1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetPassConfig>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<LoopInfoWrapperPass>(); 333 } 334 335 private: 336 template <typename F> 337 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 338 // Substituting can cause recursive simplifications, which can invalidate 339 // our iterator. Use a WeakTrackingVH to hold onto it in case this 340 // happens. 341 Value *CurValue = &*CurInstIterator; 342 WeakTrackingVH IterHandle(CurValue); 343 344 f(); 345 346 // If the iterator instruction was recursively deleted, start over at the 347 // start of the block. 348 if (IterHandle != CurValue) { 349 CurInstIterator = BB->begin(); 350 SunkAddrs.clear(); 351 } 352 } 353 354 // Get the DominatorTree, building if necessary. 355 DominatorTree &getDT(Function &F) { 356 if (!DT) 357 DT = std::make_unique<DominatorTree>(F); 358 return *DT; 359 } 360 361 bool eliminateFallThrough(Function &F); 362 bool eliminateMostlyEmptyBlocks(Function &F); 363 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 364 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 365 void eliminateMostlyEmptyBlock(BasicBlock *BB); 366 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 367 bool isPreheader); 368 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 369 bool optimizeInst(Instruction *I, bool &ModifiedDT); 370 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 371 Type *AccessTy, unsigned AddrSpace); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 403 Value *Arg1, CmpInst *Cmp, 404 Intrinsic::ID IID); 405 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 408 }; 409 410 } // end anonymous namespace 411 412 char CodeGenPrepare::ID = 0; 413 414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 415 "Optimize for code generation", false, false) 416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 418 "Optimize for code generation", false, false) 419 420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 421 422 bool CodeGenPrepare::runOnFunction(Function &F) { 423 if (skipFunction(F)) 424 return false; 425 426 DL = &F.getParent()->getDataLayout(); 427 428 bool EverMadeChange = false; 429 // Clear per function information. 430 InsertedInsts.clear(); 431 PromotedInsts.clear(); 432 433 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 434 SubtargetInfo = TM->getSubtargetImpl(F); 435 TLI = SubtargetInfo->getTargetLowering(); 436 TRI = SubtargetInfo->getRegisterInfo(); 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 454 const DenseMap<unsigned int, unsigned int> &BypassWidths = 455 TLI->getBypassSlowDivWidths(); 456 BasicBlock* BB = &*F.begin(); 457 while (BB != nullptr) { 458 // bypassSlowDivision may create new BBs, but we don't want to reapply the 459 // optimization to those blocks. 460 BasicBlock* Next = BB->getNextNode(); 461 // F.hasOptSize is already checked in the outer if statement. 462 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 463 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 464 BB = Next; 465 } 466 } 467 468 // Eliminate blocks that contain only PHI nodes and an 469 // unconditional branch. 470 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 471 472 bool ModifiedDT = false; 473 if (!DisableBranchOpts) 474 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 475 476 // Split some critical edges where one of the sources is an indirect branch, 477 // to help generate sane code for PHIs involving such edges. 478 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 479 480 bool MadeChange = true; 481 while (MadeChange) { 482 MadeChange = false; 483 DT.reset(); 484 for (Function::iterator I = F.begin(); I != F.end(); ) { 485 BasicBlock *BB = &*I++; 486 bool ModifiedDTOnIteration = false; 487 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 488 489 // Restart BB iteration if the dominator tree of the Function was changed 490 if (ModifiedDTOnIteration) 491 break; 492 } 493 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 494 MadeChange |= mergeSExts(F); 495 if (!LargeOffsetGEPMap.empty()) 496 MadeChange |= splitLargeGEPOffsets(); 497 498 // Really free removed instructions during promotion. 499 for (Instruction *I : RemovedInsts) 500 I->deleteValue(); 501 502 EverMadeChange |= MadeChange; 503 SeenChainsForSExt.clear(); 504 ValToSExtendedUses.clear(); 505 RemovedInsts.clear(); 506 LargeOffsetGEPMap.clear(); 507 LargeOffsetGEPID.clear(); 508 } 509 510 SunkAddrs.clear(); 511 512 if (!DisableBranchOpts) { 513 MadeChange = false; 514 // Use a set vector to get deterministic iteration order. The order the 515 // blocks are removed may affect whether or not PHI nodes in successors 516 // are removed. 517 SmallSetVector<BasicBlock*, 8> WorkList; 518 for (BasicBlock &BB : F) { 519 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 520 MadeChange |= ConstantFoldTerminator(&BB, true); 521 if (!MadeChange) continue; 522 523 for (SmallVectorImpl<BasicBlock*>::iterator 524 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 525 if (pred_begin(*II) == pred_end(*II)) 526 WorkList.insert(*II); 527 } 528 529 // Delete the dead blocks and any of their dead successors. 530 MadeChange |= !WorkList.empty(); 531 while (!WorkList.empty()) { 532 BasicBlock *BB = WorkList.pop_back_val(); 533 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 534 535 DeleteDeadBlock(BB); 536 537 for (SmallVectorImpl<BasicBlock*>::iterator 538 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 539 if (pred_begin(*II) == pred_end(*II)) 540 WorkList.insert(*II); 541 } 542 543 // Merge pairs of basic blocks with unconditional branches, connected by 544 // a single edge. 545 if (EverMadeChange || MadeChange) 546 MadeChange |= eliminateFallThrough(F); 547 548 EverMadeChange |= MadeChange; 549 } 550 551 if (!DisableGCOpts) { 552 SmallVector<Instruction *, 2> Statepoints; 553 for (BasicBlock &BB : F) 554 for (Instruction &I : BB) 555 if (isStatepoint(I)) 556 Statepoints.push_back(&I); 557 for (auto &I : Statepoints) 558 EverMadeChange |= simplifyOffsetableRelocate(*I); 559 } 560 561 // Do this last to clean up use-before-def scenarios introduced by other 562 // preparatory transforms. 563 EverMadeChange |= placeDbgValues(F); 564 565 return EverMadeChange; 566 } 567 568 /// Merge basic blocks which are connected by a single edge, where one of the 569 /// basic blocks has a single successor pointing to the other basic block, 570 /// which has a single predecessor. 571 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 572 bool Changed = false; 573 // Scan all of the blocks in the function, except for the entry block. 