1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateAssumptions(Function &F); 381 bool eliminateFallThrough(Function &F); 382 bool eliminateMostlyEmptyBlocks(Function &F); 383 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 384 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 385 void eliminateMostlyEmptyBlock(BasicBlock *BB); 386 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 387 bool isPreheader); 388 bool makeBitReverse(Instruction &I); 389 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 390 bool optimizeInst(Instruction *I, bool &ModifiedDT); 391 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 392 Type *AccessTy, unsigned AddrSpace); 393 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 394 bool optimizeInlineAsmInst(CallInst *CS); 395 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 396 bool optimizeExt(Instruction *&I); 397 bool optimizeExtUses(Instruction *I); 398 bool optimizeLoadExt(LoadInst *Load); 399 bool optimizeShiftInst(BinaryOperator *BO); 400 bool optimizeFunnelShift(IntrinsicInst *Fsh); 401 bool optimizeSelectInst(SelectInst *SI); 402 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 403 bool optimizeSwitchInst(SwitchInst *SI); 404 bool optimizeExtractElementInst(Instruction *Inst); 405 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 406 bool fixupDbgValue(Instruction *I); 407 bool placeDbgValues(Function &F); 408 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 409 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 410 bool tryToPromoteExts(TypePromotionTransaction &TPT, 411 const SmallVectorImpl<Instruction *> &Exts, 412 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 413 unsigned CreatedInstsCost = 0); 414 bool mergeSExts(Function &F); 415 bool splitLargeGEPOffsets(); 416 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 417 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 418 bool optimizePhiTypes(Function &F); 419 bool performAddressTypePromotion( 420 Instruction *&Inst, 421 bool AllowPromotionWithoutCommonHeader, 422 bool HasPromoted, TypePromotionTransaction &TPT, 423 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 424 bool splitBranchCondition(Function &F, bool &ModifiedDT); 425 bool simplifyOffsetableRelocate(GCStatepointInst &I); 426 427 bool tryToSinkFreeOperands(Instruction *I); 428 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 429 Value *Arg1, CmpInst *Cmp, 430 Intrinsic::ID IID); 431 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 void verifyBFIUpdates(Function &F); 435 }; 436 437 } // end anonymous namespace 438 439 char CodeGenPrepare::ID = 0; 440 441 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 448 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 449 "Optimize for code generation", false, false) 450 451 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 452 453 bool CodeGenPrepare::runOnFunction(Function &F) { 454 if (skipFunction(F)) 455 return false; 456 457 DL = &F.getParent()->getDataLayout(); 458 459 bool EverMadeChange = false; 460 // Clear per function information. 461 InsertedInsts.clear(); 462 PromotedInsts.clear(); 463 464 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 465 SubtargetInfo = TM->getSubtargetImpl(F); 466 TLI = SubtargetInfo->getTargetLowering(); 467 TRI = SubtargetInfo->getRegisterInfo(); 468 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 469 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 470 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 471 BPI.reset(new BranchProbabilityInfo(F, *LI)); 472 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 473 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 474 OptSize = F.hasOptSize(); 475 if (ProfileGuidedSectionPrefix) { 476 // The hot attribute overwrites profile count based hotness while profile 477 // counts based hotness overwrite the cold attribute. 478 // This is a conservative behabvior. 479 if (F.hasFnAttribute(Attribute::Hot) || 480 PSI->isFunctionHotInCallGraph(&F, *BFI)) 481 F.setSectionPrefix("hot"); 482 // If PSI shows this function is not hot, we will placed the function 483 // into unlikely section if (1) PSI shows this is a cold function, or 484 // (2) the function has a attribute of cold. 485 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 486 F.hasFnAttribute(Attribute::Cold)) 487 F.setSectionPrefix("unlikely"); 488 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 489 PSI->isFunctionHotnessUnknown(F)) 490 F.setSectionPrefix("unknown"); 491 } 492 493 /// This optimization identifies DIV instructions that can be 494 /// profitably bypassed and carried out with a shorter, faster divide. 495 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 496 const DenseMap<unsigned int, unsigned int> &BypassWidths = 497 TLI->getBypassSlowDivWidths(); 498 BasicBlock* BB = &*F.begin(); 499 while (BB != nullptr) { 500 // bypassSlowDivision may create new BBs, but we don't want to reapply the 501 // optimization to those blocks. 502 BasicBlock* Next = BB->getNextNode(); 503 // F.hasOptSize is already checked in the outer if statement. 504 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 505 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 506 BB = Next; 507 } 508 } 509 510 // Get rid of @llvm.assume builtins before attempting to eliminate empty 511 // blocks, since there might be blocks that only contain @llvm.assume calls 512 // (plus arguments that we can get rid of). 513 EverMadeChange |= eliminateAssumptions(F); 514 515 // Eliminate blocks that contain only PHI nodes and an 516 // unconditional branch. 517 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 518 519 bool ModifiedDT = false; 520 if (!DisableBranchOpts) 521 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 522 523 // Split some critical edges where one of the sources is an indirect branch, 524 // to help generate sane code for PHIs involving such edges. 525 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 526 527 bool MadeChange = true; 528 while (MadeChange) { 529 MadeChange = false; 530 DT.reset(); 531 for (Function::iterator I = F.begin(); I != F.end(); ) { 532 BasicBlock *BB = &*I++; 533 bool ModifiedDTOnIteration = false; 534 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 535 536 // Restart BB iteration if the dominator tree of the Function was changed 537 if (ModifiedDTOnIteration) 538 break; 539 } 540 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 541 MadeChange |= mergeSExts(F); 542 if (!LargeOffsetGEPMap.empty()) 543 MadeChange |= splitLargeGEPOffsets(); 544 MadeChange |= optimizePhiTypes(F); 545 546 if (MadeChange) 547 eliminateFallThrough(F); 548 549 // Really free removed instructions during promotion. 550 for (Instruction *I : RemovedInsts) 551 I->deleteValue(); 552 553 EverMadeChange |= MadeChange; 554 SeenChainsForSExt.clear(); 555 ValToSExtendedUses.clear(); 556 RemovedInsts.clear(); 557 LargeOffsetGEPMap.clear(); 558 LargeOffsetGEPID.clear(); 559 } 560 561 NewGEPBases.clear(); 562 SunkAddrs.clear(); 563 564 if (!DisableBranchOpts) { 565 MadeChange = false; 566 // Use a set vector to get deterministic iteration order. The order the 567 // blocks are removed may affect whether or not PHI nodes in successors 568 // are removed. 569 SmallSetVector<BasicBlock*, 8> WorkList; 570 for (BasicBlock &BB : F) { 571 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 572 MadeChange |= ConstantFoldTerminator(&BB, true); 573 if (!MadeChange) continue; 574 575 for (BasicBlock *Succ : Successors) 576 if (pred_empty(Succ)) 577 WorkList.insert(Succ); 578 } 579 580 // Delete the dead blocks and any of their dead successors. 581 MadeChange |= !WorkList.empty(); 582 while (!WorkList.empty()) { 583 BasicBlock *BB = WorkList.pop_back_val(); 584 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 585 586 DeleteDeadBlock(BB); 587 588 for (BasicBlock *Succ : Successors) 589 if (pred_empty(Succ)) 590 WorkList.insert(Succ); 591 } 592 593 // Merge pairs of basic blocks with unconditional branches, connected by 594 // a single edge. 595 if (EverMadeChange || MadeChange) 596 MadeChange |= eliminateFallThrough(F); 597 598 EverMadeChange |= MadeChange; 599 } 600 601 if (!DisableGCOpts) { 602 SmallVector<GCStatepointInst *, 2> Statepoints; 603 for (BasicBlock &BB : F) 604 for (Instruction &I : BB) 605 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 606 Statepoints.push_back(SP); 607 for (auto &I : Statepoints) 608 EverMadeChange |= simplifyOffsetableRelocate(*I); 609 } 610 611 // Do this last to clean up use-before-def scenarios introduced by other 612 // preparatory transforms. 613 EverMadeChange |= placeDbgValues(F); 614 615 #ifndef NDEBUG 616 if (VerifyBFIUpdates) 617 verifyBFIUpdates(F); 618 #endif 619 620 return EverMadeChange; 621 } 622 623 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 624 bool MadeChange = false; 625 for (BasicBlock &BB : F) { 626 CurInstIterator = BB.begin(); 627 while (CurInstIterator != BB.end()) { 628 Instruction *I = &*(CurInstIterator++); 629 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 630 if (II->getIntrinsicID() != Intrinsic::assume) 631 continue; 632 MadeChange = true; 633 Value *Operand = II->getOperand(0); 634 II->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 const auto &I = 663 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 if (I == GEPVector.end()) 665 return; 666 667 GEPVector.erase(I); 668 if (GEPVector.empty()) 669 LargeOffsetGEPMap.erase(VecI); 670 } 671 672 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 673 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 674 DominatorTree NewDT(F); 675 LoopInfo NewLI(NewDT); 676 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 677 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 678 NewBFI.verifyMatch(*BFI); 679 } 680 681 /// Merge basic blocks which are connected by a single edge, where one of the 682 /// basic blocks has a single successor pointing to the other basic block, 683 /// which has a single predecessor. 684 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 685 bool Changed = false; 686 // Scan all of the blocks in the function, except for the entry block. 687 // Use a temporary array to avoid iterator being invalidated when 688 // deleting blocks. 689 SmallVector<WeakTrackingVH, 16> Blocks; 690 for (auto &Block : llvm::drop_begin(F)) 691 Blocks.push_back(&Block); 692 693 SmallSet<WeakTrackingVH, 16> Preds; 694 for (auto &Block : Blocks) { 695 auto *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 // If the destination block has a single pred, then this is a trivial 699 // edge, just collapse it. 700 BasicBlock *SinglePred = BB->getSinglePredecessor(); 701 702 // Don't merge if BB's address is taken. 703 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 704 705 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 706 if (Term && !Term->isConditional()) { 707 Changed = true; 708 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 709 710 // Merge BB into SinglePred and delete it. 711 MergeBlockIntoPredecessor(BB); 712 Preds.insert(SinglePred); 713 } 714 } 715 716 // (Repeatedly) merging blocks into their predecessors can create redundant 717 // debug intrinsics. 718 for (auto &Pred : Preds) 719 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 720 RemoveRedundantDbgInstrs(BB); 721 722 return Changed; 723 } 724 725 /// Find a destination block from BB if BB is mergeable empty block. 726 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 727 // If this block doesn't end with an uncond branch, ignore it. 728 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 729 if (!BI || !BI->isUnconditional()) 730 return nullptr; 731 732 // If the instruction before the branch (skipping debug info) isn't a phi 733 // node, then other stuff is happening here. 734 BasicBlock::iterator BBI = BI->getIterator(); 735 if (BBI != BB->begin()) { 736 --BBI; 737 while (isa<DbgInfoIntrinsic>(BBI)) { 738 if (BBI == BB->begin()) 739 break; 740 --BBI; 741 } 742 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 743 return nullptr; 744 } 745 746 // Do not break infinite loops. 747 BasicBlock *DestBB = BI->getSuccessor(0); 748 if (DestBB == BB) 749 return nullptr; 750 751 if (!canMergeBlocks(BB, DestBB)) 752 DestBB = nullptr; 753 754 return DestBB; 755 } 756 757 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 758 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 759 /// edges in ways that are non-optimal for isel. Start by eliminating these 760 /// blocks so we can split them the way we want them. 761 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 762 SmallPtrSet<BasicBlock *, 16> Preheaders; 763 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 764 while (!LoopList.empty()) { 765 Loop *L = LoopList.pop_back_val(); 766 llvm::append_range(LoopList, *L); 767 if (BasicBlock *Preheader = L->getLoopPreheader()) 768 Preheaders.insert(Preheader); 769 } 770 771 bool MadeChange = false; 772 // Copy blocks into a temporary array to avoid iterator invalidation issues 773 // as we remove them. 774 // Note that this intentionally skips the entry block. 775 SmallVector<WeakTrackingVH, 16> Blocks; 776 for (auto &Block : llvm::drop_begin(F)) 777 Blocks.push_back(&Block); 778 779 for (auto &Block : Blocks) { 780 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 781 if (!BB) 782 continue; 783 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 784 if (!DestBB || 785 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 786 continue; 787 788 eliminateMostlyEmptyBlock(BB); 789 MadeChange = true; 790 } 791 return MadeChange; 792 } 793 794 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 795 BasicBlock *DestBB, 796 bool isPreheader) { 797 // Do not delete loop preheaders if doing so would create a critical edge. 798 // Loop preheaders can be good locations to spill registers. If the 799 // preheader is deleted and we create a critical edge, registers may be 800 // spilled in the loop body instead. 801 if (!DisablePreheaderProtect && isPreheader && 802 !(BB->getSinglePredecessor() && 803 BB->getSinglePredecessor()->getSingleSuccessor())) 804 return false; 805 806 // Skip merging if the block's successor is also a successor to any callbr 807 // that leads to this block. 808 // FIXME: Is this really needed? Is this a correctness issue? 809 for (BasicBlock *Pred : predecessors(BB)) { 810 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 811 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 812 if (DestBB == CBI->getSuccessor(i)) 813 return false; 814 } 815 816 // Try to skip merging if the unique predecessor of BB is terminated by a 817 // switch or indirect branch instruction, and BB is used as an incoming block 818 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 819 // add COPY instructions in the predecessor of BB instead of BB (if it is not 820 // merged). Note that the critical edge created by merging such blocks wont be 821 // split in MachineSink because the jump table is not analyzable. By keeping 822 // such empty block (BB), ISel will place COPY instructions in BB, not in the 823 // predecessor of BB. 824 BasicBlock *Pred = BB->getUniquePredecessor(); 825 if (!Pred || 826 !(isa<SwitchInst>(Pred->getTerminator()) || 827 isa<IndirectBrInst>(Pred->getTerminator()))) 828 return true; 829 830 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 831 return true; 832 833 // We use a simple cost heuristic which determine skipping merging is 834 // profitable if the cost of skipping merging is less than the cost of 835 // merging : Cost(skipping merging) < Cost(merging BB), where the 836 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 837 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 838 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 839 // Freq(Pred) / Freq(BB) > 2. 840 // Note that if there are multiple empty blocks sharing the same incoming 841 // value for the PHIs in the DestBB, we consider them together. In such 842 // case, Cost(merging BB) will be the sum of their frequencies. 843 844 if (!isa<PHINode>(DestBB->begin())) 845 return true; 846 847 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 848 849 // Find all other incoming blocks from which incoming values of all PHIs in 850 // DestBB are the same as the ones from BB. 851 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 852 if (DestBBPred == BB) 853 continue; 854 855 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 856 return DestPN.getIncomingValueForBlock(BB) == 857 DestPN.getIncomingValueForBlock(DestBBPred); 858 })) 859 SameIncomingValueBBs.insert(DestBBPred); 860 } 861 862 // See if all BB's incoming values are same as the value from Pred. In this 863 // case, no reason to skip merging because COPYs are expected to be place in 864 // Pred already. 865 if (SameIncomingValueBBs.count(Pred)) 866 return true; 867 868 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 869 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 870 871 for (auto *SameValueBB : SameIncomingValueBBs) 872 if (SameValueBB->getUniquePredecessor() == Pred && 873 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 874 BBFreq += BFI->getBlockFreq(SameValueBB); 875 876 return PredFreq.getFrequency() <= 877 BBFreq.getFrequency() * FreqRatioToSkipMerge; 878 } 879 880 /// Return true if we can merge BB into DestBB if there is a single 881 /// unconditional branch between them, and BB contains no other non-phi 882 /// instructions. 883 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 884 const BasicBlock *DestBB) const { 885 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 886 // the successor. If there are more complex condition (e.g. preheaders), 887 // don't mess around with them. 888 for (const PHINode &PN : BB->phis()) { 889 for (const User *U : PN.users()) { 890 const Instruction *UI = cast<Instruction>(U); 891 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 892 return false; 893 // If User is inside DestBB block and it is a PHINode then check 894 // incoming value. If incoming value is not from BB then this is 895 // a complex condition (e.g. preheaders) we want to avoid here. 896 if (UI->getParent() == DestBB) { 897 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 898 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 899 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 900 if (Insn && Insn->getParent() == BB && 901 Insn->getParent() != UPN->getIncomingBlock(I)) 902 return false; 903 } 904 } 905 } 906 } 907 908 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 909 // and DestBB may have conflicting incoming values for the block. If so, we 910 // can't merge the block. 911 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 912 if (!DestBBPN) return true; // no conflict. 913 914 // Collect the preds of BB. 915 SmallPtrSet<const BasicBlock*, 16> BBPreds; 916 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 917 // It is faster to get preds from a PHI than with pred_iterator. 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 BBPreds.insert(BBPN->getIncomingBlock(i)); 920 } else { 921 BBPreds.insert(pred_begin(BB), pred_end(BB)); 922 } 923 924 // Walk the preds of DestBB. 925 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 926 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 927 if (BBPreds.count(Pred)) { // Common predecessor? 928 for (const PHINode &PN : DestBB->phis()) { 929 const Value *V1 = PN.getIncomingValueForBlock(Pred); 930 const Value *V2 = PN.getIncomingValueForBlock(BB); 931 932 // If V2 is a phi node in BB, look up what the mapped value will be. 933 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 934 if (V2PN->getParent() == BB) 935 V2 = V2PN->getIncomingValueForBlock(Pred); 936 937 // If there is a conflict, bail out. 938 if (V1 != V2) return false; 939 } 940 } 941 } 942 943 return true; 944 } 945 946 /// Eliminate a basic block that has only phi's and an unconditional branch in 947 /// it. 948 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 949 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 950 BasicBlock *DestBB = BI->getSuccessor(0); 951 952 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 953 << *BB << *DestBB); 954 955 // If the destination block has a single pred, then this is a trivial edge, 956 // just collapse it. 957 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 958 if (SinglePred != DestBB) { 959 assert(SinglePred == BB && 960 "Single predecessor not the same as predecessor"); 961 // Merge DestBB into SinglePred/BB and delete it. 962 MergeBlockIntoPredecessor(DestBB); 963 // Note: BB(=SinglePred) will not be deleted on this path. 964 // DestBB(=its single successor) is the one that was deleted. 965 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 966 return; 967 } 968 } 969 970 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 971 // to handle the new incoming edges it is about to have. 972 for (PHINode &PN : DestBB->phis()) { 973 // Remove the incoming value for BB, and remember it. 974 Value *InVal = PN.removeIncomingValue(BB, false); 975 976 // Two options: either the InVal is a phi node defined in BB or it is some 977 // value that dominates BB. 978 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 979 if (InValPhi && InValPhi->getParent() == BB) { 980 // Add all of the input values of the input PHI as inputs of this phi. 981 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 982 PN.addIncoming(InValPhi->getIncomingValue(i), 983 InValPhi->getIncomingBlock(i)); 984 } else { 985 // Otherwise, add one instance of the dominating value for each edge that 986 // we will be adding. 987 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 988 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 989 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 990 } else { 991 for (BasicBlock *Pred : predecessors(BB)) 992 PN.addIncoming(InVal, Pred); 993 } 994 } 995 } 996 997 // The PHIs are now updated, change everything that refers to BB to use 998 // DestBB and remove BB. 999 BB->replaceAllUsesWith(DestBB); 1000 BB->eraseFromParent(); 1001 ++NumBlocksElim; 1002 1003 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1004 } 1005 1006 // Computes a map of base pointer relocation instructions to corresponding 1007 // derived pointer relocation instructions given a vector of all relocate calls 1008 static void computeBaseDerivedRelocateMap( 1009 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1011 &RelocateInstMap) { 1012 // Collect information in two maps: one primarily for locating the base object 1013 // while filling the second map; the second map is the final structure holding 1014 // a mapping between Base and corresponding Derived relocate calls 1015 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1016 for (auto *ThisRelocate : AllRelocateCalls) { 1017 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1018 ThisRelocate->getDerivedPtrIndex()); 1019 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1020 } 1021 for (auto &Item : RelocateIdxMap) { 1022 std::pair<unsigned, unsigned> Key = Item.first; 1023 if (Key.first == Key.second) 1024 // Base relocation: nothing to insert 1025 continue; 1026 1027 GCRelocateInst *I = Item.second; 1028 auto BaseKey = std::make_pair(Key.first, Key.first); 1029 1030 // We're iterating over RelocateIdxMap so we cannot modify it. 1031 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1032 if (MaybeBase == RelocateIdxMap.end()) 1033 // TODO: We might want to insert a new base object relocate and gep off 1034 // that, if there are enough derived object relocates. 1035 continue; 1036 1037 RelocateInstMap[MaybeBase->second].push_back(I); 1038 } 1039 } 1040 1041 // Accepts a GEP and extracts the operands into a vector provided they're all 1042 // small integer constants 1043 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1044 SmallVectorImpl<Value *> &OffsetV) { 1045 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1046 // Only accept small constant integer operands 1047 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1048 if (!Op || Op->getZExtValue() > 20) 1049 return false; 1050 } 1051 1052 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1053 OffsetV.push_back(GEP->getOperand(i)); 1054 return true; 1055 } 1056 1057 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1058 // replace, computes a replacement, and affects it. 1059 static bool 1060 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1061 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1062 bool MadeChange = false; 1063 // We must ensure the relocation of derived pointer is defined after 1064 // relocation of base pointer. If we find a relocation corresponding to base 1065 // defined earlier than relocation of base then we move relocation of base 1066 // right before found relocation. We consider only relocation in the same 1067 // basic block as relocation of base. Relocations from other basic block will 1068 // be skipped by optimization and we do not care about them. 1069 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1070 &*R != RelocatedBase; ++R) 1071 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1072 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1073 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1074 RelocatedBase->moveBefore(RI); 1075 break; 1076 } 1077 1078 for (GCRelocateInst *ToReplace : Targets) { 1079 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1080 "Not relocating a derived object of the original base object"); 1081 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1082 // A duplicate relocate call. TODO: coalesce duplicates. 1083 continue; 1084 } 1085 1086 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1087 // Base and derived relocates are in different basic blocks. 1088 // In this case transform is only valid when base dominates derived 1089 // relocate. However it would be too expensive to check dominance 1090 // for each such relocate, so we skip the whole transformation. 1091 continue; 1092 } 1093 1094 Value *Base = ToReplace->getBasePtr(); 1095 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1096 if (!Derived || Derived->getPointerOperand() != Base) 1097 continue; 1098 1099 SmallVector<Value *, 2> OffsetV; 1100 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1101 continue; 1102 1103 // Create a Builder and replace the target callsite with a gep 1104 assert(RelocatedBase->getNextNode() && 1105 "Should always have one since it's not a terminator"); 1106 1107 // Insert after RelocatedBase 1108 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1109 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1110 1111 // If gc_relocate does not match the actual type, cast it to the right type. 1112 // In theory, there must be a bitcast after gc_relocate if the type does not 1113 // match, and we should reuse it to get the derived pointer. But it could be 1114 // cases like this: 1115 // bb1: 1116 // ... 1117 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // bb2: 1121 // ... 1122 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1123 // br label %merge 1124 // 1125 // merge: 1126 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1127 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1128 // 1129 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1130 // no matter there is already one or not. In this way, we can handle all cases, and 1131 // the extra bitcast should be optimized away in later passes. 1132 Value *ActualRelocatedBase = RelocatedBase; 1133 if (RelocatedBase->getType() != Base->getType()) { 1134 ActualRelocatedBase = 1135 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1136 } 1137 Value *Replacement = Builder.CreateGEP( 1138 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1139 Replacement->takeName(ToReplace); 1140 // If the newly generated derived pointer's type does not match the original derived 1141 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1142 Value *ActualReplacement = Replacement; 1143 if (Replacement->getType() != ToReplace->getType()) { 1144 ActualReplacement = 1145 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1146 } 1147 ToReplace->replaceAllUsesWith(ActualReplacement); 1148 ToReplace->eraseFromParent(); 1149 1150 MadeChange = true; 1151 } 1152 return MadeChange; 1153 } 1154 1155 // Turns this: 1156 // 1157 // %base = ... 1158 // %ptr = gep %base + 15 1159 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1160 // %base' = relocate(%tok, i32 4, i32 4) 1161 // %ptr' = relocate(%tok, i32 4, i32 5) 1162 // %val = load %ptr' 1163 // 1164 // into this: 1165 // 1166 // %base = ... 1167 // %ptr = gep %base + 15 1168 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1169 // %base' = gc.relocate(%tok, i32 4, i32 4) 1170 // %ptr' = gep %base' + 15 1171 // %val = load %ptr' 1172 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1173 bool MadeChange = false; 1174 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1175 for (auto *U : I.users()) 1176 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1177 // Collect all the relocate calls associated with a statepoint 1178 AllRelocateCalls.push_back(Relocate); 1179 1180 // We need at least one base pointer relocation + one derived pointer 1181 // relocation to mangle 1182 if (AllRelocateCalls.size() < 2) 1183 return false; 1184 1185 // RelocateInstMap is a mapping from the base relocate instruction to the 1186 // corresponding derived relocate instructions 1187 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1188 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1189 if (RelocateInstMap.empty()) 1190 return false; 1191 1192 for (auto &Item : RelocateInstMap) 1193 // Item.first is the RelocatedBase to offset against 1194 // Item.second is the vector of Targets to replace 1195 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1196 return MadeChange; 1197 } 1198 1199 /// Sink the specified cast instruction into its user blocks. 1200 static bool SinkCast(CastInst *CI) { 1201 BasicBlock *DefBB = CI->getParent(); 1202 1203 /// InsertedCasts - Only insert a cast in each block once. 1204 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1205 1206 bool MadeChange = false; 1207 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1208 UI != E; ) { 1209 Use &TheUse = UI.getUse(); 1210 Instruction *User = cast<Instruction>(*UI); 1211 1212 // Figure out which BB this cast is used in. For PHI's this is the 1213 // appropriate predecessor block. 1214 BasicBlock *UserBB = User->getParent(); 1215 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1216 UserBB = PN->getIncomingBlock(TheUse); 1217 } 1218 1219 // Preincrement use iterator so we don't invalidate it. 1220 ++UI; 1221 1222 // The first insertion point of a block containing an EH pad is after the 1223 // pad. If the pad is the user, we cannot sink the cast past the pad. 1224 if (User->isEHPad()) 1225 continue; 1226 1227 // If the block selected to receive the cast is an EH pad that does not 1228 // allow non-PHI instructions before the terminator, we can't sink the 1229 // cast. 1230 if (UserBB->getTerminator()->isEHPad()) 1231 continue; 1232 1233 // If this user is in the same block as the cast, don't change the cast. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cast into this block, use it. 1237 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1238 1239 if (!InsertedCast) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1243 CI->getType(), "", &*InsertPt); 1244 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1245 } 1246 1247 // Replace a use of the cast with a use of the new cast. 1248 TheUse = InsertedCast; 1249 MadeChange = true; 1250 ++NumCastUses; 1251 } 1252 1253 // If we removed all uses, nuke the cast. 1254 if (CI->use_empty()) { 1255 salvageDebugInfo(*CI); 1256 CI->eraseFromParent(); 1257 MadeChange = true; 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1264 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1265 /// reduce the number of virtual registers that must be created and coalesced. 1266 /// 1267 /// Return true if any changes are made. 1268 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1269 const DataLayout &DL) { 1270 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1271 // than sinking only nop casts, but is helpful on some platforms. 1272 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1273 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1274 ASC->getDestAddressSpace())) 1275 return false; 1276 } 1277 1278 // If this is a noop copy, 1279 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1281 1282 // This is an fp<->int conversion? 1283 if (SrcVT.isInteger() != DstVT.isInteger()) 1284 return false; 1285 1286 // If this is an extension, it will be a zero or sign extension, which 1287 // isn't a noop. 1288 if (SrcVT.bitsLT(DstVT)) return false; 1289 1290 // If these values will be promoted, find out what they will be promoted 1291 // to. This helps us consider truncates on PPC as noop copies when they 1292 // are. 1293 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1294 TargetLowering::TypePromoteInteger) 1295 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1296 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1297 TargetLowering::TypePromoteInteger) 1298 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1299 1300 // If, after promotion, these are the same types, this is a noop copy. 1301 if (SrcVT != DstVT) 1302 return false; 1303 1304 return SinkCast(CI); 1305 } 1306 1307 /// If given \p PN is an inductive variable with value IVInc coming from the 1308 /// backedge, and on each iteration it gets increased by Step, return pair 1309 /// <IVInc, Step>. Otherwise, return None. 1310 static Optional<std::pair<Instruction *, Constant *> > 1311 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1312 const Loop *L = LI->getLoopFor(PN->getParent()); 1313 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1314 return None; 1315 auto *IVInc = 1316 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1317 if (!IVInc) 1318 return None; 1319 Constant *Step = nullptr; 1320 if (match(IVInc, m_Sub(m_Specific(PN), m_Constant(Step)))) 1321 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1322 if (match(IVInc, m_Add(m_Specific(PN), m_Constant(Step)))) 1323 return std::make_pair(IVInc, Step); 1324 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1325 m_Specific(PN), m_Constant(Step))))) 1326 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1327 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1328 m_Specific(PN), m_Constant(Step))))) 1329 return std::make_pair(IVInc, Step); 1330 return None; 1331 } 1332 1333 static bool isIVIncrement(const BinaryOperator *BO, const LoopInfo *LI) { 1334 auto *PN = dyn_cast<PHINode>(BO->getOperand(0)); 1335 if (!PN || LI->getLoopFor(BO->getParent()) != LI->getLoopFor(PN->getParent())) 1336 return false; 1337 if (auto IVInc = getIVIncrement(PN, LI)) 1338 return IVInc->first == BO; 1339 return false; 1340 } 1341 1342 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1343 Value *Arg0, Value *Arg1, 1344 CmpInst *Cmp, 1345 Intrinsic::ID IID) { 1346 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1347 if (!isIVIncrement(BO, LI)) 1348 return false; 1349 const Loop *L = LI->getLoopFor(BO->getParent()); 1350 assert(L && "L should not be null after isIVIncrement()"); 1351 // IV increment may have other users than the IV. We do not want to make 1352 // dominance queries to analyze the legality of moving it towards the cmp, 1353 // so just check that there is no other users. 1354 if (!BO->hasOneUse()) 1355 return false; 1356 // Do not risk on moving increment into a child loop. 1357 if (LI->getLoopFor(Cmp->getParent()) != L) 1358 return false; 1359 // Ultimately, the insertion point must dominate latch. This should be a 1360 // cheap check because no CFG changes & dom tree recomputation happens 1361 // during the transform. 