Find the maximal addressing mode that a load/store of V can fold, 2809 /// give an access type of AccessTy. This returns a list of involved 2810 /// instructions in AddrModeInsts. 2811 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2812 /// optimizations. 2813 /// \p PromotedInsts maps the instructions to their type before promotion. 2814 /// \p The ongoing transaction where every action should be registered. 2815 static ExtAddrMode 2816 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2817 SmallVectorImpl<Instruction *> &AddrModeInsts, 2818 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2819 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2820 TypePromotionTransaction &TPT, 2821 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2822 ExtAddrMode Result; 2823 2824 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2825 MemoryInst, Result, InsertedInsts, 2826 PromotedInsts, TPT, LargeOffsetGEP) 2827 .matchAddr(V, 0); 2828 (void)Success; assert(Success && "Couldn't select *anything*?"); 2829 return Result; 2830 } 2831 2832 private: 2833 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2834 bool matchAddr(Value *Addr, unsigned Depth); 2835 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2836 bool *MovedAway = nullptr); 2837 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2838 ExtAddrMode &AMBefore, 2839 ExtAddrMode &AMAfter); 2840 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2841 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2842 Value *PromotedOperand) const; 2843 }; 2844 2845 class PhiNodeSet; 2846 2847 /// An iterator for PhiNodeSet. 2848 class PhiNodeSetIterator { 2849 PhiNodeSet * const Set; 2850 size_t CurrentIndex = 0; 2851 2852 public: 2853 /// The constructor. Start should point to either a valid element, or be equal 2854 /// to the size of the underlying SmallVector of the PhiNodeSet. 2855 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2856 PHINode * operator*() const; 2857 PhiNodeSetIterator& operator++(); 2858 bool operator==(const PhiNodeSetIterator &RHS) const; 2859 bool operator!=(const PhiNodeSetIterator &RHS) const; 2860 }; 2861 2862 /// Keeps a set of PHINodes. 2863 /// 2864 /// This is a minimal set implementation for a specific use case: 2865 /// It is very fast when there are very few elements, but also provides good 2866 /// performance when there are many. It is similar to SmallPtrSet, but also 2867 /// provides iteration by insertion order, which is deterministic and stable 2868 /// across runs. It is also similar to SmallSetVector, but provides removing 2869 /// elements in O(1) time. This is achieved by not actually removing the element 2870 /// from the underlying vector, so comes at the cost of using more memory, but 2871 /// that is fine, since PhiNodeSets are used as short lived objects. 2872 class PhiNodeSet { 2873 friend class PhiNodeSetIterator; 2874 2875 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2876 using iterator = PhiNodeSetIterator; 2877 2878 /// Keeps the elements in the order of their insertion in the underlying 2879 /// vector. To achieve constant time removal, it never deletes any element. 2880 SmallVector<PHINode *, 32> NodeList; 2881 2882 /// Keeps the elements in the underlying set implementation. This (and not the 2883 /// NodeList defined above) is the source of truth on whether an element 2884 /// is actually in the collection. 2885 MapType NodeMap; 2886 2887 /// Points to the first valid (not deleted) element when the set is not empty 2888 /// and the value is not zero. Equals to the size of the underlying vector 2889 /// when the set is empty. When the value is 0, as in the beginning, the 2890 /// first element may or may not be valid. 2891 size_t FirstValidElement = 0; 2892 2893 public: 2894 /// Inserts a new element to the collection. 2895 /// \returns true if the element is actually added, i.e. was not in the 2896 /// collection before the operation. 2897 bool insert(PHINode *Ptr) { 2898 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2899 NodeList.push_back(Ptr); 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 /// Removes the element from the collection. 2906 /// \returns whether the element is actually removed, i.e. was in the 2907 /// collection before the operation. 2908 bool erase(PHINode *Ptr) { 2909 auto it = NodeMap.find(Ptr); 2910 if (it != NodeMap.end()) { 2911 NodeMap.erase(Ptr); 2912 SkipRemovedElements(FirstValidElement); 2913 return true; 2914 } 2915 return false; 2916 } 2917 2918 /// Removes all elements and clears the collection. 2919 void clear() { 2920 NodeMap.clear(); 2921 NodeList.clear(); 2922 FirstValidElement = 0; 2923 } 2924 2925 /// \returns an iterator that will iterate the elements in the order of 2926 /// insertion. 2927 iterator begin() { 2928 if (FirstValidElement == 0) 2929 SkipRemovedElements(FirstValidElement); 2930 return PhiNodeSetIterator(this, FirstValidElement); 2931 } 2932 2933 /// \returns an iterator that points to the end of the collection. 2934 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2935 2936 /// Returns the number of elements in the collection. 2937 size_t size() const { 2938 return NodeMap.size(); 2939 } 2940 2941 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2942 size_t count(PHINode *Ptr) const { 2943 return NodeMap.count(Ptr); 2944 } 2945 2946 private: 2947 /// Updates the CurrentIndex so that it will point to a valid element. 2948 /// 2949 /// If the element of NodeList at CurrentIndex is valid, it does not 2950 /// change it. If there are no more valid elements, it updates CurrentIndex 2951 /// to point to the end of the NodeList. 2952 void SkipRemovedElements(size_t &CurrentIndex) { 2953 while (CurrentIndex < NodeList.size()) { 2954 auto it = NodeMap.find(NodeList[CurrentIndex]); 2955 // If the element has been deleted and added again later, NodeMap will 2956 // point to a different index, so CurrentIndex will still be invalid. 2957 if (it != NodeMap.end() && it->second == CurrentIndex) 2958 break; 2959 ++CurrentIndex; 2960 } 2961 } 2962 }; 2963 2964 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2965 : Set(Set), CurrentIndex(Start) {} 2966 2967 PHINode * PhiNodeSetIterator::operator*() const { 2968 assert(CurrentIndex < Set->NodeList.size() && 2969 "PhiNodeSet access out of range"); 2970 return Set->NodeList[CurrentIndex]; 2971 } 2972 2973 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2974 assert(CurrentIndex < Set->NodeList.size() && 2975 "PhiNodeSet access out of range"); 2976 ++CurrentIndex; 2977 Set->SkipRemovedElements(CurrentIndex); 2978 return *this; 2979 } 2980 2981 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2982 return CurrentIndex == RHS.CurrentIndex; 2983 } 2984 2985 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2986 return !((*this) == RHS); 2987 } 2988 2989 /// Keep track of simplification of Phi nodes. 2990 /// Accept the set of all phi nodes and erase phi node from this set 2991 /// if it is simplified. 2992 class SimplificationTracker { 2993 DenseMap<Value *, Value *> Storage; 2994 const SimplifyQuery &SQ; 2995 // Tracks newly created Phi nodes. The elements are iterated by insertion 2996 // order. 2997 PhiNodeSet AllPhiNodes; 2998 // Tracks newly created Select nodes. 2999 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3000 3001 public: 3002 SimplificationTracker(const SimplifyQuery &sq) 3003 : SQ(sq) {} 3004 3005 Value *Get(Value *V) { 3006 do { 3007 auto SV = Storage.find(V); 3008 if (SV == Storage.end()) 3009 return V; 3010 V = SV->second; 3011 } while (true); 3012 } 3013 3014 Value *Simplify(Value *Val) { 3015 SmallVector<Value *, 32> WorkList; 3016 SmallPtrSet<Value *, 32> Visited; 3017 WorkList.push_back(Val); 3018 while (!WorkList.empty()) { 3019 auto P = WorkList.pop_back_val(); 3020 if (!Visited.insert(P).second) 3021 continue; 3022 if (auto *PI = dyn_cast<Instruction>(P)) 3023 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3024 for (auto *U : PI->users()) 3025 WorkList.push_back(cast<Value>(U)); 3026 Put(PI, V); 3027 PI->replaceAllUsesWith(V); 3028 if (auto *PHI = dyn_cast<PHINode>(PI)) 3029 AllPhiNodes.erase(PHI); 3030 if (auto *Select = dyn_cast<SelectInst>(PI)) 3031 AllSelectNodes.erase(Select); 3032 PI->eraseFromParent(); 3033 } 3034 } 3035 return Get(Val); 3036 } 3037 3038 void Put(Value *From, Value *To) { 3039 Storage.insert({ From, To }); 3040 } 3041 3042 void ReplacePhi(PHINode *From, PHINode *To) { 3043 Value* OldReplacement = Get(From); 3044 while (OldReplacement != From) { 3045 From = To; 3046 To = dyn_cast<PHINode>(OldReplacement); 3047 OldReplacement = Get(From); 3048 } 3049 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3050 Put(From, To); 3051 From->replaceAllUsesWith(To); 3052 AllPhiNodes.erase(From); 3053 From->eraseFromParent(); 3054 } 3055 3056 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3057 3058 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3059 3060 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3061 3062 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3063 3064 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3065 3066 void destroyNewNodes(Type *CommonType) { 3067 // For safe erasing, replace the uses with dummy value first. 3068 auto Dummy = UndefValue::get(CommonType); 3069 for (auto I : AllPhiNodes) { 3070 I->replaceAllUsesWith(Dummy); 3071 I->eraseFromParent(); 3072 } 3073 AllPhiNodes.clear(); 3074 for (auto I : AllSelectNodes) { 3075 I->replaceAllUsesWith(Dummy); 3076 I->eraseFromParent(); 3077 } 3078 AllSelectNodes.clear(); 3079 } 3080 }; 3081 3082 /// A helper class for combining addressing modes. 3083 class AddressingModeCombiner { 3084 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3085 typedef std::pair<PHINode *, PHINode *> PHIPair; 3086 3087 private: 3088 /// The addressing modes we've collected. 3089 SmallVector<ExtAddrMode, 16> AddrModes; 3090 3091 /// The field in which the AddrModes differ, when we have more than one. 3092 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3093 3094 /// Are the AddrModes that we have all just equal to their original values? 3095 bool AllAddrModesTrivial = true; 3096 3097 /// Common Type for all different fields in addressing modes. 3098 Type *CommonType; 3099 3100 /// SimplifyQuery for simplifyInstruction utility. 3101 const SimplifyQuery &SQ; 3102 3103 /// Original Address. 3104 Value *Original; 3105 3106 public: 3107 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3108 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3109 3110 /// Get the combined AddrMode 3111 const ExtAddrMode &getAddrMode() const { 3112 return AddrModes[0]; 3113 } 3114 3115 /// Add a new AddrMode if it's compatible with the AddrModes we already 3116 /// have. 3117 /// \return True iff we succeeded in doing so. 3118 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3119 // Take note of if we have any non-trivial AddrModes, as we need to detect 3120 // when all AddrModes are trivial as then we would introduce a phi or select 3121 // which just duplicates what's already there. 3122 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3123 3124 // If this is the first addrmode then everything is fine. 3125 if (AddrModes.empty()) { 3126 AddrModes.emplace_back(NewAddrMode); 3127 return true; 3128 } 3129 3130 // Figure out how different this is from the other address modes, which we 3131 // can do just by comparing against the first one given that we only care 3132 // about the cumulative difference. 3133 ExtAddrMode::FieldName ThisDifferentField = 3134 AddrModes[0].compare(NewAddrMode); 3135 if (DifferentField == ExtAddrMode::NoField) 3136 DifferentField = ThisDifferentField; 3137 else if (DifferentField != ThisDifferentField) 3138 DifferentField = ExtAddrMode::MultipleFields; 3139 3140 // If NewAddrMode differs in more than one dimension we cannot handle it. 3141 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3142 3143 // If Scale Field is different then we reject. 3144 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3145 3146 // We also must reject the case when base offset is different and 3147 // scale reg is not null, we cannot handle this case due to merge of 3148 // different offsets will be used as ScaleReg. 3149 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3150 !NewAddrMode.ScaledReg); 3151 3152 // We also must reject the case when GV is different and BaseReg installed 3153 // due to we want to use base reg as a merge of GV values. 3154 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3155 !NewAddrMode.HasBaseReg); 3156 3157 // Even if NewAddMode is the same we still need to collect it due to 3158 // original value is different. And later we will need all original values 3159 // as anchors during finding the common Phi node. 3160 if (CanHandle) 3161 AddrModes.emplace_back(NewAddrMode); 3162 else 3163 AddrModes.clear(); 3164 3165 return CanHandle; 3166 } 3167 3168 /// Combine the addressing modes we've collected into a single 3169 /// addressing mode. 3170 /// \return True iff we successfully combined them or we only had one so 3171 /// didn't need to combine them anyway. 3172 bool combineAddrModes() { 3173 // If we have no AddrModes then they can't be combined. 3174 if (AddrModes.size() == 0) 3175 return false; 3176 3177 // A single AddrMode can trivially be combined. 3178 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3179 return true; 3180 3181 // If the AddrModes we collected are all just equal to the value they are 3182 // derived from then combining them wouldn't do anything useful. 3183 if (AllAddrModesTrivial) 3184 return false; 3185 3186 if (!addrModeCombiningAllowed()) 3187 return false; 3188 3189 // Build a map between <original value, basic block where we saw it> to 3190 // value of base register. 3191 // Bail out if there is no common type. 3192 FoldAddrToValueMapping Map; 3193 if (!initializeMap(Map)) 3194 return false; 3195 3196 Value *CommonValue = findCommon(Map); 3197 if (CommonValue) 3198 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3199 return CommonValue != nullptr; 3200 } 3201 3202 private: 3203 /// Initialize Map with anchor values. For address seen 3204 /// we set the value of different field saw in this address. 3205 /// At the same time we find a common type for different field we will 3206 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3207 /// Return false if there is no common type found. 3208 bool initializeMap(FoldAddrToValueMapping &Map) { 3209 // Keep track of keys where the value is null. We will need to replace it 3210 // with constant null when we know the common type. 3211 SmallVector<Value *, 2> NullValue; 3212 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3213 for (auto &AM : AddrModes) { 3214 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3215 if (DV) { 3216 auto *Type = DV->getType(); 3217 if (CommonType && CommonType != Type) 3218 return false; 3219 CommonType = Type; 3220 Map[AM.OriginalValue] = DV; 3221 } else { 3222 NullValue.push_back(AM.OriginalValue); 3223 } 3224 } 3225 assert(CommonType && "At least one non-null value must be!"); 3226 for (auto *V : NullValue) 3227 Map[V] = Constant::getNullValue(CommonType); 3228 return true; 3229 } 3230 3231 /// We have mapping between value A and other value B where B was a field in 3232 /// addressing mode represented by A. Also we have an original value C 3233 /// representing an address we start with. Traversing from C through phi and 3234 /// selects we ended up with A's in a map. This utility function tries to find 3235 /// a value V which is a field in addressing mode C and traversing through phi 3236 /// nodes and selects we will end up in corresponded values B in a map. 3237 /// The utility will create a new Phi/Selects if needed. 3238 // The simple example looks as follows: 3239 // BB1: 3240 // p1 = b1 + 40 3241 // br cond BB2, BB3 3242 // BB2: 3243 // p2 = b2 + 40 3244 // br BB3 3245 // BB3: 3246 // p = phi [p1, BB1], [p2, BB2] 3247 // v = load p 3248 // Map is 3249 // p1 -> b1 3250 // p2 -> b2 3251 // Request is 3252 // p -> ? 3253 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3254 Value *findCommon(FoldAddrToValueMapping &Map) { 3255 // Tracks the simplification of newly created phi nodes. The reason we use 3256 // this mapping is because we will add new created Phi nodes in AddrToBase. 3257 // Simplification of Phi nodes is recursive, so some Phi node may 3258 // be simplified after we added it to AddrToBase. In reality this 3259 // simplification is possible only if original phi/selects were not 3260 // simplified yet. 3261 // Using this mapping we can find the current value in AddrToBase. 3262 SimplificationTracker ST(SQ); 3263 3264 // First step, DFS to create PHI nodes for all intermediate blocks. 3265 // Also fill traverse order for the second step. 3266 SmallVector<Value *, 32> TraverseOrder; 3267 InsertPlaceholders(Map, TraverseOrder, ST); 3268 3269 // Second Step, fill new nodes by merged values and simplify if possible. 3270 FillPlaceholders(Map, TraverseOrder, ST); 3271 3272 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3273 ST.destroyNewNodes(CommonType); 3274 return nullptr; 3275 } 3276 3277 // Now we'd like to match New Phi nodes to existed ones. 3278 unsigned PhiNotMatchedCount = 0; 3279 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3280 ST.destroyNewNodes(CommonType); 3281 return nullptr; 3282 } 3283 3284 auto *Result = ST.Get(Map.find(Original)->second); 3285 if (Result) { 3286 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3287 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3288 } 3289 return Result; 3290 } 3291 3292 /// Try to match PHI node to Candidate. 3293 /// Matcher tracks the matched Phi nodes. 3294 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3295 SmallSetVector<PHIPair, 8> &Matcher, 3296 PhiNodeSet &PhiNodesToMatch) { 3297 SmallVector<PHIPair, 8> WorkList; 3298 Matcher.insert({ PHI, Candidate }); 3299 SmallSet<PHINode *, 8> MatchedPHIs; 3300 MatchedPHIs.insert(PHI); 3301 WorkList.push_back({ PHI, Candidate }); 3302 SmallSet<PHIPair, 8> Visited; 3303 while (!WorkList.empty()) { 3304 auto Item = WorkList.pop_back_val(); 3305 if (!Visited.insert(Item).second) 3306 continue; 3307 // We iterate over all incoming values to Phi to compare them. 3308 // If values are different and both of them Phi and the first one is a 3309 // Phi we added (subject to match) and both of them is in the same basic 3310 // block then we can match our pair if values match. So we state that 3311 // these values match and add it to work list to verify that. 3312 for (auto B : Item.first->blocks()) { 3313 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3314 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3315 if (FirstValue == SecondValue) 3316 continue; 3317 3318 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3319 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3320 3321 // One of them is not Phi or 3322 // The first one is not Phi node from the set we'd like to match or 3323 // Phi nodes from different basic blocks then 3324 // we will not be able to match. 3325 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3326 FirstPhi->getParent() != SecondPhi->getParent()) 3327 return false; 3328 3329 // If we already matched them then continue. 3330 if (Matcher.count({ FirstPhi, SecondPhi })) 3331 continue; 3332 // So the values are different and does not match. So we need them to 3333 // match. (But we register no more than one match per PHI node, so that 3334 // we won't later try to replace them twice.) 3335 if (!MatchedPHIs.insert(FirstPhi).second) 3336 Matcher.insert({ FirstPhi, SecondPhi }); 3337 // But me must check it. 3338 WorkList.push_back({ FirstPhi, SecondPhi }); 3339 } 3340 } 3341 return true; 3342 } 3343 3344 /// For the given set of PHI nodes (in the SimplificationTracker) try 3345 /// to find their equivalents. 3346 /// Returns false if this matching fails and creation of new Phi is disabled. 3347 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3348 unsigned &PhiNotMatchedCount) { 3349 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3350 // order, so the replacements (ReplacePhi) are also done in a deterministic 3351 // order. 3352 SmallSetVector<PHIPair, 8> Matched; 3353 SmallPtrSet<PHINode *, 8> WillNotMatch; 3354 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3355 while (PhiNodesToMatch.size()) { 3356 PHINode *PHI = *PhiNodesToMatch.begin(); 3357 3358 // Add us, if no Phi nodes in the basic block we do not match. 3359 WillNotMatch.clear(); 3360 WillNotMatch.insert(PHI); 3361 3362 // Traverse all Phis until we found equivalent or fail to do that. 3363 bool IsMatched = false; 3364 for (auto &P : PHI->getParent()->phis()) { 3365 if (&P == PHI) 3366 continue; 3367 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3368 break; 3369 // If it does not match, collect all Phi nodes from matcher. 3370 // if we end up with no match, them all these Phi nodes will not match 3371 // later. 3372 for (auto M : Matched) 3373 WillNotMatch.insert(M.first); 3374 Matched.clear(); 3375 } 3376 if (IsMatched) { 3377 // Replace all matched values and erase them. 3378 for (auto MV : Matched) 3379 ST.ReplacePhi(MV.first, MV.second); 3380 Matched.clear(); 3381 continue; 3382 } 3383 // If we are not allowed to create new nodes then bail out. 3384 if (!AllowNewPhiNodes) 3385 return false; 3386 // Just remove all seen values in matcher. They will not match anything. 