574 // Use a temporary array to avoid iterator being invalidated when 575 // deleting blocks. 576 SmallVector<WeakTrackingVH, 16> Blocks; 577 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 578 Blocks.push_back(&Block); 579 580 for (auto &Block : Blocks) { 581 auto *BB = cast_or_null<BasicBlock>(Block); 582 if (!BB) 583 continue; 584 // If the destination block has a single pred, then this is a trivial 585 // edge, just collapse it. 586 BasicBlock *SinglePred = BB->getSinglePredecessor(); 587 588 // Don't merge if BB's address is taken. 589 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 590 591 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 592 if (Term && !Term->isConditional()) { 593 Changed = true; 594 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 595 596 // Merge BB into SinglePred and delete it. 597 MergeBlockIntoPredecessor(BB); 598 } 599 } 600 return Changed; 601 } 602 603 /// Find a destination block from BB if BB is mergeable empty block. 604 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 605 // If this block doesn't end with an uncond branch, ignore it. 606 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 607 if (!BI || !BI->isUnconditional()) 608 return nullptr; 609 610 // If the instruction before the branch (skipping debug info) isn't a phi 611 // node, then other stuff is happening here. 612 BasicBlock::iterator BBI = BI->getIterator(); 613 if (BBI != BB->begin()) { 614 --BBI; 615 while (isa<DbgInfoIntrinsic>(BBI)) { 616 if (BBI == BB->begin()) 617 break; 618 --BBI; 619 } 620 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 621 return nullptr; 622 } 623 624 // Do not break infinite loops. 625 BasicBlock *DestBB = BI->getSuccessor(0); 626 if (DestBB == BB) 627 return nullptr; 628 629 if (!canMergeBlocks(BB, DestBB)) 630 DestBB = nullptr; 631 632 return DestBB; 633 } 634 635 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 636 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 637 /// edges in ways that are non-optimal for isel. Start by eliminating these 638 /// blocks so we can split them the way we want them. 639 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 640 SmallPtrSet<BasicBlock *, 16> Preheaders; 641 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 642 while (!LoopList.empty()) { 643 Loop *L = LoopList.pop_back_val(); 644 LoopList.insert(LoopList.end(), L->begin(), L->end()); 645 if (BasicBlock *Preheader = L->getLoopPreheader()) 646 Preheaders.insert(Preheader); 647 } 648 649 bool MadeChange = false; 650 // Copy blocks into a temporary array to avoid iterator invalidation issues 651 // as we remove them. 652 // Note that this intentionally skips the entry block. 653 SmallVector<WeakTrackingVH, 16> Blocks; 654 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 655 Blocks.push_back(&Block); 656 657 for (auto &Block : Blocks) { 658 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 659 if (!BB) 660 continue; 661 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 662 if (!DestBB || 663 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 664 continue; 665 666 eliminateMostlyEmptyBlock(BB); 667 MadeChange = true; 668 } 669 return MadeChange; 670 } 671 672 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 673 BasicBlock *DestBB, 674 bool isPreheader) { 675 // Do not delete loop preheaders if doing so would create a critical edge. 676 // Loop preheaders can be good locations to spill registers. If the 677 // preheader is deleted and we create a critical edge, registers may be 678 // spilled in the loop body instead. 679 if (!DisablePreheaderProtect && isPreheader && 680 !(BB->getSinglePredecessor() && 681 BB->getSinglePredecessor()->getSingleSuccessor())) 682 return false; 683 684 // Skip merging if the block's successor is also a successor to any callbr 685 // that leads to this block. 686 // FIXME: Is this really needed? Is this a correctness issue? 687 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 688 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 689 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 690 if (DestBB == CBI->getSuccessor(i)) 691 return false; 692 } 693 694 // Try to skip merging if the unique predecessor of BB is terminated by a 695 // switch or indirect branch instruction, and BB is used as an incoming block 696 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 697 // add COPY instructions in the predecessor of BB instead of BB (if it is not 698 // merged). Note that the critical edge created by merging such blocks wont be 699 // split in MachineSink because the jump table is not analyzable. By keeping 700 // such empty block (BB), ISel will place COPY instructions in BB, not in the 701 // predecessor of BB. 702 BasicBlock *Pred = BB->getUniquePredecessor(); 703 if (!Pred || 704 !(isa<SwitchInst>(Pred->getTerminator()) || 705 isa<IndirectBrInst>(Pred->getTerminator()))) 706 return true; 707 708 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 709 return true; 710 711 // We use a simple cost heuristic which determine skipping merging is 712 // profitable if the cost of skipping merging is less than the cost of 713 // merging : Cost(skipping merging) < Cost(merging BB), where the 714 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 715 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 716 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 717 // Freq(Pred) / Freq(BB) > 2. 718 // Note that if there are multiple empty blocks sharing the same incoming 719 // value for the PHIs in the DestBB, we consider them together. In such 720 // case, Cost(merging BB) will be the sum of their frequencies. 721 722 if (!isa<PHINode>(DestBB->begin())) 723 return true; 724 725 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 726 727 // Find all other incoming blocks from which incoming values of all PHIs in 728 // DestBB are the same as the ones from BB. 729 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 730 ++PI) { 731 BasicBlock *DestBBPred = *PI; 732 if (DestBBPred == BB) 733 continue; 734 735 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 736 return DestPN.getIncomingValueForBlock(BB) == 737 DestPN.getIncomingValueForBlock(DestBBPred); 738 })) 739 SameIncomingValueBBs.insert(DestBBPred); 740 } 741 742 // See if all BB's incoming values are same as the value from Pred. In this 743 // case, no reason to skip merging because COPYs are expected to be place in 744 // Pred already. 