1362 Function *F = BO->getParent()->getParent(); 1363 return getDT(*F).dominates(Cmp->getParent(), L->getLoopLatch()); 1364 }; 1365 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1366 // We used to use a dominator tree here to allow multi-block optimization. 1367 // But that was problematic because: 1368 // 1. It could cause a perf regression by hoisting the math op into the 1369 // critical path. 1370 // 2. It could cause a perf regression by creating a value that was live 1371 // across multiple blocks and increasing register pressure. 1372 // 3. Use of a dominator tree could cause large compile-time regression. 1373 // This is because we recompute the DT on every change in the main CGP 1374 // run-loop. The recomputing is probably unnecessary in many cases, so if 1375 // that was fixed, using a DT here would be ok. 1376 // 1377 // There is one important particular case we still want to handle: if BO is 1378 // the IV increment. Important properties that make it profitable: 1379 // - We can speculate IV increment anywhere in the loop (as long as the 1380 // indvar Phi is its only user); 1381 // - Upon computing Cmp, we effectively compute something equivalent to the 1382 // IV increment (despite it loops differently in the IR). So moving it up 1383 // to the cmp point does not really increase register pressure. 1384 return false; 1385 } 1386 1387 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1388 if (BO->getOpcode() == Instruction::Add && 1389 IID == Intrinsic::usub_with_overflow) { 1390 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1391 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1392 } 1393 1394 // Insert at the first instruction of the pair. 1395 Instruction *InsertPt = nullptr; 1396 for (Instruction &Iter : *Cmp->getParent()) { 1397 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1398 // the overflow intrinsic are defined. 1399 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1400 InsertPt = &Iter; 1401 break; 1402 } 1403 } 1404 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1405 1406 IRBuilder<> Builder(InsertPt); 1407 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1408 if (BO->getOpcode() != Instruction::Xor) { 1409 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1410 BO->replaceAllUsesWith(Math); 1411 } else 1412 assert(BO->hasOneUse() && 1413 "Patterns with XOr should use the BO only in the compare"); 1414 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1415 Cmp->replaceAllUsesWith(OV); 1416 Cmp->eraseFromParent(); 1417 BO->eraseFromParent(); 1418 return true; 1419 } 1420 1421 /// Match special-case patterns that check for unsigned add overflow. 1422 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1423 BinaryOperator *&Add) { 1424 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1425 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1426 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1427 1428 // We are not expecting non-canonical/degenerate code. Just bail out. 1429 if (isa<Constant>(A)) 1430 return false; 1431 1432 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1433 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1434 B = ConstantInt::get(B->getType(), 1); 1435 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1436 B = ConstantInt::get(B->getType(), -1); 1437 else 1438 return false; 1439 1440 // Check the users of the variable operand of the compare looking for an add 1441 // with the adjusted constant. 1442 for (User *U : A->users()) { 1443 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1444 Add = cast<BinaryOperator>(U); 1445 return true; 1446 } 1447 } 1448 return false; 1449 } 1450 1451 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1452 /// intrinsic. Return true if any changes were made. 1453 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1454 bool &ModifiedDT) { 1455 Value *A, *B; 1456 BinaryOperator *Add; 1457 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1458 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1459 return false; 1460 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1461 A = Add->getOperand(0); 1462 B = Add->getOperand(1); 1463 } 1464 1465 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1466 TLI->getValueType(*DL, Add->getType()), 1467 Add->hasNUsesOrMore(2))) 1468 return false; 1469 1470 // We don't want to move around uses of condition values this late, so we 1471 // check if it is legal to create the call to the intrinsic in the basic 1472 // block containing the icmp. 1473 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1474 return false; 1475 1476 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1477 Intrinsic::uadd_with_overflow)) 1478 return false; 1479 1480 // Reset callers - do not crash by iterating over a dead instruction. 1481 ModifiedDT = true; 1482 return true; 1483 } 1484 1485 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1486 bool &ModifiedDT) { 1487 // We are not expecting non-canonical/degenerate code. Just bail out. 1488 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1489 if (isa<Constant>(A) && isa<Constant>(B)) 1490 return false; 1491 1492 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1493 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1494 if (Pred == ICmpInst::ICMP_UGT) { 1495 std::swap(A, B); 1496 Pred = ICmpInst::ICMP_ULT; 1497 } 1498 // Convert special-case: (A == 0) is the same as (A u< 1). 1499 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1500 B = ConstantInt::get(B->getType(), 1); 1501 Pred = ICmpInst::ICMP_ULT; 1502 } 1503 // Convert special-case: (A != 0) is the same as (0 u< A). 1504 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1505 std::swap(A, B); 1506 Pred = ICmpInst::ICMP_ULT; 1507 } 1508 if (Pred != ICmpInst::ICMP_ULT) 1509 return false; 1510 1511 // Walk the users of a variable operand of a compare looking for a subtract or 1512 // add with that same operand. Also match the 2nd operand of the compare to 1513 // the add/sub, but that may be a negated constant operand of an add. 1514 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1515 BinaryOperator *Sub = nullptr; 1516 for (User *U : CmpVariableOperand->users()) { 1517 // A - B, A u< B --> usubo(A, B) 1518 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1519 Sub = cast<BinaryOperator>(U); 1520 break; 1521 } 1522 1523 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1524 const APInt *CmpC, *AddC; 1525 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1526 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1527 Sub = cast<BinaryOperator>(U); 1528 break; 1529 } 1530 } 1531 if (!Sub) 1532 return false; 1533 1534 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1535 TLI->getValueType(*DL, Sub->getType()), 1536 Sub->hasNUsesOrMore(2))) 1537 return false; 1538 1539 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1540 Cmp, Intrinsic::usub_with_overflow)) 1541 return false; 1542 1543 // Reset callers - do not crash by iterating over a dead instruction. 1544 ModifiedDT = true; 1545 return true; 1546 } 1547 1548 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1549 /// registers that must be created and coalesced. This is a clear win except on 1550 /// targets with multiple condition code registers (PowerPC), where it might 1551 /// lose; some adjustment may be wanted there. 1552 /// 1553 /// Return true if any changes are made. 1554 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1555 if (TLI.hasMultipleConditionRegisters()) 1556 return false; 1557 1558 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1559 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1560 return false; 1561 1562 // Only insert a cmp in each block once. 1563 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1564 1565 bool MadeChange = false; 1566 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1567 UI != E; ) { 1568 Use &TheUse = UI.getUse(); 1569 Instruction *User = cast<Instruction>(*UI); 1570 1571 // Preincrement use iterator so we don't invalidate it. 1572 ++UI; 1573 1574 // Don't bother for PHI nodes. 1575 if (isa<PHINode>(User)) 1576 continue; 1577 1578 // Figure out which BB this cmp is used in. 1579 BasicBlock *UserBB = User->getParent(); 1580 BasicBlock *DefBB = Cmp->getParent(); 1581 1582 // If this user is in the same block as the cmp, don't change the cmp. 1583 if (UserBB == DefBB) continue; 1584 1585 // If we have already inserted a cmp into this block, use it. 1586 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1587 1588 if (!InsertedCmp) { 1589 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1590 assert(InsertPt != UserBB->end()); 1591 InsertedCmp = 1592 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1593 Cmp->getOperand(0), Cmp->getOperand(1), "", 1594 &*InsertPt); 1595 // Propagate the debug info. 1596 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1597 } 1598 1599 // Replace a use of the cmp with a use of the new cmp. 1600 TheUse = InsertedCmp; 1601 MadeChange = true; 1602 ++NumCmpUses; 1603 } 1604 1605 // If we removed all uses, nuke the cmp. 1606 if (Cmp->use_empty()) { 1607 Cmp->eraseFromParent(); 1608 MadeChange = true; 1609 } 1610 1611 return MadeChange; 1612 } 1613 1614 /// For pattern like: 1615 /// 1616 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1617 /// ... 1618 /// DomBB: 1619 /// ... 1620 /// br DomCond, TrueBB, CmpBB 1621 /// CmpBB: (with DomBB being the single predecessor) 1622 /// ... 1623 /// Cmp = icmp eq CmpOp0, CmpOp1 1624 /// ... 1625 /// 1626 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1627 /// different from lowering of icmp eq (PowerPC). This function try to convert 1628 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1629 /// After that, DomCond and Cmp can use the same comparison so reduce one 1630 /// comparison. 1631 /// 1632 /// Return true if any changes are made. 1633 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1634 const TargetLowering &TLI) { 1635 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1636 return false; 1637 1638 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1639 if (Pred != ICmpInst::ICMP_EQ) 1640 return false; 1641 1642 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1643 // icmp slt/sgt would introduce more redundant LLVM IR. 1644 for (User *U : Cmp->users()) { 1645 if (isa<BranchInst>(U)) 1646 continue; 1647 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1648 continue; 1649 return false; 1650 } 1651 1652 // This is a cheap/incomplete check for dominance - just match a single 1653 // predecessor with a conditional branch. 1654 BasicBlock *CmpBB = Cmp->getParent(); 1655 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1656 if (!DomBB) 1657 return false; 1658 1659 // We want to ensure that the only way control gets to the comparison of 1660 // interest is that a less/greater than comparison on the same operands is 1661 // false. 1662 Value *DomCond; 1663 BasicBlock *TrueBB, *FalseBB; 1664 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1665 return false; 1666 if (CmpBB != FalseBB) 1667 return false; 1668 1669 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1670 ICmpInst::Predicate DomPred; 1671 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1672 return false; 1673 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1674 return false; 1675 1676 // Convert the equality comparison to the opposite of the dominating 1677 // comparison and swap the direction for all branch/select users. 1678 // We have conceptually converted: 1679 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1680 // to 1681 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1682 // And similarly for branches. 1683 for (User *U : Cmp->users()) { 1684 if (auto *BI = dyn_cast<BranchInst>(U)) { 1685 assert(BI->isConditional() && "Must be conditional"); 1686 BI->swapSuccessors(); 1687 continue; 1688 } 1689 if (auto *SI = dyn_cast<SelectInst>(U)) { 1690 // Swap operands 1691 SI->swapValues(); 1692 SI->swapProfMetadata(); 1693 continue; 1694 } 1695 llvm_unreachable("Must be a branch or a select"); 1696 } 1697 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1698 return true; 1699 } 1700 1701 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1702 if (sinkCmpExpression(Cmp, *TLI)) 1703 return true; 1704 1705 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1706 return true; 1707 1708 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1709 return true; 1710 1711 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1712 return true; 1713 1714 return false; 1715 } 1716 1717 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1718 /// used in a compare to allow isel to generate better code for targets where 1719 /// this operation can be combined. 1720 /// 1721 /// Return true if any changes are made. 1722 static bool sinkAndCmp0Expression(Instruction *AndI, 1723 const TargetLowering &TLI, 1724 SetOfInstrs &InsertedInsts) { 1725 // Double-check that we're not trying to optimize an instruction that was 1726 // already optimized by some other part of this pass. 1727 assert(!InsertedInsts.count(AndI) && 1728 "Attempting to optimize already optimized and instruction"); 1729 (void) InsertedInsts; 1730 1731 // Nothing to do for single use in same basic block. 1732 if (AndI->hasOneUse() && 1733 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1734 return false; 1735 1736 // Try to avoid cases where sinking/duplicating is likely to increase register 1737 // pressure. 1738 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1739 !isa<ConstantInt>(AndI->getOperand(1)) && 1740 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1741 return false; 1742 1743 for (auto *U : AndI->users()) { 1744 Instruction *User = cast<Instruction>(U); 1745 1746 // Only sink 'and' feeding icmp with 0. 1747 if (!isa<ICmpInst>(User)) 1748 return false; 1749 1750 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1751 if (!CmpC || !CmpC->isZero()) 1752 return false; 1753 } 1754 1755 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1756 return false; 1757 1758 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1759 LLVM_DEBUG(AndI->getParent()->dump()); 1760 1761 // Push the 'and' into the same block as the icmp 0. There should only be 1762 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1763 // others, so we don't need to keep track of which BBs we insert into. 1764 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1765 UI != E; ) { 1766 Use &TheUse = UI.getUse(); 1767 Instruction *User = cast<Instruction>(*UI); 1768 1769 // Preincrement use iterator so we don't invalidate it. 1770 ++UI; 1771 1772 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1773 1774 // Keep the 'and' in the same place if the use is already in the same block. 1775 Instruction *InsertPt = 1776 User->getParent() == AndI->getParent() ? AndI : User; 1777 Instruction *InsertedAnd = 1778 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1779 AndI->getOperand(1), "", InsertPt); 1780 // Propagate the debug info. 1781 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1782 1783 // Replace a use of the 'and' with a use of the new 'and'. 1784 TheUse = InsertedAnd; 1785 ++NumAndUses; 1786 LLVM_DEBUG(User->getParent()->dump()); 1787 } 1788 1789 // We removed all uses, nuke the and. 1790 AndI->eraseFromParent(); 1791 return true; 1792 } 1793 1794 /// Check if the candidates could be combined with a shift instruction, which 1795 /// includes: 1796 /// 1. Truncate instruction 1797 /// 2. And instruction and the imm is a mask of the low bits: 1798 /// imm & (imm+1) == 0 1799 static bool isExtractBitsCandidateUse(Instruction *User) { 1800 if (!isa<TruncInst>(User)) { 1801 if (User->getOpcode() != Instruction::And || 1802 !isa<ConstantInt>(User->getOperand(1))) 1803 return false; 1804 1805 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1806 1807 if ((Cimm & (Cimm + 1)).getBoolValue()) 1808 return false; 1809 } 1810 return true; 1811 } 1812 1813 /// Sink both shift and truncate instruction to the use of truncate's BB. 1814 static bool 1815 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1816 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1817 const TargetLowering &TLI, const DataLayout &DL) { 1818 BasicBlock *UserBB = User->getParent(); 1819 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1820 auto *TruncI = cast<TruncInst>(User); 1821 bool MadeChange = false; 1822 1823 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1824 TruncE = TruncI->user_end(); 1825 TruncUI != TruncE;) { 1826 1827 Use &TruncTheUse = TruncUI.getUse(); 1828 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1829 // Preincrement use iterator so we don't invalidate it. 1830 1831 ++TruncUI; 1832 1833 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1834 if (!ISDOpcode) 1835 continue; 1836 1837 // If the use is actually a legal node, there will not be an 1838 // implicit truncate. 1839 // FIXME: always querying the result type is just an 1840 // approximation; some nodes' legality is determined by the 1841 // operand or other means. There's no good way to find out though. 1842 if (TLI.isOperationLegalOrCustom( 1843 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1844 continue; 1845 1846 // Don't bother for PHI nodes. 1847 if (isa<PHINode>(TruncUser)) 1848 continue; 1849 1850 BasicBlock *TruncUserBB = TruncUser->getParent(); 1851 1852 if (UserBB == TruncUserBB) 1853 continue; 1854 1855 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1856 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1857 1858 if (!InsertedShift && !InsertedTrunc) { 1859 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1860 assert(InsertPt != TruncUserBB->end()); 1861 // Sink the shift 1862 if (ShiftI->getOpcode() == Instruction::AShr) 1863 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1864 "", &*InsertPt); 1865 else 1866 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1867 "", &*InsertPt); 1868 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1869 1870 // Sink the trunc 1871 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1872 TruncInsertPt++; 1873 assert(TruncInsertPt != TruncUserBB->end()); 1874 1875 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1876 TruncI->getType(), "", &*TruncInsertPt); 1877 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1878 1879 MadeChange = true; 1880 1881 TruncTheUse = InsertedTrunc; 1882 } 1883 } 1884 return MadeChange; 1885 } 1886 1887 /// Sink the shift *right* instruction into user blocks if the uses could 1888 /// potentially be combined with this shift instruction and generate BitExtract 1889 /// instruction. It will only be applied if the architecture supports BitExtract 1890 /// instruction. Here is an example: 1891 /// BB1: 1892 /// %x.extract.shift = lshr i64 %arg1, 32 1893 /// BB2: 1894 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1895 /// ==> 1896 /// 1897 /// BB2: 1898 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1899 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1900 /// 1901 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1902 /// instruction. 1903 /// Return true if any changes are made. 1904 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1905 const TargetLowering &TLI, 1906 const DataLayout &DL) { 1907 BasicBlock *DefBB = ShiftI->getParent(); 1908 1909 /// Only insert instructions in each block once. 1910 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1911 1912 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1913 1914 bool MadeChange = false; 1915 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1916 UI != E;) { 1917 Use &TheUse = UI.getUse(); 1918 Instruction *User = cast<Instruction>(*UI); 1919 // Preincrement use iterator so we don't invalidate it. 1920 ++UI; 1921 1922 // Don't bother for PHI nodes. 1923 if (isa<PHINode>(User)) 1924 continue; 1925 1926 if (!isExtractBitsCandidateUse(User)) 1927 continue; 1928 1929 BasicBlock *UserBB = User->getParent(); 1930 1931 if (UserBB == DefBB) { 1932 // If the shift and truncate instruction are in the same BB. The use of 1933 // the truncate(TruncUse) may still introduce another truncate if not 1934 // legal. In this case, we would like to sink both shift and truncate 1935 // instruction to the BB of TruncUse. 1936 // for example: 1937 // BB1: 1938 // i64 shift.result = lshr i64 opnd, imm 1939 // trunc.result = trunc shift.result to i16 1940 // 1941 // BB2: 1942 // ----> We will have an implicit truncate here if the architecture does 1943 // not have i16 compare. 1944 // cmp i16 trunc.result, opnd2 1945 // 1946 if (isa<TruncInst>(User) && shiftIsLegal 1947 // If the type of the truncate is legal, no truncate will be 1948 // introduced in other basic blocks. 1949 && 1950 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1951 MadeChange = 1952 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1953 1954 continue; 1955 } 1956 // If we have already inserted a shift into this block, use it. 1957 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1958 1959 if (!InsertedShift) { 1960 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1961 assert(InsertPt != UserBB->end()); 1962 1963 if (ShiftI->getOpcode() == Instruction::AShr) 1964 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1965 "", &*InsertPt); 1966 else 1967 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1968 "", &*InsertPt); 1969 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1970 1971 MadeChange = true; 1972 } 1973 1974 // Replace a use of the shift with a use of the new shift. 1975 TheUse = InsertedShift; 1976 } 1977 1978 // If we removed all uses, or there are none, nuke the shift. 1979 if (ShiftI->use_empty()) { 1980 salvageDebugInfo(*ShiftI); 1981 ShiftI->eraseFromParent(); 1982 MadeChange = true; 1983 } 1984 1985 return MadeChange; 1986 } 1987 1988 /// If counting leading or trailing zeros is an expensive operation and a zero 1989 /// input is defined, add a check for zero to avoid calling the intrinsic. 1990 /// 1991 /// We want to transform: 1992 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1993 /// 1994 /// into: 1995 /// entry: 1996 /// %cmpz = icmp eq i64 %A, 0 1997 /// br i1 %cmpz, label %cond.end, label %cond.false 1998 /// cond.false: 1999 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2000 /// br label %cond.end 2001 /// cond.end: 2002 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2003 /// 2004 /// If the transform is performed, return true and set ModifiedDT to true. 2005 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2006 const TargetLowering *TLI, 2007 const DataLayout *DL, 2008 bool &ModifiedDT) { 2009 // If a zero input is undefined, it doesn't make sense to despeculate that. 2010 if (match(CountZeros->getOperand(1), m_One())) 2011 return false; 2012 2013 // If it's cheap to speculate, there's nothing to do. 2014 auto IntrinsicID = CountZeros->getIntrinsicID(); 2015 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2016 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2017 return false; 2018 2019 // Only handle legal scalar cases. Anything else requires too much work. 2020 Type *Ty = CountZeros->getType(); 2021 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2022 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2023 return false; 2024 2025 // The intrinsic will be sunk behind a compare against zero and branch. 2026 BasicBlock *StartBlock = CountZeros->getParent(); 2027 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2028 2029 // Create another block after the count zero intrinsic. A PHI will be added 2030 // in this block to select the result of the intrinsic or the bit-width 2031 // constant if the input to the intrinsic is zero. 2032 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2033 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2034 2035 // Set up a builder to create a compare, conditional branch, and PHI. 2036 IRBuilder<> Builder(CountZeros->getContext()); 2037 Builder.SetInsertPoint(StartBlock->getTerminator()); 2038 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2039 2040 // Replace the unconditional branch that was created by the first split with 2041 // a compare against zero and a conditional branch. 2042 Value *Zero = Constant::getNullValue(Ty); 2043 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2044 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2045 StartBlock->getTerminator()->eraseFromParent(); 2046 2047 // Create a PHI in the end block to select either the output of the intrinsic 2048 // or the bit width of the operand. 2049 Builder.SetInsertPoint(&EndBlock->front()); 2050 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2051 CountZeros->replaceAllUsesWith(PN); 2052 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2053 PN->addIncoming(BitWidth, StartBlock); 2054 PN->addIncoming(CountZeros, CallBlock); 2055 2056 // We are explicitly handling the zero case, so we can set the intrinsic's 2057 // undefined zero argument to 'true'. This will also prevent reprocessing the 2058 // intrinsic; we only despeculate when a zero input is defined. 2059 CountZeros->setArgOperand(1, Builder.getTrue()); 2060 ModifiedDT = true; 2061 return true; 2062 } 2063 2064 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2065 BasicBlock *BB = CI->getParent(); 2066 2067 // Lower inline assembly if we can. 2068 // If we found an inline asm expession, and if the target knows how to 2069 // lower it to normal LLVM code, do so now. 2070 if (CI->isInlineAsm()) { 2071 if (TLI->ExpandInlineAsm(CI)) { 2072 // Avoid invalidating the iterator. 2073 CurInstIterator = BB->begin(); 2074 // Avoid processing instructions out of order, which could cause 2075 // reuse before a value is defined. 2076 SunkAddrs.clear(); 2077 return true; 2078 } 2079 // Sink address computing for memory operands into the block. 2080 if (optimizeInlineAsmInst(CI)) 2081 return true; 2082 } 2083 2084 // Align the pointer arguments to this call if the target thinks it's a good 2085 // idea 2086 unsigned MinSize, PrefAlign; 2087 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2088 for (auto &Arg : CI->arg_operands()) { 2089 // We want to align both objects whose address is used directly and 2090 // objects whose address is used in casts and GEPs, though it only makes 2091 // sense for GEPs if the offset is a multiple of the desired alignment and 2092 // if size - offset meets the size threshold. 2093 if (!Arg->getType()->isPointerTy()) 2094 continue; 2095 APInt Offset(DL->getIndexSizeInBits( 2096 cast<PointerType>(Arg->getType())->getAddressSpace()), 2097 0); 2098 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2099 uint64_t Offset2 = Offset.getLimitedValue(); 2100 if ((Offset2 & (PrefAlign-1)) != 0) 2101 continue; 2102 AllocaInst *AI; 2103 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2104 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2105 AI->setAlignment(Align(PrefAlign)); 2106 // Global variables can only be aligned if they are defined in this 2107 // object (i.e. they are uniquely initialized in this object), and 2108 // over-aligning global variables that have an explicit section is 2109 // forbidden. 2110 GlobalVariable *GV; 2111 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2112 GV->getPointerAlignment(*DL) < PrefAlign && 2113 DL->getTypeAllocSize(GV->getValueType()) >= 2114 MinSize + Offset2) 2115 GV->setAlignment(MaybeAlign(PrefAlign)); 2116 } 2117 // If this is a memcpy (or similar) then we may be able to improve the 2118 // alignment 2119 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2120 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2121 MaybeAlign MIDestAlign = MI->getDestAlign(); 2122 if (!MIDestAlign || DestAlign > *MIDestAlign) 2123 MI->setDestAlignment(DestAlign); 2124 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2125 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2126 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2127 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2128 MTI->setSourceAlignment(SrcAlign); 2129 } 2130 } 2131 } 2132 2133 // If we have a cold call site, try to sink addressing computation into the 2134 // cold block. This interacts with our handling for loads and stores to 2135 // ensure that we can fold all uses of a potential addressing computation 2136 // into their uses. TODO: generalize this to work over profiling data 2137 if (CI->hasFnAttr(Attribute::Cold) && 2138 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2139 for (auto &Arg : CI->arg_operands()) { 2140 if (!Arg->getType()->isPointerTy()) 2141 continue; 2142 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2143 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2144 } 2145 2146 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2147 if (II) { 2148 switch (II->getIntrinsicID()) { 2149 default: break; 2150 case Intrinsic::assume: 2151 llvm_unreachable("llvm.assume should have been removed already"); 2152 case Intrinsic::experimental_widenable_condition: { 2153 // Give up on future widening oppurtunties so that we can fold away dead 2154 // paths and merge blocks before going into block-local instruction 2155 // selection. 2156 if (II->use_empty()) { 2157 II->eraseFromParent(); 2158 return true; 2159 } 2160 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2161 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2162 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2163 }); 2164 return true; 2165 } 2166 case Intrinsic::objectsize: 2167 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2168 case Intrinsic::is_constant: 2169 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2170 case Intrinsic::aarch64_stlxr: 2171 case Intrinsic::aarch64_stxr: { 2172 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2173 if (!ExtVal || !ExtVal->hasOneUse() || 2174 ExtVal->getParent() == CI->getParent()) 2175 return false; 2176 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2177 ExtVal->moveBefore(CI); 2178 // Mark this instruction as "inserted by CGP", so that other 2179 // optimizations don't touch it. 2180 InsertedInsts.insert(ExtVal); 2181 return true; 2182 } 2183 2184 case Intrinsic::launder_invariant_group: 2185 case Intrinsic::strip_invariant_group: { 2186 Value *ArgVal = II->getArgOperand(0); 2187 auto it = LargeOffsetGEPMap.find(II); 2188 if (it != LargeOffsetGEPMap.end()) { 2189 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2190 // Make sure not to have to deal with iterator invalidation 2191 // after possibly adding ArgVal to LargeOffsetGEPMap. 2192 auto GEPs = std::move(it->second); 2193 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2194 LargeOffsetGEPMap.erase(II); 2195 } 2196 2197 II->replaceAllUsesWith(ArgVal); 2198 II->eraseFromParent(); 2199 return true; 2200 } 2201 case Intrinsic::cttz: 2202 case Intrinsic::ctlz: 2203 // If counting zeros is expensive, try to avoid it. 2204 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2205 case Intrinsic::fshl: 2206 case Intrinsic::fshr: 2207 return optimizeFunnelShift(II); 2208 case Intrinsic::dbg_value: 2209 return fixupDbgValue(II); 2210 case Intrinsic::vscale: { 2211 // If datalayout has no special restrictions on vector data layout, 2212 // replace `llvm.vscale` by an equivalent constant expression 2213 // to benefit from cheap constant propagation. 2214 Type *ScalableVectorTy = 2215 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2216 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2217 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2218 auto *One = ConstantInt::getSigned(II->getType(), 1); 2219 auto *CGep = 2220 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2221 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2222 II->eraseFromParent(); 2223 return true; 2224 } 2225 break; 2226 } 2227 case Intrinsic::masked_gather: 2228 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2229 case Intrinsic::masked_scatter: 2230 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2231 } 2232 2233 SmallVector<Value *, 2> PtrOps; 2234 Type *AccessTy; 2235 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2236 while (!PtrOps.empty()) { 2237 Value *PtrVal = PtrOps.pop_back_val(); 2238 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2239 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2240 return true; 2241 } 2242 } 2243 2244 // From here on out we're working with named functions. 2245 if (!CI->getCalledFunction()) return false; 2246 2247 // Lower all default uses of _chk calls. This is very similar 2248 // to what InstCombineCalls does, but here we are only lowering calls 2249 // to fortified library functions (e.g. __memcpy_chk) that have the default 2250 // "don't know" as the objectsize. Anything else should be left alone. 2251 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2252 IRBuilder<> Builder(CI); 2253 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2254 CI->replaceAllUsesWith(V); 2255 CI->eraseFromParent(); 2256 return true; 2257 } 2258 2259 return false; 2260 } 2261 2262 /// Look for opportunities to duplicate return instructions to the predecessor 2263 /// to enable tail call optimizations. The case it is currently looking for is: 2264 /// @code 2265 /// bb0: 2266 /// %tmp0 = tail call i32 @f0() 2267 /// br label %return 2268 /// bb1: 2269 /// %tmp1 = tail call i32 @f1() 2270 /// br label %return 2271 /// bb2: 2272 /// %tmp2 = tail call i32 @f2() 2273 /// br label %return 2274 /// return: 2275 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2276 /// ret i32 %retval 2277 /// @endcode 2278 /// 2279 /// => 2280 /// 2281 /// @code 2282 /// bb0: 2283 /// %tmp0 = tail call i32 @f0() 2284 /// ret i32 %tmp0 2285 /// bb1: 2286 /// %tmp1 = tail call i32 @f1() 2287 /// ret i32 %tmp1 2288 /// bb2: 2289 /// %tmp2 = tail call i32 @f2() 2290 /// ret i32 %tmp2 2291 /// @endcode 2292 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2293 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2294 if (!RetI) 2295 return false; 2296 2297 PHINode *PN = nullptr; 2298 ExtractValueInst *EVI = nullptr; 2299 BitCastInst *BCI = nullptr; 2300 Value *V = RetI->getReturnValue(); 2301 if (V) { 2302 BCI = dyn_cast<BitCastInst>(V); 2303 if (BCI) 2304 V = BCI->getOperand(0); 2305 2306 EVI = dyn_cast<ExtractValueInst>(V); 2307 if (EVI) { 2308 V = EVI->getOperand(0); 2309 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2310 return false; 2311 } 2312 2313 PN = dyn_cast<PHINode>(V); 2314 if (!PN) 2315 return false; 2316 } 2317 2318 if (PN && PN->getParent() != BB) 2319 return false; 2320 2321 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2322 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2323 if (BC && BC->hasOneUse()) 2324 Inst = BC->user_back(); 2325 2326 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2327 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2328 return false; 2329 }; 2330 2331 // Make sure there are no instructions between the first instruction 2332 // and return. 2333 const Instruction *BI = BB->getFirstNonPHI(); 2334 // Skip over debug and the bitcast. 2335 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2336 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2337 BI = BI->getNextNode(); 2338 if (BI != RetI) 2339 return false; 2340 2341 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2342 /// call. 2343 const Function *F = BB->getParent(); 2344 SmallVector<BasicBlock*, 4> TailCallBBs; 2345 if (PN) { 2346 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2347 // Look through bitcasts. 2348 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2349 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2350 BasicBlock *PredBB = PN->getIncomingBlock(I); 2351 // Make sure the phi value is indeed produced by the tail call. 2352 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2353 TLI->mayBeEmittedAsTailCall(CI) && 2354 attributesPermitTailCall(F, CI, RetI, *TLI)) 2355 TailCallBBs.push_back(PredBB); 2356 } 2357 } else { 2358 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2359 for (BasicBlock *Pred : predecessors(BB)) { 2360 if (!VisitedBBs.insert(Pred).second) 2361 continue; 2362 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2363 CallInst *CI = dyn_cast<CallInst>(I); 2364 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2365 attributesPermitTailCall(F, CI, RetI, *TLI)) 2366 TailCallBBs.push_back(Pred); 2367 } 2368 } 2369 } 2370 2371 bool Changed = false; 2372 for (auto const &TailCallBB : TailCallBBs) { 2373 // Make sure the call instruction is followed by an unconditional branch to 2374 // the return block. 