1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 229 using SExts = SmallVector<Instruction *, 16>; 230 using ValueToSExts = DenseMap<Value *, SExts>; 231 232 class TypePromotionTransaction; 233 234 class CodeGenPrepare : public FunctionPass { 235 const TargetMachine *TM = nullptr; 236 const TargetSubtargetInfo *SubtargetInfo; 237 const TargetLowering *TLI = nullptr; 238 const TargetRegisterInfo *TRI; 239 const TargetTransformInfo *TTI = nullptr; 240 const TargetLibraryInfo *TLInfo; 241 const LoopInfo *LI; 242 std::unique_ptr<BlockFrequencyInfo> BFI; 243 std::unique_ptr<BranchProbabilityInfo> BPI; 244 245 /// As we scan instructions optimizing them, this is the next instruction 246 /// to optimize. Transforms that can invalidate this should update it. 247 BasicBlock::iterator CurInstIterator; 248 249 /// Keeps track of non-local addresses that have been sunk into a block. 250 /// This allows us to avoid inserting duplicate code for blocks with 251 /// multiple load/stores of the same address. The usage of WeakTrackingVH 252 /// enables SunkAddrs to be treated as a cache whose entries can be 253 /// invalidated if a sunken address computation has been erased. 254 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 255 256 /// Keeps track of all instructions inserted for the current function. 257 SetOfInstrs InsertedInsts; 258 259 /// Keeps track of the type of the related instruction before their 260 /// promotion for the current function. 261 InstrToOrigTy PromotedInsts; 262 263 /// Keep track of instructions removed during promotion. 264 SetOfInstrs RemovedInsts; 265 266 /// Keep track of sext chains based on their initial value. 267 DenseMap<Value *, Instruction *> SeenChainsForSExt; 268 269 /// Keep track of GEPs accessing the same data structures such as structs or 270 /// arrays that are candidates to be split later because of their large 271 /// size. 272 DenseMap< 273 AssertingVH<Value>, 274 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 275 LargeOffsetGEPMap; 276 277 /// Keep track of new GEP base after splitting the GEPs having large offset. 278 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 279 280 /// Map serial numbers to Large offset GEPs. 281 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 282 283 /// Keep track of SExt promoted. 284 ValueToSExts ValToSExtendedUses; 285 286 /// True if CFG is modified in any way. 287 bool ModifiedDT; 288 289 /// True if optimizing for size. 290 bool OptSize; 291 292 /// DataLayout for the Function being processed. 293 const DataLayout *DL = nullptr; 294 295 public: 296 static char ID; // Pass identification, replacement for typeid 297 298 CodeGenPrepare() : FunctionPass(ID) { 299 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 300 } 301 302 bool runOnFunction(Function &F) override; 303 304 StringRef getPassName() const override { return "CodeGen Prepare"; } 305 306 void getAnalysisUsage(AnalysisUsage &AU) const override { 307 // FIXME: When we can selectively preserve passes, preserve the domtree. 308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 309 AU.addRequired<TargetLibraryInfoWrapperPass>(); 310 AU.addRequired<TargetTransformInfoWrapperPass>(); 311 AU.addRequired<LoopInfoWrapperPass>(); 312 } 313 314 private: 315 bool eliminateFallThrough(Function &F); 316 bool eliminateMostlyEmptyBlocks(Function &F); 317 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 318 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 319 void eliminateMostlyEmptyBlock(BasicBlock *BB); 320 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 321 bool isPreheader); 322 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 323 bool optimizeInst(Instruction *I, bool &ModifiedDT); 324 bool optimizeMemoryInst(Instruction *I, Value *Addr, 325 Type *AccessTy, unsigned AS); 326 bool optimizeInlineAsmInst(CallInst *CS); 327 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 328 bool optimizeExt(Instruction *&I); 329 bool optimizeExtUses(Instruction *I); 330 bool optimizeLoadExt(LoadInst *I); 331 bool optimizeSelectInst(SelectInst *SI); 332 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 333 bool optimizeSwitchInst(SwitchInst *CI); 334 bool optimizeExtractElementInst(Instruction *Inst); 335 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 336 bool placeDbgValues(Function &F); 337 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 338 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 339 bool tryToPromoteExts(TypePromotionTransaction &TPT, 340 const SmallVectorImpl<Instruction *> &Exts, 341 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 342 unsigned CreatedInstsCost = 0); 343 bool mergeSExts(Function &F); 344 bool splitLargeGEPOffsets(); 345 bool performAddressTypePromotion( 346 Instruction *&Inst, 347 bool AllowPromotionWithoutCommonHeader, 348 bool HasPromoted, TypePromotionTransaction &TPT, 349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 350 bool splitBranchCondition(Function &F); 351 bool simplifyOffsetableRelocate(Instruction &I); 352 }; 353 354 } // end anonymous namespace 355 356 char CodeGenPrepare::ID = 0; 357 358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 359 "Optimize for code generation", false, false) 360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 362 "Optimize for code generation", false, false) 363 364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 365 366 bool CodeGenPrepare::runOnFunction(Function &F) { 367 if (skipFunction(F)) 368 return false; 369 370 DL = &F.getParent()->getDataLayout(); 371 372 bool EverMadeChange = false; 373 // Clear per function information. 374 InsertedInsts.clear(); 375 PromotedInsts.clear(); 376 377 ModifiedDT = false; 378 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 379 TM = &TPC->getTM<TargetMachine>(); 380 SubtargetInfo = TM->getSubtargetImpl(F); 381 TLI = SubtargetInfo->getTargetLowering(); 382 TRI = SubtargetInfo->getRegisterInfo(); 383 } 384 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 385 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 386 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 387 BPI.reset(new BranchProbabilityInfo(F, *LI)); 388 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 389 OptSize = F.optForSize(); 390 391 ProfileSummaryInfo *PSI = 392 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 393 if (ProfileGuidedSectionPrefix) { 394 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 395 F.setSectionPrefix(".hot"); 396 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 397 F.setSectionPrefix(".unlikely"); 398 } 399 400 /// This optimization identifies DIV instructions that can be 401 /// profitably bypassed and carried out with a shorter, faster divide. 402 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 403 TLI->isSlowDivBypassed()) { 404 const DenseMap<unsigned int, unsigned int> &BypassWidths = 405 TLI->getBypassSlowDivWidths(); 406 BasicBlock* BB = &*F.begin(); 407 while (BB != nullptr) { 408 // bypassSlowDivision may create new BBs, but we don't want to reapply the 409 // optimization to those blocks. 410 BasicBlock* Next = BB->getNextNode(); 411 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 412 BB = Next; 413 } 414 } 415 416 // Eliminate blocks that contain only PHI nodes and an 417 // unconditional branch. 418 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 419 420 // llvm.dbg.value is far away from the value then iSel may not be able 421 // handle it properly. iSel will drop llvm.dbg.value if it can not 422 // find a node corresponding to the value. 423 EverMadeChange |= placeDbgValues(F); 424 425 if (!DisableBranchOpts) 426 EverMadeChange |= splitBranchCondition(F); 427 428 // Split some critical edges where one of the sources is an indirect branch, 429 // to help generate sane code for PHIs involving such edges. 430 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 431 432 bool MadeChange = true; 433 while (MadeChange) { 434 MadeChange = false; 435 SeenChainsForSExt.clear(); 436 ValToSExtendedUses.clear(); 437 RemovedInsts.clear(); 438 LargeOffsetGEPMap.clear(); 439 LargeOffsetGEPID.clear(); 440 for (Function::iterator I = F.begin(); I != F.end(); ) { 441 BasicBlock *BB = &*I++; 442 bool ModifiedDTOnIteration = false; 443 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 444 445 // Restart BB iteration if the dominator tree of the Function was changed 446 if (ModifiedDTOnIteration) 447 break; 448 } 449 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 450 MadeChange |= mergeSExts(F); 451 if (!LargeOffsetGEPMap.empty()) 452 MadeChange |= splitLargeGEPOffsets(); 453 454 // Really free removed instructions during promotion. 455 for (Instruction *I : RemovedInsts) 456 I->deleteValue(); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 SunkAddrs.clear(); 462 463 if (!DisableBranchOpts) { 464 MadeChange = false; 465 SmallPtrSet<BasicBlock*, 8> WorkList; 466 for (BasicBlock &BB : F) { 467 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 468 MadeChange |= ConstantFoldTerminator(&BB, true); 469 if (!MadeChange) continue; 470 471 for (SmallVectorImpl<BasicBlock*>::iterator 472 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 473 if (pred_begin(*II) == pred_end(*II)) 474 WorkList.insert(*II); 475 } 476 477 // Delete the dead blocks and any of their dead successors. 478 MadeChange |= !WorkList.empty(); 479 while (!WorkList.empty()) { 480 BasicBlock *BB = *WorkList.begin(); 481 WorkList.erase(BB); 482 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 483 484 DeleteDeadBlock(BB); 485 486 for (SmallVectorImpl<BasicBlock*>::iterator 487 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 488 if (pred_begin(*II) == pred_end(*II)) 489 WorkList.insert(*II); 490 } 491 492 // Merge pairs of basic blocks with unconditional branches, connected by 493 // a single edge. 494 if (EverMadeChange || MadeChange) 495 MadeChange |= eliminateFallThrough(F); 496 497 EverMadeChange |= MadeChange; 498 } 499 500 if (!DisableGCOpts) { 501 SmallVector<Instruction *, 2> Statepoints; 502 for (BasicBlock &BB : F) 503 for (Instruction &I : BB) 504 if (isStatepoint(I)) 505 Statepoints.push_back(&I); 506 for (auto &I : Statepoints) 507 EverMadeChange |= simplifyOffsetableRelocate(*I); 508 } 509 510 return EverMadeChange; 511 } 512 513 /// Merge basic blocks which are connected by a single edge, where one of the 514 /// basic blocks has a single successor pointing to the other basic block, 515 /// which has a single predecessor. 516 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 517 bool Changed = false; 518 // Scan all of the blocks in the function, except for the entry block. 519 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 520 BasicBlock *BB = &*I++; 521 // If the destination block has a single pred, then this is a trivial 522 // edge, just collapse it. 523 BasicBlock *SinglePred = BB->getSinglePredecessor(); 524 525 // Don't merge if BB's address is taken. 526 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 527 528 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 529 if (Term && !Term->isConditional()) { 530 Changed = true; 531 LLVM_DEBUG(dbgs() << "To merge:\n" << *SinglePred << "\n\n\n"); 532 // Remember if SinglePred was the entry block of the function. 533 // If so, we will need to move BB back to the entry position. 534 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 535 MergeBasicBlockIntoOnlyPred(BB, nullptr); 536 537 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 538 BB->moveBefore(&BB->getParent()->getEntryBlock()); 539 540 // We have erased a block. Update the iterator. 541 I = BB->getIterator(); 542 } 543 } 544 return Changed; 545 } 546 547 /// Find a destination block from BB if BB is mergeable empty block. 548 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 549 // If this block doesn't end with an uncond branch, ignore it. 550 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 551 if (!BI || !BI->isUnconditional()) 552 return nullptr; 553 554 // If the instruction before the branch (skipping debug info) isn't a phi 555 // node, then other stuff is happening here. 556 BasicBlock::iterator BBI = BI->getIterator(); 557 if (BBI != BB->begin()) { 558 --BBI; 559 while (isa<DbgInfoIntrinsic>(BBI)) { 560 if (BBI == BB->begin()) 561 break; 562 --BBI; 563 } 564 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 565 return nullptr; 566 } 567 568 // Do not break infinite loops. 569 BasicBlock *DestBB = BI->getSuccessor(0); 570 if (DestBB == BB) 571 return nullptr; 572 573 if (!canMergeBlocks(BB, DestBB)) 574 DestBB = nullptr; 575 576 return DestBB; 577 } 578 579 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 580 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 581 /// edges in ways that are non-optimal for isel. Start by eliminating these 582 /// blocks so we can split them the way we want them. 583 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 584 SmallPtrSet<BasicBlock *, 16> Preheaders; 585 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 586 while (!LoopList.empty()) { 587 Loop *L = LoopList.pop_back_val(); 588 LoopList.insert(LoopList.end(), L->begin(), L->end()); 589 if (BasicBlock *Preheader = L->getLoopPreheader()) 590 Preheaders.insert(Preheader); 591 } 592 593 bool MadeChange = false; 594 // Note that this intentionally skips the entry block. 595 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 596 BasicBlock *BB = &*I++; 597 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 598 if (!DestBB || 599 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 600 continue; 601 602 eliminateMostlyEmptyBlock(BB); 603 MadeChange = true; 604 } 605 return MadeChange; 606 } 607 608 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 609 BasicBlock *DestBB, 610 bool isPreheader) { 611 // Do not delete loop preheaders if doing so would create a critical edge. 612 // Loop preheaders can be good locations to spill registers. If the 613 // preheader is deleted and we create a critical edge, registers may be 614 // spilled in the loop body instead. 615 if (!DisablePreheaderProtect && isPreheader && 616 !(BB->getSinglePredecessor() && 617 BB->getSinglePredecessor()->getSingleSuccessor())) 618 return false; 619 620 // Try to skip merging if the unique predecessor of BB is terminated by a 621 // switch or indirect branch instruction, and BB is used as an incoming block 622 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 623 // add COPY instructions in the predecessor of BB instead of BB (if it is not 624 // merged). Note that the critical edge created by merging such blocks wont be 625 // split in MachineSink because the jump table is not analyzable. By keeping 626 // such empty block (BB), ISel will place COPY instructions in BB, not in the 627 // predecessor of BB. 628 BasicBlock *Pred = BB->getUniquePredecessor(); 629 if (!Pred || 630 !(isa<SwitchInst>(Pred->getTerminator()) || 631 isa<IndirectBrInst>(Pred->getTerminator()))) 632 return true; 633 634 if (BB->getTerminator() != BB->getFirstNonPHI()) 635 return true; 636 637 // We use a simple cost heuristic which determine skipping merging is 638 // profitable if the cost of skipping merging is less than the cost of 639 // merging : Cost(skipping merging) < Cost(merging BB), where the 640 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 641 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 642 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 643 // Freq(Pred) / Freq(BB) > 2. 644 // Note that if there are multiple empty blocks sharing the same incoming 645 // value for the PHIs in the DestBB, we consider them together. In such 646 // case, Cost(merging BB) will be the sum of their frequencies. 647 648 if (!isa<PHINode>(DestBB->begin())) 649 return true; 650 651 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 652 653 // Find all other incoming blocks from which incoming values of all PHIs in 654 // DestBB are the same as the ones from BB. 655 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 656 ++PI) { 657 BasicBlock *DestBBPred = *PI; 658 if (DestBBPred == BB) 659 continue; 660 661 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 662 return DestPN.getIncomingValueForBlock(BB) == 663 DestPN.getIncomingValueForBlock(DestBBPred); 664 })) 665 SameIncomingValueBBs.insert(DestBBPred); 666 } 667 668 // See if all BB's incoming values are same as the value from Pred. In this 669 // case, no reason to skip merging because COPYs are expected to be place in 670 // Pred already. 671 if (SameIncomingValueBBs.count(Pred)) 672 return true; 673 674 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 675 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 676 677 for (auto SameValueBB : SameIncomingValueBBs) 678 if (SameValueBB->getUniquePredecessor() == Pred && 679 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 680 BBFreq += BFI->getBlockFreq(SameValueBB); 681 682 return PredFreq.getFrequency() <= 683 BBFreq.getFrequency() * FreqRatioToSkipMerge; 684 } 685 686 /// Return true if we can merge BB into DestBB if there is a single 687 /// unconditional branch between them, and BB contains no other non-phi 688 /// instructions. 689 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 690 const BasicBlock *DestBB) const { 691 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 692 // the successor. If there are more complex condition (e.g. preheaders), 693 // don't mess around with them. 694 for (const PHINode &PN : BB->phis()) { 695 for (const User *U : PN.users()) { 696 const Instruction *UI = cast<Instruction>(U); 697 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 698 return false; 699 // If User is inside DestBB block and it is a PHINode then check 700 // incoming value. If incoming value is not from BB then this is 701 // a complex condition (e.g. preheaders) we want to avoid here. 702 if (UI->getParent() == DestBB) { 703 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 704 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 705 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 706 if (Insn && Insn->getParent() == BB && 707 Insn->getParent() != UPN->getIncomingBlock(I)) 708 return false; 709 } 710 } 711 } 712 } 713 714 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 715 // and DestBB may have conflicting incoming values for the block. If so, we 716 // can't merge the block. 717 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 718 if (!DestBBPN) return true; // no conflict. 719 720 // Collect the preds of BB. 721 SmallPtrSet<const BasicBlock*, 16> BBPreds; 722 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 723 // It is faster to get preds from a PHI than with pred_iterator. 724 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 725 BBPreds.insert(BBPN->getIncomingBlock(i)); 726 } else { 727 BBPreds.insert(pred_begin(BB), pred_end(BB)); 728 } 729 730 // Walk the preds of DestBB. 731 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 732 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 733 if (BBPreds.count(Pred)) { // Common predecessor? 734 for (const PHINode &PN : DestBB->phis()) { 735 const Value *V1 = PN.getIncomingValueForBlock(Pred); 736 const Value *V2 = PN.getIncomingValueForBlock(BB); 737 738 // If V2 is a phi node in BB, look up what the mapped value will be. 739 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 740 if (V2PN->getParent() == BB) 741 V2 = V2PN->getIncomingValueForBlock(Pred); 742 743 // If there is a conflict, bail out. 744 if (V1 != V2) return false; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /// Eliminate a basic block that has only phi's and an unconditional branch in 753 /// it. 754 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 755 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 756 BasicBlock *DestBB = BI->getSuccessor(0); 757 758 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 759 << *BB << *DestBB); 760 761 // If the destination block has a single pred, then this is a trivial edge, 762 // just collapse it. 763 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 764 if (SinglePred != DestBB) { 765 // Remember if SinglePred was the entry block of the function. If so, we 766 // will need to move BB back to the entry position. 767 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 768 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 769 770 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 771 BB->moveBefore(&BB->getParent()->getEntryBlock()); 772 773 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 774 return; 775 } 776 } 777 778 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 779 // to handle the new incoming edges it is about to have. 780 for (PHINode &PN : DestBB->phis()) { 781 // Remove the incoming value for BB, and remember it. 782 Value *InVal = PN.removeIncomingValue(BB, false); 783 784 // Two options: either the InVal is a phi node defined in BB or it is some 785 // value that dominates BB. 786 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 787 if (InValPhi && InValPhi->getParent() == BB) { 788 // Add all of the input values of the input PHI as inputs of this phi. 789 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 790 PN.addIncoming(InValPhi->getIncomingValue(i), 791 InValPhi->getIncomingBlock(i)); 792 } else { 793 // Otherwise, add one instance of the dominating value for each edge that 794 // we will be adding. 795 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 796 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 797 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 798 } else { 799 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 800 PN.addIncoming(InVal, *PI); 801 } 802 } 803 } 804 805 // The PHIs are now updated, change everything that refers to BB to use 806 // DestBB and remove BB. 807 BB->replaceAllUsesWith(DestBB); 808 BB->eraseFromParent(); 809 ++NumBlocksElim; 810 811 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 812 } 813 814 // Computes a map of base pointer relocation instructions to corresponding 815 // derived pointer relocation instructions given a vector of all relocate calls 816 static void computeBaseDerivedRelocateMap( 817 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 818 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 819 &RelocateInstMap) { 820 // Collect information in two maps: one primarily for locating the base object 821 // while filling the second map; the second map is the final structure holding 822 // a mapping between Base and corresponding Derived relocate calls 823 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 824 for (auto *ThisRelocate : AllRelocateCalls) { 825 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 826 ThisRelocate->getDerivedPtrIndex()); 827 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 828 } 829 for (auto &Item : RelocateIdxMap) { 830 std::pair<unsigned, unsigned> Key = Item.first; 831 if (Key.first == Key.second) 832 // Base relocation: nothing to insert 833 continue; 834 835 GCRelocateInst *I = Item.second; 836 auto BaseKey = std::make_pair(Key.first, Key.first); 837 838 // We're iterating over RelocateIdxMap so we cannot modify it. 839 auto MaybeBase = RelocateIdxMap.find(BaseKey); 840 if (MaybeBase == RelocateIdxMap.end()) 841 // TODO: We might want to insert a new base object relocate and gep off 842 // that, if there are enough derived object relocates. 843 continue; 844 845 RelocateInstMap[MaybeBase->second].push_back(I); 846 } 847 } 848 849 // Accepts a GEP and extracts the operands into a vector provided they're all 850 // small integer constants 851 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 852 SmallVectorImpl<Value *> &OffsetV) { 853 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 854 // Only accept small constant integer operands 855 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 856 if (!Op || Op->getZExtValue() > 20) 857 return false; 858 } 859 860 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 861 OffsetV.push_back(GEP->getOperand(i)); 862 return true; 863 } 864 865 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 866 // replace, computes a replacement, and affects it. 867 static bool 868 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 869 const SmallVectorImpl<GCRelocateInst *> &Targets) { 870 bool MadeChange = false; 871 // We must ensure the relocation of derived pointer is defined after 872 // relocation of base pointer. If we find a relocation corresponding to base 873 // defined earlier than relocation of base then we move relocation of base 874 // right before found relocation. We consider only relocation in the same 875 // basic block as relocation of base. Relocations from other basic block will 876 // be skipped by optimization and we do not care about them. 877 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 878 &*R != RelocatedBase; ++R) 879 if (auto RI = dyn_cast<GCRelocateInst>(R)) 880 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 881 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 882 RelocatedBase->moveBefore(RI); 883 break; 884 } 885 886 for (GCRelocateInst *ToReplace : Targets) { 887 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 888 "Not relocating a derived object of the original base object"); 889 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 890 // A duplicate relocate call. TODO: coalesce duplicates. 891 continue; 892 } 893 894 if (RelocatedBase->getParent() != ToReplace->getParent()) { 895 // Base and derived relocates are in different basic blocks. 896 // In this case transform is only valid when base dominates derived 897 // relocate. However it would be too expensive to check dominance 898 // for each such relocate, so we skip the whole transformation. 899 continue; 900 } 901 902 Value *Base = ToReplace->getBasePtr(); 903 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 904 if (!Derived || Derived->getPointerOperand() != Base) 905 continue; 906 907 SmallVector<Value *, 2> OffsetV; 908 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 909 continue; 910 911 // Create a Builder and replace the target callsite with a gep 912 assert(RelocatedBase->getNextNode() && 913 "Should always have one since it's not a terminator"); 914 915 // Insert after RelocatedBase 916 IRBuilder<> Builder(RelocatedBase->getNextNode()); 917 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 918 919 // If gc_relocate does not match the actual type, cast it to the right type. 920 // In theory, there must be a bitcast after gc_relocate if the type does not 921 // match, and we should reuse it to get the derived pointer. But it could be 922 // cases like this: 923 // bb1: 924 // ... 925 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 926 // br label %merge 927 // 928 // bb2: 929 // ... 930 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 931 // br label %merge 932 // 933 // merge: 934 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 935 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 936 // 937 // In this case, we can not find the bitcast any more. So we insert a new bitcast 938 // no matter there is already one or not. In this way, we can handle all cases, and 939 // the extra bitcast should be optimized away in later passes. 940 Value *ActualRelocatedBase = RelocatedBase; 941 if (RelocatedBase->getType() != Base->getType()) { 942 ActualRelocatedBase = 943 Builder.CreateBitCast(RelocatedBase, Base->getType()); 944 } 945 Value *Replacement = Builder.CreateGEP( 946 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 947 Replacement->takeName(ToReplace); 948 // If the newly generated derived pointer's type does not match the original derived 949 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 950 Value *ActualReplacement = Replacement; 951 if (Replacement->getType() != ToReplace->getType()) { 952 ActualReplacement = 953 Builder.CreateBitCast(Replacement, ToReplace->getType()); 954 } 955 ToReplace->replaceAllUsesWith(ActualReplacement); 956 ToReplace->eraseFromParent(); 957 958 MadeChange = true; 959 } 960 return MadeChange; 961 } 962 963 // Turns this: 964 // 965 // %base = ... 966 // %ptr = gep %base + 15 967 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 968 // %base' = relocate(%tok, i32 4, i32 4) 969 // %ptr' = relocate(%tok, i32 4, i32 5) 970 // %val = load %ptr' 971 // 972 // into this: 973 // 974 // %base = ... 975 // %ptr = gep %base + 15 976 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 977 // %base' = gc.relocate(%tok, i32 4, i32 4) 978 // %ptr' = gep %base' + 15 979 // %val = load %ptr' 980 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 981 bool MadeChange = false; 982 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 983 984 for (auto *U : I.users()) 985 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 986 // Collect all the relocate calls associated with a statepoint 987 AllRelocateCalls.push_back(Relocate); 988 989 // We need atleast one base pointer relocation + one derived pointer 990 // relocation to mangle 991 if (AllRelocateCalls.size() < 2) 992 return false; 993 994 // RelocateInstMap is a mapping from the base relocate instruction to the 995 // corresponding derived relocate instructions 996 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 997 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 998 if (RelocateInstMap.empty()) 999 return false; 1000 1001 for (auto &Item : RelocateInstMap) 1002 // Item.first is the RelocatedBase to offset against 1003 // Item.second is the vector of Targets to replace 1004 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1005 return MadeChange; 1006 } 1007 1008 /// SinkCast - Sink the specified cast instruction into its user blocks 1009 static bool SinkCast(CastInst *CI) { 1010 BasicBlock *DefBB = CI->getParent(); 1011 1012 /// InsertedCasts - Only insert a cast in each block once. 1013 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1014 1015 bool MadeChange = false; 1016 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1017 UI != E; ) { 1018 Use &TheUse = UI.getUse(); 1019 Instruction *User = cast<Instruction>(*UI); 1020 1021 // Figure out which BB this cast is used in. For PHI's this is the 1022 // appropriate predecessor block. 