1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateAssumptions(Function &F); 381 bool eliminateFallThrough(Function &F); 382 bool eliminateMostlyEmptyBlocks(Function &F); 383 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 384 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 385 void eliminateMostlyEmptyBlock(BasicBlock *BB); 386 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 387 bool isPreheader); 388 bool makeBitReverse(Instruction &I); 389 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 390 bool optimizeInst(Instruction *I, bool &ModifiedDT); 391 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 392 Type *AccessTy, unsigned AddrSpace); 393 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 394 bool optimizeInlineAsmInst(CallInst *CS); 395 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 396 bool optimizeExt(Instruction *&I); 397 bool optimizeExtUses(Instruction *I); 398 bool optimizeLoadExt(LoadInst *Load); 399 bool optimizeShiftInst(BinaryOperator *BO); 400 bool optimizeFunnelShift(IntrinsicInst *Fsh); 401 bool optimizeSelectInst(SelectInst *SI); 402 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 403 bool optimizeSwitchInst(SwitchInst *SI); 404 bool optimizeExtractElementInst(Instruction *Inst); 405 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 406 bool fixupDbgValue(Instruction *I); 407 bool placeDbgValues(Function &F); 408 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 409 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 410 bool tryToPromoteExts(TypePromotionTransaction &TPT, 411 const SmallVectorImpl<Instruction *> &Exts, 412 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 413 unsigned CreatedInstsCost = 0); 414 bool mergeSExts(Function &F); 415 bool splitLargeGEPOffsets(); 416 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 417 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 418 bool optimizePhiTypes(Function &F); 419 bool performAddressTypePromotion( 420 Instruction *&Inst, 421 bool AllowPromotionWithoutCommonHeader, 422 bool HasPromoted, TypePromotionTransaction &TPT, 423 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 424 bool splitBranchCondition(Function &F, bool &ModifiedDT); 425 bool simplifyOffsetableRelocate(GCStatepointInst &I); 426 427 bool tryToSinkFreeOperands(Instruction *I); 428 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 429 Value *Arg1, CmpInst *Cmp, 430 Intrinsic::ID IID); 431 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 void verifyBFIUpdates(Function &F); 435 }; 436 437 } // end anonymous namespace 438 439 char CodeGenPrepare::ID = 0; 440 441 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 448 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 449 "Optimize for code generation", false, false) 450 451 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 452 453 bool CodeGenPrepare::runOnFunction(Function &F) { 454 if (skipFunction(F)) 455 return false; 456 457 DL = &F.getParent()->getDataLayout(); 458 459 bool EverMadeChange = false; 460 // Clear per function information. 461 InsertedInsts.clear(); 462 PromotedInsts.clear(); 463 464 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 465 SubtargetInfo = TM->getSubtargetImpl(F); 466 TLI = SubtargetInfo->getTargetLowering(); 467 TRI = SubtargetInfo->getRegisterInfo(); 468 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 469 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 470 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 471 BPI.reset(new BranchProbabilityInfo(F, *LI)); 472 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 473 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 474 OptSize = F.hasOptSize(); 475 if (ProfileGuidedSectionPrefix) { 476 // The hot attribute overwrites profile count based hotness while profile 477 // counts based hotness overwrite the cold attribute. 478 // This is a conservative behabvior. 479 if (F.hasFnAttribute(Attribute::Hot) || 480 PSI->isFunctionHotInCallGraph(&F, *BFI)) 481 F.setSectionPrefix("hot"); 482 // If PSI shows this function is not hot, we will placed the function 483 // into unlikely section if (1) PSI shows this is a cold function, or 484 // (2) the function has a attribute of cold. 485 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 486 F.hasFnAttribute(Attribute::Cold)) 487 F.setSectionPrefix("unlikely"); 488 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 489 PSI->isFunctionHotnessUnknown(F)) 490 F.setSectionPrefix("unknown"); 491 } 492 493 /// This optimization identifies DIV instructions that can be 494 /// profitably bypassed and carried out with a shorter, faster divide. 495 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 496 const DenseMap<unsigned int, unsigned int> &BypassWidths = 497 TLI->getBypassSlowDivWidths(); 498 BasicBlock* BB = &*F.begin(); 499 while (BB != nullptr) { 500 // bypassSlowDivision may create new BBs, but we don't want to reapply the 501 // optimization to those blocks. 502 BasicBlock* Next = BB->getNextNode(); 503 // F.hasOptSize is already checked in the outer if statement. 504 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 505 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 506 BB = Next; 507 } 508 } 509 510 // Get rid of @llvm.assume builtins before attempting to eliminate empty 511 // blocks, since there might be blocks that only contain @llvm.assume calls 512 // (plus arguments that we can get rid of). 513 EverMadeChange |= eliminateAssumptions(F); 514 515 // Eliminate blocks that contain only PHI nodes and an 516 // unconditional branch. 517 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 518 519 bool ModifiedDT = false; 520 if (!DisableBranchOpts) 521 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 522 523 // Split some critical edges where one of the sources is an indirect branch, 524 // to help generate sane code for PHIs involving such edges. 525 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 526 527 bool MadeChange = true; 528 while (MadeChange) { 529 MadeChange = false; 530 DT.reset(); 531 for (Function::iterator I = F.begin(); I != F.end(); ) { 532 BasicBlock *BB = &*I++; 533 bool ModifiedDTOnIteration = false; 534 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 535 536 // Restart BB iteration if the dominator tree of the Function was changed 537 if (ModifiedDTOnIteration) 538 break; 539 } 540 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 541 MadeChange |= mergeSExts(F); 542 if (!LargeOffsetGEPMap.empty()) 543 MadeChange |= splitLargeGEPOffsets(); 544 MadeChange |= optimizePhiTypes(F); 545 546 if (MadeChange) 547 eliminateFallThrough(F); 548 549 // Really free removed instructions during promotion. 550 for (Instruction *I : RemovedInsts) 551 I->deleteValue(); 552 553 EverMadeChange |= MadeChange; 554 SeenChainsForSExt.clear(); 555 ValToSExtendedUses.clear(); 556 RemovedInsts.clear(); 557 LargeOffsetGEPMap.clear(); 558 LargeOffsetGEPID.clear(); 559 } 560 561 NewGEPBases.clear(); 562 SunkAddrs.clear(); 563 564 if (!DisableBranchOpts) { 565 MadeChange = false; 566 // Use a set vector to get deterministic iteration order. The order the 567 // blocks are removed may affect whether or not PHI nodes in successors 568 // are removed. 569 SmallSetVector<BasicBlock*, 8> WorkList; 570 for (BasicBlock &BB : F) { 571 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 572 MadeChange |= ConstantFoldTerminator(&BB, true); 573 if (!MadeChange) continue; 574 575 for (BasicBlock *Succ : Successors) 576 if (pred_empty(Succ)) 577 WorkList.insert(Succ); 578 } 579 580 // Delete the dead blocks and any of their dead successors. 581 MadeChange |= !WorkList.empty(); 582 while (!WorkList.empty()) { 583 BasicBlock *BB = WorkList.pop_back_val(); 584 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 585 586 DeleteDeadBlock(BB); 587 588 for (BasicBlock *Succ : Successors) 589 if (pred_empty(Succ)) 590 WorkList.insert(Succ); 591 } 592 593 // Merge pairs of basic blocks with unconditional branches, connected by 594 // a single edge. 595 if (EverMadeChange || MadeChange) 596 MadeChange |= eliminateFallThrough(F); 597 598 EverMadeChange |= MadeChange; 599 } 600 601 if (!DisableGCOpts) { 602 SmallVector<GCStatepointInst *, 2> Statepoints; 603 for (BasicBlock &BB : F) 604 for (Instruction &I : BB) 605 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 606 Statepoints.push_back(SP); 607 for (auto &I : Statepoints) 608 EverMadeChange |= simplifyOffsetableRelocate(*I); 609 } 610 611 // Do this last to clean up use-before-def scenarios introduced by other 612 // preparatory transforms. 613 EverMadeChange |= placeDbgValues(F); 614 615 #ifndef NDEBUG 616 if (VerifyBFIUpdates) 617 verifyBFIUpdates(F); 618 #endif 619 620 return EverMadeChange; 621 } 622 623 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 624 bool MadeChange = false; 625 for (BasicBlock &BB : F) { 626 CurInstIterator = BB.begin(); 627 while (CurInstIterator != BB.end()) { 628 Instruction *I = &*(CurInstIterator++); 629 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 630 if (II->getIntrinsicID() != Intrinsic::assume) 631 continue; 632 MadeChange = true; 633 Value *Operand = II->getOperand(0); 634 II->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 const auto &I = 663 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 if (I == GEPVector.end()) 665 return; 666 667 GEPVector.erase(I); 668 if (GEPVector.empty()) 669 LargeOffsetGEPMap.erase(VecI); 670 } 671 672 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 673 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 674 DominatorTree NewDT(F); 675 LoopInfo NewLI(NewDT); 676 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 677 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 678 NewBFI.verifyMatch(*BFI); 679 } 680 681 /// Merge basic blocks which are connected by a single edge, where one of the 682 /// basic blocks has a single successor pointing to the other basic block, 683 /// which has a single predecessor. 684 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 685 bool Changed = false; 686 // Scan all of the blocks in the function, except for the entry block. 687 // Use a temporary array to avoid iterator being invalidated when 688 // deleting blocks. 689 SmallVector<WeakTrackingVH, 16> Blocks; 690 for (auto &Block : llvm::drop_begin(F)) 691 Blocks.push_back(&Block); 692 693 SmallSet<WeakTrackingVH, 16> Preds; 694 for (auto &Block : Blocks) { 695 auto *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 // If the destination block has a single pred, then this is a trivial 699 // edge, just collapse it. 700 BasicBlock *SinglePred = BB->getSinglePredecessor(); 701 702 // Don't merge if BB's address is taken. 703 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 704 705 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 706 if (Term && !Term->isConditional()) { 707 Changed = true; 708 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 709 710 // Merge BB into SinglePred and delete it. 711 MergeBlockIntoPredecessor(BB); 712 Preds.insert(SinglePred); 713 } 714 } 715 716 // (Repeatedly) merging blocks into their predecessors can create redundant 717 // debug intrinsics. 718 for (auto &Pred : Preds) 719 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 720 RemoveRedundantDbgInstrs(BB); 721 722 return Changed; 723 } 724 725 /// Find a destination block from BB if BB is mergeable empty block. 726 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 727 // If this block doesn't end with an uncond branch, ignore it. 728 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 729 if (!BI || !BI->isUnconditional()) 730 return nullptr; 731 732 // If the instruction before the branch (skipping debug info) isn't a phi 733 // node, then other stuff is happening here. 734 BasicBlock::iterator BBI = BI->getIterator(); 735 if (BBI != BB->begin()) { 736 --BBI; 737 while (isa<DbgInfoIntrinsic>(BBI)) { 738 if (BBI == BB->begin()) 739 break; 740 --BBI; 741 } 742 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 743 return nullptr; 744 } 745 746 // Do not break infinite loops. 747 BasicBlock *DestBB = BI->getSuccessor(0); 748 if (DestBB == BB) 749 return nullptr; 750 751 if (!canMergeBlocks(BB, DestBB)) 752 DestBB = nullptr; 753 754 return DestBB; 755 } 756 757 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 758 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 759 /// edges in ways that are non-optimal for isel. Start by eliminating these 760 /// blocks so we can split them the way we want them. 761 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 762 SmallPtrSet<BasicBlock *, 16> Preheaders; 763 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 764 while (!LoopList.empty()) { 765 Loop *L = LoopList.pop_back_val(); 766 llvm::append_range(LoopList, *L); 767 if (BasicBlock *Preheader = L->getLoopPreheader()) 768 Preheaders.insert(Preheader); 769 } 770 771 bool MadeChange = false; 772 // Copy blocks into a temporary array to avoid iterator invalidation issues 773 // as we remove them. 774 // Note that this intentionally skips the entry block. 775 SmallVector<WeakTrackingVH, 16> Blocks; 776 for (auto &Block : llvm::drop_begin(F)) 777 Blocks.push_back(&Block); 778 779 for (auto &Block : Blocks) { 780 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 781 if (!BB) 782 continue; 783 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 784 if (!DestBB || 785 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 786 continue; 787 788 eliminateMostlyEmptyBlock(BB); 789 MadeChange = true; 790 } 791 return MadeChange; 792 } 793 794 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 795 BasicBlock *DestBB, 796 bool isPreheader) { 797 // Do not delete loop preheaders if doing so would create a critical edge. 798 // Loop preheaders can be good locations to spill registers. If the 799 // preheader is deleted and we create a critical edge, registers may be 800 // spilled in the loop body instead. 801 if (!DisablePreheaderProtect && isPreheader && 802 !(BB->getSinglePredecessor() && 803 BB->getSinglePredecessor()->getSingleSuccessor())) 804 return false; 805 806 // Skip merging if the block's successor is also a successor to any callbr 807 // that leads to this block. 808 // FIXME: Is this really needed? Is this a correctness issue? 809 for (BasicBlock *Pred : predecessors(BB)) { 810 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 811 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 812 if (DestBB == CBI->getSuccessor(i)) 813 return false; 814 } 815 816 // Try to skip merging if the unique predecessor of BB is terminated by a 817 // switch or indirect branch instruction, and BB is used as an incoming block 818 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 819 // add COPY instructions in the predecessor of BB instead of BB (if it is not 820 // merged). Note that the critical edge created by merging such blocks wont be 821 // split in MachineSink because the jump table is not analyzable. By keeping 822 // such empty block (BB), ISel will place COPY instructions in BB, not in the 823 // predecessor of BB. 824 BasicBlock *Pred = BB->getUniquePredecessor(); 825 if (!Pred || 826 !(isa<SwitchInst>(Pred->getTerminator()) || 827 isa<IndirectBrInst>(Pred->getTerminator()))) 828 return true; 829 830 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 831 return true; 832 833 // We use a simple cost heuristic which determine skipping merging is 834 // profitable if the cost of skipping merging is less than the cost of 835 // merging : Cost(skipping merging) < Cost(merging BB), where the 836 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 837 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 838 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 839 // Freq(Pred) / Freq(BB) > 2. 840 // Note that if there are multiple empty blocks sharing the same incoming 841 // value for the PHIs in the DestBB, we consider them together. In such 842 // case, Cost(merging BB) will be the sum of their frequencies. 843 844 if (!isa<PHINode>(DestBB->begin())) 845 return true; 846 847 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 848 849 // Find all other incoming blocks from which incoming values of all PHIs in 850 // DestBB are the same as the ones from BB. 851 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 852 if (DestBBPred == BB) 853 continue; 854 855 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 856 return DestPN.getIncomingValueForBlock(BB) == 857 DestPN.getIncomingValueForBlock(DestBBPred); 858 })) 859 SameIncomingValueBBs.insert(DestBBPred); 860 } 861 862 // See if all BB's incoming values are same as the value from Pred. In this 863 // case, no reason to skip merging because COPYs are expected to be place in 864 // Pred already. 865 if (SameIncomingValueBBs.count(Pred)) 866 return true; 867 868 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 869 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 870 871 for (auto *SameValueBB : SameIncomingValueBBs) 872 if (SameValueBB->getUniquePredecessor() == Pred && 873 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 874 BBFreq += BFI->getBlockFreq(SameValueBB); 875 876 return PredFreq.getFrequency() <= 877 BBFreq.getFrequency() * FreqRatioToSkipMerge; 878 } 879 880 /// Return true if we can merge BB into DestBB if there is a single 881 /// unconditional branch between them, and BB contains no other non-phi 882 /// instructions. 883 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 884 const BasicBlock *DestBB) const { 885 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 886 // the successor. If there are more complex condition (e.g. preheaders), 887 // don't mess around with them. 888 for (const PHINode &PN : BB->phis()) { 889 for (const User *U : PN.users()) { 890 const Instruction *UI = cast<Instruction>(U); 891 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 892 return false; 893 // If User is inside DestBB block and it is a PHINode then check 894 // incoming value. If incoming value is not from BB then this is 895 // a complex condition (e.g. preheaders) we want to avoid here. 896 if (UI->getParent() == DestBB) { 897 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 898 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 899 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 900 if (Insn && Insn->getParent() == BB && 901 Insn->getParent() != UPN->getIncomingBlock(I)) 902 return false; 903 } 904 } 905 } 906 } 907 908 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 909 // and DestBB may have conflicting incoming values for the block. If so, we 910 // can't merge the block. 911 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 912 if (!DestBBPN) return true; // no conflict. 913 914 // Collect the preds of BB. 915 SmallPtrSet<const BasicBlock*, 16> BBPreds; 916 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 917 // It is faster to get preds from a PHI than with pred_iterator. 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 BBPreds.insert(BBPN->getIncomingBlock(i)); 920 } else { 921 BBPreds.insert(pred_begin(BB), pred_end(BB)); 922 } 923 924 // Walk the preds of DestBB. 925 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 926 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 927 if (BBPreds.count(Pred)) { // Common predecessor? 928 for (const PHINode &PN : DestBB->phis()) { 929 const Value *V1 = PN.getIncomingValueForBlock(Pred); 930 const Value *V2 = PN.getIncomingValueForBlock(BB); 931 932 // If V2 is a phi node in BB, look up what the mapped value will be. 933 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 934 if (V2PN->getParent() == BB) 935 V2 = V2PN->getIncomingValueForBlock(Pred); 936 937 // If there is a conflict, bail out. 938 if (V1 != V2) return false; 939 } 940 } 941 } 942 943 return true; 944 } 945 946 /// Eliminate a basic block that has only phi's and an unconditional branch in 947 /// it. 948 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 949 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 950 BasicBlock *DestBB = BI->getSuccessor(0); 951 952 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 953 << *BB << *DestBB); 954 955 // If the destination block has a single pred, then this is a trivial edge, 956 // just collapse it. 957 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 958 if (SinglePred != DestBB) { 959 assert(SinglePred == BB && 960 "Single predecessor not the same as predecessor"); 961 // Merge DestBB into SinglePred/BB and delete it. 962 MergeBlockIntoPredecessor(DestBB); 963 // Note: BB(=SinglePred) will not be deleted on this path. 964 // DestBB(=its single successor) is the one that was deleted. 965 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 966 return; 967 } 968 } 969 970 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 971 // to handle the new incoming edges it is about to have. 972 for (PHINode &PN : DestBB->phis()) { 973 // Remove the incoming value for BB, and remember it. 974 Value *InVal = PN.removeIncomingValue(BB, false); 975 976 // Two options: either the InVal is a phi node defined in BB or it is some 977 // value that dominates BB. 978 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 979 if (InValPhi && InValPhi->getParent() == BB) { 980 // Add all of the input values of the input PHI as inputs of this phi. 981 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 982 PN.addIncoming(InValPhi->getIncomingValue(i), 983 InValPhi->getIncomingBlock(i)); 984 } else { 985 // Otherwise, add one instance of the dominating value for each edge that 986 // we will be adding. 987 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 988 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 989 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 990 } else { 991 for (BasicBlock *Pred : predecessors(BB)) 992 PN.addIncoming(InVal, Pred); 993 } 994 } 995 } 996 997 // The PHIs are now updated, change everything that refers to BB to use 998 // DestBB and remove BB. 999 BB->replaceAllUsesWith(DestBB); 1000 BB->eraseFromParent(); 1001 ++NumBlocksElim; 1002 1003 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1004 } 1005 1006 // Computes a map of base pointer relocation instructions to corresponding 1007 // derived pointer relocation instructions given a vector of all relocate calls 1008 static void computeBaseDerivedRelocateMap( 1009 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1011 &RelocateInstMap) { 1012 // Collect information in two maps: one primarily for locating the base object 1013 // while filling the second map; the second map is the final structure holding 1014 // a mapping between Base and corresponding Derived relocate calls 1015 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1016 for (auto *ThisRelocate : AllRelocateCalls) { 1017 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1018 ThisRelocate->getDerivedPtrIndex()); 1019 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1020 } 1021 for (auto &Item : RelocateIdxMap) { 1022 std::pair<unsigned, unsigned> Key = Item.first; 1023 if (Key.first == Key.second) 1024 // Base relocation: nothing to insert 1025 continue; 1026 1027 GCRelocateInst *I = Item.second; 1028 auto BaseKey = std::make_pair(Key.first, Key.first); 1029 1030 // We're iterating over RelocateIdxMap so we cannot modify it. 1031 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1032 if (MaybeBase == RelocateIdxMap.end()) 1033 // TODO: We might want to insert a new base object relocate and gep off 1034 // that, if there are enough derived object relocates. 1035 continue; 1036 1037 RelocateInstMap[MaybeBase->second].push_back(I); 1038 } 1039 } 1040 1041 // Accepts a GEP and extracts the operands into a vector provided they're all 1042 // small integer constants 1043 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1044 SmallVectorImpl<Value *> &OffsetV) { 1045 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1046 // Only accept small constant integer operands 1047 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1048 if (!Op || Op->getZExtValue() > 20) 1049 return false; 1050 } 1051 1052 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1053 OffsetV.push_back(GEP->getOperand(i)); 1054 return true; 1055 } 1056 1057 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1058 // replace, computes a replacement, and affects it. 1059 static bool 1060 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1061 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1062 bool MadeChange = false; 1063 // We must ensure the relocation of derived pointer is defined after 1064 // relocation of base pointer. If we find a relocation corresponding to base 1065 // defined earlier than relocation of base then we move relocation of base 1066 // right before found relocation. We consider only relocation in the same 1067 // basic block as relocation of base. Relocations from other basic block will 1068 // be skipped by optimization and we do not care about them. 1069 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1070 &*R != RelocatedBase; ++R) 1071 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1072 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1073 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1074 RelocatedBase->moveBefore(RI); 1075 break; 1076 } 1077 1078 for (GCRelocateInst *ToReplace : Targets) { 1079 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1080 "Not relocating a derived object of the original base object"); 1081 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1082 // A duplicate relocate call. TODO: coalesce duplicates. 1083 continue; 1084 } 1085 1086 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1087 // Base and derived relocates are in different basic blocks. 1088 // In this case transform is only valid when base dominates derived 1089 // relocate. However it would be too expensive to check dominance 1090 // for each such relocate, so we skip the whole transformation. 1091 continue; 1092 } 1093 1094 Value *Base = ToReplace->getBasePtr(); 1095 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1096 if (!Derived || Derived->getPointerOperand() != Base) 1097 continue; 1098 1099 SmallVector<Value *, 2> OffsetV; 1100 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1101 continue; 1102 1103 // Create a Builder and replace the target callsite with a gep 1104 assert(RelocatedBase->getNextNode() && 1105 "Should always have one since it's not a terminator"); 1106 1107 // Insert after RelocatedBase 1108 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1109 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1110 1111 // If gc_relocate does not match the actual type, cast it to the right type. 1112 // In theory, there must be a bitcast after gc_relocate if the type does not 1113 // match, and we should reuse it to get the derived pointer. But it could be 1114 // cases like this: 1115 // bb1: 1116 // ... 1117 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // bb2: 1121 // ... 1122 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1123 // br label %merge 1124 // 1125 // merge: 1126 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1127 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1128 // 1129 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1130 // no matter there is already one or not. In this way, we can handle all cases, and 1131 // the extra bitcast should be optimized away in later passes. 1132 Value *ActualRelocatedBase = RelocatedBase; 1133 if (RelocatedBase->getType() != Base->getType()) { 1134 ActualRelocatedBase = 1135 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1136 } 1137 Value *Replacement = Builder.CreateGEP( 1138 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1139 Replacement->takeName(ToReplace); 1140 // If the newly generated derived pointer's type does not match the original derived 1141 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1142 Value *ActualReplacement = Replacement; 1143 if (Replacement->getType() != ToReplace->getType()) { 1144 ActualReplacement = 1145 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1146 } 1147 ToReplace->replaceAllUsesWith(ActualReplacement); 1148 ToReplace->eraseFromParent(); 1149 1150 MadeChange = true; 1151 } 1152 return MadeChange; 1153 } 1154 1155 // Turns this: 1156 // 1157 // %base = ... 1158 // %ptr = gep %base + 15 1159 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1160 // %base' = relocate(%tok, i32 4, i32 4) 1161 // %ptr' = relocate(%tok, i32 4, i32 5) 1162 // %val = load %ptr' 1163 // 1164 // into this: 1165 // 1166 // %base = ... 1167 // %ptr = gep %base + 15 1168 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1169 // %base' = gc.relocate(%tok, i32 4, i32 4) 1170 // %ptr' = gep %base' + 15 1171 // %val = load %ptr' 1172 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1173 bool MadeChange = false; 1174 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1175 for (auto *U : I.users()) 1176 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1177 // Collect all the relocate calls associated with a statepoint 1178 AllRelocateCalls.push_back(Relocate); 1179 1180 // We need at least one base pointer relocation + one derived pointer 1181 // relocation to mangle 1182 if (AllRelocateCalls.size() < 2) 1183 return false; 1184 1185 // RelocateInstMap is a mapping from the base relocate instruction to the 1186 // corresponding derived relocate instructions 1187 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1188 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1189 if (RelocateInstMap.empty()) 1190 return false; 1191 1192 for (auto &Item : RelocateInstMap) 1193 // Item.first is the RelocatedBase to offset against 1194 // Item.second is the vector of Targets to replace 1195 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1196 return MadeChange; 1197 } 1198 1199 /// Sink the specified cast instruction into its user blocks. 1200 static bool SinkCast(CastInst *CI) { 1201 BasicBlock *DefBB = CI->getParent(); 1202 1203 /// InsertedCasts - Only insert a cast in each block once. 1204 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1205 1206 bool MadeChange = false; 1207 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1208 UI != E; ) { 1209 Use &TheUse = UI.getUse(); 1210 Instruction *User = cast<Instruction>(*UI); 1211 1212 // Figure out which BB this cast is used in. For PHI's this is the 1213 // appropriate predecessor block. 1214 BasicBlock *UserBB = User->getParent(); 1215 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1216 UserBB = PN->getIncomingBlock(TheUse); 1217 } 1218 1219 // Preincrement use iterator so we don't invalidate it. 1220 ++UI; 1221 1222 // The first insertion point of a block containing an EH pad is after the 1223 // pad. If the pad is the user, we cannot sink the cast past the pad. 1224 if (User->isEHPad()) 1225 continue; 1226 1227 // If the block selected to receive the cast is an EH pad that does not 1228 // allow non-PHI instructions before the terminator, we can't sink the 1229 // cast. 1230 if (UserBB->getTerminator()->isEHPad()) 1231 continue; 1232 1233 // If this user is in the same block as the cast, don't change the cast. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cast into this block, use it. 1237 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1238 1239 if (!InsertedCast) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1243 CI->getType(), "", &*InsertPt); 1244 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1245 } 1246 1247 // Replace a use of the cast with a use of the new cast. 1248 TheUse = InsertedCast; 1249 MadeChange = true; 1250 ++NumCastUses; 1251 } 1252 1253 // If we removed all uses, nuke the cast. 1254 if (CI->use_empty()) { 1255 salvageDebugInfo(*CI); 1256 CI->eraseFromParent(); 1257 MadeChange = true; 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1264 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1265 /// reduce the number of virtual registers that must be created and coalesced. 1266 /// 1267 /// Return true if any changes are made. 1268 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1269 const DataLayout &DL) { 1270 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1271 // than sinking only nop casts, but is helpful on some platforms. 1272 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1273 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1274 ASC->getDestAddressSpace())) 1275 return false; 1276 } 1277 1278 // If this is a noop copy, 1279 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1281 1282 // This is an fp<->int conversion? 1283 if (SrcVT.isInteger() != DstVT.isInteger()) 1284 return false; 1285 1286 // If this is an extension, it will be a zero or sign extension, which 1287 // isn't a noop. 1288 if (SrcVT.bitsLT(DstVT)) return false; 1289 1290 // If these values will be promoted, find out what they will be promoted 1291 // to. This helps us consider truncates on PPC as noop copies when they 1292 // are. 1293 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1294 TargetLowering::TypePromoteInteger) 1295 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1296 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1297 TargetLowering::TypePromoteInteger) 1298 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1299 1300 // If, after promotion, these are the same types, this is a noop copy. 1301 if (SrcVT != DstVT) 1302 return false; 1303 1304 return SinkCast(CI); 1305 } 1306 1307 /// If given \p PN is an inductive variable with value IVInc coming from the 1308 /// backedge, and on each iteration it gets increased by Step, return pair 1309 /// <IVInc, Step>. Otherwise, return None. 1310 static Optional<std::pair<Instruction *, Constant *> > 1311 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1312 const Loop *L = LI->getLoopFor(PN->getParent()); 1313 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1314 return None; 1315 auto *IVInc = 1316 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1317 if (!IVInc) 1318 return None; 1319 Constant *Step = nullptr; 1320 if (match(IVInc, m_Sub(m_Specific(PN), m_Constant(Step)))) 1321 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1322 if (match(IVInc, m_Add(m_Specific(PN), m_Constant(Step)))) 1323 return std::make_pair(IVInc, Step); 1324 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1325 m_Specific(PN), m_Constant(Step))))) 1326 return std::make_pair(IVInc, ConstantExpr::getNeg(Step)); 1327 if (match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1328 m_Specific(PN), m_Constant(Step))))) 1329 return std::make_pair(IVInc, Step); 1330 return None; 1331 } 1332 1333 static bool isIVIncrement(const BinaryOperator *BO, const LoopInfo *LI) { 1334 auto *PN = dyn_cast<PHINode>(BO->getOperand(0)); 1335 if (!PN) 1336 return false; 1337 if (auto IVInc = getIVIncrement(PN, LI)) 1338 return IVInc->first == BO; 1339 return false; 1340 } 1341 1342 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1343 Value *Arg0, Value *Arg1, 1344 CmpInst *Cmp, 1345 Intrinsic::ID IID) { 1346 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1347 if (!isIVIncrement(BO, LI)) 1348 return false; 1349 const Loop *L = LI->getLoopFor(BO->getParent()); 1350 // IV increment may have other users than the IV. We do not want to make 1351 // dominance queries to analyze the legality of moving it towards the cmp, 1352 // so just check that there is no other users. 1353 if (!BO->hasOneUse()) 1354 return false; 1355 // Do not risk on moving increment into a child loop. 1356 if (LI->getLoopFor(Cmp->getParent()) != L) 1357 return false; 1358 // Ultimately, the insertion point must dominate latch. This should be a 1359 // cheap check because no CFG changes & dom tree recomputation happens 1360 // during the transform. 