745 if (SameIncomingValueBBs.count(Pred)) 746 return true; 747 748 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 749 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 750 751 for (auto SameValueBB : SameIncomingValueBBs) 752 if (SameValueBB->getUniquePredecessor() == Pred && 753 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 754 BBFreq += BFI->getBlockFreq(SameValueBB); 755 756 return PredFreq.getFrequency() <= 757 BBFreq.getFrequency() * FreqRatioToSkipMerge; 758 } 759 760 /// Return true if we can merge BB into DestBB if there is a single 761 /// unconditional branch between them, and BB contains no other non-phi 762 /// instructions. 763 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 764 const BasicBlock *DestBB) const { 765 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 766 // the successor. If there are more complex condition (e.g. preheaders), 767 // don't mess around with them. 768 for (const PHINode &PN : BB->phis()) { 769 for (const User *U : PN.users()) { 770 const Instruction *UI = cast<Instruction>(U); 771 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 772 return false; 773 // If User is inside DestBB block and it is a PHINode then check 774 // incoming value. If incoming value is not from BB then this is 775 // a complex condition (e.g. preheaders) we want to avoid here. 776 if (UI->getParent() == DestBB) { 777 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 778 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 779 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 780 if (Insn && Insn->getParent() == BB && 781 Insn->getParent() != UPN->getIncomingBlock(I)) 782 return false; 783 } 784 } 785 } 786 } 787 788 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 789 // and DestBB may have conflicting incoming values for the block. If so, we 790 // can't merge the block. 791 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 792 if (!DestBBPN) return true; // no conflict. 793 794 // Collect the preds of BB. 795 SmallPtrSet<const BasicBlock*, 16> BBPreds; 796 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 797 // It is faster to get preds from a PHI than with pred_iterator. 798 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 799 BBPreds.insert(BBPN->getIncomingBlock(i)); 800 } else { 801 BBPreds.insert(pred_begin(BB), pred_end(BB)); 802 } 803 804 // Walk the preds of DestBB. 805 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 806 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 807 if (BBPreds.count(Pred)) { // Common predecessor? 808 for (const PHINode &PN : DestBB->phis()) { 809 const Value *V1 = PN.getIncomingValueForBlock(Pred); 810 const Value *V2 = PN.getIncomingValueForBlock(BB); 811 812 // If V2 is a phi node in BB, look up what the mapped value will be. 813 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 814 if (V2PN->getParent() == BB) 815 V2 = V2PN->getIncomingValueForBlock(Pred); 816 817 // If there is a conflict, bail out. 818 if (V1 != V2) return false; 819 } 820 } 821 } 822 823 return true; 824 } 825 826 /// Eliminate a basic block that has only phi's and an unconditional branch in 827 /// it. 828 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 829 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 830 BasicBlock *DestBB = BI->getSuccessor(0); 831 832 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 833 << *BB << *DestBB); 834 835 // If the destination block has a single pred, then this is a trivial edge, 836 // just collapse it. 837 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 838 if (SinglePred != DestBB) { 839 assert(SinglePred == BB && 840 "Single predecessor not the same as predecessor"); 841 // Merge DestBB into SinglePred/BB and delete it. 842 MergeBlockIntoPredecessor(DestBB); 843 // Note: BB(=SinglePred) will not be deleted on this path. 844 // DestBB(=its single successor) is the one that was deleted. 845 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 846 return; 847 } 848 } 849 850 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 851 // to handle the new incoming edges it is about to have. 852 for (PHINode &PN : DestBB->phis()) { 853 // Remove the incoming value for BB, and remember it. 854 Value *InVal = PN.removeIncomingValue(BB, false); 855 856 // Two options: either the InVal is a phi node defined in BB or it is some 857 // value that dominates BB. 858 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 859 if (InValPhi && InValPhi->getParent() == BB) { 860 // Add all of the input values of the input PHI as inputs of this phi. 861 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 862 PN.addIncoming(InValPhi->getIncomingValue(i), 863 InValPhi->getIncomingBlock(i)); 864 } else { 865 // Otherwise, add one instance of the dominating value for each edge that 866 // we will be adding. 867 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 868 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 869 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 870 } else { 871 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 872 PN.addIncoming(InVal, *PI); 873 } 874 } 875 } 876 877 // The PHIs are now updated, change everything that refers to BB to use 878 // DestBB and remove BB. 879 BB->replaceAllUsesWith(DestBB); 880 BB->eraseFromParent(); 881 ++NumBlocksElim; 882 883 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 884 } 885 886 // Computes a map of base pointer relocation instructions to corresponding 887 // derived pointer relocation instructions given a vector of all relocate calls 888 static void computeBaseDerivedRelocateMap( 889 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 890 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 891 &RelocateInstMap) { 892 // Collect information in two maps: one primarily for locating the base object 893 // while filling the second map; the second map is the final structure holding 894 // a mapping between Base and corresponding Derived relocate calls 895 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 896 for (auto *ThisRelocate : AllRelocateCalls) { 897 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 898 ThisRelocate->getDerivedPtrIndex()); 899 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 900 } 901 for (auto &Item : RelocateIdxMap) { 902 std::pair<unsigned, unsigned> Key = Item.first; 903 if (Key.first == Key.second) 904 // Base relocation: nothing to insert 905 continue; 906 907 GCRelocateInst *I = Item.second; 908 auto BaseKey = std::make_pair(Key.first, Key.first); 909 910 // We're iterating over RelocateIdxMap so we cannot modify it. 911 auto MaybeBase = RelocateIdxMap.find(BaseKey); 912 if (MaybeBase == RelocateIdxMap.end()) 913 // TODO: We might want to insert a new base object relocate and gep off 914 // that, if there are enough derived object relocates. 