3387 PhiNotMatchedCount += WillNotMatch.size(); 3388 for (auto *P : WillNotMatch) 3389 PhiNodesToMatch.erase(P); 3390 } 3391 return true; 3392 } 3393 /// Fill the placeholders with values from predecessors and simplify them. 3394 void FillPlaceholders(FoldAddrToValueMapping &Map, 3395 SmallVectorImpl<Value *> &TraverseOrder, 3396 SimplificationTracker &ST) { 3397 while (!TraverseOrder.empty()) { 3398 Value *Current = TraverseOrder.pop_back_val(); 3399 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3400 Value *V = Map[Current]; 3401 3402 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3403 // CurrentValue also must be Select. 3404 auto *CurrentSelect = cast<SelectInst>(Current); 3405 auto *TrueValue = CurrentSelect->getTrueValue(); 3406 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3407 Select->setTrueValue(ST.Get(Map[TrueValue])); 3408 auto *FalseValue = CurrentSelect->getFalseValue(); 3409 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3410 Select->setFalseValue(ST.Get(Map[FalseValue])); 3411 } else { 3412 // Must be a Phi node then. 3413 PHINode *PHI = cast<PHINode>(V); 3414 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3415 // Fill the Phi node with values from predecessors. 3416 for (auto B : predecessors(PHI->getParent())) { 3417 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3418 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3419 PHI->addIncoming(ST.Get(Map[PV]), B); 3420 } 3421 } 3422 Map[Current] = ST.Simplify(V); 3423 } 3424 } 3425 3426 /// Starting from original value recursively iterates over def-use chain up to 3427 /// known ending values represented in a map. For each traversed phi/select 3428 /// inserts a placeholder Phi or Select. 3429 /// Reports all new created Phi/Select nodes by adding them to set. 3430 /// Also reports and order in what values have been traversed. 3431 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3432 SmallVectorImpl<Value *> &TraverseOrder, 3433 SimplificationTracker &ST) { 3434 SmallVector<Value *, 32> Worklist; 3435 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3436 "Address must be a Phi or Select node"); 3437 auto *Dummy = UndefValue::get(CommonType); 3438 Worklist.push_back(Original); 3439 while (!Worklist.empty()) { 3440 Value *Current = Worklist.pop_back_val(); 3441 // if it is already visited or it is an ending value then skip it. 3442 if (Map.find(Current) != Map.end()) 3443 continue; 3444 TraverseOrder.push_back(Current); 3445 3446 // CurrentValue must be a Phi node or select. All others must be covered 3447 // by anchors. 3448 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3449 // Is it OK to get metadata from OrigSelect?! 3450 // Create a Select placeholder with dummy value. 3451 SelectInst *Select = SelectInst::Create( 3452 CurrentSelect->getCondition(), Dummy, Dummy, 3453 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3454 Map[Current] = Select; 3455 ST.insertNewSelect(Select); 3456 // We are interested in True and False values. 3457 Worklist.push_back(CurrentSelect->getTrueValue()); 3458 Worklist.push_back(CurrentSelect->getFalseValue()); 3459 } else { 3460 // It must be a Phi node then. 3461 PHINode *CurrentPhi = cast<PHINode>(Current); 3462 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3463 PHINode *PHI = 3464 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3465 Map[Current] = PHI; 3466 ST.insertNewPhi(PHI); 3467 for (Value *P : CurrentPhi->incoming_values()) 3468 Worklist.push_back(P); 3469 } 3470 } 3471 } 3472 3473 bool addrModeCombiningAllowed() { 3474 if (DisableComplexAddrModes) 3475 return false; 3476 switch (DifferentField) { 3477 default: 3478 return false; 3479 case ExtAddrMode::BaseRegField: 3480 return AddrSinkCombineBaseReg; 3481 case ExtAddrMode::BaseGVField: 3482 return AddrSinkCombineBaseGV; 3483 case ExtAddrMode::BaseOffsField: 3484 return AddrSinkCombineBaseOffs; 3485 case ExtAddrMode::ScaledRegField: 3486 return AddrSinkCombineScaledReg; 3487 } 3488 } 3489 }; 3490 } // end anonymous namespace 3491 3492 /// Try adding ScaleReg*Scale to the current addressing mode. 3493 /// Return true and update AddrMode if this addr mode is legal for the target, 3494 /// false if not. 3495 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3496 unsigned Depth) { 3497 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3498 // mode. Just process that directly. 3499 if (Scale == 1) 3500 return matchAddr(ScaleReg, Depth); 3501 3502 // If the scale is 0, it takes nothing to add this. 3503 if (Scale == 0) 3504 return true; 3505 3506 // If we already have a scale of this value, we can add to it, otherwise, we 3507 // need an available scale field. 3508 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3509 return false; 3510 3511 ExtAddrMode TestAddrMode = AddrMode; 3512 3513 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3514 // [A+B + A*7] -> [B+A*8]. 3515 TestAddrMode.Scale += Scale; 3516 TestAddrMode.ScaledReg = ScaleReg; 3517 3518 // If the new address isn't legal, bail out. 3519 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3520 return false; 3521 3522 // It was legal, so commit it. 3523 AddrMode = TestAddrMode; 3524 3525 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3526 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3527 // X*Scale + C*Scale to addr mode. 3528 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3529 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3530 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3531 TestAddrMode.InBounds = false; 3532 TestAddrMode.ScaledReg = AddLHS; 3533 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3534 3535 // If this addressing mode is legal, commit it and remember that we folded 3536 // this instruction. 3537 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3538 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3539 AddrMode = TestAddrMode; 3540 return true; 3541 } 3542 } 3543 3544 // Otherwise, not (x+c)*scale, just return what we have. 3545 return true; 3546 } 3547 3548 /// This is a little filter, which returns true if an addressing computation 3549 /// involving I might be folded into a load/store accessing it. 3550 /// This doesn't need to be perfect, but needs to accept at least 3551 /// the set of instructions that MatchOperationAddr can. 3552 static bool MightBeFoldableInst(Instruction *I) { 3553 switch (I->getOpcode()) { 3554 case Instruction::BitCast: 3555 case Instruction::AddrSpaceCast: 3556 // Don't touch identity bitcasts. 3557 if (I->getType() == I->getOperand(0)->getType()) 3558 return false; 3559 return I->getType()->isIntOrPtrTy(); 3560 case Instruction::PtrToInt: 3561 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3562 return true; 3563 case Instruction::IntToPtr: 3564 // We know the input is intptr_t, so this is foldable. 3565 return true; 3566 case Instruction::Add: 3567 return true; 3568 case Instruction::Mul: 3569 case Instruction::Shl: 3570 // Can only handle X*C and X << C. 3571 return isa<ConstantInt>(I->getOperand(1)); 3572 case Instruction::GetElementPtr: 3573 return true; 3574 default: 3575 return false; 3576 } 3577 } 3578 3579 /// Check whether or not \p Val is a legal instruction for \p TLI. 3580 /// \note \p Val is assumed to be the product of some type promotion. 3581 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3582 /// to be legal, as the non-promoted value would have had the same state. 3583 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3584 const DataLayout &DL, Value *Val) { 3585 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3586 if (!PromotedInst) 3587 return false; 3588 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3589 // If the ISDOpcode is undefined, it was undefined before the promotion. 3590 if (!ISDOpcode) 3591 return true; 3592 // Otherwise, check if the promoted instruction is legal or not. 3593 return TLI.isOperationLegalOrCustom( 3594 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3595 } 3596 3597 namespace { 3598 3599 /// Hepler class to perform type promotion. 3600 class TypePromotionHelper { 3601 /// Utility function to add a promoted instruction \p ExtOpnd to 3602 /// \p PromotedInsts and record the type of extension we have seen. 3603 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3604 Instruction *ExtOpnd, 3605 bool IsSExt) { 3606 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3607 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3608 if (It != PromotedInsts.end()) { 3609 // If the new extension is same as original, the information in 3610 // PromotedInsts[ExtOpnd] is still correct. 3611 if (It->second.getInt() == ExtTy) 3612 return; 3613 3614 // Now the new extension is different from old extension, we make 3615 // the type information invalid by setting extension type to 3616 // BothExtension. 3617 ExtTy = BothExtension; 3618 } 3619 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3620 } 3621 3622 /// Utility function to query the original type of instruction \p Opnd 3623 /// with a matched extension type. If the extension doesn't match, we 3624 /// cannot use the information we had on the original type. 3625 /// BothExtension doesn't match any extension type. 3626 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3627 Instruction *Opnd, 3628 bool IsSExt) { 3629 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3630 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3631 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3632 return It->second.getPointer(); 3633 return nullptr; 3634 } 3635 3636 /// Utility function to check whether or not a sign or zero extension 3637 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3638 /// either using the operands of \p Inst or promoting \p Inst. 3639 /// The type of the extension is defined by \p IsSExt. 3640 /// In other words, check if: 3641 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3642 /// #1 Promotion applies: 3643 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3644 /// #2 Operand reuses: 3645 /// ext opnd1 to ConsideredExtType. 3646 /// \p PromotedInsts maps the instructions to their type before promotion. 3647 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3648 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3649 3650 /// Utility function to determine if \p OpIdx should be promoted when 3651 /// promoting \p Inst. 3652 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3653 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3654 } 3655 3656 /// Utility function to promote the operand of \p Ext when this 3657 /// operand is a promotable trunc or sext or zext. 3658 /// \p PromotedInsts maps the instructions to their type before promotion. 3659 /// \p CreatedInstsCost[out] contains the cost of all instructions 3660 /// created to promote the operand of Ext. 3661 /// Newly added extensions are inserted in \p Exts. 3662 /// Newly added truncates are inserted in \p Truncs. 3663 /// Should never be called directly. 3664 /// \return The promoted value which is used instead of Ext. 3665 static Value *promoteOperandForTruncAndAnyExt( 3666 Instruction *Ext, TypePromotionTransaction &TPT, 3667 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3668 SmallVectorImpl<Instruction *> *Exts, 3669 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3670 3671 /// Utility function to promote the operand of \p Ext when this 3672 /// operand is promotable and is not a supported trunc or sext. 3673 /// \p PromotedInsts maps the instructions to their type before promotion. 3674 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3675 /// created to promote the operand of Ext. 3676 /// Newly added extensions are inserted in \p Exts. 3677 /// Newly added truncates are inserted in \p Truncs. 3678 /// Should never be called directly. 3679 /// \return The promoted value which is used instead of Ext. 3680 static Value *promoteOperandForOther(Instruction *Ext, 3681 TypePromotionTransaction &TPT, 3682 InstrToOrigTy &PromotedInsts, 3683 unsigned &CreatedInstsCost, 3684 SmallVectorImpl<Instruction *> *Exts, 3685 SmallVectorImpl<Instruction *> *Truncs, 3686 const TargetLowering &TLI, bool IsSExt); 3687 3688 /// \see promoteOperandForOther. 3689 static Value *signExtendOperandForOther( 3690 Instruction *Ext, TypePromotionTransaction &TPT, 3691 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3692 SmallVectorImpl<Instruction *> *Exts, 3693 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3694 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3695 Exts, Truncs, TLI, true); 3696 } 3697 3698 /// \see promoteOperandForOther. 3699 static Value *zeroExtendOperandForOther( 3700 Instruction *Ext, TypePromotionTransaction &TPT, 3701 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3702 SmallVectorImpl<Instruction *> *Exts, 3703 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3704 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3705 Exts, Truncs, TLI, false); 3706 } 3707 3708 public: 3709 /// Type for the utility function that promotes the operand of Ext. 3710 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3711 InstrToOrigTy &PromotedInsts, 3712 unsigned &CreatedInstsCost, 3713 SmallVectorImpl<Instruction *> *Exts, 3714 SmallVectorImpl<Instruction *> *Truncs, 3715 const TargetLowering &TLI); 3716 3717 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3718 /// action to promote the operand of \p Ext instead of using Ext. 3719 /// \return NULL if no promotable action is possible with the current 3720 /// sign extension. 3721 /// \p InsertedInsts keeps track of all the instructions inserted by the 3722 /// other CodeGenPrepare optimizations. This information is important 3723 /// because we do not want to promote these instructions as CodeGenPrepare 3724 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3725 /// \p PromotedInsts maps the instructions to their type before promotion. 3726 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3727 const TargetLowering &TLI, 3728 const InstrToOrigTy &PromotedInsts); 3729 }; 3730 3731 } // end anonymous namespace 3732 3733 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3734 Type *ConsideredExtType, 3735 const InstrToOrigTy &PromotedInsts, 3736 bool IsSExt) { 3737 // The promotion helper does not know how to deal with vector types yet. 3738 // To be able to fix that, we would need to fix the places where we 3739 // statically extend, e.g., constants and such. 3740 if (Inst->getType()->isVectorTy()) 3741 return false; 3742 3743 // We can always get through zext. 3744 if (isa<ZExtInst>(Inst)) 3745 return true; 3746 3747 // sext(sext) is ok too. 3748 if (IsSExt && isa<SExtInst>(Inst)) 3749 return true; 3750 3751 // We can get through binary operator, if it is legal. In other words, the 3752 // binary operator must have a nuw or nsw flag. 3753 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3754 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3755 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3756 (IsSExt && BinOp->hasNoSignedWrap()))) 3757 return true; 3758 3759 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3760 if ((Inst->getOpcode() == Instruction::And || 3761 Inst->getOpcode() == Instruction::Or)) 3762 return true; 3763 3764 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3765 if (Inst->getOpcode() == Instruction::Xor) { 3766 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3767 // Make sure it is not a NOT. 3768 if (Cst && !Cst->getValue().isAllOnesValue()) 3769 return true; 3770 } 3771 3772 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3773 // It may change a poisoned value into a regular value, like 3774 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3775 // poisoned value regular value 3776 // It should be OK since undef covers valid value. 3777 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3778 return true; 3779 3780 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3781 // It may change a poisoned value into a regular value, like 3782 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3783 // poisoned value regular value 3784 // It should be OK since undef covers valid value. 3785 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3786 const Instruction *ExtInst = 3787 dyn_cast<const Instruction>(*Inst->user_begin()); 3788 if (ExtInst->hasOneUse()) { 3789 const Instruction *AndInst = 3790 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3791 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3792 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3793 if (Cst && 3794 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3795 return true; 3796 } 3797 } 3798 } 3799 3800 // Check if we can do the following simplification. 3801 // ext(trunc(opnd)) --> ext(opnd) 3802 if (!isa<TruncInst>(Inst)) 3803 return false; 3804 3805 Value *OpndVal = Inst->getOperand(0); 3806 // Check if we can use this operand in the extension. 3807 // If the type is larger than the result type of the extension, we cannot. 3808 if (!OpndVal->getType()->isIntegerTy() || 3809 OpndVal->getType()->getIntegerBitWidth() > 3810 ConsideredExtType->getIntegerBitWidth()) 3811 return false; 3812 3813 // If the operand of the truncate is not an instruction, we will not have 3814 // any information on the dropped bits. 3815 // (Actually we could for constant but it is not worth the extra logic). 3816 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3817 if (!Opnd) 3818 return false; 3819 3820 // Check if the source of the type is narrow enough. 3821 // I.e., check that trunc just drops extended bits of the same kind of 3822 // the extension. 3823 // #1 get the type of the operand and check the kind of the extended bits. 3824 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3825 if (OpndType) 3826 ; 3827 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3828 OpndType = Opnd->getOperand(0)->getType(); 3829 else 3830 return false; 3831 3832 // #2 check that the truncate just drops extended bits. 3833 return Inst->getType()->getIntegerBitWidth() >= 3834 OpndType->getIntegerBitWidth(); 3835 } 3836 3837 TypePromotionHelper::Action TypePromotionHelper::getAction( 3838 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3839 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3840 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3841 "Unexpected instruction type"); 3842 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3843 Type *ExtTy = Ext->getType(); 3844 bool IsSExt = isa<SExtInst>(Ext); 3845 // If the operand of the extension is not an instruction, we cannot 3846 // get through. 3847 // If it, check we can get through. 3848 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3849 return nullptr; 3850 3851 // Do not promote if the operand has been added by codegenprepare. 3852 // Otherwise, it means we are undoing an optimization that is likely to be 3853 // redone, thus causing potential infinite loop. 3854 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3855 return nullptr; 3856 3857 // SExt or Trunc instructions. 3858 // Return the related handler. 3859 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3860 isa<ZExtInst>(ExtOpnd)) 3861 return promoteOperandForTruncAndAnyExt; 3862 3863 // Regular instruction. 3864 // Abort early if we will have to insert non-free instructions. 3865 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3866 return nullptr; 3867 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3868 } 3869 3870 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3871 Instruction *SExt, TypePromotionTransaction &TPT, 3872 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3873 SmallVectorImpl<Instruction *> *Exts, 3874 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3875 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3876 // get through it and this method should not be called. 3877 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3878 Value *ExtVal = SExt; 3879 bool HasMergedNonFreeExt = false; 3880 if (isa<ZExtInst>(SExtOpnd)) { 3881 // Replace s|zext(zext(opnd)) 3882 // => zext(opnd). 3883 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3884 Value *ZExt = 3885 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3886 TPT.replaceAllUsesWith(SExt, ZExt); 3887 TPT.eraseInstruction(SExt); 3888 ExtVal = ZExt; 3889 } else { 3890 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3891 // => z|sext(opnd). 3892 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3893 } 3894 CreatedInstsCost = 0; 3895 3896 // Remove dead code. 3897 if (SExtOpnd->use_empty()) 3898 TPT.eraseInstruction(SExtOpnd); 3899 3900 // Check if the extension is still needed. 3901 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3902 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3903 if (ExtInst) { 3904 if (Exts) 3905 Exts->push_back(ExtInst); 3906 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3907 } 3908 return ExtVal; 3909 } 3910 3911 // At this point we have: ext ty opnd to ty. 3912 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3913 Value *NextVal = ExtInst->getOperand(0); 3914 TPT.eraseInstruction(ExtInst, NextVal); 3915 return NextVal; 3916 } 3917 3918 Value *TypePromotionHelper::promoteOperandForOther( 3919 Instruction *Ext, TypePromotionTransaction &TPT, 3920 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3921 SmallVectorImpl<Instruction *> *Exts, 3922 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3923 bool IsSExt) { 3924 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3925 // get through it and this method should not be called. 