2375 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2376 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2377 continue; 2378 2379 // Duplicate the return into TailCallBB. 2380 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2381 assert(!VerifyBFIUpdates || 2382 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2383 BFI->setBlockFreq( 2384 BB, 2385 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2386 ModifiedDT = Changed = true; 2387 ++NumRetsDup; 2388 } 2389 2390 // If we eliminated all predecessors of the block, delete the block now. 2391 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2392 BB->eraseFromParent(); 2393 2394 return Changed; 2395 } 2396 2397 //===----------------------------------------------------------------------===// 2398 // Memory Optimization 2399 //===----------------------------------------------------------------------===// 2400 2401 namespace { 2402 2403 /// This is an extended version of TargetLowering::AddrMode 2404 /// which holds actual Value*'s for register values. 2405 struct ExtAddrMode : public TargetLowering::AddrMode { 2406 Value *BaseReg = nullptr; 2407 Value *ScaledReg = nullptr; 2408 Value *OriginalValue = nullptr; 2409 bool InBounds = true; 2410 2411 enum FieldName { 2412 NoField = 0x00, 2413 BaseRegField = 0x01, 2414 BaseGVField = 0x02, 2415 BaseOffsField = 0x04, 2416 ScaledRegField = 0x08, 2417 ScaleField = 0x10, 2418 MultipleFields = 0xff 2419 }; 2420 2421 2422 ExtAddrMode() = default; 2423 2424 void print(raw_ostream &OS) const; 2425 void dump() const; 2426 2427 FieldName compare(const ExtAddrMode &other) { 2428 // First check that the types are the same on each field, as differing types 2429 // is something we can't cope with later on. 2430 if (BaseReg && other.BaseReg && 2431 BaseReg->getType() != other.BaseReg->getType()) 2432 return MultipleFields; 2433 if (BaseGV && other.BaseGV && 2434 BaseGV->getType() != other.BaseGV->getType()) 2435 return MultipleFields; 2436 if (ScaledReg && other.ScaledReg && 2437 ScaledReg->getType() != other.ScaledReg->getType()) 2438 return MultipleFields; 2439 2440 // Conservatively reject 'inbounds' mismatches. 2441 if (InBounds != other.InBounds) 2442 return MultipleFields; 2443 2444 // Check each field to see if it differs. 2445 unsigned Result = NoField; 2446 if (BaseReg != other.BaseReg) 2447 Result |= BaseRegField; 2448 if (BaseGV != other.BaseGV) 2449 Result |= BaseGVField; 2450 if (BaseOffs != other.BaseOffs) 2451 Result |= BaseOffsField; 2452 if (ScaledReg != other.ScaledReg) 2453 Result |= ScaledRegField; 2454 // Don't count 0 as being a different scale, because that actually means 2455 // unscaled (which will already be counted by having no ScaledReg). 2456 if (Scale && other.Scale && Scale != other.Scale) 2457 Result |= ScaleField; 2458 2459 if (countPopulation(Result) > 1) 2460 return MultipleFields; 2461 else 2462 return static_cast<FieldName>(Result); 2463 } 2464 2465 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2466 // with no offset. 2467 bool isTrivial() { 2468 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2469 // trivial if at most one of these terms is nonzero, except that BaseGV and 2470 // BaseReg both being zero actually means a null pointer value, which we 2471 // consider to be 'non-zero' here. 2472 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2473 } 2474 2475 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2476 switch (Field) { 2477 default: 2478 return nullptr; 2479 case BaseRegField: 2480 return BaseReg; 2481 case BaseGVField: 2482 return BaseGV; 2483 case ScaledRegField: 2484 return ScaledReg; 2485 case BaseOffsField: 2486 return ConstantInt::get(IntPtrTy, BaseOffs); 2487 } 2488 } 2489 2490 void SetCombinedField(FieldName Field, Value *V, 2491 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2492 switch (Field) { 2493 default: 2494 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2495 break; 2496 case ExtAddrMode::BaseRegField: 2497 BaseReg = V; 2498 break; 2499 case ExtAddrMode::BaseGVField: 2500 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2501 // in the BaseReg field. 2502 assert(BaseReg == nullptr); 2503 BaseReg = V; 2504 BaseGV = nullptr; 2505 break; 2506 case ExtAddrMode::ScaledRegField: 2507 ScaledReg = V; 2508 // If we have a mix of scaled and unscaled addrmodes then we want scale 2509 // to be the scale and not zero. 2510 if (!Scale) 2511 for (const ExtAddrMode &AM : AddrModes) 2512 if (AM.Scale) { 2513 Scale = AM.Scale; 2514 break; 2515 } 2516 break; 2517 case ExtAddrMode::BaseOffsField: 2518 // The offset is no longer a constant, so it goes in ScaledReg with a 2519 // scale of 1. 2520 assert(ScaledReg == nullptr); 2521 ScaledReg = V; 2522 Scale = 1; 2523 BaseOffs = 0; 2524 break; 2525 } 2526 } 2527 }; 2528 2529 } // end anonymous namespace 2530 2531 #ifndef NDEBUG 2532 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2533 AM.print(OS); 2534 return OS; 2535 } 2536 #endif 2537 2538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2539 void ExtAddrMode::print(raw_ostream &OS) const { 2540 bool NeedPlus = false; 2541 OS << "["; 2542 if (InBounds) 2543 OS << "inbounds "; 2544 if (BaseGV) { 2545 OS << (NeedPlus ? " + " : "") 2546 << "GV:"; 2547 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2548 NeedPlus = true; 2549 } 2550 2551 if (BaseOffs) { 2552 OS << (NeedPlus ? " + " : "") 2553 << BaseOffs; 2554 NeedPlus = true; 2555 } 2556 2557 if (BaseReg) { 2558 OS << (NeedPlus ? " + " : "") 2559 << "Base:"; 2560 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2561 NeedPlus = true; 2562 } 2563 if (Scale) { 2564 OS << (NeedPlus ? " + " : "") 2565 << Scale << "*"; 2566 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2567 } 2568 2569 OS << ']'; 2570 } 2571 2572 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2573 print(dbgs()); 2574 dbgs() << '\n'; 2575 } 2576 #endif 2577 2578 namespace { 2579 2580 /// This class provides transaction based operation on the IR. 2581 /// Every change made through this class is recorded in the internal state and 2582 /// can be undone (rollback) until commit is called. 2583 /// CGP does not check if instructions could be speculatively executed when 2584 /// moved. Preserving the original location would pessimize the debugging 2585 /// experience, as well as negatively impact the quality of sample PGO. 2586 class TypePromotionTransaction { 2587 /// This represents the common interface of the individual transaction. 2588 /// Each class implements the logic for doing one specific modification on 2589 /// the IR via the TypePromotionTransaction. 2590 class TypePromotionAction { 2591 protected: 2592 /// The Instruction modified. 2593 Instruction *Inst; 2594 2595 public: 2596 /// Constructor of the action. 2597 /// The constructor performs the related action on the IR. 2598 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2599 2600 virtual ~TypePromotionAction() = default; 2601 2602 /// Undo the modification done by this action. 2603 /// When this method is called, the IR must be in the same state as it was 2604 /// before this action was applied. 2605 /// \pre Undoing the action works if and only if the IR is in the exact same 2606 /// state as it was directly after this action was applied. 2607 virtual void undo() = 0; 2608 2609 /// Advocate every change made by this action. 2610 /// When the results on the IR of the action are to be kept, it is important 2611 /// to call this function, otherwise hidden information may be kept forever. 2612 virtual void commit() { 2613 // Nothing to be done, this action is not doing anything. 2614 } 2615 }; 2616 2617 /// Utility to remember the position of an instruction. 2618 class InsertionHandler { 2619 /// Position of an instruction. 2620 /// Either an instruction: 2621 /// - Is the first in a basic block: BB is used. 2622 /// - Has a previous instruction: PrevInst is used. 2623 union { 2624 Instruction *PrevInst; 2625 BasicBlock *BB; 2626 } Point; 2627 2628 /// Remember whether or not the instruction had a previous instruction. 2629 bool HasPrevInstruction; 2630 2631 public: 2632 /// Record the position of \p Inst. 2633 InsertionHandler(Instruction *Inst) { 2634 BasicBlock::iterator It = Inst->getIterator(); 2635 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2636 if (HasPrevInstruction) 2637 Point.PrevInst = &*--It; 2638 else 2639 Point.BB = Inst->getParent(); 2640 } 2641 2642 /// Insert \p Inst at the recorded position. 2643 void insert(Instruction *Inst) { 2644 if (HasPrevInstruction) { 2645 if (Inst->getParent()) 2646 Inst->removeFromParent(); 2647 Inst->insertAfter(Point.PrevInst); 2648 } else { 2649 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2650 if (Inst->getParent()) 2651 Inst->moveBefore(Position); 2652 else 2653 Inst->insertBefore(Position); 2654 } 2655 } 2656 }; 2657 2658 /// Move an instruction before another. 2659 class InstructionMoveBefore : public TypePromotionAction { 2660 /// Original position of the instruction. 2661 InsertionHandler Position; 2662 2663 public: 2664 /// Move \p Inst before \p Before. 2665 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2666 : TypePromotionAction(Inst), Position(Inst) { 2667 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2668 << "\n"); 2669 Inst->moveBefore(Before); 2670 } 2671 2672 /// Move the instruction back to its original position. 2673 void undo() override { 2674 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2675 Position.insert(Inst); 2676 } 2677 }; 2678 2679 /// Set the operand of an instruction with a new value. 2680 class OperandSetter : public TypePromotionAction { 2681 /// Original operand of the instruction. 2682 Value *Origin; 2683 2684 /// Index of the modified instruction. 2685 unsigned Idx; 2686 2687 public: 2688 /// Set \p Idx operand of \p Inst with \p NewVal. 2689 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2690 : TypePromotionAction(Inst), Idx(Idx) { 2691 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2692 << "for:" << *Inst << "\n" 2693 << "with:" << *NewVal << "\n"); 2694 Origin = Inst->getOperand(Idx); 2695 Inst->setOperand(Idx, NewVal); 2696 } 2697 2698 /// Restore the original value of the instruction. 2699 void undo() override { 2700 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2701 << "for: " << *Inst << "\n" 2702 << "with: " << *Origin << "\n"); 2703 Inst->setOperand(Idx, Origin); 2704 } 2705 }; 2706 2707 /// Hide the operands of an instruction. 2708 /// Do as if this instruction was not using any of its operands. 2709 class OperandsHider : public TypePromotionAction { 2710 /// The list of original operands. 2711 SmallVector<Value *, 4> OriginalValues; 2712 2713 public: 2714 /// Remove \p Inst from the uses of the operands of \p Inst. 2715 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2716 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2717 unsigned NumOpnds = Inst->getNumOperands(); 2718 OriginalValues.reserve(NumOpnds); 2719 for (unsigned It = 0; It < NumOpnds; ++It) { 2720 // Save the current operand. 2721 Value *Val = Inst->getOperand(It); 2722 OriginalValues.push_back(Val); 2723 // Set a dummy one. 2724 // We could use OperandSetter here, but that would imply an overhead 2725 // that we are not willing to pay. 2726 Inst->setOperand(It, UndefValue::get(Val->getType())); 2727 } 2728 } 2729 2730 /// Restore the original list of uses. 2731 void undo() override { 2732 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2733 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2734 Inst->setOperand(It, OriginalValues[It]); 2735 } 2736 }; 2737 2738 /// Build a truncate instruction. 2739 class TruncBuilder : public TypePromotionAction { 2740 Value *Val; 2741 2742 public: 2743 /// Build a truncate instruction of \p Opnd producing a \p Ty 2744 /// result. 2745 /// trunc Opnd to Ty. 2746 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2747 IRBuilder<> Builder(Opnd); 2748 Builder.SetCurrentDebugLocation(DebugLoc()); 2749 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2750 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2751 } 2752 2753 /// Get the built value. 2754 Value *getBuiltValue() { return Val; } 2755 2756 /// Remove the built instruction. 2757 void undo() override { 2758 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2759 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2760 IVal->eraseFromParent(); 2761 } 2762 }; 2763 2764 /// Build a sign extension instruction. 2765 class SExtBuilder : public TypePromotionAction { 2766 Value *Val; 2767 2768 public: 2769 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2770 /// result. 2771 /// sext Opnd to Ty. 2772 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2773 : TypePromotionAction(InsertPt) { 2774 IRBuilder<> Builder(InsertPt); 2775 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2776 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2777 } 2778 2779 /// Get the built value. 2780 Value *getBuiltValue() { return Val; } 2781 2782 /// Remove the built instruction. 2783 void undo() override { 2784 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2785 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2786 IVal->eraseFromParent(); 2787 } 2788 }; 2789 2790 /// Build a zero extension instruction. 2791 class ZExtBuilder : public TypePromotionAction { 2792 Value *Val; 2793 2794 public: 2795 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2796 /// result. 2797 /// zext Opnd to Ty. 2798 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2799 : TypePromotionAction(InsertPt) { 2800 IRBuilder<> Builder(InsertPt); 2801 Builder.SetCurrentDebugLocation(DebugLoc()); 2802 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2803 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2804 } 2805 2806 /// Get the built value. 2807 Value *getBuiltValue() { return Val; } 2808 2809 /// Remove the built instruction. 2810 void undo() override { 2811 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2812 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2813 IVal->eraseFromParent(); 2814 } 2815 }; 2816 2817 /// Mutate an instruction to another type. 2818 class TypeMutator : public TypePromotionAction { 2819 /// Record the original type. 2820 Type *OrigTy; 2821 2822 public: 2823 /// Mutate the type of \p Inst into \p NewTy. 2824 TypeMutator(Instruction *Inst, Type *NewTy) 2825 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2826 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2827 << "\n"); 2828 Inst->mutateType(NewTy); 2829 } 2830 2831 /// Mutate the instruction back to its original type. 2832 void undo() override { 2833 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2834 << "\n"); 2835 Inst->mutateType(OrigTy); 2836 } 2837 }; 2838 2839 /// Replace the uses of an instruction by another instruction. 2840 class UsesReplacer : public TypePromotionAction { 2841 /// Helper structure to keep track of the replaced uses. 2842 struct InstructionAndIdx { 2843 /// The instruction using the instruction. 2844 Instruction *Inst; 2845 2846 /// The index where this instruction is used for Inst. 2847 unsigned Idx; 2848 2849 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2850 : Inst(Inst), Idx(Idx) {} 2851 }; 2852 2853 /// Keep track of the original uses (pair Instruction, Index). 2854 SmallVector<InstructionAndIdx, 4> OriginalUses; 2855 /// Keep track of the debug users. 2856 SmallVector<DbgValueInst *, 1> DbgValues; 2857 2858 /// Keep track of the new value so that we can undo it by replacing 2859 /// instances of the new value with the original value. 2860 Value *New; 2861 2862 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2863 2864 public: 2865 /// Replace all the use of \p Inst by \p New. 2866 UsesReplacer(Instruction *Inst, Value *New) 2867 : TypePromotionAction(Inst), New(New) { 2868 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2869 << "\n"); 2870 // Record the original uses. 2871 for (Use &U : Inst->uses()) { 2872 Instruction *UserI = cast<Instruction>(U.getUser()); 2873 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2874 } 2875 // Record the debug uses separately. They are not in the instruction's 2876 // use list, but they are replaced by RAUW. 2877 findDbgValues(DbgValues, Inst); 2878 2879 // Now, we can replace the uses. 2880 Inst->replaceAllUsesWith(New); 2881 } 2882 2883 /// Reassign the original uses of Inst to Inst. 2884 void undo() override { 2885 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2886 for (InstructionAndIdx &Use : OriginalUses) 2887 Use.Inst->setOperand(Use.Idx, Inst); 2888 // RAUW has replaced all original uses with references to the new value, 2889 // including the debug uses. Since we are undoing the replacements, 2890 // the original debug uses must also be reinstated to maintain the 2891 // correctness and utility of debug value instructions. 2892 for (auto *DVI : DbgValues) 2893 DVI->replaceVariableLocationOp(New, Inst); 2894 } 2895 }; 2896 2897 /// Remove an instruction from the IR. 2898 class InstructionRemover : public TypePromotionAction { 2899 /// Original position of the instruction. 2900 InsertionHandler Inserter; 2901 2902 /// Helper structure to hide all the link to the instruction. In other 2903 /// words, this helps to do as if the instruction was removed. 2904 OperandsHider Hider; 2905 2906 /// Keep track of the uses replaced, if any. 2907 UsesReplacer *Replacer = nullptr; 2908 2909 /// Keep track of instructions removed. 2910 SetOfInstrs &RemovedInsts; 2911 2912 public: 2913 /// Remove all reference of \p Inst and optionally replace all its 2914 /// uses with New. 2915 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2916 /// \pre If !Inst->use_empty(), then New != nullptr 2917 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2918 Value *New = nullptr) 2919 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2920 RemovedInsts(RemovedInsts) { 2921 if (New) 2922 Replacer = new UsesReplacer(Inst, New); 2923 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2924 RemovedInsts.insert(Inst); 2925 /// The instructions removed here will be freed after completing 2926 /// optimizeBlock() for all blocks as we need to keep track of the 2927 /// removed instructions during promotion. 2928 Inst->removeFromParent(); 2929 } 2930 2931 ~InstructionRemover() override { delete Replacer; } 2932 2933 /// Resurrect the instruction and reassign it to the proper uses if 2934 /// new value was provided when build this action. 2935 void undo() override { 2936 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2937 Inserter.insert(Inst); 2938 if (Replacer) 2939 Replacer->undo(); 2940 Hider.undo(); 2941 RemovedInsts.erase(Inst); 2942 } 2943 }; 2944 2945 public: 2946 /// Restoration point. 2947 /// The restoration point is a pointer to an action instead of an iterator 2948 /// because the iterator may be invalidated but not the pointer. 2949 using ConstRestorationPt = const TypePromotionAction *; 2950 2951 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2952 : RemovedInsts(RemovedInsts) {} 2953 2954 /// Advocate every changes made in that transaction. Return true if any change 2955 /// happen. 2956 bool commit(); 2957 2958 /// Undo all the changes made after the given point. 2959 void rollback(ConstRestorationPt Point); 2960 2961 /// Get the current restoration point. 2962 ConstRestorationPt getRestorationPoint() const; 2963 2964 /// \name API for IR modification with state keeping to support rollback. 2965 /// @{ 2966 /// Same as Instruction::setOperand. 2967 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2968 2969 /// Same as Instruction::eraseFromParent. 2970 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2971 2972 /// Same as Value::replaceAllUsesWith. 2973 void replaceAllUsesWith(Instruction *Inst, Value *New); 2974 2975 /// Same as Value::mutateType. 2976 void mutateType(Instruction *Inst, Type *NewTy); 2977 2978 /// Same as IRBuilder::createTrunc. 2979 Value *createTrunc(Instruction *Opnd, Type *Ty); 2980 2981 /// Same as IRBuilder::createSExt. 2982 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2983 2984 /// Same as IRBuilder::createZExt. 2985 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2986 2987 /// Same as Instruction::moveBefore. 2988 void moveBefore(Instruction *Inst, Instruction *Before); 2989 /// @} 2990 2991 private: 2992 /// The ordered list of actions made so far. 2993 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2994 2995 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2996 2997 SetOfInstrs &RemovedInsts; 2998 }; 2999 3000 } // end anonymous namespace 3001 3002 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3003 Value *NewVal) { 3004 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3005 Inst, Idx, NewVal)); 3006 } 3007 3008 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3009 Value *NewVal) { 3010 Actions.push_back( 3011 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3012 Inst, RemovedInsts, NewVal)); 3013 } 3014 3015 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3016 Value *New) { 3017 Actions.push_back( 3018 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3019 } 3020 3021 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3022 Actions.push_back( 3023 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3024 } 3025 3026 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3027 Type *Ty) { 3028 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3029 Value *Val = Ptr->getBuiltValue(); 3030 Actions.push_back(std::move(Ptr)); 3031 return Val; 3032 } 3033 3034 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3035 Value *Opnd, Type *Ty) { 3036 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3037 Value *Val = Ptr->getBuiltValue(); 3038 Actions.push_back(std::move(Ptr)); 3039 return Val; 3040 } 3041 3042 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3043 Value *Opnd, Type *Ty) { 3044 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3045 Value *Val = Ptr->getBuiltValue(); 3046 Actions.push_back(std::move(Ptr)); 3047 return Val; 3048 } 3049 3050 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3051 Instruction *Before) { 3052 Actions.push_back( 3053 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3054 Inst, Before)); 3055 } 3056 3057 TypePromotionTransaction::ConstRestorationPt 3058 TypePromotionTransaction::getRestorationPoint() const { 3059 return !Actions.empty() ? Actions.back().get() : nullptr; 3060 } 3061 3062 bool TypePromotionTransaction::commit() { 3063 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3064 Action->commit(); 3065 bool Modified = !Actions.empty(); 3066 Actions.clear(); 3067 return Modified; 3068 } 3069 3070 void TypePromotionTransaction::rollback( 3071 TypePromotionTransaction::ConstRestorationPt Point) { 3072 while (!Actions.empty() && Point != Actions.back().get()) { 3073 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3074 Curr->undo(); 3075 } 3076 } 3077 3078 namespace { 3079 3080 /// A helper class for matching addressing modes. 3081 /// 3082 /// This encapsulates the logic for matching the target-legal addressing modes. 3083 class AddressingModeMatcher { 3084 SmallVectorImpl<Instruction*> &AddrModeInsts; 3085 const TargetLowering &TLI; 3086 const TargetRegisterInfo &TRI; 3087 const DataLayout &DL; 3088 const LoopInfo &LI; 3089 const std::function<const DominatorTree &()> getDTFn; 3090 3091 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3092 /// the memory instruction that we're computing this address for. 3093 Type *AccessTy; 3094 unsigned AddrSpace; 3095 Instruction *MemoryInst; 3096 3097 /// This is the addressing mode that we're building up. This is 3098 /// part of the return value of this addressing mode matching stuff. 3099 ExtAddrMode &AddrMode; 3100 3101 /// The instructions inserted by other CodeGenPrepare optimizations. 3102 const SetOfInstrs &InsertedInsts; 3103 3104 /// A map from the instructions to their type before promotion. 3105 InstrToOrigTy &PromotedInsts; 3106 3107 /// The ongoing transaction where every action should be registered. 3108 TypePromotionTransaction &TPT; 3109 3110 // A GEP which has too large offset to be folded into the addressing mode. 3111 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3112 3113 /// This is set to true when we should not do profitability checks. 3114 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3115 bool IgnoreProfitability; 3116 3117 /// True if we are optimizing for size. 3118 bool OptSize; 3119 3120 ProfileSummaryInfo *PSI; 3121 BlockFrequencyInfo *BFI; 3122 3123 AddressingModeMatcher( 3124 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3125 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3126 const std::function<const DominatorTree &()> getDTFn, 3127 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3128 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3129 TypePromotionTransaction &TPT, 3130 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3131 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3132 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3133 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3134 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3135 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3136 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3137 IgnoreProfitability = false; 3138 } 3139 3140 public: 3141 /// Find the maximal addressing mode that a load/store of V can fold, 3142 /// give an access type of AccessTy. This returns a list of involved 3143 /// instructions in AddrModeInsts. 3144 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3145 /// optimizations. 3146 /// \p PromotedInsts maps the instructions to their type before promotion. 3147 /// \p The ongoing transaction where every action should be registered. 3148 static ExtAddrMode 3149 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3150 SmallVectorImpl<Instruction *> &AddrModeInsts, 3151 const TargetLowering &TLI, const LoopInfo &LI, 3152 const std::function<const DominatorTree &()> getDTFn, 3153 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3154 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3155 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3156 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3157 ExtAddrMode Result; 3158 3159 bool Success = AddressingModeMatcher( 3160 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3161 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3162 BFI).matchAddr(V, 0); 3163 (void)Success; assert(Success && "Couldn't select *anything*?"); 3164 return Result; 3165 } 3166 3167 private: 3168 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3169 bool matchAddr(Value *Addr, unsigned Depth); 3170 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3171 bool *MovedAway = nullptr); 3172 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3173 ExtAddrMode &AMBefore, 3174 ExtAddrMode &AMAfter); 3175 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3176 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3177 Value *PromotedOperand) const; 3178 }; 3179 3180 class PhiNodeSet; 3181 3182 /// An iterator for PhiNodeSet. 3183 class PhiNodeSetIterator { 3184 PhiNodeSet * const Set; 3185 size_t CurrentIndex = 0; 3186 3187 public: 3188 /// The constructor. Start should point to either a valid element, or be equal 3189 /// to the size of the underlying SmallVector of the PhiNodeSet. 3190 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3191 PHINode * operator*() const; 3192 PhiNodeSetIterator& operator++(); 3193 bool operator==(const PhiNodeSetIterator &RHS) const; 3194 bool operator!=(const PhiNodeSetIterator &RHS) const; 3195 }; 3196 3197 /// Keeps a set of PHINodes. 3198 /// 3199 /// This is a minimal set implementation for a specific use case: 3200 /// It is very fast when there are very few elements, but also provides good 3201 /// performance when there are many. It is similar to SmallPtrSet, but also 3202 /// provides iteration by insertion order, which is deterministic and stable 3203 /// across runs. It is also similar to SmallSetVector, but provides removing 3204 /// elements in O(1) time. This is achieved by not actually removing the element 3205 /// from the underlying vector, so comes at the cost of using more memory, but 3206 /// that is fine, since PhiNodeSets are used as short lived objects. 3207 class PhiNodeSet { 3208 friend class PhiNodeSetIterator; 3209 3210 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3211 using iterator = PhiNodeSetIterator; 3212 3213 /// Keeps the elements in the order of their insertion in the underlying 3214 /// vector. To achieve constant time removal, it never deletes any element. 3215 SmallVector<PHINode *, 32> NodeList; 3216 3217 /// Keeps the elements in the underlying set implementation. This (and not the 3218 /// NodeList defined above) is the source of truth on whether an element 3219 /// is actually in the collection. 3220 MapType NodeMap; 3221 3222 /// Points to the first valid (not deleted) element when the set is not empty 3223 /// and the value is not zero. Equals to the size of the underlying vector 3224 /// when the set is empty. When the value is 0, as in the beginning, the 3225 /// first element may or may not be valid. 3226 size_t FirstValidElement = 0; 3227 3228 public: 3229 /// Inserts a new element to the collection. 3230 /// \returns true if the element is actually added, i.e. was not in the 3231 /// collection before the operation. 3232 bool insert(PHINode *Ptr) { 3233 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3234 NodeList.push_back(Ptr); 3235 return true; 3236 } 3237 return false; 3238 } 3239 3240 /// Removes the element from the collection. 3241 /// \returns whether the element is actually removed, i.e. was in the 3242 /// collection before the operation. 3243 bool erase(PHINode *Ptr) { 3244 if (NodeMap.erase(Ptr)) { 3245 SkipRemovedElements(FirstValidElement); 3246 return true; 3247 } 3248 return false; 3249 } 3250 3251 /// Removes all elements and clears the collection. 3252 void clear() { 3253 NodeMap.clear(); 3254 NodeList.clear(); 3255 FirstValidElement = 0; 3256 } 3257 3258 /// \returns an iterator that will iterate the elements in the order of 3259 /// insertion. 3260 iterator begin() { 3261 if (FirstValidElement == 0) 3262 SkipRemovedElements(FirstValidElement); 3263 return PhiNodeSetIterator(this, FirstValidElement); 3264 } 3265 3266 /// \returns an iterator that points to the end of the collection. 3267 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3268 3269 /// Returns the number of elements in the collection. 3270 size_t size() const { 3271 return NodeMap.size(); 3272 } 3273 3274 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3275 size_t count(PHINode *Ptr) const { 3276 return NodeMap.count(Ptr); 3277 } 3278 3279 private: 3280 /// Updates the CurrentIndex so that it will point to a valid element. 3281 /// 3282 /// If the element of NodeList at CurrentIndex is valid, it does not 3283 /// change it. If there are no more valid elements, it updates CurrentIndex 3284 /// to point to the end of the NodeList. 3285 void SkipRemovedElements(size_t &CurrentIndex) { 3286 while (CurrentIndex < NodeList.size()) { 3287 auto it = NodeMap.find(NodeList[CurrentIndex]); 3288 // If the element has been deleted and added again later, NodeMap will 3289 // point to a different index, so CurrentIndex will still be invalid. 3290 if (it != NodeMap.end() && it->second == CurrentIndex) 3291 break; 3292 ++CurrentIndex; 3293 } 3294 } 3295 }; 3296 3297 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3298 : Set(Set), CurrentIndex(Start) {} 3299 3300 PHINode * PhiNodeSetIterator::operator*() const { 3301 assert(CurrentIndex < Set->NodeList.size() && 3302 "PhiNodeSet access out of range"); 3303 return Set->NodeList[CurrentIndex]; 3304 } 3305 3306 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3307 assert(CurrentIndex < Set->NodeList.size() && 3308 "PhiNodeSet access out of range"); 3309 ++CurrentIndex; 3310 Set->SkipRemovedElements(CurrentIndex); 3311 return *this; 3312 } 3313 3314 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3315 return CurrentIndex == RHS.CurrentIndex; 3316 } 3317 3318 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3319 return !((*this) == RHS); 3320 } 3321 3322 /// Keep track of simplification of Phi nodes. 3323 /// Accept the set of all phi nodes and erase phi node from this set 3324 /// if it is simplified. 3325 class SimplificationTracker { 3326 DenseMap<Value *, Value *> Storage; 3327 const SimplifyQuery &SQ; 3328 // Tracks newly created Phi nodes. The elements are iterated by insertion 3329 // order. 3330 PhiNodeSet AllPhiNodes; 3331 // Tracks newly created Select nodes. 3332 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3333 3334 public: 3335 SimplificationTracker(const SimplifyQuery &sq) 3336 : SQ(sq) {} 3337 3338 Value *Get(Value *V) { 3339 do { 3340 auto SV = Storage.find(V); 3341 if (SV == Storage.end()) 3342 return V; 3343 V = SV->second; 3344 } while (true); 3345 } 3346 3347 Value *Simplify(Value *Val) { 3348 SmallVector<Value *, 32> WorkList; 3349 SmallPtrSet<Value *, 32> Visited; 3350 WorkList.push_back(Val); 3351 while (!WorkList.empty()) { 3352 auto *P = WorkList.pop_back_val(); 3353 if (!Visited.insert(P).second) 3354 continue; 3355 if (auto *PI = dyn_cast<Instruction>(P)) 3356 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3357 for (auto *U : PI->users()) 3358 WorkList.push_back(cast<Value>(U)); 3359 Put(PI, V); 3360 PI->replaceAllUsesWith(V); 3361 if (auto *PHI = dyn_cast<PHINode>(PI)) 3362 AllPhiNodes.erase(PHI); 3363 if (auto *Select = dyn_cast<SelectInst>(PI)) 3364 AllSelectNodes.erase(Select); 3365 PI->eraseFromParent(); 3366 } 3367 } 3368 return Get(Val); 3369 } 3370 3371 void Put(Value *From, Value *To) { 3372 Storage.insert({ From, To }); 3373 } 3374 3375 void ReplacePhi(PHINode *From, PHINode *To) { 3376 Value* OldReplacement = Get(From); 3377 while (OldReplacement != From) { 3378 From = To; 3379 To = dyn_cast<PHINode>(OldReplacement); 3380 OldReplacement = Get(From); 3381 } 3382 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3383 Put(From, To); 3384 From->replaceAllUsesWith(To); 3385 AllPhiNodes.erase(From); 3386 From->eraseFromParent(); 3387 } 3388 3389 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3390 3391 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3392 3393 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3394 3395 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3396 3397 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3398 3399 void destroyNewNodes(Type *CommonType) { 3400 // For safe erasing, replace the uses with dummy value first. 3401 auto *Dummy = UndefValue::get(CommonType); 3402 for (auto *I : AllPhiNodes) { 3403 I->replaceAllUsesWith(Dummy); 3404 I->eraseFromParent(); 3405 } 3406 AllPhiNodes.clear(); 3407 for (auto *I : AllSelectNodes) { 3408 I->replaceAllUsesWith(Dummy); 3409 I->eraseFromParent(); 3410 } 3411 AllSelectNodes.clear(); 3412 } 3413 }; 3414 3415 /// A helper class for combining addressing modes. 3416 class AddressingModeCombiner { 3417 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3418 typedef std::pair<PHINode *, PHINode *> PHIPair; 3419 3420 private: 3421 /// The addressing modes we've collected. 3422 SmallVector<ExtAddrMode, 16> AddrModes; 3423 3424 /// The field in which the AddrModes differ, when we have more than one. 3425 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3426 3427 /// Are the AddrModes that we have all just equal to their original values? 