915 continue; 916 917 RelocateInstMap[MaybeBase->second].push_back(I); 918 } 919 } 920 921 // Accepts a GEP and extracts the operands into a vector provided they're all 922 // small integer constants 923 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 924 SmallVectorImpl<Value *> &OffsetV) { 925 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 926 // Only accept small constant integer operands 927 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 928 if (!Op || Op->getZExtValue() > 20) 929 return false; 930 } 931 932 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 933 OffsetV.push_back(GEP->getOperand(i)); 934 return true; 935 } 936 937 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 938 // replace, computes a replacement, and affects it. 939 static bool 940 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 941 const SmallVectorImpl<GCRelocateInst *> &Targets) { 942 bool MadeChange = false; 943 // We must ensure the relocation of derived pointer is defined after 944 // relocation of base pointer. If we find a relocation corresponding to base 945 // defined earlier than relocation of base then we move relocation of base 946 // right before found relocation. We consider only relocation in the same 947 // basic block as relocation of base. Relocations from other basic block will 948 // be skipped by optimization and we do not care about them. 949 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 950 &*R != RelocatedBase; ++R) 951 if (auto RI = dyn_cast<GCRelocateInst>(R)) 952 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 953 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 954 RelocatedBase->moveBefore(RI); 955 break; 956 } 957 958 for (GCRelocateInst *ToReplace : Targets) { 959 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 960 "Not relocating a derived object of the original base object"); 961 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 962 // A duplicate relocate call. TODO: coalesce duplicates. 963 continue; 964 } 965 966 if (RelocatedBase->getParent() != ToReplace->getParent()) { 967 // Base and derived relocates are in different basic blocks. 968 // In this case transform is only valid when base dominates derived 969 // relocate. However it would be too expensive to check dominance 970 // for each such relocate, so we skip the whole transformation. 971 continue; 972 } 973 974 Value *Base = ToReplace->getBasePtr(); 975 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 976 if (!Derived || Derived->getPointerOperand() != Base) 977 continue; 978 979 SmallVector<Value *, 2> OffsetV; 980 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 981 continue; 982 983 // Create a Builder and replace the target callsite with a gep 984 assert(RelocatedBase->getNextNode() && 985 "Should always have one since it's not a terminator"); 986 987 // Insert after RelocatedBase 988 IRBuilder<> Builder(RelocatedBase->getNextNode()); 989 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 990 991 // If gc_relocate does not match the actual type, cast it to the right type. 992 // In theory, there must be a bitcast after gc_relocate if the type does not 993 // match, and we should reuse it to get the derived pointer. But it could be 994 // cases like this: 995 // bb1: 996 // ... 997 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 998 // br label %merge 999 // 1000 // bb2: 1001 // ... 1002 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1003 // br label %merge 1004 // 1005 // merge: 1006 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1007 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1008 // 1009 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1010 // no matter there is already one or not. In this way, we can handle all cases, and 1011 // the extra bitcast should be optimized away in later passes. 1012 Value *ActualRelocatedBase = RelocatedBase; 1013 if (RelocatedBase->getType() != Base->getType()) { 1014 ActualRelocatedBase = 1015 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1016 } 1017 Value *Replacement = Builder.CreateGEP( 1018 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1019 Replacement->takeName(ToReplace); 1020 // If the newly generated derived pointer's type does not match the original derived 1021 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1022 Value *ActualReplacement = Replacement; 1023 if (Replacement->getType() != ToReplace->getType()) { 1024 ActualReplacement = 1025 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1026 } 1027 ToReplace->replaceAllUsesWith(ActualReplacement); 1028 ToReplace->eraseFromParent(); 1029 1030 MadeChange = true; 1031 } 1032 return MadeChange; 1033 } 1034 1035 // Turns this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = relocate(%tok, i32 4, i32 4) 1041 // %ptr' = relocate(%tok, i32 4, i32 5) 1042 // %val = load %ptr' 1043 // 1044 // into this: 1045 // 1046 // %base = ... 1047 // %ptr = gep %base + 15 1048 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1049 // %base' = gc.relocate(%tok, i32 4, i32 4) 1050 // %ptr' = gep %base' + 15 1051 // %val = load %ptr' 1052 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1053 bool MadeChange = false; 1054 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1055 1056 for (auto *U : I.users()) 1057 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1058 // Collect all the relocate calls associated with a statepoint 1059 AllRelocateCalls.push_back(Relocate); 1060 1061 // We need at least one base pointer relocation + one derived pointer 1062 // relocation to mangle 1063 if (AllRelocateCalls.size() < 2) 1064 return false; 1065 1066 // RelocateInstMap is a mapping from the base relocate instruction to the 1067 // corresponding derived relocate instructions 1068 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1069 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1070 if (RelocateInstMap.empty()) 1071 return false; 1072 1073 for (auto &Item : RelocateInstMap) 1074 // Item.first is the RelocatedBase to offset against 1075 // Item.second is the vector of Targets to replace 1076 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1077 return MadeChange; 1078 } 1079 1080 /// Sink the specified cast instruction into its user blocks. 1081 static bool SinkCast(CastInst *CI) { 1082 BasicBlock *DefBB = CI->getParent(); 1083 1084 /// InsertedCasts - Only insert a cast in each block once. 1085 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1086 1087 bool MadeChange = false; 1088 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1089 UI != E; ) { 1090 Use &TheUse = UI.getUse(); 1091 Instruction *User = cast<Instruction>(*UI); 1092 1093 // Figure out which BB this cast is used in. For PHI's this is the 1094 // appropriate predecessor block. 