1361 Function *F = BO->getParent()->getParent(); 1362 return getDT(*F).dominates(Cmp->getParent(), L->getLoopLatch()); 1363 }; 1364 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1365 // We used to use a dominator tree here to allow multi-block optimization. 1366 // But that was problematic because: 1367 // 1. It could cause a perf regression by hoisting the math op into the 1368 // critical path. 1369 // 2. It could cause a perf regression by creating a value that was live 1370 // across multiple blocks and increasing register pressure. 1371 // 3. Use of a dominator tree could cause large compile-time regression. 1372 // This is because we recompute the DT on every change in the main CGP 1373 // run-loop. The recomputing is probably unnecessary in many cases, so if 1374 // that was fixed, using a DT here would be ok. 1375 // 1376 // There is one important particular case we still want to handle: if BO is 1377 // the IV increment. Important properties that make it profitable: 1378 // - We can speculate IV increment anywhere in the loop (as long as the 1379 // indvar Phi is its only user); 1380 // - Upon computing Cmp, we effectively compute something equivalent to the 1381 // IV increment (despite it loops differently in the IR). So moving it up 1382 // to the cmp point does not really increase register pressure. 1383 return false; 1384 } 1385 1386 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1387 if (BO->getOpcode() == Instruction::Add && 1388 IID == Intrinsic::usub_with_overflow) { 1389 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1390 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1391 } 1392 1393 // Insert at the first instruction of the pair. 1394 Instruction *InsertPt = nullptr; 1395 for (Instruction &Iter : *Cmp->getParent()) { 1396 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1397 // the overflow intrinsic are defined. 1398 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1399 InsertPt = &Iter; 1400 break; 1401 } 1402 } 1403 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1404 1405 IRBuilder<> Builder(InsertPt); 1406 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1407 if (BO->getOpcode() != Instruction::Xor) { 1408 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1409 BO->replaceAllUsesWith(Math); 1410 } else 1411 assert(BO->hasOneUse() && 1412 "Patterns with XOr should use the BO only in the compare"); 1413 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1414 Cmp->replaceAllUsesWith(OV); 1415 Cmp->eraseFromParent(); 1416 BO->eraseFromParent(); 1417 return true; 1418 } 1419 1420 /// Match special-case patterns that check for unsigned add overflow. 1421 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1422 BinaryOperator *&Add) { 1423 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1424 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1425 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1426 1427 // We are not expecting non-canonical/degenerate code. Just bail out. 1428 if (isa<Constant>(A)) 1429 return false; 1430 1431 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1432 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1433 B = ConstantInt::get(B->getType(), 1); 1434 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1435 B = ConstantInt::get(B->getType(), -1); 1436 else 1437 return false; 1438 1439 // Check the users of the variable operand of the compare looking for an add 1440 // with the adjusted constant. 1441 for (User *U : A->users()) { 1442 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1443 Add = cast<BinaryOperator>(U); 1444 return true; 1445 } 1446 } 1447 return false; 1448 } 1449 1450 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1451 /// intrinsic. Return true if any changes were made. 1452 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1453 bool &ModifiedDT) { 1454 Value *A, *B; 1455 BinaryOperator *Add; 1456 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1457 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1458 return false; 1459 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1460 A = Add->getOperand(0); 1461 B = Add->getOperand(1); 1462 } 1463 1464 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1465 TLI->getValueType(*DL, Add->getType()), 1466 Add->hasNUsesOrMore(2))) 1467 return false; 1468 1469 // We don't want to move around uses of condition values this late, so we 1470 // check if it is legal to create the call to the intrinsic in the basic 1471 // block containing the icmp. 1472 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1473 return false; 1474 1475 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1476 Intrinsic::uadd_with_overflow)) 1477 return false; 1478 1479 // Reset callers - do not crash by iterating over a dead instruction. 1480 ModifiedDT = true; 1481 return true; 1482 } 1483 1484 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1485 bool &ModifiedDT) { 1486 // We are not expecting non-canonical/degenerate code. Just bail out. 1487 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1488 if (isa<Constant>(A) && isa<Constant>(B)) 1489 return false; 1490 1491 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1492 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1493 if (Pred == ICmpInst::ICMP_UGT) { 1494 std::swap(A, B); 1495 Pred = ICmpInst::ICMP_ULT; 1496 } 1497 // Convert special-case: (A == 0) is the same as (A u< 1). 1498 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1499 B = ConstantInt::get(B->getType(), 1); 1500 Pred = ICmpInst::ICMP_ULT; 1501 } 1502 // Convert special-case: (A != 0) is the same as (0 u< A). 1503 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1504 std::swap(A, B); 1505 Pred = ICmpInst::ICMP_ULT; 1506 } 1507 if (Pred != ICmpInst::ICMP_ULT) 1508 return false; 1509 1510 // Walk the users of a variable operand of a compare looking for a subtract or 1511 // add with that same operand. Also match the 2nd operand of the compare to 1512 // the add/sub, but that may be a negated constant operand of an add. 1513 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1514 BinaryOperator *Sub = nullptr; 1515 for (User *U : CmpVariableOperand->users()) { 1516 // A - B, A u< B --> usubo(A, B) 1517 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1518 Sub = cast<BinaryOperator>(U); 1519 break; 1520 } 1521 1522 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1523 const APInt *CmpC, *AddC; 1524 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1525 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1526 Sub = cast<BinaryOperator>(U); 1527 break; 1528 } 1529 } 1530 if (!Sub) 1531 return false; 1532 1533 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1534 TLI->getValueType(*DL, Sub->getType()), 1535 Sub->hasNUsesOrMore(2))) 1536 return false; 1537 1538 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1539 Cmp, Intrinsic::usub_with_overflow)) 1540 return false; 1541 1542 // Reset callers - do not crash by iterating over a dead instruction. 1543 ModifiedDT = true; 1544 return true; 1545 } 1546 1547 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1548 /// registers that must be created and coalesced. This is a clear win except on 1549 /// targets with multiple condition code registers (PowerPC), where it might 1550 /// lose; some adjustment may be wanted there. 1551 /// 1552 /// Return true if any changes are made. 1553 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1554 if (TLI.hasMultipleConditionRegisters()) 1555 return false; 1556 1557 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1558 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1559 return false; 1560 1561 // Only insert a cmp in each block once. 1562 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1563 1564 bool MadeChange = false; 1565 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1566 UI != E; ) { 1567 Use &TheUse = UI.getUse(); 1568 Instruction *User = cast<Instruction>(*UI); 1569 1570 // Preincrement use iterator so we don't invalidate it. 1571 ++UI; 1572 1573 // Don't bother for PHI nodes. 1574 if (isa<PHINode>(User)) 1575 continue; 1576 1577 // Figure out which BB this cmp is used in. 1578 BasicBlock *UserBB = User->getParent(); 1579 BasicBlock *DefBB = Cmp->getParent(); 1580 1581 // If this user is in the same block as the cmp, don't change the cmp. 1582 if (UserBB == DefBB) continue; 1583 1584 // If we have already inserted a cmp into this block, use it. 1585 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1586 1587 if (!InsertedCmp) { 1588 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1589 assert(InsertPt != UserBB->end()); 1590 InsertedCmp = 1591 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1592 Cmp->getOperand(0), Cmp->getOperand(1), "", 1593 &*InsertPt); 1594 // Propagate the debug info. 1595 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1596 } 1597 1598 // Replace a use of the cmp with a use of the new cmp. 1599 TheUse = InsertedCmp; 1600 MadeChange = true; 1601 ++NumCmpUses; 1602 } 1603 1604 // If we removed all uses, nuke the cmp. 1605 if (Cmp->use_empty()) { 1606 Cmp->eraseFromParent(); 1607 MadeChange = true; 1608 } 1609 1610 return MadeChange; 1611 } 1612 1613 /// For pattern like: 1614 /// 1615 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1616 /// ... 1617 /// DomBB: 1618 /// ... 1619 /// br DomCond, TrueBB, CmpBB 1620 /// CmpBB: (with DomBB being the single predecessor) 1621 /// ... 1622 /// Cmp = icmp eq CmpOp0, CmpOp1 1623 /// ... 1624 /// 1625 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1626 /// different from lowering of icmp eq (PowerPC). This function try to convert 1627 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1628 /// After that, DomCond and Cmp can use the same comparison so reduce one 1629 /// comparison. 1630 /// 1631 /// Return true if any changes are made. 1632 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1633 const TargetLowering &TLI) { 1634 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1635 return false; 1636 1637 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1638 if (Pred != ICmpInst::ICMP_EQ) 1639 return false; 1640 1641 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1642 // icmp slt/sgt would introduce more redundant LLVM IR. 1643 for (User *U : Cmp->users()) { 1644 if (isa<BranchInst>(U)) 1645 continue; 1646 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1647 continue; 1648 return false; 1649 } 1650 1651 // This is a cheap/incomplete check for dominance - just match a single 1652 // predecessor with a conditional branch. 1653 BasicBlock *CmpBB = Cmp->getParent(); 1654 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1655 if (!DomBB) 1656 return false; 1657 1658 // We want to ensure that the only way control gets to the comparison of 1659 // interest is that a less/greater than comparison on the same operands is 1660 // false. 1661 Value *DomCond; 1662 BasicBlock *TrueBB, *FalseBB; 1663 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1664 return false; 1665 if (CmpBB != FalseBB) 1666 return false; 1667 1668 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1669 ICmpInst::Predicate DomPred; 1670 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1671 return false; 1672 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1673 return false; 1674 1675 // Convert the equality comparison to the opposite of the dominating 1676 // comparison and swap the direction for all branch/select users. 1677 // We have conceptually converted: 1678 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1679 // to 1680 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1681 // And similarly for branches. 1682 for (User *U : Cmp->users()) { 1683 if (auto *BI = dyn_cast<BranchInst>(U)) { 1684 assert(BI->isConditional() && "Must be conditional"); 1685 BI->swapSuccessors(); 1686 continue; 1687 } 1688 if (auto *SI = dyn_cast<SelectInst>(U)) { 1689 // Swap operands 1690 SI->swapValues(); 1691 SI->swapProfMetadata(); 1692 continue; 1693 } 1694 llvm_unreachable("Must be a branch or a select"); 1695 } 1696 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1697 return true; 1698 } 1699 1700 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1701 if (sinkCmpExpression(Cmp, *TLI)) 1702 return true; 1703 1704 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1705 return true; 1706 1707 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1708 return true; 1709 1710 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1711 return true; 1712 1713 return false; 1714 } 1715 1716 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1717 /// used in a compare to allow isel to generate better code for targets where 1718 /// this operation can be combined. 1719 /// 1720 /// Return true if any changes are made. 1721 static bool sinkAndCmp0Expression(Instruction *AndI, 1722 const TargetLowering &TLI, 1723 SetOfInstrs &InsertedInsts) { 1724 // Double-check that we're not trying to optimize an instruction that was 1725 // already optimized by some other part of this pass. 1726 assert(!InsertedInsts.count(AndI) && 1727 "Attempting to optimize already optimized and instruction"); 1728 (void) InsertedInsts; 1729 1730 // Nothing to do for single use in same basic block. 1731 if (AndI->hasOneUse() && 1732 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1733 return false; 1734 1735 // Try to avoid cases where sinking/duplicating is likely to increase register 1736 // pressure. 1737 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1738 !isa<ConstantInt>(AndI->getOperand(1)) && 1739 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1740 return false; 1741 1742 for (auto *U : AndI->users()) { 1743 Instruction *User = cast<Instruction>(U); 1744 1745 // Only sink 'and' feeding icmp with 0. 1746 if (!isa<ICmpInst>(User)) 1747 return false; 1748 1749 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1750 if (!CmpC || !CmpC->isZero()) 1751 return false; 1752 } 1753 1754 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1755 return false; 1756 1757 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1758 LLVM_DEBUG(AndI->getParent()->dump()); 1759 1760 // Push the 'and' into the same block as the icmp 0. There should only be 1761 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1762 // others, so we don't need to keep track of which BBs we insert into. 1763 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1764 UI != E; ) { 1765 Use &TheUse = UI.getUse(); 1766 Instruction *User = cast<Instruction>(*UI); 1767 1768 // Preincrement use iterator so we don't invalidate it. 1769 ++UI; 1770 1771 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1772 1773 // Keep the 'and' in the same place if the use is already in the same block. 1774 Instruction *InsertPt = 1775 User->getParent() == AndI->getParent() ? AndI : User; 1776 Instruction *InsertedAnd = 1777 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1778 AndI->getOperand(1), "", InsertPt); 1779 // Propagate the debug info. 1780 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1781 1782 // Replace a use of the 'and' with a use of the new 'and'. 1783 TheUse = InsertedAnd; 1784 ++NumAndUses; 1785 LLVM_DEBUG(User->getParent()->dump()); 1786 } 1787 1788 // We removed all uses, nuke the and. 1789 AndI->eraseFromParent(); 1790 return true; 1791 } 1792 1793 /// Check if the candidates could be combined with a shift instruction, which 1794 /// includes: 1795 /// 1. Truncate instruction 1796 /// 2. And instruction and the imm is a mask of the low bits: 1797 /// imm & (imm+1) == 0 1798 static bool isExtractBitsCandidateUse(Instruction *User) { 1799 if (!isa<TruncInst>(User)) { 1800 if (User->getOpcode() != Instruction::And || 1801 !isa<ConstantInt>(User->getOperand(1))) 1802 return false; 1803 1804 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1805 1806 if ((Cimm & (Cimm + 1)).getBoolValue()) 1807 return false; 1808 } 1809 return true; 1810 } 1811 1812 /// Sink both shift and truncate instruction to the use of truncate's BB. 1813 static bool 1814 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1815 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1816 const TargetLowering &TLI, const DataLayout &DL) { 1817 BasicBlock *UserBB = User->getParent(); 1818 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1819 auto *TruncI = cast<TruncInst>(User); 1820 bool MadeChange = false; 1821 1822 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1823 TruncE = TruncI->user_end(); 1824 TruncUI != TruncE;) { 1825 1826 Use &TruncTheUse = TruncUI.getUse(); 1827 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1828 // Preincrement use iterator so we don't invalidate it. 1829 1830 ++TruncUI; 1831 1832 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1833 if (!ISDOpcode) 1834 continue; 1835 1836 // If the use is actually a legal node, there will not be an 1837 // implicit truncate. 1838 // FIXME: always querying the result type is just an 1839 // approximation; some nodes' legality is determined by the 1840 // operand or other means. There's no good way to find out though. 1841 if (TLI.isOperationLegalOrCustom( 1842 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1843 continue; 1844 1845 // Don't bother for PHI nodes. 1846 if (isa<PHINode>(TruncUser)) 1847 continue; 1848 1849 BasicBlock *TruncUserBB = TruncUser->getParent(); 1850 1851 if (UserBB == TruncUserBB) 1852 continue; 1853 1854 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1855 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1856 1857 if (!InsertedShift && !InsertedTrunc) { 1858 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1859 assert(InsertPt != TruncUserBB->end()); 1860 // Sink the shift 1861 if (ShiftI->getOpcode() == Instruction::AShr) 1862 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1863 "", &*InsertPt); 1864 else 1865 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1866 "", &*InsertPt); 1867 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1868 1869 // Sink the trunc 1870 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1871 TruncInsertPt++; 1872 assert(TruncInsertPt != TruncUserBB->end()); 1873 1874 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1875 TruncI->getType(), "", &*TruncInsertPt); 1876 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1877 1878 MadeChange = true; 1879 1880 TruncTheUse = InsertedTrunc; 1881 } 1882 } 1883 return MadeChange; 1884 } 1885 1886 /// Sink the shift *right* instruction into user blocks if the uses could 1887 /// potentially be combined with this shift instruction and generate BitExtract 1888 /// instruction. It will only be applied if the architecture supports BitExtract 1889 /// instruction. Here is an example: 1890 /// BB1: 1891 /// %x.extract.shift = lshr i64 %arg1, 32 1892 /// BB2: 1893 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1894 /// ==> 1895 /// 1896 /// BB2: 1897 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1898 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1899 /// 1900 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1901 /// instruction. 1902 /// Return true if any changes are made. 1903 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1904 const TargetLowering &TLI, 1905 const DataLayout &DL) { 1906 BasicBlock *DefBB = ShiftI->getParent(); 1907 1908 /// Only insert instructions in each block once. 1909 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1910 1911 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1912 1913 bool MadeChange = false; 1914 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1915 UI != E;) { 1916 Use &TheUse = UI.getUse(); 1917 Instruction *User = cast<Instruction>(*UI); 1918 // Preincrement use iterator so we don't invalidate it. 1919 ++UI; 1920 1921 // Don't bother for PHI nodes. 1922 if (isa<PHINode>(User)) 1923 continue; 1924 1925 if (!isExtractBitsCandidateUse(User)) 1926 continue; 1927 1928 BasicBlock *UserBB = User->getParent(); 1929 1930 if (UserBB == DefBB) { 1931 // If the shift and truncate instruction are in the same BB. The use of 1932 // the truncate(TruncUse) may still introduce another truncate if not 1933 // legal. In this case, we would like to sink both shift and truncate 1934 // instruction to the BB of TruncUse. 1935 // for example: 1936 // BB1: 1937 // i64 shift.result = lshr i64 opnd, imm 1938 // trunc.result = trunc shift.result to i16 1939 // 1940 // BB2: 1941 // ----> We will have an implicit truncate here if the architecture does 1942 // not have i16 compare. 1943 // cmp i16 trunc.result, opnd2 1944 // 1945 if (isa<TruncInst>(User) && shiftIsLegal 1946 // If the type of the truncate is legal, no truncate will be 1947 // introduced in other basic blocks. 1948 && 1949 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1950 MadeChange = 1951 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1952 1953 continue; 1954 } 1955 // If we have already inserted a shift into this block, use it. 1956 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1957 1958 if (!InsertedShift) { 1959 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1960 assert(InsertPt != UserBB->end()); 1961 1962 if (ShiftI->getOpcode() == Instruction::AShr) 1963 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1964 "", &*InsertPt); 1965 else 1966 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1967 "", &*InsertPt); 1968 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1969 1970 MadeChange = true; 1971 } 1972 1973 // Replace a use of the shift with a use of the new shift. 1974 TheUse = InsertedShift; 1975 } 1976 1977 // If we removed all uses, or there are none, nuke the shift. 1978 if (ShiftI->use_empty()) { 1979 salvageDebugInfo(*ShiftI); 1980 ShiftI->eraseFromParent(); 1981 MadeChange = true; 1982 } 1983 1984 return MadeChange; 1985 } 1986 1987 /// If counting leading or trailing zeros is an expensive operation and a zero 1988 /// input is defined, add a check for zero to avoid calling the intrinsic. 1989 /// 1990 /// We want to transform: 1991 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1992 /// 1993 /// into: 1994 /// entry: 1995 /// %cmpz = icmp eq i64 %A, 0 1996 /// br i1 %cmpz, label %cond.end, label %cond.false 1997 /// cond.false: 1998 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1999 /// br label %cond.end 2000 /// cond.end: 2001 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2002 /// 2003 /// If the transform is performed, return true and set ModifiedDT to true. 2004 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2005 const TargetLowering *TLI, 2006 const DataLayout *DL, 2007 bool &ModifiedDT) { 2008 // If a zero input is undefined, it doesn't make sense to despeculate that. 2009 if (match(CountZeros->getOperand(1), m_One())) 2010 return false; 2011 2012 // If it's cheap to speculate, there's nothing to do. 2013 auto IntrinsicID = CountZeros->getIntrinsicID(); 2014 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2015 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2016 return false; 2017 2018 // Only handle legal scalar cases. Anything else requires too much work. 2019 Type *Ty = CountZeros->getType(); 2020 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2021 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2022 return false; 2023 2024 // The intrinsic will be sunk behind a compare against zero and branch. 2025 BasicBlock *StartBlock = CountZeros->getParent(); 2026 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2027 2028 // Create another block after the count zero intrinsic. A PHI will be added 2029 // in this block to select the result of the intrinsic or the bit-width 2030 // constant if the input to the intrinsic is zero. 2031 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2032 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2033 2034 // Set up a builder to create a compare, conditional branch, and PHI. 2035 IRBuilder<> Builder(CountZeros->getContext()); 2036 Builder.SetInsertPoint(StartBlock->getTerminator()); 2037 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2038 2039 // Replace the unconditional branch that was created by the first split with 2040 // a compare against zero and a conditional branch. 2041 Value *Zero = Constant::getNullValue(Ty); 2042 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2043 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2044 StartBlock->getTerminator()->eraseFromParent(); 2045 2046 // Create a PHI in the end block to select either the output of the intrinsic 2047 // or the bit width of the operand. 2048 Builder.SetInsertPoint(&EndBlock->front()); 2049 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2050 CountZeros->replaceAllUsesWith(PN); 2051 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2052 PN->addIncoming(BitWidth, StartBlock); 2053 PN->addIncoming(CountZeros, CallBlock); 2054 2055 // We are explicitly handling the zero case, so we can set the intrinsic's 2056 // undefined zero argument to 'true'. This will also prevent reprocessing the 2057 // intrinsic; we only despeculate when a zero input is defined. 2058 CountZeros->setArgOperand(1, Builder.getTrue()); 2059 ModifiedDT = true; 2060 return true; 2061 } 2062 2063 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2064 BasicBlock *BB = CI->getParent(); 2065 2066 // Lower inline assembly if we can. 2067 // If we found an inline asm expession, and if the target knows how to 2068 // lower it to normal LLVM code, do so now. 2069 if (CI->isInlineAsm()) { 2070 if (TLI->ExpandInlineAsm(CI)) { 2071 // Avoid invalidating the iterator. 2072 CurInstIterator = BB->begin(); 2073 // Avoid processing instructions out of order, which could cause 2074 // reuse before a value is defined. 2075 SunkAddrs.clear(); 2076 return true; 2077 } 2078 // Sink address computing for memory operands into the block. 2079 if (optimizeInlineAsmInst(CI)) 2080 return true; 2081 } 2082 2083 // Align the pointer arguments to this call if the target thinks it's a good 2084 // idea 2085 unsigned MinSize, PrefAlign; 2086 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2087 for (auto &Arg : CI->arg_operands()) { 2088 // We want to align both objects whose address is used directly and 2089 // objects whose address is used in casts and GEPs, though it only makes 2090 // sense for GEPs if the offset is a multiple of the desired alignment and 2091 // if size - offset meets the size threshold. 2092 if (!Arg->getType()->isPointerTy()) 2093 continue; 2094 APInt Offset(DL->getIndexSizeInBits( 2095 cast<PointerType>(Arg->getType())->getAddressSpace()), 2096 0); 2097 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2098 uint64_t Offset2 = Offset.getLimitedValue(); 2099 if ((Offset2 & (PrefAlign-1)) != 0) 2100 continue; 2101 AllocaInst *AI; 2102 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2103 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2104 AI->setAlignment(Align(PrefAlign)); 2105 // Global variables can only be aligned if they are defined in this 2106 // object (i.e. they are uniquely initialized in this object), and 2107 // over-aligning global variables that have an explicit section is 2108 // forbidden. 2109 GlobalVariable *GV; 2110 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2111 GV->getPointerAlignment(*DL) < PrefAlign && 2112 DL->getTypeAllocSize(GV->getValueType()) >= 2113 MinSize + Offset2) 2114 GV->setAlignment(MaybeAlign(PrefAlign)); 2115 } 2116 // If this is a memcpy (or similar) then we may be able to improve the 2117 // alignment 2118 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2119 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2120 MaybeAlign MIDestAlign = MI->getDestAlign(); 2121 if (!MIDestAlign || DestAlign > *MIDestAlign) 2122 MI->setDestAlignment(DestAlign); 2123 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2124 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2125 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2126 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2127 MTI->setSourceAlignment(SrcAlign); 2128 } 2129 } 2130 } 2131 2132 // If we have a cold call site, try to sink addressing computation into the 2133 // cold block. This interacts with our handling for loads and stores to 2134 // ensure that we can fold all uses of a potential addressing computation 2135 // into their uses. TODO: generalize this to work over profiling data 2136 if (CI->hasFnAttr(Attribute::Cold) && 2137 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2138 for (auto &Arg : CI->arg_operands()) { 2139 if (!Arg->getType()->isPointerTy()) 2140 continue; 2141 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2142 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2143 } 2144 2145 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2146 if (II) { 2147 switch (II->getIntrinsicID()) { 2148 default: break; 2149 case Intrinsic::assume: 2150 llvm_unreachable("llvm.assume should have been removed already"); 2151 case Intrinsic::experimental_widenable_condition: { 2152 // Give up on future widening oppurtunties so that we can fold away dead 2153 // paths and merge blocks before going into block-local instruction 2154 // selection. 2155 if (II->use_empty()) { 2156 II->eraseFromParent(); 2157 return true; 2158 } 2159 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2160 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2161 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2162 }); 2163 return true; 2164 } 2165 case Intrinsic::objectsize: 2166 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2167 case Intrinsic::is_constant: 2168 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2169 case Intrinsic::aarch64_stlxr: 2170 case Intrinsic::aarch64_stxr: { 2171 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2172 if (!ExtVal || !ExtVal->hasOneUse() || 2173 ExtVal->getParent() == CI->getParent()) 2174 return false; 2175 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2176 ExtVal->moveBefore(CI); 2177 // Mark this instruction as "inserted by CGP", so that other 2178 // optimizations don't touch it. 2179 InsertedInsts.insert(ExtVal); 2180 return true; 2181 } 2182 2183 case Intrinsic::launder_invariant_group: 2184 case Intrinsic::strip_invariant_group: { 2185 Value *ArgVal = II->getArgOperand(0); 2186 auto it = LargeOffsetGEPMap.find(II); 2187 if (it != LargeOffsetGEPMap.end()) { 2188 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2189 // Make sure not to have to deal with iterator invalidation 2190 // after possibly adding ArgVal to LargeOffsetGEPMap. 2191 auto GEPs = std::move(it->second); 2192 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2193 LargeOffsetGEPMap.erase(II); 2194 } 2195 2196 II->replaceAllUsesWith(ArgVal); 2197 II->eraseFromParent(); 2198 return true; 2199 } 2200 case Intrinsic::cttz: 2201 case Intrinsic::ctlz: 2202 // If counting zeros is expensive, try to avoid it. 2203 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2204 case Intrinsic::fshl: 2205 case Intrinsic::fshr: 2206 return optimizeFunnelShift(II); 2207 case Intrinsic::dbg_value: 2208 return fixupDbgValue(II); 2209 case Intrinsic::vscale: { 2210 // If datalayout has no special restrictions on vector data layout, 2211 // replace `llvm.vscale` by an equivalent constant expression 2212 // to benefit from cheap constant propagation. 2213 Type *ScalableVectorTy = 2214 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2215 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2216 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2217 auto *One = ConstantInt::getSigned(II->getType(), 1); 2218 auto *CGep = 2219 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2220 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2221 II->eraseFromParent(); 2222 return true; 2223 } 2224 break; 2225 } 2226 case Intrinsic::masked_gather: 2227 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2228 case Intrinsic::masked_scatter: 2229 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2230 } 2231 2232 SmallVector<Value *, 2> PtrOps; 2233 Type *AccessTy; 2234 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2235 while (!PtrOps.empty()) { 2236 Value *PtrVal = PtrOps.pop_back_val(); 2237 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2238 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2239 return true; 2240 } 2241 } 2242 2243 // From here on out we're working with named functions. 2244 if (!CI->getCalledFunction()) return false; 2245 2246 // Lower all default uses of _chk calls. This is very similar 2247 // to what InstCombineCalls does, but here we are only lowering calls 2248 // to fortified library functions (e.g. __memcpy_chk) that have the default 2249 // "don't know" as the objectsize. Anything else should be left alone. 2250 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2251 IRBuilder<> Builder(CI); 2252 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2253 CI->replaceAllUsesWith(V); 2254 CI->eraseFromParent(); 2255 return true; 2256 } 2257 2258 return false; 2259 } 2260 2261 /// Look for opportunities to duplicate return instructions to the predecessor 2262 /// to enable tail call optimizations. The case it is currently looking for is: 2263 /// @code 2264 /// bb0: 2265 /// %tmp0 = tail call i32 @f0() 2266 /// br label %return 2267 /// bb1: 2268 /// %tmp1 = tail call i32 @f1() 2269 /// br label %return 2270 /// bb2: 2271 /// %tmp2 = tail call i32 @f2() 2272 /// br label %return 2273 /// return: 2274 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2275 /// ret i32 %retval 2276 /// @endcode 2277 /// 2278 /// => 2279 /// 2280 /// @code 2281 /// bb0: 2282 /// %tmp0 = tail call i32 @f0() 2283 /// ret i32 %tmp0 2284 /// bb1: 2285 /// %tmp1 = tail call i32 @f1() 2286 /// ret i32 %tmp1 2287 /// bb2: 2288 /// %tmp2 = tail call i32 @f2() 2289 /// ret i32 %tmp2 2290 /// @endcode 2291 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2292 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2293 if (!RetI) 2294 return false; 2295 2296 PHINode *PN = nullptr; 2297 ExtractValueInst *EVI = nullptr; 2298 BitCastInst *BCI = nullptr; 2299 Value *V = RetI->getReturnValue(); 2300 if (V) { 2301 BCI = dyn_cast<BitCastInst>(V); 2302 if (BCI) 2303 V = BCI->getOperand(0); 2304 2305 EVI = dyn_cast<ExtractValueInst>(V); 2306 if (EVI) { 2307 V = EVI->getOperand(0); 2308 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2309 return false; 2310 } 2311 2312 PN = dyn_cast<PHINode>(V); 2313 if (!PN) 2314 return false; 2315 } 2316 2317 if (PN && PN->getParent() != BB) 2318 return false; 2319 2320 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2321 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2322 if (BC && BC->hasOneUse()) 2323 Inst = BC->user_back(); 2324 2325 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2326 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2327 return false; 2328 }; 2329 2330 // Make sure there are no instructions between the first instruction 2331 // and return. 2332 const Instruction *BI = BB->getFirstNonPHI(); 2333 // Skip over debug and the bitcast. 2334 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2335 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2336 BI = BI->getNextNode(); 2337 if (BI != RetI) 2338 return false; 2339 2340 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2341 /// call. 2342 const Function *F = BB->getParent(); 2343 SmallVector<BasicBlock*, 4> TailCallBBs; 2344 if (PN) { 2345 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2346 // Look through bitcasts. 