3428 bool AllAddrModesTrivial = true; 3429 3430 /// Common Type for all different fields in addressing modes. 3431 Type *CommonType; 3432 3433 /// SimplifyQuery for simplifyInstruction utility. 3434 const SimplifyQuery &SQ; 3435 3436 /// Original Address. 3437 Value *Original; 3438 3439 public: 3440 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3441 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3442 3443 /// Get the combined AddrMode 3444 const ExtAddrMode &getAddrMode() const { 3445 return AddrModes[0]; 3446 } 3447 3448 /// Add a new AddrMode if it's compatible with the AddrModes we already 3449 /// have. 3450 /// \return True iff we succeeded in doing so. 3451 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3452 // Take note of if we have any non-trivial AddrModes, as we need to detect 3453 // when all AddrModes are trivial as then we would introduce a phi or select 3454 // which just duplicates what's already there. 3455 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3456 3457 // If this is the first addrmode then everything is fine. 3458 if (AddrModes.empty()) { 3459 AddrModes.emplace_back(NewAddrMode); 3460 return true; 3461 } 3462 3463 // Figure out how different this is from the other address modes, which we 3464 // can do just by comparing against the first one given that we only care 3465 // about the cumulative difference. 3466 ExtAddrMode::FieldName ThisDifferentField = 3467 AddrModes[0].compare(NewAddrMode); 3468 if (DifferentField == ExtAddrMode::NoField) 3469 DifferentField = ThisDifferentField; 3470 else if (DifferentField != ThisDifferentField) 3471 DifferentField = ExtAddrMode::MultipleFields; 3472 3473 // If NewAddrMode differs in more than one dimension we cannot handle it. 3474 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3475 3476 // If Scale Field is different then we reject. 3477 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3478 3479 // We also must reject the case when base offset is different and 3480 // scale reg is not null, we cannot handle this case due to merge of 3481 // different offsets will be used as ScaleReg. 3482 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3483 !NewAddrMode.ScaledReg); 3484 3485 // We also must reject the case when GV is different and BaseReg installed 3486 // due to we want to use base reg as a merge of GV values. 3487 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3488 !NewAddrMode.HasBaseReg); 3489 3490 // Even if NewAddMode is the same we still need to collect it due to 3491 // original value is different. And later we will need all original values 3492 // as anchors during finding the common Phi node. 3493 if (CanHandle) 3494 AddrModes.emplace_back(NewAddrMode); 3495 else 3496 AddrModes.clear(); 3497 3498 return CanHandle; 3499 } 3500 3501 /// Combine the addressing modes we've collected into a single 3502 /// addressing mode. 3503 /// \return True iff we successfully combined them or we only had one so 3504 /// didn't need to combine them anyway. 3505 bool combineAddrModes() { 3506 // If we have no AddrModes then they can't be combined. 3507 if (AddrModes.size() == 0) 3508 return false; 3509 3510 // A single AddrMode can trivially be combined. 3511 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3512 return true; 3513 3514 // If the AddrModes we collected are all just equal to the value they are 3515 // derived from then combining them wouldn't do anything useful. 3516 if (AllAddrModesTrivial) 3517 return false; 3518 3519 if (!addrModeCombiningAllowed()) 3520 return false; 3521 3522 // Build a map between <original value, basic block where we saw it> to 3523 // value of base register. 3524 // Bail out if there is no common type. 3525 FoldAddrToValueMapping Map; 3526 if (!initializeMap(Map)) 3527 return false; 3528 3529 Value *CommonValue = findCommon(Map); 3530 if (CommonValue) 3531 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3532 return CommonValue != nullptr; 3533 } 3534 3535 private: 3536 /// Initialize Map with anchor values. For address seen 3537 /// we set the value of different field saw in this address. 3538 /// At the same time we find a common type for different field we will 3539 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3540 /// Return false if there is no common type found. 3541 bool initializeMap(FoldAddrToValueMapping &Map) { 3542 // Keep track of keys where the value is null. We will need to replace it 3543 // with constant null when we know the common type. 3544 SmallVector<Value *, 2> NullValue; 3545 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3546 for (auto &AM : AddrModes) { 3547 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3548 if (DV) { 3549 auto *Type = DV->getType(); 3550 if (CommonType && CommonType != Type) 3551 return false; 3552 CommonType = Type; 3553 Map[AM.OriginalValue] = DV; 3554 } else { 3555 NullValue.push_back(AM.OriginalValue); 3556 } 3557 } 3558 assert(CommonType && "At least one non-null value must be!"); 3559 for (auto *V : NullValue) 3560 Map[V] = Constant::getNullValue(CommonType); 3561 return true; 3562 } 3563 3564 /// We have mapping between value A and other value B where B was a field in 3565 /// addressing mode represented by A. Also we have an original value C 3566 /// representing an address we start with. Traversing from C through phi and 3567 /// selects we ended up with A's in a map. This utility function tries to find 3568 /// a value V which is a field in addressing mode C and traversing through phi 3569 /// nodes and selects we will end up in corresponded values B in a map. 3570 /// The utility will create a new Phi/Selects if needed. 3571 // The simple example looks as follows: 3572 // BB1: 3573 // p1 = b1 + 40 3574 // br cond BB2, BB3 3575 // BB2: 3576 // p2 = b2 + 40 3577 // br BB3 3578 // BB3: 3579 // p = phi [p1, BB1], [p2, BB2] 3580 // v = load p 3581 // Map is 3582 // p1 -> b1 3583 // p2 -> b2 3584 // Request is 3585 // p -> ? 3586 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3587 Value *findCommon(FoldAddrToValueMapping &Map) { 3588 // Tracks the simplification of newly created phi nodes. The reason we use 3589 // this mapping is because we will add new created Phi nodes in AddrToBase. 3590 // Simplification of Phi nodes is recursive, so some Phi node may 3591 // be simplified after we added it to AddrToBase. In reality this 3592 // simplification is possible only if original phi/selects were not 3593 // simplified yet. 3594 // Using this mapping we can find the current value in AddrToBase. 3595 SimplificationTracker ST(SQ); 3596 3597 // First step, DFS to create PHI nodes for all intermediate blocks. 3598 // Also fill traverse order for the second step. 3599 SmallVector<Value *, 32> TraverseOrder; 3600 InsertPlaceholders(Map, TraverseOrder, ST); 3601 3602 // Second Step, fill new nodes by merged values and simplify if possible. 3603 FillPlaceholders(Map, TraverseOrder, ST); 3604 3605 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3606 ST.destroyNewNodes(CommonType); 3607 return nullptr; 3608 } 3609 3610 // Now we'd like to match New Phi nodes to existed ones. 3611 unsigned PhiNotMatchedCount = 0; 3612 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3613 ST.destroyNewNodes(CommonType); 3614 return nullptr; 3615 } 3616 3617 auto *Result = ST.Get(Map.find(Original)->second); 3618 if (Result) { 3619 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3620 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3621 } 3622 return Result; 3623 } 3624 3625 /// Try to match PHI node to Candidate. 3626 /// Matcher tracks the matched Phi nodes. 3627 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3628 SmallSetVector<PHIPair, 8> &Matcher, 3629 PhiNodeSet &PhiNodesToMatch) { 3630 SmallVector<PHIPair, 8> WorkList; 3631 Matcher.insert({ PHI, Candidate }); 3632 SmallSet<PHINode *, 8> MatchedPHIs; 3633 MatchedPHIs.insert(PHI); 3634 WorkList.push_back({ PHI, Candidate }); 3635 SmallSet<PHIPair, 8> Visited; 3636 while (!WorkList.empty()) { 3637 auto Item = WorkList.pop_back_val(); 3638 if (!Visited.insert(Item).second) 3639 continue; 3640 // We iterate over all incoming values to Phi to compare them. 3641 // If values are different and both of them Phi and the first one is a 3642 // Phi we added (subject to match) and both of them is in the same basic 3643 // block then we can match our pair if values match. So we state that 3644 // these values match and add it to work list to verify that. 3645 for (auto B : Item.first->blocks()) { 3646 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3647 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3648 if (FirstValue == SecondValue) 3649 continue; 3650 3651 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3652 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3653 3654 // One of them is not Phi or 3655 // The first one is not Phi node from the set we'd like to match or 3656 // Phi nodes from different basic blocks then 3657 // we will not be able to match. 3658 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3659 FirstPhi->getParent() != SecondPhi->getParent()) 3660 return false; 3661 3662 // If we already matched them then continue. 3663 if (Matcher.count({ FirstPhi, SecondPhi })) 3664 continue; 3665 // So the values are different and does not match. So we need them to 3666 // match. (But we register no more than one match per PHI node, so that 3667 // we won't later try to replace them twice.) 3668 if (MatchedPHIs.insert(FirstPhi).second) 3669 Matcher.insert({ FirstPhi, SecondPhi }); 3670 // But me must check it. 3671 WorkList.push_back({ FirstPhi, SecondPhi }); 3672 } 3673 } 3674 return true; 3675 } 3676 3677 /// For the given set of PHI nodes (in the SimplificationTracker) try 3678 /// to find their equivalents. 3679 /// Returns false if this matching fails and creation of new Phi is disabled. 3680 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3681 unsigned &PhiNotMatchedCount) { 3682 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3683 // order, so the replacements (ReplacePhi) are also done in a deterministic 3684 // order. 3685 SmallSetVector<PHIPair, 8> Matched; 3686 SmallPtrSet<PHINode *, 8> WillNotMatch; 3687 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3688 while (PhiNodesToMatch.size()) { 3689 PHINode *PHI = *PhiNodesToMatch.begin(); 3690 3691 // Add us, if no Phi nodes in the basic block we do not match. 3692 WillNotMatch.clear(); 3693 WillNotMatch.insert(PHI); 3694 3695 // Traverse all Phis until we found equivalent or fail to do that. 3696 bool IsMatched = false; 3697 for (auto &P : PHI->getParent()->phis()) { 3698 if (&P == PHI) 3699 continue; 3700 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3701 break; 3702 // If it does not match, collect all Phi nodes from matcher. 3703 // if we end up with no match, them all these Phi nodes will not match 3704 // later. 3705 for (auto M : Matched) 3706 WillNotMatch.insert(M.first); 3707 Matched.clear(); 3708 } 3709 if (IsMatched) { 3710 // Replace all matched values and erase them. 3711 for (auto MV : Matched) 3712 ST.ReplacePhi(MV.first, MV.second); 3713 Matched.clear(); 3714 continue; 3715 } 3716 // If we are not allowed to create new nodes then bail out. 3717 if (!AllowNewPhiNodes) 3718 return false; 3719 // Just remove all seen values in matcher. They will not match anything. 3720 PhiNotMatchedCount += WillNotMatch.size(); 3721 for (auto *P : WillNotMatch) 3722 PhiNodesToMatch.erase(P); 3723 } 3724 return true; 3725 } 3726 /// Fill the placeholders with values from predecessors and simplify them. 3727 void FillPlaceholders(FoldAddrToValueMapping &Map, 3728 SmallVectorImpl<Value *> &TraverseOrder, 3729 SimplificationTracker &ST) { 3730 while (!TraverseOrder.empty()) { 3731 Value *Current = TraverseOrder.pop_back_val(); 3732 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3733 Value *V = Map[Current]; 3734 3735 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3736 // CurrentValue also must be Select. 3737 auto *CurrentSelect = cast<SelectInst>(Current); 3738 auto *TrueValue = CurrentSelect->getTrueValue(); 3739 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3740 Select->setTrueValue(ST.Get(Map[TrueValue])); 3741 auto *FalseValue = CurrentSelect->getFalseValue(); 3742 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3743 Select->setFalseValue(ST.Get(Map[FalseValue])); 3744 } else { 3745 // Must be a Phi node then. 3746 auto *PHI = cast<PHINode>(V); 3747 // Fill the Phi node with values from predecessors. 3748 for (auto *B : predecessors(PHI->getParent())) { 3749 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3750 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3751 PHI->addIncoming(ST.Get(Map[PV]), B); 3752 } 3753 } 3754 Map[Current] = ST.Simplify(V); 3755 } 3756 } 3757 3758 /// Starting from original value recursively iterates over def-use chain up to 3759 /// known ending values represented in a map. For each traversed phi/select 3760 /// inserts a placeholder Phi or Select. 3761 /// Reports all new created Phi/Select nodes by adding them to set. 3762 /// Also reports and order in what values have been traversed. 3763 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3764 SmallVectorImpl<Value *> &TraverseOrder, 3765 SimplificationTracker &ST) { 3766 SmallVector<Value *, 32> Worklist; 3767 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3768 "Address must be a Phi or Select node"); 3769 auto *Dummy = UndefValue::get(CommonType); 3770 Worklist.push_back(Original); 3771 while (!Worklist.empty()) { 3772 Value *Current = Worklist.pop_back_val(); 3773 // if it is already visited or it is an ending value then skip it. 3774 if (Map.find(Current) != Map.end()) 3775 continue; 3776 TraverseOrder.push_back(Current); 3777 3778 // CurrentValue must be a Phi node or select. All others must be covered 3779 // by anchors. 3780 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3781 // Is it OK to get metadata from OrigSelect?! 3782 // Create a Select placeholder with dummy value. 3783 SelectInst *Select = SelectInst::Create( 3784 CurrentSelect->getCondition(), Dummy, Dummy, 3785 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3786 Map[Current] = Select; 3787 ST.insertNewSelect(Select); 3788 // We are interested in True and False values. 3789 Worklist.push_back(CurrentSelect->getTrueValue()); 3790 Worklist.push_back(CurrentSelect->getFalseValue()); 3791 } else { 3792 // It must be a Phi node then. 3793 PHINode *CurrentPhi = cast<PHINode>(Current); 3794 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3795 PHINode *PHI = 3796 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3797 Map[Current] = PHI; 3798 ST.insertNewPhi(PHI); 3799 append_range(Worklist, CurrentPhi->incoming_values()); 3800 } 3801 } 3802 } 3803 3804 bool addrModeCombiningAllowed() { 3805 if (DisableComplexAddrModes) 3806 return false; 3807 switch (DifferentField) { 3808 default: 3809 return false; 3810 case ExtAddrMode::BaseRegField: 3811 return AddrSinkCombineBaseReg; 3812 case ExtAddrMode::BaseGVField: 3813 return AddrSinkCombineBaseGV; 3814 case ExtAddrMode::BaseOffsField: 3815 return AddrSinkCombineBaseOffs; 3816 case ExtAddrMode::ScaledRegField: 3817 return AddrSinkCombineScaledReg; 3818 } 3819 } 3820 }; 3821 } // end anonymous namespace 3822 3823 /// Try adding ScaleReg*Scale to the current addressing mode. 3824 /// Return true and update AddrMode if this addr mode is legal for the target, 3825 /// false if not. 3826 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3827 unsigned Depth) { 3828 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3829 // mode. Just process that directly. 3830 if (Scale == 1) 3831 return matchAddr(ScaleReg, Depth); 3832 3833 // If the scale is 0, it takes nothing to add this. 3834 if (Scale == 0) 3835 return true; 3836 3837 // If we already have a scale of this value, we can add to it, otherwise, we 3838 // need an available scale field. 3839 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3840 return false; 3841 3842 ExtAddrMode TestAddrMode = AddrMode; 3843 3844 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3845 // [A+B + A*7] -> [B+A*8]. 3846 TestAddrMode.Scale += Scale; 3847 TestAddrMode.ScaledReg = ScaleReg; 3848 3849 // If the new address isn't legal, bail out. 3850 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3851 return false; 3852 3853 // It was legal, so commit it. 3854 AddrMode = TestAddrMode; 3855 3856 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3857 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3858 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3859 // go any further: we can reuse it and cannot eliminate it. 3860 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3861 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3862 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3863 !isIVIncrement(cast<BinaryOperator>(ScaleReg), &LI) && 3864 CI->getValue().isSignedIntN(64)) { 3865 TestAddrMode.InBounds = false; 3866 TestAddrMode.ScaledReg = AddLHS; 3867 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3868 3869 // If this addressing mode is legal, commit it and remember that we folded 3870 // this instruction. 3871 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3872 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3873 AddrMode = TestAddrMode; 3874 return true; 3875 } 3876 // Restore status quo. 3877 TestAddrMode = AddrMode; 3878 } 3879 3880 auto GetConstantStep = [this](const Value * V) 3881 ->Optional<std::pair<Instruction *, APInt> > { 3882 auto *PN = dyn_cast<PHINode>(V); 3883 if (!PN) 3884 return None; 3885 auto IVInc = getIVIncrement(PN, &LI); 3886 if (!IVInc) 3887 return None; 3888 // TODO: The result of the intrinsics above is two-compliment. However when 3889 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3890 // If it has nuw or nsw flags, we need to make sure that these flags are 3891 // inferrable at the point of memory instruction. Otherwise we are replacing 3892 // well-defined two-compliment computation with poison. Currently, to avoid 3893 // potentially complex analysis needed to prove this, we reject such cases. 3894 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3895 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3896 return None; 3897 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3898 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3899 return None; 3900 }; 3901 3902 // Try to account for the following special case: 3903 // 1. ScaleReg is an inductive variable; 3904 // 2. We use it with non-zero offset; 3905 // 3. IV's increment is available at the point of memory instruction. 3906 // 3907 // In this case, we may reuse the IV increment instead of the IV Phi to 3908 // achieve the following advantages: 3909 // 1. If IV step matches the offset, we will have no need in the offset; 3910 // 2. Even if they don't match, we will reduce the overlap of living IV 3911 // and IV increment, that will potentially lead to better register 3912 // assignment. 3913 if (AddrMode.BaseOffs) { 3914 if (auto IVStep = GetConstantStep(ScaleReg)) { 3915 Instruction *IVInc = IVStep->first; 3916 APInt Step = IVStep->second; 3917 APInt Offset = Step * AddrMode.Scale; 3918 if (Offset.isSignedIntN(64)) { 3919 TestAddrMode.InBounds = false; 3920 TestAddrMode.ScaledReg = IVInc; 3921 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3922 // If this addressing mode is legal, commit it.. 3923 // (Note that we defer the (expensive) domtree base legality check 3924 // to the very last possible point.) 3925 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3926 getDTFn().dominates(IVInc, MemoryInst)) { 3927 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3928 AddrMode = TestAddrMode; 3929 return true; 3930 } 3931 // Restore status quo. 3932 TestAddrMode = AddrMode; 3933 } 3934 } 3935 } 3936 3937 // Otherwise, just return what we have. 3938 return true; 3939 } 3940 3941 /// This is a little filter, which returns true if an addressing computation 3942 /// involving I might be folded into a load/store accessing it. 3943 /// This doesn't need to be perfect, but needs to accept at least 3944 /// the set of instructions that MatchOperationAddr can. 3945 static bool MightBeFoldableInst(Instruction *I) { 3946 switch (I->getOpcode()) { 3947 case Instruction::BitCast: 3948 case Instruction::AddrSpaceCast: 3949 // Don't touch identity bitcasts. 3950 if (I->getType() == I->getOperand(0)->getType()) 3951 return false; 3952 return I->getType()->isIntOrPtrTy(); 3953 case Instruction::PtrToInt: 3954 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3955 return true; 3956 case Instruction::IntToPtr: 3957 // We know the input is intptr_t, so this is foldable. 3958 return true; 3959 case Instruction::Add: 3960 return true; 3961 case Instruction::Mul: 3962 case Instruction::Shl: 3963 // Can only handle X*C and X << C. 3964 return isa<ConstantInt>(I->getOperand(1)); 3965 case Instruction::GetElementPtr: 3966 return true; 3967 default: 3968 return false; 3969 } 3970 } 3971 3972 /// Check whether or not \p Val is a legal instruction for \p TLI. 3973 /// \note \p Val is assumed to be the product of some type promotion. 3974 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3975 /// to be legal, as the non-promoted value would have had the same state. 3976 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3977 const DataLayout &DL, Value *Val) { 3978 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3979 if (!PromotedInst) 3980 return false; 3981 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3982 // If the ISDOpcode is undefined, it was undefined before the promotion. 3983 if (!ISDOpcode) 3984 return true; 3985 // Otherwise, check if the promoted instruction is legal or not. 3986 return TLI.isOperationLegalOrCustom( 3987 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3988 } 3989 3990 namespace { 3991 3992 /// Hepler class to perform type promotion. 3993 class TypePromotionHelper { 3994 /// Utility function to add a promoted instruction \p ExtOpnd to 3995 /// \p PromotedInsts and record the type of extension we have seen. 3996 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3997 Instruction *ExtOpnd, 3998 bool IsSExt) { 3999 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4000 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4001 if (It != PromotedInsts.end()) { 4002 // If the new extension is same as original, the information in 4003 // PromotedInsts[ExtOpnd] is still correct. 4004 if (It->second.getInt() == ExtTy) 4005 return; 4006 4007 // Now the new extension is different from old extension, we make 4008 // the type information invalid by setting extension type to 4009 // BothExtension. 4010 ExtTy = BothExtension; 4011 } 4012 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4013 } 4014 4015 /// Utility function to query the original type of instruction \p Opnd 4016 /// with a matched extension type. If the extension doesn't match, we 4017 /// cannot use the information we had on the original type. 4018 /// BothExtension doesn't match any extension type. 4019 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4020 Instruction *Opnd, 4021 bool IsSExt) { 4022 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4023 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4024 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4025 return It->second.getPointer(); 4026 return nullptr; 4027 } 4028 4029 /// Utility function to check whether or not a sign or zero extension 4030 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4031 /// either using the operands of \p Inst or promoting \p Inst. 4032 /// The type of the extension is defined by \p IsSExt. 4033 /// In other words, check if: 4034 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4035 /// #1 Promotion applies: 4036 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4037 /// #2 Operand reuses: 4038 /// ext opnd1 to ConsideredExtType. 4039 /// \p PromotedInsts maps the instructions to their type before promotion. 4040 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4041 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4042 4043 /// Utility function to determine if \p OpIdx should be promoted when 4044 /// promoting \p Inst. 4045 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4046 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4047 } 4048 4049 /// Utility function to promote the operand of \p Ext when this 4050 /// operand is a promotable trunc or sext or zext. 4051 /// \p PromotedInsts maps the instructions to their type before promotion. 4052 /// \p CreatedInstsCost[out] contains the cost of all instructions 4053 /// created to promote the operand of Ext. 4054 /// Newly added extensions are inserted in \p Exts. 4055 /// Newly added truncates are inserted in \p Truncs. 4056 /// Should never be called directly. 4057 /// \return The promoted value which is used instead of Ext. 4058 static Value *promoteOperandForTruncAndAnyExt( 4059 Instruction *Ext, TypePromotionTransaction &TPT, 4060 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4061 SmallVectorImpl<Instruction *> *Exts, 4062 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4063 4064 /// Utility function to promote the operand of \p Ext when this 4065 /// operand is promotable and is not a supported trunc or sext. 4066 /// \p PromotedInsts maps the instructions to their type before promotion. 4067 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4068 /// created to promote the operand of Ext. 4069 /// Newly added extensions are inserted in \p Exts. 4070 /// Newly added truncates are inserted in \p Truncs. 4071 /// Should never be called directly. 4072 /// \return The promoted value which is used instead of Ext. 4073 static Value *promoteOperandForOther(Instruction *Ext, 4074 TypePromotionTransaction &TPT, 4075 InstrToOrigTy &PromotedInsts, 4076 unsigned &CreatedInstsCost, 4077 SmallVectorImpl<Instruction *> *Exts, 4078 SmallVectorImpl<Instruction *> *Truncs, 4079 const TargetLowering &TLI, bool IsSExt); 4080 4081 /// \see promoteOperandForOther. 4082 static Value *signExtendOperandForOther( 4083 Instruction *Ext, TypePromotionTransaction &TPT, 4084 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4085 SmallVectorImpl<Instruction *> *Exts, 4086 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4087 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4088 Exts, Truncs, TLI, true); 4089 } 4090 4091 /// \see promoteOperandForOther. 4092 static Value *zeroExtendOperandForOther( 4093 Instruction *Ext, TypePromotionTransaction &TPT, 4094 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4095 SmallVectorImpl<Instruction *> *Exts, 4096 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4097 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4098 Exts, Truncs, TLI, false); 4099 } 4100 4101 public: 4102 /// Type for the utility function that promotes the operand of Ext. 4103 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4104 InstrToOrigTy &PromotedInsts, 4105 unsigned &CreatedInstsCost, 4106 SmallVectorImpl<Instruction *> *Exts, 4107 SmallVectorImpl<Instruction *> *Truncs, 4108 const TargetLowering &TLI); 4109 4110 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4111 /// action to promote the operand of \p Ext instead of using Ext. 4112 /// \return NULL if no promotable action is possible with the current 4113 /// sign extension. 4114 /// \p InsertedInsts keeps track of all the instructions inserted by the 4115 /// other CodeGenPrepare optimizations. This information is important 4116 /// because we do not want to promote these instructions as CodeGenPrepare 4117 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4118 /// \p PromotedInsts maps the instructions to their type before promotion. 4119 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4120 const TargetLowering &TLI, 4121 const InstrToOrigTy &PromotedInsts); 4122 }; 4123 4124 } // end anonymous namespace 4125 4126 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4127 Type *ConsideredExtType, 4128 const InstrToOrigTy &PromotedInsts, 4129 bool IsSExt) { 4130 // The promotion helper does not know how to deal with vector types yet. 4131 // To be able to fix that, we would need to fix the places where we 4132 // statically extend, e.g., constants and such. 4133 if (Inst->getType()->isVectorTy()) 4134 return false; 4135 4136 // We can always get through zext. 4137 if (isa<ZExtInst>(Inst)) 4138 return true; 4139 4140 // sext(sext) is ok too. 4141 if (IsSExt && isa<SExtInst>(Inst)) 4142 return true; 4143 4144 // We can get through binary operator, if it is legal. In other words, the 4145 // binary operator must have a nuw or nsw flag. 4146 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4147 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4148 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4149 (IsSExt && BinOp->hasNoSignedWrap()))) 4150 return true; 4151 4152 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4153 if ((Inst->getOpcode() == Instruction::And || 4154 Inst->getOpcode() == Instruction::Or)) 4155 return true; 4156 4157 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4158 if (Inst->getOpcode() == Instruction::Xor) { 4159 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4160 // Make sure it is not a NOT. 4161 if (Cst && !Cst->getValue().isAllOnesValue()) 4162 return true; 4163 } 4164 4165 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4166 // It may change a poisoned value into a regular value, like 4167 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4168 // poisoned value regular value 4169 // It should be OK since undef covers valid value. 4170 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4171 return true; 4172 4173 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4174 // It may change a poisoned value into a regular value, like 4175 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4176 // poisoned value regular value 4177 // It should be OK since undef covers valid value. 4178 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4179 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4180 if (ExtInst->hasOneUse()) { 4181 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4182 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4183 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4184 if (Cst && 4185 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4186 return true; 4187 } 4188 } 4189 } 4190 4191 // Check if we can do the following simplification. 4192 // ext(trunc(opnd)) --> ext(opnd) 4193 if (!isa<TruncInst>(Inst)) 4194 return false; 4195 4196 Value *OpndVal = Inst->getOperand(0); 4197 // Check if we can use this operand in the extension. 4198 // If the type is larger than the result type of the extension, we cannot. 4199 if (!OpndVal->getType()->isIntegerTy() || 4200 OpndVal->getType()->getIntegerBitWidth() > 4201 ConsideredExtType->getIntegerBitWidth()) 4202 return false; 4203 4204 // If the operand of the truncate is not an instruction, we will not have 4205 // any information on the dropped bits. 4206 // (Actually we could for constant but it is not worth the extra logic). 4207 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4208 if (!Opnd) 4209 return false; 4210 4211 // Check if the source of the type is narrow enough. 4212 // I.e., check that trunc just drops extended bits of the same kind of 4213 // the extension. 4214 // #1 get the type of the operand and check the kind of the extended bits. 4215 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4216 if (OpndType) 4217 ; 4218 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4219 OpndType = Opnd->getOperand(0)->getType(); 4220 else 4221 return false; 4222 4223 // #2 check that the truncate just drops extended bits. 4224 return Inst->getType()->getIntegerBitWidth() >= 4225 OpndType->getIntegerBitWidth(); 4226 } 4227 4228 TypePromotionHelper::Action TypePromotionHelper::getAction( 4229 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4230 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4231 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4232 "Unexpected instruction type"); 4233 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4234 Type *ExtTy = Ext->getType(); 4235 bool IsSExt = isa<SExtInst>(Ext); 4236 // If the operand of the extension is not an instruction, we cannot 4237 // get through. 4238 // If it, check we can get through. 4239 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4240 return nullptr; 4241 4242 // Do not promote if the operand has been added by codegenprepare. 4243 // Otherwise, it means we are undoing an optimization that is likely to be 4244 // redone, thus causing potential infinite loop. 4245 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4246 return nullptr; 4247 4248 // SExt or Trunc instructions. 4249 // Return the related handler. 4250 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4251 isa<ZExtInst>(ExtOpnd)) 4252 return promoteOperandForTruncAndAnyExt; 4253 4254 // Regular instruction. 4255 // Abort early if we will have to insert non-free instructions. 4256 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4257 return nullptr; 4258 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4259 } 4260 4261 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4262 Instruction *SExt, TypePromotionTransaction &TPT, 4263 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4264 SmallVectorImpl<Instruction *> *Exts, 4265 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4266 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4267 // get through it and this method should not be called. 4268 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4269 Value *ExtVal = SExt; 4270 bool HasMergedNonFreeExt = false; 4271 if (isa<ZExtInst>(SExtOpnd)) { 4272 // Replace s|zext(zext(opnd)) 4273 // => zext(opnd). 4274 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4275 Value *ZExt = 4276 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4277 TPT.replaceAllUsesWith(SExt, ZExt); 4278 TPT.eraseInstruction(SExt); 4279 ExtVal = ZExt; 4280 } else { 4281 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4282 // => z|sext(opnd). 4283 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4284 } 4285 CreatedInstsCost = 0; 4286 4287 // Remove dead code. 4288 if (SExtOpnd->use_empty()) 4289 TPT.eraseInstruction(SExtOpnd); 4290 4291 // Check if the extension is still needed. 4292 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4293 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4294 if (ExtInst) { 4295 if (Exts) 4296 Exts->push_back(ExtInst); 4297 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4298 } 4299 return ExtVal; 4300 } 4301 4302 // At this point we have: ext ty opnd to ty. 4303 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4304 Value *NextVal = ExtInst->getOperand(0); 4305 TPT.eraseInstruction(ExtInst, NextVal); 4306 return NextVal; 4307 } 4308 4309 Value *TypePromotionHelper::promoteOperandForOther( 4310 Instruction *Ext, TypePromotionTransaction &TPT, 4311 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4312 SmallVectorImpl<Instruction *> *Exts, 4313 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4314 bool IsSExt) { 4315 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4316 // get through it and this method should not be called. 4317 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4318 CreatedInstsCost = 0; 4319 if (!ExtOpnd->hasOneUse()) { 4320 // ExtOpnd will be promoted. 4321 // All its uses, but Ext, will need to use a truncated value of the 4322 // promoted version. 4323 // Create the truncate now. 4324 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4325 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4326 // Insert it just after the definition. 