1095 BasicBlock *UserBB = User->getParent(); 1096 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1097 UserBB = PN->getIncomingBlock(TheUse); 1098 } 1099 1100 // Preincrement use iterator so we don't invalidate it. 1101 ++UI; 1102 1103 // The first insertion point of a block containing an EH pad is after the 1104 // pad. If the pad is the user, we cannot sink the cast past the pad. 1105 if (User->isEHPad()) 1106 continue; 1107 1108 // If the block selected to receive the cast is an EH pad that does not 1109 // allow non-PHI instructions before the terminator, we can't sink the 1110 // cast. 1111 if (UserBB->getTerminator()->isEHPad()) 1112 continue; 1113 1114 // If this user is in the same block as the cast, don't change the cast. 1115 if (UserBB == DefBB) continue; 1116 1117 // If we have already inserted a cast into this block, use it. 1118 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1119 1120 if (!InsertedCast) { 1121 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1122 assert(InsertPt != UserBB->end()); 1123 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1124 CI->getType(), "", &*InsertPt); 1125 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1126 } 1127 1128 // Replace a use of the cast with a use of the new cast. 1129 TheUse = InsertedCast; 1130 MadeChange = true; 1131 ++NumCastUses; 1132 } 1133 1134 // If we removed all uses, nuke the cast. 1135 if (CI->use_empty()) { 1136 salvageDebugInfo(*CI); 1137 CI->eraseFromParent(); 1138 MadeChange = true; 1139 } 1140 1141 return MadeChange; 1142 } 1143 1144 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1145 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1146 /// reduce the number of virtual registers that must be created and coalesced. 1147 /// 1148 /// Return true if any changes are made. 1149 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1150 const DataLayout &DL) { 1151 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1152 // than sinking only nop casts, but is helpful on some platforms. 1153 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1154 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1155 ASC->getDestAddressSpace())) 1156 return false; 1157 } 1158 1159 // If this is a noop copy, 1160 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1161 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1162 1163 // This is an fp<->int conversion? 1164 if (SrcVT.isInteger() != DstVT.isInteger()) 1165 return false; 1166 1167 // If this is an extension, it will be a zero or sign extension, which 1168 // isn't a noop. 1169 if (SrcVT.bitsLT(DstVT)) return false; 1170 1171 // If these values will be promoted, find out what they will be promoted 1172 // to. This helps us consider truncates on PPC as noop copies when they 1173 // are. 1174 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1175 TargetLowering::TypePromoteInteger) 1176 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1177 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1178 TargetLowering::TypePromoteInteger) 1179 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1180 1181 // If, after promotion, these are the same types, this is a noop copy. 1182 if (SrcVT != DstVT) 1183 return false; 1184 1185 return SinkCast(CI); 1186 } 1187 1188 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1189 Value *Arg0, Value *Arg1, 1190 CmpInst *Cmp, 1191 Intrinsic::ID IID) { 1192 if (BO->getParent() != Cmp->getParent()) { 1193 // We used to use a dominator tree here to allow multi-block optimization. 1194 // But that was problematic because: 1195 // 1. It could cause a perf regression by hoisting the math op into the 1196 // critical path. 1197 // 2. It could cause a perf regression by creating a value that was live 1198 // across multiple blocks and increasing register pressure. 1199 // 3. Use of a dominator tree could cause large compile-time regression. 1200 // This is because we recompute the DT on every change in the main CGP 1201 // run-loop. The recomputing is probably unnecessary in many cases, so if 1202 // that was fixed, using a DT here would be ok. 1203 return false; 1204 } 1205 1206 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1207 if (BO->getOpcode() == Instruction::Add && 1208 IID == Intrinsic::usub_with_overflow) { 1209 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1210 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1211 } 1212 1213 // Insert at the first instruction of the pair. 1214 Instruction *InsertPt = nullptr; 1215 for (Instruction &Iter : *Cmp->getParent()) { 1216 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1217 // the overflow intrinsic are defined. 1218 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1219 InsertPt = &Iter; 1220 break; 1221 } 1222 } 1223 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1224 1225 IRBuilder<> Builder(InsertPt); 1226 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1227 if (BO->getOpcode() != Instruction::Xor) { 1228 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1229 BO->replaceAllUsesWith(Math); 1230 } else 1231 assert(BO->hasOneUse() && 1232 "Patterns with XOr should use the BO only in the compare"); 1233 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1234 Cmp->replaceAllUsesWith(OV); 1235 Cmp->eraseFromParent(); 1236 BO->eraseFromParent(); 1237 return true; 1238 } 1239 1240 /// Match special-case patterns that check for unsigned add overflow. 1241 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1242 BinaryOperator *&Add) { 1243 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1244 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1245 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1246 1247 // We are not expecting non-canonical/degenerate code. Just bail out. 1248 if (isa<Constant>(A)) 1249 return false; 1250 1251 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1252 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1253 B = ConstantInt::get(B->getType(), 1); 1254 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1255 B = ConstantInt::get(B->getType(), -1); 1256 else 1257 return false; 1258 1259 // Check the users of the variable operand of the compare looking for an add 1260 // with the adjusted constant. 