3926 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3927 CreatedInstsCost = 0; 3928 if (!ExtOpnd->hasOneUse()) { 3929 // ExtOpnd will be promoted. 3930 // All its uses, but Ext, will need to use a truncated value of the 3931 // promoted version. 3932 // Create the truncate now. 3933 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3934 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3935 // Insert it just after the definition. 3936 ITrunc->moveAfter(ExtOpnd); 3937 if (Truncs) 3938 Truncs->push_back(ITrunc); 3939 } 3940 3941 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3942 // Restore the operand of Ext (which has been replaced by the previous call 3943 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3944 TPT.setOperand(Ext, 0, ExtOpnd); 3945 } 3946 3947 // Get through the Instruction: 3948 // 1. Update its type. 3949 // 2. Replace the uses of Ext by Inst. 3950 // 3. Extend each operand that needs to be extended. 3951 3952 // Remember the original type of the instruction before promotion. 3953 // This is useful to know that the high bits are sign extended bits. 3954 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3955 // Step #1. 3956 TPT.mutateType(ExtOpnd, Ext->getType()); 3957 // Step #2. 3958 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3959 // Step #3. 3960 Instruction *ExtForOpnd = Ext; 3961 3962 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3963 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3964 ++OpIdx) { 3965 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3966 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3967 !shouldExtOperand(ExtOpnd, OpIdx)) { 3968 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3969 continue; 3970 } 3971 // Check if we can statically extend the operand. 3972 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3973 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3974 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3975 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3976 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3977 : Cst->getValue().zext(BitWidth); 3978 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3979 continue; 3980 } 3981 // UndefValue are typed, so we have to statically sign extend them. 3982 if (isa<UndefValue>(Opnd)) { 3983 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3984 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3985 continue; 3986 } 3987 3988 // Otherwise we have to explicitly sign extend the operand. 3989 // Check if Ext was reused to extend an operand. 3990 if (!ExtForOpnd) { 3991 // If yes, create a new one. 3992 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3993 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3994 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3995 if (!isa<Instruction>(ValForExtOpnd)) { 3996 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3997 continue; 3998 } 3999 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4000 } 4001 if (Exts) 4002 Exts->push_back(ExtForOpnd); 4003 TPT.setOperand(ExtForOpnd, 0, Opnd); 4004 4005 // Move the sign extension before the insertion point. 4006 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4007 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4008 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4009 // If more sext are required, new instructions will have to be created. 4010 ExtForOpnd = nullptr; 4011 } 4012 if (ExtForOpnd == Ext) { 4013 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4014 TPT.eraseInstruction(Ext); 4015 } 4016 return ExtOpnd; 4017 } 4018 4019 /// Check whether or not promoting an instruction to a wider type is profitable. 4020 /// \p NewCost gives the cost of extension instructions created by the 4021 /// promotion. 4022 /// \p OldCost gives the cost of extension instructions before the promotion 4023 /// plus the number of instructions that have been 4024 /// matched in the addressing mode the promotion. 4025 /// \p PromotedOperand is the value that has been promoted. 4026 /// \return True if the promotion is profitable, false otherwise. 4027 bool AddressingModeMatcher::isPromotionProfitable( 4028 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4029 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4030 << '\n'); 4031 // The cost of the new extensions is greater than the cost of the 4032 // old extension plus what we folded. 4033 // This is not profitable. 4034 if (NewCost > OldCost) 4035 return false; 4036 if (NewCost < OldCost) 4037 return true; 4038 // The promotion is neutral but it may help folding the sign extension in 4039 // loads for instance. 4040 // Check that we did not create an illegal instruction. 4041 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4042 } 4043 4044 /// Given an instruction or constant expr, see if we can fold the operation 4045 /// into the addressing mode. If so, update the addressing mode and return 4046 /// true, otherwise return false without modifying AddrMode. 4047 /// If \p MovedAway is not NULL, it contains the information of whether or 4048 /// not AddrInst has to be folded into the addressing mode on success. 4049 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4050 /// because it has been moved away. 4051 /// Thus AddrInst must not be added in the matched instructions. 4052 /// This state can happen when AddrInst is a sext, since it may be moved away. 4053 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4054 /// not be referenced anymore. 4055 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4056 unsigned Depth, 4057 bool *MovedAway) { 4058 // Avoid exponential behavior on extremely deep expression trees. 4059 if (Depth >= 5) return false; 4060 4061 // By default, all matched instructions stay in place. 4062 if (MovedAway) 4063 *MovedAway = false; 4064 4065 switch (Opcode) { 4066 case Instruction::PtrToInt: 4067 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4068 return matchAddr(AddrInst->getOperand(0), Depth); 4069 case Instruction::IntToPtr: { 4070 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4071 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4072 // This inttoptr is a no-op if the integer type is pointer sized. 4073 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4074 return matchAddr(AddrInst->getOperand(0), Depth); 4075 return false; 4076 } 4077 case Instruction::BitCast: 4078 // BitCast is always a noop, and we can handle it as long as it is 4079 // int->int or pointer->pointer (we don't want int<->fp or something). 4080 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4081 // Don't touch identity bitcasts. These were probably put here by LSR, 4082 // and we don't want to mess around with them. Assume it knows what it 4083 // is doing. 4084 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4085 return matchAddr(AddrInst->getOperand(0), Depth); 4086 return false; 4087 case Instruction::AddrSpaceCast: { 4088 unsigned SrcAS 4089 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4090 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4091 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4092 return matchAddr(AddrInst->getOperand(0), Depth); 4093 return false; 4094 } 4095 case Instruction::Add: { 4096 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4097 ExtAddrMode BackupAddrMode = AddrMode; 4098 unsigned OldSize = AddrModeInsts.size(); 4099 // Start a transaction at this point. 4100 // The LHS may match but not the RHS. 4101 // Therefore, we need a higher level restoration point to undo partially 4102 // matched operation. 4103 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4104 TPT.getRestorationPoint(); 4105 4106 AddrMode.InBounds = false; 4107 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4108 matchAddr(AddrInst->getOperand(0), Depth+1)) 4109 return true; 4110 4111 // Restore the old addr mode info. 4112 AddrMode = BackupAddrMode; 4113 AddrModeInsts.resize(OldSize); 4114 TPT.rollback(LastKnownGood); 4115 4116 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4117 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4118 matchAddr(AddrInst->getOperand(1), Depth+1)) 4119 return true; 4120 4121 // Otherwise we definitely can't merge the ADD in. 4122 AddrMode = BackupAddrMode; 4123 AddrModeInsts.resize(OldSize); 4124 TPT.rollback(LastKnownGood); 4125 break; 4126 } 4127 //case Instruction::Or: 4128 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4129 //break; 4130 case Instruction::Mul: 4131 case Instruction::Shl: { 4132 // Can only handle X*C and X << C. 4133 AddrMode.InBounds = false; 4134 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4135 if (!RHS || RHS->getBitWidth() > 64) 4136 return false; 4137 int64_t Scale = RHS->getSExtValue(); 4138 if (Opcode == Instruction::Shl) 4139 Scale = 1LL << Scale; 4140 4141 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4142 } 4143 case Instruction::GetElementPtr: { 4144 // Scan the GEP. We check it if it contains constant offsets and at most 4145 // one variable offset. 4146 int VariableOperand = -1; 4147 unsigned VariableScale = 0; 4148 4149 int64_t ConstantOffset = 0; 4150 gep_type_iterator GTI = gep_type_begin(AddrInst); 4151 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4152 if (StructType *STy = GTI.getStructTypeOrNull()) { 4153 const StructLayout *SL = DL.getStructLayout(STy); 4154 unsigned Idx = 4155 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4156 ConstantOffset += SL->getElementOffset(Idx); 4157 } else { 4158 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4159 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4160 const APInt &CVal = CI->getValue(); 4161 if (CVal.getMinSignedBits() <= 64) { 4162 ConstantOffset += CVal.getSExtValue() * TypeSize; 4163 continue; 4164 } 4165 } 4166 if (TypeSize) { // Scales of zero don't do anything. 4167 // We only allow one variable index at the moment. 4168 if (VariableOperand != -1) 4169 return false; 4170 4171 // Remember the variable index. 4172 VariableOperand = i; 4173 VariableScale = TypeSize; 4174 } 4175 } 4176 } 4177 4178 // A common case is for the GEP to only do a constant offset. In this case, 4179 // just add it to the disp field and check validity. 4180 if (VariableOperand == -1) { 4181 AddrMode.BaseOffs += ConstantOffset; 4182 if (ConstantOffset == 0 || 4183 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4184 // Check to see if we can fold the base pointer in too. 4185 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4186 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4187 AddrMode.InBounds = false; 4188 return true; 4189 } 4190 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4191 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4192 ConstantOffset > 0) { 4193 // Record GEPs with non-zero offsets as candidates for splitting in the 4194 // event that the offset cannot fit into the r+i addressing mode. 4195 // Simple and common case that only one GEP is used in calculating the 4196 // address for the memory access. 4197 Value *Base = AddrInst->getOperand(0); 4198 auto *BaseI = dyn_cast<Instruction>(Base); 4199 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4200 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4201 (BaseI && !isa<CastInst>(BaseI) && 4202 !isa<GetElementPtrInst>(BaseI))) { 4203 // Make sure the parent block allows inserting non-PHI instructions 4204 // before the terminator. 4205 BasicBlock *Parent = 4206 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4207 if (!Parent->getTerminator()->isEHPad()) 4208 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4209 } 4210 } 4211 AddrMode.BaseOffs -= ConstantOffset; 4212 return false; 4213 } 4214 4215 // Save the valid addressing mode in case we can't match. 4216 ExtAddrMode BackupAddrMode = AddrMode; 4217 unsigned OldSize = AddrModeInsts.size(); 4218 4219 // See if the scale and offset amount is valid for this target. 4220 AddrMode.BaseOffs += ConstantOffset; 4221 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4222 AddrMode.InBounds = false; 4223 4224 // Match the base operand of the GEP. 4225 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4226 // If it couldn't be matched, just stuff the value in a register. 4227 if (AddrMode.HasBaseReg) { 4228 AddrMode = BackupAddrMode; 4229 AddrModeInsts.resize(OldSize); 4230 return false; 4231 } 4232 AddrMode.HasBaseReg = true; 4233 AddrMode.BaseReg = AddrInst->getOperand(0); 4234 } 4235 4236 // Match the remaining variable portion of the GEP. 4237 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4238 Depth)) { 4239 // If it couldn't be matched, try stuffing the base into a register 4240 // instead of matching it, and retrying the match of the scale. 4241 AddrMode = BackupAddrMode; 4242 AddrModeInsts.resize(OldSize); 4243 if (AddrMode.HasBaseReg) 4244 return false; 4245 AddrMode.HasBaseReg = true; 4246 AddrMode.BaseReg = AddrInst->getOperand(0); 4247 AddrMode.BaseOffs += ConstantOffset; 4248 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4249 VariableScale, Depth)) { 4250 // If even that didn't work, bail. 4251 AddrMode = BackupAddrMode; 4252 AddrModeInsts.resize(OldSize); 4253 return false; 4254 } 4255 } 4256 4257 return true; 4258 } 4259 case Instruction::SExt: 4260 case Instruction::ZExt: { 4261 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4262 if (!Ext) 4263 return false; 4264 4265 // Try to move this ext out of the way of the addressing mode. 4266 // Ask for a method for doing so. 4267 TypePromotionHelper::Action TPH = 4268 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4269 if (!TPH) 4270 return false; 4271 4272 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4273 TPT.getRestorationPoint(); 4274 unsigned CreatedInstsCost = 0; 4275 unsigned ExtCost = !TLI.isExtFree(Ext); 4276 Value *PromotedOperand = 4277 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4278 // SExt has been moved away. 4279 // Thus either it will be rematched later in the recursive calls or it is 4280 // gone. Anyway, we must not fold it into the addressing mode at this point. 4281 // E.g., 4282 // op = add opnd, 1 4283 // idx = ext op 4284 // addr = gep base, idx 4285 // is now: 4286 // promotedOpnd = ext opnd <- no match here 4287 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4288 // addr = gep base, op <- match 4289 if (MovedAway) 4290 *MovedAway = true; 4291 4292 assert(PromotedOperand && 4293 "TypePromotionHelper should have filtered out those cases"); 4294 4295 ExtAddrMode BackupAddrMode = AddrMode; 4296 unsigned OldSize = AddrModeInsts.size(); 4297 4298 if (!matchAddr(PromotedOperand, Depth) || 4299 // The total of the new cost is equal to the cost of the created 4300 // instructions. 4301 // The total of the old cost is equal to the cost of the extension plus 4302 // what we have saved in the addressing mode. 4303 !isPromotionProfitable(CreatedInstsCost, 4304 ExtCost + (AddrModeInsts.size() - OldSize), 4305 PromotedOperand)) { 4306 AddrMode = BackupAddrMode; 4307 AddrModeInsts.resize(OldSize); 4308 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4309 TPT.rollback(LastKnownGood); 4310 return false; 4311 } 4312 return true; 4313 } 4314 } 4315 return false; 4316 } 4317 4318 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4319 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4320 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4321 /// for the target. 4322 /// 4323 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4324 // Start a transaction at this point that we will rollback if the matching 4325 // fails. 4326 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4327 TPT.getRestorationPoint(); 4328 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4329 // Fold in immediates if legal for the target. 4330 AddrMode.BaseOffs += CI->getSExtValue(); 4331 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4332 return true; 4333 AddrMode.BaseOffs -= CI->getSExtValue(); 4334 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4335 // If this is a global variable, try to fold it into the addressing mode. 4336 if (!AddrMode.BaseGV) { 4337 AddrMode.BaseGV = GV; 4338 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4339 return true; 4340 AddrMode.BaseGV = nullptr; 4341 } 4342 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4343 ExtAddrMode BackupAddrMode = AddrMode; 4344 unsigned OldSize = AddrModeInsts.size(); 4345 4346 // Check to see if it is possible to fold this operation. 4347 bool MovedAway = false; 4348 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4349 // This instruction may have been moved away. If so, there is nothing 4350 // to check here. 4351 if (MovedAway) 4352 return true; 4353 // Okay, it's possible to fold this. Check to see if it is actually 4354 // *profitable* to do so. We use a simple cost model to avoid increasing 4355 // register pressure too much. 4356 if (I->hasOneUse() || 4357 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4358 AddrModeInsts.push_back(I); 4359 return true; 4360 } 4361 4362 // It isn't profitable to do this, roll back. 4363 //cerr << "NOT FOLDING: " << *I; 4364 AddrMode = BackupAddrMode; 4365 AddrModeInsts.resize(OldSize); 4366 TPT.rollback(LastKnownGood); 4367 } 4368 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4369 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4370 return true; 4371 TPT.rollback(LastKnownGood); 4372 } else if (isa<ConstantPointerNull>(Addr)) { 4373 // Null pointer gets folded without affecting the addressing mode. 4374 return true; 4375 } 4376 4377 // Worse case, the target should support [reg] addressing modes. :) 4378 if (!AddrMode.HasBaseReg) { 4379 AddrMode.HasBaseReg = true; 4380 AddrMode.BaseReg = Addr; 4381 // Still check for legality in case the target supports [imm] but not [i+r]. 4382 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4383 return true; 4384 AddrMode.HasBaseReg = false; 4385 AddrMode.BaseReg = nullptr; 4386 } 4387 4388 // If the base register is already taken, see if we can do [r+r]. 4389 if (AddrMode.Scale == 0) { 4390 AddrMode.Scale = 1; 4391 AddrMode.ScaledReg = Addr; 4392 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4393 return true; 4394 AddrMode.Scale = 0; 4395 AddrMode.ScaledReg = nullptr; 4396 } 4397 // Couldn't match. 4398 TPT.rollback(LastKnownGood); 4399 return false; 4400 } 4401 4402 /// Check to see if all uses of OpVal by the specified inline asm call are due 4403 /// to memory operands. If so, return true, otherwise return false. 4404 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4405 const TargetLowering &TLI, 4406 const TargetRegisterInfo &TRI) { 4407 const Function *F = CI->getFunction(); 4408 TargetLowering::AsmOperandInfoVector TargetConstraints = 4409 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4410 ImmutableCallSite(CI)); 4411 4412 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4413 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4414 4415 // Compute the constraint code and ConstraintType to use. 4416 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4417 4418 // If this asm operand is our Value*, and if it isn't an indirect memory 4419 // operand, we can't fold it! 4420 if (OpInfo.CallOperandVal == OpVal && 4421 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4422 !OpInfo.isIndirect)) 4423 return false; 4424 } 4425 4426 return true; 4427 } 4428 4429 // Max number of memory uses to look at before aborting the search to conserve 4430 // compile time. 4431 static constexpr int MaxMemoryUsesToScan = 20; 4432 4433 /// Recursively walk all the uses of I until we find a memory use. 4434 /// If we find an obviously non-foldable instruction, return true. 4435 /// Add the ultimately found memory instructions to MemoryUses. 4436 static bool FindAllMemoryUses( 4437 Instruction *I, 4438 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4439 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4440 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4441 // If we already considered this instruction, we're done. 4442 if (!ConsideredInsts.insert(I).second) 4443 return false; 4444 4445 // If this is an obviously unfoldable instruction, bail out. 4446 if (!MightBeFoldableInst(I)) 4447 return true; 4448 4449 const bool OptSize = I->getFunction()->hasOptSize(); 4450 4451 // Loop over all the uses, recursively processing them. 4452 for (Use &U : I->uses()) { 4453 // Conservatively return true if we're seeing a large number or a deep chain 4454 // of users. This avoids excessive compilation times in pathological cases. 4455 if (SeenInsts++ >= MaxMemoryUsesToScan) 4456 return true; 4457 4458 Instruction *UserI = cast<Instruction>(U.getUser()); 4459 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4460 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4461 continue; 4462 } 4463 4464 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4465 unsigned opNo = U.getOperandNo(); 4466 if (opNo != StoreInst::getPointerOperandIndex()) 4467 return true; // Storing addr, not into addr. 4468 MemoryUses.push_back(std::make_pair(SI, opNo)); 4469 continue; 4470 } 4471 4472 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4473 unsigned opNo = U.getOperandNo(); 4474 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4475 return true; // Storing addr, not into addr. 4476 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4477 continue; 4478 } 4479 4480 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4481 unsigned opNo = U.getOperandNo(); 4482 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4483 return true; // Storing addr, not into addr. 4484 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4485 continue; 4486 } 4487 4488 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4489 // If this is a cold call, we can sink the addressing calculation into 4490 // the cold path. See optimizeCallInst 4491 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4492 continue; 4493 4494 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4495 if (!IA) return true; 4496 4497 // If this is a memory operand, we're cool, otherwise bail out. 4498 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4499 return true; 4500 continue; 4501 } 4502 4503 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4504 SeenInsts)) 4505 return true; 4506 } 4507 4508 return false; 4509 } 4510 4511 /// Return true if Val is already known to be live at the use site that we're 4512 /// folding it into. If so, there is no cost to include it in the addressing 4513 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4514 /// instruction already. 