4327 ITrunc->moveAfter(ExtOpnd); 4328 if (Truncs) 4329 Truncs->push_back(ITrunc); 4330 } 4331 4332 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4333 // Restore the operand of Ext (which has been replaced by the previous call 4334 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4335 TPT.setOperand(Ext, 0, ExtOpnd); 4336 } 4337 4338 // Get through the Instruction: 4339 // 1. Update its type. 4340 // 2. Replace the uses of Ext by Inst. 4341 // 3. Extend each operand that needs to be extended. 4342 4343 // Remember the original type of the instruction before promotion. 4344 // This is useful to know that the high bits are sign extended bits. 4345 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4346 // Step #1. 4347 TPT.mutateType(ExtOpnd, Ext->getType()); 4348 // Step #2. 4349 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4350 // Step #3. 4351 Instruction *ExtForOpnd = Ext; 4352 4353 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4354 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4355 ++OpIdx) { 4356 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4357 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4358 !shouldExtOperand(ExtOpnd, OpIdx)) { 4359 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4360 continue; 4361 } 4362 // Check if we can statically extend the operand. 4363 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4364 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4365 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4366 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4367 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4368 : Cst->getValue().zext(BitWidth); 4369 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4370 continue; 4371 } 4372 // UndefValue are typed, so we have to statically sign extend them. 4373 if (isa<UndefValue>(Opnd)) { 4374 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4375 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4376 continue; 4377 } 4378 4379 // Otherwise we have to explicitly sign extend the operand. 4380 // Check if Ext was reused to extend an operand. 4381 if (!ExtForOpnd) { 4382 // If yes, create a new one. 4383 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4384 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4385 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4386 if (!isa<Instruction>(ValForExtOpnd)) { 4387 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4388 continue; 4389 } 4390 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4391 } 4392 if (Exts) 4393 Exts->push_back(ExtForOpnd); 4394 TPT.setOperand(ExtForOpnd, 0, Opnd); 4395 4396 // Move the sign extension before the insertion point. 4397 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4398 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4399 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4400 // If more sext are required, new instructions will have to be created. 4401 ExtForOpnd = nullptr; 4402 } 4403 if (ExtForOpnd == Ext) { 4404 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4405 TPT.eraseInstruction(Ext); 4406 } 4407 return ExtOpnd; 4408 } 4409 4410 /// Check whether or not promoting an instruction to a wider type is profitable. 4411 /// \p NewCost gives the cost of extension instructions created by the 4412 /// promotion. 4413 /// \p OldCost gives the cost of extension instructions before the promotion 4414 /// plus the number of instructions that have been 4415 /// matched in the addressing mode the promotion. 4416 /// \p PromotedOperand is the value that has been promoted. 4417 /// \return True if the promotion is profitable, false otherwise. 4418 bool AddressingModeMatcher::isPromotionProfitable( 4419 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4420 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4421 << '\n'); 4422 // The cost of the new extensions is greater than the cost of the 4423 // old extension plus what we folded. 4424 // This is not profitable. 4425 if (NewCost > OldCost) 4426 return false; 4427 if (NewCost < OldCost) 4428 return true; 4429 // The promotion is neutral but it may help folding the sign extension in 4430 // loads for instance. 4431 // Check that we did not create an illegal instruction. 4432 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4433 } 4434 4435 /// Given an instruction or constant expr, see if we can fold the operation 4436 /// into the addressing mode. If so, update the addressing mode and return 4437 /// true, otherwise return false without modifying AddrMode. 4438 /// If \p MovedAway is not NULL, it contains the information of whether or 4439 /// not AddrInst has to be folded into the addressing mode on success. 4440 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4441 /// because it has been moved away. 4442 /// Thus AddrInst must not be added in the matched instructions. 4443 /// This state can happen when AddrInst is a sext, since it may be moved away. 4444 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4445 /// not be referenced anymore. 4446 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4447 unsigned Depth, 4448 bool *MovedAway) { 4449 // Avoid exponential behavior on extremely deep expression trees. 4450 if (Depth >= 5) return false; 4451 4452 // By default, all matched instructions stay in place. 4453 if (MovedAway) 4454 *MovedAway = false; 4455 4456 switch (Opcode) { 4457 case Instruction::PtrToInt: 4458 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4459 return matchAddr(AddrInst->getOperand(0), Depth); 4460 case Instruction::IntToPtr: { 4461 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4462 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4463 // This inttoptr is a no-op if the integer type is pointer sized. 4464 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4465 return matchAddr(AddrInst->getOperand(0), Depth); 4466 return false; 4467 } 4468 case Instruction::BitCast: 4469 // BitCast is always a noop, and we can handle it as long as it is 4470 // int->int or pointer->pointer (we don't want int<->fp or something). 4471 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4472 // Don't touch identity bitcasts. These were probably put here by LSR, 4473 // and we don't want to mess around with them. Assume it knows what it 4474 // is doing. 4475 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4476 return matchAddr(AddrInst->getOperand(0), Depth); 4477 return false; 4478 case Instruction::AddrSpaceCast: { 4479 unsigned SrcAS 4480 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4481 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4482 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4483 return matchAddr(AddrInst->getOperand(0), Depth); 4484 return false; 4485 } 4486 case Instruction::Add: { 4487 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4488 ExtAddrMode BackupAddrMode = AddrMode; 4489 unsigned OldSize = AddrModeInsts.size(); 4490 // Start a transaction at this point. 4491 // The LHS may match but not the RHS. 4492 // Therefore, we need a higher level restoration point to undo partially 4493 // matched operation. 4494 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4495 TPT.getRestorationPoint(); 4496 4497 AddrMode.InBounds = false; 4498 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4499 matchAddr(AddrInst->getOperand(0), Depth+1)) 4500 return true; 4501 4502 // Restore the old addr mode info. 4503 AddrMode = BackupAddrMode; 4504 AddrModeInsts.resize(OldSize); 4505 TPT.rollback(LastKnownGood); 4506 4507 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4508 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4509 matchAddr(AddrInst->getOperand(1), Depth+1)) 4510 return true; 4511 4512 // Otherwise we definitely can't merge the ADD in. 4513 AddrMode = BackupAddrMode; 4514 AddrModeInsts.resize(OldSize); 4515 TPT.rollback(LastKnownGood); 4516 break; 4517 } 4518 //case Instruction::Or: 4519 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4520 //break; 4521 case Instruction::Mul: 4522 case Instruction::Shl: { 4523 // Can only handle X*C and X << C. 4524 AddrMode.InBounds = false; 4525 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4526 if (!RHS || RHS->getBitWidth() > 64) 4527 return false; 4528 int64_t Scale = RHS->getSExtValue(); 4529 if (Opcode == Instruction::Shl) 4530 Scale = 1LL << Scale; 4531 4532 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4533 } 4534 case Instruction::GetElementPtr: { 4535 // Scan the GEP. We check it if it contains constant offsets and at most 4536 // one variable offset. 4537 int VariableOperand = -1; 4538 unsigned VariableScale = 0; 4539 4540 int64_t ConstantOffset = 0; 4541 gep_type_iterator GTI = gep_type_begin(AddrInst); 4542 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4543 if (StructType *STy = GTI.getStructTypeOrNull()) { 4544 const StructLayout *SL = DL.getStructLayout(STy); 4545 unsigned Idx = 4546 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4547 ConstantOffset += SL->getElementOffset(Idx); 4548 } else { 4549 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4550 if (TS.isNonZero()) { 4551 // The optimisations below currently only work for fixed offsets. 4552 if (TS.isScalable()) 4553 return false; 4554 int64_t TypeSize = TS.getFixedSize(); 4555 if (ConstantInt *CI = 4556 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4557 const APInt &CVal = CI->getValue(); 4558 if (CVal.getMinSignedBits() <= 64) { 4559 ConstantOffset += CVal.getSExtValue() * TypeSize; 4560 continue; 4561 } 4562 } 4563 // We only allow one variable index at the moment. 4564 if (VariableOperand != -1) 4565 return false; 4566 4567 // Remember the variable index. 4568 VariableOperand = i; 4569 VariableScale = TypeSize; 4570 } 4571 } 4572 } 4573 4574 // A common case is for the GEP to only do a constant offset. In this case, 4575 // just add it to the disp field and check validity. 4576 if (VariableOperand == -1) { 4577 AddrMode.BaseOffs += ConstantOffset; 4578 if (ConstantOffset == 0 || 4579 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4580 // Check to see if we can fold the base pointer in too. 4581 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4582 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4583 AddrMode.InBounds = false; 4584 return true; 4585 } 4586 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4587 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4588 ConstantOffset > 0) { 4589 // Record GEPs with non-zero offsets as candidates for splitting in the 4590 // event that the offset cannot fit into the r+i addressing mode. 4591 // Simple and common case that only one GEP is used in calculating the 4592 // address for the memory access. 4593 Value *Base = AddrInst->getOperand(0); 4594 auto *BaseI = dyn_cast<Instruction>(Base); 4595 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4596 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4597 (BaseI && !isa<CastInst>(BaseI) && 4598 !isa<GetElementPtrInst>(BaseI))) { 4599 // Make sure the parent block allows inserting non-PHI instructions 4600 // before the terminator. 4601 BasicBlock *Parent = 4602 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4603 if (!Parent->getTerminator()->isEHPad()) 4604 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4605 } 4606 } 4607 AddrMode.BaseOffs -= ConstantOffset; 4608 return false; 4609 } 4610 4611 // Save the valid addressing mode in case we can't match. 4612 ExtAddrMode BackupAddrMode = AddrMode; 4613 unsigned OldSize = AddrModeInsts.size(); 4614 4615 // See if the scale and offset amount is valid for this target. 4616 AddrMode.BaseOffs += ConstantOffset; 4617 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4618 AddrMode.InBounds = false; 4619 4620 // Match the base operand of the GEP. 4621 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4622 // If it couldn't be matched, just stuff the value in a register. 4623 if (AddrMode.HasBaseReg) { 4624 AddrMode = BackupAddrMode; 4625 AddrModeInsts.resize(OldSize); 4626 return false; 4627 } 4628 AddrMode.HasBaseReg = true; 4629 AddrMode.BaseReg = AddrInst->getOperand(0); 4630 } 4631 4632 // Match the remaining variable portion of the GEP. 4633 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4634 Depth)) { 4635 // If it couldn't be matched, try stuffing the base into a register 4636 // instead of matching it, and retrying the match of the scale. 4637 AddrMode = BackupAddrMode; 4638 AddrModeInsts.resize(OldSize); 4639 if (AddrMode.HasBaseReg) 4640 return false; 4641 AddrMode.HasBaseReg = true; 4642 AddrMode.BaseReg = AddrInst->getOperand(0); 4643 AddrMode.BaseOffs += ConstantOffset; 4644 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4645 VariableScale, Depth)) { 4646 // If even that didn't work, bail. 4647 AddrMode = BackupAddrMode; 4648 AddrModeInsts.resize(OldSize); 4649 return false; 4650 } 4651 } 4652 4653 return true; 4654 } 4655 case Instruction::SExt: 4656 case Instruction::ZExt: { 4657 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4658 if (!Ext) 4659 return false; 4660 4661 // Try to move this ext out of the way of the addressing mode. 4662 // Ask for a method for doing so. 4663 TypePromotionHelper::Action TPH = 4664 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4665 if (!TPH) 4666 return false; 4667 4668 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4669 TPT.getRestorationPoint(); 4670 unsigned CreatedInstsCost = 0; 4671 unsigned ExtCost = !TLI.isExtFree(Ext); 4672 Value *PromotedOperand = 4673 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4674 // SExt has been moved away. 4675 // Thus either it will be rematched later in the recursive calls or it is 4676 // gone. Anyway, we must not fold it into the addressing mode at this point. 4677 // E.g., 4678 // op = add opnd, 1 4679 // idx = ext op 4680 // addr = gep base, idx 4681 // is now: 4682 // promotedOpnd = ext opnd <- no match here 4683 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4684 // addr = gep base, op <- match 4685 if (MovedAway) 4686 *MovedAway = true; 4687 4688 assert(PromotedOperand && 4689 "TypePromotionHelper should have filtered out those cases"); 4690 4691 ExtAddrMode BackupAddrMode = AddrMode; 4692 unsigned OldSize = AddrModeInsts.size(); 4693 4694 if (!matchAddr(PromotedOperand, Depth) || 4695 // The total of the new cost is equal to the cost of the created 4696 // instructions. 4697 // The total of the old cost is equal to the cost of the extension plus 4698 // what we have saved in the addressing mode. 4699 !isPromotionProfitable(CreatedInstsCost, 4700 ExtCost + (AddrModeInsts.size() - OldSize), 4701 PromotedOperand)) { 4702 AddrMode = BackupAddrMode; 4703 AddrModeInsts.resize(OldSize); 4704 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4705 TPT.rollback(LastKnownGood); 4706 return false; 4707 } 4708 return true; 4709 } 4710 } 4711 return false; 4712 } 4713 4714 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4715 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4716 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4717 /// for the target. 4718 /// 4719 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4720 // Start a transaction at this point that we will rollback if the matching 4721 // fails. 4722 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4723 TPT.getRestorationPoint(); 4724 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4725 if (CI->getValue().isSignedIntN(64)) { 4726 // Fold in immediates if legal for the target. 4727 AddrMode.BaseOffs += CI->getSExtValue(); 4728 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4729 return true; 4730 AddrMode.BaseOffs -= CI->getSExtValue(); 4731 } 4732 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4733 // If this is a global variable, try to fold it into the addressing mode. 4734 if (!AddrMode.BaseGV) { 4735 AddrMode.BaseGV = GV; 4736 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4737 return true; 4738 AddrMode.BaseGV = nullptr; 4739 } 4740 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4741 ExtAddrMode BackupAddrMode = AddrMode; 4742 unsigned OldSize = AddrModeInsts.size(); 4743 4744 // Check to see if it is possible to fold this operation. 4745 bool MovedAway = false; 4746 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4747 // This instruction may have been moved away. If so, there is nothing 4748 // to check here. 4749 if (MovedAway) 4750 return true; 4751 // Okay, it's possible to fold this. Check to see if it is actually 4752 // *profitable* to do so. We use a simple cost model to avoid increasing 4753 // register pressure too much. 4754 if (I->hasOneUse() || 4755 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4756 AddrModeInsts.push_back(I); 4757 return true; 4758 } 4759 4760 // It isn't profitable to do this, roll back. 4761 //cerr << "NOT FOLDING: " << *I; 4762 AddrMode = BackupAddrMode; 4763 AddrModeInsts.resize(OldSize); 4764 TPT.rollback(LastKnownGood); 4765 } 4766 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4767 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4768 return true; 4769 TPT.rollback(LastKnownGood); 4770 } else if (isa<ConstantPointerNull>(Addr)) { 4771 // Null pointer gets folded without affecting the addressing mode. 4772 return true; 4773 } 4774 4775 // Worse case, the target should support [reg] addressing modes. :) 4776 if (!AddrMode.HasBaseReg) { 4777 AddrMode.HasBaseReg = true; 4778 AddrMode.BaseReg = Addr; 4779 // Still check for legality in case the target supports [imm] but not [i+r]. 4780 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4781 return true; 4782 AddrMode.HasBaseReg = false; 4783 AddrMode.BaseReg = nullptr; 4784 } 4785 4786 // If the base register is already taken, see if we can do [r+r]. 4787 if (AddrMode.Scale == 0) { 4788 AddrMode.Scale = 1; 4789 AddrMode.ScaledReg = Addr; 4790 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4791 return true; 4792 AddrMode.Scale = 0; 4793 AddrMode.ScaledReg = nullptr; 4794 } 4795 // Couldn't match. 4796 TPT.rollback(LastKnownGood); 4797 return false; 4798 } 4799 4800 /// Check to see if all uses of OpVal by the specified inline asm call are due 4801 /// to memory operands. If so, return true, otherwise return false. 4802 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4803 const TargetLowering &TLI, 4804 const TargetRegisterInfo &TRI) { 4805 const Function *F = CI->getFunction(); 4806 TargetLowering::AsmOperandInfoVector TargetConstraints = 4807 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4808 4809 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4810 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4811 4812 // Compute the constraint code and ConstraintType to use. 4813 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4814 4815 // If this asm operand is our Value*, and if it isn't an indirect memory 4816 // operand, we can't fold it! 4817 if (OpInfo.CallOperandVal == OpVal && 4818 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4819 !OpInfo.isIndirect)) 4820 return false; 4821 } 4822 4823 return true; 4824 } 4825 4826 // Max number of memory uses to look at before aborting the search to conserve 4827 // compile time. 4828 static constexpr int MaxMemoryUsesToScan = 20; 4829 4830 /// Recursively walk all the uses of I until we find a memory use. 4831 /// If we find an obviously non-foldable instruction, return true. 4832 /// Add the ultimately found memory instructions to MemoryUses. 4833 static bool FindAllMemoryUses( 4834 Instruction *I, 4835 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4836 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4837 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4838 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4839 // If we already considered this instruction, we're done. 4840 if (!ConsideredInsts.insert(I).second) 4841 return false; 4842 4843 // If this is an obviously unfoldable instruction, bail out. 4844 if (!MightBeFoldableInst(I)) 4845 return true; 4846 4847 // Loop over all the uses, recursively processing them. 4848 for (Use &U : I->uses()) { 4849 // Conservatively return true if we're seeing a large number or a deep chain 4850 // of users. This avoids excessive compilation times in pathological cases. 4851 if (SeenInsts++ >= MaxMemoryUsesToScan) 4852 return true; 4853 4854 Instruction *UserI = cast<Instruction>(U.getUser()); 4855 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4856 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4857 continue; 4858 } 4859 4860 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4861 unsigned opNo = U.getOperandNo(); 4862 if (opNo != StoreInst::getPointerOperandIndex()) 4863 return true; // Storing addr, not into addr. 4864 MemoryUses.push_back(std::make_pair(SI, opNo)); 4865 continue; 4866 } 4867 4868 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4869 unsigned opNo = U.getOperandNo(); 4870 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4871 return true; // Storing addr, not into addr. 4872 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4873 continue; 4874 } 4875 4876 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4877 unsigned opNo = U.getOperandNo(); 4878 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4879 return true; // Storing addr, not into addr. 4880 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4881 continue; 4882 } 4883 4884 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4885 if (CI->hasFnAttr(Attribute::Cold)) { 4886 // If this is a cold call, we can sink the addressing calculation into 4887 // the cold path. See optimizeCallInst 4888 bool OptForSize = OptSize || 4889 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4890 if (!OptForSize) 4891 continue; 4892 } 4893 4894 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4895 if (!IA) return true; 4896 4897 // If this is a memory operand, we're cool, otherwise bail out. 4898 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4899 return true; 4900 continue; 4901 } 4902 4903 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4904 PSI, BFI, SeenInsts)) 4905 return true; 4906 } 4907 4908 return false; 4909 } 4910 4911 /// Return true if Val is already known to be live at the use site that we're 4912 /// folding it into. If so, there is no cost to include it in the addressing 4913 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4914 /// instruction already. 4915 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4916 Value *KnownLive2) { 4917 // If Val is either of the known-live values, we know it is live! 4918 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4919 return true; 4920 4921 // All values other than instructions and arguments (e.g. constants) are live. 4922 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4923 4924 // If Val is a constant sized alloca in the entry block, it is live, this is 4925 // true because it is just a reference to the stack/frame pointer, which is 4926 // live for the whole function. 4927 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4928 if (AI->isStaticAlloca()) 4929 return true; 4930 4931 // Check to see if this value is already used in the memory instruction's 4932 // block. If so, it's already live into the block at the very least, so we 4933 // can reasonably fold it. 4934 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4935 } 4936 4937 /// It is possible for the addressing mode of the machine to fold the specified 4938 /// instruction into a load or store that ultimately uses it. 4939 /// However, the specified instruction has multiple uses. 4940 /// Given this, it may actually increase register pressure to fold it 4941 /// into the load. For example, consider this code: 4942 /// 4943 /// X = ... 4944 /// Y = X+1 4945 /// use(Y) -> nonload/store 4946 /// Z = Y+1 4947 /// load Z 4948 /// 4949 /// In this case, Y has multiple uses, and can be folded into the load of Z 4950 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4951 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4952 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4953 /// number of computations either. 4954 /// 4955 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4956 /// X was live across 'load Z' for other reasons, we actually *would* want to 4957 /// fold the addressing mode in the Z case. This would make Y die earlier. 4958 bool AddressingModeMatcher:: 4959 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4960 ExtAddrMode &AMAfter) { 4961 if (IgnoreProfitability) return true; 4962 4963 // AMBefore is the addressing mode before this instruction was folded into it, 4964 // and AMAfter is the addressing mode after the instruction was folded. Get 4965 // the set of registers referenced by AMAfter and subtract out those 4966 // referenced by AMBefore: this is the set of values which folding in this 4967 // address extends the lifetime of. 4968 // 4969 // Note that there are only two potential values being referenced here, 4970 // BaseReg and ScaleReg (global addresses are always available, as are any 4971 // folded immediates). 4972 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4973 4974 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4975 // lifetime wasn't extended by adding this instruction. 4976 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4977 BaseReg = nullptr; 4978 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4979 ScaledReg = nullptr; 4980 4981 // If folding this instruction (and it's subexprs) didn't extend any live 4982 // ranges, we're ok with it. 4983 if (!BaseReg && !ScaledReg) 4984 return true; 4985 4986 // If all uses of this instruction can have the address mode sunk into them, 4987 // we can remove the addressing mode and effectively trade one live register 4988 // for another (at worst.) In this context, folding an addressing mode into 4989 // the use is just a particularly nice way of sinking it. 4990 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4991 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4992 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4993 PSI, BFI)) 4994 return false; // Has a non-memory, non-foldable use! 4995 4996 // Now that we know that all uses of this instruction are part of a chain of 4997 // computation involving only operations that could theoretically be folded 4998 // into a memory use, loop over each of these memory operation uses and see 4999 // if they could *actually* fold the instruction. The assumption is that 5000 // addressing modes are cheap and that duplicating the computation involved 5001 // many times is worthwhile, even on a fastpath. For sinking candidates 5002 // (i.e. cold call sites), this serves as a way to prevent excessive code 5003 // growth since most architectures have some reasonable small and fast way to 5004 // compute an effective address. (i.e LEA on x86) 5005 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5006 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5007 Instruction *User = MemoryUses[i].first; 5008 unsigned OpNo = MemoryUses[i].second; 5009 5010 // Get the access type of this use. If the use isn't a pointer, we don't 5011 // know what it accesses. 5012 Value *Address = User->getOperand(OpNo); 5013 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5014 if (!AddrTy) 5015 return false; 5016 Type *AddressAccessTy = AddrTy->getElementType(); 5017 unsigned AS = AddrTy->getAddressSpace(); 5018 5019 // Do a match against the root of this address, ignoring profitability. This 5020 // will tell us if the addressing mode for the memory operation will 5021 // *actually* cover the shared instruction. 5022 ExtAddrMode Result; 5023 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5024 0); 5025 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5026 TPT.getRestorationPoint(); 5027 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5028 AddressAccessTy, AS, MemoryInst, Result, 5029 InsertedInsts, PromotedInsts, TPT, 5030 LargeOffsetGEP, OptSize, PSI, BFI); 5031 Matcher.IgnoreProfitability = true; 5032 bool Success = Matcher.matchAddr(Address, 0); 5033 (void)Success; assert(Success && "Couldn't select *anything*?"); 5034 5035 // The match was to check the profitability, the changes made are not 5036 // part of the original matcher. Therefore, they should be dropped 5037 // otherwise the original matcher will not present the right state. 5038 TPT.rollback(LastKnownGood); 5039 5040 // If the match didn't cover I, then it won't be shared by it. 5041 if (!is_contained(MatchedAddrModeInsts, I)) 5042 return false; 5043 5044 MatchedAddrModeInsts.clear(); 5045 } 5046 5047 return true; 5048 } 5049 5050 /// Return true if the specified values are defined in a 5051 /// different basic block than BB. 5052 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5053 if (Instruction *I = dyn_cast<Instruction>(V)) 5054 return I->getParent() != BB; 5055 return false; 5056 } 5057 5058 /// Sink addressing mode computation immediate before MemoryInst if doing so 5059 /// can be done without increasing register pressure. The need for the 5060 /// register pressure constraint means this can end up being an all or nothing 5061 /// decision for all uses of the same addressing computation. 5062 /// 5063 /// Load and Store Instructions often have addressing modes that can do 5064 /// significant amounts of computation. As such, instruction selection will try 5065 /// to get the load or store to do as much computation as possible for the 5066 /// program. The problem is that isel can only see within a single block. As 5067 /// such, we sink as much legal addressing mode work into the block as possible. 5068 /// 5069 /// This method is used to optimize both load/store and inline asms with memory 5070 /// operands. It's also used to sink addressing computations feeding into cold 5071 /// call sites into their (cold) basic block. 5072 /// 5073 /// The motivation for handling sinking into cold blocks is that doing so can 5074 /// both enable other address mode sinking (by satisfying the register pressure 5075 /// constraint above), and reduce register pressure globally (by removing the 5076 /// addressing mode computation from the fast path entirely.). 5077 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5078 Type *AccessTy, unsigned AddrSpace) { 5079 Value *Repl = Addr; 5080 5081 // Try to collapse single-value PHI nodes. This is necessary to undo 5082 // unprofitable PRE transformations. 5083 SmallVector<Value*, 8> worklist; 5084 SmallPtrSet<Value*, 16> Visited; 5085 worklist.push_back(Addr); 5086 5087 // Use a worklist to iteratively look through PHI and select nodes, and 5088 // ensure that the addressing mode obtained from the non-PHI/select roots of 5089 // the graph are compatible. 5090 bool PhiOrSelectSeen = false; 5091 SmallVector<Instruction*, 16> AddrModeInsts; 5092 const SimplifyQuery SQ(*DL, TLInfo); 5093 AddressingModeCombiner AddrModes(SQ, Addr); 5094 TypePromotionTransaction TPT(RemovedInsts); 5095 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5096 TPT.getRestorationPoint(); 5097 while (!worklist.empty()) { 5098 Value *V = worklist.back(); 5099 worklist.pop_back(); 5100 5101 // We allow traversing cyclic Phi nodes. 5102 // In case of success after this loop we ensure that traversing through 5103 // Phi nodes ends up with all cases to compute address of the form 5104 // BaseGV + Base + Scale * Index + Offset 5105 // where Scale and Offset are constans and BaseGV, Base and Index 5106 // are exactly the same Values in all cases. 5107 // It means that BaseGV, Scale and Offset dominate our memory instruction 5108 // and have the same value as they had in address computation represented 5109 // as Phi. So we can safely sink address computation to memory instruction. 5110 if (!Visited.insert(V).second) 5111 continue; 5112 5113 // For a PHI node, push all of its incoming values. 5114 if (PHINode *P = dyn_cast<PHINode>(V)) { 5115 append_range(worklist, P->incoming_values()); 5116 PhiOrSelectSeen = true; 5117 continue; 5118 } 5119 // Similar for select. 5120 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5121 worklist.push_back(SI->getFalseValue()); 5122 worklist.push_back(SI->getTrueValue()); 5123 PhiOrSelectSeen = true; 5124 continue; 5125 } 5126 5127 // For non-PHIs, determine the addressing mode being computed. Note that 5128 // the result may differ depending on what other uses our candidate 5129 // addressing instructions might have. 5130 AddrModeInsts.clear(); 5131 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5132 0); 5133 // Defer the query (and possible computation of) the dom tree to point of 5134 // actual use. It's expected that most address matches don't actually need 5135 // the domtree. 5136 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5137 Function *F = MemoryInst->getParent()->getParent(); 5138 return this->getDT(*F); 5139 }; 5140 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5141 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5142 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5143 BFI.get()); 5144 5145 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5146 if (GEP && !NewGEPBases.count(GEP)) { 5147 // If splitting the underlying data structure can reduce the offset of a 5148 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5149 // previously split data structures. 5150 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5151 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5152 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5153 } 5154 5155 NewAddrMode.OriginalValue = V; 5156 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5157 break; 5158 } 5159 5160 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5161 // or we have multiple but either couldn't combine them or combining them 5162 // wouldn't do anything useful, bail out now. 5163 if (!AddrModes.combineAddrModes()) { 5164 TPT.rollback(LastKnownGood); 5165 return false; 5166 } 5167 bool Modified = TPT.commit(); 5168 5169 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5170 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5171 5172 // If all the instructions matched are already in this BB, don't do anything. 5173 // If we saw a Phi node then it is not local definitely, and if we saw a select 5174 // then we want to push the address calculation past it even if it's already 5175 // in this BB. 5176 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5177 return IsNonLocalValue(V, MemoryInst->getParent()); 5178 })) { 5179 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5180 << "\n"); 5181 return Modified; 5182 } 5183 5184 // Insert this computation right after this user. Since our caller is 5185 // scanning from the top of the BB to the bottom, reuse of the expr are 5186 // guaranteed to happen later. 5187 IRBuilder<> Builder(MemoryInst); 5188 5189 // Now that we determined the addressing expression we want to use and know 5190 // that we have to sink it into this block. Check to see if we have already 5191 // done this for some other load/store instr in this block. If so, reuse 5192 // the computation. Before attempting reuse, check if the address is valid 5193 // as it may have been erased. 5194 5195 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5196 5197 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5198 if (SunkAddr) { 5199 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5200 << " for " << *MemoryInst << "\n"); 5201 if (SunkAddr->getType() != Addr->getType()) 5202 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5203 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5204 SubtargetInfo->addrSinkUsingGEPs())) { 5205 // By default, we use the GEP-based method when AA is used later. This 5206 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5207 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5208 << " for " << *MemoryInst << "\n"); 5209 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5210 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5211 5212 // First, find the pointer. 