1261 for (User *U : A->users()) { 1262 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1263 Add = cast<BinaryOperator>(U); 1264 return true; 1265 } 1266 } 1267 return false; 1268 } 1269 1270 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1271 /// intrinsic. Return true if any changes were made. 1272 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1273 bool &ModifiedDT) { 1274 Value *A, *B; 1275 BinaryOperator *Add; 1276 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1277 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1278 return false; 1279 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1280 A = Add->getOperand(0); 1281 B = Add->getOperand(1); 1282 } 1283 1284 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1285 TLI->getValueType(*DL, Add->getType()), 1286 Add->hasNUsesOrMore(2))) 1287 return false; 1288 1289 // We don't want to move around uses of condition values this late, so we 1290 // check if it is legal to create the call to the intrinsic in the basic 1291 // block containing the icmp. 1292 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1293 return false; 1294 1295 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1296 Intrinsic::uadd_with_overflow)) 1297 return false; 1298 1299 // Reset callers - do not crash by iterating over a dead instruction. 1300 ModifiedDT = true; 1301 return true; 1302 } 1303 1304 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1305 bool &ModifiedDT) { 1306 // We are not expecting non-canonical/degenerate code. Just bail out. 1307 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1308 if (isa<Constant>(A) && isa<Constant>(B)) 1309 return false; 1310 1311 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1312 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1313 if (Pred == ICmpInst::ICMP_UGT) { 1314 std::swap(A, B); 1315 Pred = ICmpInst::ICMP_ULT; 1316 } 1317 // Convert special-case: (A == 0) is the same as (A u< 1). 1318 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1319 B = ConstantInt::get(B->getType(), 1); 1320 Pred = ICmpInst::ICMP_ULT; 1321 } 1322 // Convert special-case: (A != 0) is the same as (0 u< A). 1323 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1324 std::swap(A, B); 1325 Pred = ICmpInst::ICMP_ULT; 1326 } 1327 if (Pred != ICmpInst::ICMP_ULT) 1328 return false; 1329 1330 // Walk the users of a variable operand of a compare looking for a subtract or 1331 // add with that same operand. Also match the 2nd operand of the compare to 1332 // the add/sub, but that may be a negated constant operand of an add. 1333 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1334 BinaryOperator *Sub = nullptr; 1335 for (User *U : CmpVariableOperand->users()) { 1336 // A - B, A u< B --> usubo(A, B) 1337 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1338 Sub = cast<BinaryOperator>(U); 1339 break; 1340 } 1341 1342 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1343 const APInt *CmpC, *AddC; 1344 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1345 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1346 Sub = cast<BinaryOperator>(U); 1347 break; 1348 } 1349 } 1350 if (!Sub) 1351 return false; 1352 1353 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1354 TLI->getValueType(*DL, Sub->getType()), 1355 Sub->hasNUsesOrMore(2))) 1356 return false; 1357 1358 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1359 Cmp, Intrinsic::usub_with_overflow)) 1360 return false; 1361 1362 // Reset callers - do not crash by iterating over a dead instruction. 1363 ModifiedDT = true; 1364 return true; 1365 } 1366 1367 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1368 /// registers that must be created and coalesced. This is a clear win except on 1369 /// targets with multiple condition code registers (PowerPC), where it might 1370 /// lose; some adjustment may be wanted there. 1371 /// 1372 /// Return true if any changes are made. 1373 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1374 if (TLI.hasMultipleConditionRegisters()) 1375 return false; 1376 1377 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1378 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1379 return false; 1380 1381 // Only insert a cmp in each block once. 1382 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1383 1384 bool MadeChange = false; 1385 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1386 UI != E; ) { 1387 Use &TheUse = UI.getUse(); 1388 Instruction *User = cast<Instruction>(*UI); 1389 1390 // Preincrement use iterator so we don't invalidate it. 1391 ++UI; 1392 1393 // Don't bother for PHI nodes. 1394 if (isa<PHINode>(User)) 1395 continue; 1396 1397 // Figure out which BB this cmp is used in. 1398 BasicBlock *UserBB = User->getParent(); 1399 BasicBlock *DefBB = Cmp->getParent(); 1400 1401 // If this user is in the same block as the cmp, don't change the cmp. 1402 if (UserBB == DefBB) continue; 1403 1404 // If we have already inserted a cmp into this block, use it. 1405 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1406 1407 if (!InsertedCmp) { 1408 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1409 assert(InsertPt != UserBB->end()); 1410 InsertedCmp = 1411 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1412 Cmp->getOperand(0), Cmp->getOperand(1), "", 1413 &*InsertPt); 1414 // Propagate the debug info. 1415 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1416 } 1417 1418 // Replace a use of the cmp with a use of the new cmp. 1419 TheUse = InsertedCmp; 1420 MadeChange = true; 1421 ++NumCmpUses; 1422 } 1423 1424 // If we removed all uses, nuke the cmp. 1425 if (Cmp->use_empty()) { 1426 Cmp->eraseFromParent(); 1427 MadeChange = true; 1428 } 1429 1430 return MadeChange; 1431 } 1432 1433 /// For pattern like: 1434 /// 1435 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1436 /// ... 1437 /// DomBB: 1438 /// ... 1439 /// br DomCond, TrueBB, CmpBB 1440 /// CmpBB: (with DomBB being the single predecessor) 1441 /// ... 1442 /// Cmp = icmp eq CmpOp0, CmpOp1 1443 /// ... 1444 /// 1445 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1446 /// different from lowering of icmp eq (PowerPC). This function try to convert 1447 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1448 /// After that, DomCond and Cmp can use the same comparison so reduce one 1449 /// comparison. 