4515 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4516 Value *KnownLive2) { 4517 // If Val is either of the known-live values, we know it is live! 4518 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4519 return true; 4520 4521 // All values other than instructions and arguments (e.g. constants) are live. 4522 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4523 4524 // If Val is a constant sized alloca in the entry block, it is live, this is 4525 // true because it is just a reference to the stack/frame pointer, which is 4526 // live for the whole function. 4527 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4528 if (AI->isStaticAlloca()) 4529 return true; 4530 4531 // Check to see if this value is already used in the memory instruction's 4532 // block. If so, it's already live into the block at the very least, so we 4533 // can reasonably fold it. 4534 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4535 } 4536 4537 /// It is possible for the addressing mode of the machine to fold the specified 4538 /// instruction into a load or store that ultimately uses it. 4539 /// However, the specified instruction has multiple uses. 4540 /// Given this, it may actually increase register pressure to fold it 4541 /// into the load. For example, consider this code: 4542 /// 4543 /// X = ... 4544 /// Y = X+1 4545 /// use(Y) -> nonload/store 4546 /// Z = Y+1 4547 /// load Z 4548 /// 4549 /// In this case, Y has multiple uses, and can be folded into the load of Z 4550 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4551 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4552 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4553 /// number of computations either. 4554 /// 4555 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4556 /// X was live across 'load Z' for other reasons, we actually *would* want to 4557 /// fold the addressing mode in the Z case. This would make Y die earlier. 4558 bool AddressingModeMatcher:: 4559 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4560 ExtAddrMode &AMAfter) { 4561 if (IgnoreProfitability) return true; 4562 4563 // AMBefore is the addressing mode before this instruction was folded into it, 4564 // and AMAfter is the addressing mode after the instruction was folded. Get 4565 // the set of registers referenced by AMAfter and subtract out those 4566 // referenced by AMBefore: this is the set of values which folding in this 4567 // address extends the lifetime of. 4568 // 4569 // Note that there are only two potential values being referenced here, 4570 // BaseReg and ScaleReg (global addresses are always available, as are any 4571 // folded immediates). 4572 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4573 4574 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4575 // lifetime wasn't extended by adding this instruction. 4576 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4577 BaseReg = nullptr; 4578 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4579 ScaledReg = nullptr; 4580 4581 // If folding this instruction (and it's subexprs) didn't extend any live 4582 // ranges, we're ok with it. 4583 if (!BaseReg && !ScaledReg) 4584 return true; 4585 4586 // If all uses of this instruction can have the address mode sunk into them, 4587 // we can remove the addressing mode and effectively trade one live register 4588 // for another (at worst.) In this context, folding an addressing mode into 4589 // the use is just a particularly nice way of sinking it. 4590 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4591 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4592 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4593 return false; // Has a non-memory, non-foldable use! 4594 4595 // Now that we know that all uses of this instruction are part of a chain of 4596 // computation involving only operations that could theoretically be folded 4597 // into a memory use, loop over each of these memory operation uses and see 4598 // if they could *actually* fold the instruction. The assumption is that 4599 // addressing modes are cheap and that duplicating the computation involved 4600 // many times is worthwhile, even on a fastpath. For sinking candidates 4601 // (i.e. cold call sites), this serves as a way to prevent excessive code 4602 // growth since most architectures have some reasonable small and fast way to 4603 // compute an effective address. (i.e LEA on x86) 4604 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4605 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4606 Instruction *User = MemoryUses[i].first; 4607 unsigned OpNo = MemoryUses[i].second; 4608 4609 // Get the access type of this use. If the use isn't a pointer, we don't 4610 // know what it accesses. 4611 Value *Address = User->getOperand(OpNo); 4612 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4613 if (!AddrTy) 4614 return false; 4615 Type *AddressAccessTy = AddrTy->getElementType(); 4616 unsigned AS = AddrTy->getAddressSpace(); 4617 4618 // Do a match against the root of this address, ignoring profitability. This 4619 // will tell us if the addressing mode for the memory operation will 4620 // *actually* cover the shared instruction. 4621 ExtAddrMode Result; 4622 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4623 0); 4624 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4625 TPT.getRestorationPoint(); 4626 AddressingModeMatcher Matcher( 4627 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4628 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4629 Matcher.IgnoreProfitability = true; 4630 bool Success = Matcher.matchAddr(Address, 0); 4631 (void)Success; assert(Success && "Couldn't select *anything*?"); 4632 4633 // The match was to check the profitability, the changes made are not 4634 // part of the original matcher. Therefore, they should be dropped 4635 // otherwise the original matcher will not present the right state. 4636 TPT.rollback(LastKnownGood); 4637 4638 // If the match didn't cover I, then it won't be shared by it. 4639 if (!is_contained(MatchedAddrModeInsts, I)) 4640 return false; 4641 4642 MatchedAddrModeInsts.clear(); 4643 } 4644 4645 return true; 4646 } 4647 4648 /// Return true if the specified values are defined in a 4649 /// different basic block than BB. 4650 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4651 if (Instruction *I = dyn_cast<Instruction>(V)) 4652 return I->getParent() != BB; 4653 return false; 4654 } 4655 4656 /// Sink addressing mode computation immediate before MemoryInst if doing so 4657 /// can be done without increasing register pressure. The need for the 4658 /// register pressure constraint means this can end up being an all or nothing 4659 /// decision for all uses of the same addressing computation. 4660 /// 4661 /// Load and Store Instructions often have addressing modes that can do 4662 /// significant amounts of computation. As such, instruction selection will try 4663 /// to get the load or store to do as much computation as possible for the 4664 /// program. The problem is that isel can only see within a single block. As 4665 /// such, we sink as much legal addressing mode work into the block as possible. 4666 /// 4667 /// This method is used to optimize both load/store and inline asms with memory 4668 /// operands. It's also used to sink addressing computations feeding into cold 4669 /// call sites into their (cold) basic block. 4670 /// 4671 /// The motivation for handling sinking into cold blocks is that doing so can 4672 /// both enable other address mode sinking (by satisfying the register pressure 4673 /// constraint above), and reduce register pressure globally (by removing the 4674 /// addressing mode computation from the fast path entirely.). 4675 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4676 Type *AccessTy, unsigned AddrSpace) { 4677 Value *Repl = Addr; 4678 4679 // Try to collapse single-value PHI nodes. This is necessary to undo 4680 // unprofitable PRE transformations. 4681 SmallVector<Value*, 8> worklist; 4682 SmallPtrSet<Value*, 16> Visited; 4683 worklist.push_back(Addr); 4684 4685 // Use a worklist to iteratively look through PHI and select nodes, and 4686 // ensure that the addressing mode obtained from the non-PHI/select roots of 4687 // the graph are compatible. 4688 bool PhiOrSelectSeen = false; 4689 SmallVector<Instruction*, 16> AddrModeInsts; 4690 const SimplifyQuery SQ(*DL, TLInfo); 4691 AddressingModeCombiner AddrModes(SQ, Addr); 4692 TypePromotionTransaction TPT(RemovedInsts); 4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4694 TPT.getRestorationPoint(); 4695 while (!worklist.empty()) { 4696 Value *V = worklist.back(); 4697 worklist.pop_back(); 4698 4699 // We allow traversing cyclic Phi nodes. 4700 // In case of success after this loop we ensure that traversing through 4701 // Phi nodes ends up with all cases to compute address of the form 4702 // BaseGV + Base + Scale * Index + Offset 4703 // where Scale and Offset are constans and BaseGV, Base and Index 4704 // are exactly the same Values in all cases. 4705 // It means that BaseGV, Scale and Offset dominate our memory instruction 4706 // and have the same value as they had in address computation represented 4707 // as Phi. So we can safely sink address computation to memory instruction. 4708 if (!Visited.insert(V).second) 4709 continue; 4710 4711 // For a PHI node, push all of its incoming values. 4712 if (PHINode *P = dyn_cast<PHINode>(V)) { 4713 for (Value *IncValue : P->incoming_values()) 4714 worklist.push_back(IncValue); 4715 PhiOrSelectSeen = true; 4716 continue; 4717 } 4718 // Similar for select. 4719 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4720 worklist.push_back(SI->getFalseValue()); 4721 worklist.push_back(SI->getTrueValue()); 4722 PhiOrSelectSeen = true; 4723 continue; 4724 } 4725 4726 // For non-PHIs, determine the addressing mode being computed. Note that 4727 // the result may differ depending on what other uses our candidate 4728 // addressing instructions might have. 4729 AddrModeInsts.clear(); 4730 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4731 0); 4732 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4733 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4734 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4735 4736 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4737 if (GEP && !NewGEPBases.count(GEP)) { 4738 // If splitting the underlying data structure can reduce the offset of a 4739 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4740 // previously split data structures. 4741 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4742 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4743 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4744 } 4745 4746 NewAddrMode.OriginalValue = V; 4747 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4748 break; 4749 } 4750 4751 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4752 // or we have multiple but either couldn't combine them or combining them 4753 // wouldn't do anything useful, bail out now. 4754 if (!AddrModes.combineAddrModes()) { 4755 TPT.rollback(LastKnownGood); 4756 return false; 4757 } 4758 TPT.commit(); 4759 4760 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4761 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4762 4763 // If all the instructions matched are already in this BB, don't do anything. 4764 // If we saw a Phi node then it is not local definitely, and if we saw a select 4765 // then we want to push the address calculation past it even if it's already 4766 // in this BB. 4767 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4768 return IsNonLocalValue(V, MemoryInst->getParent()); 4769 })) { 4770 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4771 << "\n"); 4772 return false; 4773 } 4774 4775 // Insert this computation right after this user. Since our caller is 4776 // scanning from the top of the BB to the bottom, reuse of the expr are 4777 // guaranteed to happen later. 4778 IRBuilder<> Builder(MemoryInst); 4779 4780 // Now that we determined the addressing expression we want to use and know 4781 // that we have to sink it into this block. Check to see if we have already 4782 // done this for some other load/store instr in this block. If so, reuse 4783 // the computation. Before attempting reuse, check if the address is valid 4784 // as it may have been erased. 4785 4786 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4787 4788 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4789 if (SunkAddr) { 4790 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4791 << " for " << *MemoryInst << "\n"); 4792 if (SunkAddr->getType() != Addr->getType()) 4793 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4794 } else if (AddrSinkUsingGEPs || 4795 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4796 // By default, we use the GEP-based method when AA is used later. This 4797 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4798 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4799 << " for " << *MemoryInst << "\n"); 4800 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4801 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4802 4803 // First, find the pointer. 4804 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4805 ResultPtr = AddrMode.BaseReg; 4806 AddrMode.BaseReg = nullptr; 4807 } 4808 4809 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4810 // We can't add more than one pointer together, nor can we scale a 4811 // pointer (both of which seem meaningless). 4812 if (ResultPtr || AddrMode.Scale != 1) 4813 return false; 4814 4815 ResultPtr = AddrMode.ScaledReg; 4816 AddrMode.Scale = 0; 4817 } 4818 4819 // It is only safe to sign extend the BaseReg if we know that the math 4820 // required to create it did not overflow before we extend it. Since 4821 // the original IR value was tossed in favor of a constant back when 4822 // the AddrMode was created we need to bail out gracefully if widths 4823 // do not match instead of extending it. 4824 // 4825 // (See below for code to add the scale.) 4826 if (AddrMode.Scale) { 4827 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4828 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4829 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4830 return false; 4831 } 4832 4833 if (AddrMode.BaseGV) { 4834 if (ResultPtr) 4835 return false; 4836 4837 ResultPtr = AddrMode.BaseGV; 4838 } 4839 4840 // If the real base value actually came from an inttoptr, then the matcher 4841 // will look through it and provide only the integer value. In that case, 4842 // use it here. 4843 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4844 if (!ResultPtr && AddrMode.BaseReg) { 4845 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4846 "sunkaddr"); 4847 AddrMode.BaseReg = nullptr; 4848 } else if (!ResultPtr && AddrMode.Scale == 1) { 4849 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4850 "sunkaddr"); 4851 AddrMode.Scale = 0; 4852 } 4853 } 4854 4855 if (!ResultPtr && 4856 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4857 SunkAddr = Constant::getNullValue(Addr->getType()); 4858 } else if (!ResultPtr) { 4859 return false; 4860 } else { 4861 Type *I8PtrTy = 4862 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4863 Type *I8Ty = Builder.getInt8Ty(); 4864 4865 // Start with the base register. Do this first so that subsequent address 4866 // matching finds it last, which will prevent it from trying to match it 4867 // as the scaled value in case it happens to be a mul. That would be 4868 // problematic if we've sunk a different mul for the scale, because then 4869 // we'd end up sinking both muls. 4870 if (AddrMode.BaseReg) { 4871 Value *V = AddrMode.BaseReg; 4872 if (V->getType() != IntPtrTy) 4873 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4874 4875 ResultIndex = V; 4876 } 4877 4878 // Add the scale value. 4879 if (AddrMode.Scale) { 4880 Value *V = AddrMode.ScaledReg; 4881 if (V->getType() == IntPtrTy) { 4882 // done. 4883 } else { 4884 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4885 cast<IntegerType>(V->getType())->getBitWidth() && 4886 "We can't transform if ScaledReg is too narrow"); 4887 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4888 } 4889 4890 if (AddrMode.Scale != 1) 4891 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4892 "sunkaddr"); 4893 if (ResultIndex) 4894 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4895 else 4896 ResultIndex = V; 4897 } 4898 4899 // Add in the Base Offset if present. 4900 if (AddrMode.BaseOffs) { 4901 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4902 if (ResultIndex) { 4903 // We need to add this separately from the scale above to help with 4904 // SDAG consecutive load/store merging. 4905 if (ResultPtr->getType() != I8PtrTy) 4906 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4907 ResultPtr = 4908 AddrMode.InBounds 4909 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4910 "sunkaddr") 4911 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4912 } 4913 4914 ResultIndex = V; 4915 } 4916 4917 if (!ResultIndex) { 4918 SunkAddr = ResultPtr; 4919 } else { 4920 if (ResultPtr->getType() != I8PtrTy) 4921 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4922 SunkAddr = 4923 AddrMode.InBounds 4924 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4925 "sunkaddr") 4926 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4927 } 4928 4929 if (SunkAddr->getType() != Addr->getType()) 4930 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4931 } 4932 } else { 4933 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4934 // non-integral pointers, so in that case bail out now. 4935 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4936 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4937 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4938 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4939 if (DL->isNonIntegralPointerType(Addr->getType()) || 4940 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4941 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4942 (AddrMode.BaseGV && 4943 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4944 return false; 4945 4946 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4947 << " for " << *MemoryInst << "\n"); 4948 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4949 Value *Result = nullptr; 4950 4951 // Start with the base register. Do this first so that subsequent address 4952 // matching finds it last, which will prevent it from trying to match it 4953 // as the scaled value in case it happens to be a mul. That would be 4954 // problematic if we've sunk a different mul for the scale, because then 4955 // we'd end up sinking both muls. 4956 if (AddrMode.BaseReg) { 4957 Value *V = AddrMode.BaseReg; 4958 if (V->getType()->isPointerTy()) 4959 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4960 if (V->getType() != IntPtrTy) 4961 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4962 Result = V; 4963 } 4964 4965 // Add the scale value. 4966 if (AddrMode.Scale) { 4967 Value *V = AddrMode.ScaledReg; 4968 if (V->getType() == IntPtrTy) { 4969 // done. 4970 } else if (V->getType()->isPointerTy()) { 4971 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4972 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4973 cast<IntegerType>(V->getType())->getBitWidth()) { 4974 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4975 } else { 4976 // It is only safe to sign extend the BaseReg if we know that the math 4977 // required to create it did not overflow before we extend it. Since 4978 // the original IR value was tossed in favor of a constant back when 4979 // the AddrMode was created we need to bail out gracefully if widths 4980 // do not match instead of extending it. 4981 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4982 if (I && (Result != AddrMode.BaseReg)) 4983 I->eraseFromParent(); 4984 return false; 4985 } 4986 if (AddrMode.Scale != 1) 4987 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4988 "sunkaddr"); 4989 if (Result) 4990 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4991 else 4992 Result = V; 4993 } 4994 4995 // Add in the BaseGV if present. 4996 if (AddrMode.BaseGV) { 4997 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4998 if (Result) 4999 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5000 else 5001 Result = V; 5002 } 5003 5004 // Add in the Base Offset if present. 