1023 BasicBlock *UserBB = User->getParent(); 1024 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1025 UserBB = PN->getIncomingBlock(TheUse); 1026 } 1027 1028 // Preincrement use iterator so we don't invalidate it. 1029 ++UI; 1030 1031 // The first insertion point of a block containing an EH pad is after the 1032 // pad. If the pad is the user, we cannot sink the cast past the pad. 1033 if (User->isEHPad()) 1034 continue; 1035 1036 // If the block selected to receive the cast is an EH pad that does not 1037 // allow non-PHI instructions before the terminator, we can't sink the 1038 // cast. 1039 if (UserBB->getTerminator()->isEHPad()) 1040 continue; 1041 1042 // If this user is in the same block as the cast, don't change the cast. 1043 if (UserBB == DefBB) continue; 1044 1045 // If we have already inserted a cast into this block, use it. 1046 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1047 1048 if (!InsertedCast) { 1049 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1050 assert(InsertPt != UserBB->end()); 1051 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1052 CI->getType(), "", &*InsertPt); 1053 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1054 } 1055 1056 // Replace a use of the cast with a use of the new cast. 1057 TheUse = InsertedCast; 1058 MadeChange = true; 1059 ++NumCastUses; 1060 } 1061 1062 // If we removed all uses, nuke the cast. 1063 if (CI->use_empty()) { 1064 salvageDebugInfo(*CI); 1065 CI->eraseFromParent(); 1066 MadeChange = true; 1067 } 1068 1069 return MadeChange; 1070 } 1071 1072 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1073 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1074 /// reduce the number of virtual registers that must be created and coalesced. 1075 /// 1076 /// Return true if any changes are made. 1077 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1078 const DataLayout &DL) { 1079 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1080 // than sinking only nop casts, but is helpful on some platforms. 1081 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1082 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1083 ASC->getDestAddressSpace())) 1084 return false; 1085 } 1086 1087 // If this is a noop copy, 1088 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1089 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1090 1091 // This is an fp<->int conversion? 1092 if (SrcVT.isInteger() != DstVT.isInteger()) 1093 return false; 1094 1095 // If this is an extension, it will be a zero or sign extension, which 1096 // isn't a noop. 1097 if (SrcVT.bitsLT(DstVT)) return false; 1098 1099 // If these values will be promoted, find out what they will be promoted 1100 // to. This helps us consider truncates on PPC as noop copies when they 1101 // are. 1102 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1103 TargetLowering::TypePromoteInteger) 1104 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1105 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1106 TargetLowering::TypePromoteInteger) 1107 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1108 1109 // If, after promotion, these are the same types, this is a noop copy. 1110 if (SrcVT != DstVT) 1111 return false; 1112 1113 return SinkCast(CI); 1114 } 1115 1116 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1117 /// possible. 1118 /// 1119 /// Return true if any changes were made. 1120 static bool CombineUAddWithOverflow(CmpInst *CI) { 1121 Value *A, *B; 1122 Instruction *AddI; 1123 if (!match(CI, 1124 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1125 return false; 1126 1127 Type *Ty = AddI->getType(); 1128 if (!isa<IntegerType>(Ty)) 1129 return false; 1130 1131 // We don't want to move around uses of condition values this late, so we we 1132 // check if it is legal to create the call to the intrinsic in the basic 1133 // block containing the icmp: 1134 1135 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1136 return false; 1137 1138 #ifndef NDEBUG 1139 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1140 // for now: 1141 if (AddI->hasOneUse()) 1142 assert(*AddI->user_begin() == CI && "expected!"); 1143 #endif 1144 1145 Module *M = CI->getModule(); 1146 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1147 1148 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1149 1150 auto *UAddWithOverflow = 1151 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1152 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1153 auto *Overflow = 1154 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1155 1156 CI->replaceAllUsesWith(Overflow); 1157 AddI->replaceAllUsesWith(UAdd); 1158 CI->eraseFromParent(); 1159 AddI->eraseFromParent(); 1160 return true; 1161 } 1162 1163 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1164 /// registers that must be created and coalesced. This is a clear win except on 1165 /// targets with multiple condition code registers (PowerPC), where it might 1166 /// lose; some adjustment may be wanted there. 1167 /// 1168 /// Return true if any changes are made. 1169 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1170 BasicBlock *DefBB = CI->getParent(); 1171 1172 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1173 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1174 return false; 1175 1176 // Only insert a cmp in each block once. 1177 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1178 1179 bool MadeChange = false; 1180 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1181 UI != E; ) { 1182 Use &TheUse = UI.getUse(); 1183 Instruction *User = cast<Instruction>(*UI); 1184 1185 // Preincrement use iterator so we don't invalidate it. 1186 ++UI; 1187 1188 // Don't bother for PHI nodes. 1189 if (isa<PHINode>(User)) 1190 continue; 1191 1192 // Figure out which BB this cmp is used in. 1193 BasicBlock *UserBB = User->getParent(); 1194 1195 // If this user is in the same block as the cmp, don't change the cmp. 1196 if (UserBB == DefBB) continue; 1197 1198 // If we have already inserted a cmp into this block, use it. 1199 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1200 1201 if (!InsertedCmp) { 1202 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1203 assert(InsertPt != UserBB->end()); 1204 InsertedCmp = 1205 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1206 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1207 // Propagate the debug info. 1208 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1209 } 1210 1211 // Replace a use of the cmp with a use of the new cmp. 1212 TheUse = InsertedCmp; 1213 MadeChange = true; 1214 ++NumCmpUses; 1215 } 1216 1217 // If we removed all uses, nuke the cmp. 1218 if (CI->use_empty()) { 1219 CI->eraseFromParent(); 1220 MadeChange = true; 1221 } 1222 1223 return MadeChange; 1224 } 1225 1226 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1227 if (SinkCmpExpression(CI, TLI)) 1228 return true; 1229 1230 if (CombineUAddWithOverflow(CI)) 1231 return true; 1232 1233 return false; 1234 } 1235 1236 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1237 /// used in a compare to allow isel to generate better code for targets where 1238 /// this operation can be combined. 1239 /// 1240 /// Return true if any changes are made. 1241 static bool sinkAndCmp0Expression(Instruction *AndI, 1242 const TargetLowering &TLI, 1243 SetOfInstrs &InsertedInsts) { 1244 // Double-check that we're not trying to optimize an instruction that was 1245 // already optimized by some other part of this pass. 1246 assert(!InsertedInsts.count(AndI) && 1247 "Attempting to optimize already optimized and instruction"); 1248 (void) InsertedInsts; 1249 1250 // Nothing to do for single use in same basic block. 1251 if (AndI->hasOneUse() && 1252 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1253 return false; 1254 1255 // Try to avoid cases where sinking/duplicating is likely to increase register 1256 // pressure. 1257 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1258 !isa<ConstantInt>(AndI->getOperand(1)) && 1259 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1260 return false; 1261 1262 for (auto *U : AndI->users()) { 1263 Instruction *User = cast<Instruction>(U); 1264 1265 // Only sink for and mask feeding icmp with 0. 1266 if (!isa<ICmpInst>(User)) 1267 return false; 1268 1269 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1270 if (!CmpC || !CmpC->isZero()) 1271 return false; 1272 } 1273 1274 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1275 return false; 1276 1277 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1278 LLVM_DEBUG(AndI->getParent()->dump()); 1279 1280 // Push the 'and' into the same block as the icmp 0. There should only be 1281 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1282 // others, so we don't need to keep track of which BBs we insert into. 1283 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1284 UI != E; ) { 1285 Use &TheUse = UI.getUse(); 1286 Instruction *User = cast<Instruction>(*UI); 1287 1288 // Preincrement use iterator so we don't invalidate it. 1289 ++UI; 1290 1291 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1292 1293 // Keep the 'and' in the same place if the use is already in the same block. 1294 Instruction *InsertPt = 1295 User->getParent() == AndI->getParent() ? AndI : User; 1296 Instruction *InsertedAnd = 1297 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1298 AndI->getOperand(1), "", InsertPt); 1299 // Propagate the debug info. 1300 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1301 1302 // Replace a use of the 'and' with a use of the new 'and'. 1303 TheUse = InsertedAnd; 1304 ++NumAndUses; 1305 LLVM_DEBUG(User->getParent()->dump()); 1306 } 1307 1308 // We removed all uses, nuke the and. 1309 AndI->eraseFromParent(); 1310 return true; 1311 } 1312 1313 /// Check if the candidates could be combined with a shift instruction, which 1314 /// includes: 1315 /// 1. Truncate instruction 1316 /// 2. And instruction and the imm is a mask of the low bits: 1317 /// imm & (imm+1) == 0 1318 static bool isExtractBitsCandidateUse(Instruction *User) { 1319 if (!isa<TruncInst>(User)) { 1320 if (User->getOpcode() != Instruction::And || 1321 !isa<ConstantInt>(User->getOperand(1))) 1322 return false; 1323 1324 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1325 1326 if ((Cimm & (Cimm + 1)).getBoolValue()) 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 /// Sink both shift and truncate instruction to the use of truncate's BB. 1333 static bool 1334 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1335 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1336 const TargetLowering &TLI, const DataLayout &DL) { 1337 BasicBlock *UserBB = User->getParent(); 1338 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1339 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1340 bool MadeChange = false; 1341 1342 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1343 TruncE = TruncI->user_end(); 1344 TruncUI != TruncE;) { 1345 1346 Use &TruncTheUse = TruncUI.getUse(); 1347 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1348 // Preincrement use iterator so we don't invalidate it. 1349 1350 ++TruncUI; 1351 1352 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1353 if (!ISDOpcode) 1354 continue; 1355 1356 // If the use is actually a legal node, there will not be an 1357 // implicit truncate. 1358 // FIXME: always querying the result type is just an 1359 // approximation; some nodes' legality is determined by the 1360 // operand or other means. There's no good way to find out though. 1361 if (TLI.isOperationLegalOrCustom( 1362 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1363 continue; 1364 1365 // Don't bother for PHI nodes. 1366 if (isa<PHINode>(TruncUser)) 1367 continue; 1368 1369 BasicBlock *TruncUserBB = TruncUser->getParent(); 1370 1371 if (UserBB == TruncUserBB) 1372 continue; 1373 1374 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1375 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1376 1377 if (!InsertedShift && !InsertedTrunc) { 1378 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1379 assert(InsertPt != TruncUserBB->end()); 1380 // Sink the shift 1381 if (ShiftI->getOpcode() == Instruction::AShr) 1382 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1383 "", &*InsertPt); 1384 else 1385 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1386 "", &*InsertPt); 1387 1388 // Sink the trunc 1389 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1390 TruncInsertPt++; 1391 assert(TruncInsertPt != TruncUserBB->end()); 1392 1393 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1394 TruncI->getType(), "", &*TruncInsertPt); 1395 1396 MadeChange = true; 1397 1398 TruncTheUse = InsertedTrunc; 1399 } 1400 } 1401 return MadeChange; 1402 } 1403 1404 /// Sink the shift *right* instruction into user blocks if the uses could 1405 /// potentially be combined with this shift instruction and generate BitExtract 1406 /// instruction. It will only be applied if the architecture supports BitExtract 1407 /// instruction. Here is an example: 1408 /// BB1: 1409 /// %x.extract.shift = lshr i64 %arg1, 32 1410 /// BB2: 1411 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1412 /// ==> 1413 /// 1414 /// BB2: 1415 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1416 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1417 /// 1418 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1419 /// instruction. 1420 /// Return true if any changes are made. 1421 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1422 const TargetLowering &TLI, 1423 const DataLayout &DL) { 1424 BasicBlock *DefBB = ShiftI->getParent(); 1425 1426 /// Only insert instructions in each block once. 1427 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1428 1429 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1430 1431 bool MadeChange = false; 1432 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1433 UI != E;) { 1434 Use &TheUse = UI.getUse(); 1435 Instruction *User = cast<Instruction>(*UI); 1436 // Preincrement use iterator so we don't invalidate it. 1437 ++UI; 1438 1439 // Don't bother for PHI nodes. 1440 if (isa<PHINode>(User)) 1441 continue; 1442 1443 if (!isExtractBitsCandidateUse(User)) 1444 continue; 1445 1446 BasicBlock *UserBB = User->getParent(); 1447 1448 if (UserBB == DefBB) { 1449 // If the shift and truncate instruction are in the same BB. The use of 1450 // the truncate(TruncUse) may still introduce another truncate if not 1451 // legal. In this case, we would like to sink both shift and truncate 1452 // instruction to the BB of TruncUse. 1453 // for example: 1454 // BB1: 1455 // i64 shift.result = lshr i64 opnd, imm 1456 // trunc.result = trunc shift.result to i16 1457 // 1458 // BB2: 1459 // ----> We will have an implicit truncate here if the architecture does 1460 // not have i16 compare. 1461 // cmp i16 trunc.result, opnd2 1462 // 1463 if (isa<TruncInst>(User) && shiftIsLegal 1464 // If the type of the truncate is legal, no trucate will be 1465 // introduced in other basic blocks. 1466 && 1467 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1468 MadeChange = 1469 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1470 1471 continue; 1472 } 1473 // If we have already inserted a shift into this block, use it. 1474 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1475 1476 if (!InsertedShift) { 1477 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1478 assert(InsertPt != UserBB->end()); 1479 1480 if (ShiftI->getOpcode() == Instruction::AShr) 1481 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1482 "", &*InsertPt); 1483 else 1484 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1485 "", &*InsertPt); 1486 1487 MadeChange = true; 1488 } 1489 1490 // Replace a use of the shift with a use of the new shift. 1491 TheUse = InsertedShift; 1492 } 1493 1494 // If we removed all uses, nuke the shift. 1495 if (ShiftI->use_empty()) 1496 ShiftI->eraseFromParent(); 1497 1498 return MadeChange; 1499 } 1500 1501 /// If counting leading or trailing zeros is an expensive operation and a zero 1502 /// input is defined, add a check for zero to avoid calling the intrinsic. 1503 /// 1504 /// We want to transform: 1505 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1506 /// 1507 /// into: 1508 /// entry: 1509 /// %cmpz = icmp eq i64 %A, 0 1510 /// br i1 %cmpz, label %cond.end, label %cond.false 1511 /// cond.false: 1512 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1513 /// br label %cond.end 1514 /// cond.end: 1515 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1516 /// 1517 /// If the transform is performed, return true and set ModifiedDT to true. 1518 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1519 const TargetLowering *TLI, 1520 const DataLayout *DL, 1521 bool &ModifiedDT) { 1522 if (!TLI || !DL) 1523 return false; 1524 1525 // If a zero input is undefined, it doesn't make sense to despeculate that. 1526 if (match(CountZeros->getOperand(1), m_One())) 1527 return false; 1528 1529 // If it's cheap to speculate, there's nothing to do. 1530 auto IntrinsicID = CountZeros->getIntrinsicID(); 1531 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1532 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1533 return false; 1534 1535 // Only handle legal scalar cases. Anything else requires too much work. 1536 Type *Ty = CountZeros->getType(); 1537 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1538 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1539 return false; 1540 1541 // The intrinsic will be sunk behind a compare against zero and branch. 1542 BasicBlock *StartBlock = CountZeros->getParent(); 1543 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1544 1545 // Create another block after the count zero intrinsic. A PHI will be added 1546 // in this block to select the result of the intrinsic or the bit-width 1547 // constant if the input to the intrinsic is zero. 1548 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1549 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1550 1551 // Set up a builder to create a compare, conditional branch, and PHI. 1552 IRBuilder<> Builder(CountZeros->getContext()); 1553 Builder.SetInsertPoint(StartBlock->getTerminator()); 1554 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1555 1556 // Replace the unconditional branch that was created by the first split with 1557 // a compare against zero and a conditional branch. 1558 Value *Zero = Constant::getNullValue(Ty); 1559 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1560 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1561 StartBlock->getTerminator()->eraseFromParent(); 1562 1563 // Create a PHI in the end block to select either the output of the intrinsic 1564 // or the bit width of the operand. 1565 Builder.SetInsertPoint(&EndBlock->front()); 1566 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1567 CountZeros->replaceAllUsesWith(PN); 1568 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1569 PN->addIncoming(BitWidth, StartBlock); 1570 PN->addIncoming(CountZeros, CallBlock); 1571 1572 // We are explicitly handling the zero case, so we can set the intrinsic's 1573 // undefined zero argument to 'true'. This will also prevent reprocessing the 1574 // intrinsic; we only despeculate when a zero input is defined. 1575 CountZeros->setArgOperand(1, Builder.getTrue()); 1576 ModifiedDT = true; 1577 return true; 1578 } 1579 1580 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1581 BasicBlock *BB = CI->getParent(); 1582 1583 // Lower inline assembly if we can. 1584 // If we found an inline asm expession, and if the target knows how to 1585 // lower it to normal LLVM code, do so now. 1586 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1587 if (TLI->ExpandInlineAsm(CI)) { 1588 // Avoid invalidating the iterator. 1589 CurInstIterator = BB->begin(); 1590 // Avoid processing instructions out of order, which could cause 1591 // reuse before a value is defined. 1592 SunkAddrs.clear(); 1593 return true; 1594 } 1595 // Sink address computing for memory operands into the block. 1596 if (optimizeInlineAsmInst(CI)) 1597 return true; 1598 } 1599 1600 // Align the pointer arguments to this call if the target thinks it's a good 1601 // idea 1602 unsigned MinSize, PrefAlign; 1603 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1604 for (auto &Arg : CI->arg_operands()) { 1605 // We want to align both objects whose address is used directly and 1606 // objects whose address is used in casts and GEPs, though it only makes 1607 // sense for GEPs if the offset is a multiple of the desired alignment and 1608 // if size - offset meets the size threshold. 1609 if (!Arg->getType()->isPointerTy()) 1610 continue; 1611 APInt Offset(DL->getIndexSizeInBits( 1612 cast<PointerType>(Arg->getType())->getAddressSpace()), 1613 0); 1614 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1615 uint64_t Offset2 = Offset.getLimitedValue(); 1616 if ((Offset2 & (PrefAlign-1)) != 0) 1617 continue; 1618 AllocaInst *AI; 1619 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1620 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1621 AI->setAlignment(PrefAlign); 1622 // Global variables can only be aligned if they are defined in this 1623 // object (i.e. they are uniquely initialized in this object), and 1624 // over-aligning global variables that have an explicit section is 1625 // forbidden. 1626 GlobalVariable *GV; 1627 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1628 GV->getPointerAlignment(*DL) < PrefAlign && 1629 DL->getTypeAllocSize(GV->getValueType()) >= 1630 MinSize + Offset2) 1631 GV->setAlignment(PrefAlign); 1632 } 1633 // If this is a memcpy (or similar) then we may be able to improve the 1634 // alignment 1635 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1636 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1637 if (DestAlign > MI->getDestAlignment()) 1638 MI->setDestAlignment(DestAlign); 1639 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1640 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1641 if (SrcAlign > MTI->getSourceAlignment()) 1642 MTI->setSourceAlignment(SrcAlign); 1643 } 1644 } 1645 } 1646 1647 // If we have a cold call site, try to sink addressing computation into the 1648 // cold block. This interacts with our handling for loads and stores to 1649 // ensure that we can fold all uses of a potential addressing computation 1650 // into their uses. TODO: generalize this to work over profiling data 1651 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1652 for (auto &Arg : CI->arg_operands()) { 1653 if (!Arg->getType()->isPointerTy()) 1654 continue; 1655 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1656 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1657 } 1658 1659 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1660 if (II) { 1661 switch (II->getIntrinsicID()) { 1662 default: break; 1663 case Intrinsic::objectsize: { 1664 // Lower all uses of llvm.objectsize.* 1665 ConstantInt *RetVal = 1666 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1667 // Substituting this can cause recursive simplifications, which can 1668 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1669 // this 1670 // happens. 1671 Value *CurValue = &*CurInstIterator; 1672 WeakTrackingVH IterHandle(CurValue); 1673 1674 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1675 1676 // If the iterator instruction was recursively deleted, start over at the 1677 // start of the block. 1678 if (IterHandle != CurValue) { 1679 CurInstIterator = BB->begin(); 1680 SunkAddrs.clear(); 1681 } 1682 return true; 1683 } 1684 case Intrinsic::aarch64_stlxr: 1685 case Intrinsic::aarch64_stxr: { 1686 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1687 if (!ExtVal || !ExtVal->hasOneUse() || 1688 ExtVal->getParent() == CI->getParent()) 1689 return false; 1690 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1691 ExtVal->moveBefore(CI); 1692 // Mark this instruction as "inserted by CGP", so that other 1693 // optimizations don't touch it. 1694 InsertedInsts.insert(ExtVal); 1695 return true; 1696 } 1697 case Intrinsic::launder_invariant_group: 1698 II->replaceAllUsesWith(II->getArgOperand(0)); 1699 II->eraseFromParent(); 1700 return true; 1701 1702 case Intrinsic::cttz: 1703 case Intrinsic::ctlz: 1704 // If counting zeros is expensive, try to avoid it. 1705 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1706 } 1707 1708 if (TLI) { 1709 SmallVector<Value*, 2> PtrOps; 1710 Type *AccessTy; 1711 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1712 while (!PtrOps.empty()) { 1713 Value *PtrVal = PtrOps.pop_back_val(); 1714 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1715 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1716 return true; 1717 } 1718 } 1719 } 1720 1721 // From here on out we're working with named functions. 1722 if (!CI->getCalledFunction()) return false; 1723 1724 // Lower all default uses of _chk calls. This is very similar 1725 // to what InstCombineCalls does, but here we are only lowering calls 1726 // to fortified library functions (e.g. __memcpy_chk) that have the default 1727 // "don't know" as the objectsize. Anything else should be left alone. 1728 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1729 if (Value *V = Simplifier.optimizeCall(CI)) { 1730 CI->replaceAllUsesWith(V); 1731 CI->eraseFromParent(); 1732 return true; 1733 } 1734 1735 return false; 1736 } 1737 1738 /// Look for opportunities to duplicate return instructions to the predecessor 1739 /// to enable tail call optimizations. The case it is currently looking for is: 1740 /// @code 1741 /// bb0: 1742 /// %tmp0 = tail call i32 @f0() 1743 /// br label %return 1744 /// bb1: 1745 /// %tmp1 = tail call i32 @f1() 1746 /// br label %return 1747 /// bb2: 1748 /// %tmp2 = tail call i32 @f2() 1749 /// br label %return 1750 /// return: 1751 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1752 /// ret i32 %retval 1753 /// @endcode 1754 /// 1755 /// => 1756 /// 1757 /// @code 1758 /// bb0: 1759 /// %tmp0 = tail call i32 @f0() 1760 /// ret i32 %tmp0 1761 /// bb1: 1762 /// %tmp1 = tail call i32 @f1() 1763 /// ret i32 %tmp1 1764 /// bb2: 1765 /// %tmp2 = tail call i32 @f2() 1766 /// ret i32 %tmp2 1767 /// @endcode 1768 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1769 if (!TLI) 1770 return false; 1771 1772 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1773 if (!RetI) 1774 return false; 1775 1776 PHINode *PN = nullptr; 1777 BitCastInst *BCI = nullptr; 1778 Value *V = RetI->getReturnValue(); 1779 if (V) { 1780 BCI = dyn_cast<BitCastInst>(V); 1781 if (BCI) 1782 V = BCI->getOperand(0); 1783 1784 PN = dyn_cast<PHINode>(V); 1785 if (!PN) 1786 return false; 1787 } 1788 1789 if (PN && PN->getParent() != BB) 1790 return false; 1791 1792 // Make sure there are no instructions between the PHI and return, or that the 1793 // return is the first instruction in the block. 1794 if (PN) { 1795 BasicBlock::iterator BI = BB->begin(); 1796 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1797 if (&*BI == BCI) 1798 // Also skip over the bitcast. 1799 ++BI; 1800 if (&*BI != RetI) 1801 return false; 1802 } else { 1803 BasicBlock::iterator BI = BB->begin(); 1804 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1805 if (&*BI != RetI) 1806 return false; 1807 } 1808 1809 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1810 /// call. 1811 const Function *F = BB->getParent(); 1812 SmallVector<CallInst*, 4> TailCalls; 1813 if (PN) { 1814 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1815 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1816 // Make sure the phi value is indeed produced by the tail call. 1817 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1818 TLI->mayBeEmittedAsTailCall(CI) && 1819 attributesPermitTailCall(F, CI, RetI, *TLI)) 1820 TailCalls.push_back(CI); 1821 } 1822 } else { 1823 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1824 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1825 if (!VisitedBBs.insert(*PI).second) 1826 continue; 1827 1828 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1829 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1830 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1831 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1832 if (RI == RE) 1833 continue; 1834 1835 CallInst *CI = dyn_cast<CallInst>(&*RI); 1836 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1837 attributesPermitTailCall(F, CI, RetI, *TLI)) 1838 TailCalls.push_back(CI); 1839 } 1840 } 1841 1842 bool Changed = false; 1843 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1844 CallInst *CI = TailCalls[i]; 1845 CallSite CS(CI); 1846 1847 // Conservatively require the attributes of the call to match those of the 1848 // return. Ignore noalias because it doesn't affect the call sequence. 1849 AttributeList CalleeAttrs = CS.getAttributes(); 1850 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1851 .removeAttribute(Attribute::NoAlias) != 1852 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1853 .removeAttribute(Attribute::NoAlias)) 1854 continue; 1855 1856 // Make sure the call instruction is followed by an unconditional branch to 1857 // the return block. 1858 BasicBlock *CallBB = CI->getParent(); 1859 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1860 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1861 continue; 1862 1863 // Duplicate the return into CallBB. 1864 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1865 ModifiedDT = Changed = true; 1866 ++NumRetsDup; 1867 } 1868 1869 // If we eliminated all predecessors of the block, delete the block now. 1870 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1871 BB->eraseFromParent(); 1872 1873 return Changed; 1874 } 1875 1876 //===----------------------------------------------------------------------===// 1877 // Memory Optimization 1878 //===----------------------------------------------------------------------===// 1879 1880 namespace { 1881 1882 /// This is an extended version of TargetLowering::AddrMode 1883 /// which holds actual Value*'s for register values. 1884 struct ExtAddrMode : public TargetLowering::AddrMode { 1885 Value *BaseReg = nullptr; 1886 Value *ScaledReg = nullptr; 1887 Value *OriginalValue = nullptr; 1888 1889 enum FieldName { 1890 NoField = 0x00, 1891 BaseRegField = 0x01, 1892 BaseGVField = 0x02, 1893 BaseOffsField = 0x04, 1894 ScaledRegField = 0x08, 1895 ScaleField = 0x10, 1896 MultipleFields = 0xff 1897 }; 1898 1899 ExtAddrMode() = default; 1900 1901 void print(raw_ostream &OS) const; 1902 void dump() const; 1903 1904 FieldName compare(const ExtAddrMode &other) { 1905 // First check that the types are the same on each field, as differing types 1906 // is something we can't cope with later on. 1907 if (BaseReg && other.BaseReg && 1908 BaseReg->getType() != other.BaseReg->getType()) 1909 return MultipleFields; 1910 if (BaseGV && other.BaseGV && 1911 BaseGV->getType() != other.BaseGV->getType()) 1912 return MultipleFields; 1913 if (ScaledReg && other.ScaledReg && 1914 ScaledReg->getType() != other.ScaledReg->getType()) 1915 return MultipleFields; 1916 1917 // Check each field to see if it differs. 