5213 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5214 ResultPtr = AddrMode.BaseReg; 5215 AddrMode.BaseReg = nullptr; 5216 } 5217 5218 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5219 // We can't add more than one pointer together, nor can we scale a 5220 // pointer (both of which seem meaningless). 5221 if (ResultPtr || AddrMode.Scale != 1) 5222 return Modified; 5223 5224 ResultPtr = AddrMode.ScaledReg; 5225 AddrMode.Scale = 0; 5226 } 5227 5228 // It is only safe to sign extend the BaseReg if we know that the math 5229 // required to create it did not overflow before we extend it. Since 5230 // the original IR value was tossed in favor of a constant back when 5231 // the AddrMode was created we need to bail out gracefully if widths 5232 // do not match instead of extending it. 5233 // 5234 // (See below for code to add the scale.) 5235 if (AddrMode.Scale) { 5236 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5237 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5238 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5239 return Modified; 5240 } 5241 5242 if (AddrMode.BaseGV) { 5243 if (ResultPtr) 5244 return Modified; 5245 5246 ResultPtr = AddrMode.BaseGV; 5247 } 5248 5249 // If the real base value actually came from an inttoptr, then the matcher 5250 // will look through it and provide only the integer value. In that case, 5251 // use it here. 5252 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5253 if (!ResultPtr && AddrMode.BaseReg) { 5254 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5255 "sunkaddr"); 5256 AddrMode.BaseReg = nullptr; 5257 } else if (!ResultPtr && AddrMode.Scale == 1) { 5258 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5259 "sunkaddr"); 5260 AddrMode.Scale = 0; 5261 } 5262 } 5263 5264 if (!ResultPtr && 5265 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5266 SunkAddr = Constant::getNullValue(Addr->getType()); 5267 } else if (!ResultPtr) { 5268 return Modified; 5269 } else { 5270 Type *I8PtrTy = 5271 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5272 Type *I8Ty = Builder.getInt8Ty(); 5273 5274 // Start with the base register. Do this first so that subsequent address 5275 // matching finds it last, which will prevent it from trying to match it 5276 // as the scaled value in case it happens to be a mul. That would be 5277 // problematic if we've sunk a different mul for the scale, because then 5278 // we'd end up sinking both muls. 5279 if (AddrMode.BaseReg) { 5280 Value *V = AddrMode.BaseReg; 5281 if (V->getType() != IntPtrTy) 5282 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5283 5284 ResultIndex = V; 5285 } 5286 5287 // Add the scale value. 5288 if (AddrMode.Scale) { 5289 Value *V = AddrMode.ScaledReg; 5290 if (V->getType() == IntPtrTy) { 5291 // done. 5292 } else { 5293 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5294 cast<IntegerType>(V->getType())->getBitWidth() && 5295 "We can't transform if ScaledReg is too narrow"); 5296 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5297 } 5298 5299 if (AddrMode.Scale != 1) 5300 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5301 "sunkaddr"); 5302 if (ResultIndex) 5303 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5304 else 5305 ResultIndex = V; 5306 } 5307 5308 // Add in the Base Offset if present. 5309 if (AddrMode.BaseOffs) { 5310 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5311 if (ResultIndex) { 5312 // We need to add this separately from the scale above to help with 5313 // SDAG consecutive load/store merging. 5314 if (ResultPtr->getType() != I8PtrTy) 5315 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5316 ResultPtr = 5317 AddrMode.InBounds 5318 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5319 "sunkaddr") 5320 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5321 } 5322 5323 ResultIndex = V; 5324 } 5325 5326 if (!ResultIndex) { 5327 SunkAddr = ResultPtr; 5328 } else { 5329 if (ResultPtr->getType() != I8PtrTy) 5330 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5331 SunkAddr = 5332 AddrMode.InBounds 5333 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5334 "sunkaddr") 5335 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5336 } 5337 5338 if (SunkAddr->getType() != Addr->getType()) 5339 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5340 } 5341 } else { 5342 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5343 // non-integral pointers, so in that case bail out now. 5344 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5345 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5346 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5347 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5348 if (DL->isNonIntegralPointerType(Addr->getType()) || 5349 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5350 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5351 (AddrMode.BaseGV && 5352 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5353 return Modified; 5354 5355 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5356 << " for " << *MemoryInst << "\n"); 5357 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5358 Value *Result = nullptr; 5359 5360 // Start with the base register. Do this first so that subsequent address 5361 // matching finds it last, which will prevent it from trying to match it 5362 // as the scaled value in case it happens to be a mul. That would be 5363 // problematic if we've sunk a different mul for the scale, because then 5364 // we'd end up sinking both muls. 5365 if (AddrMode.BaseReg) { 5366 Value *V = AddrMode.BaseReg; 5367 if (V->getType()->isPointerTy()) 5368 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5369 if (V->getType() != IntPtrTy) 5370 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5371 Result = V; 5372 } 5373 5374 // Add the scale value. 5375 if (AddrMode.Scale) { 5376 Value *V = AddrMode.ScaledReg; 5377 if (V->getType() == IntPtrTy) { 5378 // done. 5379 } else if (V->getType()->isPointerTy()) { 5380 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5381 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5382 cast<IntegerType>(V->getType())->getBitWidth()) { 5383 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5384 } else { 5385 // It is only safe to sign extend the BaseReg if we know that the math 5386 // required to create it did not overflow before we extend it. Since 5387 // the original IR value was tossed in favor of a constant back when 5388 // the AddrMode was created we need to bail out gracefully if widths 5389 // do not match instead of extending it. 5390 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5391 if (I && (Result != AddrMode.BaseReg)) 5392 I->eraseFromParent(); 5393 return Modified; 5394 } 5395 if (AddrMode.Scale != 1) 5396 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5397 "sunkaddr"); 5398 if (Result) 5399 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5400 else 5401 Result = V; 5402 } 5403 5404 // Add in the BaseGV if present. 5405 if (AddrMode.BaseGV) { 5406 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5407 if (Result) 5408 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5409 else 5410 Result = V; 5411 } 5412 5413 // Add in the Base Offset if present. 5414 if (AddrMode.BaseOffs) { 5415 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5416 if (Result) 5417 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5418 else 5419 Result = V; 5420 } 5421 5422 if (!Result) 5423 SunkAddr = Constant::getNullValue(Addr->getType()); 5424 else 5425 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5426 } 5427 5428 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5429 // Store the newly computed address into the cache. In the case we reused a 5430 // value, this should be idempotent. 5431 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5432 5433 // If we have no uses, recursively delete the value and all dead instructions 5434 // using it. 5435 if (Repl->use_empty()) { 5436 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5437 RecursivelyDeleteTriviallyDeadInstructions( 5438 Repl, TLInfo, nullptr, 5439 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5440 }); 5441 } 5442 ++NumMemoryInsts; 5443 return true; 5444 } 5445 5446 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5447 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5448 /// only handle a 2 operand GEP in the same basic block or a splat constant 5449 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5450 /// index. 5451 /// 5452 /// If the existing GEP has a vector base pointer that is splat, we can look 5453 /// through the splat to find the scalar pointer. If we can't find a scalar 5454 /// pointer there's nothing we can do. 5455 /// 5456 /// If we have a GEP with more than 2 indices where the middle indices are all 5457 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5458 /// 5459 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5460 /// followed by a GEP with an all zeroes vector index. This will enable 5461 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5462 /// zero index. 5463 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5464 Value *Ptr) { 5465 Value *NewAddr; 5466 5467 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5468 // Don't optimize GEPs that don't have indices. 5469 if (!GEP->hasIndices()) 5470 return false; 5471 5472 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5473 // FIXME: We should support this by sinking the GEP. 5474 if (MemoryInst->getParent() != GEP->getParent()) 5475 return false; 5476 5477 SmallVector<Value *, 2> Ops(GEP->operands()); 5478 5479 bool RewriteGEP = false; 5480 5481 if (Ops[0]->getType()->isVectorTy()) { 5482 Ops[0] = getSplatValue(Ops[0]); 5483 if (!Ops[0]) 5484 return false; 5485 RewriteGEP = true; 5486 } 5487 5488 unsigned FinalIndex = Ops.size() - 1; 5489 5490 // Ensure all but the last index is 0. 5491 // FIXME: This isn't strictly required. All that's required is that they are 5492 // all scalars or splats. 5493 for (unsigned i = 1; i < FinalIndex; ++i) { 5494 auto *C = dyn_cast<Constant>(Ops[i]); 5495 if (!C) 5496 return false; 5497 if (isa<VectorType>(C->getType())) 5498 C = C->getSplatValue(); 5499 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5500 if (!CI || !CI->isZero()) 5501 return false; 5502 // Scalarize the index if needed. 5503 Ops[i] = CI; 5504 } 5505 5506 // Try to scalarize the final index. 5507 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5508 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5509 auto *C = dyn_cast<ConstantInt>(V); 5510 // Don't scalarize all zeros vector. 5511 if (!C || !C->isZero()) { 5512 Ops[FinalIndex] = V; 5513 RewriteGEP = true; 5514 } 5515 } 5516 } 5517 5518 // If we made any changes or the we have extra operands, we need to generate 5519 // new instructions. 5520 if (!RewriteGEP && Ops.size() == 2) 5521 return false; 5522 5523 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5524 5525 IRBuilder<> Builder(MemoryInst); 5526 5527 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5528 5529 // If the final index isn't a vector, emit a scalar GEP containing all ops 5530 // and a vector GEP with all zeroes final index. 5531 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5532 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5533 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5534 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5535 } else { 5536 Value *Base = Ops[0]; 5537 Value *Index = Ops[FinalIndex]; 5538 5539 // Create a scalar GEP if there are more than 2 operands. 5540 if (Ops.size() != 2) { 5541 // Replace the last index with 0. 5542 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5543 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5544 } 5545 5546 // Now create the GEP with scalar pointer and vector index. 5547 NewAddr = Builder.CreateGEP(Base, Index); 5548 } 5549 } else if (!isa<Constant>(Ptr)) { 5550 // Not a GEP, maybe its a splat and we can create a GEP to enable 5551 // SelectionDAGBuilder to use it as a uniform base. 5552 Value *V = getSplatValue(Ptr); 5553 if (!V) 5554 return false; 5555 5556 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5557 5558 IRBuilder<> Builder(MemoryInst); 5559 5560 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5561 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5562 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5563 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5564 } else { 5565 // Constant, SelectionDAGBuilder knows to check if its a splat. 5566 return false; 5567 } 5568 5569 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5570 5571 // If we have no uses, recursively delete the value and all dead instructions 5572 // using it. 5573 if (Ptr->use_empty()) 5574 RecursivelyDeleteTriviallyDeadInstructions( 5575 Ptr, TLInfo, nullptr, 5576 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5577 5578 return true; 5579 } 5580 5581 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5582 /// address computing into the block when possible / profitable. 5583 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5584 bool MadeChange = false; 5585 5586 const TargetRegisterInfo *TRI = 5587 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5588 TargetLowering::AsmOperandInfoVector TargetConstraints = 5589 TLI->ParseConstraints(*DL, TRI, *CS); 5590 unsigned ArgNo = 0; 5591 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5592 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5593 5594 // Compute the constraint code and ConstraintType to use. 5595 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5596 5597 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5598 OpInfo.isIndirect) { 5599 Value *OpVal = CS->getArgOperand(ArgNo++); 5600 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5601 } else if (OpInfo.Type == InlineAsm::isInput) 5602 ArgNo++; 5603 } 5604 5605 return MadeChange; 5606 } 5607 5608 /// Check if all the uses of \p Val are equivalent (or free) zero or 5609 /// sign extensions. 5610 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5611 assert(!Val->use_empty() && "Input must have at least one use"); 5612 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5613 bool IsSExt = isa<SExtInst>(FirstUser); 5614 Type *ExtTy = FirstUser->getType(); 5615 for (const User *U : Val->users()) { 5616 const Instruction *UI = cast<Instruction>(U); 5617 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5618 return false; 5619 Type *CurTy = UI->getType(); 5620 // Same input and output types: Same instruction after CSE. 5621 if (CurTy == ExtTy) 5622 continue; 5623 5624 // If IsSExt is true, we are in this situation: 5625 // a = Val 5626 // b = sext ty1 a to ty2 5627 // c = sext ty1 a to ty3 5628 // Assuming ty2 is shorter than ty3, this could be turned into: 5629 // a = Val 5630 // b = sext ty1 a to ty2 5631 // c = sext ty2 b to ty3 5632 // However, the last sext is not free. 5633 if (IsSExt) 5634 return false; 5635 5636 // This is a ZExt, maybe this is free to extend from one type to another. 5637 // In that case, we would not account for a different use. 5638 Type *NarrowTy; 5639 Type *LargeTy; 5640 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5641 CurTy->getScalarType()->getIntegerBitWidth()) { 5642 NarrowTy = CurTy; 5643 LargeTy = ExtTy; 5644 } else { 5645 NarrowTy = ExtTy; 5646 LargeTy = CurTy; 5647 } 5648 5649 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5650 return false; 5651 } 5652 // All uses are the same or can be derived from one another for free. 5653 return true; 5654 } 5655 5656 /// Try to speculatively promote extensions in \p Exts and continue 5657 /// promoting through newly promoted operands recursively as far as doing so is 5658 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5659 /// When some promotion happened, \p TPT contains the proper state to revert 5660 /// them. 5661 /// 5662 /// \return true if some promotion happened, false otherwise. 5663 bool CodeGenPrepare::tryToPromoteExts( 5664 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5665 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5666 unsigned CreatedInstsCost) { 5667 bool Promoted = false; 5668 5669 // Iterate over all the extensions to try to promote them. 5670 for (auto *I : Exts) { 5671 // Early check if we directly have ext(load). 5672 if (isa<LoadInst>(I->getOperand(0))) { 5673 ProfitablyMovedExts.push_back(I); 5674 continue; 5675 } 5676 5677 // Check whether or not we want to do any promotion. The reason we have 5678 // this check inside the for loop is to catch the case where an extension 5679 // is directly fed by a load because in such case the extension can be moved 5680 // up without any promotion on its operands. 5681 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5682 return false; 5683 5684 // Get the action to perform the promotion. 5685 TypePromotionHelper::Action TPH = 5686 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5687 // Check if we can promote. 5688 if (!TPH) { 5689 // Save the current extension as we cannot move up through its operand. 5690 ProfitablyMovedExts.push_back(I); 5691 continue; 5692 } 5693 5694 // Save the current state. 5695 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5696 TPT.getRestorationPoint(); 5697 SmallVector<Instruction *, 4> NewExts; 5698 unsigned NewCreatedInstsCost = 0; 5699 unsigned ExtCost = !TLI->isExtFree(I); 5700 // Promote. 5701 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5702 &NewExts, nullptr, *TLI); 5703 assert(PromotedVal && 5704 "TypePromotionHelper should have filtered out those cases"); 5705 5706 // We would be able to merge only one extension in a load. 5707 // Therefore, if we have more than 1 new extension we heuristically 5708 // cut this search path, because it means we degrade the code quality. 5709 // With exactly 2, the transformation is neutral, because we will merge 5710 // one extension but leave one. However, we optimistically keep going, 5711 // because the new extension may be removed too. 5712 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5713 // FIXME: It would be possible to propagate a negative value instead of 5714 // conservatively ceiling it to 0. 5715 TotalCreatedInstsCost = 5716 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5717 if (!StressExtLdPromotion && 5718 (TotalCreatedInstsCost > 1 || 5719 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5720 // This promotion is not profitable, rollback to the previous state, and 5721 // save the current extension in ProfitablyMovedExts as the latest 5722 // speculative promotion turned out to be unprofitable. 5723 TPT.rollback(LastKnownGood); 5724 ProfitablyMovedExts.push_back(I); 5725 continue; 5726 } 5727 // Continue promoting NewExts as far as doing so is profitable. 5728 SmallVector<Instruction *, 2> NewlyMovedExts; 5729 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5730 bool NewPromoted = false; 5731 for (auto *ExtInst : NewlyMovedExts) { 5732 Instruction *MovedExt = cast<Instruction>(ExtInst); 5733 Value *ExtOperand = MovedExt->getOperand(0); 5734 // If we have reached to a load, we need this extra profitability check 5735 // as it could potentially be merged into an ext(load). 5736 if (isa<LoadInst>(ExtOperand) && 5737 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5738 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5739 continue; 5740 5741 ProfitablyMovedExts.push_back(MovedExt); 5742 NewPromoted = true; 5743 } 5744 5745 // If none of speculative promotions for NewExts is profitable, rollback 5746 // and save the current extension (I) as the last profitable extension. 5747 if (!NewPromoted) { 5748 TPT.rollback(LastKnownGood); 5749 ProfitablyMovedExts.push_back(I); 5750 continue; 5751 } 5752 // The promotion is profitable. 5753 Promoted = true; 5754 } 5755 return Promoted; 5756 } 5757 5758 /// Merging redundant sexts when one is dominating the other. 5759 bool CodeGenPrepare::mergeSExts(Function &F) { 5760 bool Changed = false; 5761 for (auto &Entry : ValToSExtendedUses) { 5762 SExts &Insts = Entry.second; 5763 SExts CurPts; 5764 for (Instruction *Inst : Insts) { 5765 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5766 Inst->getOperand(0) != Entry.first) 5767 continue; 5768 bool inserted = false; 5769 for (auto &Pt : CurPts) { 5770 if (getDT(F).dominates(Inst, Pt)) { 5771 Pt->replaceAllUsesWith(Inst); 5772 RemovedInsts.insert(Pt); 5773 Pt->removeFromParent(); 5774 Pt = Inst; 5775 inserted = true; 5776 Changed = true; 5777 break; 5778 } 5779 if (!getDT(F).dominates(Pt, Inst)) 5780 // Give up if we need to merge in a common dominator as the 5781 // experiments show it is not profitable. 5782 continue; 5783 Inst->replaceAllUsesWith(Pt); 5784 RemovedInsts.insert(Inst); 5785 Inst->removeFromParent(); 5786 inserted = true; 5787 Changed = true; 5788 break; 5789 } 5790 if (!inserted) 5791 CurPts.push_back(Inst); 5792 } 5793 } 5794 return Changed; 5795 } 5796 5797 // Splitting large data structures so that the GEPs accessing them can have 5798 // smaller offsets so that they can be sunk to the same blocks as their users. 5799 // For example, a large struct starting from %base is split into two parts 5800 // where the second part starts from %new_base. 5801 // 5802 // Before: 5803 // BB0: 5804 // %base = 5805 // 5806 // BB1: 5807 // %gep0 = gep %base, off0 5808 // %gep1 = gep %base, off1 5809 // %gep2 = gep %base, off2 5810 // 5811 // BB2: 5812 // %load1 = load %gep0 5813 // %load2 = load %gep1 5814 // %load3 = load %gep2 5815 // 5816 // After: 5817 // BB0: 5818 // %base = 5819 // %new_base = gep %base, off0 5820 // 5821 // BB1: 5822 // %new_gep0 = %new_base 5823 // %new_gep1 = gep %new_base, off1 - off0 5824 // %new_gep2 = gep %new_base, off2 - off0 5825 // 5826 // BB2: 5827 // %load1 = load i32, i32* %new_gep0 5828 // %load2 = load i32, i32* %new_gep1 5829 // %load3 = load i32, i32* %new_gep2 5830 // 5831 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5832 // their offsets are smaller enough to fit into the addressing mode. 5833 bool CodeGenPrepare::splitLargeGEPOffsets() { 5834 bool Changed = false; 5835 for (auto &Entry : LargeOffsetGEPMap) { 5836 Value *OldBase = Entry.first; 5837 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5838 &LargeOffsetGEPs = Entry.second; 5839 auto compareGEPOffset = 5840 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5841 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5842 if (LHS.first == RHS.first) 5843 return false; 5844 if (LHS.second != RHS.second) 5845 return LHS.second < RHS.second; 5846 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5847 }; 5848 // Sorting all the GEPs of the same data structures based on the offsets. 5849 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5850 LargeOffsetGEPs.erase( 5851 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5852 LargeOffsetGEPs.end()); 5853 // Skip if all the GEPs have the same offsets. 5854 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5855 continue; 5856 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5857 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5858 Value *NewBaseGEP = nullptr; 5859 5860 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5861 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5862 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5863 int64_t Offset = LargeOffsetGEP->second; 5864 if (Offset != BaseOffset) { 5865 TargetLowering::AddrMode AddrMode; 5866 AddrMode.BaseOffs = Offset - BaseOffset; 5867 // The result type of the GEP might not be the type of the memory 5868 // access. 5869 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5870 GEP->getResultElementType(), 5871 GEP->getAddressSpace())) { 5872 // We need to create a new base if the offset to the current base is 5873 // too large to fit into the addressing mode. So, a very large struct 5874 // may be split into several parts. 5875 BaseGEP = GEP; 5876 BaseOffset = Offset; 5877 NewBaseGEP = nullptr; 5878 } 5879 } 5880 5881 // Generate a new GEP to replace the current one. 5882 LLVMContext &Ctx = GEP->getContext(); 5883 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5884 Type *I8PtrTy = 5885 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5886 Type *I8Ty = Type::getInt8Ty(Ctx); 5887 5888 if (!NewBaseGEP) { 5889 // Create a new base if we don't have one yet. Find the insertion 5890 // pointer for the new base first. 5891 BasicBlock::iterator NewBaseInsertPt; 5892 BasicBlock *NewBaseInsertBB; 5893 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5894 // If the base of the struct is an instruction, the new base will be 5895 // inserted close to it. 5896 NewBaseInsertBB = BaseI->getParent(); 5897 if (isa<PHINode>(BaseI)) 5898 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5899 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5900 NewBaseInsertBB = 5901 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5902 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5903 } else 5904 NewBaseInsertPt = std::next(BaseI->getIterator()); 5905 } else { 5906 // If the current base is an argument or global value, the new base 5907 // will be inserted to the entry block. 5908 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5909 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5910 } 5911 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5912 // Create a new base. 5913 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5914 NewBaseGEP = OldBase; 5915 if (NewBaseGEP->getType() != I8PtrTy) 5916 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5917 NewBaseGEP = 5918 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5919 NewGEPBases.insert(NewBaseGEP); 5920 } 5921 5922 IRBuilder<> Builder(GEP); 5923 Value *NewGEP = NewBaseGEP; 5924 if (Offset == BaseOffset) { 5925 if (GEP->getType() != I8PtrTy) 5926 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5927 } else { 5928 // Calculate the new offset for the new GEP. 5929 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5930 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5931 5932 if (GEP->getType() != I8PtrTy) 5933 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5934 } 5935 GEP->replaceAllUsesWith(NewGEP); 5936 LargeOffsetGEPID.erase(GEP); 5937 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5938 GEP->eraseFromParent(); 5939 Changed = true; 5940 } 5941 } 5942 return Changed; 5943 } 5944 5945 bool CodeGenPrepare::optimizePhiType( 5946 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5947 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5948 // We are looking for a collection on interconnected phi nodes that together 5949 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5950 // are of the same type. Convert the whole set of nodes to the type of the 5951 // bitcast. 5952 Type *PhiTy = I->getType(); 5953 Type *ConvertTy = nullptr; 5954 if (Visited.count(I) || 5955 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5956 return false; 5957 5958 SmallVector<Instruction *, 4> Worklist; 5959 Worklist.push_back(cast<Instruction>(I)); 5960 SmallPtrSet<PHINode *, 4> PhiNodes; 5961 PhiNodes.insert(I); 5962 Visited.insert(I); 5963 SmallPtrSet<Instruction *, 4> Defs; 5964 SmallPtrSet<Instruction *, 4> Uses; 5965 // This works by adding extra bitcasts between load/stores and removing 5966 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5967 // we can get in the situation where we remove a bitcast in one iteration 5968 // just to add it again in the next. We need to ensure that at least one 5969 // bitcast we remove are anchored to something that will not change back. 5970 bool AnyAnchored = false; 5971 5972 while (!Worklist.empty()) { 5973 Instruction *II = Worklist.pop_back_val(); 5974 5975 if (auto *Phi = dyn_cast<PHINode>(II)) { 5976 // Handle Defs, which might also be PHI's 5977 for (Value *V : Phi->incoming_values()) { 5978 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5979 if (!PhiNodes.count(OpPhi)) { 5980 if (Visited.count(OpPhi)) 5981 return false; 5982 PhiNodes.insert(OpPhi); 5983 Visited.insert(OpPhi); 5984 Worklist.push_back(OpPhi); 5985 } 5986 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5987 if (!OpLoad->isSimple()) 5988 return false; 5989 if (!Defs.count(OpLoad)) { 5990 Defs.insert(OpLoad); 5991 Worklist.push_back(OpLoad); 5992 } 5993 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5994 if (!Defs.count(OpEx)) { 5995 Defs.insert(OpEx); 5996 Worklist.push_back(OpEx); 5997 } 5998 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5999 if (!ConvertTy) 6000 ConvertTy = OpBC->getOperand(0)->getType(); 6001 if (OpBC->getOperand(0)->getType() != ConvertTy) 6002 return false; 6003 if (!Defs.count(OpBC)) { 6004 Defs.insert(OpBC); 6005 Worklist.push_back(OpBC); 6006 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6007 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6008 } 6009 } else if (!isa<UndefValue>(V)) { 6010 return false; 6011 } 6012 } 6013 } 6014 6015 // Handle uses which might also be phi's 6016 for (User *V : II->users()) { 6017 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6018 if (!PhiNodes.count(OpPhi)) { 6019 if (Visited.count(OpPhi)) 6020 return false; 6021 PhiNodes.insert(OpPhi); 6022 Visited.insert(OpPhi); 6023 Worklist.push_back(OpPhi); 6024 } 6025 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6026 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6027 return false; 6028 Uses.insert(OpStore); 6029 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6030 if (!ConvertTy) 6031 ConvertTy = OpBC->getType(); 6032 if (OpBC->getType() != ConvertTy) 6033 return false; 6034 Uses.insert(OpBC); 6035 AnyAnchored |= 6036 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6037 } else { 6038 return false; 6039 } 6040 } 6041 } 6042 6043 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6044 return false; 6045 6046 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6047 << *ConvertTy << "\n"); 6048 6049 // Create all the new phi nodes of the new type, and bitcast any loads to the 6050 // correct type. 6051 ValueToValueMap ValMap; 6052 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6053 for (Instruction *D : Defs) { 6054 if (isa<BitCastInst>(D)) { 6055 ValMap[D] = D->getOperand(0); 6056 DeletedInstrs.insert(D); 6057 } else { 6058 ValMap[D] = 6059 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6060 } 6061 } 6062 for (PHINode *Phi : PhiNodes) 6063 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6064 Phi->getName() + ".tc", Phi); 6065 // Pipe together all the PhiNodes. 6066 for (PHINode *Phi : PhiNodes) { 6067 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6068 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6069 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6070 Phi->getIncomingBlock(i)); 6071 Visited.insert(NewPhi); 6072 } 6073 // And finally pipe up the stores and bitcasts 6074 for (Instruction *U : Uses) { 6075 if (isa<BitCastInst>(U)) { 6076 DeletedInstrs.insert(U); 6077 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6078 } else { 6079 U->setOperand(0, 6080 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6081 } 6082 } 6083 6084 // Save the removed phis to be deleted later. 6085 for (PHINode *Phi : PhiNodes) 6086 DeletedInstrs.insert(Phi); 6087 return true; 6088 } 6089 6090 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6091 if (!OptimizePhiTypes) 6092 return false; 6093 6094 bool Changed = false; 6095 SmallPtrSet<PHINode *, 4> Visited; 6096 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6097 6098 // Attempt to optimize all the phis in the functions to the correct type. 6099 for (auto &BB : F) 6100 for (auto &Phi : BB.phis()) 6101 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6102 6103 // Remove any old phi's that have been converted. 6104 for (auto *I : DeletedInstrs) { 6105 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6106 I->eraseFromParent(); 6107 } 6108 6109 return Changed; 6110 } 6111 6112 /// Return true, if an ext(load) can be formed from an extension in 6113 /// \p MovedExts. 6114 bool CodeGenPrepare::canFormExtLd( 6115 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6116 Instruction *&Inst, bool HasPromoted) { 6117 for (auto *MovedExtInst : MovedExts) { 6118 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6119 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6120 Inst = MovedExtInst; 6121 break; 6122 } 6123 } 6124 if (!LI) 6125 return false; 6126 6127 // If they're already in the same block, there's nothing to do. 6128 // Make the cheap checks first if we did not promote. 6129 // If we promoted, we need to check if it is indeed profitable. 6130 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6131 return false; 6132 6133 return TLI->isExtLoad(LI, Inst, *DL); 6134 } 6135 6136 /// Move a zext or sext fed by a load into the same basic block as the load, 6137 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6138 /// extend into the load. 6139 /// 6140 /// E.g., 6141 /// \code 6142 /// %ld = load i32* %addr 6143 /// %add = add nuw i32 %ld, 4 6144 /// %zext = zext i32 %add to i64 6145 // \endcode 6146 /// => 6147 /// \code 6148 /// %ld = load i32* %addr 6149 /// %zext = zext i32 %ld to i64 6150 /// %add = add nuw i64 %zext, 4 6151 /// \encode 6152 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6153 /// allow us to match zext(load i32*) to i64. 6154 /// 6155 /// Also, try to promote the computations used to obtain a sign extended 6156 /// value used into memory accesses. 6157 /// E.g., 6158 /// \code 6159 /// a = add nsw i32 b, 3 6160 /// d = sext i32 a to i64 6161 /// e = getelementptr ..., i64 d 6162 /// \endcode 6163 /// => 6164 /// \code 6165 /// f = sext i32 b to i64 6166 /// a = add nsw i64 f, 3 6167 /// e = getelementptr ..., i64 a 6168 /// \endcode 6169 /// 6170 /// \p Inst[in/out] the extension may be modified during the process if some 6171 /// promotions apply. 6172 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6173 bool AllowPromotionWithoutCommonHeader = false; 6174 /// See if it is an interesting sext operations for the address type 6175 /// promotion before trying to promote it, e.g., the ones with the right 6176 /// type and used in memory accesses. 6177 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6178 *Inst, AllowPromotionWithoutCommonHeader); 6179 TypePromotionTransaction TPT(RemovedInsts); 6180 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6181 TPT.getRestorationPoint(); 6182 SmallVector<Instruction *, 1> Exts; 6183 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6184 Exts.push_back(Inst); 6185 6186 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6187 6188 // Look for a load being extended. 6189 LoadInst *LI = nullptr; 6190 Instruction *ExtFedByLoad; 6191 6192 // Try to promote a chain of computation if it allows to form an extended 6193 // load. 6194 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6195 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6196 TPT.commit(); 6197 // Move the extend into the same block as the load. 6198 ExtFedByLoad->moveAfter(LI); 6199 ++NumExtsMoved; 6200 Inst = ExtFedByLoad; 6201 return true; 6202 } 6203 6204 // Continue promoting SExts if known as considerable depending on targets. 6205 if (ATPConsiderable && 6206 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6207 HasPromoted, TPT, SpeculativelyMovedExts)) 6208 return true; 6209 6210 TPT.rollback(LastKnownGood); 6211 return false; 6212 } 6213 6214 // Perform address type promotion if doing so is profitable. 6215 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6216 // instructions that sign extended the same initial value. However, if 6217 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6218 // extension is just profitable. 