5005 if (AddrMode.BaseOffs) { 5006 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5007 if (Result) 5008 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5009 else 5010 Result = V; 5011 } 5012 5013 if (!Result) 5014 SunkAddr = Constant::getNullValue(Addr->getType()); 5015 else 5016 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5017 } 5018 5019 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5020 // Store the newly computed address into the cache. In the case we reused a 5021 // value, this should be idempotent. 5022 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5023 5024 // If we have no uses, recursively delete the value and all dead instructions 5025 // using it. 5026 if (Repl->use_empty()) { 5027 // This can cause recursive deletion, which can invalidate our iterator. 5028 // Use a WeakTrackingVH to hold onto it in case this happens. 5029 Value *CurValue = &*CurInstIterator; 5030 WeakTrackingVH IterHandle(CurValue); 5031 BasicBlock *BB = CurInstIterator->getParent(); 5032 5033 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5034 5035 if (IterHandle != CurValue) { 5036 // If the iterator instruction was recursively deleted, start over at the 5037 // start of the block. 5038 CurInstIterator = BB->begin(); 5039 SunkAddrs.clear(); 5040 } 5041 } 5042 ++NumMemoryInsts; 5043 return true; 5044 } 5045 5046 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5047 /// address computing into the block when possible / profitable. 5048 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5049 bool MadeChange = false; 5050 5051 const TargetRegisterInfo *TRI = 5052 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5053 TargetLowering::AsmOperandInfoVector TargetConstraints = 5054 TLI->ParseConstraints(*DL, TRI, CS); 5055 unsigned ArgNo = 0; 5056 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5057 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5058 5059 // Compute the constraint code and ConstraintType to use. 5060 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5061 5062 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5063 OpInfo.isIndirect) { 5064 Value *OpVal = CS->getArgOperand(ArgNo++); 5065 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5066 } else if (OpInfo.Type == InlineAsm::isInput) 5067 ArgNo++; 5068 } 5069 5070 return MadeChange; 5071 } 5072 5073 /// Check if all the uses of \p Val are equivalent (or free) zero or 5074 /// sign extensions. 5075 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5076 assert(!Val->use_empty() && "Input must have at least one use"); 5077 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5078 bool IsSExt = isa<SExtInst>(FirstUser); 5079 Type *ExtTy = FirstUser->getType(); 5080 for (const User *U : Val->users()) { 5081 const Instruction *UI = cast<Instruction>(U); 5082 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5083 return false; 5084 Type *CurTy = UI->getType(); 5085 // Same input and output types: Same instruction after CSE. 5086 if (CurTy == ExtTy) 5087 continue; 5088 5089 // If IsSExt is true, we are in this situation: 5090 // a = Val 5091 // b = sext ty1 a to ty2 5092 // c = sext ty1 a to ty3 5093 // Assuming ty2 is shorter than ty3, this could be turned into: 5094 // a = Val 5095 // b = sext ty1 a to ty2 5096 // c = sext ty2 b to ty3 5097 // However, the last sext is not free. 5098 if (IsSExt) 5099 return false; 5100 5101 // This is a ZExt, maybe this is free to extend from one type to another. 5102 // In that case, we would not account for a different use. 5103 Type *NarrowTy; 5104 Type *LargeTy; 5105 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5106 CurTy->getScalarType()->getIntegerBitWidth()) { 5107 NarrowTy = CurTy; 5108 LargeTy = ExtTy; 5109 } else { 5110 NarrowTy = ExtTy; 5111 LargeTy = CurTy; 5112 } 5113 5114 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5115 return false; 5116 } 5117 // All uses are the same or can be derived from one another for free. 5118 return true; 5119 } 5120 5121 /// Try to speculatively promote extensions in \p Exts and continue 5122 /// promoting through newly promoted operands recursively as far as doing so is 5123 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5124 /// When some promotion happened, \p TPT contains the proper state to revert 5125 /// them. 5126 /// 5127 /// \return true if some promotion happened, false otherwise. 5128 bool CodeGenPrepare::tryToPromoteExts( 5129 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5130 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5131 unsigned CreatedInstsCost) { 5132 bool Promoted = false; 5133 5134 // Iterate over all the extensions to try to promote them. 5135 for (auto I : Exts) { 5136 // Early check if we directly have ext(load). 5137 if (isa<LoadInst>(I->getOperand(0))) { 5138 ProfitablyMovedExts.push_back(I); 5139 continue; 5140 } 5141 5142 // Check whether or not we want to do any promotion. The reason we have 5143 // this check inside the for loop is to catch the case where an extension 5144 // is directly fed by a load because in such case the extension can be moved 5145 // up without any promotion on its operands. 5146 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5147 return false; 5148 5149 // Get the action to perform the promotion. 5150 TypePromotionHelper::Action TPH = 5151 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5152 // Check if we can promote. 5153 if (!TPH) { 5154 // Save the current extension as we cannot move up through its operand. 5155 ProfitablyMovedExts.push_back(I); 5156 continue; 5157 } 5158 5159 // Save the current state. 5160 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5161 TPT.getRestorationPoint(); 5162 SmallVector<Instruction *, 4> NewExts; 5163 unsigned NewCreatedInstsCost = 0; 5164 unsigned ExtCost = !TLI->isExtFree(I); 5165 // Promote. 5166 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5167 &NewExts, nullptr, *TLI); 5168 assert(PromotedVal && 5169 "TypePromotionHelper should have filtered out those cases"); 5170 5171 // We would be able to merge only one extension in a load. 5172 // Therefore, if we have more than 1 new extension we heuristically 5173 // cut this search path, because it means we degrade the code quality. 5174 // With exactly 2, the transformation is neutral, because we will merge 5175 // one extension but leave one. However, we optimistically keep going, 5176 // because the new extension may be removed too. 5177 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5178 // FIXME: It would be possible to propagate a negative value instead of 5179 // conservatively ceiling it to 0. 5180 TotalCreatedInstsCost = 5181 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5182 if (!StressExtLdPromotion && 5183 (TotalCreatedInstsCost > 1 || 5184 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5185 // This promotion is not profitable, rollback to the previous state, and 5186 // save the current extension in ProfitablyMovedExts as the latest 5187 // speculative promotion turned out to be unprofitable. 5188 TPT.rollback(LastKnownGood); 5189 ProfitablyMovedExts.push_back(I); 5190 continue; 5191 } 5192 // Continue promoting NewExts as far as doing so is profitable. 5193 SmallVector<Instruction *, 2> NewlyMovedExts; 5194 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5195 bool NewPromoted = false; 5196 for (auto ExtInst : NewlyMovedExts) { 5197 Instruction *MovedExt = cast<Instruction>(ExtInst); 5198 Value *ExtOperand = MovedExt->getOperand(0); 5199 // If we have reached to a load, we need this extra profitability check 5200 // as it could potentially be merged into an ext(load). 5201 if (isa<LoadInst>(ExtOperand) && 5202 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5203 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5204 continue; 5205 5206 ProfitablyMovedExts.push_back(MovedExt); 5207 NewPromoted = true; 5208 } 5209 5210 // If none of speculative promotions for NewExts is profitable, rollback 5211 // and save the current extension (I) as the last profitable extension. 5212 if (!NewPromoted) { 5213 TPT.rollback(LastKnownGood); 5214 ProfitablyMovedExts.push_back(I); 5215 continue; 5216 } 5217 // The promotion is profitable. 5218 Promoted = true; 5219 } 5220 return Promoted; 5221 } 5222 5223 /// Merging redundant sexts when one is dominating the other. 5224 bool CodeGenPrepare::mergeSExts(Function &F) { 5225 bool Changed = false; 5226 for (auto &Entry : ValToSExtendedUses) { 5227 SExts &Insts = Entry.second; 5228 SExts CurPts; 5229 for (Instruction *Inst : Insts) { 5230 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5231 Inst->getOperand(0) != Entry.first) 5232 continue; 5233 bool inserted = false; 5234 for (auto &Pt : CurPts) { 5235 if (getDT(F).dominates(Inst, Pt)) { 5236 Pt->replaceAllUsesWith(Inst); 5237 RemovedInsts.insert(Pt); 5238 Pt->removeFromParent(); 5239 Pt = Inst; 5240 inserted = true; 5241 Changed = true; 5242 break; 5243 } 5244 if (!getDT(F).dominates(Pt, Inst)) 5245 // Give up if we need to merge in a common dominator as the 5246 // experiments show it is not profitable. 5247 continue; 5248 Inst->replaceAllUsesWith(Pt); 5249 RemovedInsts.insert(Inst); 5250 Inst->removeFromParent(); 5251 inserted = true; 5252 Changed = true; 5253 break; 5254 } 5255 if (!inserted) 5256 CurPts.push_back(Inst); 5257 } 5258 } 5259 return Changed; 5260 } 5261 5262 // Spliting large data structures so that the GEPs accessing them can have 5263 // smaller offsets so that they can be sunk to the same blocks as their users. 5264 // For example, a large struct starting from %base is splitted into two parts 5265 // where the second part starts from %new_base. 5266 // 5267 // Before: 5268 // BB0: 5269 // %base = 5270 // 5271 // BB1: 5272 // %gep0 = gep %base, off0 5273 // %gep1 = gep %base, off1 5274 // %gep2 = gep %base, off2 5275 // 5276 // BB2: 5277 // %load1 = load %gep0 5278 // %load2 = load %gep1 5279 // %load3 = load %gep2 5280 // 5281 // After: 5282 // BB0: 5283 // %base = 5284 // %new_base = gep %base, off0 5285 // 5286 // BB1: 5287 // %new_gep0 = %new_base 5288 // %new_gep1 = gep %new_base, off1 - off0 5289 // %new_gep2 = gep %new_base, off2 - off0 5290 // 5291 // BB2: 5292 // %load1 = load i32, i32* %new_gep0 5293 // %load2 = load i32, i32* %new_gep1 5294 // %load3 = load i32, i32* %new_gep2 5295 // 5296 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5297 // their offsets are smaller enough to fit into the addressing mode. 5298 bool CodeGenPrepare::splitLargeGEPOffsets() { 5299 bool Changed = false; 5300 for (auto &Entry : LargeOffsetGEPMap) { 5301 Value *OldBase = Entry.first; 5302 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5303 &LargeOffsetGEPs = Entry.second; 5304 auto compareGEPOffset = 5305 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5306 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5307 if (LHS.first == RHS.first) 5308 return false; 5309 if (LHS.second != RHS.second) 5310 return LHS.second < RHS.second; 5311 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5312 }; 5313 // Sorting all the GEPs of the same data structures based on the offsets. 5314 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5315 LargeOffsetGEPs.erase( 5316 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5317 LargeOffsetGEPs.end()); 5318 // Skip if all the GEPs have the same offsets. 5319 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5320 continue; 5321 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5322 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5323 Value *NewBaseGEP = nullptr; 5324 5325 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5326 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5327 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5328 int64_t Offset = LargeOffsetGEP->second; 5329 if (Offset != BaseOffset) { 5330 TargetLowering::AddrMode AddrMode; 5331 AddrMode.BaseOffs = Offset - BaseOffset; 5332 // The result type of the GEP might not be the type of the memory 5333 // access. 5334 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5335 GEP->getResultElementType(), 5336 GEP->getAddressSpace())) { 5337 // We need to create a new base if the offset to the current base is 5338 // too large to fit into the addressing mode. So, a very large struct 5339 // may be splitted into several parts. 5340 BaseGEP = GEP; 5341 BaseOffset = Offset; 5342 NewBaseGEP = nullptr; 5343 } 5344 } 5345 5346 // Generate a new GEP to replace the current one. 5347 LLVMContext &Ctx = GEP->getContext(); 5348 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5349 Type *I8PtrTy = 5350 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5351 Type *I8Ty = Type::getInt8Ty(Ctx); 5352 5353 if (!NewBaseGEP) { 5354 // Create a new base if we don't have one yet. Find the insertion 5355 // pointer for the new base first. 5356 BasicBlock::iterator NewBaseInsertPt; 5357 BasicBlock *NewBaseInsertBB; 5358 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5359 // If the base of the struct is an instruction, the new base will be 5360 // inserted close to it. 5361 NewBaseInsertBB = BaseI->getParent(); 5362 if (isa<PHINode>(BaseI)) 5363 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5364 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5365 NewBaseInsertBB = 5366 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5367 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5368 } else 5369 NewBaseInsertPt = std::next(BaseI->getIterator()); 5370 } else { 5371 // If the current base is an argument or global value, the new base 5372 // will be inserted to the entry block. 5373 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5374 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5375 } 5376 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5377 // Create a new base. 5378 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5379 NewBaseGEP = OldBase; 5380 if (NewBaseGEP->getType() != I8PtrTy) 5381 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5382 NewBaseGEP = 5383 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5384 NewGEPBases.insert(NewBaseGEP); 5385 } 5386 5387 IRBuilder<> Builder(GEP); 5388 Value *NewGEP = NewBaseGEP; 5389 if (Offset == BaseOffset) { 5390 if (GEP->getType() != I8PtrTy) 5391 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5392 } else { 5393 // Calculate the new offset for the new GEP. 5394 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5395 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5396 5397 if (GEP->getType() != I8PtrTy) 5398 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5399 } 5400 GEP->replaceAllUsesWith(NewGEP); 5401 LargeOffsetGEPID.erase(GEP); 5402 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5403 GEP->eraseFromParent(); 5404 Changed = true; 5405 } 5406 } 5407 return Changed; 5408 } 5409 5410 /// Return true, if an ext(load) can be formed from an extension in 5411 /// \p MovedExts. 5412 bool CodeGenPrepare::canFormExtLd( 5413 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5414 Instruction *&Inst, bool HasPromoted) { 5415 for (auto *MovedExtInst : MovedExts) { 5416 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5417 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5418 Inst = MovedExtInst; 5419 break; 5420 } 5421 } 5422 if (!LI) 5423 return false; 5424 5425 // If they're already in the same block, there's nothing to do. 5426 // Make the cheap checks first if we did not promote. 5427 // If we promoted, we need to check if it is indeed profitable. 5428 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5429 return false; 5430 5431 return TLI->isExtLoad(LI, Inst, *DL); 5432 } 5433 5434 /// Move a zext or sext fed by a load into the same basic block as the load, 5435 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5436 /// extend into the load. 5437 /// 5438 /// E.g., 5439 /// \code 5440 /// %ld = load i32* %addr 5441 /// %add = add nuw i32 %ld, 4 5442 /// %zext = zext i32 %add to i64 5443 // \endcode 5444 /// => 5445 /// \code 5446 /// %ld = load i32* %addr 5447 /// %zext = zext i32 %ld to i64 5448 /// %add = add nuw i64 %zext, 4 5449 /// \encode 5450 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5451 /// allow us to match zext(load i32*) to i64. 5452 /// 5453 /// Also, try to promote the computations used to obtain a sign extended 5454 /// value used into memory accesses. 5455 /// E.g., 5456 /// \code 5457 /// a = add nsw i32 b, 3 5458 /// d = sext i32 a to i64 5459 /// e = getelementptr ..., i64 d 5460 /// \endcode 5461 /// => 5462 /// \code 5463 /// f = sext i32 b to i64 5464 /// a = add nsw i64 f, 3 5465 /// e = getelementptr ..., i64 a 5466 /// \endcode 5467 /// 5468 /// \p Inst[in/out] the extension may be modified during the process if some 5469 /// promotions apply. 5470 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5471 // ExtLoad formation and address type promotion infrastructure requires TLI to 5472 // be effective. 5473 if (!TLI) 5474 return false; 5475 5476 bool AllowPromotionWithoutCommonHeader = false; 5477 /// See if it is an interesting sext operations for the address type 5478 /// promotion before trying to promote it, e.g., the ones with the right 5479 /// type and used in memory accesses. 5480 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5481 *Inst, AllowPromotionWithoutCommonHeader); 5482 TypePromotionTransaction TPT(RemovedInsts); 5483 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5484 TPT.getRestorationPoint(); 5485 SmallVector<Instruction *, 1> Exts; 5486 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5487 Exts.push_back(Inst); 5488 5489 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5490 5491 // Look for a load being extended. 5492 LoadInst *LI = nullptr; 5493 Instruction *ExtFedByLoad; 5494 5495 // Try to promote a chain of computation if it allows to form an extended 5496 // load. 5497 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5498 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5499 TPT.commit(); 5500 // Move the extend into the same block as the load 5501 ExtFedByLoad->moveAfter(LI); 5502 // CGP does not check if the zext would be speculatively executed when moved 5503 // to the same basic block as the load. Preserving its original location 5504 // would pessimize the debugging experience, as well as negatively impact 5505 // the quality of sample pgo. We don't want to use "line 0" as that has a 5506 // size cost in the line-table section and logically the zext can be seen as 5507 // part of the load. Therefore we conservatively reuse the same debug 5508 // location for the load and the zext. 5509 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5510 ++NumExtsMoved; 5511 Inst = ExtFedByLoad; 5512 return true; 5513 } 5514 5515 // Continue promoting SExts if known as considerable depending on targets. 5516 if (ATPConsiderable && 5517 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5518 HasPromoted, TPT, SpeculativelyMovedExts)) 5519 return true; 5520 5521 TPT.rollback(LastKnownGood); 5522 return false; 5523 } 5524 5525 // Perform address type promotion if doing so is profitable. 5526 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5527 // instructions that sign extended the same initial value. However, if 5528 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5529 // extension is just profitable. 5530 bool CodeGenPrepare::performAddressTypePromotion( 5531 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5532 bool HasPromoted, TypePromotionTransaction &TPT, 5533 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5534 bool Promoted = false; 5535 SmallPtrSet<Instruction *, 1> UnhandledExts; 5536 bool AllSeenFirst = true; 5537 for (auto I : SpeculativelyMovedExts) { 5538 Value *HeadOfChain = I->getOperand(0); 5539 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5540 SeenChainsForSExt.find(HeadOfChain); 5541 // If there is an unhandled SExt which has the same header, try to promote 5542 // it as well. 5543 if (AlreadySeen != SeenChainsForSExt.end()) { 5544 if (AlreadySeen->second != nullptr) 5545 UnhandledExts.insert(AlreadySeen->second); 5546 AllSeenFirst = false; 5547 } 5548 } 5549 5550 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5551 SpeculativelyMovedExts.size() == 1)) { 5552 TPT.commit(); 5553 if (HasPromoted) 5554 Promoted = true; 5555 for (auto I : SpeculativelyMovedExts) { 5556 Value *HeadOfChain = I->getOperand(0); 5557 SeenChainsForSExt[HeadOfChain] = nullptr; 5558 ValToSExtendedUses[HeadOfChain].push_back(I); 5559 } 5560 // Update Inst as promotion happen. 5561 Inst = SpeculativelyMovedExts.pop_back_val(); 5562 } else { 5563 // This is the first chain visited from the header, keep the current chain 5564 // as unhandled. Defer to promote this until we encounter another SExt 5565 // chain derived from the same header. 5566 for (auto I : SpeculativelyMovedExts) { 5567 Value *HeadOfChain = I->getOperand(0); 5568 SeenChainsForSExt[HeadOfChain] = Inst; 5569 } 5570 return false; 5571 } 5572 5573 if (!AllSeenFirst && !UnhandledExts.empty()) 5574 for (auto VisitedSExt : UnhandledExts) { 5575 if (RemovedInsts.count(VisitedSExt)) 5576 continue; 5577 TypePromotionTransaction TPT(RemovedInsts); 5578 SmallVector<Instruction *, 1> Exts; 5579 SmallVector<Instruction *, 2> Chains; 5580 Exts.push_back(VisitedSExt); 5581 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5582 TPT.commit(); 5583 if (HasPromoted) 5584 Promoted = true; 5585 for (auto I : Chains) { 5586 Value *HeadOfChain = I->getOperand(0); 5587 // Mark this as handled. 