2347 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2348 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2349 BasicBlock *PredBB = PN->getIncomingBlock(I); 2350 // Make sure the phi value is indeed produced by the tail call. 2351 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2352 TLI->mayBeEmittedAsTailCall(CI) && 2353 attributesPermitTailCall(F, CI, RetI, *TLI)) 2354 TailCallBBs.push_back(PredBB); 2355 } 2356 } else { 2357 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2358 for (BasicBlock *Pred : predecessors(BB)) { 2359 if (!VisitedBBs.insert(Pred).second) 2360 continue; 2361 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2362 CallInst *CI = dyn_cast<CallInst>(I); 2363 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2364 attributesPermitTailCall(F, CI, RetI, *TLI)) 2365 TailCallBBs.push_back(Pred); 2366 } 2367 } 2368 } 2369 2370 bool Changed = false; 2371 for (auto const &TailCallBB : TailCallBBs) { 2372 // Make sure the call instruction is followed by an unconditional branch to 2373 // the return block. 2374 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2375 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2376 continue; 2377 2378 // Duplicate the return into TailCallBB. 2379 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2380 assert(!VerifyBFIUpdates || 2381 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2382 BFI->setBlockFreq( 2383 BB, 2384 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2385 ModifiedDT = Changed = true; 2386 ++NumRetsDup; 2387 } 2388 2389 // If we eliminated all predecessors of the block, delete the block now. 2390 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2391 BB->eraseFromParent(); 2392 2393 return Changed; 2394 } 2395 2396 //===----------------------------------------------------------------------===// 2397 // Memory Optimization 2398 //===----------------------------------------------------------------------===// 2399 2400 namespace { 2401 2402 /// This is an extended version of TargetLowering::AddrMode 2403 /// which holds actual Value*'s for register values. 2404 struct ExtAddrMode : public TargetLowering::AddrMode { 2405 Value *BaseReg = nullptr; 2406 Value *ScaledReg = nullptr; 2407 Value *OriginalValue = nullptr; 2408 bool InBounds = true; 2409 2410 enum FieldName { 2411 NoField = 0x00, 2412 BaseRegField = 0x01, 2413 BaseGVField = 0x02, 2414 BaseOffsField = 0x04, 2415 ScaledRegField = 0x08, 2416 ScaleField = 0x10, 2417 MultipleFields = 0xff 2418 }; 2419 2420 2421 ExtAddrMode() = default; 2422 2423 void print(raw_ostream &OS) const; 2424 void dump() const; 2425 2426 FieldName compare(const ExtAddrMode &other) { 2427 // First check that the types are the same on each field, as differing types 2428 // is something we can't cope with later on. 2429 if (BaseReg && other.BaseReg && 2430 BaseReg->getType() != other.BaseReg->getType()) 2431 return MultipleFields; 2432 if (BaseGV && other.BaseGV && 2433 BaseGV->getType() != other.BaseGV->getType()) 2434 return MultipleFields; 2435 if (ScaledReg && other.ScaledReg && 2436 ScaledReg->getType() != other.ScaledReg->getType()) 2437 return MultipleFields; 2438 2439 // Conservatively reject 'inbounds' mismatches. 2440 if (InBounds != other.InBounds) 2441 return MultipleFields; 2442 2443 // Check each field to see if it differs. 2444 unsigned Result = NoField; 2445 if (BaseReg != other.BaseReg) 2446 Result |= BaseRegField; 2447 if (BaseGV != other.BaseGV) 2448 Result |= BaseGVField; 2449 if (BaseOffs != other.BaseOffs) 2450 Result |= BaseOffsField; 2451 if (ScaledReg != other.ScaledReg) 2452 Result |= ScaledRegField; 2453 // Don't count 0 as being a different scale, because that actually means 2454 // unscaled (which will already be counted by having no ScaledReg). 2455 if (Scale && other.Scale && Scale != other.Scale) 2456 Result |= ScaleField; 2457 2458 if (countPopulation(Result) > 1) 2459 return MultipleFields; 2460 else 2461 return static_cast<FieldName>(Result); 2462 } 2463 2464 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2465 // with no offset. 2466 bool isTrivial() { 2467 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2468 // trivial if at most one of these terms is nonzero, except that BaseGV and 2469 // BaseReg both being zero actually means a null pointer value, which we 2470 // consider to be 'non-zero' here. 2471 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2472 } 2473 2474 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2475 switch (Field) { 2476 default: 2477 return nullptr; 2478 case BaseRegField: 2479 return BaseReg; 2480 case BaseGVField: 2481 return BaseGV; 2482 case ScaledRegField: 2483 return ScaledReg; 2484 case BaseOffsField: 2485 return ConstantInt::get(IntPtrTy, BaseOffs); 2486 } 2487 } 2488 2489 void SetCombinedField(FieldName Field, Value *V, 2490 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2491 switch (Field) { 2492 default: 2493 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2494 break; 2495 case ExtAddrMode::BaseRegField: 2496 BaseReg = V; 2497 break; 2498 case ExtAddrMode::BaseGVField: 2499 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2500 // in the BaseReg field. 2501 assert(BaseReg == nullptr); 2502 BaseReg = V; 2503 BaseGV = nullptr; 2504 break; 2505 case ExtAddrMode::ScaledRegField: 2506 ScaledReg = V; 2507 // If we have a mix of scaled and unscaled addrmodes then we want scale 2508 // to be the scale and not zero. 2509 if (!Scale) 2510 for (const ExtAddrMode &AM : AddrModes) 2511 if (AM.Scale) { 2512 Scale = AM.Scale; 2513 break; 2514 } 2515 break; 2516 case ExtAddrMode::BaseOffsField: 2517 // The offset is no longer a constant, so it goes in ScaledReg with a 2518 // scale of 1. 2519 assert(ScaledReg == nullptr); 2520 ScaledReg = V; 2521 Scale = 1; 2522 BaseOffs = 0; 2523 break; 2524 } 2525 } 2526 }; 2527 2528 } // end anonymous namespace 2529 2530 #ifndef NDEBUG 2531 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2532 AM.print(OS); 2533 return OS; 2534 } 2535 #endif 2536 2537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2538 void ExtAddrMode::print(raw_ostream &OS) const { 2539 bool NeedPlus = false; 2540 OS << "["; 2541 if (InBounds) 2542 OS << "inbounds "; 2543 if (BaseGV) { 2544 OS << (NeedPlus ? " + " : "") 2545 << "GV:"; 2546 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2547 NeedPlus = true; 2548 } 2549 2550 if (BaseOffs) { 2551 OS << (NeedPlus ? " + " : "") 2552 << BaseOffs; 2553 NeedPlus = true; 2554 } 2555 2556 if (BaseReg) { 2557 OS << (NeedPlus ? " + " : "") 2558 << "Base:"; 2559 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2560 NeedPlus = true; 2561 } 2562 if (Scale) { 2563 OS << (NeedPlus ? " + " : "") 2564 << Scale << "*"; 2565 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2566 } 2567 2568 OS << ']'; 2569 } 2570 2571 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2572 print(dbgs()); 2573 dbgs() << '\n'; 2574 } 2575 #endif 2576 2577 namespace { 2578 2579 /// This class provides transaction based operation on the IR. 2580 /// Every change made through this class is recorded in the internal state and 2581 /// can be undone (rollback) until commit is called. 2582 /// CGP does not check if instructions could be speculatively executed when 2583 /// moved. Preserving the original location would pessimize the debugging 2584 /// experience, as well as negatively impact the quality of sample PGO. 2585 class TypePromotionTransaction { 2586 /// This represents the common interface of the individual transaction. 2587 /// Each class implements the logic for doing one specific modification on 2588 /// the IR via the TypePromotionTransaction. 2589 class TypePromotionAction { 2590 protected: 2591 /// The Instruction modified. 2592 Instruction *Inst; 2593 2594 public: 2595 /// Constructor of the action. 2596 /// The constructor performs the related action on the IR. 2597 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2598 2599 virtual ~TypePromotionAction() = default; 2600 2601 /// Undo the modification done by this action. 2602 /// When this method is called, the IR must be in the same state as it was 2603 /// before this action was applied. 2604 /// \pre Undoing the action works if and only if the IR is in the exact same 2605 /// state as it was directly after this action was applied. 2606 virtual void undo() = 0; 2607 2608 /// Advocate every change made by this action. 2609 /// When the results on the IR of the action are to be kept, it is important 2610 /// to call this function, otherwise hidden information may be kept forever. 2611 virtual void commit() { 2612 // Nothing to be done, this action is not doing anything. 2613 } 2614 }; 2615 2616 /// Utility to remember the position of an instruction. 2617 class InsertionHandler { 2618 /// Position of an instruction. 2619 /// Either an instruction: 2620 /// - Is the first in a basic block: BB is used. 2621 /// - Has a previous instruction: PrevInst is used. 2622 union { 2623 Instruction *PrevInst; 2624 BasicBlock *BB; 2625 } Point; 2626 2627 /// Remember whether or not the instruction had a previous instruction. 2628 bool HasPrevInstruction; 2629 2630 public: 2631 /// Record the position of \p Inst. 2632 InsertionHandler(Instruction *Inst) { 2633 BasicBlock::iterator It = Inst->getIterator(); 2634 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2635 if (HasPrevInstruction) 2636 Point.PrevInst = &*--It; 2637 else 2638 Point.BB = Inst->getParent(); 2639 } 2640 2641 /// Insert \p Inst at the recorded position. 2642 void insert(Instruction *Inst) { 2643 if (HasPrevInstruction) { 2644 if (Inst->getParent()) 2645 Inst->removeFromParent(); 2646 Inst->insertAfter(Point.PrevInst); 2647 } else { 2648 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2649 if (Inst->getParent()) 2650 Inst->moveBefore(Position); 2651 else 2652 Inst->insertBefore(Position); 2653 } 2654 } 2655 }; 2656 2657 /// Move an instruction before another. 2658 class InstructionMoveBefore : public TypePromotionAction { 2659 /// Original position of the instruction. 2660 InsertionHandler Position; 2661 2662 public: 2663 /// Move \p Inst before \p Before. 2664 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2665 : TypePromotionAction(Inst), Position(Inst) { 2666 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2667 << "\n"); 2668 Inst->moveBefore(Before); 2669 } 2670 2671 /// Move the instruction back to its original position. 2672 void undo() override { 2673 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2674 Position.insert(Inst); 2675 } 2676 }; 2677 2678 /// Set the operand of an instruction with a new value. 2679 class OperandSetter : public TypePromotionAction { 2680 /// Original operand of the instruction. 2681 Value *Origin; 2682 2683 /// Index of the modified instruction. 2684 unsigned Idx; 2685 2686 public: 2687 /// Set \p Idx operand of \p Inst with \p NewVal. 2688 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2689 : TypePromotionAction(Inst), Idx(Idx) { 2690 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2691 << "for:" << *Inst << "\n" 2692 << "with:" << *NewVal << "\n"); 2693 Origin = Inst->getOperand(Idx); 2694 Inst->setOperand(Idx, NewVal); 2695 } 2696 2697 /// Restore the original value of the instruction. 2698 void undo() override { 2699 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2700 << "for: " << *Inst << "\n" 2701 << "with: " << *Origin << "\n"); 2702 Inst->setOperand(Idx, Origin); 2703 } 2704 }; 2705 2706 /// Hide the operands of an instruction. 2707 /// Do as if this instruction was not using any of its operands. 2708 class OperandsHider : public TypePromotionAction { 2709 /// The list of original operands. 2710 SmallVector<Value *, 4> OriginalValues; 2711 2712 public: 2713 /// Remove \p Inst from the uses of the operands of \p Inst. 2714 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2715 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2716 unsigned NumOpnds = Inst->getNumOperands(); 2717 OriginalValues.reserve(NumOpnds); 2718 for (unsigned It = 0; It < NumOpnds; ++It) { 2719 // Save the current operand. 2720 Value *Val = Inst->getOperand(It); 2721 OriginalValues.push_back(Val); 2722 // Set a dummy one. 2723 // We could use OperandSetter here, but that would imply an overhead 2724 // that we are not willing to pay. 2725 Inst->setOperand(It, UndefValue::get(Val->getType())); 2726 } 2727 } 2728 2729 /// Restore the original list of uses. 2730 void undo() override { 2731 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2732 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2733 Inst->setOperand(It, OriginalValues[It]); 2734 } 2735 }; 2736 2737 /// Build a truncate instruction. 2738 class TruncBuilder : public TypePromotionAction { 2739 Value *Val; 2740 2741 public: 2742 /// Build a truncate instruction of \p Opnd producing a \p Ty 2743 /// result. 2744 /// trunc Opnd to Ty. 2745 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2746 IRBuilder<> Builder(Opnd); 2747 Builder.SetCurrentDebugLocation(DebugLoc()); 2748 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2749 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2750 } 2751 2752 /// Get the built value. 2753 Value *getBuiltValue() { return Val; } 2754 2755 /// Remove the built instruction. 2756 void undo() override { 2757 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2758 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2759 IVal->eraseFromParent(); 2760 } 2761 }; 2762 2763 /// Build a sign extension instruction. 2764 class SExtBuilder : public TypePromotionAction { 2765 Value *Val; 2766 2767 public: 2768 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2769 /// result. 2770 /// sext Opnd to Ty. 2771 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2772 : TypePromotionAction(InsertPt) { 2773 IRBuilder<> Builder(InsertPt); 2774 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2775 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2776 } 2777 2778 /// Get the built value. 2779 Value *getBuiltValue() { return Val; } 2780 2781 /// Remove the built instruction. 2782 void undo() override { 2783 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2784 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2785 IVal->eraseFromParent(); 2786 } 2787 }; 2788 2789 /// Build a zero extension instruction. 2790 class ZExtBuilder : public TypePromotionAction { 2791 Value *Val; 2792 2793 public: 2794 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2795 /// result. 2796 /// zext Opnd to Ty. 2797 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2798 : TypePromotionAction(InsertPt) { 2799 IRBuilder<> Builder(InsertPt); 2800 Builder.SetCurrentDebugLocation(DebugLoc()); 2801 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2802 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2803 } 2804 2805 /// Get the built value. 2806 Value *getBuiltValue() { return Val; } 2807 2808 /// Remove the built instruction. 2809 void undo() override { 2810 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2811 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2812 IVal->eraseFromParent(); 2813 } 2814 }; 2815 2816 /// Mutate an instruction to another type. 2817 class TypeMutator : public TypePromotionAction { 2818 /// Record the original type. 2819 Type *OrigTy; 2820 2821 public: 2822 /// Mutate the type of \p Inst into \p NewTy. 2823 TypeMutator(Instruction *Inst, Type *NewTy) 2824 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2825 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2826 << "\n"); 2827 Inst->mutateType(NewTy); 2828 } 2829 2830 /// Mutate the instruction back to its original type. 2831 void undo() override { 2832 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2833 << "\n"); 2834 Inst->mutateType(OrigTy); 2835 } 2836 }; 2837 2838 /// Replace the uses of an instruction by another instruction. 2839 class UsesReplacer : public TypePromotionAction { 2840 /// Helper structure to keep track of the replaced uses. 2841 struct InstructionAndIdx { 2842 /// The instruction using the instruction. 2843 Instruction *Inst; 2844 2845 /// The index where this instruction is used for Inst. 2846 unsigned Idx; 2847 2848 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2849 : Inst(Inst), Idx(Idx) {} 2850 }; 2851 2852 /// Keep track of the original uses (pair Instruction, Index). 2853 SmallVector<InstructionAndIdx, 4> OriginalUses; 2854 /// Keep track of the debug users. 2855 SmallVector<DbgValueInst *, 1> DbgValues; 2856 2857 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2858 2859 public: 2860 /// Replace all the use of \p Inst by \p New. 2861 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2862 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2863 << "\n"); 2864 // Record the original uses. 2865 for (Use &U : Inst->uses()) { 2866 Instruction *UserI = cast<Instruction>(U.getUser()); 2867 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2868 } 2869 // Record the debug uses separately. They are not in the instruction's 2870 // use list, but they are replaced by RAUW. 2871 findDbgValues(DbgValues, Inst); 2872 2873 // Now, we can replace the uses. 2874 Inst->replaceAllUsesWith(New); 2875 } 2876 2877 /// Reassign the original uses of Inst to Inst. 2878 void undo() override { 2879 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2880 for (InstructionAndIdx &Use : OriginalUses) 2881 Use.Inst->setOperand(Use.Idx, Inst); 2882 // RAUW has replaced all original uses with references to the new value, 2883 // including the debug uses. Since we are undoing the replacements, 2884 // the original debug uses must also be reinstated to maintain the 2885 // correctness and utility of debug value instructions. 2886 for (auto *DVI: DbgValues) { 2887 LLVMContext &Ctx = Inst->getType()->getContext(); 2888 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2889 DVI->setOperand(0, MV); 2890 } 2891 } 2892 }; 2893 2894 /// Remove an instruction from the IR. 2895 class InstructionRemover : public TypePromotionAction { 2896 /// Original position of the instruction. 2897 InsertionHandler Inserter; 2898 2899 /// Helper structure to hide all the link to the instruction. In other 2900 /// words, this helps to do as if the instruction was removed. 2901 OperandsHider Hider; 2902 2903 /// Keep track of the uses replaced, if any. 2904 UsesReplacer *Replacer = nullptr; 2905 2906 /// Keep track of instructions removed. 2907 SetOfInstrs &RemovedInsts; 2908 2909 public: 2910 /// Remove all reference of \p Inst and optionally replace all its 2911 /// uses with New. 2912 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2913 /// \pre If !Inst->use_empty(), then New != nullptr 2914 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2915 Value *New = nullptr) 2916 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2917 RemovedInsts(RemovedInsts) { 2918 if (New) 2919 Replacer = new UsesReplacer(Inst, New); 2920 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2921 RemovedInsts.insert(Inst); 2922 /// The instructions removed here will be freed after completing 2923 /// optimizeBlock() for all blocks as we need to keep track of the 2924 /// removed instructions during promotion. 2925 Inst->removeFromParent(); 2926 } 2927 2928 ~InstructionRemover() override { delete Replacer; } 2929 2930 /// Resurrect the instruction and reassign it to the proper uses if 2931 /// new value was provided when build this action. 2932 void undo() override { 2933 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2934 Inserter.insert(Inst); 2935 if (Replacer) 2936 Replacer->undo(); 2937 Hider.undo(); 2938 RemovedInsts.erase(Inst); 2939 } 2940 }; 2941 2942 public: 2943 /// Restoration point. 2944 /// The restoration point is a pointer to an action instead of an iterator 2945 /// because the iterator may be invalidated but not the pointer. 2946 using ConstRestorationPt = const TypePromotionAction *; 2947 2948 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2949 : RemovedInsts(RemovedInsts) {} 2950 2951 /// Advocate every changes made in that transaction. Return true if any change 2952 /// happen. 2953 bool commit(); 2954 2955 /// Undo all the changes made after the given point. 2956 void rollback(ConstRestorationPt Point); 2957 2958 /// Get the current restoration point. 2959 ConstRestorationPt getRestorationPoint() const; 2960 2961 /// \name API for IR modification with state keeping to support rollback. 2962 /// @{ 2963 /// Same as Instruction::setOperand. 2964 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2965 2966 /// Same as Instruction::eraseFromParent. 2967 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2968 2969 /// Same as Value::replaceAllUsesWith. 2970 void replaceAllUsesWith(Instruction *Inst, Value *New); 2971 2972 /// Same as Value::mutateType. 2973 void mutateType(Instruction *Inst, Type *NewTy); 2974 2975 /// Same as IRBuilder::createTrunc. 2976 Value *createTrunc(Instruction *Opnd, Type *Ty); 2977 2978 /// Same as IRBuilder::createSExt. 2979 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2980 2981 /// Same as IRBuilder::createZExt. 2982 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2983 2984 /// Same as Instruction::moveBefore. 2985 void moveBefore(Instruction *Inst, Instruction *Before); 2986 /// @} 2987 2988 private: 2989 /// The ordered list of actions made so far. 2990 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2991 2992 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2993 2994 SetOfInstrs &RemovedInsts; 2995 }; 2996 2997 } // end anonymous namespace 2998 2999 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3000 Value *NewVal) { 3001 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3002 Inst, Idx, NewVal)); 3003 } 3004 3005 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3006 Value *NewVal) { 3007 Actions.push_back( 3008 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3009 Inst, RemovedInsts, NewVal)); 3010 } 3011 3012 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3013 Value *New) { 3014 Actions.push_back( 3015 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3016 } 3017 3018 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3019 Actions.push_back( 3020 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3021 } 3022 3023 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3024 Type *Ty) { 3025 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3026 Value *Val = Ptr->getBuiltValue(); 3027 Actions.push_back(std::move(Ptr)); 3028 return Val; 3029 } 3030 3031 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3032 Value *Opnd, Type *Ty) { 3033 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3034 Value *Val = Ptr->getBuiltValue(); 3035 Actions.push_back(std::move(Ptr)); 3036 return Val; 3037 } 3038 3039 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3040 Value *Opnd, Type *Ty) { 3041 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3042 Value *Val = Ptr->getBuiltValue(); 3043 Actions.push_back(std::move(Ptr)); 3044 return Val; 3045 } 3046 3047 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3048 Instruction *Before) { 3049 Actions.push_back( 3050 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3051 Inst, Before)); 3052 } 3053 3054 TypePromotionTransaction::ConstRestorationPt 3055 TypePromotionTransaction::getRestorationPoint() const { 3056 return !Actions.empty() ? Actions.back().get() : nullptr; 3057 } 3058 3059 bool TypePromotionTransaction::commit() { 3060 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3061 Action->commit(); 3062 bool Modified = !Actions.empty(); 3063 Actions.clear(); 3064 return Modified; 3065 } 3066 3067 void TypePromotionTransaction::rollback( 3068 TypePromotionTransaction::ConstRestorationPt Point) { 3069 while (!Actions.empty() && Point != Actions.back().get()) { 3070 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3071 Curr->undo(); 3072 } 3073 } 3074 3075 namespace { 3076 3077 /// A helper class for matching addressing modes. 3078 /// 3079 /// This encapsulates the logic for matching the target-legal addressing modes. 3080 class AddressingModeMatcher { 3081 SmallVectorImpl<Instruction*> &AddrModeInsts; 3082 const TargetLowering &TLI; 3083 const TargetRegisterInfo &TRI; 3084 const DataLayout &DL; 3085 const LoopInfo &LI; 3086 const std::function<const DominatorTree &()> getDTFn; 3087 3088 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3089 /// the memory instruction that we're computing this address for. 3090 Type *AccessTy; 3091 unsigned AddrSpace; 3092 Instruction *MemoryInst; 3093 3094 /// This is the addressing mode that we're building up. This is 3095 /// part of the return value of this addressing mode matching stuff. 3096 ExtAddrMode &AddrMode; 3097 3098 /// The instructions inserted by other CodeGenPrepare optimizations. 3099 const SetOfInstrs &InsertedInsts; 3100 3101 /// A map from the instructions to their type before promotion. 3102 InstrToOrigTy &PromotedInsts; 3103 3104 /// The ongoing transaction where every action should be registered. 3105 TypePromotionTransaction &TPT; 3106 3107 // A GEP which has too large offset to be folded into the addressing mode. 3108 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3109 3110 /// This is set to true when we should not do profitability checks. 3111 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3112 bool IgnoreProfitability; 3113 3114 /// True if we are optimizing for size. 3115 bool OptSize; 3116 3117 ProfileSummaryInfo *PSI; 3118 BlockFrequencyInfo *BFI; 3119 3120 AddressingModeMatcher( 3121 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3122 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3123 const std::function<const DominatorTree &()> getDTFn, 3124 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3125 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3126 TypePromotionTransaction &TPT, 3127 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3128 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3129 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3130 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3131 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3132 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3133 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3134 IgnoreProfitability = false; 3135 } 3136 3137 public: 3138 /// Find the maximal addressing mode that a load/store of V can fold, 3139 /// give an access type of AccessTy. This returns a list of involved 3140 /// instructions in AddrModeInsts. 3141 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3142 /// optimizations. 3143 /// \p PromotedInsts maps the instructions to their type before promotion. 3144 /// \p The ongoing transaction where every action should be registered. 3145 static ExtAddrMode 3146 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3147 SmallVectorImpl<Instruction *> &AddrModeInsts, 3148 const TargetLowering &TLI, const LoopInfo &LI, 3149 const std::function<const DominatorTree &()> getDTFn, 3150 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3151 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3152 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3153 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3154 ExtAddrMode Result; 3155 3156 bool Success = AddressingModeMatcher( 3157 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3158 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3159 BFI).matchAddr(V, 0); 3160 (void)Success; assert(Success && "Couldn't select *anything*?"); 3161 return Result; 3162 } 3163 3164 private: 3165 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3166 bool matchAddr(Value *Addr, unsigned Depth); 3167 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3168 bool *MovedAway = nullptr); 3169 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3170 ExtAddrMode &AMBefore, 3171 ExtAddrMode &AMAfter); 3172 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3173 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3174 Value *PromotedOperand) const; 3175 }; 3176 3177 class PhiNodeSet; 3178 3179 /// An iterator for PhiNodeSet. 3180 class PhiNodeSetIterator { 3181 PhiNodeSet * const Set; 3182 size_t CurrentIndex = 0; 3183 3184 public: 3185 /// The constructor. Start should point to either a valid element, or be equal 3186 /// to the size of the underlying SmallVector of the PhiNodeSet. 3187 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3188 PHINode * operator*() const; 3189 PhiNodeSetIterator& operator++(); 3190 bool operator==(const PhiNodeSetIterator &RHS) const; 3191 bool operator!=(const PhiNodeSetIterator &RHS) const; 3192 }; 3193 3194 /// Keeps a set of PHINodes. 3195 /// 3196 /// This is a minimal set implementation for a specific use case: 3197 /// It is very fast when there are very few elements, but also provides good 3198 /// performance when there are many. It is similar to SmallPtrSet, but also 3199 /// provides iteration by insertion order, which is deterministic and stable 3200 /// across runs. It is also similar to SmallSetVector, but provides removing 3201 /// elements in O(1) time. This is achieved by not actually removing the element 3202 /// from the underlying vector, so comes at the cost of using more memory, but 3203 /// that is fine, since PhiNodeSets are used as short lived objects. 3204 class PhiNodeSet { 3205 friend class PhiNodeSetIterator; 3206 3207 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3208 using iterator = PhiNodeSetIterator; 3209 3210 /// Keeps the elements in the order of their insertion in the underlying 3211 /// vector. To achieve constant time removal, it never deletes any element. 3212 SmallVector<PHINode *, 32> NodeList; 3213 3214 /// Keeps the elements in the underlying set implementation. This (and not the 3215 /// NodeList defined above) is the source of truth on whether an element 3216 /// is actually in the collection. 3217 MapType NodeMap; 3218 3219 /// Points to the first valid (not deleted) element when the set is not empty 3220 /// and the value is not zero. Equals to the size of the underlying vector 3221 /// when the set is empty. When the value is 0, as in the beginning, the 3222 /// first element may or may not be valid. 3223 size_t FirstValidElement = 0; 3224 3225 public: 3226 /// Inserts a new element to the collection. 3227 /// \returns true if the element is actually added, i.e. was not in the 3228 /// collection before the operation. 3229 bool insert(PHINode *Ptr) { 3230 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3231 NodeList.push_back(Ptr); 3232 return true; 3233 } 3234 return false; 3235 } 3236 3237 /// Removes the element from the collection. 3238 /// \returns whether the element is actually removed, i.e. was in the 3239 /// collection before the operation. 3240 bool erase(PHINode *Ptr) { 3241 if (NodeMap.erase(Ptr)) { 3242 SkipRemovedElements(FirstValidElement); 3243 return true; 3244 } 3245 return false; 3246 } 3247 3248 /// Removes all elements and clears the collection. 3249 void clear() { 3250 NodeMap.clear(); 3251 NodeList.clear(); 3252 FirstValidElement = 0; 3253 } 3254 3255 /// \returns an iterator that will iterate the elements in the order of 3256 /// insertion. 3257 iterator begin() { 3258 if (FirstValidElement == 0) 3259 SkipRemovedElements(FirstValidElement); 3260 return PhiNodeSetIterator(this, FirstValidElement); 3261 } 3262 3263 /// \returns an iterator that points to the end of the collection. 3264 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3265 3266 /// Returns the number of elements in the collection. 3267 size_t size() const { 3268 return NodeMap.size(); 3269 } 3270 3271 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3272 size_t count(PHINode *Ptr) const { 3273 return NodeMap.count(Ptr); 3274 } 3275 3276 private: 3277 /// Updates the CurrentIndex so that it will point to a valid element. 3278 /// 3279 /// If the element of NodeList at CurrentIndex is valid, it does not 3280 /// change it. If there are no more valid elements, it updates CurrentIndex 3281 /// to point to the end of the NodeList. 3282 void SkipRemovedElements(size_t &CurrentIndex) { 3283 while (CurrentIndex < NodeList.size()) { 3284 auto it = NodeMap.find(NodeList[CurrentIndex]); 3285 // If the element has been deleted and added again later, NodeMap will 3286 // point to a different index, so CurrentIndex will still be invalid. 3287 if (it != NodeMap.end() && it->second == CurrentIndex) 3288 break; 3289 ++CurrentIndex; 3290 } 3291 } 3292 }; 3293 3294 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3295 : Set(Set), CurrentIndex(Start) {} 3296 3297 PHINode * PhiNodeSetIterator::operator*() const { 3298 assert(CurrentIndex < Set->NodeList.size() && 3299 "PhiNodeSet access out of range"); 3300 return Set->NodeList[CurrentIndex]; 3301 } 3302 3303 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3304 assert(CurrentIndex < Set->NodeList.size() && 3305 "PhiNodeSet access out of range"); 3306 ++CurrentIndex; 3307 Set->SkipRemovedElements(CurrentIndex); 3308 return *this; 3309 } 3310 3311 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3312 return CurrentIndex == RHS.CurrentIndex; 3313 } 3314 3315 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3316 return !((*this) == RHS); 3317 } 3318 3319 /// Keep track of simplification of Phi nodes. 3320 /// Accept the set of all phi nodes and erase phi node from this set 3321 /// if it is simplified. 3322 class SimplificationTracker { 3323 DenseMap<Value *, Value *> Storage; 3324 const SimplifyQuery &SQ; 3325 // Tracks newly created Phi nodes. The elements are iterated by insertion 3326 // order. 3327 PhiNodeSet AllPhiNodes; 3328 // Tracks newly created Select nodes. 3329 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3330 3331 public: 3332 SimplificationTracker(const SimplifyQuery &sq) 3333 : SQ(sq) {} 3334 3335 Value *Get(Value *V) { 3336 do { 3337 auto SV = Storage.find(V); 3338 if (SV == Storage.end()) 3339 return V; 3340 V = SV->second; 3341 } while (true); 3342 } 3343 3344 Value *Simplify(Value *Val) { 3345 SmallVector<Value *, 32> WorkList; 3346 SmallPtrSet<Value *, 32> Visited; 3347 WorkList.push_back(Val); 3348 while (!WorkList.empty()) { 3349 auto *P = WorkList.pop_back_val(); 3350 if (!Visited.insert(P).second) 3351 continue; 3352 if (auto *PI = dyn_cast<Instruction>(P)) 3353 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3354 for (auto *U : PI->users()) 3355 WorkList.push_back(cast<Value>(U)); 3356 Put(PI, V); 3357 PI->replaceAllUsesWith(V); 3358 if (auto *PHI = dyn_cast<PHINode>(PI)) 3359 AllPhiNodes.erase(PHI); 3360 if (auto *Select = dyn_cast<SelectInst>(PI)) 3361 AllSelectNodes.erase(Select); 3362 PI->eraseFromParent(); 3363 } 3364 } 3365 return Get(Val); 3366 } 3367 3368 void Put(Value *From, Value *To) { 3369 Storage.insert({ From, To }); 3370 } 3371 3372 void ReplacePhi(PHINode *From, PHINode *To) { 3373 Value* OldReplacement = Get(From); 3374 while (OldReplacement != From) { 3375 From = To; 3376 To = dyn_cast<PHINode>(OldReplacement); 3377 OldReplacement = Get(From); 3378 } 3379 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3380 Put(From, To); 3381 From->replaceAllUsesWith(To); 3382 AllPhiNodes.erase(From); 3383 From->eraseFromParent(); 3384 } 3385 3386 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3387 3388 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3389 3390 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3391 3392 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3393 3394 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3395 3396 void destroyNewNodes(Type *CommonType) { 3397 // For safe erasing, replace the uses with dummy value first. 3398 auto *Dummy = UndefValue::get(CommonType); 3399 for (auto *I : AllPhiNodes) { 3400 I->replaceAllUsesWith(Dummy); 3401 I->eraseFromParent(); 3402 } 3403 AllPhiNodes.clear(); 3404 for (auto *I : AllSelectNodes) { 3405 I->replaceAllUsesWith(Dummy); 3406 I->eraseFromParent(); 3407 } 3408 AllSelectNodes.clear(); 3409 } 3410 }; 3411 3412 /// A helper class for combining addressing modes. 3413 class AddressingModeCombiner { 3414 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3415 typedef std::pair<PHINode *, PHINode *> PHIPair; 3416 3417 private: 3418 /// The addressing modes we've collected. 