1918 unsigned Result = NoField; 1919 if (BaseReg != other.BaseReg) 1920 Result |= BaseRegField; 1921 if (BaseGV != other.BaseGV) 1922 Result |= BaseGVField; 1923 if (BaseOffs != other.BaseOffs) 1924 Result |= BaseOffsField; 1925 if (ScaledReg != other.ScaledReg) 1926 Result |= ScaledRegField; 1927 // Don't count 0 as being a different scale, because that actually means 1928 // unscaled (which will already be counted by having no ScaledReg). 1929 if (Scale && other.Scale && Scale != other.Scale) 1930 Result |= ScaleField; 1931 1932 if (countPopulation(Result) > 1) 1933 return MultipleFields; 1934 else 1935 return static_cast<FieldName>(Result); 1936 } 1937 1938 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1939 // with no offset. 1940 bool isTrivial() { 1941 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1942 // trivial if at most one of these terms is nonzero, except that BaseGV and 1943 // BaseReg both being zero actually means a null pointer value, which we 1944 // consider to be 'non-zero' here. 1945 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1946 } 1947 1948 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1949 switch (Field) { 1950 default: 1951 return nullptr; 1952 case BaseRegField: 1953 return BaseReg; 1954 case BaseGVField: 1955 return BaseGV; 1956 case ScaledRegField: 1957 return ScaledReg; 1958 case BaseOffsField: 1959 return ConstantInt::get(IntPtrTy, BaseOffs); 1960 } 1961 } 1962 1963 void SetCombinedField(FieldName Field, Value *V, 1964 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1965 switch (Field) { 1966 default: 1967 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1968 break; 1969 case ExtAddrMode::BaseRegField: 1970 BaseReg = V; 1971 break; 1972 case ExtAddrMode::BaseGVField: 1973 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1974 // in the BaseReg field. 1975 assert(BaseReg == nullptr); 1976 BaseReg = V; 1977 BaseGV = nullptr; 1978 break; 1979 case ExtAddrMode::ScaledRegField: 1980 ScaledReg = V; 1981 // If we have a mix of scaled and unscaled addrmodes then we want scale 1982 // to be the scale and not zero. 1983 if (!Scale) 1984 for (const ExtAddrMode &AM : AddrModes) 1985 if (AM.Scale) { 1986 Scale = AM.Scale; 1987 break; 1988 } 1989 break; 1990 case ExtAddrMode::BaseOffsField: 1991 // The offset is no longer a constant, so it goes in ScaledReg with a 1992 // scale of 1. 1993 assert(ScaledReg == nullptr); 1994 ScaledReg = V; 1995 Scale = 1; 1996 BaseOffs = 0; 1997 break; 1998 } 1999 } 2000 }; 2001 2002 } // end anonymous namespace 2003 2004 #ifndef NDEBUG 2005 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2006 AM.print(OS); 2007 return OS; 2008 } 2009 #endif 2010 2011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2012 void ExtAddrMode::print(raw_ostream &OS) const { 2013 bool NeedPlus = false; 2014 OS << "["; 2015 if (BaseGV) { 2016 OS << (NeedPlus ? " + " : "") 2017 << "GV:"; 2018 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2019 NeedPlus = true; 2020 } 2021 2022 if (BaseOffs) { 2023 OS << (NeedPlus ? " + " : "") 2024 << BaseOffs; 2025 NeedPlus = true; 2026 } 2027 2028 if (BaseReg) { 2029 OS << (NeedPlus ? " + " : "") 2030 << "Base:"; 2031 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2032 NeedPlus = true; 2033 } 2034 if (Scale) { 2035 OS << (NeedPlus ? " + " : "") 2036 << Scale << "*"; 2037 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2038 } 2039 2040 OS << ']'; 2041 } 2042 2043 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2044 print(dbgs()); 2045 dbgs() << '\n'; 2046 } 2047 #endif 2048 2049 namespace { 2050 2051 /// This class provides transaction based operation on the IR. 2052 /// Every change made through this class is recorded in the internal state and 2053 /// can be undone (rollback) until commit is called. 2054 class TypePromotionTransaction { 2055 /// This represents the common interface of the individual transaction. 2056 /// Each class implements the logic for doing one specific modification on 2057 /// the IR via the TypePromotionTransaction. 2058 class TypePromotionAction { 2059 protected: 2060 /// The Instruction modified. 2061 Instruction *Inst; 2062 2063 public: 2064 /// Constructor of the action. 2065 /// The constructor performs the related action on the IR. 2066 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2067 2068 virtual ~TypePromotionAction() = default; 2069 2070 /// Undo the modification done by this action. 2071 /// When this method is called, the IR must be in the same state as it was 2072 /// before this action was applied. 2073 /// \pre Undoing the action works if and only if the IR is in the exact same 2074 /// state as it was directly after this action was applied. 2075 virtual void undo() = 0; 2076 2077 /// Advocate every change made by this action. 2078 /// When the results on the IR of the action are to be kept, it is important 2079 /// to call this function, otherwise hidden information may be kept forever. 2080 virtual void commit() { 2081 // Nothing to be done, this action is not doing anything. 2082 } 2083 }; 2084 2085 /// Utility to remember the position of an instruction. 2086 class InsertionHandler { 2087 /// Position of an instruction. 2088 /// Either an instruction: 2089 /// - Is the first in a basic block: BB is used. 2090 /// - Has a previous instructon: PrevInst is used. 2091 union { 2092 Instruction *PrevInst; 2093 BasicBlock *BB; 2094 } Point; 2095 2096 /// Remember whether or not the instruction had a previous instruction. 2097 bool HasPrevInstruction; 2098 2099 public: 2100 /// Record the position of \p Inst. 2101 InsertionHandler(Instruction *Inst) { 2102 BasicBlock::iterator It = Inst->getIterator(); 2103 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2104 if (HasPrevInstruction) 2105 Point.PrevInst = &*--It; 2106 else 2107 Point.BB = Inst->getParent(); 2108 } 2109 2110 /// Insert \p Inst at the recorded position. 2111 void insert(Instruction *Inst) { 2112 if (HasPrevInstruction) { 2113 if (Inst->getParent()) 2114 Inst->removeFromParent(); 2115 Inst->insertAfter(Point.PrevInst); 2116 } else { 2117 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2118 if (Inst->getParent()) 2119 Inst->moveBefore(Position); 2120 else 2121 Inst->insertBefore(Position); 2122 } 2123 } 2124 }; 2125 2126 /// Move an instruction before another. 2127 class InstructionMoveBefore : public TypePromotionAction { 2128 /// Original position of the instruction. 2129 InsertionHandler Position; 2130 2131 public: 2132 /// Move \p Inst before \p Before. 2133 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2134 : TypePromotionAction(Inst), Position(Inst) { 2135 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2136 << "\n"); 2137 Inst->moveBefore(Before); 2138 } 2139 2140 /// Move the instruction back to its original position. 2141 void undo() override { 2142 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2143 Position.insert(Inst); 2144 } 2145 }; 2146 2147 /// Set the operand of an instruction with a new value. 2148 class OperandSetter : public TypePromotionAction { 2149 /// Original operand of the instruction. 2150 Value *Origin; 2151 2152 /// Index of the modified instruction. 2153 unsigned Idx; 2154 2155 public: 2156 /// Set \p Idx operand of \p Inst with \p NewVal. 2157 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2158 : TypePromotionAction(Inst), Idx(Idx) { 2159 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2160 << "for:" << *Inst << "\n" 2161 << "with:" << *NewVal << "\n"); 2162 Origin = Inst->getOperand(Idx); 2163 Inst->setOperand(Idx, NewVal); 2164 } 2165 2166 /// Restore the original value of the instruction. 2167 void undo() override { 2168 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2169 << "for: " << *Inst << "\n" 2170 << "with: " << *Origin << "\n"); 2171 Inst->setOperand(Idx, Origin); 2172 } 2173 }; 2174 2175 /// Hide the operands of an instruction. 2176 /// Do as if this instruction was not using any of its operands. 2177 class OperandsHider : public TypePromotionAction { 2178 /// The list of original operands. 2179 SmallVector<Value *, 4> OriginalValues; 2180 2181 public: 2182 /// Remove \p Inst from the uses of the operands of \p Inst. 2183 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2184 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2185 unsigned NumOpnds = Inst->getNumOperands(); 2186 OriginalValues.reserve(NumOpnds); 2187 for (unsigned It = 0; It < NumOpnds; ++It) { 2188 // Save the current operand. 2189 Value *Val = Inst->getOperand(It); 2190 OriginalValues.push_back(Val); 2191 // Set a dummy one. 2192 // We could use OperandSetter here, but that would imply an overhead 2193 // that we are not willing to pay. 2194 Inst->setOperand(It, UndefValue::get(Val->getType())); 2195 } 2196 } 2197 2198 /// Restore the original list of uses. 2199 void undo() override { 2200 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2201 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2202 Inst->setOperand(It, OriginalValues[It]); 2203 } 2204 }; 2205 2206 /// Build a truncate instruction. 2207 class TruncBuilder : public TypePromotionAction { 2208 Value *Val; 2209 2210 public: 2211 /// Build a truncate instruction of \p Opnd producing a \p Ty 2212 /// result. 2213 /// trunc Opnd to Ty. 2214 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2215 IRBuilder<> Builder(Opnd); 2216 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2217 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2218 } 2219 2220 /// Get the built value. 2221 Value *getBuiltValue() { return Val; } 2222 2223 /// Remove the built instruction. 2224 void undo() override { 2225 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2226 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2227 IVal->eraseFromParent(); 2228 } 2229 }; 2230 2231 /// Build a sign extension instruction. 2232 class SExtBuilder : public TypePromotionAction { 2233 Value *Val; 2234 2235 public: 2236 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2237 /// result. 2238 /// sext Opnd to Ty. 2239 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2240 : TypePromotionAction(InsertPt) { 2241 IRBuilder<> Builder(InsertPt); 2242 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2243 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2244 } 2245 2246 /// Get the built value. 2247 Value *getBuiltValue() { return Val; } 2248 2249 /// Remove the built instruction. 2250 void undo() override { 2251 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2252 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2253 IVal->eraseFromParent(); 2254 } 2255 }; 2256 2257 /// Build a zero extension instruction. 2258 class ZExtBuilder : public TypePromotionAction { 2259 Value *Val; 2260 2261 public: 2262 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2263 /// result. 2264 /// zext Opnd to Ty. 2265 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2266 : TypePromotionAction(InsertPt) { 2267 IRBuilder<> Builder(InsertPt); 2268 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2269 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2270 } 2271 2272 /// Get the built value. 2273 Value *getBuiltValue() { return Val; } 2274 2275 /// Remove the built instruction. 2276 void undo() override { 2277 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2278 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2279 IVal->eraseFromParent(); 2280 } 2281 }; 2282 2283 /// Mutate an instruction to another type. 2284 class TypeMutator : public TypePromotionAction { 2285 /// Record the original type. 2286 Type *OrigTy; 2287 2288 public: 2289 /// Mutate the type of \p Inst into \p NewTy. 2290 TypeMutator(Instruction *Inst, Type *NewTy) 2291 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2292 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2293 << "\n"); 2294 Inst->mutateType(NewTy); 2295 } 2296 2297 /// Mutate the instruction back to its original type. 2298 void undo() override { 2299 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2300 << "\n"); 2301 Inst->mutateType(OrigTy); 2302 } 2303 }; 2304 2305 /// Replace the uses of an instruction by another instruction. 2306 class UsesReplacer : public TypePromotionAction { 2307 /// Helper structure to keep track of the replaced uses. 2308 struct InstructionAndIdx { 2309 /// The instruction using the instruction. 2310 Instruction *Inst; 2311 2312 /// The index where this instruction is used for Inst. 2313 unsigned Idx; 2314 2315 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2316 : Inst(Inst), Idx(Idx) {} 2317 }; 2318 2319 /// Keep track of the original uses (pair Instruction, Index). 2320 SmallVector<InstructionAndIdx, 4> OriginalUses; 2321 2322 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2323 2324 public: 2325 /// Replace all the use of \p Inst by \p New. 2326 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2327 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2328 << "\n"); 2329 // Record the original uses. 2330 for (Use &U : Inst->uses()) { 2331 Instruction *UserI = cast<Instruction>(U.getUser()); 2332 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2333 } 2334 // Now, we can replace the uses. 2335 Inst->replaceAllUsesWith(New); 2336 } 2337 2338 /// Reassign the original uses of Inst to Inst. 2339 void undo() override { 2340 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2341 for (use_iterator UseIt = OriginalUses.begin(), 2342 EndIt = OriginalUses.end(); 2343 UseIt != EndIt; ++UseIt) { 2344 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2345 } 2346 } 2347 }; 2348 2349 /// Remove an instruction from the IR. 2350 class InstructionRemover : public TypePromotionAction { 2351 /// Original position of the instruction. 2352 InsertionHandler Inserter; 2353 2354 /// Helper structure to hide all the link to the instruction. In other 2355 /// words, this helps to do as if the instruction was removed. 2356 OperandsHider Hider; 2357 2358 /// Keep track of the uses replaced, if any. 2359 UsesReplacer *Replacer = nullptr; 2360 2361 /// Keep track of instructions removed. 2362 SetOfInstrs &RemovedInsts; 2363 2364 public: 2365 /// Remove all reference of \p Inst and optinally replace all its 2366 /// uses with New. 2367 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2368 /// \pre If !Inst->use_empty(), then New != nullptr 2369 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2370 Value *New = nullptr) 2371 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2372 RemovedInsts(RemovedInsts) { 2373 if (New) 2374 Replacer = new UsesReplacer(Inst, New); 2375 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2376 RemovedInsts.insert(Inst); 2377 /// The instructions removed here will be freed after completing 2378 /// optimizeBlock() for all blocks as we need to keep track of the 2379 /// removed instructions during promotion. 2380 Inst->removeFromParent(); 2381 } 2382 2383 ~InstructionRemover() override { delete Replacer; } 2384 2385 /// Resurrect the instruction and reassign it to the proper uses if 2386 /// new value was provided when build this action. 2387 void undo() override { 2388 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2389 Inserter.insert(Inst); 2390 if (Replacer) 2391 Replacer->undo(); 2392 Hider.undo(); 2393 RemovedInsts.erase(Inst); 2394 } 2395 }; 2396 2397 public: 2398 /// Restoration point. 2399 /// The restoration point is a pointer to an action instead of an iterator 2400 /// because the iterator may be invalidated but not the pointer. 2401 using ConstRestorationPt = const TypePromotionAction *; 2402 2403 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2404 : RemovedInsts(RemovedInsts) {} 2405 2406 /// Advocate every changes made in that transaction. 2407 void commit(); 2408 2409 /// Undo all the changes made after the given point. 2410 void rollback(ConstRestorationPt Point); 2411 2412 /// Get the current restoration point. 2413 ConstRestorationPt getRestorationPoint() const; 2414 2415 /// \name API for IR modification with state keeping to support rollback. 2416 /// @{ 2417 /// Same as Instruction::setOperand. 2418 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2419 2420 /// Same as Instruction::eraseFromParent. 2421 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2422 2423 /// Same as Value::replaceAllUsesWith. 2424 void replaceAllUsesWith(Instruction *Inst, Value *New); 2425 2426 /// Same as Value::mutateType. 2427 void mutateType(Instruction *Inst, Type *NewTy); 2428 2429 /// Same as IRBuilder::createTrunc. 2430 Value *createTrunc(Instruction *Opnd, Type *Ty); 2431 2432 /// Same as IRBuilder::createSExt. 2433 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2434 2435 /// Same as IRBuilder::createZExt. 2436 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2437 2438 /// Same as Instruction::moveBefore. 2439 void moveBefore(Instruction *Inst, Instruction *Before); 2440 /// @} 2441 2442 private: 2443 /// The ordered list of actions made so far. 2444 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2445 2446 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2447 2448 SetOfInstrs &RemovedInsts; 2449 }; 2450 2451 } // end anonymous namespace 2452 2453 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2454 Value *NewVal) { 2455 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2456 Inst, Idx, NewVal)); 2457 } 2458 2459 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2460 Value *NewVal) { 2461 Actions.push_back( 2462 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2463 Inst, RemovedInsts, NewVal)); 2464 } 2465 2466 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2467 Value *New) { 2468 Actions.push_back( 2469 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2470 } 2471 2472 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2473 Actions.push_back( 2474 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2475 } 2476 2477 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2478 Type *Ty) { 2479 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2480 Value *Val = Ptr->getBuiltValue(); 2481 Actions.push_back(std::move(Ptr)); 2482 return Val; 2483 } 2484 2485 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2486 Value *Opnd, Type *Ty) { 2487 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2488 Value *Val = Ptr->getBuiltValue(); 2489 Actions.push_back(std::move(Ptr)); 2490 return Val; 2491 } 2492 2493 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2494 Value *Opnd, Type *Ty) { 2495 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2496 Value *Val = Ptr->getBuiltValue(); 2497 Actions.push_back(std::move(Ptr)); 2498 return Val; 2499 } 2500 2501 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2502 Instruction *Before) { 2503 Actions.push_back( 2504 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2505 Inst, Before)); 2506 } 2507 2508 TypePromotionTransaction::ConstRestorationPt 2509 TypePromotionTransaction::getRestorationPoint() const { 2510 return !Actions.empty() ? Actions.back().get() : nullptr; 2511 } 2512 2513 void TypePromotionTransaction::commit() { 2514 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2515 ++It) 2516 (*It)->commit(); 2517 Actions.clear(); 2518 } 2519 2520 void TypePromotionTransaction::rollback( 2521 TypePromotionTransaction::ConstRestorationPt Point) { 2522 while (!Actions.empty() && Point != Actions.back().get()) { 2523 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2524 Curr->undo(); 2525 } 2526 } 2527 2528 namespace { 2529 2530 /// A helper class for matching addressing modes. 2531 /// 2532 /// This encapsulates the logic for matching the target-legal addressing modes. 2533 class AddressingModeMatcher { 2534 SmallVectorImpl<Instruction*> &AddrModeInsts; 2535 const TargetLowering &TLI; 2536 const TargetRegisterInfo &TRI; 2537 const DataLayout &DL; 2538 2539 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2540 /// the memory instruction that we're computing this address for. 2541 Type *AccessTy; 2542 unsigned AddrSpace; 2543 Instruction *MemoryInst; 2544 2545 /// This is the addressing mode that we're building up. This is 2546 /// part of the return value of this addressing mode matching stuff. 2547 ExtAddrMode &AddrMode; 2548 2549 /// The instructions inserted by other CodeGenPrepare optimizations. 2550 const SetOfInstrs &InsertedInsts; 2551 2552 /// A map from the instructions to their type before promotion. 2553 InstrToOrigTy &PromotedInsts; 2554 2555 /// The ongoing transaction where every action should be registered. 2556 TypePromotionTransaction &TPT; 2557 2558 // A GEP which has too large offset to be folded into the addressing mode. 2559 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2560 2561 /// This is set to true when we should not do profitability checks. 2562 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2563 bool IgnoreProfitability; 2564 2565 AddressingModeMatcher( 2566 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2567 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2568 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2569 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2570 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2571 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2572 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2573 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2574 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2575 IgnoreProfitability = false; 2576 } 2577 2578 public: 2579 /// Find the maximal addressing mode that a load/store of V can fold, 2580 /// give an access type of AccessTy. This returns a list of involved 2581 /// instructions in AddrModeInsts. 2582 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2583 /// optimizations. 2584 /// \p PromotedInsts maps the instructions to their type before promotion. 2585 /// \p The ongoing transaction where every action should be registered. 2586 static ExtAddrMode 2587 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2588 SmallVectorImpl<Instruction *> &AddrModeInsts, 2589 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2590 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2591 TypePromotionTransaction &TPT, 2592 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2593 ExtAddrMode Result; 2594 2595 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2596 MemoryInst, Result, InsertedInsts, 2597 PromotedInsts, TPT, LargeOffsetGEP) 2598 .matchAddr(V, 0); 2599 (void)Success; assert(Success && "Couldn't select *anything*?"); 2600 return Result; 2601 } 2602 2603 private: 2604 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2605 bool matchAddr(Value *V, unsigned Depth); 2606 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2607 bool *MovedAway = nullptr); 2608 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2609 ExtAddrMode &AMBefore, 2610 ExtAddrMode &AMAfter); 2611 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2612 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2613 Value *PromotedOperand) const; 2614 }; 2615 2616 /// Keep track of simplification of Phi nodes. 2617 /// Accept the set of all phi nodes and erase phi node from this set 2618 /// if it is simplified. 2619 class SimplificationTracker { 2620 DenseMap<Value *, Value *> Storage; 2621 const SimplifyQuery &SQ; 2622 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2623 // order when iterating over the set in MatchPhiSet. 2624 SmallSetVector<PHINode *, 32> AllPhiNodes; 2625 // Tracks newly created Select nodes. 2626 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2627 2628 public: 2629 SimplificationTracker(const SimplifyQuery &sq) 2630 : SQ(sq) {} 2631 2632 Value *Get(Value *V) { 2633 do { 2634 auto SV = Storage.find(V); 2635 if (SV == Storage.end()) 2636 return V; 2637 V = SV->second; 2638 } while (true); 2639 } 2640 2641 Value *Simplify(Value *Val) { 2642 SmallVector<Value *, 32> WorkList; 2643 SmallPtrSet<Value *, 32> Visited; 2644 WorkList.push_back(Val); 2645 while (!WorkList.empty()) { 2646 auto P = WorkList.pop_back_val(); 2647 if (!Visited.insert(P).second) 2648 continue; 2649 if (auto *PI = dyn_cast<Instruction>(P)) 2650 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2651 for (auto *U : PI->users()) 2652 WorkList.push_back(cast<Value>(U)); 2653 Put(PI, V); 2654 PI->replaceAllUsesWith(V); 2655 if (auto *PHI = dyn_cast<PHINode>(PI)) 2656 AllPhiNodes.remove(PHI); 2657 if (auto *Select = dyn_cast<SelectInst>(PI)) 2658 AllSelectNodes.erase(Select); 2659 PI->eraseFromParent(); 2660 } 2661 } 2662 return Get(Val); 2663 } 2664 2665 void Put(Value *From, Value *To) { 2666 Storage.insert({ From, To }); 2667 } 2668 2669 void ReplacePhi(PHINode *From, PHINode *To) { 2670 Value* OldReplacement = Get(From); 2671 while (OldReplacement != From) { 2672 From = To; 2673 To = dyn_cast<PHINode>(OldReplacement); 2674 OldReplacement = Get(From); 2675 } 2676 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2677 Put(From, To); 2678 From->replaceAllUsesWith(To); 2679 AllPhiNodes.remove(From); 2680 From->eraseFromParent(); 2681 } 2682 2683 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2684 2685 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2686 2687 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2688 2689 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2690 2691 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2692 2693 void destroyNewNodes(Type *CommonType) { 2694 // For safe erasing, replace the uses with dummy value first. 2695 auto Dummy = UndefValue::get(CommonType); 2696 for (auto I : AllPhiNodes) { 2697 I->replaceAllUsesWith(Dummy); 2698 I->eraseFromParent(); 2699 } 2700 AllPhiNodes.clear(); 2701 for (auto I : AllSelectNodes) { 2702 I->replaceAllUsesWith(Dummy); 2703 I->eraseFromParent(); 2704 } 2705 AllSelectNodes.clear(); 2706 } 2707 }; 2708 2709 /// A helper class for combining addressing modes. 2710 class AddressingModeCombiner { 2711 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2712 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2713 typedef std::pair<PHINode *, PHINode *> PHIPair; 2714 2715 private: 2716 /// The addressing modes we've collected. 2717 SmallVector<ExtAddrMode, 16> AddrModes; 2718 2719 /// The field in which the AddrModes differ, when we have more than one. 2720 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2721 2722 /// Are the AddrModes that we have all just equal to their original values? 2723 bool AllAddrModesTrivial = true; 2724 2725 /// Common Type for all different fields in addressing modes. 2726 Type *CommonType; 2727 2728 /// SimplifyQuery for simplifyInstruction utility. 2729 const SimplifyQuery &SQ; 2730 2731 /// Original Address. 2732 ValueInBB Original; 2733 2734 public: 2735 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2736 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2737 2738 /// Get the combined AddrMode 2739 const ExtAddrMode &getAddrMode() const { 2740 return AddrModes[0]; 2741 } 2742 2743 /// Add a new AddrMode if it's compatible with the AddrModes we already 2744 /// have. 2745 /// \return True iff we succeeded in doing so. 2746 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2747 // Take note of if we have any non-trivial AddrModes, as we need to detect 2748 // when all AddrModes are trivial as then we would introduce a phi or select 2749 // which just duplicates what's already there. 2750 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2751 2752 // If this is the first addrmode then everything is fine. 2753 if (AddrModes.empty()) { 2754 AddrModes.emplace_back(NewAddrMode); 2755 return true; 2756 } 2757 2758 // Figure out how different this is from the other address modes, which we 2759 // can do just by comparing against the first one given that we only care 2760 // about the cumulative difference. 2761 ExtAddrMode::FieldName ThisDifferentField = 2762 AddrModes[0].compare(NewAddrMode); 2763 if (DifferentField == ExtAddrMode::NoField) 2764 DifferentField = ThisDifferentField; 2765 else if (DifferentField != ThisDifferentField) 2766 DifferentField = ExtAddrMode::MultipleFields; 2767 2768 // If NewAddrMode differs in more than one dimension we cannot handle it. 2769 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2770 2771 // If Scale Field is different then we reject. 2772 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2773 2774 // We also must reject the case when base offset is different and 2775 // scale reg is not null, we cannot handle this case due to merge of 2776 // different offsets will be used as ScaleReg. 2777 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2778 !NewAddrMode.ScaledReg); 2779 2780 // We also must reject the case when GV is different and BaseReg installed 2781 // due to we want to use base reg as a merge of GV values. 2782 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2783 !NewAddrMode.HasBaseReg); 2784 2785 // Even if NewAddMode is the same we still need to collect it due to 2786 // original value is different. And later we will need all original values 2787 // as anchors during finding the common Phi node. 2788 if (CanHandle) 2789 AddrModes.emplace_back(NewAddrMode); 2790 else 2791 AddrModes.clear(); 2792 2793 return CanHandle; 2794 } 2795 2796 /// Combine the addressing modes we've collected into a single 2797 /// addressing mode. 2798 /// \return True iff we successfully combined them or we only had one so 2799 /// didn't need to combine them anyway. 2800 bool combineAddrModes() { 2801 // If we have no AddrModes then they can't be combined. 2802 if (AddrModes.size() == 0) 2803 return false; 2804 2805 // A single AddrMode can trivially be combined. 2806 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2807 return true; 2808 2809 // If the AddrModes we collected are all just equal to the value they are 2810 // derived from then combining them wouldn't do anything useful. 2811 if (AllAddrModesTrivial) 2812 return false; 2813 2814 if (!addrModeCombiningAllowed()) 2815 return false; 2816 2817 // Build a map between <original value, basic block where we saw it> to 2818 // value of base register. 2819 // Bail out if there is no common type. 2820 FoldAddrToValueMapping Map; 2821 if (!initializeMap(Map)) 2822 return false; 2823 2824 Value *CommonValue = findCommon(Map); 2825 if (CommonValue) 2826 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2827 return CommonValue != nullptr; 2828 } 2829 2830 private: 2831 /// Initialize Map with anchor values. For address seen in some BB 2832 /// we set the value of different field saw in this address. 