5588 SeenChainsForSExt[HeadOfChain] = nullptr; 5589 ValToSExtendedUses[HeadOfChain].push_back(I); 5590 } 5591 } 5592 return Promoted; 5593 } 5594 5595 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5596 BasicBlock *DefBB = I->getParent(); 5597 5598 // If the result of a {s|z}ext and its source are both live out, rewrite all 5599 // other uses of the source with result of extension. 5600 Value *Src = I->getOperand(0); 5601 if (Src->hasOneUse()) 5602 return false; 5603 5604 // Only do this xform if truncating is free. 5605 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5606 return false; 5607 5608 // Only safe to perform the optimization if the source is also defined in 5609 // this block. 5610 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5611 return false; 5612 5613 bool DefIsLiveOut = false; 5614 for (User *U : I->users()) { 5615 Instruction *UI = cast<Instruction>(U); 5616 5617 // Figure out which BB this ext is used in. 5618 BasicBlock *UserBB = UI->getParent(); 5619 if (UserBB == DefBB) continue; 5620 DefIsLiveOut = true; 5621 break; 5622 } 5623 if (!DefIsLiveOut) 5624 return false; 5625 5626 // Make sure none of the uses are PHI nodes. 5627 for (User *U : Src->users()) { 5628 Instruction *UI = cast<Instruction>(U); 5629 BasicBlock *UserBB = UI->getParent(); 5630 if (UserBB == DefBB) continue; 5631 // Be conservative. We don't want this xform to end up introducing 5632 // reloads just before load / store instructions. 5633 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5634 return false; 5635 } 5636 5637 // InsertedTruncs - Only insert one trunc in each block once. 5638 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5639 5640 bool MadeChange = false; 5641 for (Use &U : Src->uses()) { 5642 Instruction *User = cast<Instruction>(U.getUser()); 5643 5644 // Figure out which BB this ext is used in. 5645 BasicBlock *UserBB = User->getParent(); 5646 if (UserBB == DefBB) continue; 5647 5648 // Both src and def are live in this block. Rewrite the use. 5649 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5650 5651 if (!InsertedTrunc) { 5652 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5653 assert(InsertPt != UserBB->end()); 5654 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5655 InsertedInsts.insert(InsertedTrunc); 5656 } 5657 5658 // Replace a use of the {s|z}ext source with a use of the result. 5659 U = InsertedTrunc; 5660 ++NumExtUses; 5661 MadeChange = true; 5662 } 5663 5664 return MadeChange; 5665 } 5666 5667 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5668 // just after the load if the target can fold this into one extload instruction, 5669 // with the hope of eliminating some of the other later "and" instructions using 5670 // the loaded value. "and"s that are made trivially redundant by the insertion 5671 // of the new "and" are removed by this function, while others (e.g. those whose 5672 // path from the load goes through a phi) are left for isel to potentially 5673 // remove. 5674 // 5675 // For example: 5676 // 5677 // b0: 5678 // x = load i32 5679 // ... 5680 // b1: 5681 // y = and x, 0xff 5682 // z = use y 5683 // 5684 // becomes: 5685 // 5686 // b0: 5687 // x = load i32 5688 // x' = and x, 0xff 5689 // ... 5690 // b1: 5691 // z = use x' 5692 // 5693 // whereas: 5694 // 5695 // b0: 5696 // x1 = load i32 5697 // ... 5698 // b1: 5699 // x2 = load i32 5700 // ... 5701 // b2: 5702 // x = phi x1, x2 5703 // y = and x, 0xff 5704 // 5705 // becomes (after a call to optimizeLoadExt for each load): 5706 // 5707 // b0: 5708 // x1 = load i32 5709 // x1' = and x1, 0xff 5710 // ... 5711 // b1: 5712 // x2 = load i32 5713 // x2' = and x2, 0xff 5714 // ... 5715 // b2: 5716 // x = phi x1', x2' 5717 // y = and x, 0xff 5718 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5719 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5720 return false; 5721 5722 // Skip loads we've already transformed. 5723 if (Load->hasOneUse() && 5724 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5725 return false; 5726 5727 // Look at all uses of Load, looking through phis, to determine how many bits 5728 // of the loaded value are needed. 5729 SmallVector<Instruction *, 8> WorkList; 5730 SmallPtrSet<Instruction *, 16> Visited; 5731 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5732 for (auto *U : Load->users()) 5733 WorkList.push_back(cast<Instruction>(U)); 5734 5735 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5736 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5737 APInt DemandBits(BitWidth, 0); 5738 APInt WidestAndBits(BitWidth, 0); 5739 5740 while (!WorkList.empty()) { 5741 Instruction *I = WorkList.back(); 5742 WorkList.pop_back(); 5743 5744 // Break use-def graph loops. 5745 if (!Visited.insert(I).second) 5746 continue; 5747 5748 // For a PHI node, push all of its users. 5749 if (auto *Phi = dyn_cast<PHINode>(I)) { 5750 for (auto *U : Phi->users()) 5751 WorkList.push_back(cast<Instruction>(U)); 5752 continue; 5753 } 5754 5755 switch (I->getOpcode()) { 5756 case Instruction::And: { 5757 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5758 if (!AndC) 5759 return false; 5760 APInt AndBits = AndC->getValue(); 5761 DemandBits |= AndBits; 5762 // Keep track of the widest and mask we see. 5763 if (AndBits.ugt(WidestAndBits)) 5764 WidestAndBits = AndBits; 5765 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5766 AndsToMaybeRemove.push_back(I); 5767 break; 5768 } 5769 5770 case Instruction::Shl: { 5771 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5772 if (!ShlC) 5773 return false; 5774 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5775 DemandBits.setLowBits(BitWidth - ShiftAmt); 5776 break; 5777 } 5778 5779 case Instruction::Trunc: { 5780 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5781 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5782 DemandBits.setLowBits(TruncBitWidth); 5783 break; 5784 } 5785 5786 default: 5787 return false; 5788 } 5789 } 5790 5791 uint32_t ActiveBits = DemandBits.getActiveBits(); 5792 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5793 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5794 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5795 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5796 // followed by an AND. 5797 // TODO: Look into removing this restriction by fixing backends to either 5798 // return false for isLoadExtLegal for i1 or have them select this pattern to 5799 // a single instruction. 5800 // 5801 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5802 // mask, since these are the only ands that will be removed by isel. 5803 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5804 WidestAndBits != DemandBits) 5805 return false; 5806 5807 LLVMContext &Ctx = Load->getType()->getContext(); 5808 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5809 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5810 5811 // Reject cases that won't be matched as extloads. 5812 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5813 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5814 return false; 5815 5816 IRBuilder<> Builder(Load->getNextNode()); 5817 auto *NewAnd = dyn_cast<Instruction>( 5818 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5819 // Mark this instruction as "inserted by CGP", so that other 5820 // optimizations don't touch it. 5821 InsertedInsts.insert(NewAnd); 5822 5823 // Replace all uses of load with new and (except for the use of load in the 5824 // new and itself). 5825 Load->replaceAllUsesWith(NewAnd); 5826 NewAnd->setOperand(0, Load); 5827 5828 // Remove any and instructions that are now redundant. 5829 for (auto *And : AndsToMaybeRemove) 5830 // Check that the and mask is the same as the one we decided to put on the 5831 // new and. 5832 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5833 And->replaceAllUsesWith(NewAnd); 5834 if (&*CurInstIterator == And) 5835 CurInstIterator = std::next(And->getIterator()); 5836 And->eraseFromParent(); 5837 ++NumAndUses; 5838 } 5839 5840 ++NumAndsAdded; 5841 return true; 5842 } 5843 5844 /// Check if V (an operand of a select instruction) is an expensive instruction 5845 /// that is only used once. 5846 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5847 auto *I = dyn_cast<Instruction>(V); 5848 // If it's safe to speculatively execute, then it should not have side 5849 // effects; therefore, it's safe to sink and possibly *not* execute. 5850 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5851 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5852 } 5853 5854 /// Returns true if a SelectInst should be turned into an explicit branch. 5855 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5856 const TargetLowering *TLI, 5857 SelectInst *SI) { 5858 // If even a predictable select is cheap, then a branch can't be cheaper. 5859 if (!TLI->isPredictableSelectExpensive()) 5860 return false; 5861 5862 // FIXME: This should use the same heuristics as IfConversion to determine 5863 // whether a select is better represented as a branch. 5864 5865 // If metadata tells us that the select condition is obviously predictable, 5866 // then we want to replace the select with a branch. 5867 uint64_t TrueWeight, FalseWeight; 5868 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5869 uint64_t Max = std::max(TrueWeight, FalseWeight); 5870 uint64_t Sum = TrueWeight + FalseWeight; 5871 if (Sum != 0) { 5872 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5873 if (Probability > TLI->getPredictableBranchThreshold()) 5874 return true; 5875 } 5876 } 5877 5878 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5879 5880 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5881 // comparison condition. If the compare has more than one use, there's 5882 // probably another cmov or setcc around, so it's not worth emitting a branch. 5883 if (!Cmp || !Cmp->hasOneUse()) 5884 return false; 5885 5886 // If either operand of the select is expensive and only needed on one side 5887 // of the select, we should form a branch. 5888 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5889 sinkSelectOperand(TTI, SI->getFalseValue())) 5890 return true; 5891 5892 return false; 5893 } 5894 5895 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5896 /// false value of \p SI. If the true/false value of \p SI is defined by any 5897 /// select instructions in \p Selects, look through the defining select 5898 /// instruction until the true/false value is not defined in \p Selects. 5899 static Value *getTrueOrFalseValue( 5900 SelectInst *SI, bool isTrue, 5901 const SmallPtrSet<const Instruction *, 2> &Selects) { 5902 Value *V = nullptr; 5903 5904 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5905 DefSI = dyn_cast<SelectInst>(V)) { 5906 assert(DefSI->getCondition() == SI->getCondition() && 5907 "The condition of DefSI does not match with SI"); 5908 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5909 } 5910 5911 assert(V && "Failed to get select true/false value"); 5912 return V; 5913 } 5914 5915 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5916 assert(Shift->isShift() && "Expected a shift"); 5917 5918 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5919 // general vector shifts, and (3) the shift amount is a select-of-splatted 5920 // values, hoist the shifts before the select: 5921 // shift Op0, (select Cond, TVal, FVal) --> 5922 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 5923 // 5924 // This is inverting a generic IR transform when we know that the cost of a 5925 // general vector shift is more than the cost of 2 shift-by-scalars. 5926 // We can't do this effectively in SDAG because we may not be able to 5927 // determine if the select operands are splats from within a basic block. 5928 Type *Ty = Shift->getType(); 5929 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 5930 return false; 5931 Value *Cond, *TVal, *FVal; 5932 if (!match(Shift->getOperand(1), 5933 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 5934 return false; 5935 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 5936 return false; 5937 5938 IRBuilder<> Builder(Shift); 5939 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 5940 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 5941 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 5942 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 5943 Shift->replaceAllUsesWith(NewSel); 5944 Shift->eraseFromParent(); 5945 return true; 5946 } 5947 5948 /// If we have a SelectInst that will likely profit from branch prediction, 5949 /// turn it into a branch. 5950 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5951 // If branch conversion isn't desirable, exit early. 5952 if (DisableSelectToBranch || OptSize || !TLI) 5953 return false; 5954 5955 // Find all consecutive select instructions that share the same condition. 5956 SmallVector<SelectInst *, 2> ASI; 5957 ASI.push_back(SI); 5958 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5959 It != SI->getParent()->end(); ++It) { 5960 SelectInst *I = dyn_cast<SelectInst>(&*It); 5961 if (I && SI->getCondition() == I->getCondition()) { 5962 ASI.push_back(I); 5963 } else { 5964 break; 5965 } 5966 } 5967 5968 SelectInst *LastSI = ASI.back(); 5969 // Increment the current iterator to skip all the rest of select instructions 5970 // because they will be either "not lowered" or "all lowered" to branch. 5971 CurInstIterator = std::next(LastSI->getIterator()); 5972 5973 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5974 5975 // Can we convert the 'select' to CF ? 5976 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5977 return false; 5978 5979 TargetLowering::SelectSupportKind SelectKind; 5980 if (VectorCond) 5981 SelectKind = TargetLowering::VectorMaskSelect; 5982 else if (SI->getType()->isVectorTy()) 5983 SelectKind = TargetLowering::ScalarCondVectorVal; 5984 else 5985 SelectKind = TargetLowering::ScalarValSelect; 5986 5987 if (TLI->isSelectSupported(SelectKind) && 5988 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5989 return false; 5990 5991 // The DominatorTree needs to be rebuilt by any consumers after this 5992 // transformation. We simply reset here rather than setting the ModifiedDT 5993 // flag to avoid restarting the function walk in runOnFunction for each 5994 // select optimized. 5995 DT.reset(); 5996 5997 // Transform a sequence like this: 5998 // start: 5999 // %cmp = cmp uge i32 %a, %b 6000 // %sel = select i1 %cmp, i32 %c, i32 %d 6001 // 6002 // Into: 6003 // start: 6004 // %cmp = cmp uge i32 %a, %b 6005 // br i1 %cmp, label %select.true, label %select.false 6006 // select.true: 6007 // br label %select.end 6008 // select.false: 6009 // br label %select.end 6010 // select.end: 6011 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6012 // 6013 // In addition, we may sink instructions that produce %c or %d from 6014 // the entry block into the destination(s) of the new branch. 6015 // If the true or false blocks do not contain a sunken instruction, that 6016 // block and its branch may be optimized away. In that case, one side of the 6017 // first branch will point directly to select.end, and the corresponding PHI 6018 // predecessor block will be the start block. 6019 6020 // First, we split the block containing the select into 2 blocks. 6021 BasicBlock *StartBlock = SI->getParent(); 6022 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6023 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6024 6025 // Delete the unconditional branch that was just created by the split. 6026 StartBlock->getTerminator()->eraseFromParent(); 6027 6028 // These are the new basic blocks for the conditional branch. 6029 // At least one will become an actual new basic block. 6030 BasicBlock *TrueBlock = nullptr; 6031 BasicBlock *FalseBlock = nullptr; 6032 BranchInst *TrueBranch = nullptr; 6033 BranchInst *FalseBranch = nullptr; 6034 6035 // Sink expensive instructions into the conditional blocks to avoid executing 6036 // them speculatively. 6037 for (SelectInst *SI : ASI) { 6038 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6039 if (TrueBlock == nullptr) { 6040 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6041 EndBlock->getParent(), EndBlock); 6042 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6043 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6044 } 6045 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6046 TrueInst->moveBefore(TrueBranch); 6047 } 6048 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6049 if (FalseBlock == nullptr) { 6050 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6051 EndBlock->getParent(), EndBlock); 6052 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6053 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6054 } 6055 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6056 FalseInst->moveBefore(FalseBranch); 6057 } 6058 } 6059 6060 // If there was nothing to sink, then arbitrarily choose the 'false' side 6061 // for a new input value to the PHI. 6062 if (TrueBlock == FalseBlock) { 6063 assert(TrueBlock == nullptr && 6064 "Unexpected basic block transform while optimizing select"); 6065 6066 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6067 EndBlock->getParent(), EndBlock); 6068 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6069 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6070 } 6071 6072 // Insert the real conditional branch based on the original condition. 6073 // If we did not create a new block for one of the 'true' or 'false' paths 6074 // of the condition, it means that side of the branch goes to the end block 6075 // directly and the path originates from the start block from the point of 6076 // view of the new PHI. 6077 BasicBlock *TT, *FT; 6078 if (TrueBlock == nullptr) { 6079 TT = EndBlock; 6080 FT = FalseBlock; 6081 TrueBlock = StartBlock; 6082 } else if (FalseBlock == nullptr) { 6083 TT = TrueBlock; 6084 FT = EndBlock; 6085 FalseBlock = StartBlock; 6086 } else { 6087 TT = TrueBlock; 6088 FT = FalseBlock; 6089 } 6090 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6091 6092 SmallPtrSet<const Instruction *, 2> INS; 6093 INS.insert(ASI.begin(), ASI.end()); 6094 // Use reverse iterator because later select may use the value of the 6095 // earlier select, and we need to propagate value through earlier select 6096 // to get the PHI operand. 6097 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6098 SelectInst *SI = *It; 6099 // The select itself is replaced with a PHI Node. 6100 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6101 PN->takeName(SI); 6102 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6103 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6104 PN->setDebugLoc(SI->getDebugLoc()); 6105 6106 SI->replaceAllUsesWith(PN); 6107 SI->eraseFromParent(); 6108 INS.erase(SI); 6109 ++NumSelectsExpanded; 6110 } 6111 6112 // Instruct OptimizeBlock to skip to the next block. 6113 CurInstIterator = StartBlock->end(); 6114 return true; 6115 } 6116 6117 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6118 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6119 int SplatElem = -1; 6120 for (unsigned i = 0; i < Mask.size(); ++i) { 6121 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6122 return false; 6123 SplatElem = Mask[i]; 6124 } 6125 6126 return true; 6127 } 6128 6129 /// Some targets have expensive vector shifts if the lanes aren't all the same 6130 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6131 /// it's often worth sinking a shufflevector splat down to its use so that 6132 /// codegen can spot all lanes are identical. 6133 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6134 BasicBlock *DefBB = SVI->getParent(); 6135 6136 // Only do this xform if variable vector shifts are particularly expensive. 6137 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6138 return false; 6139 6140 // We only expect better codegen by sinking a shuffle if we can recognise a 6141 // constant splat. 6142 if (!isBroadcastShuffle(SVI)) 6143 return false; 6144 6145 // InsertedShuffles - Only insert a shuffle in each block once. 6146 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6147 6148 bool MadeChange = false; 6149 for (User *U : SVI->users()) { 6150 Instruction *UI = cast<Instruction>(U); 6151 6152 // Figure out which BB this ext is used in. 6153 BasicBlock *UserBB = UI->getParent(); 6154 if (UserBB == DefBB) continue; 6155 6156 // For now only apply this when the splat is used by a shift instruction. 6157 if (!UI->isShift()) continue; 6158 6159 // Everything checks out, sink the shuffle if the user's block doesn't 6160 // already have a copy. 6161 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6162 6163 if (!InsertedShuffle) { 6164 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6165 assert(InsertPt != UserBB->end()); 6166 InsertedShuffle = 6167 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6168 SVI->getOperand(2), "", &*InsertPt); 6169 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6170 } 6171 6172 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6173 MadeChange = true; 6174 } 6175 6176 // If we removed all uses, nuke the shuffle. 6177 if (SVI->use_empty()) { 6178 SVI->eraseFromParent(); 6179 MadeChange = true; 6180 } 6181 6182 return MadeChange; 6183 } 6184 6185 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6186 // If the operands of I can be folded into a target instruction together with 6187 // I, duplicate and sink them. 6188 SmallVector<Use *, 4> OpsToSink; 6189 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6190 return false; 6191 6192 // OpsToSink can contain multiple uses in a use chain (e.g. 6193 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6194 // uses must come first, which means they are sunk first, temporarily creating 6195 // invalid IR. This will be fixed once their dominated users are sunk and 6196 // updated. 