3419 SmallVector<ExtAddrMode, 16> AddrModes; 3420 3421 /// The field in which the AddrModes differ, when we have more than one. 3422 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3423 3424 /// Are the AddrModes that we have all just equal to their original values? 3425 bool AllAddrModesTrivial = true; 3426 3427 /// Common Type for all different fields in addressing modes. 3428 Type *CommonType; 3429 3430 /// SimplifyQuery for simplifyInstruction utility. 3431 const SimplifyQuery &SQ; 3432 3433 /// Original Address. 3434 Value *Original; 3435 3436 public: 3437 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3438 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3439 3440 /// Get the combined AddrMode 3441 const ExtAddrMode &getAddrMode() const { 3442 return AddrModes[0]; 3443 } 3444 3445 /// Add a new AddrMode if it's compatible with the AddrModes we already 3446 /// have. 3447 /// \return True iff we succeeded in doing so. 3448 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3449 // Take note of if we have any non-trivial AddrModes, as we need to detect 3450 // when all AddrModes are trivial as then we would introduce a phi or select 3451 // which just duplicates what's already there. 3452 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3453 3454 // If this is the first addrmode then everything is fine. 3455 if (AddrModes.empty()) { 3456 AddrModes.emplace_back(NewAddrMode); 3457 return true; 3458 } 3459 3460 // Figure out how different this is from the other address modes, which we 3461 // can do just by comparing against the first one given that we only care 3462 // about the cumulative difference. 3463 ExtAddrMode::FieldName ThisDifferentField = 3464 AddrModes[0].compare(NewAddrMode); 3465 if (DifferentField == ExtAddrMode::NoField) 3466 DifferentField = ThisDifferentField; 3467 else if (DifferentField != ThisDifferentField) 3468 DifferentField = ExtAddrMode::MultipleFields; 3469 3470 // If NewAddrMode differs in more than one dimension we cannot handle it. 3471 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3472 3473 // If Scale Field is different then we reject. 3474 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3475 3476 // We also must reject the case when base offset is different and 3477 // scale reg is not null, we cannot handle this case due to merge of 3478 // different offsets will be used as ScaleReg. 3479 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3480 !NewAddrMode.ScaledReg); 3481 3482 // We also must reject the case when GV is different and BaseReg installed 3483 // due to we want to use base reg as a merge of GV values. 3484 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3485 !NewAddrMode.HasBaseReg); 3486 3487 // Even if NewAddMode is the same we still need to collect it due to 3488 // original value is different. And later we will need all original values 3489 // as anchors during finding the common Phi node. 3490 if (CanHandle) 3491 AddrModes.emplace_back(NewAddrMode); 3492 else 3493 AddrModes.clear(); 3494 3495 return CanHandle; 3496 } 3497 3498 /// Combine the addressing modes we've collected into a single 3499 /// addressing mode. 3500 /// \return True iff we successfully combined them or we only had one so 3501 /// didn't need to combine them anyway. 3502 bool combineAddrModes() { 3503 // If we have no AddrModes then they can't be combined. 3504 if (AddrModes.size() == 0) 3505 return false; 3506 3507 // A single AddrMode can trivially be combined. 3508 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3509 return true; 3510 3511 // If the AddrModes we collected are all just equal to the value they are 3512 // derived from then combining them wouldn't do anything useful. 3513 if (AllAddrModesTrivial) 3514 return false; 3515 3516 if (!addrModeCombiningAllowed()) 3517 return false; 3518 3519 // Build a map between <original value, basic block where we saw it> to 3520 // value of base register. 3521 // Bail out if there is no common type. 3522 FoldAddrToValueMapping Map; 3523 if (!initializeMap(Map)) 3524 return false; 3525 3526 Value *CommonValue = findCommon(Map); 3527 if (CommonValue) 3528 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3529 return CommonValue != nullptr; 3530 } 3531 3532 private: 3533 /// Initialize Map with anchor values. For address seen 3534 /// we set the value of different field saw in this address. 3535 /// At the same time we find a common type for different field we will 3536 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3537 /// Return false if there is no common type found. 3538 bool initializeMap(FoldAddrToValueMapping &Map) { 3539 // Keep track of keys where the value is null. We will need to replace it 3540 // with constant null when we know the common type. 3541 SmallVector<Value *, 2> NullValue; 3542 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3543 for (auto &AM : AddrModes) { 3544 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3545 if (DV) { 3546 auto *Type = DV->getType(); 3547 if (CommonType && CommonType != Type) 3548 return false; 3549 CommonType = Type; 3550 Map[AM.OriginalValue] = DV; 3551 } else { 3552 NullValue.push_back(AM.OriginalValue); 3553 } 3554 } 3555 assert(CommonType && "At least one non-null value must be!"); 3556 for (auto *V : NullValue) 3557 Map[V] = Constant::getNullValue(CommonType); 3558 return true; 3559 } 3560 3561 /// We have mapping between value A and other value B where B was a field in 3562 /// addressing mode represented by A. Also we have an original value C 3563 /// representing an address we start with. Traversing from C through phi and 3564 /// selects we ended up with A's in a map. This utility function tries to find 3565 /// a value V which is a field in addressing mode C and traversing through phi 3566 /// nodes and selects we will end up in corresponded values B in a map. 3567 /// The utility will create a new Phi/Selects if needed. 3568 // The simple example looks as follows: 3569 // BB1: 3570 // p1 = b1 + 40 3571 // br cond BB2, BB3 3572 // BB2: 3573 // p2 = b2 + 40 3574 // br BB3 3575 // BB3: 3576 // p = phi [p1, BB1], [p2, BB2] 3577 // v = load p 3578 // Map is 3579 // p1 -> b1 3580 // p2 -> b2 3581 // Request is 3582 // p -> ? 3583 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3584 Value *findCommon(FoldAddrToValueMapping &Map) { 3585 // Tracks the simplification of newly created phi nodes. The reason we use 3586 // this mapping is because we will add new created Phi nodes in AddrToBase. 3587 // Simplification of Phi nodes is recursive, so some Phi node may 3588 // be simplified after we added it to AddrToBase. In reality this 3589 // simplification is possible only if original phi/selects were not 3590 // simplified yet. 3591 // Using this mapping we can find the current value in AddrToBase. 3592 SimplificationTracker ST(SQ); 3593 3594 // First step, DFS to create PHI nodes for all intermediate blocks. 3595 // Also fill traverse order for the second step. 3596 SmallVector<Value *, 32> TraverseOrder; 3597 InsertPlaceholders(Map, TraverseOrder, ST); 3598 3599 // Second Step, fill new nodes by merged values and simplify if possible. 3600 FillPlaceholders(Map, TraverseOrder, ST); 3601 3602 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3603 ST.destroyNewNodes(CommonType); 3604 return nullptr; 3605 } 3606 3607 // Now we'd like to match New Phi nodes to existed ones. 3608 unsigned PhiNotMatchedCount = 0; 3609 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3610 ST.destroyNewNodes(CommonType); 3611 return nullptr; 3612 } 3613 3614 auto *Result = ST.Get(Map.find(Original)->second); 3615 if (Result) { 3616 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3617 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3618 } 3619 return Result; 3620 } 3621 3622 /// Try to match PHI node to Candidate. 3623 /// Matcher tracks the matched Phi nodes. 3624 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3625 SmallSetVector<PHIPair, 8> &Matcher, 3626 PhiNodeSet &PhiNodesToMatch) { 3627 SmallVector<PHIPair, 8> WorkList; 3628 Matcher.insert({ PHI, Candidate }); 3629 SmallSet<PHINode *, 8> MatchedPHIs; 3630 MatchedPHIs.insert(PHI); 3631 WorkList.push_back({ PHI, Candidate }); 3632 SmallSet<PHIPair, 8> Visited; 3633 while (!WorkList.empty()) { 3634 auto Item = WorkList.pop_back_val(); 3635 if (!Visited.insert(Item).second) 3636 continue; 3637 // We iterate over all incoming values to Phi to compare them. 3638 // If values are different and both of them Phi and the first one is a 3639 // Phi we added (subject to match) and both of them is in the same basic 3640 // block then we can match our pair if values match. So we state that 3641 // these values match and add it to work list to verify that. 3642 for (auto B : Item.first->blocks()) { 3643 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3644 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3645 if (FirstValue == SecondValue) 3646 continue; 3647 3648 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3649 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3650 3651 // One of them is not Phi or 3652 // The first one is not Phi node from the set we'd like to match or 3653 // Phi nodes from different basic blocks then 3654 // we will not be able to match. 3655 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3656 FirstPhi->getParent() != SecondPhi->getParent()) 3657 return false; 3658 3659 // If we already matched them then continue. 3660 if (Matcher.count({ FirstPhi, SecondPhi })) 3661 continue; 3662 // So the values are different and does not match. So we need them to 3663 // match. (But we register no more than one match per PHI node, so that 3664 // we won't later try to replace them twice.) 3665 if (MatchedPHIs.insert(FirstPhi).second) 3666 Matcher.insert({ FirstPhi, SecondPhi }); 3667 // But me must check it. 3668 WorkList.push_back({ FirstPhi, SecondPhi }); 3669 } 3670 } 3671 return true; 3672 } 3673 3674 /// For the given set of PHI nodes (in the SimplificationTracker) try 3675 /// to find their equivalents. 3676 /// Returns false if this matching fails and creation of new Phi is disabled. 3677 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3678 unsigned &PhiNotMatchedCount) { 3679 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3680 // order, so the replacements (ReplacePhi) are also done in a deterministic 3681 // order. 3682 SmallSetVector<PHIPair, 8> Matched; 3683 SmallPtrSet<PHINode *, 8> WillNotMatch; 3684 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3685 while (PhiNodesToMatch.size()) { 3686 PHINode *PHI = *PhiNodesToMatch.begin(); 3687 3688 // Add us, if no Phi nodes in the basic block we do not match. 3689 WillNotMatch.clear(); 3690 WillNotMatch.insert(PHI); 3691 3692 // Traverse all Phis until we found equivalent or fail to do that. 3693 bool IsMatched = false; 3694 for (auto &P : PHI->getParent()->phis()) { 3695 if (&P == PHI) 3696 continue; 3697 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3698 break; 3699 // If it does not match, collect all Phi nodes from matcher. 3700 // if we end up with no match, them all these Phi nodes will not match 3701 // later. 3702 for (auto M : Matched) 3703 WillNotMatch.insert(M.first); 3704 Matched.clear(); 3705 } 3706 if (IsMatched) { 3707 // Replace all matched values and erase them. 3708 for (auto MV : Matched) 3709 ST.ReplacePhi(MV.first, MV.second); 3710 Matched.clear(); 3711 continue; 3712 } 3713 // If we are not allowed to create new nodes then bail out. 3714 if (!AllowNewPhiNodes) 3715 return false; 3716 // Just remove all seen values in matcher. They will not match anything. 3717 PhiNotMatchedCount += WillNotMatch.size(); 3718 for (auto *P : WillNotMatch) 3719 PhiNodesToMatch.erase(P); 3720 } 3721 return true; 3722 } 3723 /// Fill the placeholders with values from predecessors and simplify them. 3724 void FillPlaceholders(FoldAddrToValueMapping &Map, 3725 SmallVectorImpl<Value *> &TraverseOrder, 3726 SimplificationTracker &ST) { 3727 while (!TraverseOrder.empty()) { 3728 Value *Current = TraverseOrder.pop_back_val(); 3729 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3730 Value *V = Map[Current]; 3731 3732 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3733 // CurrentValue also must be Select. 3734 auto *CurrentSelect = cast<SelectInst>(Current); 3735 auto *TrueValue = CurrentSelect->getTrueValue(); 3736 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3737 Select->setTrueValue(ST.Get(Map[TrueValue])); 3738 auto *FalseValue = CurrentSelect->getFalseValue(); 3739 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3740 Select->setFalseValue(ST.Get(Map[FalseValue])); 3741 } else { 3742 // Must be a Phi node then. 3743 auto *PHI = cast<PHINode>(V); 3744 // Fill the Phi node with values from predecessors. 3745 for (auto *B : predecessors(PHI->getParent())) { 3746 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3747 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3748 PHI->addIncoming(ST.Get(Map[PV]), B); 3749 } 3750 } 3751 Map[Current] = ST.Simplify(V); 3752 } 3753 } 3754 3755 /// Starting from original value recursively iterates over def-use chain up to 3756 /// known ending values represented in a map. For each traversed phi/select 3757 /// inserts a placeholder Phi or Select. 3758 /// Reports all new created Phi/Select nodes by adding them to set. 3759 /// Also reports and order in what values have been traversed. 3760 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3761 SmallVectorImpl<Value *> &TraverseOrder, 3762 SimplificationTracker &ST) { 3763 SmallVector<Value *, 32> Worklist; 3764 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3765 "Address must be a Phi or Select node"); 3766 auto *Dummy = UndefValue::get(CommonType); 3767 Worklist.push_back(Original); 3768 while (!Worklist.empty()) { 3769 Value *Current = Worklist.pop_back_val(); 3770 // if it is already visited or it is an ending value then skip it. 3771 if (Map.find(Current) != Map.end()) 3772 continue; 3773 TraverseOrder.push_back(Current); 3774 3775 // CurrentValue must be a Phi node or select. All others must be covered 3776 // by anchors. 3777 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3778 // Is it OK to get metadata from OrigSelect?! 3779 // Create a Select placeholder with dummy value. 3780 SelectInst *Select = SelectInst::Create( 3781 CurrentSelect->getCondition(), Dummy, Dummy, 3782 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3783 Map[Current] = Select; 3784 ST.insertNewSelect(Select); 3785 // We are interested in True and False values. 3786 Worklist.push_back(CurrentSelect->getTrueValue()); 3787 Worklist.push_back(CurrentSelect->getFalseValue()); 3788 } else { 3789 // It must be a Phi node then. 3790 PHINode *CurrentPhi = cast<PHINode>(Current); 3791 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3792 PHINode *PHI = 3793 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3794 Map[Current] = PHI; 3795 ST.insertNewPhi(PHI); 3796 append_range(Worklist, CurrentPhi->incoming_values()); 3797 } 3798 } 3799 } 3800 3801 bool addrModeCombiningAllowed() { 3802 if (DisableComplexAddrModes) 3803 return false; 3804 switch (DifferentField) { 3805 default: 3806 return false; 3807 case ExtAddrMode::BaseRegField: 3808 return AddrSinkCombineBaseReg; 3809 case ExtAddrMode::BaseGVField: 3810 return AddrSinkCombineBaseGV; 3811 case ExtAddrMode::BaseOffsField: 3812 return AddrSinkCombineBaseOffs; 3813 case ExtAddrMode::ScaledRegField: 3814 return AddrSinkCombineScaledReg; 3815 } 3816 } 3817 }; 3818 } // end anonymous namespace 3819 3820 /// Try adding ScaleReg*Scale to the current addressing mode. 3821 /// Return true and update AddrMode if this addr mode is legal for the target, 3822 /// false if not. 3823 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3824 unsigned Depth) { 3825 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3826 // mode. Just process that directly. 3827 if (Scale == 1) 3828 return matchAddr(ScaleReg, Depth); 3829 3830 // If the scale is 0, it takes nothing to add this. 3831 if (Scale == 0) 3832 return true; 3833 3834 // If we already have a scale of this value, we can add to it, otherwise, we 3835 // need an available scale field. 3836 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3837 return false; 3838 3839 ExtAddrMode TestAddrMode = AddrMode; 3840 3841 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3842 // [A+B + A*7] -> [B+A*8]. 3843 TestAddrMode.Scale += Scale; 3844 TestAddrMode.ScaledReg = ScaleReg; 3845 3846 // If the new address isn't legal, bail out. 3847 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3848 return false; 3849 3850 // It was legal, so commit it. 3851 AddrMode = TestAddrMode; 3852 3853 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3854 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3855 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3856 // go any further: we can reuse it and cannot eliminate it. 3857 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3858 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3859 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3860 !isIVIncrement(cast<BinaryOperator>(ScaleReg), &LI) && 3861 CI->getValue().isSignedIntN(64)) { 3862 TestAddrMode.InBounds = false; 3863 TestAddrMode.ScaledReg = AddLHS; 3864 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3865 3866 // If this addressing mode is legal, commit it and remember that we folded 3867 // this instruction. 3868 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3869 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3870 AddrMode = TestAddrMode; 3871 return true; 3872 } 3873 // Restore status quo. 3874 TestAddrMode = AddrMode; 3875 } 3876 3877 auto GetConstantStep = [this](const Value * V) 3878 ->Optional<std::pair<Instruction *, APInt> > { 3879 auto *PN = dyn_cast<PHINode>(V); 3880 if (!PN) 3881 return None; 3882 auto IVInc = getIVIncrement(PN, &LI); 3883 if (!IVInc) 3884 return None; 3885 // TODO: The result of the intrinsics above is two-compliment. However when 3886 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3887 // If it has nuw or nsw flags, we need to make sure that these flags are 3888 // inferrable at the point of memory instruction. Otherwise we are replacing 3889 // well-defined two-compliment computation with poison. Currently, to avoid 3890 // potentially complex analysis needed to prove this, we reject such cases. 3891 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3892 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3893 return None; 3894 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3895 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3896 return None; 3897 }; 3898 3899 // Try to account for the following special case: 3900 // 1. ScaleReg is an inductive variable; 3901 // 2. We use it with non-zero offset; 3902 // 3. IV's increment is available at the point of memory instruction. 3903 // 3904 // In this case, we may reuse the IV increment instead of the IV Phi to 3905 // achieve the following advantages: 3906 // 1. If IV step matches the offset, we will have no need in the offset; 3907 // 2. Even if they don't match, we will reduce the overlap of living IV 3908 // and IV increment, that will potentially lead to better register 3909 // assignment. 3910 if (AddrMode.BaseOffs) { 3911 if (auto IVStep = GetConstantStep(ScaleReg)) { 3912 Instruction *IVInc = IVStep->first; 3913 APInt Step = IVStep->second; 3914 APInt Offset = Step * AddrMode.Scale; 3915 if (Offset.isSignedIntN(64)) { 3916 TestAddrMode.InBounds = false; 3917 TestAddrMode.ScaledReg = IVInc; 3918 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3919 // If this addressing mode is legal, commit it.. 3920 // (Note that we defer the (expensive) domtree base legality check 3921 // to the very last possible point.) 3922 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3923 getDTFn().dominates(IVInc, MemoryInst)) { 3924 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3925 AddrMode = TestAddrMode; 3926 return true; 3927 } 3928 // Restore status quo. 3929 TestAddrMode = AddrMode; 3930 } 3931 } 3932 } 3933 3934 // Otherwise, just return what we have. 3935 return true; 3936 } 3937 3938 /// This is a little filter, which returns true if an addressing computation 3939 /// involving I might be folded into a load/store accessing it. 3940 /// This doesn't need to be perfect, but needs to accept at least 3941 /// the set of instructions that MatchOperationAddr can. 3942 static bool MightBeFoldableInst(Instruction *I) { 3943 switch (I->getOpcode()) { 3944 case Instruction::BitCast: 3945 case Instruction::AddrSpaceCast: 3946 // Don't touch identity bitcasts. 3947 if (I->getType() == I->getOperand(0)->getType()) 3948 return false; 3949 return I->getType()->isIntOrPtrTy(); 3950 case Instruction::PtrToInt: 3951 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3952 return true; 3953 case Instruction::IntToPtr: 3954 // We know the input is intptr_t, so this is foldable. 3955 return true; 3956 case Instruction::Add: 3957 return true; 3958 case Instruction::Mul: 3959 case Instruction::Shl: 3960 // Can only handle X*C and X << C. 3961 return isa<ConstantInt>(I->getOperand(1)); 3962 case Instruction::GetElementPtr: 3963 return true; 3964 default: 3965 return false; 3966 } 3967 } 3968 3969 /// Check whether or not \p Val is a legal instruction for \p TLI. 3970 /// \note \p Val is assumed to be the product of some type promotion. 3971 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3972 /// to be legal, as the non-promoted value would have had the same state. 3973 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3974 const DataLayout &DL, Value *Val) { 3975 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3976 if (!PromotedInst) 3977 return false; 3978 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3979 // If the ISDOpcode is undefined, it was undefined before the promotion. 3980 if (!ISDOpcode) 3981 return true; 3982 // Otherwise, check if the promoted instruction is legal or not. 3983 return TLI.isOperationLegalOrCustom( 3984 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3985 } 3986 3987 namespace { 3988 3989 /// Hepler class to perform type promotion. 3990 class TypePromotionHelper { 3991 /// Utility function to add a promoted instruction \p ExtOpnd to 3992 /// \p PromotedInsts and record the type of extension we have seen. 3993 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3994 Instruction *ExtOpnd, 3995 bool IsSExt) { 3996 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3997 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3998 if (It != PromotedInsts.end()) { 3999 // If the new extension is same as original, the information in 4000 // PromotedInsts[ExtOpnd] is still correct. 4001 if (It->second.getInt() == ExtTy) 4002 return; 4003 4004 // Now the new extension is different from old extension, we make 4005 // the type information invalid by setting extension type to 4006 // BothExtension. 4007 ExtTy = BothExtension; 4008 } 4009 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4010 } 4011 4012 /// Utility function to query the original type of instruction \p Opnd 4013 /// with a matched extension type. If the extension doesn't match, we 4014 /// cannot use the information we had on the original type. 4015 /// BothExtension doesn't match any extension type. 4016 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4017 Instruction *Opnd, 4018 bool IsSExt) { 4019 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4020 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4021 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4022 return It->second.getPointer(); 4023 return nullptr; 4024 } 4025 4026 /// Utility function to check whether or not a sign or zero extension 4027 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4028 /// either using the operands of \p Inst or promoting \p Inst. 4029 /// The type of the extension is defined by \p IsSExt. 4030 /// In other words, check if: 4031 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4032 /// #1 Promotion applies: 4033 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4034 /// #2 Operand reuses: 4035 /// ext opnd1 to ConsideredExtType. 4036 /// \p PromotedInsts maps the instructions to their type before promotion. 4037 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4038 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4039 4040 /// Utility function to determine if \p OpIdx should be promoted when 4041 /// promoting \p Inst. 4042 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4043 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4044 } 4045 4046 /// Utility function to promote the operand of \p Ext when this 4047 /// operand is a promotable trunc or sext or zext. 4048 /// \p PromotedInsts maps the instructions to their type before promotion. 4049 /// \p CreatedInstsCost[out] contains the cost of all instructions 4050 /// created to promote the operand of Ext. 4051 /// Newly added extensions are inserted in \p Exts. 4052 /// Newly added truncates are inserted in \p Truncs. 4053 /// Should never be called directly. 4054 /// \return The promoted value which is used instead of Ext. 4055 static Value *promoteOperandForTruncAndAnyExt( 4056 Instruction *Ext, TypePromotionTransaction &TPT, 4057 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4058 SmallVectorImpl<Instruction *> *Exts, 4059 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4060 4061 /// Utility function to promote the operand of \p Ext when this 4062 /// operand is promotable and is not a supported trunc or sext. 4063 /// \p PromotedInsts maps the instructions to their type before promotion. 4064 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4065 /// created to promote the operand of Ext. 4066 /// Newly added extensions are inserted in \p Exts. 4067 /// Newly added truncates are inserted in \p Truncs. 4068 /// Should never be called directly. 4069 /// \return The promoted value which is used instead of Ext. 4070 static Value *promoteOperandForOther(Instruction *Ext, 4071 TypePromotionTransaction &TPT, 4072 InstrToOrigTy &PromotedInsts, 4073 unsigned &CreatedInstsCost, 4074 SmallVectorImpl<Instruction *> *Exts, 4075 SmallVectorImpl<Instruction *> *Truncs, 4076 const TargetLowering &TLI, bool IsSExt); 4077 4078 /// \see promoteOperandForOther. 4079 static Value *signExtendOperandForOther( 4080 Instruction *Ext, TypePromotionTransaction &TPT, 4081 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4082 SmallVectorImpl<Instruction *> *Exts, 4083 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4084 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4085 Exts, Truncs, TLI, true); 4086 } 4087 4088 /// \see promoteOperandForOther. 4089 static Value *zeroExtendOperandForOther( 4090 Instruction *Ext, TypePromotionTransaction &TPT, 4091 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4092 SmallVectorImpl<Instruction *> *Exts, 4093 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4094 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4095 Exts, Truncs, TLI, false); 4096 } 4097 4098 public: 4099 /// Type for the utility function that promotes the operand of Ext. 4100 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4101 InstrToOrigTy &PromotedInsts, 4102 unsigned &CreatedInstsCost, 4103 SmallVectorImpl<Instruction *> *Exts, 4104 SmallVectorImpl<Instruction *> *Truncs, 4105 const TargetLowering &TLI); 4106 4107 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4108 /// action to promote the operand of \p Ext instead of using Ext. 4109 /// \return NULL if no promotable action is possible with the current 4110 /// sign extension. 4111 /// \p InsertedInsts keeps track of all the instructions inserted by the 4112 /// other CodeGenPrepare optimizations. This information is important 4113 /// because we do not want to promote these instructions as CodeGenPrepare 4114 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4115 /// \p PromotedInsts maps the instructions to their type before promotion. 4116 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4117 const TargetLowering &TLI, 4118 const InstrToOrigTy &PromotedInsts); 4119 }; 4120 4121 } // end anonymous namespace 4122 4123 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4124 Type *ConsideredExtType, 4125 const InstrToOrigTy &PromotedInsts, 4126 bool IsSExt) { 4127 // The promotion helper does not know how to deal with vector types yet. 4128 // To be able to fix that, we would need to fix the places where we 4129 // statically extend, e.g., constants and such. 4130 if (Inst->getType()->isVectorTy()) 4131 return false; 4132 4133 // We can always get through zext. 4134 if (isa<ZExtInst>(Inst)) 4135 return true; 4136 4137 // sext(sext) is ok too. 4138 if (IsSExt && isa<SExtInst>(Inst)) 4139 return true; 4140 4141 // We can get through binary operator, if it is legal. In other words, the 4142 // binary operator must have a nuw or nsw flag. 4143 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4144 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4145 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4146 (IsSExt && BinOp->hasNoSignedWrap()))) 4147 return true; 4148 4149 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4150 if ((Inst->getOpcode() == Instruction::And || 4151 Inst->getOpcode() == Instruction::Or)) 4152 return true; 4153 4154 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4155 if (Inst->getOpcode() == Instruction::Xor) { 4156 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4157 // Make sure it is not a NOT. 4158 if (Cst && !Cst->getValue().isAllOnesValue()) 4159 return true; 4160 } 4161 4162 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4163 // It may change a poisoned value into a regular value, like 4164 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4165 // poisoned value regular value 4166 // It should be OK since undef covers valid value. 4167 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4168 return true; 4169 4170 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4171 // It may change a poisoned value into a regular value, like 4172 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4173 // poisoned value regular value 4174 // It should be OK since undef covers valid value. 4175 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4176 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4177 if (ExtInst->hasOneUse()) { 4178 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4179 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4180 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4181 if (Cst && 4182 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4183 return true; 4184 } 4185 } 4186 } 4187 4188 // Check if we can do the following simplification. 4189 // ext(trunc(opnd)) --> ext(opnd) 4190 if (!isa<TruncInst>(Inst)) 4191 return false; 4192 4193 Value *OpndVal = Inst->getOperand(0); 4194 // Check if we can use this operand in the extension. 4195 // If the type is larger than the result type of the extension, we cannot. 4196 if (!OpndVal->getType()->isIntegerTy() || 4197 OpndVal->getType()->getIntegerBitWidth() > 4198 ConsideredExtType->getIntegerBitWidth()) 4199 return false; 4200 4201 // If the operand of the truncate is not an instruction, we will not have 4202 // any information on the dropped bits. 4203 // (Actually we could for constant but it is not worth the extra logic). 4204 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4205 if (!Opnd) 4206 return false; 4207 4208 // Check if the source of the type is narrow enough. 4209 // I.e., check that trunc just drops extended bits of the same kind of 4210 // the extension. 4211 // #1 get the type of the operand and check the kind of the extended bits. 4212 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4213 if (OpndType) 4214 ; 4215 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4216 OpndType = Opnd->getOperand(0)->getType(); 4217 else 4218 return false; 4219 4220 // #2 check that the truncate just drops extended bits. 4221 return Inst->getType()->getIntegerBitWidth() >= 4222 OpndType->getIntegerBitWidth(); 4223 } 4224 4225 TypePromotionHelper::Action TypePromotionHelper::getAction( 4226 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4227 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4228 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4229 "Unexpected instruction type"); 4230 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4231 Type *ExtTy = Ext->getType(); 4232 bool IsSExt = isa<SExtInst>(Ext); 4233 // If the operand of the extension is not an instruction, we cannot 4234 // get through. 4235 // If it, check we can get through. 4236 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4237 return nullptr; 4238 4239 // Do not promote if the operand has been added by codegenprepare. 4240 // Otherwise, it means we are undoing an optimization that is likely to be 4241 // redone, thus causing potential infinite loop. 4242 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4243 return nullptr; 4244 4245 // SExt or Trunc instructions. 4246 // Return the related handler. 4247 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4248 isa<ZExtInst>(ExtOpnd)) 4249 return promoteOperandForTruncAndAnyExt; 4250 4251 // Regular instruction. 4252 // Abort early if we will have to insert non-free instructions. 4253 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4254 return nullptr; 4255 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4256 } 4257 4258 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4259 Instruction *SExt, TypePromotionTransaction &TPT, 4260 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4261 SmallVectorImpl<Instruction *> *Exts, 4262 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4263 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4264 // get through it and this method should not be called. 4265 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4266 Value *ExtVal = SExt; 4267 bool HasMergedNonFreeExt = false; 4268 if (isa<ZExtInst>(SExtOpnd)) { 4269 // Replace s|zext(zext(opnd)) 4270 // => zext(opnd). 4271 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4272 Value *ZExt = 4273 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4274 TPT.replaceAllUsesWith(SExt, ZExt); 4275 TPT.eraseInstruction(SExt); 4276 ExtVal = ZExt; 4277 } else { 4278 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4279 // => z|sext(opnd). 4280 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4281 } 4282 CreatedInstsCost = 0; 4283 4284 // Remove dead code. 4285 if (SExtOpnd->use_empty()) 4286 TPT.eraseInstruction(SExtOpnd); 4287 4288 // Check if the extension is still needed. 4289 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4290 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4291 if (ExtInst) { 4292 if (Exts) 4293 Exts->push_back(ExtInst); 4294 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4295 } 4296 return ExtVal; 4297 } 4298 4299 // At this point we have: ext ty opnd to ty. 4300 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4301 Value *NextVal = ExtInst->getOperand(0); 4302 TPT.eraseInstruction(ExtInst, NextVal); 4303 return NextVal; 4304 } 4305 4306 Value *TypePromotionHelper::promoteOperandForOther( 4307 Instruction *Ext, TypePromotionTransaction &TPT, 4308 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4309 SmallVectorImpl<Instruction *> *Exts, 4310 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4311 bool IsSExt) { 4312 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4313 // get through it and this method should not be called. 4314 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4315 CreatedInstsCost = 0; 4316 if (!ExtOpnd->hasOneUse()) { 4317 // ExtOpnd will be promoted. 4318 // All its uses, but Ext, will need to use a truncated value of the 4319 // promoted version. 