2833 /// If address is not an instruction than basic block is set to null. 2834 /// At the same time we find a common type for different field we will 2835 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2836 /// Return false if there is no common type found. 2837 bool initializeMap(FoldAddrToValueMapping &Map) { 2838 // Keep track of keys where the value is null. We will need to replace it 2839 // with constant null when we know the common type. 2840 SmallVector<ValueInBB, 2> NullValue; 2841 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2842 for (auto &AM : AddrModes) { 2843 BasicBlock *BB = nullptr; 2844 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2845 BB = I->getParent(); 2846 2847 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2848 if (DV) { 2849 auto *Type = DV->getType(); 2850 if (CommonType && CommonType != Type) 2851 return false; 2852 CommonType = Type; 2853 Map[{ AM.OriginalValue, BB }] = DV; 2854 } else { 2855 NullValue.push_back({ AM.OriginalValue, BB }); 2856 } 2857 } 2858 assert(CommonType && "At least one non-null value must be!"); 2859 for (auto VIBB : NullValue) 2860 Map[VIBB] = Constant::getNullValue(CommonType); 2861 return true; 2862 } 2863 2864 /// We have mapping between value A and basic block where value A 2865 /// seen to other value B where B was a field in addressing mode represented 2866 /// by A. Also we have an original value C representin an address in some 2867 /// basic block. Traversing from C through phi and selects we ended up with 2868 /// A's in a map. This utility function tries to find a value V which is a 2869 /// field in addressing mode C and traversing through phi nodes and selects 2870 /// we will end up in corresponded values B in a map. 2871 /// The utility will create a new Phi/Selects if needed. 2872 // The simple example looks as follows: 2873 // BB1: 2874 // p1 = b1 + 40 2875 // br cond BB2, BB3 2876 // BB2: 2877 // p2 = b2 + 40 2878 // br BB3 2879 // BB3: 2880 // p = phi [p1, BB1], [p2, BB2] 2881 // v = load p 2882 // Map is 2883 // <p1, BB1> -> b1 2884 // <p2, BB2> -> b2 2885 // Request is 2886 // <p, BB3> -> ? 2887 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2888 Value *findCommon(FoldAddrToValueMapping &Map) { 2889 // Tracks the simplification of newly created phi nodes. The reason we use 2890 // this mapping is because we will add new created Phi nodes in AddrToBase. 2891 // Simplification of Phi nodes is recursive, so some Phi node may 2892 // be simplified after we added it to AddrToBase. 2893 // Using this mapping we can find the current value in AddrToBase. 2894 SimplificationTracker ST(SQ); 2895 2896 // First step, DFS to create PHI nodes for all intermediate blocks. 2897 // Also fill traverse order for the second step. 2898 SmallVector<ValueInBB, 32> TraverseOrder; 2899 InsertPlaceholders(Map, TraverseOrder, ST); 2900 2901 // Second Step, fill new nodes by merged values and simplify if possible. 2902 FillPlaceholders(Map, TraverseOrder, ST); 2903 2904 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2905 ST.destroyNewNodes(CommonType); 2906 return nullptr; 2907 } 2908 2909 // Now we'd like to match New Phi nodes to existed ones. 2910 unsigned PhiNotMatchedCount = 0; 2911 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2912 ST.destroyNewNodes(CommonType); 2913 return nullptr; 2914 } 2915 2916 auto *Result = ST.Get(Map.find(Original)->second); 2917 if (Result) { 2918 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2919 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2920 } 2921 return Result; 2922 } 2923 2924 /// Try to match PHI node to Candidate. 2925 /// Matcher tracks the matched Phi nodes. 2926 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2927 SmallSetVector<PHIPair, 8> &Matcher, 2928 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2929 SmallVector<PHIPair, 8> WorkList; 2930 Matcher.insert({ PHI, Candidate }); 2931 WorkList.push_back({ PHI, Candidate }); 2932 SmallSet<PHIPair, 8> Visited; 2933 while (!WorkList.empty()) { 2934 auto Item = WorkList.pop_back_val(); 2935 if (!Visited.insert(Item).second) 2936 continue; 2937 // We iterate over all incoming values to Phi to compare them. 2938 // If values are different and both of them Phi and the first one is a 2939 // Phi we added (subject to match) and both of them is in the same basic 2940 // block then we can match our pair if values match. So we state that 2941 // these values match and add it to work list to verify that. 2942 for (auto B : Item.first->blocks()) { 2943 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2944 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2945 if (FirstValue == SecondValue) 2946 continue; 2947 2948 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2949 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2950 2951 // One of them is not Phi or 2952 // The first one is not Phi node from the set we'd like to match or 2953 // Phi nodes from different basic blocks then 2954 // we will not be able to match. 2955 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2956 FirstPhi->getParent() != SecondPhi->getParent()) 2957 return false; 2958 2959 // If we already matched them then continue. 2960 if (Matcher.count({ FirstPhi, SecondPhi })) 2961 continue; 2962 // So the values are different and does not match. So we need them to 2963 // match. 2964 Matcher.insert({ FirstPhi, SecondPhi }); 2965 // But me must check it. 2966 WorkList.push_back({ FirstPhi, SecondPhi }); 2967 } 2968 } 2969 return true; 2970 } 2971 2972 /// For the given set of PHI nodes (in the SimplificationTracker) try 2973 /// to find their equivalents. 2974 /// Returns false if this matching fails and creation of new Phi is disabled. 2975 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2976 unsigned &PhiNotMatchedCount) { 2977 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2978 // in a deterministic order below. 2979 SmallSetVector<PHIPair, 8> Matched; 2980 SmallPtrSet<PHINode *, 8> WillNotMatch; 2981 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2982 while (PhiNodesToMatch.size()) { 2983 PHINode *PHI = *PhiNodesToMatch.begin(); 2984 2985 // Add us, if no Phi nodes in the basic block we do not match. 2986 WillNotMatch.clear(); 2987 WillNotMatch.insert(PHI); 2988 2989 // Traverse all Phis until we found equivalent or fail to do that. 2990 bool IsMatched = false; 2991 for (auto &P : PHI->getParent()->phis()) { 2992 if (&P == PHI) 2993 continue; 2994 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2995 break; 2996 // If it does not match, collect all Phi nodes from matcher. 2997 // if we end up with no match, them all these Phi nodes will not match 2998 // later. 2999 for (auto M : Matched) 3000 WillNotMatch.insert(M.first); 3001 Matched.clear(); 3002 } 3003 if (IsMatched) { 3004 // Replace all matched values and erase them. 3005 for (auto MV : Matched) 3006 ST.ReplacePhi(MV.first, MV.second); 3007 Matched.clear(); 3008 continue; 3009 } 3010 // If we are not allowed to create new nodes then bail out. 3011 if (!AllowNewPhiNodes) 3012 return false; 3013 // Just remove all seen values in matcher. They will not match anything. 3014 PhiNotMatchedCount += WillNotMatch.size(); 3015 for (auto *P : WillNotMatch) 3016 PhiNodesToMatch.remove(P); 3017 } 3018 return true; 3019 } 3020 /// Fill the placeholder with values from predecessors and simplify it. 3021 void FillPlaceholders(FoldAddrToValueMapping &Map, 3022 SmallVectorImpl<ValueInBB> &TraverseOrder, 3023 SimplificationTracker &ST) { 3024 while (!TraverseOrder.empty()) { 3025 auto Current = TraverseOrder.pop_back_val(); 3026 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3027 Value *CurrentValue = Current.first; 3028 BasicBlock *CurrentBlock = Current.second; 3029 Value *V = Map[Current]; 3030 3031 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3032 // CurrentValue also must be Select. 3033 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3034 auto *TrueValue = CurrentSelect->getTrueValue(); 3035 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3036 ? CurrentBlock 3037 : nullptr }; 3038 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3039 Select->setTrueValue(ST.Get(Map[TrueItem])); 3040 auto *FalseValue = CurrentSelect->getFalseValue(); 3041 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3042 ? CurrentBlock 3043 : nullptr }; 3044 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3045 Select->setFalseValue(ST.Get(Map[FalseItem])); 3046 } else { 3047 // Must be a Phi node then. 3048 PHINode *PHI = cast<PHINode>(V); 3049 // Fill the Phi node with values from predecessors. 3050 bool IsDefinedInThisBB = 3051 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3052 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3053 for (auto B : predecessors(CurrentBlock)) { 3054 Value *PV = IsDefinedInThisBB 3055 ? CurrentPhi->getIncomingValueForBlock(B) 3056 : CurrentValue; 3057 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3058 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3059 PHI->addIncoming(ST.Get(Map[item]), B); 3060 } 3061 } 3062 // Simplify if possible. 3063 Map[Current] = ST.Simplify(V); 3064 } 3065 } 3066 3067 /// Starting from value recursively iterates over predecessors up to known 3068 /// ending values represented in a map. For each traversed block inserts 3069 /// a placeholder Phi or Select. 3070 /// Reports all new created Phi/Select nodes by adding them to set. 3071 /// Also reports and order in what basic blocks have been traversed. 3072 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3073 SmallVectorImpl<ValueInBB> &TraverseOrder, 3074 SimplificationTracker &ST) { 3075 SmallVector<ValueInBB, 32> Worklist; 3076 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3077 "Address must be a Phi or Select node"); 3078 auto *Dummy = UndefValue::get(CommonType); 3079 Worklist.push_back(Original); 3080 while (!Worklist.empty()) { 3081 auto Current = Worklist.pop_back_val(); 3082 // If value is not an instruction it is something global, constant, 3083 // parameter and we can say that this value is observable in any block. 3084 // Set block to null to denote it. 3085 // Also please take into account that it is how we build anchors. 3086 if (!isa<Instruction>(Current.first)) 3087 Current.second = nullptr; 3088 // if it is already visited or it is an ending value then skip it. 3089 if (Map.find(Current) != Map.end()) 3090 continue; 3091 TraverseOrder.push_back(Current); 3092 3093 Value *CurrentValue = Current.first; 3094 BasicBlock *CurrentBlock = Current.second; 3095 // CurrentValue must be a Phi node or select. All others must be covered 3096 // by anchors. 3097 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3098 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3099 3100 unsigned PredCount = pred_size(CurrentBlock); 3101 // if Current Value is not defined in this basic block we are interested 3102 // in values in predecessors. 3103 if (!IsDefinedInThisBB) { 3104 assert(PredCount && "Unreachable block?!"); 3105 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3106 &CurrentBlock->front()); 3107 Map[Current] = PHI; 3108 ST.insertNewPhi(PHI); 3109 // Add all predecessors in work list. 3110 for (auto B : predecessors(CurrentBlock)) 3111 Worklist.push_back({ CurrentValue, B }); 3112 continue; 3113 } 3114 // Value is defined in this basic block. 3115 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3116 // Is it OK to get metadata from OrigSelect?! 3117 // Create a Select placeholder with dummy value. 3118 SelectInst *Select = 3119 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3120 OrigSelect->getName(), OrigSelect, OrigSelect); 3121 Map[Current] = Select; 3122 ST.insertNewSelect(Select); 3123 // We are interested in True and False value in this basic block. 3124 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3125 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3126 } else { 3127 // It must be a Phi node then. 3128 auto *CurrentPhi = cast<PHINode>(CurrentI); 3129 // Create new Phi node for merge of bases. 3130 assert(PredCount && "Unreachable block?!"); 3131 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3132 &CurrentBlock->front()); 3133 Map[Current] = PHI; 3134 ST.insertNewPhi(PHI); 3135 3136 // Add all predecessors in work list. 3137 for (auto B : predecessors(CurrentBlock)) 3138 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3139 } 3140 } 3141 } 3142 3143 bool addrModeCombiningAllowed() { 3144 if (DisableComplexAddrModes) 3145 return false; 3146 switch (DifferentField) { 3147 default: 3148 return false; 3149 case ExtAddrMode::BaseRegField: 3150 return AddrSinkCombineBaseReg; 3151 case ExtAddrMode::BaseGVField: 3152 return AddrSinkCombineBaseGV; 3153 case ExtAddrMode::BaseOffsField: 3154 return AddrSinkCombineBaseOffs; 3155 case ExtAddrMode::ScaledRegField: 3156 return AddrSinkCombineScaledReg; 3157 } 3158 } 3159 }; 3160 } // end anonymous namespace 3161 3162 /// Try adding ScaleReg*Scale to the current addressing mode. 3163 /// Return true and update AddrMode if this addr mode is legal for the target, 3164 /// false if not. 3165 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3166 unsigned Depth) { 3167 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3168 // mode. Just process that directly. 3169 if (Scale == 1) 3170 return matchAddr(ScaleReg, Depth); 3171 3172 // If the scale is 0, it takes nothing to add this. 3173 if (Scale == 0) 3174 return true; 3175 3176 // If we already have a scale of this value, we can add to it, otherwise, we 3177 // need an available scale field. 3178 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3179 return false; 3180 3181 ExtAddrMode TestAddrMode = AddrMode; 3182 3183 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3184 // [A+B + A*7] -> [B+A*8]. 3185 TestAddrMode.Scale += Scale; 3186 TestAddrMode.ScaledReg = ScaleReg; 3187 3188 // If the new address isn't legal, bail out. 3189 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3190 return false; 3191 3192 // It was legal, so commit it. 3193 AddrMode = TestAddrMode; 3194 3195 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3196 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3197 // X*Scale + C*Scale to addr mode. 3198 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3199 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3200 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3201 TestAddrMode.ScaledReg = AddLHS; 3202 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3203 3204 // If this addressing mode is legal, commit it and remember that we folded 3205 // this instruction. 3206 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3207 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3208 AddrMode = TestAddrMode; 3209 return true; 3210 } 3211 } 3212 3213 // Otherwise, not (x+c)*scale, just return what we have. 3214 return true; 3215 } 3216 3217 /// This is a little filter, which returns true if an addressing computation 3218 /// involving I might be folded into a load/store accessing it. 3219 /// This doesn't need to be perfect, but needs to accept at least 3220 /// the set of instructions that MatchOperationAddr can. 3221 static bool MightBeFoldableInst(Instruction *I) { 3222 switch (I->getOpcode()) { 3223 case Instruction::BitCast: 3224 case Instruction::AddrSpaceCast: 3225 // Don't touch identity bitcasts. 3226 if (I->getType() == I->getOperand(0)->getType()) 3227 return false; 3228 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3229 case Instruction::PtrToInt: 3230 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3231 return true; 3232 case Instruction::IntToPtr: 3233 // We know the input is intptr_t, so this is foldable. 3234 return true; 3235 case Instruction::Add: 3236 return true; 3237 case Instruction::Mul: 3238 case Instruction::Shl: 3239 // Can only handle X*C and X << C. 3240 return isa<ConstantInt>(I->getOperand(1)); 3241 case Instruction::GetElementPtr: 3242 return true; 3243 default: 3244 return false; 3245 } 3246 } 3247 3248 /// Check whether or not \p Val is a legal instruction for \p TLI. 3249 /// \note \p Val is assumed to be the product of some type promotion. 3250 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3251 /// to be legal, as the non-promoted value would have had the same state. 3252 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3253 const DataLayout &DL, Value *Val) { 3254 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3255 if (!PromotedInst) 3256 return false; 3257 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3258 // If the ISDOpcode is undefined, it was undefined before the promotion. 3259 if (!ISDOpcode) 3260 return true; 3261 // Otherwise, check if the promoted instruction is legal or not. 3262 return TLI.isOperationLegalOrCustom( 3263 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3264 } 3265 3266 namespace { 3267 3268 /// Hepler class to perform type promotion. 3269 class TypePromotionHelper { 3270 /// Utility function to check whether or not a sign or zero extension 3271 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3272 /// either using the operands of \p Inst or promoting \p Inst. 3273 /// The type of the extension is defined by \p IsSExt. 3274 /// In other words, check if: 3275 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3276 /// #1 Promotion applies: 3277 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3278 /// #2 Operand reuses: 3279 /// ext opnd1 to ConsideredExtType. 3280 /// \p PromotedInsts maps the instructions to their type before promotion. 3281 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3282 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3283 3284 /// Utility function to determine if \p OpIdx should be promoted when 3285 /// promoting \p Inst. 3286 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3287 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3288 } 3289 3290 /// Utility function to promote the operand of \p Ext when this 3291 /// operand is a promotable trunc or sext or zext. 3292 /// \p PromotedInsts maps the instructions to their type before promotion. 3293 /// \p CreatedInstsCost[out] contains the cost of all instructions 3294 /// created to promote the operand of Ext. 3295 /// Newly added extensions are inserted in \p Exts. 3296 /// Newly added truncates are inserted in \p Truncs. 3297 /// Should never be called directly. 3298 /// \return The promoted value which is used instead of Ext. 3299 static Value *promoteOperandForTruncAndAnyExt( 3300 Instruction *Ext, TypePromotionTransaction &TPT, 3301 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3302 SmallVectorImpl<Instruction *> *Exts, 3303 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3304 3305 /// Utility function to promote the operand of \p Ext when this 3306 /// operand is promotable and is not a supported trunc or sext. 3307 /// \p PromotedInsts maps the instructions to their type before promotion. 3308 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3309 /// created to promote the operand of Ext. 3310 /// Newly added extensions are inserted in \p Exts. 3311 /// Newly added truncates are inserted in \p Truncs. 3312 /// Should never be called directly. 3313 /// \return The promoted value which is used instead of Ext. 3314 static Value *promoteOperandForOther(Instruction *Ext, 3315 TypePromotionTransaction &TPT, 3316 InstrToOrigTy &PromotedInsts, 3317 unsigned &CreatedInstsCost, 3318 SmallVectorImpl<Instruction *> *Exts, 3319 SmallVectorImpl<Instruction *> *Truncs, 3320 const TargetLowering &TLI, bool IsSExt); 3321 3322 /// \see promoteOperandForOther. 3323 static Value *signExtendOperandForOther( 3324 Instruction *Ext, TypePromotionTransaction &TPT, 3325 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3326 SmallVectorImpl<Instruction *> *Exts, 3327 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3328 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3329 Exts, Truncs, TLI, true); 3330 } 3331 3332 /// \see promoteOperandForOther. 3333 static Value *zeroExtendOperandForOther( 3334 Instruction *Ext, TypePromotionTransaction &TPT, 3335 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3336 SmallVectorImpl<Instruction *> *Exts, 3337 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3338 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3339 Exts, Truncs, TLI, false); 3340 } 3341 3342 public: 3343 /// Type for the utility function that promotes the operand of Ext. 3344 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3345 InstrToOrigTy &PromotedInsts, 3346 unsigned &CreatedInstsCost, 3347 SmallVectorImpl<Instruction *> *Exts, 3348 SmallVectorImpl<Instruction *> *Truncs, 3349 const TargetLowering &TLI); 3350 3351 /// Given a sign/zero extend instruction \p Ext, return the approriate 3352 /// action to promote the operand of \p Ext instead of using Ext. 3353 /// \return NULL if no promotable action is possible with the current 3354 /// sign extension. 3355 /// \p InsertedInsts keeps track of all the instructions inserted by the 3356 /// other CodeGenPrepare optimizations. This information is important 3357 /// because we do not want to promote these instructions as CodeGenPrepare 3358 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3359 /// \p PromotedInsts maps the instructions to their type before promotion. 3360 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3361 const TargetLowering &TLI, 3362 const InstrToOrigTy &PromotedInsts); 3363 }; 3364 3365 } // end anonymous namespace 3366 3367 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3368 Type *ConsideredExtType, 3369 const InstrToOrigTy &PromotedInsts, 3370 bool IsSExt) { 3371 // The promotion helper does not know how to deal with vector types yet. 3372 // To be able to fix that, we would need to fix the places where we 3373 // statically extend, e.g., constants and such. 3374 if (Inst->getType()->isVectorTy()) 3375 return false; 3376 3377 // We can always get through zext. 3378 if (isa<ZExtInst>(Inst)) 3379 return true; 3380 3381 // sext(sext) is ok too. 3382 if (IsSExt && isa<SExtInst>(Inst)) 3383 return true; 3384 3385 // We can get through binary operator, if it is legal. In other words, the 3386 // binary operator must have a nuw or nsw flag. 3387 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3388 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3389 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3390 (IsSExt && BinOp->hasNoSignedWrap()))) 3391 return true; 3392 3393 // Check if we can do the following simplification. 3394 // ext(trunc(opnd)) --> ext(opnd) 3395 if (!isa<TruncInst>(Inst)) 3396 return false; 3397 3398 Value *OpndVal = Inst->getOperand(0); 3399 // Check if we can use this operand in the extension. 3400 // If the type is larger than the result type of the extension, we cannot. 3401 if (!OpndVal->getType()->isIntegerTy() || 3402 OpndVal->getType()->getIntegerBitWidth() > 3403 ConsideredExtType->getIntegerBitWidth()) 3404 return false; 3405 3406 // If the operand of the truncate is not an instruction, we will not have 3407 // any information on the dropped bits. 3408 // (Actually we could for constant but it is not worth the extra logic). 3409 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3410 if (!Opnd) 3411 return false; 3412 3413 // Check if the source of the type is narrow enough. 3414 // I.e., check that trunc just drops extended bits of the same kind of 3415 // the extension. 3416 // #1 get the type of the operand and check the kind of the extended bits. 3417 const Type *OpndType; 3418 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3419 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3420 OpndType = It->second.getPointer(); 3421 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3422 OpndType = Opnd->getOperand(0)->getType(); 3423 else 3424 return false; 3425 3426 // #2 check that the truncate just drops extended bits. 3427 return Inst->getType()->getIntegerBitWidth() >= 3428 OpndType->getIntegerBitWidth(); 3429 } 3430 3431 TypePromotionHelper::Action TypePromotionHelper::getAction( 3432 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3433 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3434 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3435 "Unexpected instruction type"); 3436 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3437 Type *ExtTy = Ext->getType(); 3438 bool IsSExt = isa<SExtInst>(Ext); 3439 // If the operand of the extension is not an instruction, we cannot 3440 // get through. 3441 // If it, check we can get through. 3442 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3443 return nullptr; 3444 3445 // Do not promote if the operand has been added by codegenprepare. 3446 // Otherwise, it means we are undoing an optimization that is likely to be 3447 // redone, thus causing potential infinite loop. 3448 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3449 return nullptr; 3450 3451 // SExt or Trunc instructions. 3452 // Return the related handler. 3453 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3454 isa<ZExtInst>(ExtOpnd)) 3455 return promoteOperandForTruncAndAnyExt; 3456 3457 // Regular instruction. 3458 // Abort early if we will have to insert non-free instructions. 3459 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3460 return nullptr; 3461 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3462 } 3463 3464 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3465 Instruction *SExt, TypePromotionTransaction &TPT, 3466 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3467 SmallVectorImpl<Instruction *> *Exts, 3468 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3469 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3470 // get through it and this method should not be called. 3471 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3472 Value *ExtVal = SExt; 3473 bool HasMergedNonFreeExt = false; 3474 if (isa<ZExtInst>(SExtOpnd)) { 3475 // Replace s|zext(zext(opnd)) 3476 // => zext(opnd). 3477 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3478 Value *ZExt = 3479 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3480 TPT.replaceAllUsesWith(SExt, ZExt); 3481 TPT.eraseInstruction(SExt); 3482 ExtVal = ZExt; 3483 } else { 3484 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3485 // => z|sext(opnd). 3486 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3487 } 3488 CreatedInstsCost = 0; 3489 3490 // Remove dead code. 3491 if (SExtOpnd->use_empty()) 3492 TPT.eraseInstruction(SExtOpnd); 3493 3494 // Check if the extension is still needed. 3495 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3496 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3497 if (ExtInst) { 3498 if (Exts) 3499 Exts->push_back(ExtInst); 3500 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3501 } 3502 return ExtVal; 3503 } 3504 3505 // At this point we have: ext ty opnd to ty. 3506 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3507 Value *NextVal = ExtInst->getOperand(0); 3508 TPT.eraseInstruction(ExtInst, NextVal); 3509 return NextVal; 3510 } 3511 3512 Value *TypePromotionHelper::promoteOperandForOther( 3513 Instruction *Ext, TypePromotionTransaction &TPT, 3514 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3515 SmallVectorImpl<Instruction *> *Exts, 3516 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3517 bool IsSExt) { 3518 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3519 // get through it and this method should not be called. 3520 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3521 CreatedInstsCost = 0; 3522 if (!ExtOpnd->hasOneUse()) { 3523 // ExtOpnd will be promoted. 3524 // All its uses, but Ext, will need to use a truncated value of the 3525 // promoted version. 3526 // Create the truncate now. 3527 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3528 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3529 // Insert it just after the definition. 3530 ITrunc->moveAfter(ExtOpnd); 3531 if (Truncs) 3532 Truncs->push_back(ITrunc); 3533 } 3534 3535 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3536 // Restore the operand of Ext (which has been replaced by the previous call 3537 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3538 TPT.setOperand(Ext, 0, ExtOpnd); 3539 } 3540 3541 // Get through the Instruction: 3542 // 1. Update its type. 3543 // 2. Replace the uses of Ext by Inst. 3544 // 3. Extend each operand that needs to be extended. 3545 3546 // Remember the original type of the instruction before promotion. 3547 // This is useful to know that the high bits are sign extended bits. 3548 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3549 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3550 // Step #1. 3551 TPT.mutateType(ExtOpnd, Ext->getType()); 3552 // Step #2. 3553 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3554 // Step #3. 3555 Instruction *ExtForOpnd = Ext; 3556 3557 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3558 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3559 ++OpIdx) { 3560 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3561 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3562 !shouldExtOperand(ExtOpnd, OpIdx)) { 3563 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3564 continue; 3565 } 3566 // Check if we can statically extend the operand. 3567 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3568 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3569 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3570 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3571 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3572 : Cst->getValue().zext(BitWidth); 3573 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3574 continue; 3575 } 3576 // UndefValue are typed, so we have to statically sign extend them. 3577 if (isa<UndefValue>(Opnd)) { 3578 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3579 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3580 continue; 3581 } 3582 3583 // Otherwise we have to explicity sign extend the operand. 3584 // Check if Ext was reused to extend an operand. 3585 if (!ExtForOpnd) { 3586 // If yes, create a new one. 3587 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3588 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3589 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3590 if (!isa<Instruction>(ValForExtOpnd)) { 3591 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3592 continue; 3593 } 3594 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3595 } 3596 if (Exts) 3597 Exts->push_back(ExtForOpnd); 3598 TPT.setOperand(ExtForOpnd, 0, Opnd); 3599 3600 // Move the sign extension before the insertion point. 