1450 /// 1451 /// Return true if any changes are made. 1452 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1453 const TargetLowering &TLI) { 1454 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1455 return false; 1456 1457 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1458 if (Pred != ICmpInst::ICMP_EQ) 1459 return false; 1460 1461 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1462 // icmp slt/sgt would introduce more redundant LLVM IR. 1463 for (User *U : Cmp->users()) { 1464 if (isa<BranchInst>(U)) 1465 continue; 1466 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1467 continue; 1468 return false; 1469 } 1470 1471 // This is a cheap/incomplete check for dominance - just match a single 1472 // predecessor with a conditional branch. 1473 BasicBlock *CmpBB = Cmp->getParent(); 1474 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1475 if (!DomBB) 1476 return false; 1477 1478 // We want to ensure that the only way control gets to the comparison of 1479 // interest is that a less/greater than comparison on the same operands is 1480 // false. 1481 Value *DomCond; 1482 BasicBlock *TrueBB, *FalseBB; 1483 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1484 return false; 1485 if (CmpBB != FalseBB) 1486 return false; 1487 1488 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1489 ICmpInst::Predicate DomPred; 1490 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1491 return false; 1492 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1493 return false; 1494 1495 // Convert the equality comparison to the opposite of the dominating 1496 // comparison and swap the direction for all branch/select users. 1497 // We have conceptually converted: 1498 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1499 // to 1500 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1501 // And similarly for branches. 1502 for (User *U : Cmp->users()) { 1503 if (auto *BI = dyn_cast<BranchInst>(U)) { 1504 assert(BI->isConditional() && "Must be conditional"); 1505 BI->swapSuccessors(); 1506 continue; 1507 } 1508 if (auto *SI = dyn_cast<SelectInst>(U)) { 1509 // Swap operands 1510 SI->swapValues(); 1511 SI->swapProfMetadata(); 1512 continue; 1513 } 1514 llvm_unreachable("Must be a branch or a select"); 1515 } 1516 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1517 return true; 1518 } 1519 1520 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1521 if (sinkCmpExpression(Cmp, *TLI)) 1522 return true; 1523 1524 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1525 return true; 1526 1527 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1528 return true; 1529 1530 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1531 return true; 1532 1533 return false; 1534 } 1535 1536 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1537 /// used in a compare to allow isel to generate better code for targets where 1538 /// this operation can be combined. 1539 /// 1540 /// Return true if any changes are made. 1541 static bool sinkAndCmp0Expression(Instruction *AndI, 1542 const TargetLowering &TLI, 1543 SetOfInstrs &InsertedInsts) { 1544 // Double-check that we're not trying to optimize an instruction that was 1545 // already optimized by some other part of this pass. 1546 assert(!InsertedInsts.count(AndI) && 1547 "Attempting to optimize already optimized and instruction"); 1548 (void) InsertedInsts; 1549 1550 // Nothing to do for single use in same basic block. 1551 if (AndI->hasOneUse() && 1552 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1553 return false; 1554 1555 // Try to avoid cases where sinking/duplicating is likely to increase register 1556 // pressure. 1557 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1558 !isa<ConstantInt>(AndI->getOperand(1)) && 1559 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1560 return false; 1561 1562 for (auto *U : AndI->users()) { 1563 Instruction *User = cast<Instruction>(U); 1564 1565 // Only sink 'and' feeding icmp with 0. 1566 if (!isa<ICmpInst>(User)) 1567 return false; 1568 1569 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1570 if (!CmpC || !CmpC->isZero()) 1571 return false; 1572 } 1573 1574 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1575 return false; 1576 1577 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1578 LLVM_DEBUG(AndI->getParent()->dump()); 1579 1580 // Push the 'and' into the same block as the icmp 0. There should only be 1581 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1582 // others, so we don't need to keep track of which BBs we insert into. 1583 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1584 UI != E; ) { 1585 Use &TheUse = UI.getUse(); 1586 Instruction *User = cast<Instruction>(*UI); 1587 1588 // Preincrement use iterator so we don't invalidate it. 1589 ++UI; 1590 1591 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1592 1593 // Keep the 'and' in the same place if the use is already in the same block. 1594 Instruction *InsertPt = 1595 User->getParent() == AndI->getParent() ? AndI : User; 1596 Instruction *InsertedAnd = 1597 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1598 AndI->getOperand(1), "", InsertPt); 1599 // Propagate the debug info. 1600 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1601 1602 // Replace a use of the 'and' with a use of the new 'and'. 1603 TheUse = InsertedAnd; 1604 ++NumAndUses; 1605 LLVM_DEBUG(User->getParent()->dump()); 1606 } 1607 1608 // We removed all uses, nuke the and. 1609 AndI->eraseFromParent(); 1610 return true; 1611 } 1612 1613 /// Check if the candidates could be combined with a shift instruction, which 1614 /// includes: 1615 /// 1. Truncate instruction 1616 /// 2. And instruction and the imm is a mask of the low bits: 1617 /// imm & (imm+1) == 0 1618 static bool isExtractBitsCandidateUse(Instruction *User) { 1619 if (!isa<TruncInst>(User)) { 1620 if (User->getOpcode() != Instruction::And || 1621 !isa<ConstantInt>(User->getOperand(1))) 1622 return false; 1623 1624 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1625 1626 if ((Cimm & (Cimm + 1)).getBoolValue()) 1627 return false; 1628 } 1629 return true; 1630 } 1631 1632 /// Sink both shift and truncate instruction to the use of truncate's BB. 1633 static bool 1634 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1635 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1636 const TargetLowering &TLI, const DataLayout &DL) { 1637 BasicBlock *UserBB = User->getParent(); 1638 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1639 auto *TruncI = cast<TruncInst>(User); 1640 bool MadeChange = false; 1641 1642 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1643 TruncE = TruncI->user_end(); 1644 TruncUI != TruncE;) { 1645 1646 Use &TruncTheUse = TruncUI.getUse(); 1647 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1648 // Preincrement use iterator so we don't invalidate it. 1649 1650 ++TruncUI; 1651 1652 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1653 if (!ISDOpcode) 1654 continue; 1655 1656 // If the use is actually a legal node, there will not be an 1657 // implicit truncate. 