4320 // Create the truncate now. 4321 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4322 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4323 // Insert it just after the definition. 4324 ITrunc->moveAfter(ExtOpnd); 4325 if (Truncs) 4326 Truncs->push_back(ITrunc); 4327 } 4328 4329 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4330 // Restore the operand of Ext (which has been replaced by the previous call 4331 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4332 TPT.setOperand(Ext, 0, ExtOpnd); 4333 } 4334 4335 // Get through the Instruction: 4336 // 1. Update its type. 4337 // 2. Replace the uses of Ext by Inst. 4338 // 3. Extend each operand that needs to be extended. 4339 4340 // Remember the original type of the instruction before promotion. 4341 // This is useful to know that the high bits are sign extended bits. 4342 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4343 // Step #1. 4344 TPT.mutateType(ExtOpnd, Ext->getType()); 4345 // Step #2. 4346 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4347 // Step #3. 4348 Instruction *ExtForOpnd = Ext; 4349 4350 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4351 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4352 ++OpIdx) { 4353 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4354 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4355 !shouldExtOperand(ExtOpnd, OpIdx)) { 4356 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4357 continue; 4358 } 4359 // Check if we can statically extend the operand. 4360 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4361 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4362 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4363 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4364 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4365 : Cst->getValue().zext(BitWidth); 4366 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4367 continue; 4368 } 4369 // UndefValue are typed, so we have to statically sign extend them. 4370 if (isa<UndefValue>(Opnd)) { 4371 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4372 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4373 continue; 4374 } 4375 4376 // Otherwise we have to explicitly sign extend the operand. 4377 // Check if Ext was reused to extend an operand. 4378 if (!ExtForOpnd) { 4379 // If yes, create a new one. 4380 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4381 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4382 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4383 if (!isa<Instruction>(ValForExtOpnd)) { 4384 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4385 continue; 4386 } 4387 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4388 } 4389 if (Exts) 4390 Exts->push_back(ExtForOpnd); 4391 TPT.setOperand(ExtForOpnd, 0, Opnd); 4392 4393 // Move the sign extension before the insertion point. 4394 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4395 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4396 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4397 // If more sext are required, new instructions will have to be created. 4398 ExtForOpnd = nullptr; 4399 } 4400 if (ExtForOpnd == Ext) { 4401 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4402 TPT.eraseInstruction(Ext); 4403 } 4404 return ExtOpnd; 4405 } 4406 4407 /// Check whether or not promoting an instruction to a wider type is profitable. 4408 /// \p NewCost gives the cost of extension instructions created by the 4409 /// promotion. 4410 /// \p OldCost gives the cost of extension instructions before the promotion 4411 /// plus the number of instructions that have been 4412 /// matched in the addressing mode the promotion. 4413 /// \p PromotedOperand is the value that has been promoted. 4414 /// \return True if the promotion is profitable, false otherwise. 4415 bool AddressingModeMatcher::isPromotionProfitable( 4416 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4417 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4418 << '\n'); 4419 // The cost of the new extensions is greater than the cost of the 4420 // old extension plus what we folded. 4421 // This is not profitable. 4422 if (NewCost > OldCost) 4423 return false; 4424 if (NewCost < OldCost) 4425 return true; 4426 // The promotion is neutral but it may help folding the sign extension in 4427 // loads for instance. 4428 // Check that we did not create an illegal instruction. 4429 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4430 } 4431 4432 /// Given an instruction or constant expr, see if we can fold the operation 4433 /// into the addressing mode. If so, update the addressing mode and return 4434 /// true, otherwise return false without modifying AddrMode. 4435 /// If \p MovedAway is not NULL, it contains the information of whether or 4436 /// not AddrInst has to be folded into the addressing mode on success. 4437 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4438 /// because it has been moved away. 4439 /// Thus AddrInst must not be added in the matched instructions. 4440 /// This state can happen when AddrInst is a sext, since it may be moved away. 4441 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4442 /// not be referenced anymore. 4443 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4444 unsigned Depth, 4445 bool *MovedAway) { 4446 // Avoid exponential behavior on extremely deep expression trees. 4447 if (Depth >= 5) return false; 4448 4449 // By default, all matched instructions stay in place. 4450 if (MovedAway) 4451 *MovedAway = false; 4452 4453 switch (Opcode) { 4454 case Instruction::PtrToInt: 4455 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4456 return matchAddr(AddrInst->getOperand(0), Depth); 4457 case Instruction::IntToPtr: { 4458 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4459 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4460 // This inttoptr is a no-op if the integer type is pointer sized. 4461 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4462 return matchAddr(AddrInst->getOperand(0), Depth); 4463 return false; 4464 } 4465 case Instruction::BitCast: 4466 // BitCast is always a noop, and we can handle it as long as it is 4467 // int->int or pointer->pointer (we don't want int<->fp or something). 4468 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4469 // Don't touch identity bitcasts. These were probably put here by LSR, 4470 // and we don't want to mess around with them. Assume it knows what it 4471 // is doing. 4472 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4473 return matchAddr(AddrInst->getOperand(0), Depth); 4474 return false; 4475 case Instruction::AddrSpaceCast: { 4476 unsigned SrcAS 4477 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4478 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4479 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4480 return matchAddr(AddrInst->getOperand(0), Depth); 4481 return false; 4482 } 4483 case Instruction::Add: { 4484 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4485 ExtAddrMode BackupAddrMode = AddrMode; 4486 unsigned OldSize = AddrModeInsts.size(); 4487 // Start a transaction at this point. 4488 // The LHS may match but not the RHS. 4489 // Therefore, we need a higher level restoration point to undo partially 4490 // matched operation. 4491 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4492 TPT.getRestorationPoint(); 4493 4494 AddrMode.InBounds = false; 4495 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4496 matchAddr(AddrInst->getOperand(0), Depth+1)) 4497 return true; 4498 4499 // Restore the old addr mode info. 4500 AddrMode = BackupAddrMode; 4501 AddrModeInsts.resize(OldSize); 4502 TPT.rollback(LastKnownGood); 4503 4504 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4505 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4506 matchAddr(AddrInst->getOperand(1), Depth+1)) 4507 return true; 4508 4509 // Otherwise we definitely can't merge the ADD in. 4510 AddrMode = BackupAddrMode; 4511 AddrModeInsts.resize(OldSize); 4512 TPT.rollback(LastKnownGood); 4513 break; 4514 } 4515 //case Instruction::Or: 4516 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4517 //break; 4518 case Instruction::Mul: 4519 case Instruction::Shl: { 4520 // Can only handle X*C and X << C. 4521 AddrMode.InBounds = false; 4522 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4523 if (!RHS || RHS->getBitWidth() > 64) 4524 return false; 4525 int64_t Scale = RHS->getSExtValue(); 4526 if (Opcode == Instruction::Shl) 4527 Scale = 1LL << Scale; 4528 4529 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4530 } 4531 case Instruction::GetElementPtr: { 4532 // Scan the GEP. We check it if it contains constant offsets and at most 4533 // one variable offset. 4534 int VariableOperand = -1; 4535 unsigned VariableScale = 0; 4536 4537 int64_t ConstantOffset = 0; 4538 gep_type_iterator GTI = gep_type_begin(AddrInst); 4539 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4540 if (StructType *STy = GTI.getStructTypeOrNull()) { 4541 const StructLayout *SL = DL.getStructLayout(STy); 4542 unsigned Idx = 4543 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4544 ConstantOffset += SL->getElementOffset(Idx); 4545 } else { 4546 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4547 if (TS.isNonZero()) { 4548 // The optimisations below currently only work for fixed offsets. 4549 if (TS.isScalable()) 4550 return false; 4551 int64_t TypeSize = TS.getFixedSize(); 4552 if (ConstantInt *CI = 4553 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4554 const APInt &CVal = CI->getValue(); 4555 if (CVal.getMinSignedBits() <= 64) { 4556 ConstantOffset += CVal.getSExtValue() * TypeSize; 4557 continue; 4558 } 4559 } 4560 // We only allow one variable index at the moment. 4561 if (VariableOperand != -1) 4562 return false; 4563 4564 // Remember the variable index. 4565 VariableOperand = i; 4566 VariableScale = TypeSize; 4567 } 4568 } 4569 } 4570 4571 // A common case is for the GEP to only do a constant offset. In this case, 4572 // just add it to the disp field and check validity. 4573 if (VariableOperand == -1) { 4574 AddrMode.BaseOffs += ConstantOffset; 4575 if (ConstantOffset == 0 || 4576 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4577 // Check to see if we can fold the base pointer in too. 4578 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4579 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4580 AddrMode.InBounds = false; 4581 return true; 4582 } 4583 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4584 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4585 ConstantOffset > 0) { 4586 // Record GEPs with non-zero offsets as candidates for splitting in the 4587 // event that the offset cannot fit into the r+i addressing mode. 4588 // Simple and common case that only one GEP is used in calculating the 4589 // address for the memory access. 4590 Value *Base = AddrInst->getOperand(0); 4591 auto *BaseI = dyn_cast<Instruction>(Base); 4592 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4593 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4594 (BaseI && !isa<CastInst>(BaseI) && 4595 !isa<GetElementPtrInst>(BaseI))) { 4596 // Make sure the parent block allows inserting non-PHI instructions 4597 // before the terminator. 4598 BasicBlock *Parent = 4599 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4600 if (!Parent->getTerminator()->isEHPad()) 4601 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4602 } 4603 } 4604 AddrMode.BaseOffs -= ConstantOffset; 4605 return false; 4606 } 4607 4608 // Save the valid addressing mode in case we can't match. 4609 ExtAddrMode BackupAddrMode = AddrMode; 4610 unsigned OldSize = AddrModeInsts.size(); 4611 4612 // See if the scale and offset amount is valid for this target. 4613 AddrMode.BaseOffs += ConstantOffset; 4614 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4615 AddrMode.InBounds = false; 4616 4617 // Match the base operand of the GEP. 4618 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4619 // If it couldn't be matched, just stuff the value in a register. 4620 if (AddrMode.HasBaseReg) { 4621 AddrMode = BackupAddrMode; 4622 AddrModeInsts.resize(OldSize); 4623 return false; 4624 } 4625 AddrMode.HasBaseReg = true; 4626 AddrMode.BaseReg = AddrInst->getOperand(0); 4627 } 4628 4629 // Match the remaining variable portion of the GEP. 4630 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4631 Depth)) { 4632 // If it couldn't be matched, try stuffing the base into a register 4633 // instead of matching it, and retrying the match of the scale. 4634 AddrMode = BackupAddrMode; 4635 AddrModeInsts.resize(OldSize); 4636 if (AddrMode.HasBaseReg) 4637 return false; 4638 AddrMode.HasBaseReg = true; 4639 AddrMode.BaseReg = AddrInst->getOperand(0); 4640 AddrMode.BaseOffs += ConstantOffset; 4641 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4642 VariableScale, Depth)) { 4643 // If even that didn't work, bail. 4644 AddrMode = BackupAddrMode; 4645 AddrModeInsts.resize(OldSize); 4646 return false; 4647 } 4648 } 4649 4650 return true; 4651 } 4652 case Instruction::SExt: 4653 case Instruction::ZExt: { 4654 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4655 if (!Ext) 4656 return false; 4657 4658 // Try to move this ext out of the way of the addressing mode. 4659 // Ask for a method for doing so. 4660 TypePromotionHelper::Action TPH = 4661 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4662 if (!TPH) 4663 return false; 4664 4665 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4666 TPT.getRestorationPoint(); 4667 unsigned CreatedInstsCost = 0; 4668 unsigned ExtCost = !TLI.isExtFree(Ext); 4669 Value *PromotedOperand = 4670 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4671 // SExt has been moved away. 4672 // Thus either it will be rematched later in the recursive calls or it is 4673 // gone. Anyway, we must not fold it into the addressing mode at this point. 4674 // E.g., 4675 // op = add opnd, 1 4676 // idx = ext op 4677 // addr = gep base, idx 4678 // is now: 4679 // promotedOpnd = ext opnd <- no match here 4680 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4681 // addr = gep base, op <- match 4682 if (MovedAway) 4683 *MovedAway = true; 4684 4685 assert(PromotedOperand && 4686 "TypePromotionHelper should have filtered out those cases"); 4687 4688 ExtAddrMode BackupAddrMode = AddrMode; 4689 unsigned OldSize = AddrModeInsts.size(); 4690 4691 if (!matchAddr(PromotedOperand, Depth) || 4692 // The total of the new cost is equal to the cost of the created 4693 // instructions. 4694 // The total of the old cost is equal to the cost of the extension plus 4695 // what we have saved in the addressing mode. 4696 !isPromotionProfitable(CreatedInstsCost, 4697 ExtCost + (AddrModeInsts.size() - OldSize), 4698 PromotedOperand)) { 4699 AddrMode = BackupAddrMode; 4700 AddrModeInsts.resize(OldSize); 4701 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4702 TPT.rollback(LastKnownGood); 4703 return false; 4704 } 4705 return true; 4706 } 4707 } 4708 return false; 4709 } 4710 4711 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4712 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4713 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4714 /// for the target. 4715 /// 4716 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4717 // Start a transaction at this point that we will rollback if the matching 4718 // fails. 4719 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4720 TPT.getRestorationPoint(); 4721 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4722 if (CI->getValue().isSignedIntN(64)) { 4723 // Fold in immediates if legal for the target. 4724 AddrMode.BaseOffs += CI->getSExtValue(); 4725 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4726 return true; 4727 AddrMode.BaseOffs -= CI->getSExtValue(); 4728 } 4729 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4730 // If this is a global variable, try to fold it into the addressing mode. 4731 if (!AddrMode.BaseGV) { 4732 AddrMode.BaseGV = GV; 4733 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4734 return true; 4735 AddrMode.BaseGV = nullptr; 4736 } 4737 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4738 ExtAddrMode BackupAddrMode = AddrMode; 4739 unsigned OldSize = AddrModeInsts.size(); 4740 4741 // Check to see if it is possible to fold this operation. 4742 bool MovedAway = false; 4743 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4744 // This instruction may have been moved away. If so, there is nothing 4745 // to check here. 4746 if (MovedAway) 4747 return true; 4748 // Okay, it's possible to fold this. Check to see if it is actually 4749 // *profitable* to do so. We use a simple cost model to avoid increasing 4750 // register pressure too much. 4751 if (I->hasOneUse() || 4752 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4753 AddrModeInsts.push_back(I); 4754 return true; 4755 } 4756 4757 // It isn't profitable to do this, roll back. 4758 //cerr << "NOT FOLDING: " << *I; 4759 AddrMode = BackupAddrMode; 4760 AddrModeInsts.resize(OldSize); 4761 TPT.rollback(LastKnownGood); 4762 } 4763 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4764 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4765 return true; 4766 TPT.rollback(LastKnownGood); 4767 } else if (isa<ConstantPointerNull>(Addr)) { 4768 // Null pointer gets folded without affecting the addressing mode. 4769 return true; 4770 } 4771 4772 // Worse case, the target should support [reg] addressing modes. :) 4773 if (!AddrMode.HasBaseReg) { 4774 AddrMode.HasBaseReg = true; 4775 AddrMode.BaseReg = Addr; 4776 // Still check for legality in case the target supports [imm] but not [i+r]. 4777 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4778 return true; 4779 AddrMode.HasBaseReg = false; 4780 AddrMode.BaseReg = nullptr; 4781 } 4782 4783 // If the base register is already taken, see if we can do [r+r]. 4784 if (AddrMode.Scale == 0) { 4785 AddrMode.Scale = 1; 4786 AddrMode.ScaledReg = Addr; 4787 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4788 return true; 4789 AddrMode.Scale = 0; 4790 AddrMode.ScaledReg = nullptr; 4791 } 4792 // Couldn't match. 4793 TPT.rollback(LastKnownGood); 4794 return false; 4795 } 4796 4797 /// Check to see if all uses of OpVal by the specified inline asm call are due 4798 /// to memory operands. If so, return true, otherwise return false. 4799 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4800 const TargetLowering &TLI, 4801 const TargetRegisterInfo &TRI) { 4802 const Function *F = CI->getFunction(); 4803 TargetLowering::AsmOperandInfoVector TargetConstraints = 4804 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4805 4806 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4807 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4808 4809 // Compute the constraint code and ConstraintType to use. 4810 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4811 4812 // If this asm operand is our Value*, and if it isn't an indirect memory 4813 // operand, we can't fold it! 4814 if (OpInfo.CallOperandVal == OpVal && 4815 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4816 !OpInfo.isIndirect)) 4817 return false; 4818 } 4819 4820 return true; 4821 } 4822 4823 // Max number of memory uses to look at before aborting the search to conserve 4824 // compile time. 4825 static constexpr int MaxMemoryUsesToScan = 20; 4826 4827 /// Recursively walk all the uses of I until we find a memory use. 4828 /// If we find an obviously non-foldable instruction, return true. 4829 /// Add the ultimately found memory instructions to MemoryUses. 4830 static bool FindAllMemoryUses( 4831 Instruction *I, 4832 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4833 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4834 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4835 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4836 // If we already considered this instruction, we're done. 4837 if (!ConsideredInsts.insert(I).second) 4838 return false; 4839 4840 // If this is an obviously unfoldable instruction, bail out. 4841 if (!MightBeFoldableInst(I)) 4842 return true; 4843 4844 // Loop over all the uses, recursively processing them. 4845 for (Use &U : I->uses()) { 4846 // Conservatively return true if we're seeing a large number or a deep chain 4847 // of users. This avoids excessive compilation times in pathological cases. 4848 if (SeenInsts++ >= MaxMemoryUsesToScan) 4849 return true; 4850 4851 Instruction *UserI = cast<Instruction>(U.getUser()); 4852 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4853 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4854 continue; 4855 } 4856 4857 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4858 unsigned opNo = U.getOperandNo(); 4859 if (opNo != StoreInst::getPointerOperandIndex()) 4860 return true; // Storing addr, not into addr. 4861 MemoryUses.push_back(std::make_pair(SI, opNo)); 4862 continue; 4863 } 4864 4865 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4866 unsigned opNo = U.getOperandNo(); 4867 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4868 return true; // Storing addr, not into addr. 4869 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4870 continue; 4871 } 4872 4873 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4874 unsigned opNo = U.getOperandNo(); 4875 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4876 return true; // Storing addr, not into addr. 4877 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4878 continue; 4879 } 4880 4881 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4882 if (CI->hasFnAttr(Attribute::Cold)) { 4883 // If this is a cold call, we can sink the addressing calculation into 4884 // the cold path. See optimizeCallInst 4885 bool OptForSize = OptSize || 4886 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4887 if (!OptForSize) 4888 continue; 4889 } 4890 4891 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4892 if (!IA) return true; 4893 4894 // If this is a memory operand, we're cool, otherwise bail out. 4895 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4896 return true; 4897 continue; 4898 } 4899 4900 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4901 PSI, BFI, SeenInsts)) 4902 return true; 4903 } 4904 4905 return false; 4906 } 4907 4908 /// Return true if Val is already known to be live at the use site that we're 4909 /// folding it into. If so, there is no cost to include it in the addressing 4910 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4911 /// instruction already. 4912 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4913 Value *KnownLive2) { 4914 // If Val is either of the known-live values, we know it is live! 4915 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4916 return true; 4917 4918 // All values other than instructions and arguments (e.g. constants) are live. 4919 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4920 4921 // If Val is a constant sized alloca in the entry block, it is live, this is 4922 // true because it is just a reference to the stack/frame pointer, which is 4923 // live for the whole function. 4924 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4925 if (AI->isStaticAlloca()) 4926 return true; 4927 4928 // Check to see if this value is already used in the memory instruction's 4929 // block. If so, it's already live into the block at the very least, so we 4930 // can reasonably fold it. 4931 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4932 } 4933 4934 /// It is possible for the addressing mode of the machine to fold the specified 4935 /// instruction into a load or store that ultimately uses it. 4936 /// However, the specified instruction has multiple uses. 4937 /// Given this, it may actually increase register pressure to fold it 4938 /// into the load. For example, consider this code: 4939 /// 4940 /// X = ... 4941 /// Y = X+1 4942 /// use(Y) -> nonload/store 4943 /// Z = Y+1 4944 /// load Z 4945 /// 4946 /// In this case, Y has multiple uses, and can be folded into the load of Z 4947 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4948 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4949 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4950 /// number of computations either. 4951 /// 4952 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4953 /// X was live across 'load Z' for other reasons, we actually *would* want to 4954 /// fold the addressing mode in the Z case. This would make Y die earlier. 4955 bool AddressingModeMatcher:: 4956 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4957 ExtAddrMode &AMAfter) { 4958 if (IgnoreProfitability) return true; 4959 4960 // AMBefore is the addressing mode before this instruction was folded into it, 4961 // and AMAfter is the addressing mode after the instruction was folded. Get 4962 // the set of registers referenced by AMAfter and subtract out those 4963 // referenced by AMBefore: this is the set of values which folding in this 4964 // address extends the lifetime of. 4965 // 4966 // Note that there are only two potential values being referenced here, 4967 // BaseReg and ScaleReg (global addresses are always available, as are any 4968 // folded immediates). 4969 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4970 4971 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4972 // lifetime wasn't extended by adding this instruction. 4973 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4974 BaseReg = nullptr; 4975 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4976 ScaledReg = nullptr; 4977 4978 // If folding this instruction (and it's subexprs) didn't extend any live 4979 // ranges, we're ok with it. 4980 if (!BaseReg && !ScaledReg) 4981 return true; 4982 4983 // If all uses of this instruction can have the address mode sunk into them, 4984 // we can remove the addressing mode and effectively trade one live register 4985 // for another (at worst.) In this context, folding an addressing mode into 4986 // the use is just a particularly nice way of sinking it. 4987 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4988 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4989 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4990 PSI, BFI)) 4991 return false; // Has a non-memory, non-foldable use! 4992 4993 // Now that we know that all uses of this instruction are part of a chain of 4994 // computation involving only operations that could theoretically be folded 4995 // into a memory use, loop over each of these memory operation uses and see 4996 // if they could *actually* fold the instruction. The assumption is that 4997 // addressing modes are cheap and that duplicating the computation involved 4998 // many times is worthwhile, even on a fastpath. For sinking candidates 4999 // (i.e. cold call sites), this serves as a way to prevent excessive code 5000 // growth since most architectures have some reasonable small and fast way to 5001 // compute an effective address. (i.e LEA on x86) 5002 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5003 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5004 Instruction *User = MemoryUses[i].first; 5005 unsigned OpNo = MemoryUses[i].second; 5006 5007 // Get the access type of this use. If the use isn't a pointer, we don't 5008 // know what it accesses. 5009 Value *Address = User->getOperand(OpNo); 5010 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5011 if (!AddrTy) 5012 return false; 5013 Type *AddressAccessTy = AddrTy->getElementType(); 5014 unsigned AS = AddrTy->getAddressSpace(); 5015 5016 // Do a match against the root of this address, ignoring profitability. This 5017 // will tell us if the addressing mode for the memory operation will 5018 // *actually* cover the shared instruction. 5019 ExtAddrMode Result; 5020 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5021 0); 5022 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5023 TPT.getRestorationPoint(); 5024 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5025 AddressAccessTy, AS, MemoryInst, Result, 5026 InsertedInsts, PromotedInsts, TPT, 5027 LargeOffsetGEP, OptSize, PSI, BFI); 5028 Matcher.IgnoreProfitability = true; 5029 bool Success = Matcher.matchAddr(Address, 0); 5030 (void)Success; assert(Success && "Couldn't select *anything*?"); 5031 5032 // The match was to check the profitability, the changes made are not 5033 // part of the original matcher. Therefore, they should be dropped 5034 // otherwise the original matcher will not present the right state. 5035 TPT.rollback(LastKnownGood); 5036 5037 // If the match didn't cover I, then it won't be shared by it. 5038 if (!is_contained(MatchedAddrModeInsts, I)) 5039 return false; 5040 5041 MatchedAddrModeInsts.clear(); 5042 } 5043 5044 return true; 5045 } 5046 5047 /// Return true if the specified values are defined in a 5048 /// different basic block than BB. 5049 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5050 if (Instruction *I = dyn_cast<Instruction>(V)) 5051 return I->getParent() != BB; 5052 return false; 5053 } 5054 5055 /// Sink addressing mode computation immediate before MemoryInst if doing so 5056 /// can be done without increasing register pressure. The need for the 5057 /// register pressure constraint means this can end up being an all or nothing 5058 /// decision for all uses of the same addressing computation. 5059 /// 5060 /// Load and Store Instructions often have addressing modes that can do 5061 /// significant amounts of computation. As such, instruction selection will try 5062 /// to get the load or store to do as much computation as possible for the 5063 /// program. The problem is that isel can only see within a single block. As 5064 /// such, we sink as much legal addressing mode work into the block as possible. 5065 /// 5066 /// This method is used to optimize both load/store and inline asms with memory 5067 /// operands. It's also used to sink addressing computations feeding into cold 5068 /// call sites into their (cold) basic block. 5069 /// 5070 /// The motivation for handling sinking into cold blocks is that doing so can 5071 /// both enable other address mode sinking (by satisfying the register pressure 5072 /// constraint above), and reduce register pressure globally (by removing the 5073 /// addressing mode computation from the fast path entirely.). 5074 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5075 Type *AccessTy, unsigned AddrSpace) { 5076 Value *Repl = Addr; 5077 5078 // Try to collapse single-value PHI nodes. This is necessary to undo 5079 // unprofitable PRE transformations. 5080 SmallVector<Value*, 8> worklist; 5081 SmallPtrSet<Value*, 16> Visited; 5082 worklist.push_back(Addr); 5083 5084 // Use a worklist to iteratively look through PHI and select nodes, and 5085 // ensure that the addressing mode obtained from the non-PHI/select roots of 5086 // the graph are compatible. 5087 bool PhiOrSelectSeen = false; 5088 SmallVector<Instruction*, 16> AddrModeInsts; 5089 const SimplifyQuery SQ(*DL, TLInfo); 5090 AddressingModeCombiner AddrModes(SQ, Addr); 5091 TypePromotionTransaction TPT(RemovedInsts); 5092 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5093 TPT.getRestorationPoint(); 5094 while (!worklist.empty()) { 5095 Value *V = worklist.back(); 5096 worklist.pop_back(); 5097 5098 // We allow traversing cyclic Phi nodes. 5099 // In case of success after this loop we ensure that traversing through 5100 // Phi nodes ends up with all cases to compute address of the form 5101 // BaseGV + Base + Scale * Index + Offset 5102 // where Scale and Offset are constans and BaseGV, Base and Index 5103 // are exactly the same Values in all cases. 5104 // It means that BaseGV, Scale and Offset dominate our memory instruction 5105 // and have the same value as they had in address computation represented 5106 // as Phi. So we can safely sink address computation to memory instruction. 5107 if (!Visited.insert(V).second) 5108 continue; 5109 5110 // For a PHI node, push all of its incoming values. 5111 if (PHINode *P = dyn_cast<PHINode>(V)) { 5112 append_range(worklist, P->incoming_values()); 5113 PhiOrSelectSeen = true; 5114 continue; 5115 } 5116 // Similar for select. 5117 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5118 worklist.push_back(SI->getFalseValue()); 5119 worklist.push_back(SI->getTrueValue()); 5120 PhiOrSelectSeen = true; 5121 continue; 5122 } 5123 5124 // For non-PHIs, determine the addressing mode being computed. Note that 5125 // the result may differ depending on what other uses our candidate 5126 // addressing instructions might have. 5127 AddrModeInsts.clear(); 5128 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5129 0); 5130 // Defer the query (and possible computation of) the dom tree to point of 5131 // actual use. It's expected that most address matches don't actually need 5132 // the domtree. 5133 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5134 Function *F = MemoryInst->getParent()->getParent(); 5135 return this->getDT(*F); 5136 }; 5137 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5138 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5139 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5140 BFI.get()); 5141 5142 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5143 if (GEP && !NewGEPBases.count(GEP)) { 5144 // If splitting the underlying data structure can reduce the offset of a 5145 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5146 // previously split data structures. 5147 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5148 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5149 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5150 } 5151 5152 NewAddrMode.OriginalValue = V; 5153 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5154 break; 5155 } 5156 5157 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5158 // or we have multiple but either couldn't combine them or combining them 5159 // wouldn't do anything useful, bail out now. 5160 if (!AddrModes.combineAddrModes()) { 5161 TPT.rollback(LastKnownGood); 5162 return false; 5163 } 5164 bool Modified = TPT.commit(); 5165 5166 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5167 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5168 5169 // If all the instructions matched are already in this BB, don't do anything. 5170 // If we saw a Phi node then it is not local definitely, and if we saw a select 5171 // then we want to push the address calculation past it even if it's already 5172 // in this BB. 5173 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5174 return IsNonLocalValue(V, MemoryInst->getParent()); 5175 })) { 5176 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5177 << "\n"); 5178 return Modified; 5179 } 5180 5181 // Insert this computation right after this user. Since our caller is 5182 // scanning from the top of the BB to the bottom, reuse of the expr are 5183 // guaranteed to happen later. 5184 IRBuilder<> Builder(MemoryInst); 5185 5186 // Now that we determined the addressing expression we want to use and know 5187 // that we have to sink it into this block. Check to see if we have already 5188 // done this for some other load/store instr in this block. If so, reuse 5189 // the computation. Before attempting reuse, check if the address is valid 5190 // as it may have been erased. 5191 5192 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5193 5194 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5195 if (SunkAddr) { 5196 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5197 << " for " << *MemoryInst << "\n"); 5198 if (SunkAddr->getType() != Addr->getType()) 5199 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5200 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5201 SubtargetInfo->addrSinkUsingGEPs())) { 5202 // By default, we use the GEP-based method when AA is used later. This 5203 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5204 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5205 << " for " << *MemoryInst << "\n"); 5206 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5207 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5208 5209 // First, find the pointer. 