3601 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3602 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3603 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3604 // If more sext are required, new instructions will have to be created. 3605 ExtForOpnd = nullptr; 3606 } 3607 if (ExtForOpnd == Ext) { 3608 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3609 TPT.eraseInstruction(Ext); 3610 } 3611 return ExtOpnd; 3612 } 3613 3614 /// Check whether or not promoting an instruction to a wider type is profitable. 3615 /// \p NewCost gives the cost of extension instructions created by the 3616 /// promotion. 3617 /// \p OldCost gives the cost of extension instructions before the promotion 3618 /// plus the number of instructions that have been 3619 /// matched in the addressing mode the promotion. 3620 /// \p PromotedOperand is the value that has been promoted. 3621 /// \return True if the promotion is profitable, false otherwise. 3622 bool AddressingModeMatcher::isPromotionProfitable( 3623 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3624 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3625 << '\n'); 3626 // The cost of the new extensions is greater than the cost of the 3627 // old extension plus what we folded. 3628 // This is not profitable. 3629 if (NewCost > OldCost) 3630 return false; 3631 if (NewCost < OldCost) 3632 return true; 3633 // The promotion is neutral but it may help folding the sign extension in 3634 // loads for instance. 3635 // Check that we did not create an illegal instruction. 3636 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3637 } 3638 3639 /// Given an instruction or constant expr, see if we can fold the operation 3640 /// into the addressing mode. If so, update the addressing mode and return 3641 /// true, otherwise return false without modifying AddrMode. 3642 /// If \p MovedAway is not NULL, it contains the information of whether or 3643 /// not AddrInst has to be folded into the addressing mode on success. 3644 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3645 /// because it has been moved away. 3646 /// Thus AddrInst must not be added in the matched instructions. 3647 /// This state can happen when AddrInst is a sext, since it may be moved away. 3648 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3649 /// not be referenced anymore. 3650 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3651 unsigned Depth, 3652 bool *MovedAway) { 3653 // Avoid exponential behavior on extremely deep expression trees. 3654 if (Depth >= 5) return false; 3655 3656 // By default, all matched instructions stay in place. 3657 if (MovedAway) 3658 *MovedAway = false; 3659 3660 switch (Opcode) { 3661 case Instruction::PtrToInt: 3662 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3663 return matchAddr(AddrInst->getOperand(0), Depth); 3664 case Instruction::IntToPtr: { 3665 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3666 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3667 // This inttoptr is a no-op if the integer type is pointer sized. 3668 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3669 return matchAddr(AddrInst->getOperand(0), Depth); 3670 return false; 3671 } 3672 case Instruction::BitCast: 3673 // BitCast is always a noop, and we can handle it as long as it is 3674 // int->int or pointer->pointer (we don't want int<->fp or something). 3675 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3676 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3677 // Don't touch identity bitcasts. These were probably put here by LSR, 3678 // and we don't want to mess around with them. Assume it knows what it 3679 // is doing. 3680 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3681 return matchAddr(AddrInst->getOperand(0), Depth); 3682 return false; 3683 case Instruction::AddrSpaceCast: { 3684 unsigned SrcAS 3685 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3686 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3687 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3688 return matchAddr(AddrInst->getOperand(0), Depth); 3689 return false; 3690 } 3691 case Instruction::Add: { 3692 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3693 ExtAddrMode BackupAddrMode = AddrMode; 3694 unsigned OldSize = AddrModeInsts.size(); 3695 // Start a transaction at this point. 3696 // The LHS may match but not the RHS. 3697 // Therefore, we need a higher level restoration point to undo partially 3698 // matched operation. 3699 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3700 TPT.getRestorationPoint(); 3701 3702 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3703 matchAddr(AddrInst->getOperand(0), Depth+1)) 3704 return true; 3705 3706 // Restore the old addr mode info. 3707 AddrMode = BackupAddrMode; 3708 AddrModeInsts.resize(OldSize); 3709 TPT.rollback(LastKnownGood); 3710 3711 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3712 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3713 matchAddr(AddrInst->getOperand(1), Depth+1)) 3714 return true; 3715 3716 // Otherwise we definitely can't merge the ADD in. 3717 AddrMode = BackupAddrMode; 3718 AddrModeInsts.resize(OldSize); 3719 TPT.rollback(LastKnownGood); 3720 break; 3721 } 3722 //case Instruction::Or: 3723 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3724 //break; 3725 case Instruction::Mul: 3726 case Instruction::Shl: { 3727 // Can only handle X*C and X << C. 3728 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3729 if (!RHS || RHS->getBitWidth() > 64) 3730 return false; 3731 int64_t Scale = RHS->getSExtValue(); 3732 if (Opcode == Instruction::Shl) 3733 Scale = 1LL << Scale; 3734 3735 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3736 } 3737 case Instruction::GetElementPtr: { 3738 // Scan the GEP. We check it if it contains constant offsets and at most 3739 // one variable offset. 3740 int VariableOperand = -1; 3741 unsigned VariableScale = 0; 3742 3743 int64_t ConstantOffset = 0; 3744 gep_type_iterator GTI = gep_type_begin(AddrInst); 3745 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3746 if (StructType *STy = GTI.getStructTypeOrNull()) { 3747 const StructLayout *SL = DL.getStructLayout(STy); 3748 unsigned Idx = 3749 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3750 ConstantOffset += SL->getElementOffset(Idx); 3751 } else { 3752 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3753 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3754 ConstantOffset += CI->getSExtValue() * TypeSize; 3755 } else if (TypeSize) { // Scales of zero don't do anything. 3756 // We only allow one variable index at the moment. 3757 if (VariableOperand != -1) 3758 return false; 3759 3760 // Remember the variable index. 3761 VariableOperand = i; 3762 VariableScale = TypeSize; 3763 } 3764 } 3765 } 3766 3767 // A common case is for the GEP to only do a constant offset. In this case, 3768 // just add it to the disp field and check validity. 3769 if (VariableOperand == -1) { 3770 AddrMode.BaseOffs += ConstantOffset; 3771 if (ConstantOffset == 0 || 3772 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3773 // Check to see if we can fold the base pointer in too. 3774 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3775 return true; 3776 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3777 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3778 ConstantOffset > 0) { 3779 // Record GEPs with non-zero offsets as candidates for splitting in the 3780 // event that the offset cannot fit into the r+i addressing mode. 3781 // Simple and common case that only one GEP is used in calculating the 3782 // address for the memory access. 3783 Value *Base = AddrInst->getOperand(0); 3784 auto *BaseI = dyn_cast<Instruction>(Base); 3785 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3786 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3787 (BaseI && !isa<CastInst>(BaseI) && 3788 !isa<GetElementPtrInst>(BaseI))) { 3789 // If the base is an instruction, make sure the GEP is not in the same 3790 // basic block as the base. If the base is an argument or global 3791 // value, make sure the GEP is not in the entry block. Otherwise, 3792 // instruction selection can undo the split. Also make sure the 3793 // parent block allows inserting non-PHI instructions before the 3794 // terminator. 3795 BasicBlock *Parent = 3796 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3797 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3798 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3799 } 3800 } 3801 AddrMode.BaseOffs -= ConstantOffset; 3802 return false; 3803 } 3804 3805 // Save the valid addressing mode in case we can't match. 3806 ExtAddrMode BackupAddrMode = AddrMode; 3807 unsigned OldSize = AddrModeInsts.size(); 3808 3809 // See if the scale and offset amount is valid for this target. 3810 AddrMode.BaseOffs += ConstantOffset; 3811 3812 // Match the base operand of the GEP. 3813 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3814 // If it couldn't be matched, just stuff the value in a register. 3815 if (AddrMode.HasBaseReg) { 3816 AddrMode = BackupAddrMode; 3817 AddrModeInsts.resize(OldSize); 3818 return false; 3819 } 3820 AddrMode.HasBaseReg = true; 3821 AddrMode.BaseReg = AddrInst->getOperand(0); 3822 } 3823 3824 // Match the remaining variable portion of the GEP. 3825 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3826 Depth)) { 3827 // If it couldn't be matched, try stuffing the base into a register 3828 // instead of matching it, and retrying the match of the scale. 3829 AddrMode = BackupAddrMode; 3830 AddrModeInsts.resize(OldSize); 3831 if (AddrMode.HasBaseReg) 3832 return false; 3833 AddrMode.HasBaseReg = true; 3834 AddrMode.BaseReg = AddrInst->getOperand(0); 3835 AddrMode.BaseOffs += ConstantOffset; 3836 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3837 VariableScale, Depth)) { 3838 // If even that didn't work, bail. 3839 AddrMode = BackupAddrMode; 3840 AddrModeInsts.resize(OldSize); 3841 return false; 3842 } 3843 } 3844 3845 return true; 3846 } 3847 case Instruction::SExt: 3848 case Instruction::ZExt: { 3849 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3850 if (!Ext) 3851 return false; 3852 3853 // Try to move this ext out of the way of the addressing mode. 3854 // Ask for a method for doing so. 3855 TypePromotionHelper::Action TPH = 3856 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3857 if (!TPH) 3858 return false; 3859 3860 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3861 TPT.getRestorationPoint(); 3862 unsigned CreatedInstsCost = 0; 3863 unsigned ExtCost = !TLI.isExtFree(Ext); 3864 Value *PromotedOperand = 3865 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3866 // SExt has been moved away. 3867 // Thus either it will be rematched later in the recursive calls or it is 3868 // gone. Anyway, we must not fold it into the addressing mode at this point. 3869 // E.g., 3870 // op = add opnd, 1 3871 // idx = ext op 3872 // addr = gep base, idx 3873 // is now: 3874 // promotedOpnd = ext opnd <- no match here 3875 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3876 // addr = gep base, op <- match 3877 if (MovedAway) 3878 *MovedAway = true; 3879 3880 assert(PromotedOperand && 3881 "TypePromotionHelper should have filtered out those cases"); 3882 3883 ExtAddrMode BackupAddrMode = AddrMode; 3884 unsigned OldSize = AddrModeInsts.size(); 3885 3886 if (!matchAddr(PromotedOperand, Depth) || 3887 // The total of the new cost is equal to the cost of the created 3888 // instructions. 3889 // The total of the old cost is equal to the cost of the extension plus 3890 // what we have saved in the addressing mode. 3891 !isPromotionProfitable(CreatedInstsCost, 3892 ExtCost + (AddrModeInsts.size() - OldSize), 3893 PromotedOperand)) { 3894 AddrMode = BackupAddrMode; 3895 AddrModeInsts.resize(OldSize); 3896 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3897 TPT.rollback(LastKnownGood); 3898 return false; 3899 } 3900 return true; 3901 } 3902 } 3903 return false; 3904 } 3905 3906 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3907 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3908 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3909 /// for the target. 3910 /// 3911 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3912 // Start a transaction at this point that we will rollback if the matching 3913 // fails. 3914 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3915 TPT.getRestorationPoint(); 3916 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3917 // Fold in immediates if legal for the target. 3918 AddrMode.BaseOffs += CI->getSExtValue(); 3919 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3920 return true; 3921 AddrMode.BaseOffs -= CI->getSExtValue(); 3922 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3923 // If this is a global variable, try to fold it into the addressing mode. 3924 if (!AddrMode.BaseGV) { 3925 AddrMode.BaseGV = GV; 3926 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3927 return true; 3928 AddrMode.BaseGV = nullptr; 3929 } 3930 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3931 ExtAddrMode BackupAddrMode = AddrMode; 3932 unsigned OldSize = AddrModeInsts.size(); 3933 3934 // Check to see if it is possible to fold this operation. 3935 bool MovedAway = false; 3936 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3937 // This instruction may have been moved away. If so, there is nothing 3938 // to check here. 3939 if (MovedAway) 3940 return true; 3941 // Okay, it's possible to fold this. Check to see if it is actually 3942 // *profitable* to do so. We use a simple cost model to avoid increasing 3943 // register pressure too much. 3944 if (I->hasOneUse() || 3945 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3946 AddrModeInsts.push_back(I); 3947 return true; 3948 } 3949 3950 // It isn't profitable to do this, roll back. 3951 //cerr << "NOT FOLDING: " << *I; 3952 AddrMode = BackupAddrMode; 3953 AddrModeInsts.resize(OldSize); 3954 TPT.rollback(LastKnownGood); 3955 } 3956 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3957 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3958 return true; 3959 TPT.rollback(LastKnownGood); 3960 } else if (isa<ConstantPointerNull>(Addr)) { 3961 // Null pointer gets folded without affecting the addressing mode. 3962 return true; 3963 } 3964 3965 // Worse case, the target should support [reg] addressing modes. :) 3966 if (!AddrMode.HasBaseReg) { 3967 AddrMode.HasBaseReg = true; 3968 AddrMode.BaseReg = Addr; 3969 // Still check for legality in case the target supports [imm] but not [i+r]. 3970 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3971 return true; 3972 AddrMode.HasBaseReg = false; 3973 AddrMode.BaseReg = nullptr; 3974 } 3975 3976 // If the base register is already taken, see if we can do [r+r]. 3977 if (AddrMode.Scale == 0) { 3978 AddrMode.Scale = 1; 3979 AddrMode.ScaledReg = Addr; 3980 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3981 return true; 3982 AddrMode.Scale = 0; 3983 AddrMode.ScaledReg = nullptr; 3984 } 3985 // Couldn't match. 3986 TPT.rollback(LastKnownGood); 3987 return false; 3988 } 3989 3990 /// Check to see if all uses of OpVal by the specified inline asm call are due 3991 /// to memory operands. If so, return true, otherwise return false. 3992 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3993 const TargetLowering &TLI, 3994 const TargetRegisterInfo &TRI) { 3995 const Function *F = CI->getFunction(); 3996 TargetLowering::AsmOperandInfoVector TargetConstraints = 3997 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3998 ImmutableCallSite(CI)); 3999 4000 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4001 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4002 4003 // Compute the constraint code and ConstraintType to use. 4004 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4005 4006 // If this asm operand is our Value*, and if it isn't an indirect memory 4007 // operand, we can't fold it! 4008 if (OpInfo.CallOperandVal == OpVal && 4009 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4010 !OpInfo.isIndirect)) 4011 return false; 4012 } 4013 4014 return true; 4015 } 4016 4017 // Max number of memory uses to look at before aborting the search to conserve 4018 // compile time. 4019 static constexpr int MaxMemoryUsesToScan = 20; 4020 4021 /// Recursively walk all the uses of I until we find a memory use. 4022 /// If we find an obviously non-foldable instruction, return true. 4023 /// Add the ultimately found memory instructions to MemoryUses. 4024 static bool FindAllMemoryUses( 4025 Instruction *I, 4026 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4027 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4028 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4029 // If we already considered this instruction, we're done. 4030 if (!ConsideredInsts.insert(I).second) 4031 return false; 4032 4033 // If this is an obviously unfoldable instruction, bail out. 4034 if (!MightBeFoldableInst(I)) 4035 return true; 4036 4037 const bool OptSize = I->getFunction()->optForSize(); 4038 4039 // Loop over all the uses, recursively processing them. 4040 for (Use &U : I->uses()) { 4041 // Conservatively return true if we're seeing a large number or a deep chain 4042 // of users. This avoids excessive compilation times in pathological cases. 4043 if (SeenInsts++ >= MaxMemoryUsesToScan) 4044 return true; 4045 4046 Instruction *UserI = cast<Instruction>(U.getUser()); 4047 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4048 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4049 continue; 4050 } 4051 4052 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4053 unsigned opNo = U.getOperandNo(); 4054 if (opNo != StoreInst::getPointerOperandIndex()) 4055 return true; // Storing addr, not into addr. 4056 MemoryUses.push_back(std::make_pair(SI, opNo)); 4057 continue; 4058 } 4059 4060 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4061 unsigned opNo = U.getOperandNo(); 4062 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4063 return true; // Storing addr, not into addr. 4064 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4065 continue; 4066 } 4067 4068 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4069 unsigned opNo = U.getOperandNo(); 4070 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4071 return true; // Storing addr, not into addr. 4072 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4073 continue; 4074 } 4075 4076 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4077 // If this is a cold call, we can sink the addressing calculation into 4078 // the cold path. See optimizeCallInst 4079 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4080 continue; 4081 4082 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4083 if (!IA) return true; 4084 4085 // If this is a memory operand, we're cool, otherwise bail out. 4086 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4087 return true; 4088 continue; 4089 } 4090 4091 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4092 SeenInsts)) 4093 return true; 4094 } 4095 4096 return false; 4097 } 4098 4099 /// Return true if Val is already known to be live at the use site that we're 4100 /// folding it into. If so, there is no cost to include it in the addressing 4101 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4102 /// instruction already. 4103 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4104 Value *KnownLive2) { 4105 // If Val is either of the known-live values, we know it is live! 4106 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4107 return true; 4108 4109 // All values other than instructions and arguments (e.g. constants) are live. 4110 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4111 4112 // If Val is a constant sized alloca in the entry block, it is live, this is 4113 // true because it is just a reference to the stack/frame pointer, which is 4114 // live for the whole function. 4115 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4116 if (AI->isStaticAlloca()) 4117 return true; 4118 4119 // Check to see if this value is already used in the memory instruction's 4120 // block. If so, it's already live into the block at the very least, so we 4121 // can reasonably fold it. 4122 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4123 } 4124 4125 /// It is possible for the addressing mode of the machine to fold the specified 4126 /// instruction into a load or store that ultimately uses it. 4127 /// However, the specified instruction has multiple uses. 4128 /// Given this, it may actually increase register pressure to fold it 4129 /// into the load. For example, consider this code: 4130 /// 4131 /// X = ... 4132 /// Y = X+1 4133 /// use(Y) -> nonload/store 4134 /// Z = Y+1 4135 /// load Z 4136 /// 4137 /// In this case, Y has multiple uses, and can be folded into the load of Z 4138 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4139 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4140 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4141 /// number of computations either. 4142 /// 4143 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4144 /// X was live across 'load Z' for other reasons, we actually *would* want to 4145 /// fold the addressing mode in the Z case. This would make Y die earlier. 4146 bool AddressingModeMatcher:: 4147 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4148 ExtAddrMode &AMAfter) { 4149 if (IgnoreProfitability) return true; 4150 4151 // AMBefore is the addressing mode before this instruction was folded into it, 4152 // and AMAfter is the addressing mode after the instruction was folded. Get 4153 // the set of registers referenced by AMAfter and subtract out those 4154 // referenced by AMBefore: this is the set of values which folding in this 4155 // address extends the lifetime of. 4156 // 4157 // Note that there are only two potential values being referenced here, 4158 // BaseReg and ScaleReg (global addresses are always available, as are any 4159 // folded immediates). 4160 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4161 4162 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4163 // lifetime wasn't extended by adding this instruction. 4164 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4165 BaseReg = nullptr; 4166 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4167 ScaledReg = nullptr; 4168 4169 // If folding this instruction (and it's subexprs) didn't extend any live 4170 // ranges, we're ok with it. 4171 if (!BaseReg && !ScaledReg) 4172 return true; 4173 4174 // If all uses of this instruction can have the address mode sunk into them, 4175 // we can remove the addressing mode and effectively trade one live register 4176 // for another (at worst.) In this context, folding an addressing mode into 4177 // the use is just a particularly nice way of sinking it. 4178 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4179 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4180 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4181 return false; // Has a non-memory, non-foldable use! 4182 4183 // Now that we know that all uses of this instruction are part of a chain of 4184 // computation involving only operations that could theoretically be folded 4185 // into a memory use, loop over each of these memory operation uses and see 4186 // if they could *actually* fold the instruction. The assumption is that 4187 // addressing modes are cheap and that duplicating the computation involved 4188 // many times is worthwhile, even on a fastpath. For sinking candidates 4189 // (i.e. cold call sites), this serves as a way to prevent excessive code 4190 // growth since most architectures have some reasonable small and fast way to 4191 // compute an effective address. (i.e LEA on x86) 4192 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4193 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4194 Instruction *User = MemoryUses[i].first; 4195 unsigned OpNo = MemoryUses[i].second; 4196 4197 // Get the access type of this use. If the use isn't a pointer, we don't 4198 // know what it accesses. 4199 Value *Address = User->getOperand(OpNo); 4200 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4201 if (!AddrTy) 4202 return false; 4203 Type *AddressAccessTy = AddrTy->getElementType(); 4204 unsigned AS = AddrTy->getAddressSpace(); 4205 4206 // Do a match against the root of this address, ignoring profitability. This 4207 // will tell us if the addressing mode for the memory operation will 4208 // *actually* cover the shared instruction. 4209 ExtAddrMode Result; 4210 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4211 0); 4212 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4213 TPT.getRestorationPoint(); 4214 AddressingModeMatcher Matcher( 4215 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4216 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4217 Matcher.IgnoreProfitability = true; 4218 bool Success = Matcher.matchAddr(Address, 0); 4219 (void)Success; assert(Success && "Couldn't select *anything*?"); 4220 4221 // The match was to check the profitability, the changes made are not 4222 // part of the original matcher. Therefore, they should be dropped 4223 // otherwise the original matcher will not present the right state. 4224 TPT.rollback(LastKnownGood); 4225 4226 // If the match didn't cover I, then it won't be shared by it. 4227 if (!is_contained(MatchedAddrModeInsts, I)) 4228 return false; 4229 4230 MatchedAddrModeInsts.clear(); 4231 } 4232 4233 return true; 4234 } 4235 4236 /// Return true if the specified values are defined in a 4237 /// different basic block than BB. 4238 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4239 if (Instruction *I = dyn_cast<Instruction>(V)) 4240 return I->getParent() != BB; 4241 return false; 4242 } 4243 4244 /// Sink addressing mode computation immediate before MemoryInst if doing so 4245 /// can be done without increasing register pressure. The need for the 4246 /// register pressure constraint means this can end up being an all or nothing 4247 /// decision for all uses of the same addressing computation. 4248 /// 4249 /// Load and Store Instructions often have addressing modes that can do 4250 /// significant amounts of computation. As such, instruction selection will try 4251 /// to get the load or store to do as much computation as possible for the 4252 /// program. The problem is that isel can only see within a single block. As 4253 /// such, we sink as much legal addressing mode work into the block as possible. 4254 /// 4255 /// This method is used to optimize both load/store and inline asms with memory 4256 /// operands. It's also used to sink addressing computations feeding into cold 4257 /// call sites into their (cold) basic block. 4258 /// 4259 /// The motivation for handling sinking into cold blocks is that doing so can 4260 /// both enable other address mode sinking (by satisfying the register pressure 4261 /// constraint above), and reduce register pressure globally (by removing the 4262 /// addressing mode computation from the fast path entirely.). 4263 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4264 Type *AccessTy, unsigned AddrSpace) { 4265 Value *Repl = Addr; 4266 4267 // Try to collapse single-value PHI nodes. This is necessary to undo 4268 // unprofitable PRE transformations. 4269 SmallVector<Value*, 8> worklist; 4270 SmallPtrSet<Value*, 16> Visited; 4271 worklist.push_back(Addr); 4272 4273 // Use a worklist to iteratively look through PHI and select nodes, and 4274 // ensure that the addressing mode obtained from the non-PHI/select roots of 4275 // the graph are compatible. 4276 bool PhiOrSelectSeen = false; 4277 SmallVector<Instruction*, 16> AddrModeInsts; 4278 const SimplifyQuery SQ(*DL, TLInfo); 4279 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4280 TypePromotionTransaction TPT(RemovedInsts); 4281 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4282 TPT.getRestorationPoint(); 4283 while (!worklist.empty()) { 4284 Value *V = worklist.back(); 4285 worklist.pop_back(); 4286 4287 // We allow traversing cyclic Phi nodes. 4288 // In case of success after this loop we ensure that traversing through 4289 // Phi nodes ends up with all cases to compute address of the form 4290 // BaseGV + Base + Scale * Index + Offset 4291 // where Scale and Offset are constans and BaseGV, Base and Index 4292 // are exactly the same Values in all cases. 4293 // It means that BaseGV, Scale and Offset dominate our memory instruction 4294 // and have the same value as they had in address computation represented 4295 // as Phi. So we can safely sink address computation to memory instruction. 4296 if (!Visited.insert(V).second) 4297 continue; 4298 4299 // For a PHI node, push all of its incoming values. 4300 if (PHINode *P = dyn_cast<PHINode>(V)) { 4301 for (Value *IncValue : P->incoming_values()) 4302 worklist.push_back(IncValue); 4303 PhiOrSelectSeen = true; 4304 continue; 4305 } 4306 // Similar for select. 4307 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4308 worklist.push_back(SI->getFalseValue()); 4309 worklist.push_back(SI->getTrueValue()); 4310 PhiOrSelectSeen = true; 4311 continue; 4312 } 4313 4314 // For non-PHIs, determine the addressing mode being computed. Note that 4315 // the result may differ depending on what other uses our candidate 4316 // addressing instructions might have. 4317 AddrModeInsts.clear(); 4318 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4319 0); 4320 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4321 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4322 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4323 4324 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4325 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4326 !NewGEPBases.count(GEP)) { 4327 // If splitting the underlying data structure can reduce the offset of a 4328 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4329 // previously split data structures. 