6197 BasicBlock *TargetBB = I->getParent(); 6198 bool Changed = false; 6199 SmallVector<Use *, 4> ToReplace; 6200 for (Use *U : OpsToSink) { 6201 auto *UI = cast<Instruction>(U->get()); 6202 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6203 continue; 6204 ToReplace.push_back(U); 6205 } 6206 6207 SmallPtrSet<Instruction *, 4> MaybeDead; 6208 for (Use *U : ToReplace) { 6209 auto *UI = cast<Instruction>(U->get()); 6210 Instruction *NI = UI->clone(); 6211 MaybeDead.insert(UI); 6212 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6213 NI->insertBefore(I); 6214 InsertedInsts.insert(NI); 6215 U->set(NI); 6216 Changed = true; 6217 } 6218 6219 // Remove instructions that are dead after sinking. 6220 for (auto *I : MaybeDead) 6221 if (!I->hasNUsesOrMore(1)) 6222 I->eraseFromParent(); 6223 6224 return Changed; 6225 } 6226 6227 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6228 if (!TLI || !DL) 6229 return false; 6230 6231 Value *Cond = SI->getCondition(); 6232 Type *OldType = Cond->getType(); 6233 LLVMContext &Context = Cond->getContext(); 6234 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6235 unsigned RegWidth = RegType.getSizeInBits(); 6236 6237 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6238 return false; 6239 6240 // If the register width is greater than the type width, expand the condition 6241 // of the switch instruction and each case constant to the width of the 6242 // register. By widening the type of the switch condition, subsequent 6243 // comparisons (for case comparisons) will not need to be extended to the 6244 // preferred register width, so we will potentially eliminate N-1 extends, 6245 // where N is the number of cases in the switch. 6246 auto *NewType = Type::getIntNTy(Context, RegWidth); 6247 6248 // Zero-extend the switch condition and case constants unless the switch 6249 // condition is a function argument that is already being sign-extended. 6250 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6251 // everything instead. 6252 Instruction::CastOps ExtType = Instruction::ZExt; 6253 if (auto *Arg = dyn_cast<Argument>(Cond)) 6254 if (Arg->hasSExtAttr()) 6255 ExtType = Instruction::SExt; 6256 6257 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6258 ExtInst->insertBefore(SI); 6259 ExtInst->setDebugLoc(SI->getDebugLoc()); 6260 SI->setCondition(ExtInst); 6261 for (auto Case : SI->cases()) { 6262 APInt NarrowConst = Case.getCaseValue()->getValue(); 6263 APInt WideConst = (ExtType == Instruction::ZExt) ? 6264 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6265 Case.setValue(ConstantInt::get(Context, WideConst)); 6266 } 6267 6268 return true; 6269 } 6270 6271 6272 namespace { 6273 6274 /// Helper class to promote a scalar operation to a vector one. 6275 /// This class is used to move downward extractelement transition. 6276 /// E.g., 6277 /// a = vector_op <2 x i32> 6278 /// b = extractelement <2 x i32> a, i32 0 6279 /// c = scalar_op b 6280 /// store c 6281 /// 6282 /// => 6283 /// a = vector_op <2 x i32> 6284 /// c = vector_op a (equivalent to scalar_op on the related lane) 6285 /// * d = extractelement <2 x i32> c, i32 0 6286 /// * store d 6287 /// Assuming both extractelement and store can be combine, we get rid of the 6288 /// transition. 6289 class VectorPromoteHelper { 6290 /// DataLayout associated with the current module. 6291 const DataLayout &DL; 6292 6293 /// Used to perform some checks on the legality of vector operations. 6294 const TargetLowering &TLI; 6295 6296 /// Used to estimated the cost of the promoted chain. 6297 const TargetTransformInfo &TTI; 6298 6299 /// The transition being moved downwards. 6300 Instruction *Transition; 6301 6302 /// The sequence of instructions to be promoted. 6303 SmallVector<Instruction *, 4> InstsToBePromoted; 6304 6305 /// Cost of combining a store and an extract. 6306 unsigned StoreExtractCombineCost; 6307 6308 /// Instruction that will be combined with the transition. 6309 Instruction *CombineInst = nullptr; 6310 6311 /// The instruction that represents the current end of the transition. 6312 /// Since we are faking the promotion until we reach the end of the chain 6313 /// of computation, we need a way to get the current end of the transition. 6314 Instruction *getEndOfTransition() const { 6315 if (InstsToBePromoted.empty()) 6316 return Transition; 6317 return InstsToBePromoted.back(); 6318 } 6319 6320 /// Return the index of the original value in the transition. 6321 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6322 /// c, is at index 0. 6323 unsigned getTransitionOriginalValueIdx() const { 6324 assert(isa<ExtractElementInst>(Transition) && 6325 "Other kind of transitions are not supported yet"); 6326 return 0; 6327 } 6328 6329 /// Return the index of the index in the transition. 6330 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6331 /// is at index 1. 6332 unsigned getTransitionIdx() const { 6333 assert(isa<ExtractElementInst>(Transition) && 6334 "Other kind of transitions are not supported yet"); 6335 return 1; 6336 } 6337 6338 /// Get the type of the transition. 6339 /// This is the type of the original value. 6340 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6341 /// transition is <2 x i32>. 6342 Type *getTransitionType() const { 6343 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6344 } 6345 6346 /// Promote \p ToBePromoted by moving \p Def downward through. 6347 /// I.e., we have the following sequence: 6348 /// Def = Transition <ty1> a to <ty2> 6349 /// b = ToBePromoted <ty2> Def, ... 6350 /// => 6351 /// b = ToBePromoted <ty1> a, ... 6352 /// Def = Transition <ty1> ToBePromoted to <ty2> 6353 void promoteImpl(Instruction *ToBePromoted); 6354 6355 /// Check whether or not it is profitable to promote all the 6356 /// instructions enqueued to be promoted. 6357 bool isProfitableToPromote() { 6358 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6359 unsigned Index = isa<ConstantInt>(ValIdx) 6360 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6361 : -1; 6362 Type *PromotedType = getTransitionType(); 6363 6364 StoreInst *ST = cast<StoreInst>(CombineInst); 6365 unsigned AS = ST->getPointerAddressSpace(); 6366 unsigned Align = ST->getAlignment(); 6367 // Check if this store is supported. 6368 if (!TLI.allowsMisalignedMemoryAccesses( 6369 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6370 Align)) { 6371 // If this is not supported, there is no way we can combine 6372 // the extract with the store. 6373 return false; 6374 } 6375 6376 // The scalar chain of computation has to pay for the transition 6377 // scalar to vector. 6378 // The vector chain has to account for the combining cost. 6379 uint64_t ScalarCost = 6380 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6381 uint64_t VectorCost = StoreExtractCombineCost; 6382 for (const auto &Inst : InstsToBePromoted) { 6383 // Compute the cost. 6384 // By construction, all instructions being promoted are arithmetic ones. 6385 // Moreover, one argument is a constant that can be viewed as a splat 6386 // constant. 6387 Value *Arg0 = Inst->getOperand(0); 6388 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6389 isa<ConstantFP>(Arg0); 6390 TargetTransformInfo::OperandValueKind Arg0OVK = 6391 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6392 : TargetTransformInfo::OK_AnyValue; 6393 TargetTransformInfo::OperandValueKind Arg1OVK = 6394 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6395 : TargetTransformInfo::OK_AnyValue; 6396 ScalarCost += TTI.getArithmeticInstrCost( 6397 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6398 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6399 Arg0OVK, Arg1OVK); 6400 } 6401 LLVM_DEBUG( 6402 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6403 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6404 return ScalarCost > VectorCost; 6405 } 6406 6407 /// Generate a constant vector with \p Val with the same 6408 /// number of elements as the transition. 6409 /// \p UseSplat defines whether or not \p Val should be replicated 6410 /// across the whole vector. 6411 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6412 /// otherwise we generate a vector with as many undef as possible: 6413 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6414 /// used at the index of the extract. 6415 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6416 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6417 if (!UseSplat) { 6418 // If we cannot determine where the constant must be, we have to 6419 // use a splat constant. 6420 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6421 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6422 ExtractIdx = CstVal->getSExtValue(); 6423 else 6424 UseSplat = true; 6425 } 6426 6427 unsigned End = getTransitionType()->getVectorNumElements(); 6428 if (UseSplat) 6429 return ConstantVector::getSplat(End, Val); 6430 6431 SmallVector<Constant *, 4> ConstVec; 6432 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6433 for (unsigned Idx = 0; Idx != End; ++Idx) { 6434 if (Idx == ExtractIdx) 6435 ConstVec.push_back(Val); 6436 else 6437 ConstVec.push_back(UndefVal); 6438 } 6439 return ConstantVector::get(ConstVec); 6440 } 6441 6442 /// Check if promoting to a vector type an operand at \p OperandIdx 6443 /// in \p Use can trigger undefined behavior. 6444 static bool canCauseUndefinedBehavior(const Instruction *Use, 6445 unsigned OperandIdx) { 6446 // This is not safe to introduce undef when the operand is on 6447 // the right hand side of a division-like instruction. 6448 if (OperandIdx != 1) 6449 return false; 6450 switch (Use->getOpcode()) { 6451 default: 6452 return false; 6453 case Instruction::SDiv: 6454 case Instruction::UDiv: 6455 case Instruction::SRem: 6456 case Instruction::URem: 6457 return true; 6458 case Instruction::FDiv: 6459 case Instruction::FRem: 6460 return !Use->hasNoNaNs(); 6461 } 6462 llvm_unreachable(nullptr); 6463 } 6464 6465 public: 6466 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6467 const TargetTransformInfo &TTI, Instruction *Transition, 6468 unsigned CombineCost) 6469 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6470 StoreExtractCombineCost(CombineCost) { 6471 assert(Transition && "Do not know how to promote null"); 6472 } 6473 6474 /// Check if we can promote \p ToBePromoted to \p Type. 6475 bool canPromote(const Instruction *ToBePromoted) const { 6476 // We could support CastInst too. 6477 return isa<BinaryOperator>(ToBePromoted); 6478 } 6479 6480 /// Check if it is profitable to promote \p ToBePromoted 6481 /// by moving downward the transition through. 6482 bool shouldPromote(const Instruction *ToBePromoted) const { 6483 // Promote only if all the operands can be statically expanded. 6484 // Indeed, we do not want to introduce any new kind of transitions. 6485 for (const Use &U : ToBePromoted->operands()) { 6486 const Value *Val = U.get(); 6487 if (Val == getEndOfTransition()) { 6488 // If the use is a division and the transition is on the rhs, 6489 // we cannot promote the operation, otherwise we may create a 6490 // division by zero. 6491 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6492 return false; 6493 continue; 6494 } 6495 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6496 !isa<ConstantFP>(Val)) 6497 return false; 6498 } 6499 // Check that the resulting operation is legal. 6500 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6501 if (!ISDOpcode) 6502 return false; 6503 return StressStoreExtract || 6504 TLI.isOperationLegalOrCustom( 6505 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6506 } 6507 6508 /// Check whether or not \p Use can be combined 6509 /// with the transition. 6510 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6511 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6512 6513 /// Record \p ToBePromoted as part of the chain to be promoted. 6514 void enqueueForPromotion(Instruction *ToBePromoted) { 6515 InstsToBePromoted.push_back(ToBePromoted); 6516 } 6517 6518 /// Set the instruction that will be combined with the transition. 6519 void recordCombineInstruction(Instruction *ToBeCombined) { 6520 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6521 CombineInst = ToBeCombined; 6522 } 6523 6524 /// Promote all the instructions enqueued for promotion if it is 6525 /// is profitable. 6526 /// \return True if the promotion happened, false otherwise. 6527 bool promote() { 6528 // Check if there is something to promote. 6529 // Right now, if we do not have anything to combine with, 6530 // we assume the promotion is not profitable. 6531 if (InstsToBePromoted.empty() || !CombineInst) 6532 return false; 6533 6534 // Check cost. 6535 if (!StressStoreExtract && !isProfitableToPromote()) 6536 return false; 6537 6538 // Promote. 6539 for (auto &ToBePromoted : InstsToBePromoted) 6540 promoteImpl(ToBePromoted); 6541 InstsToBePromoted.clear(); 6542 return true; 6543 } 6544 }; 6545 6546 } // end anonymous namespace 6547 6548 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6549 // At this point, we know that all the operands of ToBePromoted but Def 6550 // can be statically promoted. 6551 // For Def, we need to use its parameter in ToBePromoted: 6552 // b = ToBePromoted ty1 a 6553 // Def = Transition ty1 b to ty2 6554 // Move the transition down. 6555 // 1. Replace all uses of the promoted operation by the transition. 6556 // = ... b => = ... Def. 6557 assert(ToBePromoted->getType() == Transition->getType() && 6558 "The type of the result of the transition does not match " 6559 "the final type"); 6560 ToBePromoted->replaceAllUsesWith(Transition); 6561 // 2. Update the type of the uses. 6562 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6563 Type *TransitionTy = getTransitionType(); 6564 ToBePromoted->mutateType(TransitionTy); 6565 // 3. Update all the operands of the promoted operation with promoted 6566 // operands. 6567 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6568 for (Use &U : ToBePromoted->operands()) { 6569 Value *Val = U.get(); 6570 Value *NewVal = nullptr; 6571 if (Val == Transition) 6572 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6573 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6574 isa<ConstantFP>(Val)) { 6575 // Use a splat constant if it is not safe to use undef. 6576 NewVal = getConstantVector( 6577 cast<Constant>(Val), 6578 isa<UndefValue>(Val) || 6579 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6580 } else 6581 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6582 "this?"); 6583 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6584 } 6585 Transition->moveAfter(ToBePromoted); 6586 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6587 } 6588 6589 /// Some targets can do store(extractelement) with one instruction. 6590 /// Try to push the extractelement towards the stores when the target 6591 /// has this feature and this is profitable. 6592 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6593 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6594 if (DisableStoreExtract || !TLI || 6595 (!StressStoreExtract && 6596 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6597 Inst->getOperand(1), CombineCost))) 6598 return false; 6599 6600 // At this point we know that Inst is a vector to scalar transition. 6601 // Try to move it down the def-use chain, until: 6602 // - We can combine the transition with its single use 6603 // => we got rid of the transition. 6604 // - We escape the current basic block 6605 // => we would need to check that we are moving it at a cheaper place and 6606 // we do not do that for now. 6607 BasicBlock *Parent = Inst->getParent(); 6608 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6609 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6610 // If the transition has more than one use, assume this is not going to be 6611 // beneficial. 6612 while (Inst->hasOneUse()) { 6613 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6614 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6615 6616 if (ToBePromoted->getParent() != Parent) { 6617 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6618 << ToBePromoted->getParent()->getName() 6619 << ") than the transition (" << Parent->getName() 6620 << ").\n"); 6621 return false; 6622 } 6623 6624 if (VPH.canCombine(ToBePromoted)) { 6625 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6626 << "will be combined with: " << *ToBePromoted << '\n'); 6627 VPH.recordCombineInstruction(ToBePromoted); 6628 bool Changed = VPH.promote(); 6629 NumStoreExtractExposed += Changed; 6630 return Changed; 6631 } 6632 6633 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6634 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6635 return false; 6636 6637 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6638 6639 VPH.enqueueForPromotion(ToBePromoted); 6640 Inst = ToBePromoted; 6641 } 6642 return false; 6643 } 6644 6645 /// For the instruction sequence of store below, F and I values 6646 /// are bundled together as an i64 value before being stored into memory. 6647 /// Sometimes it is more efficient to generate separate stores for F and I, 6648 /// which can remove the bitwise instructions or sink them to colder places. 6649 /// 6650 /// (store (or (zext (bitcast F to i32) to i64), 6651 /// (shl (zext I to i64), 32)), addr) --> 6652 /// (store F, addr) and (store I, addr+4) 6653 /// 6654 /// Similarly, splitting for other merged store can also be beneficial, like: 6655 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6656 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6657 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6658 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6659 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6660 /// 6661 /// We allow each target to determine specifically which kind of splitting is 6662 /// supported. 6663 /// 6664 /// The store patterns are commonly seen from the simple code snippet below 6665 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6666 /// void goo(const std::pair<int, float> &); 6667 /// hoo() { 6668 /// ... 6669 /// goo(std::make_pair(tmp, ftmp)); 6670 /// ... 6671 /// } 6672 /// 6673 /// Although we already have similar splitting in DAG Combine, we duplicate 6674 /// it in CodeGenPrepare to catch the case in which pattern is across 6675 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6676 /// during code expansion. 6677 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6678 const TargetLowering &TLI) { 6679 // Handle simple but common cases only. 6680 Type *StoreType = SI.getValueOperand()->getType(); 6681 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6682 DL.getTypeSizeInBits(StoreType) == 0) 6683 return false; 6684 6685 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6686 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6687 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6688 return false; 6689 6690 // Don't split the store if it is volatile. 6691 if (SI.isVolatile()) 6692 return false; 6693 6694 // Match the following patterns: 6695 // (store (or (zext LValue to i64), 6696 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6697 // or 6698 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6699 // (zext LValue to i64), 6700 // Expect both operands of OR and the first operand of SHL have only 6701 // one use. 6702 Value *LValue, *HValue; 6703 if (!match(SI.getValueOperand(), 6704 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6705 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6706 m_SpecificInt(HalfValBitSize)))))) 6707 return false; 6708 6709 // Check LValue and HValue are int with size less or equal than 32. 6710 if (!LValue->getType()->isIntegerTy() || 6711 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6712 !HValue->getType()->isIntegerTy() || 6713 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6714 return false; 6715 6716 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6717 // as the input of target query. 6718 auto *LBC = dyn_cast<BitCastInst>(LValue); 6719 auto *HBC = dyn_cast<BitCastInst>(HValue); 6720 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6721 : EVT::getEVT(LValue->getType()); 6722 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6723 : EVT::getEVT(HValue->getType()); 6724 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6725 return false; 6726 6727 // Start to split store. 6728 IRBuilder<> Builder(SI.getContext()); 6729 Builder.SetInsertPoint(&SI); 6730 6731 // If LValue/HValue is a bitcast in another BB, create a new one in current 6732 // BB so it may be merged with the splitted stores by dag combiner. 6733 if (LBC && LBC->getParent() != SI.getParent()) 6734 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6735 if (HBC && HBC->getParent() != SI.getParent()) 6736 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6737 6738 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6739 auto CreateSplitStore = [&](Value *V, bool Upper) { 6740 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6741 Value *Addr = Builder.CreateBitCast( 6742 SI.getOperand(1), 6743 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6744 if ((IsLE && Upper) || (!IsLE && !Upper)) 6745 Addr = Builder.CreateGEP( 6746 SplitStoreType, Addr, 6747 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6748 Builder.CreateAlignedStore( 6749 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6750 }; 6751 6752 CreateSplitStore(LValue, false); 6753 CreateSplitStore(HValue, true); 6754 6755 // Delete the old store. 