5210 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5211 ResultPtr = AddrMode.BaseReg; 5212 AddrMode.BaseReg = nullptr; 5213 } 5214 5215 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5216 // We can't add more than one pointer together, nor can we scale a 5217 // pointer (both of which seem meaningless). 5218 if (ResultPtr || AddrMode.Scale != 1) 5219 return Modified; 5220 5221 ResultPtr = AddrMode.ScaledReg; 5222 AddrMode.Scale = 0; 5223 } 5224 5225 // It is only safe to sign extend the BaseReg if we know that the math 5226 // required to create it did not overflow before we extend it. Since 5227 // the original IR value was tossed in favor of a constant back when 5228 // the AddrMode was created we need to bail out gracefully if widths 5229 // do not match instead of extending it. 5230 // 5231 // (See below for code to add the scale.) 5232 if (AddrMode.Scale) { 5233 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5234 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5235 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5236 return Modified; 5237 } 5238 5239 if (AddrMode.BaseGV) { 5240 if (ResultPtr) 5241 return Modified; 5242 5243 ResultPtr = AddrMode.BaseGV; 5244 } 5245 5246 // If the real base value actually came from an inttoptr, then the matcher 5247 // will look through it and provide only the integer value. In that case, 5248 // use it here. 5249 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5250 if (!ResultPtr && AddrMode.BaseReg) { 5251 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5252 "sunkaddr"); 5253 AddrMode.BaseReg = nullptr; 5254 } else if (!ResultPtr && AddrMode.Scale == 1) { 5255 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5256 "sunkaddr"); 5257 AddrMode.Scale = 0; 5258 } 5259 } 5260 5261 if (!ResultPtr && 5262 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5263 SunkAddr = Constant::getNullValue(Addr->getType()); 5264 } else if (!ResultPtr) { 5265 return Modified; 5266 } else { 5267 Type *I8PtrTy = 5268 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5269 Type *I8Ty = Builder.getInt8Ty(); 5270 5271 // Start with the base register. Do this first so that subsequent address 5272 // matching finds it last, which will prevent it from trying to match it 5273 // as the scaled value in case it happens to be a mul. That would be 5274 // problematic if we've sunk a different mul for the scale, because then 5275 // we'd end up sinking both muls. 5276 if (AddrMode.BaseReg) { 5277 Value *V = AddrMode.BaseReg; 5278 if (V->getType() != IntPtrTy) 5279 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5280 5281 ResultIndex = V; 5282 } 5283 5284 // Add the scale value. 5285 if (AddrMode.Scale) { 5286 Value *V = AddrMode.ScaledReg; 5287 if (V->getType() == IntPtrTy) { 5288 // done. 5289 } else { 5290 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5291 cast<IntegerType>(V->getType())->getBitWidth() && 5292 "We can't transform if ScaledReg is too narrow"); 5293 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5294 } 5295 5296 if (AddrMode.Scale != 1) 5297 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5298 "sunkaddr"); 5299 if (ResultIndex) 5300 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5301 else 5302 ResultIndex = V; 5303 } 5304 5305 // Add in the Base Offset if present. 5306 if (AddrMode.BaseOffs) { 5307 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5308 if (ResultIndex) { 5309 // We need to add this separately from the scale above to help with 5310 // SDAG consecutive load/store merging. 5311 if (ResultPtr->getType() != I8PtrTy) 5312 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5313 ResultPtr = 5314 AddrMode.InBounds 5315 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5316 "sunkaddr") 5317 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5318 } 5319 5320 ResultIndex = V; 5321 } 5322 5323 if (!ResultIndex) { 5324 SunkAddr = ResultPtr; 5325 } else { 5326 if (ResultPtr->getType() != I8PtrTy) 5327 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5328 SunkAddr = 5329 AddrMode.InBounds 5330 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5331 "sunkaddr") 5332 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5333 } 5334 5335 if (SunkAddr->getType() != Addr->getType()) 5336 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5337 } 5338 } else { 5339 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5340 // non-integral pointers, so in that case bail out now. 5341 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5342 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5343 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5344 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5345 if (DL->isNonIntegralPointerType(Addr->getType()) || 5346 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5347 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5348 (AddrMode.BaseGV && 5349 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5350 return Modified; 5351 5352 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5353 << " for " << *MemoryInst << "\n"); 5354 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5355 Value *Result = nullptr; 5356 5357 // Start with the base register. Do this first so that subsequent address 5358 // matching finds it last, which will prevent it from trying to match it 5359 // as the scaled value in case it happens to be a mul. That would be 5360 // problematic if we've sunk a different mul for the scale, because then 5361 // we'd end up sinking both muls. 5362 if (AddrMode.BaseReg) { 5363 Value *V = AddrMode.BaseReg; 5364 if (V->getType()->isPointerTy()) 5365 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5366 if (V->getType() != IntPtrTy) 5367 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5368 Result = V; 5369 } 5370 5371 // Add the scale value. 5372 if (AddrMode.Scale) { 5373 Value *V = AddrMode.ScaledReg; 5374 if (V->getType() == IntPtrTy) { 5375 // done. 5376 } else if (V->getType()->isPointerTy()) { 5377 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5378 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5379 cast<IntegerType>(V->getType())->getBitWidth()) { 5380 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5381 } else { 5382 // It is only safe to sign extend the BaseReg if we know that the math 5383 // required to create it did not overflow before we extend it. Since 5384 // the original IR value was tossed in favor of a constant back when 5385 // the AddrMode was created we need to bail out gracefully if widths 5386 // do not match instead of extending it. 5387 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5388 if (I && (Result != AddrMode.BaseReg)) 5389 I->eraseFromParent(); 5390 return Modified; 5391 } 5392 if (AddrMode.Scale != 1) 5393 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5394 "sunkaddr"); 5395 if (Result) 5396 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5397 else 5398 Result = V; 5399 } 5400 5401 // Add in the BaseGV if present. 5402 if (AddrMode.BaseGV) { 5403 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5404 if (Result) 5405 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5406 else 5407 Result = V; 5408 } 5409 5410 // Add in the Base Offset if present. 5411 if (AddrMode.BaseOffs) { 5412 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5413 if (Result) 5414 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5415 else 5416 Result = V; 5417 } 5418 5419 if (!Result) 5420 SunkAddr = Constant::getNullValue(Addr->getType()); 5421 else 5422 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5423 } 5424 5425 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5426 // Store the newly computed address into the cache. In the case we reused a 5427 // value, this should be idempotent. 5428 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5429 5430 // If we have no uses, recursively delete the value and all dead instructions 5431 // using it. 5432 if (Repl->use_empty()) { 5433 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5434 RecursivelyDeleteTriviallyDeadInstructions( 5435 Repl, TLInfo, nullptr, 5436 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5437 }); 5438 } 5439 ++NumMemoryInsts; 5440 return true; 5441 } 5442 5443 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5444 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5445 /// only handle a 2 operand GEP in the same basic block or a splat constant 5446 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5447 /// index. 5448 /// 5449 /// If the existing GEP has a vector base pointer that is splat, we can look 5450 /// through the splat to find the scalar pointer. If we can't find a scalar 5451 /// pointer there's nothing we can do. 5452 /// 5453 /// If we have a GEP with more than 2 indices where the middle indices are all 5454 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5455 /// 5456 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5457 /// followed by a GEP with an all zeroes vector index. This will enable 5458 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5459 /// zero index. 5460 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5461 Value *Ptr) { 5462 Value *NewAddr; 5463 5464 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5465 // Don't optimize GEPs that don't have indices. 5466 if (!GEP->hasIndices()) 5467 return false; 5468 5469 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5470 // FIXME: We should support this by sinking the GEP. 5471 if (MemoryInst->getParent() != GEP->getParent()) 5472 return false; 5473 5474 SmallVector<Value *, 2> Ops(GEP->operands()); 5475 5476 bool RewriteGEP = false; 5477 5478 if (Ops[0]->getType()->isVectorTy()) { 5479 Ops[0] = getSplatValue(Ops[0]); 5480 if (!Ops[0]) 5481 return false; 5482 RewriteGEP = true; 5483 } 5484 5485 unsigned FinalIndex = Ops.size() - 1; 5486 5487 // Ensure all but the last index is 0. 5488 // FIXME: This isn't strictly required. All that's required is that they are 5489 // all scalars or splats. 5490 for (unsigned i = 1; i < FinalIndex; ++i) { 5491 auto *C = dyn_cast<Constant>(Ops[i]); 5492 if (!C) 5493 return false; 5494 if (isa<VectorType>(C->getType())) 5495 C = C->getSplatValue(); 5496 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5497 if (!CI || !CI->isZero()) 5498 return false; 5499 // Scalarize the index if needed. 5500 Ops[i] = CI; 5501 } 5502 5503 // Try to scalarize the final index. 5504 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5505 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5506 auto *C = dyn_cast<ConstantInt>(V); 5507 // Don't scalarize all zeros vector. 5508 if (!C || !C->isZero()) { 5509 Ops[FinalIndex] = V; 5510 RewriteGEP = true; 5511 } 5512 } 5513 } 5514 5515 // If we made any changes or the we have extra operands, we need to generate 5516 // new instructions. 5517 if (!RewriteGEP && Ops.size() == 2) 5518 return false; 5519 5520 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5521 5522 IRBuilder<> Builder(MemoryInst); 5523 5524 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5525 5526 // If the final index isn't a vector, emit a scalar GEP containing all ops 5527 // and a vector GEP with all zeroes final index. 5528 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5529 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5530 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5531 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5532 } else { 5533 Value *Base = Ops[0]; 5534 Value *Index = Ops[FinalIndex]; 5535 5536 // Create a scalar GEP if there are more than 2 operands. 5537 if (Ops.size() != 2) { 5538 // Replace the last index with 0. 5539 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5540 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5541 } 5542 5543 // Now create the GEP with scalar pointer and vector index. 5544 NewAddr = Builder.CreateGEP(Base, Index); 5545 } 5546 } else if (!isa<Constant>(Ptr)) { 5547 // Not a GEP, maybe its a splat and we can create a GEP to enable 5548 // SelectionDAGBuilder to use it as a uniform base. 5549 Value *V = getSplatValue(Ptr); 5550 if (!V) 5551 return false; 5552 5553 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5554 5555 IRBuilder<> Builder(MemoryInst); 5556 5557 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5558 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5559 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5560 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5561 } else { 5562 // Constant, SelectionDAGBuilder knows to check if its a splat. 5563 return false; 5564 } 5565 5566 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5567 5568 // If we have no uses, recursively delete the value and all dead instructions 5569 // using it. 5570 if (Ptr->use_empty()) 5571 RecursivelyDeleteTriviallyDeadInstructions( 5572 Ptr, TLInfo, nullptr, 5573 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5574 5575 return true; 5576 } 5577 5578 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5579 /// address computing into the block when possible / profitable. 5580 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5581 bool MadeChange = false; 5582 5583 const TargetRegisterInfo *TRI = 5584 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5585 TargetLowering::AsmOperandInfoVector TargetConstraints = 5586 TLI->ParseConstraints(*DL, TRI, *CS); 5587 unsigned ArgNo = 0; 5588 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5589 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5590 5591 // Compute the constraint code and ConstraintType to use. 5592 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5593 5594 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5595 OpInfo.isIndirect) { 5596 Value *OpVal = CS->getArgOperand(ArgNo++); 5597 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5598 } else if (OpInfo.Type == InlineAsm::isInput) 5599 ArgNo++; 5600 } 5601 5602 return MadeChange; 5603 } 5604 5605 /// Check if all the uses of \p Val are equivalent (or free) zero or 5606 /// sign extensions. 5607 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5608 assert(!Val->use_empty() && "Input must have at least one use"); 5609 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5610 bool IsSExt = isa<SExtInst>(FirstUser); 5611 Type *ExtTy = FirstUser->getType(); 5612 for (const User *U : Val->users()) { 5613 const Instruction *UI = cast<Instruction>(U); 5614 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5615 return false; 5616 Type *CurTy = UI->getType(); 5617 // Same input and output types: Same instruction after CSE. 5618 if (CurTy == ExtTy) 5619 continue; 5620 5621 // If IsSExt is true, we are in this situation: 5622 // a = Val 5623 // b = sext ty1 a to ty2 5624 // c = sext ty1 a to ty3 5625 // Assuming ty2 is shorter than ty3, this could be turned into: 5626 // a = Val 5627 // b = sext ty1 a to ty2 5628 // c = sext ty2 b to ty3 5629 // However, the last sext is not free. 5630 if (IsSExt) 5631 return false; 5632 5633 // This is a ZExt, maybe this is free to extend from one type to another. 5634 // In that case, we would not account for a different use. 5635 Type *NarrowTy; 5636 Type *LargeTy; 5637 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5638 CurTy->getScalarType()->getIntegerBitWidth()) { 5639 NarrowTy = CurTy; 5640 LargeTy = ExtTy; 5641 } else { 5642 NarrowTy = ExtTy; 5643 LargeTy = CurTy; 5644 } 5645 5646 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5647 return false; 5648 } 5649 // All uses are the same or can be derived from one another for free. 5650 return true; 5651 } 5652 5653 /// Try to speculatively promote extensions in \p Exts and continue 5654 /// promoting through newly promoted operands recursively as far as doing so is 5655 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5656 /// When some promotion happened, \p TPT contains the proper state to revert 5657 /// them. 5658 /// 5659 /// \return true if some promotion happened, false otherwise. 5660 bool CodeGenPrepare::tryToPromoteExts( 5661 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5662 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5663 unsigned CreatedInstsCost) { 5664 bool Promoted = false; 5665 5666 // Iterate over all the extensions to try to promote them. 5667 for (auto *I : Exts) { 5668 // Early check if we directly have ext(load). 5669 if (isa<LoadInst>(I->getOperand(0))) { 5670 ProfitablyMovedExts.push_back(I); 5671 continue; 5672 } 5673 5674 // Check whether or not we want to do any promotion. The reason we have 5675 // this check inside the for loop is to catch the case where an extension 5676 // is directly fed by a load because in such case the extension can be moved 5677 // up without any promotion on its operands. 5678 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5679 return false; 5680 5681 // Get the action to perform the promotion. 5682 TypePromotionHelper::Action TPH = 5683 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5684 // Check if we can promote. 5685 if (!TPH) { 5686 // Save the current extension as we cannot move up through its operand. 5687 ProfitablyMovedExts.push_back(I); 5688 continue; 5689 } 5690 5691 // Save the current state. 5692 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5693 TPT.getRestorationPoint(); 5694 SmallVector<Instruction *, 4> NewExts; 5695 unsigned NewCreatedInstsCost = 0; 5696 unsigned ExtCost = !TLI->isExtFree(I); 5697 // Promote. 5698 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5699 &NewExts, nullptr, *TLI); 5700 assert(PromotedVal && 5701 "TypePromotionHelper should have filtered out those cases"); 5702 5703 // We would be able to merge only one extension in a load. 5704 // Therefore, if we have more than 1 new extension we heuristically 5705 // cut this search path, because it means we degrade the code quality. 5706 // With exactly 2, the transformation is neutral, because we will merge 5707 // one extension but leave one. However, we optimistically keep going, 5708 // because the new extension may be removed too. 5709 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5710 // FIXME: It would be possible to propagate a negative value instead of 5711 // conservatively ceiling it to 0. 5712 TotalCreatedInstsCost = 5713 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5714 if (!StressExtLdPromotion && 5715 (TotalCreatedInstsCost > 1 || 5716 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5717 // This promotion is not profitable, rollback to the previous state, and 5718 // save the current extension in ProfitablyMovedExts as the latest 5719 // speculative promotion turned out to be unprofitable. 5720 TPT.rollback(LastKnownGood); 5721 ProfitablyMovedExts.push_back(I); 5722 continue; 5723 } 5724 // Continue promoting NewExts as far as doing so is profitable. 5725 SmallVector<Instruction *, 2> NewlyMovedExts; 5726 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5727 bool NewPromoted = false; 5728 for (auto *ExtInst : NewlyMovedExts) { 5729 Instruction *MovedExt = cast<Instruction>(ExtInst); 5730 Value *ExtOperand = MovedExt->getOperand(0); 5731 // If we have reached to a load, we need this extra profitability check 5732 // as it could potentially be merged into an ext(load). 5733 if (isa<LoadInst>(ExtOperand) && 5734 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5735 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5736 continue; 5737 5738 ProfitablyMovedExts.push_back(MovedExt); 5739 NewPromoted = true; 5740 } 5741 5742 // If none of speculative promotions for NewExts is profitable, rollback 5743 // and save the current extension (I) as the last profitable extension. 5744 if (!NewPromoted) { 5745 TPT.rollback(LastKnownGood); 5746 ProfitablyMovedExts.push_back(I); 5747 continue; 5748 } 5749 // The promotion is profitable. 5750 Promoted = true; 5751 } 5752 return Promoted; 5753 } 5754 5755 /// Merging redundant sexts when one is dominating the other. 5756 bool CodeGenPrepare::mergeSExts(Function &F) { 5757 bool Changed = false; 5758 for (auto &Entry : ValToSExtendedUses) { 5759 SExts &Insts = Entry.second; 5760 SExts CurPts; 5761 for (Instruction *Inst : Insts) { 5762 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5763 Inst->getOperand(0) != Entry.first) 5764 continue; 5765 bool inserted = false; 5766 for (auto &Pt : CurPts) { 5767 if (getDT(F).dominates(Inst, Pt)) { 5768 Pt->replaceAllUsesWith(Inst); 5769 RemovedInsts.insert(Pt); 5770 Pt->removeFromParent(); 5771 Pt = Inst; 5772 inserted = true; 5773 Changed = true; 5774 break; 5775 } 5776 if (!getDT(F).dominates(Pt, Inst)) 5777 // Give up if we need to merge in a common dominator as the 5778 // experiments show it is not profitable. 5779 continue; 5780 Inst->replaceAllUsesWith(Pt); 5781 RemovedInsts.insert(Inst); 5782 Inst->removeFromParent(); 5783 inserted = true; 5784 Changed = true; 5785 break; 5786 } 5787 if (!inserted) 5788 CurPts.push_back(Inst); 5789 } 5790 } 5791 return Changed; 5792 } 5793 5794 // Splitting large data structures so that the GEPs accessing them can have 5795 // smaller offsets so that they can be sunk to the same blocks as their users. 5796 // For example, a large struct starting from %base is split into two parts 5797 // where the second part starts from %new_base. 5798 // 5799 // Before: 5800 // BB0: 5801 // %base = 5802 // 5803 // BB1: 5804 // %gep0 = gep %base, off0 5805 // %gep1 = gep %base, off1 5806 // %gep2 = gep %base, off2 5807 // 5808 // BB2: 5809 // %load1 = load %gep0 5810 // %load2 = load %gep1 5811 // %load3 = load %gep2 5812 // 5813 // After: 5814 // BB0: 5815 // %base = 5816 // %new_base = gep %base, off0 5817 // 5818 // BB1: 5819 // %new_gep0 = %new_base 5820 // %new_gep1 = gep %new_base, off1 - off0 5821 // %new_gep2 = gep %new_base, off2 - off0 5822 // 5823 // BB2: 5824 // %load1 = load i32, i32* %new_gep0 5825 // %load2 = load i32, i32* %new_gep1 5826 // %load3 = load i32, i32* %new_gep2 5827 // 5828 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5829 // their offsets are smaller enough to fit into the addressing mode. 5830 bool CodeGenPrepare::splitLargeGEPOffsets() { 5831 bool Changed = false; 5832 for (auto &Entry : LargeOffsetGEPMap) { 5833 Value *OldBase = Entry.first; 5834 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5835 &LargeOffsetGEPs = Entry.second; 5836 auto compareGEPOffset = 5837 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5838 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5839 if (LHS.first == RHS.first) 5840 return false; 5841 if (LHS.second != RHS.second) 5842 return LHS.second < RHS.second; 5843 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5844 }; 5845 // Sorting all the GEPs of the same data structures based on the offsets. 5846 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5847 LargeOffsetGEPs.erase( 5848 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5849 LargeOffsetGEPs.end()); 5850 // Skip if all the GEPs have the same offsets. 5851 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5852 continue; 5853 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5854 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5855 Value *NewBaseGEP = nullptr; 5856 5857 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5858 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5859 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5860 int64_t Offset = LargeOffsetGEP->second; 5861 if (Offset != BaseOffset) { 5862 TargetLowering::AddrMode AddrMode; 5863 AddrMode.BaseOffs = Offset - BaseOffset; 5864 // The result type of the GEP might not be the type of the memory 5865 // access. 5866 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5867 GEP->getResultElementType(), 5868 GEP->getAddressSpace())) { 5869 // We need to create a new base if the offset to the current base is 5870 // too large to fit into the addressing mode. So, a very large struct 5871 // may be split into several parts. 5872 BaseGEP = GEP; 5873 BaseOffset = Offset; 5874 NewBaseGEP = nullptr; 5875 } 5876 } 5877 5878 // Generate a new GEP to replace the current one. 5879 LLVMContext &Ctx = GEP->getContext(); 5880 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5881 Type *I8PtrTy = 5882 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5883 Type *I8Ty = Type::getInt8Ty(Ctx); 5884 5885 if (!NewBaseGEP) { 5886 // Create a new base if we don't have one yet. Find the insertion 5887 // pointer for the new base first. 5888 BasicBlock::iterator NewBaseInsertPt; 5889 BasicBlock *NewBaseInsertBB; 5890 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5891 // If the base of the struct is an instruction, the new base will be 5892 // inserted close to it. 5893 NewBaseInsertBB = BaseI->getParent(); 5894 if (isa<PHINode>(BaseI)) 5895 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5896 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5897 NewBaseInsertBB = 5898 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5899 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5900 } else 5901 NewBaseInsertPt = std::next(BaseI->getIterator()); 5902 } else { 5903 // If the current base is an argument or global value, the new base 5904 // will be inserted to the entry block. 5905 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5906 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5907 } 5908 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5909 // Create a new base. 5910 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5911 NewBaseGEP = OldBase; 5912 if (NewBaseGEP->getType() != I8PtrTy) 5913 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5914 NewBaseGEP = 5915 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5916 NewGEPBases.insert(NewBaseGEP); 5917 } 5918 5919 IRBuilder<> Builder(GEP); 5920 Value *NewGEP = NewBaseGEP; 5921 if (Offset == BaseOffset) { 5922 if (GEP->getType() != I8PtrTy) 5923 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5924 } else { 5925 // Calculate the new offset for the new GEP. 5926 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5927 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5928 5929 if (GEP->getType() != I8PtrTy) 5930 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5931 } 5932 GEP->replaceAllUsesWith(NewGEP); 5933 LargeOffsetGEPID.erase(GEP); 5934 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5935 GEP->eraseFromParent(); 5936 Changed = true; 5937 } 5938 } 5939 return Changed; 5940 } 5941 5942 bool CodeGenPrepare::optimizePhiType( 5943 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5944 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5945 // We are looking for a collection on interconnected phi nodes that together 5946 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5947 // are of the same type. Convert the whole set of nodes to the type of the 5948 // bitcast. 5949 Type *PhiTy = I->getType(); 5950 Type *ConvertTy = nullptr; 5951 if (Visited.count(I) || 5952 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5953 return false; 5954 5955 SmallVector<Instruction *, 4> Worklist; 5956 Worklist.push_back(cast<Instruction>(I)); 5957 SmallPtrSet<PHINode *, 4> PhiNodes; 5958 PhiNodes.insert(I); 5959 Visited.insert(I); 5960 SmallPtrSet<Instruction *, 4> Defs; 5961 SmallPtrSet<Instruction *, 4> Uses; 5962 // This works by adding extra bitcasts between load/stores and removing 5963 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5964 // we can get in the situation where we remove a bitcast in one iteration 5965 // just to add it again in the next. We need to ensure that at least one 5966 // bitcast we remove are anchored to something that will not change back. 5967 bool AnyAnchored = false; 5968 5969 while (!Worklist.empty()) { 5970 Instruction *II = Worklist.pop_back_val(); 5971 5972 if (auto *Phi = dyn_cast<PHINode>(II)) { 5973 // Handle Defs, which might also be PHI's 5974 for (Value *V : Phi->incoming_values()) { 5975 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5976 if (!PhiNodes.count(OpPhi)) { 5977 if (Visited.count(OpPhi)) 5978 return false; 5979 PhiNodes.insert(OpPhi); 5980 Visited.insert(OpPhi); 5981 Worklist.push_back(OpPhi); 5982 } 5983 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5984 if (!OpLoad->isSimple()) 5985 return false; 5986 if (!Defs.count(OpLoad)) { 5987 Defs.insert(OpLoad); 5988 Worklist.push_back(OpLoad); 5989 } 5990 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5991 if (!Defs.count(OpEx)) { 5992 Defs.insert(OpEx); 5993 Worklist.push_back(OpEx); 5994 } 5995 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5996 if (!ConvertTy) 5997 ConvertTy = OpBC->getOperand(0)->getType(); 5998 if (OpBC->getOperand(0)->getType() != ConvertTy) 5999 return false; 6000 if (!Defs.count(OpBC)) { 6001 Defs.insert(OpBC); 6002 Worklist.push_back(OpBC); 6003 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6004 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6005 } 6006 } else if (!isa<UndefValue>(V)) { 6007 return false; 6008 } 6009 } 6010 } 6011 6012 // Handle uses which might also be phi's 6013 for (User *V : II->users()) { 6014 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6015 if (!PhiNodes.count(OpPhi)) { 6016 if (Visited.count(OpPhi)) 6017 return false; 6018 PhiNodes.insert(OpPhi); 6019 Visited.insert(OpPhi); 6020 Worklist.push_back(OpPhi); 6021 } 6022 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6023 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6024 return false; 6025 Uses.insert(OpStore); 6026 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6027 if (!ConvertTy) 6028 ConvertTy = OpBC->getType(); 6029 if (OpBC->getType() != ConvertTy) 6030 return false; 6031 Uses.insert(OpBC); 6032 AnyAnchored |= 6033 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6034 } else { 6035 return false; 6036 } 6037 } 6038 } 6039 6040 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6041 return false; 6042 6043 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6044 << *ConvertTy << "\n"); 6045 6046 // Create all the new phi nodes of the new type, and bitcast any loads to the 6047 // correct type. 6048 ValueToValueMap ValMap; 6049 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6050 for (Instruction *D : Defs) { 6051 if (isa<BitCastInst>(D)) { 6052 ValMap[D] = D->getOperand(0); 6053 DeletedInstrs.insert(D); 6054 } else { 6055 ValMap[D] = 6056 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6057 } 6058 } 6059 for (PHINode *Phi : PhiNodes) 6060 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6061 Phi->getName() + ".tc", Phi); 6062 // Pipe together all the PhiNodes. 6063 for (PHINode *Phi : PhiNodes) { 6064 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6065 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6066 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6067 Phi->getIncomingBlock(i)); 6068 Visited.insert(NewPhi); 6069 } 6070 // And finally pipe up the stores and bitcasts 6071 for (Instruction *U : Uses) { 6072 if (isa<BitCastInst>(U)) { 6073 DeletedInstrs.insert(U); 6074 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6075 } else { 6076 U->setOperand(0, 6077 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6078 } 6079 } 6080 6081 // Save the removed phis to be deleted later. 6082 for (PHINode *Phi : PhiNodes) 6083 DeletedInstrs.insert(Phi); 6084 return true; 6085 } 6086 6087 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6088 if (!OptimizePhiTypes) 6089 return false; 6090 6091 bool Changed = false; 6092 SmallPtrSet<PHINode *, 4> Visited; 6093 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6094 6095 // Attempt to optimize all the phis in the functions to the correct type. 6096 for (auto &BB : F) 6097 for (auto &Phi : BB.phis()) 6098 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6099 6100 // Remove any old phi's that have been converted. 6101 for (auto *I : DeletedInstrs) { 6102 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6103 I->eraseFromParent(); 6104 } 6105 6106 return Changed; 6107 } 6108 6109 /// Return true, if an ext(load) can be formed from an extension in 6110 /// \p MovedExts. 6111 bool CodeGenPrepare::canFormExtLd( 6112 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6113 Instruction *&Inst, bool HasPromoted) { 6114 for (auto *MovedExtInst : MovedExts) { 6115 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6116 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6117 Inst = MovedExtInst; 6118 break; 6119 } 6120 } 6121 if (!LI) 6122 return false; 6123 6124 // If they're already in the same block, there's nothing to do. 6125 // Make the cheap checks first if we did not promote. 6126 // If we promoted, we need to check if it is indeed profitable. 6127 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6128 return false; 6129 6130 return TLI->isExtLoad(LI, Inst, *DL); 6131 } 6132 6133 /// Move a zext or sext fed by a load into the same basic block as the load, 6134 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6135 /// extend into the load. 6136 /// 6137 /// E.g., 6138 /// \code 6139 /// %ld = load i32* %addr 6140 /// %add = add nuw i32 %ld, 4 6141 /// %zext = zext i32 %add to i64 6142 // \endcode 6143 /// => 6144 /// \code 6145 /// %ld = load i32* %addr 6146 /// %zext = zext i32 %ld to i64 6147 /// %add = add nuw i64 %zext, 4 6148 /// \encode 6149 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6150 /// allow us to match zext(load i32*) to i64. 6151 /// 6152 /// Also, try to promote the computations used to obtain a sign extended 6153 /// value used into memory accesses. 6154 /// E.g., 6155 /// \code 6156 /// a = add nsw i32 b, 3 6157 /// d = sext i32 a to i64 6158 /// e = getelementptr ..., i64 d 6159 /// \endcode 6160 /// => 6161 /// \code 6162 /// f = sext i32 b to i64 6163 /// a = add nsw i64 f, 3 6164 /// e = getelementptr ..., i64 a 6165 /// \endcode 6166 /// 6167 /// \p Inst[in/out] the extension may be modified during the process if some 6168 /// promotions apply. 6169 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6170 bool AllowPromotionWithoutCommonHeader = false; 6171 /// See if it is an interesting sext operations for the address type 6172 /// promotion before trying to promote it, e.g., the ones with the right 6173 /// type and used in memory accesses. 6174 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6175 *Inst, AllowPromotionWithoutCommonHeader); 6176 TypePromotionTransaction TPT(RemovedInsts); 6177 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6178 TPT.getRestorationPoint(); 6179 SmallVector<Instruction *, 1> Exts; 6180 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6181 Exts.push_back(Inst); 6182 6183 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6184 6185 // Look for a load being extended. 6186 LoadInst *LI = nullptr; 6187 Instruction *ExtFedByLoad; 6188 6189 // Try to promote a chain of computation if it allows to form an extended 6190 // load. 6191 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6192 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6193 TPT.commit(); 6194 // Move the extend into the same block as the load. 6195 ExtFedByLoad->moveAfter(LI); 6196 ++NumExtsMoved; 6197 Inst = ExtFedByLoad; 6198 return true; 6199 } 6200 6201 // Continue promoting SExts if known as considerable depending on targets. 6202 if (ATPConsiderable && 6203 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6204 HasPromoted, TPT, SpeculativelyMovedExts)) 6205 return true; 6206 6207 TPT.rollback(LastKnownGood); 6208 return false; 6209 } 6210 6211 // Perform address type promotion if doing so is profitable. 