4330 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4331 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4332 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4333 } 4334 4335 NewAddrMode.OriginalValue = V; 4336 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4337 break; 4338 } 4339 4340 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4341 // or we have multiple but either couldn't combine them or combining them 4342 // wouldn't do anything useful, bail out now. 4343 if (!AddrModes.combineAddrModes()) { 4344 TPT.rollback(LastKnownGood); 4345 return false; 4346 } 4347 TPT.commit(); 4348 4349 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4350 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4351 4352 // If all the instructions matched are already in this BB, don't do anything. 4353 // If we saw a Phi node then it is not local definitely, and if we saw a select 4354 // then we want to push the address calculation past it even if it's already 4355 // in this BB. 4356 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4357 return IsNonLocalValue(V, MemoryInst->getParent()); 4358 })) { 4359 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4360 << "\n"); 4361 return false; 4362 } 4363 4364 // Insert this computation right after this user. Since our caller is 4365 // scanning from the top of the BB to the bottom, reuse of the expr are 4366 // guaranteed to happen later. 4367 IRBuilder<> Builder(MemoryInst); 4368 4369 // Now that we determined the addressing expression we want to use and know 4370 // that we have to sink it into this block. Check to see if we have already 4371 // done this for some other load/store instr in this block. If so, reuse 4372 // the computation. Before attempting reuse, check if the address is valid 4373 // as it may have been erased. 4374 4375 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4376 4377 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4378 if (SunkAddr) { 4379 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4380 << " for " << *MemoryInst << "\n"); 4381 if (SunkAddr->getType() != Addr->getType()) 4382 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4383 } else if (AddrSinkUsingGEPs || 4384 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4385 // By default, we use the GEP-based method when AA is used later. This 4386 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4387 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4388 << " for " << *MemoryInst << "\n"); 4389 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4390 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4391 4392 // First, find the pointer. 4393 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4394 ResultPtr = AddrMode.BaseReg; 4395 AddrMode.BaseReg = nullptr; 4396 } 4397 4398 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4399 // We can't add more than one pointer together, nor can we scale a 4400 // pointer (both of which seem meaningless). 4401 if (ResultPtr || AddrMode.Scale != 1) 4402 return false; 4403 4404 ResultPtr = AddrMode.ScaledReg; 4405 AddrMode.Scale = 0; 4406 } 4407 4408 // It is only safe to sign extend the BaseReg if we know that the math 4409 // required to create it did not overflow before we extend it. Since 4410 // the original IR value was tossed in favor of a constant back when 4411 // the AddrMode was created we need to bail out gracefully if widths 4412 // do not match instead of extending it. 4413 // 4414 // (See below for code to add the scale.) 4415 if (AddrMode.Scale) { 4416 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4417 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4418 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4419 return false; 4420 } 4421 4422 if (AddrMode.BaseGV) { 4423 if (ResultPtr) 4424 return false; 4425 4426 ResultPtr = AddrMode.BaseGV; 4427 } 4428 4429 // If the real base value actually came from an inttoptr, then the matcher 4430 // will look through it and provide only the integer value. In that case, 4431 // use it here. 4432 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4433 if (!ResultPtr && AddrMode.BaseReg) { 4434 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4435 "sunkaddr"); 4436 AddrMode.BaseReg = nullptr; 4437 } else if (!ResultPtr && AddrMode.Scale == 1) { 4438 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4439 "sunkaddr"); 4440 AddrMode.Scale = 0; 4441 } 4442 } 4443 4444 if (!ResultPtr && 4445 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4446 SunkAddr = Constant::getNullValue(Addr->getType()); 4447 } else if (!ResultPtr) { 4448 return false; 4449 } else { 4450 Type *I8PtrTy = 4451 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4452 Type *I8Ty = Builder.getInt8Ty(); 4453 4454 // Start with the base register. Do this first so that subsequent address 4455 // matching finds it last, which will prevent it from trying to match it 4456 // as the scaled value in case it happens to be a mul. That would be 4457 // problematic if we've sunk a different mul for the scale, because then 4458 // we'd end up sinking both muls. 4459 if (AddrMode.BaseReg) { 4460 Value *V = AddrMode.BaseReg; 4461 if (V->getType() != IntPtrTy) 4462 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4463 4464 ResultIndex = V; 4465 } 4466 4467 // Add the scale value. 4468 if (AddrMode.Scale) { 4469 Value *V = AddrMode.ScaledReg; 4470 if (V->getType() == IntPtrTy) { 4471 // done. 4472 } else { 4473 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4474 cast<IntegerType>(V->getType())->getBitWidth() && 4475 "We can't transform if ScaledReg is too narrow"); 4476 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4477 } 4478 4479 if (AddrMode.Scale != 1) 4480 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4481 "sunkaddr"); 4482 if (ResultIndex) 4483 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4484 else 4485 ResultIndex = V; 4486 } 4487 4488 // Add in the Base Offset if present. 4489 if (AddrMode.BaseOffs) { 4490 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4491 if (ResultIndex) { 4492 // We need to add this separately from the scale above to help with 4493 // SDAG consecutive load/store merging. 4494 if (ResultPtr->getType() != I8PtrTy) 4495 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4496 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4497 } 4498 4499 ResultIndex = V; 4500 } 4501 4502 if (!ResultIndex) { 4503 SunkAddr = ResultPtr; 4504 } else { 4505 if (ResultPtr->getType() != I8PtrTy) 4506 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4507 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4508 } 4509 4510 if (SunkAddr->getType() != Addr->getType()) 4511 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4512 } 4513 } else { 4514 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4515 // non-integral pointers, so in that case bail out now. 4516 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4517 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4518 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4519 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4520 if (DL->isNonIntegralPointerType(Addr->getType()) || 4521 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4522 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4523 (AddrMode.BaseGV && 4524 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4525 return false; 4526 4527 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4528 << " for " << *MemoryInst << "\n"); 4529 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4530 Value *Result = nullptr; 4531 4532 // Start with the base register. Do this first so that subsequent address 4533 // matching finds it last, which will prevent it from trying to match it 4534 // as the scaled value in case it happens to be a mul. That would be 4535 // problematic if we've sunk a different mul for the scale, because then 4536 // we'd end up sinking both muls. 4537 if (AddrMode.BaseReg) { 4538 Value *V = AddrMode.BaseReg; 4539 if (V->getType()->isPointerTy()) 4540 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4541 if (V->getType() != IntPtrTy) 4542 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4543 Result = V; 4544 } 4545 4546 // Add the scale value. 4547 if (AddrMode.Scale) { 4548 Value *V = AddrMode.ScaledReg; 4549 if (V->getType() == IntPtrTy) { 4550 // done. 4551 } else if (V->getType()->isPointerTy()) { 4552 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4553 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4554 cast<IntegerType>(V->getType())->getBitWidth()) { 4555 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4556 } else { 4557 // It is only safe to sign extend the BaseReg if we know that the math 4558 // required to create it did not overflow before we extend it. Since 4559 // the original IR value was tossed in favor of a constant back when 4560 // the AddrMode was created we need to bail out gracefully if widths 4561 // do not match instead of extending it. 4562 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4563 if (I && (Result != AddrMode.BaseReg)) 4564 I->eraseFromParent(); 4565 return false; 4566 } 4567 if (AddrMode.Scale != 1) 4568 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4569 "sunkaddr"); 4570 if (Result) 4571 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4572 else 4573 Result = V; 4574 } 4575 4576 // Add in the BaseGV if present. 4577 if (AddrMode.BaseGV) { 4578 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4579 if (Result) 4580 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4581 else 4582 Result = V; 4583 } 4584 4585 // Add in the Base Offset if present. 4586 if (AddrMode.BaseOffs) { 4587 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4588 if (Result) 4589 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4590 else 4591 Result = V; 4592 } 4593 4594 if (!Result) 4595 SunkAddr = Constant::getNullValue(Addr->getType()); 4596 else 4597 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4598 } 4599 4600 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4601 // Store the newly computed address into the cache. In the case we reused a 4602 // value, this should be idempotent. 4603 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4604 4605 // If we have no uses, recursively delete the value and all dead instructions 4606 // using it. 4607 if (Repl->use_empty()) { 4608 // This can cause recursive deletion, which can invalidate our iterator. 4609 // Use a WeakTrackingVH to hold onto it in case this happens. 4610 Value *CurValue = &*CurInstIterator; 4611 WeakTrackingVH IterHandle(CurValue); 4612 BasicBlock *BB = CurInstIterator->getParent(); 4613 4614 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4615 4616 if (IterHandle != CurValue) { 4617 // If the iterator instruction was recursively deleted, start over at the 4618 // start of the block. 4619 CurInstIterator = BB->begin(); 4620 SunkAddrs.clear(); 4621 } 4622 } 4623 ++NumMemoryInsts; 4624 return true; 4625 } 4626 4627 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4628 /// address computing into the block when possible / profitable. 4629 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4630 bool MadeChange = false; 4631 4632 const TargetRegisterInfo *TRI = 4633 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4634 TargetLowering::AsmOperandInfoVector TargetConstraints = 4635 TLI->ParseConstraints(*DL, TRI, CS); 4636 unsigned ArgNo = 0; 4637 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4638 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4639 4640 // Compute the constraint code and ConstraintType to use. 4641 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4642 4643 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4644 OpInfo.isIndirect) { 4645 Value *OpVal = CS->getArgOperand(ArgNo++); 4646 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4647 } else if (OpInfo.Type == InlineAsm::isInput) 4648 ArgNo++; 4649 } 4650 4651 return MadeChange; 4652 } 4653 4654 /// Check if all the uses of \p Val are equivalent (or free) zero or 4655 /// sign extensions. 4656 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4657 assert(!Val->use_empty() && "Input must have at least one use"); 4658 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4659 bool IsSExt = isa<SExtInst>(FirstUser); 4660 Type *ExtTy = FirstUser->getType(); 4661 for (const User *U : Val->users()) { 4662 const Instruction *UI = cast<Instruction>(U); 4663 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4664 return false; 4665 Type *CurTy = UI->getType(); 4666 // Same input and output types: Same instruction after CSE. 4667 if (CurTy == ExtTy) 4668 continue; 4669 4670 // If IsSExt is true, we are in this situation: 4671 // a = Val 4672 // b = sext ty1 a to ty2 4673 // c = sext ty1 a to ty3 4674 // Assuming ty2 is shorter than ty3, this could be turned into: 4675 // a = Val 4676 // b = sext ty1 a to ty2 4677 // c = sext ty2 b to ty3 4678 // However, the last sext is not free. 4679 if (IsSExt) 4680 return false; 4681 4682 // This is a ZExt, maybe this is free to extend from one type to another. 4683 // In that case, we would not account for a different use. 4684 Type *NarrowTy; 4685 Type *LargeTy; 4686 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4687 CurTy->getScalarType()->getIntegerBitWidth()) { 4688 NarrowTy = CurTy; 4689 LargeTy = ExtTy; 4690 } else { 4691 NarrowTy = ExtTy; 4692 LargeTy = CurTy; 4693 } 4694 4695 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4696 return false; 4697 } 4698 // All uses are the same or can be derived from one another for free. 4699 return true; 4700 } 4701 4702 /// Try to speculatively promote extensions in \p Exts and continue 4703 /// promoting through newly promoted operands recursively as far as doing so is 4704 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4705 /// When some promotion happened, \p TPT contains the proper state to revert 4706 /// them. 4707 /// 4708 /// \return true if some promotion happened, false otherwise. 4709 bool CodeGenPrepare::tryToPromoteExts( 4710 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4711 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4712 unsigned CreatedInstsCost) { 4713 bool Promoted = false; 4714 4715 // Iterate over all the extensions to try to promote them. 4716 for (auto I : Exts) { 4717 // Early check if we directly have ext(load). 4718 if (isa<LoadInst>(I->getOperand(0))) { 4719 ProfitablyMovedExts.push_back(I); 4720 continue; 4721 } 4722 4723 // Check whether or not we want to do any promotion. The reason we have 4724 // this check inside the for loop is to catch the case where an extension 4725 // is directly fed by a load because in such case the extension can be moved 4726 // up without any promotion on its operands. 4727 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4728 return false; 4729 4730 // Get the action to perform the promotion. 4731 TypePromotionHelper::Action TPH = 4732 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4733 // Check if we can promote. 4734 if (!TPH) { 4735 // Save the current extension as we cannot move up through its operand. 4736 ProfitablyMovedExts.push_back(I); 4737 continue; 4738 } 4739 4740 // Save the current state. 4741 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4742 TPT.getRestorationPoint(); 4743 SmallVector<Instruction *, 4> NewExts; 4744 unsigned NewCreatedInstsCost = 0; 4745 unsigned ExtCost = !TLI->isExtFree(I); 4746 // Promote. 4747 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4748 &NewExts, nullptr, *TLI); 4749 assert(PromotedVal && 4750 "TypePromotionHelper should have filtered out those cases"); 4751 4752 // We would be able to merge only one extension in a load. 4753 // Therefore, if we have more than 1 new extension we heuristically 4754 // cut this search path, because it means we degrade the code quality. 4755 // With exactly 2, the transformation is neutral, because we will merge 4756 // one extension but leave one. However, we optimistically keep going, 4757 // because the new extension may be removed too. 4758 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4759 // FIXME: It would be possible to propagate a negative value instead of 4760 // conservatively ceiling it to 0. 4761 TotalCreatedInstsCost = 4762 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4763 if (!StressExtLdPromotion && 4764 (TotalCreatedInstsCost > 1 || 4765 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4766 // This promotion is not profitable, rollback to the previous state, and 4767 // save the current extension in ProfitablyMovedExts as the latest 4768 // speculative promotion turned out to be unprofitable. 4769 TPT.rollback(LastKnownGood); 4770 ProfitablyMovedExts.push_back(I); 4771 continue; 4772 } 4773 // Continue promoting NewExts as far as doing so is profitable. 4774 SmallVector<Instruction *, 2> NewlyMovedExts; 4775 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4776 bool NewPromoted = false; 4777 for (auto ExtInst : NewlyMovedExts) { 4778 Instruction *MovedExt = cast<Instruction>(ExtInst); 4779 Value *ExtOperand = MovedExt->getOperand(0); 4780 // If we have reached to a load, we need this extra profitability check 4781 // as it could potentially be merged into an ext(load). 4782 if (isa<LoadInst>(ExtOperand) && 4783 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4784 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4785 continue; 4786 4787 ProfitablyMovedExts.push_back(MovedExt); 4788 NewPromoted = true; 4789 } 4790 4791 // If none of speculative promotions for NewExts is profitable, rollback 4792 // and save the current extension (I) as the last profitable extension. 4793 if (!NewPromoted) { 4794 TPT.rollback(LastKnownGood); 4795 ProfitablyMovedExts.push_back(I); 4796 continue; 4797 } 4798 // The promotion is profitable. 4799 Promoted = true; 4800 } 4801 return Promoted; 4802 } 4803 4804 /// Merging redundant sexts when one is dominating the other. 4805 bool CodeGenPrepare::mergeSExts(Function &F) { 4806 DominatorTree DT(F); 4807 bool Changed = false; 4808 for (auto &Entry : ValToSExtendedUses) { 4809 SExts &Insts = Entry.second; 4810 SExts CurPts; 4811 for (Instruction *Inst : Insts) { 4812 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4813 Inst->getOperand(0) != Entry.first) 4814 continue; 4815 bool inserted = false; 4816 for (auto &Pt : CurPts) { 4817 if (DT.dominates(Inst, Pt)) { 4818 Pt->replaceAllUsesWith(Inst); 4819 RemovedInsts.insert(Pt); 4820 Pt->removeFromParent(); 4821 Pt = Inst; 4822 inserted = true; 4823 Changed = true; 4824 break; 4825 } 4826 if (!DT.dominates(Pt, Inst)) 4827 // Give up if we need to merge in a common dominator as the 4828 // expermients show it is not profitable. 4829 continue; 4830 Inst->replaceAllUsesWith(Pt); 4831 RemovedInsts.insert(Inst); 4832 Inst->removeFromParent(); 4833 inserted = true; 4834 Changed = true; 4835 break; 4836 } 4837 if (!inserted) 4838 CurPts.push_back(Inst); 4839 } 4840 } 4841 return Changed; 4842 } 4843 4844 // Spliting large data structures so that the GEPs accessing them can have 4845 // smaller offsets so that they can be sunk to the same blocks as their users. 4846 // For example, a large struct starting from %base is splitted into two parts 4847 // where the second part starts from %new_base. 4848 // 4849 // Before: 4850 // BB0: 4851 // %base = 4852 // 4853 // BB1: 4854 // %gep0 = gep %base, off0 4855 // %gep1 = gep %base, off1 4856 // %gep2 = gep %base, off2 4857 // 4858 // BB2: 4859 // %load1 = load %gep0 4860 // %load2 = load %gep1 4861 // %load3 = load %gep2 4862 // 4863 // After: 4864 // BB0: 4865 // %base = 4866 // %new_base = gep %base, off0 4867 // 4868 // BB1: 4869 // %new_gep0 = %new_base 4870 // %new_gep1 = gep %new_base, off1 - off0 4871 // %new_gep2 = gep %new_base, off2 - off0 4872 // 4873 // BB2: 4874 // %load1 = load i32, i32* %new_gep0 4875 // %load2 = load i32, i32* %new_gep1 4876 // %load3 = load i32, i32* %new_gep2 4877 // 4878 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4879 // their offsets are smaller enough to fit into the addressing mode. 4880 bool CodeGenPrepare::splitLargeGEPOffsets() { 4881 bool Changed = false; 4882 for (auto &Entry : LargeOffsetGEPMap) { 4883 Value *OldBase = Entry.first; 4884 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4885 &LargeOffsetGEPs = Entry.second; 4886 auto compareGEPOffset = 4887 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4888 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4889 if (LHS.first == RHS.first) 4890 return false; 4891 if (LHS.second != RHS.second) 4892 return LHS.second < RHS.second; 4893 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4894 }; 4895 // Sorting all the GEPs of the same data structures based on the offsets. 4896 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4897 compareGEPOffset); 4898 LargeOffsetGEPs.erase( 4899 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 4900 LargeOffsetGEPs.end()); 4901 // Skip if all the GEPs have the same offsets. 4902 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 4903 continue; 4904 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 4905 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 4906 Value *NewBaseGEP = nullptr; 4907 4908 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 4909 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 4910 GetElementPtrInst *GEP = LargeOffsetGEP->first; 4911 int64_t Offset = LargeOffsetGEP->second; 4912 if (Offset != BaseOffset) { 4913 TargetLowering::AddrMode AddrMode; 4914 AddrMode.BaseOffs = Offset - BaseOffset; 4915 // The result type of the GEP might not be the type of the memory 4916 // access. 4917 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 4918 GEP->getResultElementType(), 4919 GEP->getAddressSpace())) { 4920 // We need to create a new base if the offset to the current base is 4921 // too large to fit into the addressing mode. So, a very large struct 4922 // may be splitted into several parts. 4923 BaseGEP = GEP; 4924 BaseOffset = Offset; 4925 NewBaseGEP = nullptr; 4926 } 4927 } 4928 4929 // Generate a new GEP to replace the current one. 4930 IRBuilder<> Builder(GEP); 4931 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 4932 Type *I8PtrTy = 4933 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 4934 Type *I8Ty = Builder.getInt8Ty(); 4935 4936 if (!NewBaseGEP) { 4937 // Create a new base if we don't have one yet. Find the insertion 4938 // pointer for the new base first. 4939 BasicBlock::iterator NewBaseInsertPt; 4940 BasicBlock *NewBaseInsertBB; 4941 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 4942 // If the base of the struct is an instruction, the new base will be 4943 // inserted close to it. 4944 NewBaseInsertBB = BaseI->getParent(); 4945 if (isa<PHINode>(BaseI)) 4946 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4947 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 4948 NewBaseInsertBB = 4949 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 4950 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4951 } else 4952 NewBaseInsertPt = std::next(BaseI->getIterator()); 4953 } else { 4954 // If the current base is an argument or global value, the new base 4955 // will be inserted to the entry block. 4956 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 4957 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4958 } 4959 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 4960 // Create a new base. 4961 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 4962 NewBaseGEP = OldBase; 4963 if (NewBaseGEP->getType() != I8PtrTy) 4964 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 4965 NewBaseGEP = 4966 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 4967 NewGEPBases.insert(NewBaseGEP); 4968 } 4969 4970 Value *NewGEP = NewBaseGEP; 4971 if (Offset == BaseOffset) { 4972 if (GEP->getType() != I8PtrTy) 4973 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 4974 } else { 4975 // Calculate the new offset for the new GEP. 4976 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 4977 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 4978 4979 if (GEP->getType() != I8PtrTy) 4980 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 4981 } 4982 GEP->replaceAllUsesWith(NewGEP); 4983 LargeOffsetGEPID.erase(GEP); 4984 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 4985 GEP->eraseFromParent(); 4986 Changed = true; 4987 } 4988 } 4989 return Changed; 4990 } 4991 4992 /// Return true, if an ext(load) can be formed from an extension in 4993 /// \p MovedExts. 4994 bool CodeGenPrepare::canFormExtLd( 4995 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4996 Instruction *&Inst, bool HasPromoted) { 4997 for (auto *MovedExtInst : MovedExts) { 4998 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4999 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5000 Inst = MovedExtInst; 5001 break; 5002 } 5003 } 5004 if (!LI) 5005 return false; 5006 5007 // If they're already in the same block, there's nothing to do. 5008 // Make the cheap checks first if we did not promote. 5009 // If we promoted, we need to check if it is indeed profitable. 5010 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5011 return false; 5012 5013 return TLI->isExtLoad(LI, Inst, *DL); 5014 } 5015 5016 /// Move a zext or sext fed by a load into the same basic block as the load, 5017 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5018 /// extend into the load. 5019 /// 5020 /// E.g., 5021 /// \code 5022 /// %ld = load i32* %addr 5023 /// %add = add nuw i32 %ld, 4 5024 /// %zext = zext i32 %add to i64 5025 // \endcode 5026 /// => 5027 /// \code 5028 /// %ld = load i32* %addr 5029 /// %zext = zext i32 %ld to i64 5030 /// %add = add nuw i64 %zext, 4 5031 /// \encode 5032 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5033 /// allow us to match zext(load i32*) to i64. 5034 /// 5035 /// Also, try to promote the computations used to obtain a sign extended 5036 /// value used into memory accesses. 5037 /// E.g., 5038 /// \code 5039 /// a = add nsw i32 b, 3 5040 /// d = sext i32 a to i64 5041 /// e = getelementptr ..., i64 d 5042 /// \endcode 5043 /// => 5044 /// \code 5045 /// f = sext i32 b to i64 5046 /// a = add nsw i64 f, 3 5047 /// e = getelementptr ..., i64 a 5048 /// \endcode 5049 /// 5050 /// \p Inst[in/out] the extension may be modified during the process if some 5051 /// promotions apply. 5052 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5053 // ExtLoad formation and address type promotion infrastructure requires TLI to 5054 // be effective. 5055 if (!TLI) 5056 return false; 5057 5058 bool AllowPromotionWithoutCommonHeader = false; 5059 /// See if it is an interesting sext operations for the address type 5060 /// promotion before trying to promote it, e.g., the ones with the right 5061 /// type and used in memory accesses. 5062 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5063 *Inst, AllowPromotionWithoutCommonHeader); 5064 TypePromotionTransaction TPT(RemovedInsts); 5065 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5066 TPT.getRestorationPoint(); 5067 SmallVector<Instruction *, 1> Exts; 5068 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5069 Exts.push_back(Inst); 5070 5071 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5072 5073 // Look for a load being extended. 5074 LoadInst *LI = nullptr; 5075 Instruction *ExtFedByLoad; 5076 5077 // Try to promote a chain of computation if it allows to form an extended 5078 // load. 5079 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5080 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5081 TPT.commit(); 5082 // Move the extend into the same block as the load 5083 ExtFedByLoad->moveAfter(LI); 5084 // CGP does not check if the zext would be speculatively executed when moved 5085 // to the same basic block as the load. Preserving its original location 5086 // would pessimize the debugging experience, as well as negatively impact 5087 // the quality of sample pgo. We don't want to use "line 0" as that has a 5088 // size cost in the line-table section and logically the zext can be seen as 5089 // part of the load. Therefore we conservatively reuse the same debug 5090 // location for the load and the zext. 5091 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5092 ++NumExtsMoved; 5093 Inst = ExtFedByLoad; 5094 return true; 5095 } 5096 5097 // Continue promoting SExts if known as considerable depending on targets. 5098 if (ATPConsiderable && 5099 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5100 HasPromoted, TPT, SpeculativelyMovedExts)) 5101 return true; 5102 5103 TPT.rollback(LastKnownGood); 5104 return false; 5105 } 5106 5107 // Perform address type promotion if doing so is profitable. 5108 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5109 // instructions that sign extended the same initial value. However, if 5110 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5111 // extension is just profitable. 5112 bool CodeGenPrepare::performAddressTypePromotion( 5113 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5114 bool HasPromoted, TypePromotionTransaction &TPT, 5115 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5116 bool Promoted = false; 5117 SmallPtrSet<Instruction *, 1> UnhandledExts; 5118 bool AllSeenFirst = true; 5119 for (auto I : SpeculativelyMovedExts) { 5120 Value *HeadOfChain = I->getOperand(0); 5121 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5122 SeenChainsForSExt.find(HeadOfChain); 5123 // If there is an unhandled SExt which has the same header, try to promote 5124 // it as well. 5125 if (AlreadySeen != SeenChainsForSExt.end()) { 5126 if (AlreadySeen->second != nullptr) 5127 UnhandledExts.insert(AlreadySeen->second); 5128 AllSeenFirst = false; 5129 } 5130 } 5131 5132 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5133 SpeculativelyMovedExts.size() == 1)) { 5134 TPT.commit(); 5135 if (HasPromoted) 5136 Promoted = true; 5137 for (auto I : SpeculativelyMovedExts) { 5138 Value *HeadOfChain = I->getOperand(0); 5139 SeenChainsForSExt[HeadOfChain] = nullptr; 5140 ValToSExtendedUses[HeadOfChain].push_back(I); 5141 } 5142 // Update Inst as promotion happen. 5143 Inst = SpeculativelyMovedExts.pop_back_val(); 5144 } else { 5145 // This is the first chain visited from the header, keep the current chain 5146 // as unhandled. Defer to promote this until we encounter another SExt 5147 // chain derived from the same header. 5148 for (auto I : SpeculativelyMovedExts) { 5149 Value *HeadOfChain = I->getOperand(0); 5150 SeenChainsForSExt[HeadOfChain] = Inst; 5151 } 5152 return false; 5153 } 5154 5155 if (!AllSeenFirst && !UnhandledExts.empty()) 5156 for (auto VisitedSExt : UnhandledExts) { 5157 if (RemovedInsts.count(VisitedSExt)) 5158 continue; 5159 TypePromotionTransaction TPT(RemovedInsts); 5160 SmallVector<Instruction *, 1> Exts; 5161 SmallVector<Instruction *, 2> Chains; 5162 Exts.push_back(VisitedSExt); 5163 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5164 TPT.commit(); 5165 if (HasPromoted) 5166 Promoted = true; 5167 for (auto I : Chains) { 5168 Value *HeadOfChain = I->getOperand(0); 5169 // Mark this as handled. 