6756 SI.eraseFromParent(); 6757 return true; 6758 } 6759 6760 // Return true if the GEP has two operands, the first operand is of a sequential 6761 // type, and the second operand is a constant. 6762 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6763 gep_type_iterator I = gep_type_begin(*GEP); 6764 return GEP->getNumOperands() == 2 && 6765 I.isSequential() && 6766 isa<ConstantInt>(GEP->getOperand(1)); 6767 } 6768 6769 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6770 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6771 // reducing liveness interference across those edges benefits global register 6772 // allocation. Currently handles only certain cases. 6773 // 6774 // For example, unmerge %GEPI and %UGEPI as below. 6775 // 6776 // ---------- BEFORE ---------- 6777 // SrcBlock: 6778 // ... 6779 // %GEPIOp = ... 6780 // ... 6781 // %GEPI = gep %GEPIOp, Idx 6782 // ... 6783 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6784 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6785 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6786 // %UGEPI) 6787 // 6788 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6789 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6790 // ... 6791 // 6792 // DstBi: 6793 // ... 6794 // %UGEPI = gep %GEPIOp, UIdx 6795 // ... 6796 // --------------------------- 6797 // 6798 // ---------- AFTER ---------- 6799 // SrcBlock: 6800 // ... (same as above) 6801 // (* %GEPI is still alive on the indirectbr edges) 6802 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6803 // unmerging) 6804 // ... 6805 // 6806 // DstBi: 6807 // ... 6808 // %UGEPI = gep %GEPI, (UIdx-Idx) 6809 // ... 6810 // --------------------------- 6811 // 6812 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6813 // no longer alive on them. 6814 // 6815 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6816 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6817 // not to disable further simplications and optimizations as a result of GEP 6818 // merging. 6819 // 6820 // Note this unmerging may increase the length of the data flow critical path 6821 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6822 // between the register pressure and the length of data-flow critical 6823 // path. Restricting this to the uncommon IndirectBr case would minimize the 6824 // impact of potentially longer critical path, if any, and the impact on compile 6825 // time. 6826 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6827 const TargetTransformInfo *TTI) { 6828 BasicBlock *SrcBlock = GEPI->getParent(); 6829 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6830 // (non-IndirectBr) cases exit early here. 6831 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6832 return false; 6833 // Check that GEPI is a simple gep with a single constant index. 6834 if (!GEPSequentialConstIndexed(GEPI)) 6835 return false; 6836 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6837 // Check that GEPI is a cheap one. 6838 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6839 > TargetTransformInfo::TCC_Basic) 6840 return false; 6841 Value *GEPIOp = GEPI->getOperand(0); 6842 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6843 if (!isa<Instruction>(GEPIOp)) 6844 return false; 6845 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6846 if (GEPIOpI->getParent() != SrcBlock) 6847 return false; 6848 // Check that GEP is used outside the block, meaning it's alive on the 6849 // IndirectBr edge(s). 6850 if (find_if(GEPI->users(), [&](User *Usr) { 6851 if (auto *I = dyn_cast<Instruction>(Usr)) { 6852 if (I->getParent() != SrcBlock) { 6853 return true; 6854 } 6855 } 6856 return false; 6857 }) == GEPI->users().end()) 6858 return false; 6859 // The second elements of the GEP chains to be unmerged. 6860 std::vector<GetElementPtrInst *> UGEPIs; 6861 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6862 // on IndirectBr edges. 6863 for (User *Usr : GEPIOp->users()) { 6864 if (Usr == GEPI) continue; 6865 // Check if Usr is an Instruction. If not, give up. 6866 if (!isa<Instruction>(Usr)) 6867 return false; 6868 auto *UI = cast<Instruction>(Usr); 6869 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6870 if (UI->getParent() == SrcBlock) 6871 continue; 6872 // Check if Usr is a GEP. If not, give up. 6873 if (!isa<GetElementPtrInst>(Usr)) 6874 return false; 6875 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6876 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6877 // the pointer operand to it. If so, record it in the vector. If not, give 6878 // up. 6879 if (!GEPSequentialConstIndexed(UGEPI)) 6880 return false; 6881 if (UGEPI->getOperand(0) != GEPIOp) 6882 return false; 6883 if (GEPIIdx->getType() != 6884 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6885 return false; 6886 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6887 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6888 > TargetTransformInfo::TCC_Basic) 6889 return false; 6890 UGEPIs.push_back(UGEPI); 6891 } 6892 if (UGEPIs.size() == 0) 6893 return false; 6894 // Check the materializing cost of (Uidx-Idx). 6895 for (GetElementPtrInst *UGEPI : UGEPIs) { 6896 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6897 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6898 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6899 if (ImmCost > TargetTransformInfo::TCC_Basic) 6900 return false; 6901 } 6902 // Now unmerge between GEPI and UGEPIs. 6903 for (GetElementPtrInst *UGEPI : UGEPIs) { 6904 UGEPI->setOperand(0, GEPI); 6905 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6906 Constant *NewUGEPIIdx = 6907 ConstantInt::get(GEPIIdx->getType(), 6908 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6909 UGEPI->setOperand(1, NewUGEPIIdx); 6910 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6911 // inbounds to avoid UB. 6912 if (!GEPI->isInBounds()) { 6913 UGEPI->setIsInBounds(false); 6914 } 6915 } 6916 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6917 // alive on IndirectBr edges). 6918 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6919 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6920 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6921 return true; 6922 } 6923 6924 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6925 // Bail out if we inserted the instruction to prevent optimizations from 6926 // stepping on each other's toes. 6927 if (InsertedInsts.count(I)) 6928 return false; 6929 6930 // TODO: Move into the switch on opcode below here. 6931 if (PHINode *P = dyn_cast<PHINode>(I)) { 6932 // It is possible for very late stage optimizations (such as SimplifyCFG) 6933 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6934 // trivial PHI, go ahead and zap it here. 6935 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6936 LargeOffsetGEPMap.erase(P); 6937 P->replaceAllUsesWith(V); 6938 P->eraseFromParent(); 6939 ++NumPHIsElim; 6940 return true; 6941 } 6942 return false; 6943 } 6944 6945 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6946 // If the source of the cast is a constant, then this should have 6947 // already been constant folded. The only reason NOT to constant fold 6948 // it is if something (e.g. LSR) was careful to place the constant 6949 // evaluation in a block other than then one that uses it (e.g. to hoist 6950 // the address of globals out of a loop). If this is the case, we don't 6951 // want to forward-subst the cast. 6952 if (isa<Constant>(CI->getOperand(0))) 6953 return false; 6954 6955 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6956 return true; 6957 6958 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6959 /// Sink a zext or sext into its user blocks if the target type doesn't 6960 /// fit in one register 6961 if (TLI && 6962 TLI->getTypeAction(CI->getContext(), 6963 TLI->getValueType(*DL, CI->getType())) == 6964 TargetLowering::TypeExpandInteger) { 6965 return SinkCast(CI); 6966 } else { 6967 bool MadeChange = optimizeExt(I); 6968 return MadeChange | optimizeExtUses(I); 6969 } 6970 } 6971 return false; 6972 } 6973 6974 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6975 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6976 return true; 6977 6978 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6979 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6980 if (TLI) { 6981 bool Modified = optimizeLoadExt(LI); 6982 unsigned AS = LI->getPointerAddressSpace(); 6983 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6984 return Modified; 6985 } 6986 return false; 6987 } 6988 6989 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6990 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6991 return true; 6992 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6993 if (TLI) { 6994 unsigned AS = SI->getPointerAddressSpace(); 6995 return optimizeMemoryInst(I, SI->getOperand(1), 6996 SI->getOperand(0)->getType(), AS); 6997 } 6998 return false; 6999 } 7000 7001 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7002 unsigned AS = RMW->getPointerAddressSpace(); 7003 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7004 RMW->getType(), AS); 7005 } 7006 7007 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7008 unsigned AS = CmpX->getPointerAddressSpace(); 7009 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7010 CmpX->getCompareOperand()->getType(), AS); 7011 } 7012 7013 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7014 7015 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7016 EnableAndCmpSinking && TLI) 7017 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7018 7019 // TODO: Move this into the switch on opcode - it handles shifts already. 7020 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7021 BinOp->getOpcode() == Instruction::LShr)) { 7022 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7023 if (TLI && CI && TLI->hasExtractBitsInsn()) 7024 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7025 return true; 7026 } 7027 7028 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7029 if (GEPI->hasAllZeroIndices()) { 7030 /// The GEP operand must be a pointer, so must its result -> BitCast 7031 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7032 GEPI->getName(), GEPI); 7033 NC->setDebugLoc(GEPI->getDebugLoc()); 7034 GEPI->replaceAllUsesWith(NC); 7035 GEPI->eraseFromParent(); 7036 ++NumGEPsElim; 7037 optimizeInst(NC, ModifiedDT); 7038 return true; 7039 } 7040 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7041 return true; 7042 } 7043 return false; 7044 } 7045 7046 if (tryToSinkFreeOperands(I)) 7047 return true; 7048 7049 switch (I->getOpcode()) { 7050 case Instruction::Shl: 7051 case Instruction::LShr: 7052 case Instruction::AShr: 7053 return optimizeShiftInst(cast<BinaryOperator>(I)); 7054 case Instruction::Call: 7055 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7056 case Instruction::Select: 7057 return optimizeSelectInst(cast<SelectInst>(I)); 7058 case Instruction::ShuffleVector: 7059 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7060 case Instruction::Switch: 7061 return optimizeSwitchInst(cast<SwitchInst>(I)); 7062 case Instruction::ExtractElement: 7063 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7064 } 7065 7066 return false; 7067 } 7068 7069 /// Given an OR instruction, check to see if this is a bitreverse 7070 /// idiom. If so, insert the new intrinsic and return true. 7071 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7072 const TargetLowering &TLI) { 7073 if (!I.getType()->isIntegerTy() || 7074 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7075 TLI.getValueType(DL, I.getType(), true))) 7076 return false; 7077 7078 SmallVector<Instruction*, 4> Insts; 7079 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7080 return false; 7081 Instruction *LastInst = Insts.back(); 7082 I.replaceAllUsesWith(LastInst); 7083 RecursivelyDeleteTriviallyDeadInstructions(&I); 7084 return true; 7085 } 7086 7087 // In this pass we look for GEP and cast instructions that are used 7088 // across basic blocks and rewrite them to improve basic-block-at-a-time 7089 // selection. 7090 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7091 SunkAddrs.clear(); 7092 bool MadeChange = false; 7093 7094 CurInstIterator = BB.begin(); 7095 while (CurInstIterator != BB.end()) { 7096 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7097 if (ModifiedDT) 7098 return true; 7099 } 7100 7101 bool MadeBitReverse = true; 7102 while (TLI && MadeBitReverse) { 7103 MadeBitReverse = false; 7104 for (auto &I : reverse(BB)) { 7105 if (makeBitReverse(I, *DL, *TLI)) { 7106 MadeBitReverse = MadeChange = true; 7107 break; 7108 } 7109 } 7110 } 7111 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7112 7113 return MadeChange; 7114 } 7115 7116 // llvm.dbg.value is far away from the value then iSel may not be able 7117 // handle it properly. iSel will drop llvm.dbg.value if it can not 7118 // find a node corresponding to the value. 7119 bool CodeGenPrepare::placeDbgValues(Function &F) { 7120 bool MadeChange = false; 7121 for (BasicBlock &BB : F) { 7122 Instruction *PrevNonDbgInst = nullptr; 7123 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7124 Instruction *Insn = &*BI++; 7125 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7126 // Leave dbg.values that refer to an alloca alone. These 7127 // intrinsics describe the address of a variable (= the alloca) 7128 // being taken. They should not be moved next to the alloca 7129 // (and to the beginning of the scope), but rather stay close to 7130 // where said address is used. 7131 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7132 PrevNonDbgInst = Insn; 7133 continue; 7134 } 7135 7136 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7137 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7138 // If VI is a phi in a block with an EHPad terminator, we can't insert 7139 // after it. 7140 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7141 continue; 7142 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7143 << *DVI << ' ' << *VI); 7144 DVI->removeFromParent(); 7145 if (isa<PHINode>(VI)) 7146 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7147 else 7148 DVI->insertAfter(VI); 7149 MadeChange = true; 7150 ++NumDbgValueMoved; 7151 } 7152 } 7153 } 7154 return MadeChange; 7155 } 7156 7157 /// Scale down both weights to fit into uint32_t. 7158 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7159 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7160 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7161 NewTrue = NewTrue / Scale; 7162 NewFalse = NewFalse / Scale; 7163 } 7164 7165 /// Some targets prefer to split a conditional branch like: 7166 /// \code 7167 /// %0 = icmp ne i32 %a, 0 7168 /// %1 = icmp ne i32 %b, 0 7169 /// %or.cond = or i1 %0, %1 7170 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7171 /// \endcode 7172 /// into multiple branch instructions like: 7173 /// \code 7174 /// bb1: 7175 /// %0 = icmp ne i32 %a, 0 7176 /// br i1 %0, label %TrueBB, label %bb2 7177 /// bb2: 7178 /// %1 = icmp ne i32 %b, 0 7179 /// br i1 %1, label %TrueBB, label %FalseBB 7180 /// \endcode 7181 /// This usually allows instruction selection to do even further optimizations 7182 /// and combine the compare with the branch instruction. Currently this is 7183 /// applied for targets which have "cheap" jump instructions. 7184 /// 7185 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7186 /// 7187 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7188 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7189 return false; 7190 7191 bool MadeChange = false; 7192 for (auto &BB : F) { 7193 // Does this BB end with the following? 7194 // %cond1 = icmp|fcmp|binary instruction ... 7195 // %cond2 = icmp|fcmp|binary instruction ... 7196 // %cond.or = or|and i1 %cond1, cond2 7197 // br i1 %cond.or label %dest1, label %dest2" 7198 BinaryOperator *LogicOp; 7199 BasicBlock *TBB, *FBB; 7200 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7201 continue; 7202 7203 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7204 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7205 continue; 7206 7207 unsigned Opc; 7208 Value *Cond1, *Cond2; 7209 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7210 m_OneUse(m_Value(Cond2))))) 7211 Opc = Instruction::And; 7212 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7213 m_OneUse(m_Value(Cond2))))) 7214 Opc = Instruction::Or; 7215 else 7216 continue; 7217 7218 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7219 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7220 continue; 7221 7222 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7223 7224 // Create a new BB. 7225 auto TmpBB = 7226 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7227 BB.getParent(), BB.getNextNode()); 7228 7229 // Update original basic block by using the first condition directly by the 7230 // branch instruction and removing the no longer needed and/or instruction. 7231 Br1->setCondition(Cond1); 7232 LogicOp->eraseFromParent(); 7233 7234 // Depending on the condition we have to either replace the true or the 7235 // false successor of the original branch instruction. 7236 if (Opc == Instruction::And) 7237 Br1->setSuccessor(0, TmpBB); 7238 else 7239 Br1->setSuccessor(1, TmpBB); 7240 7241 // Fill in the new basic block. 7242 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7243 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7244 I->removeFromParent(); 7245 I->insertBefore(Br2); 7246 } 7247 7248 // Update PHI nodes in both successors. The original BB needs to be 7249 // replaced in one successor's PHI nodes, because the branch comes now from 7250 // the newly generated BB (NewBB). In the other successor we need to add one 7251 // incoming edge to the PHI nodes, because both branch instructions target 7252 // now the same successor. Depending on the original branch condition 7253 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7254 // we perform the correct update for the PHI nodes. 7255 // This doesn't change the successor order of the just created branch 7256 // instruction (or any other instruction). 7257 if (Opc == Instruction::Or) 7258 std::swap(TBB, FBB); 7259 7260 // Replace the old BB with the new BB. 7261 TBB->replacePhiUsesWith(&BB, TmpBB); 7262 7263 // Add another incoming edge form the new BB. 7264 for (PHINode &PN : FBB->phis()) { 7265 auto *Val = PN.getIncomingValueForBlock(&BB); 7266 PN.addIncoming(Val, TmpBB); 7267 } 7268 7269 // Update the branch weights (from SelectionDAGBuilder:: 7270 // FindMergedConditions). 7271 if (Opc == Instruction::Or) { 7272 // Codegen X | Y as: 7273 // BB1: 7274 // jmp_if_X TBB 7275 // jmp TmpBB 7276 // TmpBB: 7277 // jmp_if_Y TBB 7278 // jmp FBB 7279 // 7280 7281 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7282 // The requirement is that 7283 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7284 // = TrueProb for original BB. 7285 // Assuming the original weights are A and B, one choice is to set BB1's 7286 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7287 // assumes that 7288 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7289 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7290 // TmpBB, but the math is more complicated. 7291 uint64_t TrueWeight, FalseWeight; 7292 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7293 uint64_t NewTrueWeight = TrueWeight; 7294 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7295 scaleWeights(NewTrueWeight, NewFalseWeight); 7296 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7297 .createBranchWeights(TrueWeight, FalseWeight)); 7298 7299 NewTrueWeight = TrueWeight; 7300 NewFalseWeight = 2 * FalseWeight; 7301 scaleWeights(NewTrueWeight, NewFalseWeight); 7302 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7303 .createBranchWeights(TrueWeight, FalseWeight)); 7304 } 7305 } else { 7306 // Codegen X & Y as: 7307 // BB1: 7308 // jmp_if_X TmpBB 7309 // jmp FBB 7310 // TmpBB: 7311 // jmp_if_Y TBB 7312 // jmp FBB 7313 // 7314 // This requires creation of TmpBB after CurBB. 7315 7316 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7317 // The requirement is that 7318 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7319 // = FalseProb for original BB. 7320 // Assuming the original weights are A and B, one choice is to set BB1's 7321 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7322 // assumes that 7323 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7324 uint64_t TrueWeight, FalseWeight; 7325 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7326 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7327 uint64_t NewFalseWeight = FalseWeight; 7328 scaleWeights(NewTrueWeight, NewFalseWeight); 7329 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7330 .createBranchWeights(TrueWeight, FalseWeight)); 7331 7332 NewTrueWeight = 2 * TrueWeight; 7333 NewFalseWeight = FalseWeight; 7334 scaleWeights(NewTrueWeight, NewFalseWeight); 7335 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7336 .createBranchWeights(TrueWeight, FalseWeight)); 7337 } 7338 } 7339 7340 ModifiedDT = true; 7341 MadeChange = true; 7342 7343 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7344 TmpBB->dump()); 7345 } 7346 return MadeChange; 7347 } 7348