6212 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6213 // instructions that sign extended the same initial value. However, if 6214 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6215 // extension is just profitable. 6216 bool CodeGenPrepare::performAddressTypePromotion( 6217 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6218 bool HasPromoted, TypePromotionTransaction &TPT, 6219 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6220 bool Promoted = false; 6221 SmallPtrSet<Instruction *, 1> UnhandledExts; 6222 bool AllSeenFirst = true; 6223 for (auto *I : SpeculativelyMovedExts) { 6224 Value *HeadOfChain = I->getOperand(0); 6225 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6226 SeenChainsForSExt.find(HeadOfChain); 6227 // If there is an unhandled SExt which has the same header, try to promote 6228 // it as well. 6229 if (AlreadySeen != SeenChainsForSExt.end()) { 6230 if (AlreadySeen->second != nullptr) 6231 UnhandledExts.insert(AlreadySeen->second); 6232 AllSeenFirst = false; 6233 } 6234 } 6235 6236 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6237 SpeculativelyMovedExts.size() == 1)) { 6238 TPT.commit(); 6239 if (HasPromoted) 6240 Promoted = true; 6241 for (auto *I : SpeculativelyMovedExts) { 6242 Value *HeadOfChain = I->getOperand(0); 6243 SeenChainsForSExt[HeadOfChain] = nullptr; 6244 ValToSExtendedUses[HeadOfChain].push_back(I); 6245 } 6246 // Update Inst as promotion happen. 6247 Inst = SpeculativelyMovedExts.pop_back_val(); 6248 } else { 6249 // This is the first chain visited from the header, keep the current chain 6250 // as unhandled. Defer to promote this until we encounter another SExt 6251 // chain derived from the same header. 6252 for (auto *I : SpeculativelyMovedExts) { 6253 Value *HeadOfChain = I->getOperand(0); 6254 SeenChainsForSExt[HeadOfChain] = Inst; 6255 } 6256 return false; 6257 } 6258 6259 if (!AllSeenFirst && !UnhandledExts.empty()) 6260 for (auto *VisitedSExt : UnhandledExts) { 6261 if (RemovedInsts.count(VisitedSExt)) 6262 continue; 6263 TypePromotionTransaction TPT(RemovedInsts); 6264 SmallVector<Instruction *, 1> Exts; 6265 SmallVector<Instruction *, 2> Chains; 6266 Exts.push_back(VisitedSExt); 6267 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6268 TPT.commit(); 6269 if (HasPromoted) 6270 Promoted = true; 6271 for (auto *I : Chains) { 6272 Value *HeadOfChain = I->getOperand(0); 6273 // Mark this as handled. 6274 SeenChainsForSExt[HeadOfChain] = nullptr; 6275 ValToSExtendedUses[HeadOfChain].push_back(I); 6276 } 6277 } 6278 return Promoted; 6279 } 6280 6281 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6282 BasicBlock *DefBB = I->getParent(); 6283 6284 // If the result of a {s|z}ext and its source are both live out, rewrite all 6285 // other uses of the source with result of extension. 6286 Value *Src = I->getOperand(0); 6287 if (Src->hasOneUse()) 6288 return false; 6289 6290 // Only do this xform if truncating is free. 6291 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6292 return false; 6293 6294 // Only safe to perform the optimization if the source is also defined in 6295 // this block. 6296 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6297 return false; 6298 6299 bool DefIsLiveOut = false; 6300 for (User *U : I->users()) { 6301 Instruction *UI = cast<Instruction>(U); 6302 6303 // Figure out which BB this ext is used in. 6304 BasicBlock *UserBB = UI->getParent(); 6305 if (UserBB == DefBB) continue; 6306 DefIsLiveOut = true; 6307 break; 6308 } 6309 if (!DefIsLiveOut) 6310 return false; 6311 6312 // Make sure none of the uses are PHI nodes. 6313 for (User *U : Src->users()) { 6314 Instruction *UI = cast<Instruction>(U); 6315 BasicBlock *UserBB = UI->getParent(); 6316 if (UserBB == DefBB) continue; 6317 // Be conservative. We don't want this xform to end up introducing 6318 // reloads just before load / store instructions. 6319 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6320 return false; 6321 } 6322 6323 // InsertedTruncs - Only insert one trunc in each block once. 6324 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6325 6326 bool MadeChange = false; 6327 for (Use &U : Src->uses()) { 6328 Instruction *User = cast<Instruction>(U.getUser()); 6329 6330 // Figure out which BB this ext is used in. 6331 BasicBlock *UserBB = User->getParent(); 6332 if (UserBB == DefBB) continue; 6333 6334 // Both src and def are live in this block. Rewrite the use. 6335 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6336 6337 if (!InsertedTrunc) { 6338 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6339 assert(InsertPt != UserBB->end()); 6340 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6341 InsertedInsts.insert(InsertedTrunc); 6342 } 6343 6344 // Replace a use of the {s|z}ext source with a use of the result. 6345 U = InsertedTrunc; 6346 ++NumExtUses; 6347 MadeChange = true; 6348 } 6349 6350 return MadeChange; 6351 } 6352 6353 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6354 // just after the load if the target can fold this into one extload instruction, 6355 // with the hope of eliminating some of the other later "and" instructions using 6356 // the loaded value. "and"s that are made trivially redundant by the insertion 6357 // of the new "and" are removed by this function, while others (e.g. those whose 6358 // path from the load goes through a phi) are left for isel to potentially 6359 // remove. 6360 // 6361 // For example: 6362 // 6363 // b0: 6364 // x = load i32 6365 // ... 6366 // b1: 6367 // y = and x, 0xff 6368 // z = use y 6369 // 6370 // becomes: 6371 // 6372 // b0: 6373 // x = load i32 6374 // x' = and x, 0xff 6375 // ... 6376 // b1: 6377 // z = use x' 6378 // 6379 // whereas: 6380 // 6381 // b0: 6382 // x1 = load i32 6383 // ... 6384 // b1: 6385 // x2 = load i32 6386 // ... 6387 // b2: 6388 // x = phi x1, x2 6389 // y = and x, 0xff 6390 // 6391 // becomes (after a call to optimizeLoadExt for each load): 6392 // 6393 // b0: 6394 // x1 = load i32 6395 // x1' = and x1, 0xff 6396 // ... 6397 // b1: 6398 // x2 = load i32 6399 // x2' = and x2, 0xff 6400 // ... 6401 // b2: 6402 // x = phi x1', x2' 6403 // y = and x, 0xff 6404 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6405 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6406 return false; 6407 6408 // Skip loads we've already transformed. 6409 if (Load->hasOneUse() && 6410 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6411 return false; 6412 6413 // Look at all uses of Load, looking through phis, to determine how many bits 6414 // of the loaded value are needed. 6415 SmallVector<Instruction *, 8> WorkList; 6416 SmallPtrSet<Instruction *, 16> Visited; 6417 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6418 for (auto *U : Load->users()) 6419 WorkList.push_back(cast<Instruction>(U)); 6420 6421 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6422 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6423 APInt DemandBits(BitWidth, 0); 6424 APInt WidestAndBits(BitWidth, 0); 6425 6426 while (!WorkList.empty()) { 6427 Instruction *I = WorkList.back(); 6428 WorkList.pop_back(); 6429 6430 // Break use-def graph loops. 6431 if (!Visited.insert(I).second) 6432 continue; 6433 6434 // For a PHI node, push all of its users. 6435 if (auto *Phi = dyn_cast<PHINode>(I)) { 6436 for (auto *U : Phi->users()) 6437 WorkList.push_back(cast<Instruction>(U)); 6438 continue; 6439 } 6440 6441 switch (I->getOpcode()) { 6442 case Instruction::And: { 6443 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6444 if (!AndC) 6445 return false; 6446 APInt AndBits = AndC->getValue(); 6447 DemandBits |= AndBits; 6448 // Keep track of the widest and mask we see. 6449 if (AndBits.ugt(WidestAndBits)) 6450 WidestAndBits = AndBits; 6451 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6452 AndsToMaybeRemove.push_back(I); 6453 break; 6454 } 6455 6456 case Instruction::Shl: { 6457 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6458 if (!ShlC) 6459 return false; 6460 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6461 DemandBits.setLowBits(BitWidth - ShiftAmt); 6462 break; 6463 } 6464 6465 case Instruction::Trunc: { 6466 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6467 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6468 DemandBits.setLowBits(TruncBitWidth); 6469 break; 6470 } 6471 6472 default: 6473 return false; 6474 } 6475 } 6476 6477 uint32_t ActiveBits = DemandBits.getActiveBits(); 6478 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6479 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6480 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6481 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6482 // followed by an AND. 6483 // TODO: Look into removing this restriction by fixing backends to either 6484 // return false for isLoadExtLegal for i1 or have them select this pattern to 6485 // a single instruction. 6486 // 6487 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6488 // mask, since these are the only ands that will be removed by isel. 6489 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6490 WidestAndBits != DemandBits) 6491 return false; 6492 6493 LLVMContext &Ctx = Load->getType()->getContext(); 6494 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6495 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6496 6497 // Reject cases that won't be matched as extloads. 6498 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6499 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6500 return false; 6501 6502 IRBuilder<> Builder(Load->getNextNode()); 6503 auto *NewAnd = cast<Instruction>( 6504 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6505 // Mark this instruction as "inserted by CGP", so that other 6506 // optimizations don't touch it. 6507 InsertedInsts.insert(NewAnd); 6508 6509 // Replace all uses of load with new and (except for the use of load in the 6510 // new and itself). 6511 Load->replaceAllUsesWith(NewAnd); 6512 NewAnd->setOperand(0, Load); 6513 6514 // Remove any and instructions that are now redundant. 6515 for (auto *And : AndsToMaybeRemove) 6516 // Check that the and mask is the same as the one we decided to put on the 6517 // new and. 6518 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6519 And->replaceAllUsesWith(NewAnd); 6520 if (&*CurInstIterator == And) 6521 CurInstIterator = std::next(And->getIterator()); 6522 And->eraseFromParent(); 6523 ++NumAndUses; 6524 } 6525 6526 ++NumAndsAdded; 6527 return true; 6528 } 6529 6530 /// Check if V (an operand of a select instruction) is an expensive instruction 6531 /// that is only used once. 6532 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6533 auto *I = dyn_cast<Instruction>(V); 6534 // If it's safe to speculatively execute, then it should not have side 6535 // effects; therefore, it's safe to sink and possibly *not* execute. 6536 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6537 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6538 TargetTransformInfo::TCC_Expensive; 6539 } 6540 6541 /// Returns true if a SelectInst should be turned into an explicit branch. 6542 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6543 const TargetLowering *TLI, 6544 SelectInst *SI) { 6545 // If even a predictable select is cheap, then a branch can't be cheaper. 6546 if (!TLI->isPredictableSelectExpensive()) 6547 return false; 6548 6549 // FIXME: This should use the same heuristics as IfConversion to determine 6550 // whether a select is better represented as a branch. 6551 6552 // If metadata tells us that the select condition is obviously predictable, 6553 // then we want to replace the select with a branch. 6554 uint64_t TrueWeight, FalseWeight; 6555 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6556 uint64_t Max = std::max(TrueWeight, FalseWeight); 6557 uint64_t Sum = TrueWeight + FalseWeight; 6558 if (Sum != 0) { 6559 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6560 if (Probability > TLI->getPredictableBranchThreshold()) 6561 return true; 6562 } 6563 } 6564 6565 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6566 6567 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6568 // comparison condition. If the compare has more than one use, there's 6569 // probably another cmov or setcc around, so it's not worth emitting a branch. 6570 if (!Cmp || !Cmp->hasOneUse()) 6571 return false; 6572 6573 // If either operand of the select is expensive and only needed on one side 6574 // of the select, we should form a branch. 6575 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6576 sinkSelectOperand(TTI, SI->getFalseValue())) 6577 return true; 6578 6579 return false; 6580 } 6581 6582 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6583 /// false value of \p SI. If the true/false value of \p SI is defined by any 6584 /// select instructions in \p Selects, look through the defining select 6585 /// instruction until the true/false value is not defined in \p Selects. 6586 static Value *getTrueOrFalseValue( 6587 SelectInst *SI, bool isTrue, 6588 const SmallPtrSet<const Instruction *, 2> &Selects) { 6589 Value *V = nullptr; 6590 6591 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6592 DefSI = dyn_cast<SelectInst>(V)) { 6593 assert(DefSI->getCondition() == SI->getCondition() && 6594 "The condition of DefSI does not match with SI"); 6595 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6596 } 6597 6598 assert(V && "Failed to get select true/false value"); 6599 return V; 6600 } 6601 6602 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6603 assert(Shift->isShift() && "Expected a shift"); 6604 6605 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6606 // general vector shifts, and (3) the shift amount is a select-of-splatted 6607 // values, hoist the shifts before the select: 6608 // shift Op0, (select Cond, TVal, FVal) --> 6609 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6610 // 6611 // This is inverting a generic IR transform when we know that the cost of a 6612 // general vector shift is more than the cost of 2 shift-by-scalars. 6613 // We can't do this effectively in SDAG because we may not be able to 6614 // determine if the select operands are splats from within a basic block. 6615 Type *Ty = Shift->getType(); 6616 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6617 return false; 6618 Value *Cond, *TVal, *FVal; 6619 if (!match(Shift->getOperand(1), 6620 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6621 return false; 6622 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6623 return false; 6624 6625 IRBuilder<> Builder(Shift); 6626 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6627 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6628 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6629 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6630 Shift->replaceAllUsesWith(NewSel); 6631 Shift->eraseFromParent(); 6632 return true; 6633 } 6634 6635 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6636 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6637 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6638 "Expected a funnel shift"); 6639 6640 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6641 // than general vector shifts, and (3) the shift amount is select-of-splatted 6642 // values, hoist the funnel shifts before the select: 6643 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6644 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6645 // 6646 // This is inverting a generic IR transform when we know that the cost of a 6647 // general vector shift is more than the cost of 2 shift-by-scalars. 6648 // We can't do this effectively in SDAG because we may not be able to 6649 // determine if the select operands are splats from within a basic block. 6650 Type *Ty = Fsh->getType(); 6651 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6652 return false; 6653 Value *Cond, *TVal, *FVal; 6654 if (!match(Fsh->getOperand(2), 6655 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6656 return false; 6657 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6658 return false; 6659 6660 IRBuilder<> Builder(Fsh); 6661 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6662 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6663 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6664 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6665 Fsh->replaceAllUsesWith(NewSel); 6666 Fsh->eraseFromParent(); 6667 return true; 6668 } 6669 6670 /// If we have a SelectInst that will likely profit from branch prediction, 6671 /// turn it into a branch. 6672 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6673 if (DisableSelectToBranch) 6674 return false; 6675 6676 // Find all consecutive select instructions that share the same condition. 6677 SmallVector<SelectInst *, 2> ASI; 6678 ASI.push_back(SI); 6679 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6680 It != SI->getParent()->end(); ++It) { 6681 SelectInst *I = dyn_cast<SelectInst>(&*It); 6682 if (I && SI->getCondition() == I->getCondition()) { 6683 ASI.push_back(I); 6684 } else { 6685 break; 6686 } 6687 } 6688 6689 SelectInst *LastSI = ASI.back(); 6690 // Increment the current iterator to skip all the rest of select instructions 6691 // because they will be either "not lowered" or "all lowered" to branch. 6692 CurInstIterator = std::next(LastSI->getIterator()); 6693 6694 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6695 6696 // Can we convert the 'select' to CF ? 6697 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6698 return false; 6699 6700 TargetLowering::SelectSupportKind SelectKind; 6701 if (VectorCond) 6702 SelectKind = TargetLowering::VectorMaskSelect; 6703 else if (SI->getType()->isVectorTy()) 6704 SelectKind = TargetLowering::ScalarCondVectorVal; 6705 else 6706 SelectKind = TargetLowering::ScalarValSelect; 6707 6708 if (TLI->isSelectSupported(SelectKind) && 6709 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6710 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6711 return false; 6712 6713 // The DominatorTree needs to be rebuilt by any consumers after this 6714 // transformation. We simply reset here rather than setting the ModifiedDT 6715 // flag to avoid restarting the function walk in runOnFunction for each 6716 // select optimized. 6717 DT.reset(); 6718 6719 // Transform a sequence like this: 6720 // start: 6721 // %cmp = cmp uge i32 %a, %b 6722 // %sel = select i1 %cmp, i32 %c, i32 %d 6723 // 6724 // Into: 6725 // start: 6726 // %cmp = cmp uge i32 %a, %b 6727 // %cmp.frozen = freeze %cmp 6728 // br i1 %cmp.frozen, label %select.true, label %select.false 6729 // select.true: 6730 // br label %select.end 6731 // select.false: 6732 // br label %select.end 6733 // select.end: 6734 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6735 // 6736 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6737 // In addition, we may sink instructions that produce %c or %d from 6738 // the entry block into the destination(s) of the new branch. 6739 // If the true or false blocks do not contain a sunken instruction, that 6740 // block and its branch may be optimized away. In that case, one side of the 6741 // first branch will point directly to select.end, and the corresponding PHI 6742 // predecessor block will be the start block. 6743 6744 // First, we split the block containing the select into 2 blocks. 6745 BasicBlock *StartBlock = SI->getParent(); 6746 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6747 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6748 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6749 6750 // Delete the unconditional branch that was just created by the split. 6751 StartBlock->getTerminator()->eraseFromParent(); 6752 6753 // These are the new basic blocks for the conditional branch. 6754 // At least one will become an actual new basic block. 6755 BasicBlock *TrueBlock = nullptr; 6756 BasicBlock *FalseBlock = nullptr; 6757 BranchInst *TrueBranch = nullptr; 6758 BranchInst *FalseBranch = nullptr; 6759 6760 // Sink expensive instructions into the conditional blocks to avoid executing 6761 // them speculatively. 6762 for (SelectInst *SI : ASI) { 6763 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6764 if (TrueBlock == nullptr) { 6765 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6766 EndBlock->getParent(), EndBlock); 6767 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6768 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6769 } 6770 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6771 TrueInst->moveBefore(TrueBranch); 6772 } 6773 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6774 if (FalseBlock == nullptr) { 6775 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6776 EndBlock->getParent(), EndBlock); 6777 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6778 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6779 } 6780 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6781 FalseInst->moveBefore(FalseBranch); 6782 } 6783 } 6784 6785 // If there was nothing to sink, then arbitrarily choose the 'false' side 6786 // for a new input value to the PHI. 6787 if (TrueBlock == FalseBlock) { 6788 assert(TrueBlock == nullptr && 6789 "Unexpected basic block transform while optimizing select"); 6790 6791 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6792 EndBlock->getParent(), EndBlock); 6793 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6794 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6795 } 6796 6797 // Insert the real conditional branch based on the original condition. 6798 // If we did not create a new block for one of the 'true' or 'false' paths 6799 // of the condition, it means that side of the branch goes to the end block 6800 // directly and the path originates from the start block from the point of 6801 // view of the new PHI. 6802 BasicBlock *TT, *FT; 6803 if (TrueBlock == nullptr) { 6804 TT = EndBlock; 6805 FT = FalseBlock; 6806 TrueBlock = StartBlock; 6807 } else if (FalseBlock == nullptr) { 6808 TT = TrueBlock; 6809 FT = EndBlock; 6810 FalseBlock = StartBlock; 6811 } else { 6812 TT = TrueBlock; 6813 FT = FalseBlock; 6814 } 6815 IRBuilder<> IB(SI); 6816 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6817 IB.CreateCondBr(CondFr, TT, FT, SI); 6818 6819 SmallPtrSet<const Instruction *, 2> INS; 6820 INS.insert(ASI.begin(), ASI.end()); 6821 // Use reverse iterator because later select may use the value of the 6822 // earlier select, and we need to propagate value through earlier select 6823 // to get the PHI operand. 6824 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6825 SelectInst *SI = *It; 6826 // The select itself is replaced with a PHI Node. 6827 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6828 PN->takeName(SI); 6829 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6830 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6831 PN->setDebugLoc(SI->getDebugLoc()); 6832 6833 SI->replaceAllUsesWith(PN); 6834 SI->eraseFromParent(); 6835 INS.erase(SI); 6836 ++NumSelectsExpanded; 6837 } 6838 6839 // Instruct OptimizeBlock to skip to the next block. 6840 CurInstIterator = StartBlock->end(); 6841 return true; 6842 } 6843 6844 /// Some targets only accept certain types for splat inputs. For example a VDUP 6845 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6846 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6847 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6848 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6849 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6850 m_Undef(), m_ZeroMask()))) 6851 return false; 6852 Type *NewType = TLI->shouldConvertSplatType(SVI); 6853 if (!NewType) 6854 return false; 6855 6856 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6857 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6858 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6859 "Expected a type of the same size!"); 6860 auto *NewVecType = 6861 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6862 6863 // Create a bitcast (shuffle (insert (bitcast(..)))) 6864 IRBuilder<> Builder(SVI->getContext()); 6865 Builder.SetInsertPoint(SVI); 6866 Value *BC1 = Builder.CreateBitCast( 6867 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6868 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6869 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6870 6871 SVI->replaceAllUsesWith(BC2); 6872 RecursivelyDeleteTriviallyDeadInstructions( 6873 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6874 6875 // Also hoist the bitcast up to its operand if it they are not in the same 6876 // block. 6877 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6878 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6879 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6880 !Op->isTerminator() && !Op->isEHPad()) 6881 BCI->moveAfter(Op); 6882 6883 return true; 6884 } 6885 6886 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6887 // If the operands of I can be folded into a target instruction together with 6888 // I, duplicate and sink them. 6889 SmallVector<Use *, 4> OpsToSink; 6890 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6891 return false; 6892 6893 // OpsToSink can contain multiple uses in a use chain (e.g. 6894 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6895 // uses must come first, so we process the ops in reverse order so as to not 6896 // create invalid IR. 6897 BasicBlock *TargetBB = I->getParent(); 6898 bool Changed = false; 6899 SmallVector<Use *, 4> ToReplace; 6900 for (Use *U : reverse(OpsToSink)) { 6901 auto *UI = cast<Instruction>(U->get()); 6902 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6903 continue; 6904 ToReplace.push_back(U); 6905 } 6906 6907 SetVector<Instruction *> MaybeDead; 6908 DenseMap<Instruction *, Instruction *> NewInstructions; 6909 Instruction *InsertPoint = I; 6910 for (Use *U : ToReplace) { 6911 auto *UI = cast<Instruction>(U->get()); 6912 Instruction *NI = UI->clone(); 6913 NewInstructions[UI] = NI; 6914 MaybeDead.insert(UI); 6915 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6916 NI->insertBefore(InsertPoint); 6917 InsertPoint = NI; 6918 InsertedInsts.insert(NI); 6919 6920 // Update the use for the new instruction, making sure that we update the 6921 // sunk instruction uses, if it is part of a chain that has already been 6922 // sunk. 6923 Instruction *OldI = cast<Instruction>(U->getUser()); 6924 if (NewInstructions.count(OldI)) 6925 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6926 else 6927 U->set(NI); 6928 Changed = true; 6929 } 6930 6931 // Remove instructions that are dead after sinking. 6932 for (auto *I : MaybeDead) { 6933 if (!I->hasNUsesOrMore(1)) { 6934 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6935 I->eraseFromParent(); 6936 } 6937 } 6938 6939 return Changed; 6940 } 6941 6942 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6943 Value *Cond = SI->getCondition(); 6944 Type *OldType = Cond->getType(); 6945 LLVMContext &Context = Cond->getContext(); 6946 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6947 unsigned RegWidth = RegType.getSizeInBits(); 6948 6949 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6950 return false; 6951 6952 // If the register width is greater than the type width, expand the condition 6953 // of the switch instruction and each case constant to the width of the 6954 // register. By widening the type of the switch condition, subsequent 6955 // comparisons (for case comparisons) will not need to be extended to the 6956 // preferred register width, so we will potentially eliminate N-1 extends, 6957 // where N is the number of cases in the switch. 6958 auto *NewType = Type::getIntNTy(Context, RegWidth); 6959 6960 // Zero-extend the switch condition and case constants unless the switch 6961 // condition is a function argument that is already being sign-extended. 6962 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6963 // everything instead. 6964 Instruction::CastOps ExtType = Instruction::ZExt; 6965 if (auto *Arg = dyn_cast<Argument>(Cond)) 6966 if (Arg->hasSExtAttr()) 6967 ExtType = Instruction::SExt; 6968 6969 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6970 ExtInst->insertBefore(SI); 6971 ExtInst->setDebugLoc(SI->getDebugLoc()); 6972 SI->setCondition(ExtInst); 6973 for (auto Case : SI->cases()) { 6974 APInt NarrowConst = Case.getCaseValue()->getValue(); 6975 APInt WideConst = (ExtType == Instruction::ZExt) ? 6976 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6977 Case.setValue(ConstantInt::get(Context, WideConst)); 6978 } 6979 6980 return true; 6981 } 6982 6983 6984 namespace { 6985 6986 /// Helper class to promote a scalar operation to a vector one. 6987 /// This class is used to move downward extractelement transition. 6988 /// E.g., 6989 /// a = vector_op <2 x i32> 6990 /// b = extractelement <2 x i32> a, i32 0 6991 /// c = scalar_op b 6992 /// store c 6993 /// 6994 /// => 6995 /// a = vector_op <2 x i32> 6996 /// c = vector_op a (equivalent to scalar_op on the related lane) 6997 /// * d = extractelement <2 x i32> c, i32 0 6998 /// * store d 6999 /// Assuming both extractelement and store can be combine, we get rid of the 7000 /// transition. 7001 class VectorPromoteHelper { 7002 /// DataLayout associated with the current module. 7003 const DataLayout &DL; 7004 7005 /// Used to perform some checks on the legality of vector operations. 7006 const TargetLowering &TLI; 7007 7008 /// Used to estimated the cost of the promoted chain. 7009 const TargetTransformInfo &TTI; 7010 7011 /// The transition being moved downwards. 7012 Instruction *Transition; 7013 7014 /// The sequence of instructions to be promoted. 7015 SmallVector<Instruction *, 4> InstsToBePromoted; 7016 7017 /// Cost of combining a store and an extract. 7018 unsigned StoreExtractCombineCost; 7019 7020 /// Instruction that will be combined with the transition. 7021 Instruction *CombineInst = nullptr; 7022 7023 /// The instruction that represents the current end of the transition. 7024 /// Since we are faking the promotion until we reach the end of the chain 7025 /// of computation, we need a way to get the current end of the transition. 7026 Instruction *getEndOfTransition() const { 7027 if (InstsToBePromoted.empty()) 7028 return Transition; 7029 return InstsToBePromoted.back(); 7030 } 7031 7032 /// Return the index of the original value in the transition. 7033 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7034 /// c, is at index 0. 7035 unsigned getTransitionOriginalValueIdx() const { 7036 assert(isa<ExtractElementInst>(Transition) && 7037 "Other kind of transitions are not supported yet"); 7038 return 0; 7039 } 7040 7041 /// Return the index of the index in the transition. 7042 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7043 /// is at index 1. 7044 unsigned getTransitionIdx() const { 7045 assert(isa<ExtractElementInst>(Transition) && 7046 "Other kind of transitions are not supported yet"); 7047 return 1; 7048 } 7049 7050 /// Get the type of the transition. 7051 /// This is the type of the original value. 7052 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7053 /// transition is <2 x i32>. 7054 Type *getTransitionType() const { 7055 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7056 } 7057 7058 /// Promote \p ToBePromoted by moving \p Def downward through. 7059 /// I.e., we have the following sequence: 7060 /// Def = Transition <ty1> a to <ty2> 7061 /// b = ToBePromoted <ty2> Def, ... 7062 /// => 7063 /// b = ToBePromoted <ty1> a, ... 7064 /// Def = Transition <ty1> ToBePromoted to <ty2> 7065 void promoteImpl(Instruction *ToBePromoted); 7066 7067 /// Check whether or not it is profitable to promote all the 7068 /// instructions enqueued to be promoted. 7069 bool isProfitableToPromote() { 7070 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7071 unsigned Index = isa<ConstantInt>(ValIdx) 7072 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7073 : -1; 7074 Type *PromotedType = getTransitionType(); 7075 7076 StoreInst *ST = cast<StoreInst>(CombineInst); 7077 unsigned AS = ST->getPointerAddressSpace(); 7078 // Check if this store is supported. 7079 if (!TLI.allowsMisalignedMemoryAccesses( 7080 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7081 ST->getAlign())) { 7082 // If this is not supported, there is no way we can combine 7083 // the extract with the store. 7084 return false; 7085 } 7086 7087 // The scalar chain of computation has to pay for the transition 7088 // scalar to vector. 7089 // The vector chain has to account for the combining cost. 7090 InstructionCost ScalarCost = 7091 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7092 InstructionCost VectorCost = StoreExtractCombineCost; 7093 enum TargetTransformInfo::TargetCostKind CostKind = 7094 TargetTransformInfo::TCK_RecipThroughput; 7095 for (const auto &Inst : InstsToBePromoted) { 7096 // Compute the cost. 7097 // By construction, all instructions being promoted are arithmetic ones. 7098 // Moreover, one argument is a constant that can be viewed as a splat 7099 // constant. 7100 Value *Arg0 = Inst->getOperand(0); 7101 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7102 isa<ConstantFP>(Arg0); 7103 TargetTransformInfo::OperandValueKind Arg0OVK = 7104 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7105 : TargetTransformInfo::OK_AnyValue; 7106 TargetTransformInfo::OperandValueKind Arg1OVK = 7107 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7108 : TargetTransformInfo::OK_AnyValue; 7109 ScalarCost += TTI.getArithmeticInstrCost( 7110 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7111 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7112 CostKind, 7113 Arg0OVK, Arg1OVK); 7114 } 7115 LLVM_DEBUG( 7116 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7117 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7118 return ScalarCost > VectorCost; 7119 } 7120 7121 /// Generate a constant vector with \p Val with the same 7122 /// number of elements as the transition. 7123 /// \p UseSplat defines whether or not \p Val should be replicated 7124 /// across the whole vector. 7125 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7126 /// otherwise we generate a vector with as many undef as possible: 7127 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7128 /// used at the index of the extract. 7129 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7130 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7131 if (!UseSplat) { 7132 // If we cannot determine where the constant must be, we have to 7133 // use a splat constant. 7134 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7135 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7136 ExtractIdx = CstVal->getSExtValue(); 7137 else 7138 UseSplat = true; 7139 } 7140 7141 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7142 if (UseSplat) 7143 return ConstantVector::getSplat(EC, Val); 7144 7145 if (!EC.isScalable()) { 7146 SmallVector<Constant *, 4> ConstVec; 7147 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7148 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7149 if (Idx == ExtractIdx) 7150 ConstVec.push_back(Val); 7151 else 7152 ConstVec.push_back(UndefVal); 7153 } 7154 return ConstantVector::get(ConstVec); 7155 } else 7156 llvm_unreachable( 7157 "Generate scalable vector for non-splat is unimplemented"); 7158 } 7159 7160 /// Check if promoting to a vector type an operand at \p OperandIdx 7161 /// in \p Use can trigger undefined behavior. 7162 static bool canCauseUndefinedBehavior(const Instruction *Use, 7163 unsigned OperandIdx) { 7164 // This is not safe to introduce undef when the operand is on 7165 // the right hand side of a division-like instruction. 