5170 SeenChainsForSExt[HeadOfChain] = nullptr; 5171 ValToSExtendedUses[HeadOfChain].push_back(I); 5172 } 5173 } 5174 return Promoted; 5175 } 5176 5177 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5178 BasicBlock *DefBB = I->getParent(); 5179 5180 // If the result of a {s|z}ext and its source are both live out, rewrite all 5181 // other uses of the source with result of extension. 5182 Value *Src = I->getOperand(0); 5183 if (Src->hasOneUse()) 5184 return false; 5185 5186 // Only do this xform if truncating is free. 5187 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5188 return false; 5189 5190 // Only safe to perform the optimization if the source is also defined in 5191 // this block. 5192 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5193 return false; 5194 5195 bool DefIsLiveOut = false; 5196 for (User *U : I->users()) { 5197 Instruction *UI = cast<Instruction>(U); 5198 5199 // Figure out which BB this ext is used in. 5200 BasicBlock *UserBB = UI->getParent(); 5201 if (UserBB == DefBB) continue; 5202 DefIsLiveOut = true; 5203 break; 5204 } 5205 if (!DefIsLiveOut) 5206 return false; 5207 5208 // Make sure none of the uses are PHI nodes. 5209 for (User *U : Src->users()) { 5210 Instruction *UI = cast<Instruction>(U); 5211 BasicBlock *UserBB = UI->getParent(); 5212 if (UserBB == DefBB) continue; 5213 // Be conservative. We don't want this xform to end up introducing 5214 // reloads just before load / store instructions. 5215 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5216 return false; 5217 } 5218 5219 // InsertedTruncs - Only insert one trunc in each block once. 5220 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5221 5222 bool MadeChange = false; 5223 for (Use &U : Src->uses()) { 5224 Instruction *User = cast<Instruction>(U.getUser()); 5225 5226 // Figure out which BB this ext is used in. 5227 BasicBlock *UserBB = User->getParent(); 5228 if (UserBB == DefBB) continue; 5229 5230 // Both src and def are live in this block. Rewrite the use. 5231 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5232 5233 if (!InsertedTrunc) { 5234 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5235 assert(InsertPt != UserBB->end()); 5236 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5237 InsertedInsts.insert(InsertedTrunc); 5238 } 5239 5240 // Replace a use of the {s|z}ext source with a use of the result. 5241 U = InsertedTrunc; 5242 ++NumExtUses; 5243 MadeChange = true; 5244 } 5245 5246 return MadeChange; 5247 } 5248 5249 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5250 // just after the load if the target can fold this into one extload instruction, 5251 // with the hope of eliminating some of the other later "and" instructions using 5252 // the loaded value. "and"s that are made trivially redundant by the insertion 5253 // of the new "and" are removed by this function, while others (e.g. those whose 5254 // path from the load goes through a phi) are left for isel to potentially 5255 // remove. 5256 // 5257 // For example: 5258 // 5259 // b0: 5260 // x = load i32 5261 // ... 5262 // b1: 5263 // y = and x, 0xff 5264 // z = use y 5265 // 5266 // becomes: 5267 // 5268 // b0: 5269 // x = load i32 5270 // x' = and x, 0xff 5271 // ... 5272 // b1: 5273 // z = use x' 5274 // 5275 // whereas: 5276 // 5277 // b0: 5278 // x1 = load i32 5279 // ... 5280 // b1: 5281 // x2 = load i32 5282 // ... 5283 // b2: 5284 // x = phi x1, x2 5285 // y = and x, 0xff 5286 // 5287 // becomes (after a call to optimizeLoadExt for each load): 5288 // 5289 // b0: 5290 // x1 = load i32 5291 // x1' = and x1, 0xff 5292 // ... 5293 // b1: 5294 // x2 = load i32 5295 // x2' = and x2, 0xff 5296 // ... 5297 // b2: 5298 // x = phi x1', x2' 5299 // y = and x, 0xff 5300 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5301 if (!Load->isSimple() || 5302 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5303 return false; 5304 5305 // Skip loads we've already transformed. 5306 if (Load->hasOneUse() && 5307 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5308 return false; 5309 5310 // Look at all uses of Load, looking through phis, to determine how many bits 5311 // of the loaded value are needed. 5312 SmallVector<Instruction *, 8> WorkList; 5313 SmallPtrSet<Instruction *, 16> Visited; 5314 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5315 for (auto *U : Load->users()) 5316 WorkList.push_back(cast<Instruction>(U)); 5317 5318 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5319 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5320 APInt DemandBits(BitWidth, 0); 5321 APInt WidestAndBits(BitWidth, 0); 5322 5323 while (!WorkList.empty()) { 5324 Instruction *I = WorkList.back(); 5325 WorkList.pop_back(); 5326 5327 // Break use-def graph loops. 5328 if (!Visited.insert(I).second) 5329 continue; 5330 5331 // For a PHI node, push all of its users. 5332 if (auto *Phi = dyn_cast<PHINode>(I)) { 5333 for (auto *U : Phi->users()) 5334 WorkList.push_back(cast<Instruction>(U)); 5335 continue; 5336 } 5337 5338 switch (I->getOpcode()) { 5339 case Instruction::And: { 5340 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5341 if (!AndC) 5342 return false; 5343 APInt AndBits = AndC->getValue(); 5344 DemandBits |= AndBits; 5345 // Keep track of the widest and mask we see. 5346 if (AndBits.ugt(WidestAndBits)) 5347 WidestAndBits = AndBits; 5348 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5349 AndsToMaybeRemove.push_back(I); 5350 break; 5351 } 5352 5353 case Instruction::Shl: { 5354 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5355 if (!ShlC) 5356 return false; 5357 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5358 DemandBits.setLowBits(BitWidth - ShiftAmt); 5359 break; 5360 } 5361 5362 case Instruction::Trunc: { 5363 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5364 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5365 DemandBits.setLowBits(TruncBitWidth); 5366 break; 5367 } 5368 5369 default: 5370 return false; 5371 } 5372 } 5373 5374 uint32_t ActiveBits = DemandBits.getActiveBits(); 5375 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5376 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5377 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5378 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5379 // followed by an AND. 5380 // TODO: Look into removing this restriction by fixing backends to either 5381 // return false for isLoadExtLegal for i1 or have them select this pattern to 5382 // a single instruction. 5383 // 5384 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5385 // mask, since these are the only ands that will be removed by isel. 5386 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5387 WidestAndBits != DemandBits) 5388 return false; 5389 5390 LLVMContext &Ctx = Load->getType()->getContext(); 5391 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5392 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5393 5394 // Reject cases that won't be matched as extloads. 5395 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5396 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5397 return false; 5398 5399 IRBuilder<> Builder(Load->getNextNode()); 5400 auto *NewAnd = dyn_cast<Instruction>( 5401 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5402 // Mark this instruction as "inserted by CGP", so that other 5403 // optimizations don't touch it. 5404 InsertedInsts.insert(NewAnd); 5405 5406 // Replace all uses of load with new and (except for the use of load in the 5407 // new and itself). 5408 Load->replaceAllUsesWith(NewAnd); 5409 NewAnd->setOperand(0, Load); 5410 5411 // Remove any and instructions that are now redundant. 5412 for (auto *And : AndsToMaybeRemove) 5413 // Check that the and mask is the same as the one we decided to put on the 5414 // new and. 5415 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5416 And->replaceAllUsesWith(NewAnd); 5417 if (&*CurInstIterator == And) 5418 CurInstIterator = std::next(And->getIterator()); 5419 And->eraseFromParent(); 5420 ++NumAndUses; 5421 } 5422 5423 ++NumAndsAdded; 5424 return true; 5425 } 5426 5427 /// Check if V (an operand of a select instruction) is an expensive instruction 5428 /// that is only used once. 5429 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5430 auto *I = dyn_cast<Instruction>(V); 5431 // If it's safe to speculatively execute, then it should not have side 5432 // effects; therefore, it's safe to sink and possibly *not* execute. 5433 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5434 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5435 } 5436 5437 /// Returns true if a SelectInst should be turned into an explicit branch. 5438 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5439 const TargetLowering *TLI, 5440 SelectInst *SI) { 5441 // If even a predictable select is cheap, then a branch can't be cheaper. 5442 if (!TLI->isPredictableSelectExpensive()) 5443 return false; 5444 5445 // FIXME: This should use the same heuristics as IfConversion to determine 5446 // whether a select is better represented as a branch. 5447 5448 // If metadata tells us that the select condition is obviously predictable, 5449 // then we want to replace the select with a branch. 5450 uint64_t TrueWeight, FalseWeight; 5451 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5452 uint64_t Max = std::max(TrueWeight, FalseWeight); 5453 uint64_t Sum = TrueWeight + FalseWeight; 5454 if (Sum != 0) { 5455 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5456 if (Probability > TLI->getPredictableBranchThreshold()) 5457 return true; 5458 } 5459 } 5460 5461 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5462 5463 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5464 // comparison condition. If the compare has more than one use, there's 5465 // probably another cmov or setcc around, so it's not worth emitting a branch. 5466 if (!Cmp || !Cmp->hasOneUse()) 5467 return false; 5468 5469 // If either operand of the select is expensive and only needed on one side 5470 // of the select, we should form a branch. 5471 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5472 sinkSelectOperand(TTI, SI->getFalseValue())) 5473 return true; 5474 5475 return false; 5476 } 5477 5478 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5479 /// false value of \p SI. If the true/false value of \p SI is defined by any 5480 /// select instructions in \p Selects, look through the defining select 5481 /// instruction until the true/false value is not defined in \p Selects. 5482 static Value *getTrueOrFalseValue( 5483 SelectInst *SI, bool isTrue, 5484 const SmallPtrSet<const Instruction *, 2> &Selects) { 5485 Value *V; 5486 5487 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5488 DefSI = dyn_cast<SelectInst>(V)) { 5489 assert(DefSI->getCondition() == SI->getCondition() && 5490 "The condition of DefSI does not match with SI"); 5491 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5492 } 5493 return V; 5494 } 5495 5496 /// If we have a SelectInst that will likely profit from branch prediction, 5497 /// turn it into a branch. 5498 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5499 // Find all consecutive select instructions that share the same condition. 5500 SmallVector<SelectInst *, 2> ASI; 5501 ASI.push_back(SI); 5502 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5503 It != SI->getParent()->end(); ++It) { 5504 SelectInst *I = dyn_cast<SelectInst>(&*It); 5505 if (I && SI->getCondition() == I->getCondition()) { 5506 ASI.push_back(I); 5507 } else { 5508 break; 5509 } 5510 } 5511 5512 SelectInst *LastSI = ASI.back(); 5513 // Increment the current iterator to skip all the rest of select instructions 5514 // because they will be either "not lowered" or "all lowered" to branch. 5515 CurInstIterator = std::next(LastSI->getIterator()); 5516 5517 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5518 5519 // Can we convert the 'select' to CF ? 5520 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5521 SI->getMetadata(LLVMContext::MD_unpredictable)) 5522 return false; 5523 5524 TargetLowering::SelectSupportKind SelectKind; 5525 if (VectorCond) 5526 SelectKind = TargetLowering::VectorMaskSelect; 5527 else if (SI->getType()->isVectorTy()) 5528 SelectKind = TargetLowering::ScalarCondVectorVal; 5529 else 5530 SelectKind = TargetLowering::ScalarValSelect; 5531 5532 if (TLI->isSelectSupported(SelectKind) && 5533 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5534 return false; 5535 5536 ModifiedDT = true; 5537 5538 // Transform a sequence like this: 5539 // start: 5540 // %cmp = cmp uge i32 %a, %b 5541 // %sel = select i1 %cmp, i32 %c, i32 %d 5542 // 5543 // Into: 5544 // start: 5545 // %cmp = cmp uge i32 %a, %b 5546 // br i1 %cmp, label %select.true, label %select.false 5547 // select.true: 5548 // br label %select.end 5549 // select.false: 5550 // br label %select.end 5551 // select.end: 5552 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5553 // 5554 // In addition, we may sink instructions that produce %c or %d from 5555 // the entry block into the destination(s) of the new branch. 5556 // If the true or false blocks do not contain a sunken instruction, that 5557 // block and its branch may be optimized away. In that case, one side of the 5558 // first branch will point directly to select.end, and the corresponding PHI 5559 // predecessor block will be the start block. 5560 5561 // First, we split the block containing the select into 2 blocks. 5562 BasicBlock *StartBlock = SI->getParent(); 5563 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5564 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5565 5566 // Delete the unconditional branch that was just created by the split. 5567 StartBlock->getTerminator()->eraseFromParent(); 5568 5569 // These are the new basic blocks for the conditional branch. 5570 // At least one will become an actual new basic block. 5571 BasicBlock *TrueBlock = nullptr; 5572 BasicBlock *FalseBlock = nullptr; 5573 BranchInst *TrueBranch = nullptr; 5574 BranchInst *FalseBranch = nullptr; 5575 5576 // Sink expensive instructions into the conditional blocks to avoid executing 5577 // them speculatively. 5578 for (SelectInst *SI : ASI) { 5579 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5580 if (TrueBlock == nullptr) { 5581 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5582 EndBlock->getParent(), EndBlock); 5583 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5584 } 5585 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5586 TrueInst->moveBefore(TrueBranch); 5587 } 5588 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5589 if (FalseBlock == nullptr) { 5590 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5591 EndBlock->getParent(), EndBlock); 5592 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5593 } 5594 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5595 FalseInst->moveBefore(FalseBranch); 5596 } 5597 } 5598 5599 // If there was nothing to sink, then arbitrarily choose the 'false' side 5600 // for a new input value to the PHI. 5601 if (TrueBlock == FalseBlock) { 5602 assert(TrueBlock == nullptr && 5603 "Unexpected basic block transform while optimizing select"); 5604 5605 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5606 EndBlock->getParent(), EndBlock); 5607 BranchInst::Create(EndBlock, FalseBlock); 5608 } 5609 5610 // Insert the real conditional branch based on the original condition. 5611 // If we did not create a new block for one of the 'true' or 'false' paths 5612 // of the condition, it means that side of the branch goes to the end block 5613 // directly and the path originates from the start block from the point of 5614 // view of the new PHI. 5615 BasicBlock *TT, *FT; 5616 if (TrueBlock == nullptr) { 5617 TT = EndBlock; 5618 FT = FalseBlock; 5619 TrueBlock = StartBlock; 5620 } else if (FalseBlock == nullptr) { 5621 TT = TrueBlock; 5622 FT = EndBlock; 5623 FalseBlock = StartBlock; 5624 } else { 5625 TT = TrueBlock; 5626 FT = FalseBlock; 5627 } 5628 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5629 5630 SmallPtrSet<const Instruction *, 2> INS; 5631 INS.insert(ASI.begin(), ASI.end()); 5632 // Use reverse iterator because later select may use the value of the 5633 // earlier select, and we need to propagate value through earlier select 5634 // to get the PHI operand. 5635 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5636 SelectInst *SI = *It; 5637 // The select itself is replaced with a PHI Node. 5638 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5639 PN->takeName(SI); 5640 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5641 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5642 5643 SI->replaceAllUsesWith(PN); 5644 SI->eraseFromParent(); 5645 INS.erase(SI); 5646 ++NumSelectsExpanded; 5647 } 5648 5649 // Instruct OptimizeBlock to skip to the next block. 5650 CurInstIterator = StartBlock->end(); 5651 return true; 5652 } 5653 5654 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5655 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5656 int SplatElem = -1; 5657 for (unsigned i = 0; i < Mask.size(); ++i) { 5658 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5659 return false; 5660 SplatElem = Mask[i]; 5661 } 5662 5663 return true; 5664 } 5665 5666 /// Some targets have expensive vector shifts if the lanes aren't all the same 5667 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5668 /// it's often worth sinking a shufflevector splat down to its use so that 5669 /// codegen can spot all lanes are identical. 5670 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5671 BasicBlock *DefBB = SVI->getParent(); 5672 5673 // Only do this xform if variable vector shifts are particularly expensive. 5674 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5675 return false; 5676 5677 // We only expect better codegen by sinking a shuffle if we can recognise a 5678 // constant splat. 5679 if (!isBroadcastShuffle(SVI)) 5680 return false; 5681 5682 // InsertedShuffles - Only insert a shuffle in each block once. 5683 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5684 5685 bool MadeChange = false; 5686 for (User *U : SVI->users()) { 5687 Instruction *UI = cast<Instruction>(U); 5688 5689 // Figure out which BB this ext is used in. 5690 BasicBlock *UserBB = UI->getParent(); 5691 if (UserBB == DefBB) continue; 5692 5693 // For now only apply this when the splat is used by a shift instruction. 5694 if (!UI->isShift()) continue; 5695 5696 // Everything checks out, sink the shuffle if the user's block doesn't 5697 // already have a copy. 5698 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5699 5700 if (!InsertedShuffle) { 5701 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5702 assert(InsertPt != UserBB->end()); 5703 InsertedShuffle = 5704 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5705 SVI->getOperand(2), "", &*InsertPt); 5706 } 5707 5708 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5709 MadeChange = true; 5710 } 5711 5712 // If we removed all uses, nuke the shuffle. 5713 if (SVI->use_empty()) { 5714 SVI->eraseFromParent(); 5715 MadeChange = true; 5716 } 5717 5718 return MadeChange; 5719 } 5720 5721 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5722 if (!TLI || !DL) 5723 return false; 5724 5725 Value *Cond = SI->getCondition(); 5726 Type *OldType = Cond->getType(); 5727 LLVMContext &Context = Cond->getContext(); 5728 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5729 unsigned RegWidth = RegType.getSizeInBits(); 5730 5731 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5732 return false; 5733 5734 // If the register width is greater than the type width, expand the condition 5735 // of the switch instruction and each case constant to the width of the 5736 // register. By widening the type of the switch condition, subsequent 5737 // comparisons (for case comparisons) will not need to be extended to the 5738 // preferred register width, so we will potentially eliminate N-1 extends, 5739 // where N is the number of cases in the switch. 5740 auto *NewType = Type::getIntNTy(Context, RegWidth); 5741 5742 // Zero-extend the switch condition and case constants unless the switch 5743 // condition is a function argument that is already being sign-extended. 5744 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5745 // everything instead. 5746 Instruction::CastOps ExtType = Instruction::ZExt; 5747 if (auto *Arg = dyn_cast<Argument>(Cond)) 5748 if (Arg->hasSExtAttr()) 5749 ExtType = Instruction::SExt; 5750 5751 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5752 ExtInst->insertBefore(SI); 5753 SI->setCondition(ExtInst); 5754 for (auto Case : SI->cases()) { 5755 APInt NarrowConst = Case.getCaseValue()->getValue(); 5756 APInt WideConst = (ExtType == Instruction::ZExt) ? 5757 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5758 Case.setValue(ConstantInt::get(Context, WideConst)); 5759 } 5760 5761 return true; 5762 } 5763 5764 5765 namespace { 5766 5767 /// Helper class to promote a scalar operation to a vector one. 5768 /// This class is used to move downward extractelement transition. 5769 /// E.g., 5770 /// a = vector_op <2 x i32> 5771 /// b = extractelement <2 x i32> a, i32 0 5772 /// c = scalar_op b 5773 /// store c 5774 /// 5775 /// => 5776 /// a = vector_op <2 x i32> 5777 /// c = vector_op a (equivalent to scalar_op on the related lane) 5778 /// * d = extractelement <2 x i32> c, i32 0 5779 /// * store d 5780 /// Assuming both extractelement and store can be combine, we get rid of the 5781 /// transition. 5782 class VectorPromoteHelper { 5783 /// DataLayout associated with the current module. 5784 const DataLayout &DL; 5785 5786 /// Used to perform some checks on the legality of vector operations. 5787 const TargetLowering &TLI; 5788 5789 /// Used to estimated the cost of the promoted chain. 5790 const TargetTransformInfo &TTI; 5791 5792 /// The transition being moved downwards. 5793 Instruction *Transition; 5794 5795 /// The sequence of instructions to be promoted. 5796 SmallVector<Instruction *, 4> InstsToBePromoted; 5797 5798 /// Cost of combining a store and an extract. 5799 unsigned StoreExtractCombineCost; 5800 5801 /// Instruction that will be combined with the transition. 5802 Instruction *CombineInst = nullptr; 5803 5804 /// The instruction that represents the current end of the transition. 5805 /// Since we are faking the promotion until we reach the end of the chain 5806 /// of computation, we need a way to get the current end of the transition. 5807 Instruction *getEndOfTransition() const { 5808 if (InstsToBePromoted.empty()) 5809 return Transition; 5810 return InstsToBePromoted.back(); 5811 } 5812 5813 /// Return the index of the original value in the transition. 5814 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5815 /// c, is at index 0. 5816 unsigned getTransitionOriginalValueIdx() const { 5817 assert(isa<ExtractElementInst>(Transition) && 5818 "Other kind of transitions are not supported yet"); 5819 return 0; 5820 } 5821 5822 /// Return the index of the index in the transition. 5823 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5824 /// is at index 1. 5825 unsigned getTransitionIdx() const { 5826 assert(isa<ExtractElementInst>(Transition) && 5827 "Other kind of transitions are not supported yet"); 5828 return 1; 5829 } 5830 5831 /// Get the type of the transition. 5832 /// This is the type of the original value. 5833 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5834 /// transition is <2 x i32>. 5835 Type *getTransitionType() const { 5836 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5837 } 5838 5839 /// Promote \p ToBePromoted by moving \p Def downward through. 5840 /// I.e., we have the following sequence: 5841 /// Def = Transition <ty1> a to <ty2> 5842 /// b = ToBePromoted <ty2> Def, ... 5843 /// => 5844 /// b = ToBePromoted <ty1> a, ... 5845 /// Def = Transition <ty1> ToBePromoted to <ty2> 5846 void promoteImpl(Instruction *ToBePromoted); 5847 5848 /// Check whether or not it is profitable to promote all the 5849 /// instructions enqueued to be promoted. 5850 bool isProfitableToPromote() { 5851 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5852 unsigned Index = isa<ConstantInt>(ValIdx) 5853 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5854 : -1; 5855 Type *PromotedType = getTransitionType(); 5856 5857 StoreInst *ST = cast<StoreInst>(CombineInst); 5858 unsigned AS = ST->getPointerAddressSpace(); 5859 unsigned Align = ST->getAlignment(); 5860 // Check if this store is supported. 5861 if (!TLI.allowsMisalignedMemoryAccesses( 5862 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5863 Align)) { 5864 // If this is not supported, there is no way we can combine 5865 // the extract with the store. 5866 return false; 5867 } 5868 5869 // The scalar chain of computation has to pay for the transition 5870 // scalar to vector. 5871 // The vector chain has to account for the combining cost. 5872 uint64_t ScalarCost = 5873 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5874 uint64_t VectorCost = StoreExtractCombineCost; 5875 for (const auto &Inst : InstsToBePromoted) { 5876 // Compute the cost. 5877 // By construction, all instructions being promoted are arithmetic ones. 5878 // Moreover, one argument is a constant that can be viewed as a splat 5879 // constant. 5880 Value *Arg0 = Inst->getOperand(0); 5881 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5882 isa<ConstantFP>(Arg0); 5883 TargetTransformInfo::OperandValueKind Arg0OVK = 5884 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5885 : TargetTransformInfo::OK_AnyValue; 5886 TargetTransformInfo::OperandValueKind Arg1OVK = 5887 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5888 : TargetTransformInfo::OK_AnyValue; 5889 ScalarCost += TTI.getArithmeticInstrCost( 5890 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5891 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5892 Arg0OVK, Arg1OVK); 5893 } 5894 LLVM_DEBUG( 5895 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5896 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5897 return ScalarCost > VectorCost; 5898 } 5899 5900 /// Generate a constant vector with \p Val with the same 5901 /// number of elements as the transition. 5902 /// \p UseSplat defines whether or not \p Val should be replicated 5903 /// across the whole vector. 5904 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5905 /// otherwise we generate a vector with as many undef as possible: 5906 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5907 /// used at the index of the extract. 5908 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5909 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5910 if (!UseSplat) { 5911 // If we cannot determine where the constant must be, we have to 5912 // use a splat constant. 5913 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5914 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5915 ExtractIdx = CstVal->getSExtValue(); 5916 else 5917 UseSplat = true; 5918 } 5919 5920 unsigned End = getTransitionType()->getVectorNumElements(); 5921 if (UseSplat) 5922 return ConstantVector::getSplat(End, Val); 5923 5924 SmallVector<Constant *, 4> ConstVec; 5925 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5926 for (unsigned Idx = 0; Idx != End; ++Idx) { 5927 if (Idx == ExtractIdx) 5928 ConstVec.push_back(Val); 5929 else 5930 ConstVec.push_back(UndefVal); 5931 } 5932 return ConstantVector::get(ConstVec); 5933 } 5934 5935 /// Check if promoting to a vector type an operand at \p OperandIdx 5936 /// in \p Use can trigger undefined behavior. 5937 static bool canCauseUndefinedBehavior(const Instruction *Use, 5938 unsigned OperandIdx) { 5939 // This is not safe to introduce undef when the operand is on 5940 // the right hand side of a division-like instruction. 5941 if (OperandIdx != 1) 5942 return false; 5943 switch (Use->getOpcode()) { 5944 default: 5945 return false; 5946 case Instruction::SDiv: 5947 case Instruction::UDiv: 5948 case Instruction::SRem: 5949 case Instruction::URem: 5950 return true; 5951 case Instruction::FDiv: 5952 case Instruction::FRem: 5953 return !Use->hasNoNaNs(); 5954 } 5955 llvm_unreachable(nullptr); 5956 } 5957 5958 public: 5959 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5960 const TargetTransformInfo &TTI, Instruction *Transition, 5961 unsigned CombineCost) 5962 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5963 StoreExtractCombineCost(CombineCost) { 5964 assert(Transition && "Do not know how to promote null"); 5965 } 5966 5967 /// Check if we can promote \p ToBePromoted to \p Type. 5968 bool canPromote(const Instruction *ToBePromoted) const { 5969 // We could support CastInst too. 5970 return isa<BinaryOperator>(ToBePromoted); 5971 } 5972 5973 /// Check if it is profitable to promote \p ToBePromoted 5974 /// by moving downward the transition through. 5975 bool shouldPromote(const Instruction *ToBePromoted) const { 5976 // Promote only if all the operands can be statically expanded. 5977 // Indeed, we do not want to introduce any new kind of transitions. 5978 for (const Use &U : ToBePromoted->operands()) { 5979 const Value *Val = U.get(); 5980 if (Val == getEndOfTransition()) { 5981 // If the use is a division and the transition is on the rhs, 5982 // we cannot promote the operation, otherwise we may create a 5983 // division by zero. 5984 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5985 return false; 5986 continue; 5987 } 5988 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5989 !isa<ConstantFP>(Val)) 5990 return false; 5991 } 5992 // Check that the resulting operation is legal. 5993 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5994 if (!ISDOpcode) 5995 return false; 5996 return StressStoreExtract || 5997 TLI.isOperationLegalOrCustom( 5998 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5999 } 6000 6001 /// Check whether or not \p Use can be combined 6002 /// with the transition. 6003 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6004 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6005 6006 /// Record \p ToBePromoted as part of the chain to be promoted. 6007 void enqueueForPromotion(Instruction *ToBePromoted) { 6008 InstsToBePromoted.push_back(ToBePromoted); 6009 } 6010 6011 /// Set the instruction that will be combined with the transition. 