6219 bool CodeGenPrepare::performAddressTypePromotion( 6220 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6221 bool HasPromoted, TypePromotionTransaction &TPT, 6222 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6223 bool Promoted = false; 6224 SmallPtrSet<Instruction *, 1> UnhandledExts; 6225 bool AllSeenFirst = true; 6226 for (auto *I : SpeculativelyMovedExts) { 6227 Value *HeadOfChain = I->getOperand(0); 6228 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6229 SeenChainsForSExt.find(HeadOfChain); 6230 // If there is an unhandled SExt which has the same header, try to promote 6231 // it as well. 6232 if (AlreadySeen != SeenChainsForSExt.end()) { 6233 if (AlreadySeen->second != nullptr) 6234 UnhandledExts.insert(AlreadySeen->second); 6235 AllSeenFirst = false; 6236 } 6237 } 6238 6239 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6240 SpeculativelyMovedExts.size() == 1)) { 6241 TPT.commit(); 6242 if (HasPromoted) 6243 Promoted = true; 6244 for (auto *I : SpeculativelyMovedExts) { 6245 Value *HeadOfChain = I->getOperand(0); 6246 SeenChainsForSExt[HeadOfChain] = nullptr; 6247 ValToSExtendedUses[HeadOfChain].push_back(I); 6248 } 6249 // Update Inst as promotion happen. 6250 Inst = SpeculativelyMovedExts.pop_back_val(); 6251 } else { 6252 // This is the first chain visited from the header, keep the current chain 6253 // as unhandled. Defer to promote this until we encounter another SExt 6254 // chain derived from the same header. 6255 for (auto *I : SpeculativelyMovedExts) { 6256 Value *HeadOfChain = I->getOperand(0); 6257 SeenChainsForSExt[HeadOfChain] = Inst; 6258 } 6259 return false; 6260 } 6261 6262 if (!AllSeenFirst && !UnhandledExts.empty()) 6263 for (auto *VisitedSExt : UnhandledExts) { 6264 if (RemovedInsts.count(VisitedSExt)) 6265 continue; 6266 TypePromotionTransaction TPT(RemovedInsts); 6267 SmallVector<Instruction *, 1> Exts; 6268 SmallVector<Instruction *, 2> Chains; 6269 Exts.push_back(VisitedSExt); 6270 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6271 TPT.commit(); 6272 if (HasPromoted) 6273 Promoted = true; 6274 for (auto *I : Chains) { 6275 Value *HeadOfChain = I->getOperand(0); 6276 // Mark this as handled. 6277 SeenChainsForSExt[HeadOfChain] = nullptr; 6278 ValToSExtendedUses[HeadOfChain].push_back(I); 6279 } 6280 } 6281 return Promoted; 6282 } 6283 6284 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6285 BasicBlock *DefBB = I->getParent(); 6286 6287 // If the result of a {s|z}ext and its source are both live out, rewrite all 6288 // other uses of the source with result of extension. 6289 Value *Src = I->getOperand(0); 6290 if (Src->hasOneUse()) 6291 return false; 6292 6293 // Only do this xform if truncating is free. 6294 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6295 return false; 6296 6297 // Only safe to perform the optimization if the source is also defined in 6298 // this block. 6299 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6300 return false; 6301 6302 bool DefIsLiveOut = false; 6303 for (User *U : I->users()) { 6304 Instruction *UI = cast<Instruction>(U); 6305 6306 // Figure out which BB this ext is used in. 6307 BasicBlock *UserBB = UI->getParent(); 6308 if (UserBB == DefBB) continue; 6309 DefIsLiveOut = true; 6310 break; 6311 } 6312 if (!DefIsLiveOut) 6313 return false; 6314 6315 // Make sure none of the uses are PHI nodes. 6316 for (User *U : Src->users()) { 6317 Instruction *UI = cast<Instruction>(U); 6318 BasicBlock *UserBB = UI->getParent(); 6319 if (UserBB == DefBB) continue; 6320 // Be conservative. We don't want this xform to end up introducing 6321 // reloads just before load / store instructions. 6322 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6323 return false; 6324 } 6325 6326 // InsertedTruncs - Only insert one trunc in each block once. 6327 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6328 6329 bool MadeChange = false; 6330 for (Use &U : Src->uses()) { 6331 Instruction *User = cast<Instruction>(U.getUser()); 6332 6333 // Figure out which BB this ext is used in. 6334 BasicBlock *UserBB = User->getParent(); 6335 if (UserBB == DefBB) continue; 6336 6337 // Both src and def are live in this block. Rewrite the use. 6338 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6339 6340 if (!InsertedTrunc) { 6341 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6342 assert(InsertPt != UserBB->end()); 6343 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6344 InsertedInsts.insert(InsertedTrunc); 6345 } 6346 6347 // Replace a use of the {s|z}ext source with a use of the result. 6348 U = InsertedTrunc; 6349 ++NumExtUses; 6350 MadeChange = true; 6351 } 6352 6353 return MadeChange; 6354 } 6355 6356 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6357 // just after the load if the target can fold this into one extload instruction, 6358 // with the hope of eliminating some of the other later "and" instructions using 6359 // the loaded value. "and"s that are made trivially redundant by the insertion 6360 // of the new "and" are removed by this function, while others (e.g. those whose 6361 // path from the load goes through a phi) are left for isel to potentially 6362 // remove. 6363 // 6364 // For example: 6365 // 6366 // b0: 6367 // x = load i32 6368 // ... 6369 // b1: 6370 // y = and x, 0xff 6371 // z = use y 6372 // 6373 // becomes: 6374 // 6375 // b0: 6376 // x = load i32 6377 // x' = and x, 0xff 6378 // ... 6379 // b1: 6380 // z = use x' 6381 // 6382 // whereas: 6383 // 6384 // b0: 6385 // x1 = load i32 6386 // ... 6387 // b1: 6388 // x2 = load i32 6389 // ... 6390 // b2: 6391 // x = phi x1, x2 6392 // y = and x, 0xff 6393 // 6394 // becomes (after a call to optimizeLoadExt for each load): 6395 // 6396 // b0: 6397 // x1 = load i32 6398 // x1' = and x1, 0xff 6399 // ... 6400 // b1: 6401 // x2 = load i32 6402 // x2' = and x2, 0xff 6403 // ... 6404 // b2: 6405 // x = phi x1', x2' 6406 // y = and x, 0xff 6407 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6408 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6409 return false; 6410 6411 // Skip loads we've already transformed. 6412 if (Load->hasOneUse() && 6413 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6414 return false; 6415 6416 // Look at all uses of Load, looking through phis, to determine how many bits 6417 // of the loaded value are needed. 6418 SmallVector<Instruction *, 8> WorkList; 6419 SmallPtrSet<Instruction *, 16> Visited; 6420 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6421 for (auto *U : Load->users()) 6422 WorkList.push_back(cast<Instruction>(U)); 6423 6424 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6425 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6426 APInt DemandBits(BitWidth, 0); 6427 APInt WidestAndBits(BitWidth, 0); 6428 6429 while (!WorkList.empty()) { 6430 Instruction *I = WorkList.back(); 6431 WorkList.pop_back(); 6432 6433 // Break use-def graph loops. 6434 if (!Visited.insert(I).second) 6435 continue; 6436 6437 // For a PHI node, push all of its users. 6438 if (auto *Phi = dyn_cast<PHINode>(I)) { 6439 for (auto *U : Phi->users()) 6440 WorkList.push_back(cast<Instruction>(U)); 6441 continue; 6442 } 6443 6444 switch (I->getOpcode()) { 6445 case Instruction::And: { 6446 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6447 if (!AndC) 6448 return false; 6449 APInt AndBits = AndC->getValue(); 6450 DemandBits |= AndBits; 6451 // Keep track of the widest and mask we see. 6452 if (AndBits.ugt(WidestAndBits)) 6453 WidestAndBits = AndBits; 6454 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6455 AndsToMaybeRemove.push_back(I); 6456 break; 6457 } 6458 6459 case Instruction::Shl: { 6460 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6461 if (!ShlC) 6462 return false; 6463 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6464 DemandBits.setLowBits(BitWidth - ShiftAmt); 6465 break; 6466 } 6467 6468 case Instruction::Trunc: { 6469 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6470 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6471 DemandBits.setLowBits(TruncBitWidth); 6472 break; 6473 } 6474 6475 default: 6476 return false; 6477 } 6478 } 6479 6480 uint32_t ActiveBits = DemandBits.getActiveBits(); 6481 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6482 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6483 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6484 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6485 // followed by an AND. 6486 // TODO: Look into removing this restriction by fixing backends to either 6487 // return false for isLoadExtLegal for i1 or have them select this pattern to 6488 // a single instruction. 6489 // 6490 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6491 // mask, since these are the only ands that will be removed by isel. 6492 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6493 WidestAndBits != DemandBits) 6494 return false; 6495 6496 LLVMContext &Ctx = Load->getType()->getContext(); 6497 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6498 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6499 6500 // Reject cases that won't be matched as extloads. 6501 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6502 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6503 return false; 6504 6505 IRBuilder<> Builder(Load->getNextNode()); 6506 auto *NewAnd = cast<Instruction>( 6507 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6508 // Mark this instruction as "inserted by CGP", so that other 6509 // optimizations don't touch it. 6510 InsertedInsts.insert(NewAnd); 6511 6512 // Replace all uses of load with new and (except for the use of load in the 6513 // new and itself). 6514 Load->replaceAllUsesWith(NewAnd); 6515 NewAnd->setOperand(0, Load); 6516 6517 // Remove any and instructions that are now redundant. 6518 for (auto *And : AndsToMaybeRemove) 6519 // Check that the and mask is the same as the one we decided to put on the 6520 // new and. 6521 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6522 And->replaceAllUsesWith(NewAnd); 6523 if (&*CurInstIterator == And) 6524 CurInstIterator = std::next(And->getIterator()); 6525 And->eraseFromParent(); 6526 ++NumAndUses; 6527 } 6528 6529 ++NumAndsAdded; 6530 return true; 6531 } 6532 6533 /// Check if V (an operand of a select instruction) is an expensive instruction 6534 /// that is only used once. 6535 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6536 auto *I = dyn_cast<Instruction>(V); 6537 // If it's safe to speculatively execute, then it should not have side 6538 // effects; therefore, it's safe to sink and possibly *not* execute. 6539 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6540 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6541 TargetTransformInfo::TCC_Expensive; 6542 } 6543 6544 /// Returns true if a SelectInst should be turned into an explicit branch. 6545 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6546 const TargetLowering *TLI, 6547 SelectInst *SI) { 6548 // If even a predictable select is cheap, then a branch can't be cheaper. 6549 if (!TLI->isPredictableSelectExpensive()) 6550 return false; 6551 6552 // FIXME: This should use the same heuristics as IfConversion to determine 6553 // whether a select is better represented as a branch. 6554 6555 // If metadata tells us that the select condition is obviously predictable, 6556 // then we want to replace the select with a branch. 6557 uint64_t TrueWeight, FalseWeight; 6558 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6559 uint64_t Max = std::max(TrueWeight, FalseWeight); 6560 uint64_t Sum = TrueWeight + FalseWeight; 6561 if (Sum != 0) { 6562 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6563 if (Probability > TLI->getPredictableBranchThreshold()) 6564 return true; 6565 } 6566 } 6567 6568 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6569 6570 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6571 // comparison condition. If the compare has more than one use, there's 6572 // probably another cmov or setcc around, so it's not worth emitting a branch. 6573 if (!Cmp || !Cmp->hasOneUse()) 6574 return false; 6575 6576 // If either operand of the select is expensive and only needed on one side 6577 // of the select, we should form a branch. 6578 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6579 sinkSelectOperand(TTI, SI->getFalseValue())) 6580 return true; 6581 6582 return false; 6583 } 6584 6585 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6586 /// false value of \p SI. If the true/false value of \p SI is defined by any 6587 /// select instructions in \p Selects, look through the defining select 6588 /// instruction until the true/false value is not defined in \p Selects. 6589 static Value *getTrueOrFalseValue( 6590 SelectInst *SI, bool isTrue, 6591 const SmallPtrSet<const Instruction *, 2> &Selects) { 6592 Value *V = nullptr; 6593 6594 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6595 DefSI = dyn_cast<SelectInst>(V)) { 6596 assert(DefSI->getCondition() == SI->getCondition() && 6597 "The condition of DefSI does not match with SI"); 6598 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6599 } 6600 6601 assert(V && "Failed to get select true/false value"); 6602 return V; 6603 } 6604 6605 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6606 assert(Shift->isShift() && "Expected a shift"); 6607 6608 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6609 // general vector shifts, and (3) the shift amount is a select-of-splatted 6610 // values, hoist the shifts before the select: 6611 // shift Op0, (select Cond, TVal, FVal) --> 6612 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6613 // 6614 // This is inverting a generic IR transform when we know that the cost of a 6615 // general vector shift is more than the cost of 2 shift-by-scalars. 6616 // We can't do this effectively in SDAG because we may not be able to 6617 // determine if the select operands are splats from within a basic block. 6618 Type *Ty = Shift->getType(); 6619 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6620 return false; 6621 Value *Cond, *TVal, *FVal; 6622 if (!match(Shift->getOperand(1), 6623 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6624 return false; 6625 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6626 return false; 6627 6628 IRBuilder<> Builder(Shift); 6629 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6630 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6631 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6632 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6633 Shift->replaceAllUsesWith(NewSel); 6634 Shift->eraseFromParent(); 6635 return true; 6636 } 6637 6638 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6639 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6640 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6641 "Expected a funnel shift"); 6642 6643 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6644 // than general vector shifts, and (3) the shift amount is select-of-splatted 6645 // values, hoist the funnel shifts before the select: 6646 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6647 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6648 // 6649 // This is inverting a generic IR transform when we know that the cost of a 6650 // general vector shift is more than the cost of 2 shift-by-scalars. 6651 // We can't do this effectively in SDAG because we may not be able to 6652 // determine if the select operands are splats from within a basic block. 6653 Type *Ty = Fsh->getType(); 6654 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6655 return false; 6656 Value *Cond, *TVal, *FVal; 6657 if (!match(Fsh->getOperand(2), 6658 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6659 return false; 6660 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6661 return false; 6662 6663 IRBuilder<> Builder(Fsh); 6664 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6665 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6666 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6667 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6668 Fsh->replaceAllUsesWith(NewSel); 6669 Fsh->eraseFromParent(); 6670 return true; 6671 } 6672 6673 /// If we have a SelectInst that will likely profit from branch prediction, 6674 /// turn it into a branch. 6675 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6676 if (DisableSelectToBranch) 6677 return false; 6678 6679 // Find all consecutive select instructions that share the same condition. 6680 SmallVector<SelectInst *, 2> ASI; 6681 ASI.push_back(SI); 6682 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6683 It != SI->getParent()->end(); ++It) { 6684 SelectInst *I = dyn_cast<SelectInst>(&*It); 6685 if (I && SI->getCondition() == I->getCondition()) { 6686 ASI.push_back(I); 6687 } else { 6688 break; 6689 } 6690 } 6691 6692 SelectInst *LastSI = ASI.back(); 6693 // Increment the current iterator to skip all the rest of select instructions 6694 // because they will be either "not lowered" or "all lowered" to branch. 6695 CurInstIterator = std::next(LastSI->getIterator()); 6696 6697 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6698 6699 // Can we convert the 'select' to CF ? 6700 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6701 return false; 6702 6703 TargetLowering::SelectSupportKind SelectKind; 6704 if (VectorCond) 6705 SelectKind = TargetLowering::VectorMaskSelect; 6706 else if (SI->getType()->isVectorTy()) 6707 SelectKind = TargetLowering::ScalarCondVectorVal; 6708 else 6709 SelectKind = TargetLowering::ScalarValSelect; 6710 6711 if (TLI->isSelectSupported(SelectKind) && 6712 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6713 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6714 return false; 6715 6716 // The DominatorTree needs to be rebuilt by any consumers after this 6717 // transformation. We simply reset here rather than setting the ModifiedDT 6718 // flag to avoid restarting the function walk in runOnFunction for each 6719 // select optimized. 6720 DT.reset(); 6721 6722 // Transform a sequence like this: 6723 // start: 6724 // %cmp = cmp uge i32 %a, %b 6725 // %sel = select i1 %cmp, i32 %c, i32 %d 6726 // 6727 // Into: 6728 // start: 6729 // %cmp = cmp uge i32 %a, %b 6730 // %cmp.frozen = freeze %cmp 6731 // br i1 %cmp.frozen, label %select.true, label %select.false 6732 // select.true: 6733 // br label %select.end 6734 // select.false: 6735 // br label %select.end 6736 // select.end: 6737 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6738 // 6739 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6740 // In addition, we may sink instructions that produce %c or %d from 6741 // the entry block into the destination(s) of the new branch. 6742 // If the true or false blocks do not contain a sunken instruction, that 6743 // block and its branch may be optimized away. In that case, one side of the 6744 // first branch will point directly to select.end, and the corresponding PHI 6745 // predecessor block will be the start block. 6746 6747 // First, we split the block containing the select into 2 blocks. 6748 BasicBlock *StartBlock = SI->getParent(); 6749 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6750 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6751 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6752 6753 // Delete the unconditional branch that was just created by the split. 6754 StartBlock->getTerminator()->eraseFromParent(); 6755 6756 // These are the new basic blocks for the conditional branch. 6757 // At least one will become an actual new basic block. 6758 BasicBlock *TrueBlock = nullptr; 6759 BasicBlock *FalseBlock = nullptr; 6760 BranchInst *TrueBranch = nullptr; 6761 BranchInst *FalseBranch = nullptr; 6762 6763 // Sink expensive instructions into the conditional blocks to avoid executing 6764 // them speculatively. 6765 for (SelectInst *SI : ASI) { 6766 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6767 if (TrueBlock == nullptr) { 6768 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6769 EndBlock->getParent(), EndBlock); 6770 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6771 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6772 } 6773 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6774 TrueInst->moveBefore(TrueBranch); 6775 } 6776 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6777 if (FalseBlock == nullptr) { 6778 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6779 EndBlock->getParent(), EndBlock); 6780 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6781 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6782 } 6783 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6784 FalseInst->moveBefore(FalseBranch); 6785 } 6786 } 6787 6788 // If there was nothing to sink, then arbitrarily choose the 'false' side 6789 // for a new input value to the PHI. 6790 if (TrueBlock == FalseBlock) { 6791 assert(TrueBlock == nullptr && 6792 "Unexpected basic block transform while optimizing select"); 6793 6794 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6795 EndBlock->getParent(), EndBlock); 6796 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6797 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6798 } 6799 6800 // Insert the real conditional branch based on the original condition. 6801 // If we did not create a new block for one of the 'true' or 'false' paths 6802 // of the condition, it means that side of the branch goes to the end block 6803 // directly and the path originates from the start block from the point of 6804 // view of the new PHI. 6805 BasicBlock *TT, *FT; 6806 if (TrueBlock == nullptr) { 6807 TT = EndBlock; 6808 FT = FalseBlock; 6809 TrueBlock = StartBlock; 6810 } else if (FalseBlock == nullptr) { 6811 TT = TrueBlock; 6812 FT = EndBlock; 6813 FalseBlock = StartBlock; 6814 } else { 6815 TT = TrueBlock; 6816 FT = FalseBlock; 6817 } 6818 IRBuilder<> IB(SI); 6819 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6820 IB.CreateCondBr(CondFr, TT, FT, SI); 6821 6822 SmallPtrSet<const Instruction *, 2> INS; 6823 INS.insert(ASI.begin(), ASI.end()); 6824 // Use reverse iterator because later select may use the value of the 6825 // earlier select, and we need to propagate value through earlier select 6826 // to get the PHI operand. 6827 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6828 SelectInst *SI = *It; 6829 // The select itself is replaced with a PHI Node. 6830 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6831 PN->takeName(SI); 6832 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6833 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6834 PN->setDebugLoc(SI->getDebugLoc()); 6835 6836 SI->replaceAllUsesWith(PN); 6837 SI->eraseFromParent(); 6838 INS.erase(SI); 6839 ++NumSelectsExpanded; 6840 } 6841 6842 // Instruct OptimizeBlock to skip to the next block. 6843 CurInstIterator = StartBlock->end(); 6844 return true; 6845 } 6846 6847 /// Some targets only accept certain types for splat inputs. For example a VDUP 6848 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6849 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6850 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6851 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6852 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6853 m_Undef(), m_ZeroMask()))) 6854 return false; 6855 Type *NewType = TLI->shouldConvertSplatType(SVI); 6856 if (!NewType) 6857 return false; 6858 6859 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6860 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6861 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6862 "Expected a type of the same size!"); 6863 auto *NewVecType = 6864 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6865 6866 // Create a bitcast (shuffle (insert (bitcast(..)))) 6867 IRBuilder<> Builder(SVI->getContext()); 6868 Builder.SetInsertPoint(SVI); 6869 Value *BC1 = Builder.CreateBitCast( 6870 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6871 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6872 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6873 6874 SVI->replaceAllUsesWith(BC2); 6875 RecursivelyDeleteTriviallyDeadInstructions( 6876 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6877 6878 // Also hoist the bitcast up to its operand if it they are not in the same 6879 // block. 6880 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6881 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6882 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6883 !Op->isTerminator() && !Op->isEHPad()) 6884 BCI->moveAfter(Op); 6885 6886 return true; 6887 } 6888 6889 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6890 // If the operands of I can be folded into a target instruction together with 6891 // I, duplicate and sink them. 6892 SmallVector<Use *, 4> OpsToSink; 6893 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6894 return false; 6895 6896 // OpsToSink can contain multiple uses in a use chain (e.g. 6897 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6898 // uses must come first, so we process the ops in reverse order so as to not 6899 // create invalid IR. 6900 BasicBlock *TargetBB = I->getParent(); 6901 bool Changed = false; 6902 SmallVector<Use *, 4> ToReplace; 6903 for (Use *U : reverse(OpsToSink)) { 6904 auto *UI = cast<Instruction>(U->get()); 6905 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6906 continue; 6907 ToReplace.push_back(U); 6908 } 6909 6910 SetVector<Instruction *> MaybeDead; 6911 DenseMap<Instruction *, Instruction *> NewInstructions; 6912 Instruction *InsertPoint = I; 6913 for (Use *U : ToReplace) { 6914 auto *UI = cast<Instruction>(U->get()); 6915 Instruction *NI = UI->clone(); 6916 NewInstructions[UI] = NI; 6917 MaybeDead.insert(UI); 6918 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6919 NI->insertBefore(InsertPoint); 6920 InsertPoint = NI; 6921 InsertedInsts.insert(NI); 6922 6923 // Update the use for the new instruction, making sure that we update the 6924 // sunk instruction uses, if it is part of a chain that has already been 6925 // sunk. 6926 Instruction *OldI = cast<Instruction>(U->getUser()); 6927 if (NewInstructions.count(OldI)) 6928 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6929 else 6930 U->set(NI); 6931 Changed = true; 6932 } 6933 6934 // Remove instructions that are dead after sinking. 6935 for (auto *I : MaybeDead) { 6936 if (!I->hasNUsesOrMore(1)) { 6937 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6938 I->eraseFromParent(); 6939 } 6940 } 6941 6942 return Changed; 6943 } 6944 6945 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6946 Value *Cond = SI->getCondition(); 6947 Type *OldType = Cond->getType(); 6948 LLVMContext &Context = Cond->getContext(); 6949 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6950 unsigned RegWidth = RegType.getSizeInBits(); 6951 6952 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6953 return false; 6954 6955 // If the register width is greater than the type width, expand the condition 6956 // of the switch instruction and each case constant to the width of the 6957 // register. By widening the type of the switch condition, subsequent 6958 // comparisons (for case comparisons) will not need to be extended to the 6959 // preferred register width, so we will potentially eliminate N-1 extends, 6960 // where N is the number of cases in the switch. 6961 auto *NewType = Type::getIntNTy(Context, RegWidth); 6962 6963 // Zero-extend the switch condition and case constants unless the switch 6964 // condition is a function argument that is already being sign-extended. 6965 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6966 // everything instead. 6967 Instruction::CastOps ExtType = Instruction::ZExt; 6968 if (auto *Arg = dyn_cast<Argument>(Cond)) 6969 if (Arg->hasSExtAttr()) 6970 ExtType = Instruction::SExt; 6971 6972 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6973 ExtInst->insertBefore(SI); 6974 ExtInst->setDebugLoc(SI->getDebugLoc()); 6975 SI->setCondition(ExtInst); 6976 for (auto Case : SI->cases()) { 6977 APInt NarrowConst = Case.getCaseValue()->getValue(); 6978 APInt WideConst = (ExtType == Instruction::ZExt) ? 6979 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6980 Case.setValue(ConstantInt::get(Context, WideConst)); 6981 } 6982 6983 return true; 6984 } 6985 6986 6987 namespace { 6988 6989 /// Helper class to promote a scalar operation to a vector one. 6990 /// This class is used to move downward extractelement transition. 6991 /// E.g., 6992 /// a = vector_op <2 x i32> 6993 /// b = extractelement <2 x i32> a, i32 0 6994 /// c = scalar_op b 6995 /// store c 6996 /// 6997 /// => 6998 /// a = vector_op <2 x i32> 6999 /// c = vector_op a (equivalent to scalar_op on the related lane) 7000 /// * d = extractelement <2 x i32> c, i32 0 7001 /// * store d 7002 /// Assuming both extractelement and store can be combine, we get rid of the 7003 /// transition. 7004 class VectorPromoteHelper { 7005 /// DataLayout associated with the current module. 7006 const DataLayout &DL; 7007 7008 /// Used to perform some checks on the legality of vector operations. 7009 const TargetLowering &TLI; 7010 7011 /// Used to estimated the cost of the promoted chain. 7012 const TargetTransformInfo &TTI; 7013 7014 /// The transition being moved downwards. 7015 Instruction *Transition; 7016 7017 /// The sequence of instructions to be promoted. 7018 SmallVector<Instruction *, 4> InstsToBePromoted; 7019 7020 /// Cost of combining a store and an extract. 7021 unsigned StoreExtractCombineCost; 7022 7023 /// Instruction that will be combined with the transition. 7024 Instruction *CombineInst = nullptr; 7025 7026 /// The instruction that represents the current end of the transition. 7027 /// Since we are faking the promotion until we reach the end of the chain 7028 /// of computation, we need a way to get the current end of the transition. 7029 Instruction *getEndOfTransition() const { 7030 if (InstsToBePromoted.empty()) 7031 return Transition; 7032 return InstsToBePromoted.back(); 7033 } 7034 7035 /// Return the index of the original value in the transition. 7036 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7037 /// c, is at index 0. 7038 unsigned getTransitionOriginalValueIdx() const { 7039 assert(isa<ExtractElementInst>(Transition) && 7040 "Other kind of transitions are not supported yet"); 7041 return 0; 7042 } 7043 7044 /// Return the index of the index in the transition. 7045 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7046 /// is at index 1. 7047 unsigned getTransitionIdx() const { 7048 assert(isa<ExtractElementInst>(Transition) && 7049 "Other kind of transitions are not supported yet"); 7050 return 1; 7051 } 7052 7053 /// Get the type of the transition. 7054 /// This is the type of the original value. 7055 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7056 /// transition is <2 x i32>. 7057 Type *getTransitionType() const { 7058 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7059 } 7060 7061 /// Promote \p ToBePromoted by moving \p Def downward through. 7062 /// I.e., we have the following sequence: 7063 /// Def = Transition <ty1> a to <ty2> 7064 /// b = ToBePromoted <ty2> Def, ... 7065 /// => 7066 /// b = ToBePromoted <ty1> a, ... 7067 /// Def = Transition <ty1> ToBePromoted to <ty2> 7068 void promoteImpl(Instruction *ToBePromoted); 7069 7070 /// Check whether or not it is profitable to promote all the 7071 /// instructions enqueued to be promoted. 7072 bool isProfitableToPromote() { 7073 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7074 unsigned Index = isa<ConstantInt>(ValIdx) 7075 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7076 : -1; 7077 Type *PromotedType = getTransitionType(); 7078 7079 StoreInst *ST = cast<StoreInst>(CombineInst); 7080 unsigned AS = ST->getPointerAddressSpace(); 7081 // Check if this store is supported. 7082 if (!TLI.allowsMisalignedMemoryAccesses( 7083 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7084 ST->getAlign())) { 7085 // If this is not supported, there is no way we can combine 7086 // the extract with the store. 7087 return false; 7088 } 7089 7090 // The scalar chain of computation has to pay for the transition 7091 // scalar to vector. 7092 // The vector chain has to account for the combining cost. 7093 InstructionCost ScalarCost = 7094 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7095 InstructionCost VectorCost = StoreExtractCombineCost; 7096 enum TargetTransformInfo::TargetCostKind CostKind = 7097 TargetTransformInfo::TCK_RecipThroughput; 7098 for (const auto &Inst : InstsToBePromoted) { 7099 // Compute the cost. 7100 // By construction, all instructions being promoted are arithmetic ones. 7101 // Moreover, one argument is a constant that can be viewed as a splat 7102 // constant. 7103 Value *Arg0 = Inst->getOperand(0); 7104 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7105 isa<ConstantFP>(Arg0); 7106 TargetTransformInfo::OperandValueKind Arg0OVK = 7107 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7108 : TargetTransformInfo::OK_AnyValue; 7109 TargetTransformInfo::OperandValueKind Arg1OVK = 7110 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7111 : TargetTransformInfo::OK_AnyValue; 7112 ScalarCost += TTI.getArithmeticInstrCost( 7113 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7114 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7115 CostKind, 7116 Arg0OVK, Arg1OVK); 7117 } 7118 LLVM_DEBUG( 7119 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7120 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7121 return ScalarCost > VectorCost; 7122 } 7123 7124 /// Generate a constant vector with \p Val with the same 7125 /// number of elements as the transition. 7126 /// \p UseSplat defines whether or not \p Val should be replicated 7127 /// across the whole vector. 7128 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7129 /// otherwise we generate a vector with as many undef as possible: 7130 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7131 /// used at the index of the extract. 7132 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7133 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7134 if (!UseSplat) { 7135 // If we cannot determine where the constant must be, we have to 7136 // use a splat constant. 7137 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7138 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7139 ExtractIdx = CstVal->getSExtValue(); 7140 else 7141 UseSplat = true; 7142 } 7143 7144 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7145 if (UseSplat) 7146 return ConstantVector::getSplat(EC, Val); 7147 7148 if (!EC.isScalable()) { 7149 SmallVector<Constant *, 4> ConstVec; 7150 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7151 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7152 if (Idx == ExtractIdx) 7153 ConstVec.push_back(Val); 7154 else 7155 ConstVec.push_back(UndefVal); 7156 } 7157 return ConstantVector::get(ConstVec); 7158 } else 7159 llvm_unreachable( 7160 "Generate scalable vector for non-splat is unimplemented"); 7161 } 7162 7163 /// Check if promoting to a vector type an operand at \p OperandIdx 7164 /// in \p Use can trigger undefined behavior. 7165 static bool canCauseUndefinedBehavior(const Instruction *Use, 7166 unsigned OperandIdx) { 7167 // This is not safe to introduce undef when the operand is on 7168 // the right hand side of a division-like instruction. 7169 if (OperandIdx != 1) 7170 return false; 7171 switch (Use->getOpcode()) { 7172 default: 7173 return false; 7174 case Instruction::SDiv: 7175 case Instruction::UDiv: 7176 case Instruction::SRem: 7177 case Instruction::URem: 7178 return true; 7179 case Instruction::FDiv: 7180 case Instruction::FRem: 7181 return !Use->hasNoNaNs(); 7182 } 7183 llvm_unreachable(nullptr); 7184 } 7185 7186 public: 7187 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7188 const TargetTransformInfo &TTI, Instruction *Transition, 7189 unsigned CombineCost) 7190 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7191 StoreExtractCombineCost(CombineCost) { 7192 assert(Transition && "Do not know how to promote null"); 7193 } 7194 7195 /// Check if we can promote \p ToBePromoted to \p Type. 7196 bool canPromote(const Instruction *ToBePromoted) const { 7197 // We could support CastInst too. 7198 return isa<BinaryOperator>(ToBePromoted); 7199 } 7200 7201 /// Check if it is profitable to promote \p ToBePromoted 7202 /// by moving downward the transition through. 