7166 if (OperandIdx != 1) 7167 return false; 7168 switch (Use->getOpcode()) { 7169 default: 7170 return false; 7171 case Instruction::SDiv: 7172 case Instruction::UDiv: 7173 case Instruction::SRem: 7174 case Instruction::URem: 7175 return true; 7176 case Instruction::FDiv: 7177 case Instruction::FRem: 7178 return !Use->hasNoNaNs(); 7179 } 7180 llvm_unreachable(nullptr); 7181 } 7182 7183 public: 7184 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7185 const TargetTransformInfo &TTI, Instruction *Transition, 7186 unsigned CombineCost) 7187 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7188 StoreExtractCombineCost(CombineCost) { 7189 assert(Transition && "Do not know how to promote null"); 7190 } 7191 7192 /// Check if we can promote \p ToBePromoted to \p Type. 7193 bool canPromote(const Instruction *ToBePromoted) const { 7194 // We could support CastInst too. 7195 return isa<BinaryOperator>(ToBePromoted); 7196 } 7197 7198 /// Check if it is profitable to promote \p ToBePromoted 7199 /// by moving downward the transition through. 7200 bool shouldPromote(const Instruction *ToBePromoted) const { 7201 // Promote only if all the operands can be statically expanded. 7202 // Indeed, we do not want to introduce any new kind of transitions. 7203 for (const Use &U : ToBePromoted->operands()) { 7204 const Value *Val = U.get(); 7205 if (Val == getEndOfTransition()) { 7206 // If the use is a division and the transition is on the rhs, 7207 // we cannot promote the operation, otherwise we may create a 7208 // division by zero. 7209 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7210 return false; 7211 continue; 7212 } 7213 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7214 !isa<ConstantFP>(Val)) 7215 return false; 7216 } 7217 // Check that the resulting operation is legal. 7218 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7219 if (!ISDOpcode) 7220 return false; 7221 return StressStoreExtract || 7222 TLI.isOperationLegalOrCustom( 7223 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7224 } 7225 7226 /// Check whether or not \p Use can be combined 7227 /// with the transition. 7228 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7229 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7230 7231 /// Record \p ToBePromoted as part of the chain to be promoted. 7232 void enqueueForPromotion(Instruction *ToBePromoted) { 7233 InstsToBePromoted.push_back(ToBePromoted); 7234 } 7235 7236 /// Set the instruction that will be combined with the transition. 7237 void recordCombineInstruction(Instruction *ToBeCombined) { 7238 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7239 CombineInst = ToBeCombined; 7240 } 7241 7242 /// Promote all the instructions enqueued for promotion if it is 7243 /// is profitable. 7244 /// \return True if the promotion happened, false otherwise. 7245 bool promote() { 7246 // Check if there is something to promote. 7247 // Right now, if we do not have anything to combine with, 7248 // we assume the promotion is not profitable. 7249 if (InstsToBePromoted.empty() || !CombineInst) 7250 return false; 7251 7252 // Check cost. 7253 if (!StressStoreExtract && !isProfitableToPromote()) 7254 return false; 7255 7256 // Promote. 7257 for (auto &ToBePromoted : InstsToBePromoted) 7258 promoteImpl(ToBePromoted); 7259 InstsToBePromoted.clear(); 7260 return true; 7261 } 7262 }; 7263 7264 } // end anonymous namespace 7265 7266 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7267 // At this point, we know that all the operands of ToBePromoted but Def 7268 // can be statically promoted. 7269 // For Def, we need to use its parameter in ToBePromoted: 7270 // b = ToBePromoted ty1 a 7271 // Def = Transition ty1 b to ty2 7272 // Move the transition down. 7273 // 1. Replace all uses of the promoted operation by the transition. 7274 // = ... b => = ... Def. 7275 assert(ToBePromoted->getType() == Transition->getType() && 7276 "The type of the result of the transition does not match " 7277 "the final type"); 7278 ToBePromoted->replaceAllUsesWith(Transition); 7279 // 2. Update the type of the uses. 7280 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7281 Type *TransitionTy = getTransitionType(); 7282 ToBePromoted->mutateType(TransitionTy); 7283 // 3. Update all the operands of the promoted operation with promoted 7284 // operands. 7285 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7286 for (Use &U : ToBePromoted->operands()) { 7287 Value *Val = U.get(); 7288 Value *NewVal = nullptr; 7289 if (Val == Transition) 7290 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7291 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7292 isa<ConstantFP>(Val)) { 7293 // Use a splat constant if it is not safe to use undef. 7294 NewVal = getConstantVector( 7295 cast<Constant>(Val), 7296 isa<UndefValue>(Val) || 7297 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7298 } else 7299 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7300 "this?"); 7301 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7302 } 7303 Transition->moveAfter(ToBePromoted); 7304 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7305 } 7306 7307 /// Some targets can do store(extractelement) with one instruction. 7308 /// Try to push the extractelement towards the stores when the target 7309 /// has this feature and this is profitable. 7310 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7311 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7312 if (DisableStoreExtract || 7313 (!StressStoreExtract && 7314 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7315 Inst->getOperand(1), CombineCost))) 7316 return false; 7317 7318 // At this point we know that Inst is a vector to scalar transition. 7319 // Try to move it down the def-use chain, until: 7320 // - We can combine the transition with its single use 7321 // => we got rid of the transition. 7322 // - We escape the current basic block 7323 // => we would need to check that we are moving it at a cheaper place and 7324 // we do not do that for now. 7325 BasicBlock *Parent = Inst->getParent(); 7326 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7327 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7328 // If the transition has more than one use, assume this is not going to be 7329 // beneficial. 7330 while (Inst->hasOneUse()) { 7331 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7332 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7333 7334 if (ToBePromoted->getParent() != Parent) { 7335 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7336 << ToBePromoted->getParent()->getName() 7337 << ") than the transition (" << Parent->getName() 7338 << ").\n"); 7339 return false; 7340 } 7341 7342 if (VPH.canCombine(ToBePromoted)) { 7343 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7344 << "will be combined with: " << *ToBePromoted << '\n'); 7345 VPH.recordCombineInstruction(ToBePromoted); 7346 bool Changed = VPH.promote(); 7347 NumStoreExtractExposed += Changed; 7348 return Changed; 7349 } 7350 7351 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7352 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7353 return false; 7354 7355 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7356 7357 VPH.enqueueForPromotion(ToBePromoted); 7358 Inst = ToBePromoted; 7359 } 7360 return false; 7361 } 7362 7363 /// For the instruction sequence of store below, F and I values 7364 /// are bundled together as an i64 value before being stored into memory. 7365 /// Sometimes it is more efficient to generate separate stores for F and I, 7366 /// which can remove the bitwise instructions or sink them to colder places. 7367 /// 7368 /// (store (or (zext (bitcast F to i32) to i64), 7369 /// (shl (zext I to i64), 32)), addr) --> 7370 /// (store F, addr) and (store I, addr+4) 7371 /// 7372 /// Similarly, splitting for other merged store can also be beneficial, like: 7373 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7374 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7375 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7376 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7377 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7378 /// 7379 /// We allow each target to determine specifically which kind of splitting is 7380 /// supported. 7381 /// 7382 /// The store patterns are commonly seen from the simple code snippet below 7383 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7384 /// void goo(const std::pair<int, float> &); 7385 /// hoo() { 7386 /// ... 7387 /// goo(std::make_pair(tmp, ftmp)); 7388 /// ... 7389 /// } 7390 /// 7391 /// Although we already have similar splitting in DAG Combine, we duplicate 7392 /// it in CodeGenPrepare to catch the case in which pattern is across 7393 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7394 /// during code expansion. 7395 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7396 const TargetLowering &TLI) { 7397 // Handle simple but common cases only. 7398 Type *StoreType = SI.getValueOperand()->getType(); 7399 7400 // The code below assumes shifting a value by <number of bits>, 7401 // whereas scalable vectors would have to be shifted by 7402 // <2log(vscale) + number of bits> in order to store the 7403 // low/high parts. Bailing out for now. 7404 if (isa<ScalableVectorType>(StoreType)) 7405 return false; 7406 7407 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7408 DL.getTypeSizeInBits(StoreType) == 0) 7409 return false; 7410 7411 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7412 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7413 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7414 return false; 7415 7416 // Don't split the store if it is volatile. 7417 if (SI.isVolatile()) 7418 return false; 7419 7420 // Match the following patterns: 7421 // (store (or (zext LValue to i64), 7422 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7423 // or 7424 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7425 // (zext LValue to i64), 7426 // Expect both operands of OR and the first operand of SHL have only 7427 // one use. 7428 Value *LValue, *HValue; 7429 if (!match(SI.getValueOperand(), 7430 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7431 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7432 m_SpecificInt(HalfValBitSize)))))) 7433 return false; 7434 7435 // Check LValue and HValue are int with size less or equal than 32. 7436 if (!LValue->getType()->isIntegerTy() || 7437 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7438 !HValue->getType()->isIntegerTy() || 7439 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7440 return false; 7441 7442 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7443 // as the input of target query. 7444 auto *LBC = dyn_cast<BitCastInst>(LValue); 7445 auto *HBC = dyn_cast<BitCastInst>(HValue); 7446 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7447 : EVT::getEVT(LValue->getType()); 7448 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7449 : EVT::getEVT(HValue->getType()); 7450 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7451 return false; 7452 7453 // Start to split store. 7454 IRBuilder<> Builder(SI.getContext()); 7455 Builder.SetInsertPoint(&SI); 7456 7457 // If LValue/HValue is a bitcast in another BB, create a new one in current 7458 // BB so it may be merged with the splitted stores by dag combiner. 7459 if (LBC && LBC->getParent() != SI.getParent()) 7460 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7461 if (HBC && HBC->getParent() != SI.getParent()) 7462 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7463 7464 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7465 auto CreateSplitStore = [&](Value *V, bool Upper) { 7466 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7467 Value *Addr = Builder.CreateBitCast( 7468 SI.getOperand(1), 7469 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7470 Align Alignment = SI.getAlign(); 7471 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7472 if (IsOffsetStore) { 7473 Addr = Builder.CreateGEP( 7474 SplitStoreType, Addr, 7475 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7476 7477 // When splitting the store in half, naturally one half will retain the 7478 // alignment of the original wider store, regardless of whether it was 7479 // over-aligned or not, while the other will require adjustment. 7480 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7481 } 7482 Builder.CreateAlignedStore(V, Addr, Alignment); 7483 }; 7484 7485 CreateSplitStore(LValue, false); 7486 CreateSplitStore(HValue, true); 7487 7488 // Delete the old store. 7489 SI.eraseFromParent(); 7490 return true; 7491 } 7492 7493 // Return true if the GEP has two operands, the first operand is of a sequential 7494 // type, and the second operand is a constant. 7495 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7496 gep_type_iterator I = gep_type_begin(*GEP); 7497 return GEP->getNumOperands() == 2 && 7498 I.isSequential() && 7499 isa<ConstantInt>(GEP->getOperand(1)); 7500 } 7501 7502 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7503 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7504 // reducing liveness interference across those edges benefits global register 7505 // allocation. Currently handles only certain cases. 7506 // 7507 // For example, unmerge %GEPI and %UGEPI as below. 7508 // 7509 // ---------- BEFORE ---------- 7510 // SrcBlock: 7511 // ... 7512 // %GEPIOp = ... 7513 // ... 7514 // %GEPI = gep %GEPIOp, Idx 7515 // ... 7516 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7517 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7518 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7519 // %UGEPI) 7520 // 7521 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7522 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7523 // ... 7524 // 7525 // DstBi: 7526 // ... 7527 // %UGEPI = gep %GEPIOp, UIdx 7528 // ... 7529 // --------------------------- 7530 // 7531 // ---------- AFTER ---------- 7532 // SrcBlock: 7533 // ... (same as above) 7534 // (* %GEPI is still alive on the indirectbr edges) 7535 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7536 // unmerging) 7537 // ... 7538 // 7539 // DstBi: 7540 // ... 7541 // %UGEPI = gep %GEPI, (UIdx-Idx) 7542 // ... 7543 // --------------------------- 7544 // 7545 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7546 // no longer alive on them. 7547 // 7548 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7549 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7550 // not to disable further simplications and optimizations as a result of GEP 7551 // merging. 7552 // 7553 // Note this unmerging may increase the length of the data flow critical path 7554 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7555 // between the register pressure and the length of data-flow critical 7556 // path. Restricting this to the uncommon IndirectBr case would minimize the 7557 // impact of potentially longer critical path, if any, and the impact on compile 7558 // time. 7559 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7560 const TargetTransformInfo *TTI) { 7561 BasicBlock *SrcBlock = GEPI->getParent(); 7562 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7563 // (non-IndirectBr) cases exit early here. 7564 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7565 return false; 7566 // Check that GEPI is a simple gep with a single constant index. 7567 if (!GEPSequentialConstIndexed(GEPI)) 7568 return false; 7569 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7570 // Check that GEPI is a cheap one. 7571 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7572 TargetTransformInfo::TCK_SizeAndLatency) 7573 > TargetTransformInfo::TCC_Basic) 7574 return false; 7575 Value *GEPIOp = GEPI->getOperand(0); 7576 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7577 if (!isa<Instruction>(GEPIOp)) 7578 return false; 7579 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7580 if (GEPIOpI->getParent() != SrcBlock) 7581 return false; 7582 // Check that GEP is used outside the block, meaning it's alive on the 7583 // IndirectBr edge(s). 7584 if (find_if(GEPI->users(), [&](User *Usr) { 7585 if (auto *I = dyn_cast<Instruction>(Usr)) { 7586 if (I->getParent() != SrcBlock) { 7587 return true; 7588 } 7589 } 7590 return false; 7591 }) == GEPI->users().end()) 7592 return false; 7593 // The second elements of the GEP chains to be unmerged. 7594 std::vector<GetElementPtrInst *> UGEPIs; 7595 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7596 // on IndirectBr edges. 7597 for (User *Usr : GEPIOp->users()) { 7598 if (Usr == GEPI) continue; 7599 // Check if Usr is an Instruction. If not, give up. 7600 if (!isa<Instruction>(Usr)) 7601 return false; 7602 auto *UI = cast<Instruction>(Usr); 7603 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7604 if (UI->getParent() == SrcBlock) 7605 continue; 7606 // Check if Usr is a GEP. If not, give up. 7607 if (!isa<GetElementPtrInst>(Usr)) 7608 return false; 7609 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7610 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7611 // the pointer operand to it. If so, record it in the vector. If not, give 7612 // up. 7613 if (!GEPSequentialConstIndexed(UGEPI)) 7614 return false; 7615 if (UGEPI->getOperand(0) != GEPIOp) 7616 return false; 7617 if (GEPIIdx->getType() != 7618 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7619 return false; 7620 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7621 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7622 TargetTransformInfo::TCK_SizeAndLatency) 7623 > TargetTransformInfo::TCC_Basic) 7624 return false; 7625 UGEPIs.push_back(UGEPI); 7626 } 7627 if (UGEPIs.size() == 0) 7628 return false; 7629 // Check the materializing cost of (Uidx-Idx). 7630 for (GetElementPtrInst *UGEPI : UGEPIs) { 7631 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7632 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7633 unsigned ImmCost = 7634 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7635 TargetTransformInfo::TCK_SizeAndLatency); 7636 if (ImmCost > TargetTransformInfo::TCC_Basic) 7637 return false; 7638 } 7639 // Now unmerge between GEPI and UGEPIs. 7640 for (GetElementPtrInst *UGEPI : UGEPIs) { 7641 UGEPI->setOperand(0, GEPI); 7642 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7643 Constant *NewUGEPIIdx = 7644 ConstantInt::get(GEPIIdx->getType(), 7645 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7646 UGEPI->setOperand(1, NewUGEPIIdx); 7647 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7648 // inbounds to avoid UB. 7649 if (!GEPI->isInBounds()) { 7650 UGEPI->setIsInBounds(false); 7651 } 7652 } 7653 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7654 // alive on IndirectBr edges). 7655 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7656 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7657 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7658 return true; 7659 } 7660 7661 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7662 // Bail out if we inserted the instruction to prevent optimizations from 7663 // stepping on each other's toes. 7664 if (InsertedInsts.count(I)) 7665 return false; 7666 7667 // TODO: Move into the switch on opcode below here. 7668 if (PHINode *P = dyn_cast<PHINode>(I)) { 7669 // It is possible for very late stage optimizations (such as SimplifyCFG) 7670 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7671 // trivial PHI, go ahead and zap it here. 7672 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7673 LargeOffsetGEPMap.erase(P); 7674 P->replaceAllUsesWith(V); 7675 P->eraseFromParent(); 7676 ++NumPHIsElim; 7677 return true; 7678 } 7679 return false; 7680 } 7681 7682 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7683 // If the source of the cast is a constant, then this should have 7684 // already been constant folded. The only reason NOT to constant fold 7685 // it is if something (e.g. LSR) was careful to place the constant 7686 // evaluation in a block other than then one that uses it (e.g. to hoist 7687 // the address of globals out of a loop). If this is the case, we don't 7688 // want to forward-subst the cast. 7689 if (isa<Constant>(CI->getOperand(0))) 7690 return false; 7691 7692 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7693 return true; 7694 7695 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7696 /// Sink a zext or sext into its user blocks if the target type doesn't 7697 /// fit in one register 7698 if (TLI->getTypeAction(CI->getContext(), 7699 TLI->getValueType(*DL, CI->getType())) == 7700 TargetLowering::TypeExpandInteger) { 7701 return SinkCast(CI); 7702 } else { 7703 bool MadeChange = optimizeExt(I); 7704 return MadeChange | optimizeExtUses(I); 7705 } 7706 } 7707 return false; 7708 } 7709 7710 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7711 if (optimizeCmp(Cmp, ModifiedDT)) 7712 return true; 7713 7714 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7715 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7716 bool Modified = optimizeLoadExt(LI); 7717 unsigned AS = LI->getPointerAddressSpace(); 7718 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7719 return Modified; 7720 } 7721 7722 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7723 if (splitMergedValStore(*SI, *DL, *TLI)) 7724 return true; 7725 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7726 unsigned AS = SI->getPointerAddressSpace(); 7727 return optimizeMemoryInst(I, SI->getOperand(1), 7728 SI->getOperand(0)->getType(), AS); 7729 } 7730 7731 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7732 unsigned AS = RMW->getPointerAddressSpace(); 7733 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7734 RMW->getType(), AS); 7735 } 7736 7737 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7738 unsigned AS = CmpX->getPointerAddressSpace(); 7739 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7740 CmpX->getCompareOperand()->getType(), AS); 7741 } 7742 7743 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7744 7745 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7746 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7747 7748 // TODO: Move this into the switch on opcode - it handles shifts already. 7749 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7750 BinOp->getOpcode() == Instruction::LShr)) { 7751 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7752 if (CI && TLI->hasExtractBitsInsn()) 7753 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7754 return true; 7755 } 7756 7757 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7758 if (GEPI->hasAllZeroIndices()) { 7759 /// The GEP operand must be a pointer, so must its result -> BitCast 7760 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7761 GEPI->getName(), GEPI); 7762 NC->setDebugLoc(GEPI->getDebugLoc()); 7763 GEPI->replaceAllUsesWith(NC); 7764 GEPI->eraseFromParent(); 7765 ++NumGEPsElim; 7766 optimizeInst(NC, ModifiedDT); 7767 return true; 7768 } 7769 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7770 return true; 7771 } 7772 return false; 7773 } 7774 7775 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7776 // freeze(icmp a, const)) -> icmp (freeze a), const 7777 // This helps generate efficient conditional jumps. 7778 Instruction *CmpI = nullptr; 7779 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7780 CmpI = II; 7781 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7782 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7783 7784 if (CmpI && CmpI->hasOneUse()) { 7785 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7786 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7787 isa<ConstantPointerNull>(Op0); 7788 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7789 isa<ConstantPointerNull>(Op1); 7790 if (Const0 || Const1) { 7791 if (!Const0 || !Const1) { 7792 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7793 F->takeName(FI); 7794 CmpI->setOperand(Const0 ? 1 : 0, F); 7795 } 7796 FI->replaceAllUsesWith(CmpI); 7797 FI->eraseFromParent(); 7798 return true; 7799 } 7800 } 7801 return false; 7802 } 7803 7804 if (tryToSinkFreeOperands(I)) 7805 return true; 7806 7807 switch (I->getOpcode()) { 7808 case Instruction::Shl: 7809 case Instruction::LShr: 7810 case Instruction::AShr: 7811 return optimizeShiftInst(cast<BinaryOperator>(I)); 7812 case Instruction::Call: 7813 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7814 case Instruction::Select: 7815 return optimizeSelectInst(cast<SelectInst>(I)); 7816 case Instruction::ShuffleVector: 7817 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7818 case Instruction::Switch: 7819 return optimizeSwitchInst(cast<SwitchInst>(I)); 7820 case Instruction::ExtractElement: 7821 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7822 } 7823 7824 return false; 7825 } 7826 7827 /// Given an OR instruction, check to see if this is a bitreverse 7828 /// idiom. If so, insert the new intrinsic and return true. 7829 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7830 if (!I.getType()->isIntegerTy() || 7831 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7832 TLI->getValueType(*DL, I.getType(), true))) 7833 return false; 7834 7835 SmallVector<Instruction*, 4> Insts; 7836 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7837 return false; 7838 Instruction *LastInst = Insts.back(); 7839 I.replaceAllUsesWith(LastInst); 7840 RecursivelyDeleteTriviallyDeadInstructions( 7841 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7842 return true; 7843 } 7844 7845 // In this pass we look for GEP and cast instructions that are used 7846 // across basic blocks and rewrite them to improve basic-block-at-a-time 7847 // selection. 7848 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7849 SunkAddrs.clear(); 7850 bool MadeChange = false; 7851 7852 CurInstIterator = BB.begin(); 7853 while (CurInstIterator != BB.end()) { 7854 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7855 if (ModifiedDT) 7856 return true; 7857 } 7858 7859 bool MadeBitReverse = true; 7860 while (MadeBitReverse) { 7861 MadeBitReverse = false; 7862 for (auto &I : reverse(BB)) { 7863 if (makeBitReverse(I)) { 7864 MadeBitReverse = MadeChange = true; 7865 break; 7866 } 7867 } 7868 } 7869 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7870 7871 return MadeChange; 7872 } 7873 7874 // Some CGP optimizations may move or alter what's computed in a block. Check 7875 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7876 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7877 assert(isa<DbgValueInst>(I)); 7878 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7879 7880 // Does this dbg.value refer to a sunk address calculation? 7881 Value *Location = DVI.getVariableLocation(); 7882 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7883 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7884 if (SunkAddr) { 7885 // Point dbg.value at locally computed address, which should give the best 7886 // opportunity to be accurately lowered. This update may change the type of 7887 // pointer being referred to; however this makes no difference to debugging 7888 // information, and we can't generate bitcasts that may affect codegen. 7889 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7890 ValueAsMetadata::get(SunkAddr))); 7891 return true; 7892 } 7893 return false; 7894 } 7895 7896 // A llvm.dbg.value may be using a value before its definition, due to 7897 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7898 // them by moving the dbg.value to immediately after the value definition. 7899 // FIXME: Ideally this should never be necessary, and this has the potential 7900 // to re-order dbg.value intrinsics. 7901 bool CodeGenPrepare::placeDbgValues(Function &F) { 7902 bool MadeChange = false; 7903 DominatorTree DT(F); 7904 7905 for (BasicBlock &BB : F) { 7906 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7907 Instruction *Insn = &*BI++; 7908 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7909 if (!DVI) 7910 continue; 7911 7912 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7913 7914 if (!VI || VI->isTerminator()) 7915 continue; 7916 7917 // If VI is a phi in a block with an EHPad terminator, we can't insert 7918 // after it. 7919 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7920 continue; 7921 7922 // If the defining instruction dominates the dbg.value, we do not need 7923 // to move the dbg.value. 7924 if (DT.dominates(VI, DVI)) 7925 continue; 7926 7927 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7928 << *DVI << ' ' << *VI); 7929 DVI->removeFromParent(); 7930 if (isa<PHINode>(VI)) 7931 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7932 else 7933 DVI->insertAfter(VI); 7934 MadeChange = true; 7935 ++NumDbgValueMoved; 7936 } 7937 } 7938 return MadeChange; 7939 } 7940 7941 /// Scale down both weights to fit into uint32_t. 7942 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7943 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7944 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7945 NewTrue = NewTrue / Scale; 7946 NewFalse = NewFalse / Scale; 7947 } 7948 7949 /// Some targets prefer to split a conditional branch like: 7950 /// \code 7951 /// %0 = icmp ne i32 %a, 0 7952 /// %1 = icmp ne i32 %b, 0 7953 /// %or.cond = or i1 %0, %1 7954 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7955 /// \endcode 7956 /// into multiple branch instructions like: 7957 /// \code 7958 /// bb1: 7959 /// %0 = icmp ne i32 %a, 0 7960 /// br i1 %0, label %TrueBB, label %bb2 7961 /// bb2: 7962 /// %1 = icmp ne i32 %b, 0 7963 /// br i1 %1, label %TrueBB, label %FalseBB 7964 /// \endcode 7965 /// This usually allows instruction selection to do even further optimizations 7966 /// and combine the compare with the branch instruction. Currently this is 7967 /// applied for targets which have "cheap" jump instructions. 7968 /// 7969 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7970 /// 7971 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7972 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7973 return false; 7974 7975 bool MadeChange = false; 7976 for (auto &BB : F) { 7977 // Does this BB end with the following? 7978 // %cond1 = icmp|fcmp|binary instruction ... 7979 // %cond2 = icmp|fcmp|binary instruction ... 7980 // %cond.or = or|and i1 %cond1, cond2 7981 // br i1 %cond.or label %dest1, label %dest2" 7982 Instruction *LogicOp; 7983 BasicBlock *TBB, *FBB; 7984 if (!match(BB.getTerminator(), 7985 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 7986 continue; 7987 7988 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7989 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7990 continue; 7991 7992 // The merging of mostly empty BB can cause a degenerate branch. 7993 if (TBB == FBB) 7994 continue; 7995 7996 unsigned Opc; 7997 Value *Cond1, *Cond2; 7998 if (match(LogicOp, 7999 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8000 Opc = Instruction::And; 8001 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8002 m_OneUse(m_Value(Cond2))))) 8003 Opc = Instruction::Or; 8004 else 8005 continue; 8006 8007 auto IsGoodCond = [](Value *Cond) { 8008 return match( 8009 Cond, 8010 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8011 m_LogicalOr(m_Value(), m_Value())))); 8012 }; 8013 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8014 continue; 8015 8016 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8017 8018 // Create a new BB. 8019 auto *TmpBB = 8020 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8021 BB.getParent(), BB.getNextNode()); 8022 8023 // Update original basic block by using the first condition directly by the 8024 // branch instruction and removing the no longer needed and/or instruction. 8025 Br1->setCondition(Cond1); 8026 LogicOp->eraseFromParent(); 8027 8028 // Depending on the condition we have to either replace the true or the 8029 // false successor of the original branch instruction. 8030 if (Opc == Instruction::And) 8031 Br1->setSuccessor(0, TmpBB); 8032 else 8033 Br1->setSuccessor(1, TmpBB); 8034 8035 // Fill in the new basic block. 8036 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8037 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8038 I->removeFromParent(); 8039 I->insertBefore(Br2); 8040 } 8041 8042 // Update PHI nodes in both successors. The original BB needs to be 8043 // replaced in one successor's PHI nodes, because the branch comes now from 8044 // the newly generated BB (NewBB). In the other successor we need to add one 8045 // incoming edge to the PHI nodes, because both branch instructions target 8046 // now the same successor. Depending on the original branch condition 8047 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8048 // we perform the correct update for the PHI nodes. 8049 // This doesn't change the successor order of the just created branch 8050 // instruction (or any other instruction). 8051 if (Opc == Instruction::Or) 8052 std::swap(TBB, FBB); 8053 8054 // Replace the old BB with the new BB. 8055 TBB->replacePhiUsesWith(&BB, TmpBB); 8056 8057 // Add another incoming edge form the new BB. 8058 for (PHINode &PN : FBB->phis()) { 8059 auto *Val = PN.getIncomingValueForBlock(&BB); 8060 PN.addIncoming(Val, TmpBB); 8061 } 8062 8063 // Update the branch weights (from SelectionDAGBuilder:: 8064 // FindMergedConditions). 8065 if (Opc == Instruction::Or) { 8066 // Codegen X | Y as: 8067 // BB1: 8068 // jmp_if_X TBB 8069 // jmp TmpBB 8070 // TmpBB: 8071 // jmp_if_Y TBB 8072 // jmp FBB 8073 // 8074 8075 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8076 // The requirement is that 8077 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8078 // = TrueProb for original BB. 8079 // Assuming the original weights are A and B, one choice is to set BB1's 8080 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8081 // assumes that 8082 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8083 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8084 // TmpBB, but the math is more complicated. 8085 uint64_t TrueWeight, FalseWeight; 8086 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8087 uint64_t NewTrueWeight = TrueWeight; 8088 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8089 scaleWeights(NewTrueWeight, NewFalseWeight); 8090 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8091 .createBranchWeights(TrueWeight, FalseWeight)); 8092 8093 NewTrueWeight = TrueWeight; 8094 NewFalseWeight = 2 * FalseWeight; 8095 scaleWeights(NewTrueWeight, NewFalseWeight); 8096 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8097 .createBranchWeights(TrueWeight, FalseWeight)); 8098 } 8099 } else { 8100 // Codegen X & Y as: 8101 // BB1: 8102 // jmp_if_X TmpBB 8103 // jmp FBB 8104 // TmpBB: 8105 // jmp_if_Y TBB 8106 // jmp FBB 8107 // 8108 // This requires creation of TmpBB after CurBB. 8109 8110 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8111 // The requirement is that 8112 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8113 // = FalseProb for original BB. 8114 // Assuming the original weights are A and B, one choice is to set BB1's 8115 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8116 // assumes that 8117 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8118 uint64_t TrueWeight, FalseWeight; 8119 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8120 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8121 uint64_t NewFalseWeight = FalseWeight; 8122 scaleWeights(NewTrueWeight, NewFalseWeight); 8123 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8124 .createBranchWeights(TrueWeight, FalseWeight)); 8125 8126 NewTrueWeight = 2 * TrueWeight; 8127 NewFalseWeight = FalseWeight; 8128 scaleWeights(NewTrueWeight, NewFalseWeight); 8129 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8130 .createBranchWeights(TrueWeight, FalseWeight)); 8131 } 8132 } 8133 8134 ModifiedDT = true; 8135 MadeChange = true; 8136 8137 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8138 TmpBB->dump()); 8139 } 8140 return MadeChange; 8141 } 8142