6012 void recordCombineInstruction(Instruction *ToBeCombined) { 6013 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6014 CombineInst = ToBeCombined; 6015 } 6016 6017 /// Promote all the instructions enqueued for promotion if it is 6018 /// is profitable. 6019 /// \return True if the promotion happened, false otherwise. 6020 bool promote() { 6021 // Check if there is something to promote. 6022 // Right now, if we do not have anything to combine with, 6023 // we assume the promotion is not profitable. 6024 if (InstsToBePromoted.empty() || !CombineInst) 6025 return false; 6026 6027 // Check cost. 6028 if (!StressStoreExtract && !isProfitableToPromote()) 6029 return false; 6030 6031 // Promote. 6032 for (auto &ToBePromoted : InstsToBePromoted) 6033 promoteImpl(ToBePromoted); 6034 InstsToBePromoted.clear(); 6035 return true; 6036 } 6037 }; 6038 6039 } // end anonymous namespace 6040 6041 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6042 // At this point, we know that all the operands of ToBePromoted but Def 6043 // can be statically promoted. 6044 // For Def, we need to use its parameter in ToBePromoted: 6045 // b = ToBePromoted ty1 a 6046 // Def = Transition ty1 b to ty2 6047 // Move the transition down. 6048 // 1. Replace all uses of the promoted operation by the transition. 6049 // = ... b => = ... Def. 6050 assert(ToBePromoted->getType() == Transition->getType() && 6051 "The type of the result of the transition does not match " 6052 "the final type"); 6053 ToBePromoted->replaceAllUsesWith(Transition); 6054 // 2. Update the type of the uses. 6055 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6056 Type *TransitionTy = getTransitionType(); 6057 ToBePromoted->mutateType(TransitionTy); 6058 // 3. Update all the operands of the promoted operation with promoted 6059 // operands. 6060 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6061 for (Use &U : ToBePromoted->operands()) { 6062 Value *Val = U.get(); 6063 Value *NewVal = nullptr; 6064 if (Val == Transition) 6065 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6066 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6067 isa<ConstantFP>(Val)) { 6068 // Use a splat constant if it is not safe to use undef. 6069 NewVal = getConstantVector( 6070 cast<Constant>(Val), 6071 isa<UndefValue>(Val) || 6072 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6073 } else 6074 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6075 "this?"); 6076 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6077 } 6078 Transition->moveAfter(ToBePromoted); 6079 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6080 } 6081 6082 /// Some targets can do store(extractelement) with one instruction. 6083 /// Try to push the extractelement towards the stores when the target 6084 /// has this feature and this is profitable. 6085 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6086 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6087 if (DisableStoreExtract || !TLI || 6088 (!StressStoreExtract && 6089 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6090 Inst->getOperand(1), CombineCost))) 6091 return false; 6092 6093 // At this point we know that Inst is a vector to scalar transition. 6094 // Try to move it down the def-use chain, until: 6095 // - We can combine the transition with its single use 6096 // => we got rid of the transition. 6097 // - We escape the current basic block 6098 // => we would need to check that we are moving it at a cheaper place and 6099 // we do not do that for now. 6100 BasicBlock *Parent = Inst->getParent(); 6101 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6102 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6103 // If the transition has more than one use, assume this is not going to be 6104 // beneficial. 6105 while (Inst->hasOneUse()) { 6106 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6107 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6108 6109 if (ToBePromoted->getParent() != Parent) { 6110 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6111 << ToBePromoted->getParent()->getName() 6112 << ") than the transition (" << Parent->getName() 6113 << ").\n"); 6114 return false; 6115 } 6116 6117 if (VPH.canCombine(ToBePromoted)) { 6118 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6119 << "will be combined with: " << *ToBePromoted << '\n'); 6120 VPH.recordCombineInstruction(ToBePromoted); 6121 bool Changed = VPH.promote(); 6122 NumStoreExtractExposed += Changed; 6123 return Changed; 6124 } 6125 6126 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6127 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6128 return false; 6129 6130 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6131 6132 VPH.enqueueForPromotion(ToBePromoted); 6133 Inst = ToBePromoted; 6134 } 6135 return false; 6136 } 6137 6138 /// For the instruction sequence of store below, F and I values 6139 /// are bundled together as an i64 value before being stored into memory. 6140 /// Sometimes it is more efficent to generate separate stores for F and I, 6141 /// which can remove the bitwise instructions or sink them to colder places. 6142 /// 6143 /// (store (or (zext (bitcast F to i32) to i64), 6144 /// (shl (zext I to i64), 32)), addr) --> 6145 /// (store F, addr) and (store I, addr+4) 6146 /// 6147 /// Similarly, splitting for other merged store can also be beneficial, like: 6148 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6149 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6150 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6151 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6152 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6153 /// 6154 /// We allow each target to determine specifically which kind of splitting is 6155 /// supported. 6156 /// 6157 /// The store patterns are commonly seen from the simple code snippet below 6158 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6159 /// void goo(const std::pair<int, float> &); 6160 /// hoo() { 6161 /// ... 6162 /// goo(std::make_pair(tmp, ftmp)); 6163 /// ... 6164 /// } 6165 /// 6166 /// Although we already have similar splitting in DAG Combine, we duplicate 6167 /// it in CodeGenPrepare to catch the case in which pattern is across 6168 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6169 /// during code expansion. 6170 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6171 const TargetLowering &TLI) { 6172 // Handle simple but common cases only. 6173 Type *StoreType = SI.getValueOperand()->getType(); 6174 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6175 DL.getTypeSizeInBits(StoreType) == 0) 6176 return false; 6177 6178 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6179 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6180 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6181 DL.getTypeSizeInBits(SplitStoreType)) 6182 return false; 6183 6184 // Match the following patterns: 6185 // (store (or (zext LValue to i64), 6186 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6187 // or 6188 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6189 // (zext LValue to i64), 6190 // Expect both operands of OR and the first operand of SHL have only 6191 // one use. 6192 Value *LValue, *HValue; 6193 if (!match(SI.getValueOperand(), 6194 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6195 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6196 m_SpecificInt(HalfValBitSize)))))) 6197 return false; 6198 6199 // Check LValue and HValue are int with size less or equal than 32. 6200 if (!LValue->getType()->isIntegerTy() || 6201 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6202 !HValue->getType()->isIntegerTy() || 6203 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6204 return false; 6205 6206 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6207 // as the input of target query. 6208 auto *LBC = dyn_cast<BitCastInst>(LValue); 6209 auto *HBC = dyn_cast<BitCastInst>(HValue); 6210 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6211 : EVT::getEVT(LValue->getType()); 6212 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6213 : EVT::getEVT(HValue->getType()); 6214 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6215 return false; 6216 6217 // Start to split store. 6218 IRBuilder<> Builder(SI.getContext()); 6219 Builder.SetInsertPoint(&SI); 6220 6221 // If LValue/HValue is a bitcast in another BB, create a new one in current 6222 // BB so it may be merged with the splitted stores by dag combiner. 6223 if (LBC && LBC->getParent() != SI.getParent()) 6224 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6225 if (HBC && HBC->getParent() != SI.getParent()) 6226 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6227 6228 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6229 auto CreateSplitStore = [&](Value *V, bool Upper) { 6230 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6231 Value *Addr = Builder.CreateBitCast( 6232 SI.getOperand(1), 6233 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6234 if ((IsLE && Upper) || (!IsLE && !Upper)) 6235 Addr = Builder.CreateGEP( 6236 SplitStoreType, Addr, 6237 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6238 Builder.CreateAlignedStore( 6239 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6240 }; 6241 6242 CreateSplitStore(LValue, false); 6243 CreateSplitStore(HValue, true); 6244 6245 // Delete the old store. 6246 SI.eraseFromParent(); 6247 return true; 6248 } 6249 6250 // Return true if the GEP has two operands, the first operand is of a sequential 6251 // type, and the second operand is a constant. 6252 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6253 gep_type_iterator I = gep_type_begin(*GEP); 6254 return GEP->getNumOperands() == 2 && 6255 I.isSequential() && 6256 isa<ConstantInt>(GEP->getOperand(1)); 6257 } 6258 6259 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6260 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6261 // reducing liveness interference across those edges benefits global register 6262 // allocation. Currently handles only certain cases. 6263 // 6264 // For example, unmerge %GEPI and %UGEPI as below. 6265 // 6266 // ---------- BEFORE ---------- 6267 // SrcBlock: 6268 // ... 6269 // %GEPIOp = ... 6270 // ... 6271 // %GEPI = gep %GEPIOp, Idx 6272 // ... 6273 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6274 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6275 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6276 // %UGEPI) 6277 // 6278 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6279 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6280 // ... 6281 // 6282 // DstBi: 6283 // ... 6284 // %UGEPI = gep %GEPIOp, UIdx 6285 // ... 6286 // --------------------------- 6287 // 6288 // ---------- AFTER ---------- 6289 // SrcBlock: 6290 // ... (same as above) 6291 // (* %GEPI is still alive on the indirectbr edges) 6292 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6293 // unmerging) 6294 // ... 6295 // 6296 // DstBi: 6297 // ... 6298 // %UGEPI = gep %GEPI, (UIdx-Idx) 6299 // ... 6300 // --------------------------- 6301 // 6302 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6303 // no longer alive on them. 6304 // 6305 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6306 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6307 // not to disable further simplications and optimizations as a result of GEP 6308 // merging. 6309 // 6310 // Note this unmerging may increase the length of the data flow critical path 6311 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6312 // between the register pressure and the length of data-flow critical 6313 // path. Restricting this to the uncommon IndirectBr case would minimize the 6314 // impact of potentially longer critical path, if any, and the impact on compile 6315 // time. 6316 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6317 const TargetTransformInfo *TTI) { 6318 BasicBlock *SrcBlock = GEPI->getParent(); 6319 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6320 // (non-IndirectBr) cases exit early here. 6321 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6322 return false; 6323 // Check that GEPI is a simple gep with a single constant index. 6324 if (!GEPSequentialConstIndexed(GEPI)) 6325 return false; 6326 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6327 // Check that GEPI is a cheap one. 6328 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6329 > TargetTransformInfo::TCC_Basic) 6330 return false; 6331 Value *GEPIOp = GEPI->getOperand(0); 6332 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6333 if (!isa<Instruction>(GEPIOp)) 6334 return false; 6335 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6336 if (GEPIOpI->getParent() != SrcBlock) 6337 return false; 6338 // Check that GEP is used outside the block, meaning it's alive on the 6339 // IndirectBr edge(s). 6340 if (find_if(GEPI->users(), [&](User *Usr) { 6341 if (auto *I = dyn_cast<Instruction>(Usr)) { 6342 if (I->getParent() != SrcBlock) { 6343 return true; 6344 } 6345 } 6346 return false; 6347 }) == GEPI->users().end()) 6348 return false; 6349 // The second elements of the GEP chains to be unmerged. 6350 std::vector<GetElementPtrInst *> UGEPIs; 6351 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6352 // on IndirectBr edges. 6353 for (User *Usr : GEPIOp->users()) { 6354 if (Usr == GEPI) continue; 6355 // Check if Usr is an Instruction. If not, give up. 6356 if (!isa<Instruction>(Usr)) 6357 return false; 6358 auto *UI = cast<Instruction>(Usr); 6359 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6360 if (UI->getParent() == SrcBlock) 6361 continue; 6362 // Check if Usr is a GEP. If not, give up. 6363 if (!isa<GetElementPtrInst>(Usr)) 6364 return false; 6365 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6366 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6367 // the pointer operand to it. If so, record it in the vector. If not, give 6368 // up. 6369 if (!GEPSequentialConstIndexed(UGEPI)) 6370 return false; 6371 if (UGEPI->getOperand(0) != GEPIOp) 6372 return false; 6373 if (GEPIIdx->getType() != 6374 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6375 return false; 6376 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6377 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6378 > TargetTransformInfo::TCC_Basic) 6379 return false; 6380 UGEPIs.push_back(UGEPI); 6381 } 6382 if (UGEPIs.size() == 0) 6383 return false; 6384 // Check the materializing cost of (Uidx-Idx). 6385 for (GetElementPtrInst *UGEPI : UGEPIs) { 6386 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6387 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6388 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6389 if (ImmCost > TargetTransformInfo::TCC_Basic) 6390 return false; 6391 } 6392 // Now unmerge between GEPI and UGEPIs. 6393 for (GetElementPtrInst *UGEPI : UGEPIs) { 6394 UGEPI->setOperand(0, GEPI); 6395 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6396 Constant *NewUGEPIIdx = 6397 ConstantInt::get(GEPIIdx->getType(), 6398 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6399 UGEPI->setOperand(1, NewUGEPIIdx); 6400 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6401 // inbounds to avoid UB. 6402 if (!GEPI->isInBounds()) { 6403 UGEPI->setIsInBounds(false); 6404 } 6405 } 6406 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6407 // alive on IndirectBr edges). 6408 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6409 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6410 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6411 return true; 6412 } 6413 6414 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6415 // Bail out if we inserted the instruction to prevent optimizations from 6416 // stepping on each other's toes. 6417 if (InsertedInsts.count(I)) 6418 return false; 6419 6420 if (PHINode *P = dyn_cast<PHINode>(I)) { 6421 // It is possible for very late stage optimizations (such as SimplifyCFG) 6422 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6423 // trivial PHI, go ahead and zap it here. 6424 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6425 P->replaceAllUsesWith(V); 6426 P->eraseFromParent(); 6427 ++NumPHIsElim; 6428 return true; 6429 } 6430 return false; 6431 } 6432 6433 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6434 // If the source of the cast is a constant, then this should have 6435 // already been constant folded. The only reason NOT to constant fold 6436 // it is if something (e.g. LSR) was careful to place the constant 6437 // evaluation in a block other than then one that uses it (e.g. to hoist 6438 // the address of globals out of a loop). If this is the case, we don't 6439 // want to forward-subst the cast. 6440 if (isa<Constant>(CI->getOperand(0))) 6441 return false; 6442 6443 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6444 return true; 6445 6446 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6447 /// Sink a zext or sext into its user blocks if the target type doesn't 6448 /// fit in one register 6449 if (TLI && 6450 TLI->getTypeAction(CI->getContext(), 6451 TLI->getValueType(*DL, CI->getType())) == 6452 TargetLowering::TypeExpandInteger) { 6453 return SinkCast(CI); 6454 } else { 6455 bool MadeChange = optimizeExt(I); 6456 return MadeChange | optimizeExtUses(I); 6457 } 6458 } 6459 return false; 6460 } 6461 6462 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6463 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6464 return OptimizeCmpExpression(CI, TLI); 6465 6466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6467 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6468 if (TLI) { 6469 bool Modified = optimizeLoadExt(LI); 6470 unsigned AS = LI->getPointerAddressSpace(); 6471 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6472 return Modified; 6473 } 6474 return false; 6475 } 6476 6477 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6478 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6479 return true; 6480 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6481 if (TLI) { 6482 unsigned AS = SI->getPointerAddressSpace(); 6483 return optimizeMemoryInst(I, SI->getOperand(1), 6484 SI->getOperand(0)->getType(), AS); 6485 } 6486 return false; 6487 } 6488 6489 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6490 unsigned AS = RMW->getPointerAddressSpace(); 6491 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6492 RMW->getType(), AS); 6493 } 6494 6495 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6496 unsigned AS = CmpX->getPointerAddressSpace(); 6497 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6498 CmpX->getCompareOperand()->getType(), AS); 6499 } 6500 6501 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6502 6503 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6504 EnableAndCmpSinking && TLI) 6505 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6506 6507 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6508 BinOp->getOpcode() == Instruction::LShr)) { 6509 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6510 if (TLI && CI && TLI->hasExtractBitsInsn()) 6511 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6512 6513 return false; 6514 } 6515 6516 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6517 if (GEPI->hasAllZeroIndices()) { 6518 /// The GEP operand must be a pointer, so must its result -> BitCast 6519 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6520 GEPI->getName(), GEPI); 6521 NC->setDebugLoc(GEPI->getDebugLoc()); 6522 GEPI->replaceAllUsesWith(NC); 6523 GEPI->eraseFromParent(); 6524 ++NumGEPsElim; 6525 optimizeInst(NC, ModifiedDT); 6526 return true; 6527 } 6528 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6529 return true; 6530 } 6531 return false; 6532 } 6533 6534 if (CallInst *CI = dyn_cast<CallInst>(I)) 6535 return optimizeCallInst(CI, ModifiedDT); 6536 6537 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6538 return optimizeSelectInst(SI); 6539 6540 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6541 return optimizeShuffleVectorInst(SVI); 6542 6543 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6544 return optimizeSwitchInst(Switch); 6545 6546 if (isa<ExtractElementInst>(I)) 6547 return optimizeExtractElementInst(I); 6548 6549 return false; 6550 } 6551 6552 /// Given an OR instruction, check to see if this is a bitreverse 6553 /// idiom. If so, insert the new intrinsic and return true. 6554 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6555 const TargetLowering &TLI) { 6556 if (!I.getType()->isIntegerTy() || 6557 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6558 TLI.getValueType(DL, I.getType(), true))) 6559 return false; 6560 6561 SmallVector<Instruction*, 4> Insts; 6562 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6563 return false; 6564 Instruction *LastInst = Insts.back(); 6565 I.replaceAllUsesWith(LastInst); 6566 RecursivelyDeleteTriviallyDeadInstructions(&I); 6567 return true; 6568 } 6569 6570 // In this pass we look for GEP and cast instructions that are used 6571 // across basic blocks and rewrite them to improve basic-block-at-a-time 6572 // selection. 6573 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6574 SunkAddrs.clear(); 6575 bool MadeChange = false; 6576 6577 CurInstIterator = BB.begin(); 6578 while (CurInstIterator != BB.end()) { 6579 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6580 if (ModifiedDT) 6581 return true; 6582 } 6583 6584 bool MadeBitReverse = true; 6585 while (TLI && MadeBitReverse) { 6586 MadeBitReverse = false; 6587 for (auto &I : reverse(BB)) { 6588 if (makeBitReverse(I, *DL, *TLI)) { 6589 MadeBitReverse = MadeChange = true; 6590 ModifiedDT = true; 6591 break; 6592 } 6593 } 6594 } 6595 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6596 6597 return MadeChange; 6598 } 6599 6600 // llvm.dbg.value is far away from the value then iSel may not be able 6601 // handle it properly. iSel will drop llvm.dbg.value if it can not 6602 // find a node corresponding to the value. 6603 bool CodeGenPrepare::placeDbgValues(Function &F) { 6604 bool MadeChange = false; 6605 for (BasicBlock &BB : F) { 6606 Instruction *PrevNonDbgInst = nullptr; 6607 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6608 Instruction *Insn = &*BI++; 6609 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6610 // Leave dbg.values that refer to an alloca alone. These 6611 // intrinsics describe the address of a variable (= the alloca) 6612 // being taken. They should not be moved next to the alloca 6613 // (and to the beginning of the scope), but rather stay close to 6614 // where said address is used. 6615 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6616 PrevNonDbgInst = Insn; 6617 continue; 6618 } 6619 6620 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6621 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6622 // If VI is a phi in a block with an EHPad terminator, we can't insert 6623 // after it. 6624 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6625 continue; 6626 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6627 << *DVI << ' ' << *VI); 6628 DVI->removeFromParent(); 6629 if (isa<PHINode>(VI)) 6630 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6631 else 6632 DVI->insertAfter(VI); 6633 MadeChange = true; 6634 ++NumDbgValueMoved; 6635 } 6636 } 6637 } 6638 return MadeChange; 6639 } 6640 6641 /// Scale down both weights to fit into uint32_t. 6642 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6643 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6644 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6645 NewTrue = NewTrue / Scale; 6646 NewFalse = NewFalse / Scale; 6647 } 6648 6649 /// Some targets prefer to split a conditional branch like: 6650 /// \code 6651 /// %0 = icmp ne i32 %a, 0 6652 /// %1 = icmp ne i32 %b, 0 6653 /// %or.cond = or i1 %0, %1 6654 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6655 /// \endcode 6656 /// into multiple branch instructions like: 6657 /// \code 6658 /// bb1: 6659 /// %0 = icmp ne i32 %a, 0 6660 /// br i1 %0, label %TrueBB, label %bb2 6661 /// bb2: 6662 /// %1 = icmp ne i32 %b, 0 6663 /// br i1 %1, label %TrueBB, label %FalseBB 6664 /// \endcode 6665 /// This usually allows instruction selection to do even further optimizations 6666 /// and combine the compare with the branch instruction. Currently this is 6667 /// applied for targets which have "cheap" jump instructions. 6668 /// 6669 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6670 /// 6671 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6672 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6673 return false; 6674 6675 bool MadeChange = false; 6676 for (auto &BB : F) { 6677 // Does this BB end with the following? 6678 // %cond1 = icmp|fcmp|binary instruction ... 6679 // %cond2 = icmp|fcmp|binary instruction ... 6680 // %cond.or = or|and i1 %cond1, cond2 6681 // br i1 %cond.or label %dest1, label %dest2" 6682 BinaryOperator *LogicOp; 6683 BasicBlock *TBB, *FBB; 6684 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6685 continue; 6686 6687 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6688 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6689 continue; 6690 6691 unsigned Opc; 6692 Value *Cond1, *Cond2; 6693 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6694 m_OneUse(m_Value(Cond2))))) 6695 Opc = Instruction::And; 6696 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6697 m_OneUse(m_Value(Cond2))))) 6698 Opc = Instruction::Or; 6699 else 6700 continue; 6701 6702 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6703 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6704 continue; 6705 6706 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6707 6708 // Create a new BB. 6709 auto TmpBB = 6710 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6711 BB.getParent(), BB.getNextNode()); 6712 6713 // Update original basic block by using the first condition directly by the 6714 // branch instruction and removing the no longer needed and/or instruction. 6715 Br1->setCondition(Cond1); 6716 LogicOp->eraseFromParent(); 6717 6718 // Depending on the conditon we have to either replace the true or the false 6719 // successor of the original branch instruction. 6720 if (Opc == Instruction::And) 6721 Br1->setSuccessor(0, TmpBB); 6722 else 6723 Br1->setSuccessor(1, TmpBB); 6724 6725 // Fill in the new basic block. 6726 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6727 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6728 I->removeFromParent(); 6729 I->insertBefore(Br2); 6730 } 6731 6732 // Update PHI nodes in both successors. The original BB needs to be 6733 // replaced in one successor's PHI nodes, because the branch comes now from 6734 // the newly generated BB (NewBB). In the other successor we need to add one 6735 // incoming edge to the PHI nodes, because both branch instructions target 6736 // now the same successor. Depending on the original branch condition 6737 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6738 // we perform the correct update for the PHI nodes. 6739 // This doesn't change the successor order of the just created branch 6740 // instruction (or any other instruction). 6741 if (Opc == Instruction::Or) 6742 std::swap(TBB, FBB); 6743 6744 // Replace the old BB with the new BB. 6745 for (PHINode &PN : TBB->phis()) { 6746 int i; 6747 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6748 PN.setIncomingBlock(i, TmpBB); 6749 } 6750 6751 // Add another incoming edge form the new BB. 6752 for (PHINode &PN : FBB->phis()) { 6753 auto *Val = PN.getIncomingValueForBlock(&BB); 6754 PN.addIncoming(Val, TmpBB); 6755 } 6756 6757 // Update the branch weights (from SelectionDAGBuilder:: 6758 // FindMergedConditions). 6759 if (Opc == Instruction::Or) { 6760 // Codegen X | Y as: 6761 // BB1: 6762 // jmp_if_X TBB 6763 // jmp TmpBB 6764 // TmpBB: 6765 // jmp_if_Y TBB 6766 // jmp FBB 6767 // 6768 6769 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6770 // The requirement is that 6771 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6772 // = TrueProb for orignal BB. 6773 // Assuming the orignal weights are A and B, one choice is to set BB1's 6774 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6775 // assumes that 6776 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6777 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6778 // TmpBB, but the math is more complicated. 6779 uint64_t TrueWeight, FalseWeight; 6780 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6781 uint64_t NewTrueWeight = TrueWeight; 6782 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6783 scaleWeights(NewTrueWeight, NewFalseWeight); 6784 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6785 .createBranchWeights(TrueWeight, FalseWeight)); 6786 6787 NewTrueWeight = TrueWeight; 6788 NewFalseWeight = 2 * FalseWeight; 6789 scaleWeights(NewTrueWeight, NewFalseWeight); 6790 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6791 .createBranchWeights(TrueWeight, FalseWeight)); 6792 } 6793 } else { 6794 // Codegen X & Y as: 6795 // BB1: 6796 // jmp_if_X TmpBB 6797 // jmp FBB 6798 // TmpBB: 6799 // jmp_if_Y TBB 6800 // jmp FBB 6801 // 6802 // This requires creation of TmpBB after CurBB. 6803 6804 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6805 // The requirement is that 6806 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6807 // = FalseProb for orignal BB. 6808 // Assuming the orignal weights are A and B, one choice is to set BB1's 6809 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6810 // assumes that 6811 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6812 uint64_t TrueWeight, FalseWeight; 6813 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6814 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6815 uint64_t NewFalseWeight = FalseWeight; 6816 scaleWeights(NewTrueWeight, NewFalseWeight); 6817 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6818 .createBranchWeights(TrueWeight, FalseWeight)); 6819 6820 NewTrueWeight = 2 * TrueWeight; 6821 NewFalseWeight = FalseWeight; 6822 scaleWeights(NewTrueWeight, NewFalseWeight); 6823 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6824 .createBranchWeights(TrueWeight, FalseWeight)); 6825 } 6826 } 6827 6828 // Note: No point in getting fancy here, since the DT info is never 6829 // available to CodeGenPrepare. 6830 ModifiedDT = true; 6831 6832 MadeChange = true; 6833 6834 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6835 TmpBB->dump()); 6836 } 6837 return MadeChange; 6838 } 6839