7203 bool shouldPromote(const Instruction *ToBePromoted) const { 7204 // Promote only if all the operands can be statically expanded. 7205 // Indeed, we do not want to introduce any new kind of transitions. 7206 for (const Use &U : ToBePromoted->operands()) { 7207 const Value *Val = U.get(); 7208 if (Val == getEndOfTransition()) { 7209 // If the use is a division and the transition is on the rhs, 7210 // we cannot promote the operation, otherwise we may create a 7211 // division by zero. 7212 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7213 return false; 7214 continue; 7215 } 7216 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7217 !isa<ConstantFP>(Val)) 7218 return false; 7219 } 7220 // Check that the resulting operation is legal. 7221 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7222 if (!ISDOpcode) 7223 return false; 7224 return StressStoreExtract || 7225 TLI.isOperationLegalOrCustom( 7226 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7227 } 7228 7229 /// Check whether or not \p Use can be combined 7230 /// with the transition. 7231 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7232 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7233 7234 /// Record \p ToBePromoted as part of the chain to be promoted. 7235 void enqueueForPromotion(Instruction *ToBePromoted) { 7236 InstsToBePromoted.push_back(ToBePromoted); 7237 } 7238 7239 /// Set the instruction that will be combined with the transition. 7240 void recordCombineInstruction(Instruction *ToBeCombined) { 7241 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7242 CombineInst = ToBeCombined; 7243 } 7244 7245 /// Promote all the instructions enqueued for promotion if it is 7246 /// is profitable. 7247 /// \return True if the promotion happened, false otherwise. 7248 bool promote() { 7249 // Check if there is something to promote. 7250 // Right now, if we do not have anything to combine with, 7251 // we assume the promotion is not profitable. 7252 if (InstsToBePromoted.empty() || !CombineInst) 7253 return false; 7254 7255 // Check cost. 7256 if (!StressStoreExtract && !isProfitableToPromote()) 7257 return false; 7258 7259 // Promote. 7260 for (auto &ToBePromoted : InstsToBePromoted) 7261 promoteImpl(ToBePromoted); 7262 InstsToBePromoted.clear(); 7263 return true; 7264 } 7265 }; 7266 7267 } // end anonymous namespace 7268 7269 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7270 // At this point, we know that all the operands of ToBePromoted but Def 7271 // can be statically promoted. 7272 // For Def, we need to use its parameter in ToBePromoted: 7273 // b = ToBePromoted ty1 a 7274 // Def = Transition ty1 b to ty2 7275 // Move the transition down. 7276 // 1. Replace all uses of the promoted operation by the transition. 7277 // = ... b => = ... Def. 7278 assert(ToBePromoted->getType() == Transition->getType() && 7279 "The type of the result of the transition does not match " 7280 "the final type"); 7281 ToBePromoted->replaceAllUsesWith(Transition); 7282 // 2. Update the type of the uses. 7283 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7284 Type *TransitionTy = getTransitionType(); 7285 ToBePromoted->mutateType(TransitionTy); 7286 // 3. Update all the operands of the promoted operation with promoted 7287 // operands. 7288 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7289 for (Use &U : ToBePromoted->operands()) { 7290 Value *Val = U.get(); 7291 Value *NewVal = nullptr; 7292 if (Val == Transition) 7293 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7294 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7295 isa<ConstantFP>(Val)) { 7296 // Use a splat constant if it is not safe to use undef. 7297 NewVal = getConstantVector( 7298 cast<Constant>(Val), 7299 isa<UndefValue>(Val) || 7300 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7301 } else 7302 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7303 "this?"); 7304 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7305 } 7306 Transition->moveAfter(ToBePromoted); 7307 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7308 } 7309 7310 /// Some targets can do store(extractelement) with one instruction. 7311 /// Try to push the extractelement towards the stores when the target 7312 /// has this feature and this is profitable. 7313 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7314 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7315 if (DisableStoreExtract || 7316 (!StressStoreExtract && 7317 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7318 Inst->getOperand(1), CombineCost))) 7319 return false; 7320 7321 // At this point we know that Inst is a vector to scalar transition. 7322 // Try to move it down the def-use chain, until: 7323 // - We can combine the transition with its single use 7324 // => we got rid of the transition. 7325 // - We escape the current basic block 7326 // => we would need to check that we are moving it at a cheaper place and 7327 // we do not do that for now. 7328 BasicBlock *Parent = Inst->getParent(); 7329 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7330 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7331 // If the transition has more than one use, assume this is not going to be 7332 // beneficial. 7333 while (Inst->hasOneUse()) { 7334 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7335 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7336 7337 if (ToBePromoted->getParent() != Parent) { 7338 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7339 << ToBePromoted->getParent()->getName() 7340 << ") than the transition (" << Parent->getName() 7341 << ").\n"); 7342 return false; 7343 } 7344 7345 if (VPH.canCombine(ToBePromoted)) { 7346 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7347 << "will be combined with: " << *ToBePromoted << '\n'); 7348 VPH.recordCombineInstruction(ToBePromoted); 7349 bool Changed = VPH.promote(); 7350 NumStoreExtractExposed += Changed; 7351 return Changed; 7352 } 7353 7354 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7355 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7356 return false; 7357 7358 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7359 7360 VPH.enqueueForPromotion(ToBePromoted); 7361 Inst = ToBePromoted; 7362 } 7363 return false; 7364 } 7365 7366 /// For the instruction sequence of store below, F and I values 7367 /// are bundled together as an i64 value before being stored into memory. 7368 /// Sometimes it is more efficient to generate separate stores for F and I, 7369 /// which can remove the bitwise instructions or sink them to colder places. 7370 /// 7371 /// (store (or (zext (bitcast F to i32) to i64), 7372 /// (shl (zext I to i64), 32)), addr) --> 7373 /// (store F, addr) and (store I, addr+4) 7374 /// 7375 /// Similarly, splitting for other merged store can also be beneficial, like: 7376 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7377 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7378 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7379 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7380 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7381 /// 7382 /// We allow each target to determine specifically which kind of splitting is 7383 /// supported. 7384 /// 7385 /// The store patterns are commonly seen from the simple code snippet below 7386 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7387 /// void goo(const std::pair<int, float> &); 7388 /// hoo() { 7389 /// ... 7390 /// goo(std::make_pair(tmp, ftmp)); 7391 /// ... 7392 /// } 7393 /// 7394 /// Although we already have similar splitting in DAG Combine, we duplicate 7395 /// it in CodeGenPrepare to catch the case in which pattern is across 7396 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7397 /// during code expansion. 7398 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7399 const TargetLowering &TLI) { 7400 // Handle simple but common cases only. 7401 Type *StoreType = SI.getValueOperand()->getType(); 7402 7403 // The code below assumes shifting a value by <number of bits>, 7404 // whereas scalable vectors would have to be shifted by 7405 // <2log(vscale) + number of bits> in order to store the 7406 // low/high parts. Bailing out for now. 7407 if (isa<ScalableVectorType>(StoreType)) 7408 return false; 7409 7410 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7411 DL.getTypeSizeInBits(StoreType) == 0) 7412 return false; 7413 7414 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7415 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7416 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7417 return false; 7418 7419 // Don't split the store if it is volatile. 7420 if (SI.isVolatile()) 7421 return false; 7422 7423 // Match the following patterns: 7424 // (store (or (zext LValue to i64), 7425 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7426 // or 7427 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7428 // (zext LValue to i64), 7429 // Expect both operands of OR and the first operand of SHL have only 7430 // one use. 7431 Value *LValue, *HValue; 7432 if (!match(SI.getValueOperand(), 7433 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7434 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7435 m_SpecificInt(HalfValBitSize)))))) 7436 return false; 7437 7438 // Check LValue and HValue are int with size less or equal than 32. 7439 if (!LValue->getType()->isIntegerTy() || 7440 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7441 !HValue->getType()->isIntegerTy() || 7442 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7443 return false; 7444 7445 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7446 // as the input of target query. 7447 auto *LBC = dyn_cast<BitCastInst>(LValue); 7448 auto *HBC = dyn_cast<BitCastInst>(HValue); 7449 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7450 : EVT::getEVT(LValue->getType()); 7451 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7452 : EVT::getEVT(HValue->getType()); 7453 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7454 return false; 7455 7456 // Start to split store. 7457 IRBuilder<> Builder(SI.getContext()); 7458 Builder.SetInsertPoint(&SI); 7459 7460 // If LValue/HValue is a bitcast in another BB, create a new one in current 7461 // BB so it may be merged with the splitted stores by dag combiner. 7462 if (LBC && LBC->getParent() != SI.getParent()) 7463 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7464 if (HBC && HBC->getParent() != SI.getParent()) 7465 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7466 7467 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7468 auto CreateSplitStore = [&](Value *V, bool Upper) { 7469 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7470 Value *Addr = Builder.CreateBitCast( 7471 SI.getOperand(1), 7472 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7473 Align Alignment = SI.getAlign(); 7474 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7475 if (IsOffsetStore) { 7476 Addr = Builder.CreateGEP( 7477 SplitStoreType, Addr, 7478 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7479 7480 // When splitting the store in half, naturally one half will retain the 7481 // alignment of the original wider store, regardless of whether it was 7482 // over-aligned or not, while the other will require adjustment. 7483 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7484 } 7485 Builder.CreateAlignedStore(V, Addr, Alignment); 7486 }; 7487 7488 CreateSplitStore(LValue, false); 7489 CreateSplitStore(HValue, true); 7490 7491 // Delete the old store. 7492 SI.eraseFromParent(); 7493 return true; 7494 } 7495 7496 // Return true if the GEP has two operands, the first operand is of a sequential 7497 // type, and the second operand is a constant. 7498 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7499 gep_type_iterator I = gep_type_begin(*GEP); 7500 return GEP->getNumOperands() == 2 && 7501 I.isSequential() && 7502 isa<ConstantInt>(GEP->getOperand(1)); 7503 } 7504 7505 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7506 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7507 // reducing liveness interference across those edges benefits global register 7508 // allocation. Currently handles only certain cases. 7509 // 7510 // For example, unmerge %GEPI and %UGEPI as below. 7511 // 7512 // ---------- BEFORE ---------- 7513 // SrcBlock: 7514 // ... 7515 // %GEPIOp = ... 7516 // ... 7517 // %GEPI = gep %GEPIOp, Idx 7518 // ... 7519 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7520 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7521 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7522 // %UGEPI) 7523 // 7524 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7525 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7526 // ... 7527 // 7528 // DstBi: 7529 // ... 7530 // %UGEPI = gep %GEPIOp, UIdx 7531 // ... 7532 // --------------------------- 7533 // 7534 // ---------- AFTER ---------- 7535 // SrcBlock: 7536 // ... (same as above) 7537 // (* %GEPI is still alive on the indirectbr edges) 7538 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7539 // unmerging) 7540 // ... 7541 // 7542 // DstBi: 7543 // ... 7544 // %UGEPI = gep %GEPI, (UIdx-Idx) 7545 // ... 7546 // --------------------------- 7547 // 7548 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7549 // no longer alive on them. 7550 // 7551 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7552 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7553 // not to disable further simplications and optimizations as a result of GEP 7554 // merging. 7555 // 7556 // Note this unmerging may increase the length of the data flow critical path 7557 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7558 // between the register pressure and the length of data-flow critical 7559 // path. Restricting this to the uncommon IndirectBr case would minimize the 7560 // impact of potentially longer critical path, if any, and the impact on compile 7561 // time. 7562 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7563 const TargetTransformInfo *TTI) { 7564 BasicBlock *SrcBlock = GEPI->getParent(); 7565 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7566 // (non-IndirectBr) cases exit early here. 7567 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7568 return false; 7569 // Check that GEPI is a simple gep with a single constant index. 7570 if (!GEPSequentialConstIndexed(GEPI)) 7571 return false; 7572 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7573 // Check that GEPI is a cheap one. 7574 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7575 TargetTransformInfo::TCK_SizeAndLatency) 7576 > TargetTransformInfo::TCC_Basic) 7577 return false; 7578 Value *GEPIOp = GEPI->getOperand(0); 7579 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7580 if (!isa<Instruction>(GEPIOp)) 7581 return false; 7582 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7583 if (GEPIOpI->getParent() != SrcBlock) 7584 return false; 7585 // Check that GEP is used outside the block, meaning it's alive on the 7586 // IndirectBr edge(s). 7587 if (find_if(GEPI->users(), [&](User *Usr) { 7588 if (auto *I = dyn_cast<Instruction>(Usr)) { 7589 if (I->getParent() != SrcBlock) { 7590 return true; 7591 } 7592 } 7593 return false; 7594 }) == GEPI->users().end()) 7595 return false; 7596 // The second elements of the GEP chains to be unmerged. 7597 std::vector<GetElementPtrInst *> UGEPIs; 7598 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7599 // on IndirectBr edges. 7600 for (User *Usr : GEPIOp->users()) { 7601 if (Usr == GEPI) continue; 7602 // Check if Usr is an Instruction. If not, give up. 7603 if (!isa<Instruction>(Usr)) 7604 return false; 7605 auto *UI = cast<Instruction>(Usr); 7606 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7607 if (UI->getParent() == SrcBlock) 7608 continue; 7609 // Check if Usr is a GEP. If not, give up. 7610 if (!isa<GetElementPtrInst>(Usr)) 7611 return false; 7612 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7613 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7614 // the pointer operand to it. If so, record it in the vector. If not, give 7615 // up. 7616 if (!GEPSequentialConstIndexed(UGEPI)) 7617 return false; 7618 if (UGEPI->getOperand(0) != GEPIOp) 7619 return false; 7620 if (GEPIIdx->getType() != 7621 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7622 return false; 7623 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7624 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7625 TargetTransformInfo::TCK_SizeAndLatency) 7626 > TargetTransformInfo::TCC_Basic) 7627 return false; 7628 UGEPIs.push_back(UGEPI); 7629 } 7630 if (UGEPIs.size() == 0) 7631 return false; 7632 // Check the materializing cost of (Uidx-Idx). 7633 for (GetElementPtrInst *UGEPI : UGEPIs) { 7634 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7635 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7636 unsigned ImmCost = 7637 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7638 TargetTransformInfo::TCK_SizeAndLatency); 7639 if (ImmCost > TargetTransformInfo::TCC_Basic) 7640 return false; 7641 } 7642 // Now unmerge between GEPI and UGEPIs. 7643 for (GetElementPtrInst *UGEPI : UGEPIs) { 7644 UGEPI->setOperand(0, GEPI); 7645 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7646 Constant *NewUGEPIIdx = 7647 ConstantInt::get(GEPIIdx->getType(), 7648 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7649 UGEPI->setOperand(1, NewUGEPIIdx); 7650 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7651 // inbounds to avoid UB. 7652 if (!GEPI->isInBounds()) { 7653 UGEPI->setIsInBounds(false); 7654 } 7655 } 7656 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7657 // alive on IndirectBr edges). 7658 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7659 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7660 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7661 return true; 7662 } 7663 7664 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7665 // Bail out if we inserted the instruction to prevent optimizations from 7666 // stepping on each other's toes. 7667 if (InsertedInsts.count(I)) 7668 return false; 7669 7670 // TODO: Move into the switch on opcode below here. 7671 if (PHINode *P = dyn_cast<PHINode>(I)) { 7672 // It is possible for very late stage optimizations (such as SimplifyCFG) 7673 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7674 // trivial PHI, go ahead and zap it here. 7675 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7676 LargeOffsetGEPMap.erase(P); 7677 P->replaceAllUsesWith(V); 7678 P->eraseFromParent(); 7679 ++NumPHIsElim; 7680 return true; 7681 } 7682 return false; 7683 } 7684 7685 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7686 // If the source of the cast is a constant, then this should have 7687 // already been constant folded. The only reason NOT to constant fold 7688 // it is if something (e.g. LSR) was careful to place the constant 7689 // evaluation in a block other than then one that uses it (e.g. to hoist 7690 // the address of globals out of a loop). If this is the case, we don't 7691 // want to forward-subst the cast. 7692 if (isa<Constant>(CI->getOperand(0))) 7693 return false; 7694 7695 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7696 return true; 7697 7698 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7699 /// Sink a zext or sext into its user blocks if the target type doesn't 7700 /// fit in one register 7701 if (TLI->getTypeAction(CI->getContext(), 7702 TLI->getValueType(*DL, CI->getType())) == 7703 TargetLowering::TypeExpandInteger) { 7704 return SinkCast(CI); 7705 } else { 7706 bool MadeChange = optimizeExt(I); 7707 return MadeChange | optimizeExtUses(I); 7708 } 7709 } 7710 return false; 7711 } 7712 7713 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7714 if (optimizeCmp(Cmp, ModifiedDT)) 7715 return true; 7716 7717 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7718 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7719 bool Modified = optimizeLoadExt(LI); 7720 unsigned AS = LI->getPointerAddressSpace(); 7721 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7722 return Modified; 7723 } 7724 7725 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7726 if (splitMergedValStore(*SI, *DL, *TLI)) 7727 return true; 7728 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7729 unsigned AS = SI->getPointerAddressSpace(); 7730 return optimizeMemoryInst(I, SI->getOperand(1), 7731 SI->getOperand(0)->getType(), AS); 7732 } 7733 7734 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7735 unsigned AS = RMW->getPointerAddressSpace(); 7736 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7737 RMW->getType(), AS); 7738 } 7739 7740 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7741 unsigned AS = CmpX->getPointerAddressSpace(); 7742 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7743 CmpX->getCompareOperand()->getType(), AS); 7744 } 7745 7746 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7747 7748 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7749 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7750 7751 // TODO: Move this into the switch on opcode - it handles shifts already. 7752 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7753 BinOp->getOpcode() == Instruction::LShr)) { 7754 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7755 if (CI && TLI->hasExtractBitsInsn()) 7756 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7757 return true; 7758 } 7759 7760 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7761 if (GEPI->hasAllZeroIndices()) { 7762 /// The GEP operand must be a pointer, so must its result -> BitCast 7763 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7764 GEPI->getName(), GEPI); 7765 NC->setDebugLoc(GEPI->getDebugLoc()); 7766 GEPI->replaceAllUsesWith(NC); 7767 GEPI->eraseFromParent(); 7768 ++NumGEPsElim; 7769 optimizeInst(NC, ModifiedDT); 7770 return true; 7771 } 7772 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7773 return true; 7774 } 7775 return false; 7776 } 7777 7778 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7779 // freeze(icmp a, const)) -> icmp (freeze a), const 7780 // This helps generate efficient conditional jumps. 7781 Instruction *CmpI = nullptr; 7782 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7783 CmpI = II; 7784 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7785 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7786 7787 if (CmpI && CmpI->hasOneUse()) { 7788 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7789 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7790 isa<ConstantPointerNull>(Op0); 7791 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7792 isa<ConstantPointerNull>(Op1); 7793 if (Const0 || Const1) { 7794 if (!Const0 || !Const1) { 7795 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7796 F->takeName(FI); 7797 CmpI->setOperand(Const0 ? 1 : 0, F); 7798 } 7799 FI->replaceAllUsesWith(CmpI); 7800 FI->eraseFromParent(); 7801 return true; 7802 } 7803 } 7804 return false; 7805 } 7806 7807 if (tryToSinkFreeOperands(I)) 7808 return true; 7809 7810 switch (I->getOpcode()) { 7811 case Instruction::Shl: 7812 case Instruction::LShr: 7813 case Instruction::AShr: 7814 return optimizeShiftInst(cast<BinaryOperator>(I)); 7815 case Instruction::Call: 7816 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7817 case Instruction::Select: 7818 return optimizeSelectInst(cast<SelectInst>(I)); 7819 case Instruction::ShuffleVector: 7820 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7821 case Instruction::Switch: 7822 return optimizeSwitchInst(cast<SwitchInst>(I)); 7823 case Instruction::ExtractElement: 7824 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7825 } 7826 7827 return false; 7828 } 7829 7830 /// Given an OR instruction, check to see if this is a bitreverse 7831 /// idiom. If so, insert the new intrinsic and return true. 7832 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7833 if (!I.getType()->isIntegerTy() || 7834 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7835 TLI->getValueType(*DL, I.getType(), true))) 7836 return false; 7837 7838 SmallVector<Instruction*, 4> Insts; 7839 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7840 return false; 7841 Instruction *LastInst = Insts.back(); 7842 I.replaceAllUsesWith(LastInst); 7843 RecursivelyDeleteTriviallyDeadInstructions( 7844 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7845 return true; 7846 } 7847 7848 // In this pass we look for GEP and cast instructions that are used 7849 // across basic blocks and rewrite them to improve basic-block-at-a-time 7850 // selection. 7851 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7852 SunkAddrs.clear(); 7853 bool MadeChange = false; 7854 7855 CurInstIterator = BB.begin(); 7856 while (CurInstIterator != BB.end()) { 7857 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7858 if (ModifiedDT) 7859 return true; 7860 } 7861 7862 bool MadeBitReverse = true; 7863 while (MadeBitReverse) { 7864 MadeBitReverse = false; 7865 for (auto &I : reverse(BB)) { 7866 if (makeBitReverse(I)) { 7867 MadeBitReverse = MadeChange = true; 7868 break; 7869 } 7870 } 7871 } 7872 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7873 7874 return MadeChange; 7875 } 7876 7877 // Some CGP optimizations may move or alter what's computed in a block. Check 7878 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7879 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7880 assert(isa<DbgValueInst>(I)); 7881 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7882 7883 // Does this dbg.value refer to a sunk address calculation? 7884 bool AnyChange = false; 7885 for (Value *Location : DVI.getValues()) { 7886 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7887 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7888 if (SunkAddr) { 7889 // Point dbg.value at locally computed address, which should give the best 7890 // opportunity to be accurately lowered. This update may change the type 7891 // of pointer being referred to; however this makes no difference to 7892 // debugging information, and we can't generate bitcasts that may affect 7893 // codegen. 7894 DVI.replaceVariableLocationOp(Location, SunkAddr); 7895 AnyChange = true; 7896 } 7897 } 7898 return AnyChange; 7899 } 7900 7901 // A llvm.dbg.value may be using a value before its definition, due to 7902 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7903 // them by moving the dbg.value to immediately after the value definition. 7904 // FIXME: Ideally this should never be necessary, and this has the potential 7905 // to re-order dbg.value intrinsics. 7906 bool CodeGenPrepare::placeDbgValues(Function &F) { 7907 bool MadeChange = false; 7908 DominatorTree DT(F); 7909 7910 for (BasicBlock &BB : F) { 7911 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7912 Instruction *Insn = &*BI++; 7913 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7914 if (!DVI) 7915 continue; 7916 7917 SmallVector<Instruction *, 4> VIs; 7918 for (Value *V : DVI->getValues()) 7919 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 7920 VIs.push_back(VI); 7921 7922 // This DVI may depend on multiple instructions, complicating any 7923 // potential sink. This block takes the defensive approach, opting to 7924 // "undef" the DVI if it has more than one instruction and any of them do 7925 // not dominate DVI. 7926 for (Instruction *VI : VIs) { 7927 if (VI->isTerminator()) 7928 continue; 7929 7930 // If VI is a phi in a block with an EHPad terminator, we can't insert 7931 // after it. 7932 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7933 continue; 7934 7935 // If the defining instruction dominates the dbg.value, we do not need 7936 // to move the dbg.value. 7937 if (DT.dominates(VI, DVI)) 7938 continue; 7939 7940 // If we depend on multiple instructions and any of them doesn't 7941 // dominate this DVI, we probably can't salvage it: moving it to 7942 // after any of the instructions could cause us to lose the others. 7943 if (VIs.size() > 1) { 7944 LLVM_DEBUG( 7945 dbgs() 7946 << "Unable to find valid location for Debug Value, undefing:\n" 7947 << *DVI); 7948 DVI->setUndef(); 7949 break; 7950 } 7951 7952 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7953 << *DVI << ' ' << *VI); 7954 DVI->removeFromParent(); 7955 if (isa<PHINode>(VI)) 7956 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7957 else 7958 DVI->insertAfter(VI); 7959 MadeChange = true; 7960 ++NumDbgValueMoved; 7961 } 7962 } 7963 } 7964 return MadeChange; 7965 } 7966 7967 /// Scale down both weights to fit into uint32_t. 7968 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7969 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7970 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7971 NewTrue = NewTrue / Scale; 7972 NewFalse = NewFalse / Scale; 7973 } 7974 7975 /// Some targets prefer to split a conditional branch like: 7976 /// \code 7977 /// %0 = icmp ne i32 %a, 0 7978 /// %1 = icmp ne i32 %b, 0 7979 /// %or.cond = or i1 %0, %1 7980 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7981 /// \endcode 7982 /// into multiple branch instructions like: 7983 /// \code 7984 /// bb1: 7985 /// %0 = icmp ne i32 %a, 0 7986 /// br i1 %0, label %TrueBB, label %bb2 7987 /// bb2: 7988 /// %1 = icmp ne i32 %b, 0 7989 /// br i1 %1, label %TrueBB, label %FalseBB 7990 /// \endcode 7991 /// This usually allows instruction selection to do even further optimizations 7992 /// and combine the compare with the branch instruction. Currently this is 7993 /// applied for targets which have "cheap" jump instructions. 7994 /// 7995 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7996 /// 7997 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7998 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7999 return false; 8000 8001 bool MadeChange = false; 8002 for (auto &BB : F) { 8003 // Does this BB end with the following? 8004 // %cond1 = icmp|fcmp|binary instruction ... 8005 // %cond2 = icmp|fcmp|binary instruction ... 8006 // %cond.or = or|and i1 %cond1, cond2 8007 // br i1 %cond.or label %dest1, label %dest2" 8008 Instruction *LogicOp; 8009 BasicBlock *TBB, *FBB; 8010 if (!match(BB.getTerminator(), 8011 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8012 continue; 8013 8014 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8015 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8016 continue; 8017 8018 // The merging of mostly empty BB can cause a degenerate branch. 8019 if (TBB == FBB) 8020 continue; 8021 8022 unsigned Opc; 8023 Value *Cond1, *Cond2; 8024 if (match(LogicOp, 8025 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8026 Opc = Instruction::And; 8027 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8028 m_OneUse(m_Value(Cond2))))) 8029 Opc = Instruction::Or; 8030 else 8031 continue; 8032 8033 auto IsGoodCond = [](Value *Cond) { 8034 return match( 8035 Cond, 8036 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8037 m_LogicalOr(m_Value(), m_Value())))); 8038 }; 8039 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8040 continue; 8041 8042 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8043 8044 // Create a new BB. 8045 auto *TmpBB = 8046 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8047 BB.getParent(), BB.getNextNode()); 8048 8049 // Update original basic block by using the first condition directly by the 8050 // branch instruction and removing the no longer needed and/or instruction. 8051 Br1->setCondition(Cond1); 8052 LogicOp->eraseFromParent(); 8053 8054 // Depending on the condition we have to either replace the true or the 8055 // false successor of the original branch instruction. 8056 if (Opc == Instruction::And) 8057 Br1->setSuccessor(0, TmpBB); 8058 else 8059 Br1->setSuccessor(1, TmpBB); 8060 8061 // Fill in the new basic block. 8062 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8063 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8064 I->removeFromParent(); 8065 I->insertBefore(Br2); 8066 } 8067 8068 // Update PHI nodes in both successors. The original BB needs to be 8069 // replaced in one successor's PHI nodes, because the branch comes now from 8070 // the newly generated BB (NewBB). In the other successor we need to add one 8071 // incoming edge to the PHI nodes, because both branch instructions target 8072 // now the same successor. Depending on the original branch condition 8073 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8074 // we perform the correct update for the PHI nodes. 8075 // This doesn't change the successor order of the just created branch 8076 // instruction (or any other instruction). 8077 if (Opc == Instruction::Or) 8078 std::swap(TBB, FBB); 8079 8080 // Replace the old BB with the new BB. 8081 TBB->replacePhiUsesWith(&BB, TmpBB); 8082 8083 // Add another incoming edge form the new BB. 8084 for (PHINode &PN : FBB->phis()) { 8085 auto *Val = PN.getIncomingValueForBlock(&BB); 8086 PN.addIncoming(Val, TmpBB); 8087 } 8088 8089 // Update the branch weights (from SelectionDAGBuilder:: 8090 // FindMergedConditions). 8091 if (Opc == Instruction::Or) { 8092 // Codegen X | Y as: 8093 // BB1: 8094 // jmp_if_X TBB 8095 // jmp TmpBB 8096 // TmpBB: 8097 // jmp_if_Y TBB 8098 // jmp FBB 8099 // 8100 8101 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8102 // The requirement is that 8103 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8104 // = TrueProb for original BB. 8105 // Assuming the original weights are A and B, one choice is to set BB1's 8106 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8107 // assumes that 8108 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8109 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8110 // TmpBB, but the math is more complicated. 8111 uint64_t TrueWeight, FalseWeight; 8112 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8113 uint64_t NewTrueWeight = TrueWeight; 8114 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8115 scaleWeights(NewTrueWeight, NewFalseWeight); 8116 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8117 .createBranchWeights(TrueWeight, FalseWeight)); 8118 8119 NewTrueWeight = TrueWeight; 8120 NewFalseWeight = 2 * FalseWeight; 8121 scaleWeights(NewTrueWeight, NewFalseWeight); 8122 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8123 .createBranchWeights(TrueWeight, FalseWeight)); 8124 } 8125 } else { 8126 // Codegen X & Y as: 8127 // BB1: 8128 // jmp_if_X TmpBB 8129 // jmp FBB 8130 // TmpBB: 8131 // jmp_if_Y TBB 8132 // jmp FBB 8133 // 8134 // This requires creation of TmpBB after CurBB. 8135 8136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8137 // The requirement is that 8138 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8139 // = FalseProb for original BB. 8140 // Assuming the original weights are A and B, one choice is to set BB1's 8141 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8142 // assumes that 8143 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8144 uint64_t TrueWeight, FalseWeight; 8145 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8146 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8147 uint64_t NewFalseWeight = FalseWeight; 8148 scaleWeights(NewTrueWeight, NewFalseWeight); 8149 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8150 .createBranchWeights(TrueWeight, FalseWeight)); 8151 8152 NewTrueWeight = 2 * TrueWeight; 8153 NewFalseWeight = FalseWeight; 8154 scaleWeights(NewTrueWeight, NewFalseWeight); 8155 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8156 .createBranchWeights(TrueWeight, FalseWeight)); 8157 } 8158 } 8159 8160 ModifiedDT = true; 8161 MadeChange = true; 8162 8163 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8164 TmpBB->dump()); 8165 } 8166 return MadeChange; 8167 } 8168