1658 // FIXME: always querying the result type is just an 1659 // approximation; some nodes' legality is determined by the 1660 // operand or other means. There's no good way to find out though. 1661 if (TLI.isOperationLegalOrCustom( 1662 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1663 continue; 1664 1665 // Don't bother for PHI nodes. 1666 if (isa<PHINode>(TruncUser)) 1667 continue; 1668 1669 BasicBlock *TruncUserBB = TruncUser->getParent(); 1670 1671 if (UserBB == TruncUserBB) 1672 continue; 1673 1674 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1675 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1676 1677 if (!InsertedShift && !InsertedTrunc) { 1678 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1679 assert(InsertPt != TruncUserBB->end()); 1680 // Sink the shift 1681 if (ShiftI->getOpcode() == Instruction::AShr) 1682 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1683 "", &*InsertPt); 1684 else 1685 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1686 "", &*InsertPt); 1687 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1688 1689 // Sink the trunc 1690 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1691 TruncInsertPt++; 1692 assert(TruncInsertPt != TruncUserBB->end()); 1693 1694 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1695 TruncI->getType(), "", &*TruncInsertPt); 1696 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1697 1698 MadeChange = true; 1699 1700 TruncTheUse = InsertedTrunc; 1701 } 1702 } 1703 return MadeChange; 1704 } 1705 1706 /// Sink the shift *right* instruction into user blocks if the uses could 1707 /// potentially be combined with this shift instruction and generate BitExtract 1708 /// instruction. It will only be applied if the architecture supports BitExtract 1709 /// instruction. Here is an example: 1710 /// BB1: 1711 /// %x.extract.shift = lshr i64 %arg1, 32 1712 /// BB2: 1713 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1714 /// ==> 1715 /// 1716 /// BB2: 1717 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1718 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1719 /// 1720 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1721 /// instruction. 1722 /// Return true if any changes are made. 1723 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1724 const TargetLowering &TLI, 1725 const DataLayout &DL) { 1726 BasicBlock *DefBB = ShiftI->getParent(); 1727 1728 /// Only insert instructions in each block once. 1729 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1730 1731 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1732 1733 bool MadeChange = false; 1734 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1735 UI != E;) { 1736 Use &TheUse = UI.getUse(); 1737 Instruction *User = cast<Instruction>(*UI); 1738 // Preincrement use iterator so we don't invalidate it. 1739 ++UI; 1740 1741 // Don't bother for PHI nodes. 1742 if (isa<PHINode>(User)) 1743 continue; 1744 1745 if (!isExtractBitsCandidateUse(User)) 1746 continue; 1747 1748 BasicBlock *UserBB = User->getParent(); 1749 1750 if (UserBB == DefBB) { 1751 // If the shift and truncate instruction are in the same BB. The use of 1752 // the truncate(TruncUse) may still introduce another truncate if not 1753 // legal. In this case, we would like to sink both shift and truncate 1754 // instruction to the BB of TruncUse. 1755 // for example: 1756 // BB1: 1757 // i64 shift.result = lshr i64 opnd, imm 1758 // trunc.result = trunc shift.result to i16 1759 // 1760 // BB2: 1761 // ----> We will have an implicit truncate here if the architecture does 1762 // not have i16 compare. 1763 // cmp i16 trunc.result, opnd2 1764 // 1765 if (isa<TruncInst>(User) && shiftIsLegal 1766 // If the type of the truncate is legal, no truncate will be 1767 // introduced in other basic blocks. 1768 && 1769 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1770 MadeChange = 1771 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1772 1773 continue; 1774 } 1775 // If we have already inserted a shift into this block, use it. 1776 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1777 1778 if (!InsertedShift) { 1779 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1780 assert(InsertPt != UserBB->end()); 1781 1782 if (ShiftI->getOpcode() == Instruction::AShr) 1783 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1784 "", &*InsertPt); 1785 else 1786 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1787 "", &*InsertPt); 1788 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1789 1790 MadeChange = true; 1791 } 1792 1793 // Replace a use of the shift with a use of the new shift. 1794 TheUse = InsertedShift; 1795 } 1796 1797 // If we removed all uses, or there are none, nuke the shift. 1798 if (ShiftI->use_empty()) { 1799 salvageDebugInfo(*ShiftI); 1800 ShiftI->eraseFromParent(); 1801 MadeChange = true; 1802 } 1803 1804 return MadeChange; 1805 } 1806 1807 /// If counting leading or trailing zeros is an expensive operation and a zero 1808 /// input is defined, add a check for zero to avoid calling the intrinsic. 1809 /// 1810 /// We want to transform: 1811 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1812 /// 1813 /// into: 1814 /// entry: 1815 /// %cmpz = icmp eq i64 %A, 0 1816 /// br i1 %cmpz, label %cond.end, label %cond.false 1817 /// cond.false: 1818 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1819 /// br label %cond.end 1820 /// cond.end: 1821 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1822 /// 1823 /// If the transform is performed, return true and set ModifiedDT to true. 1824 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1825 const TargetLowering *TLI, 1826 const DataLayout *DL, 1827 bool &ModifiedDT) { 1828 // If a zero input is undefined, it doesn't make sense to despeculate that. 1829 if (match(CountZeros->getOperand(1), m_One())) 1830 return false; 1831 1832 // If it's cheap to speculate, there's nothing to do. 1833 auto IntrinsicID = CountZeros->getIntrinsicID(); 1834 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1835 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1836 return false; 1837 1838 // Only handle legal scalar cases. Anything else requires too much work. 1839 Type *Ty = CountZeros->getType(); 1840 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1841 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1842 return false; 1843 1844 // The intrinsic will be sunk behind a compare against zero and branch. 1845 BasicBlock *StartBlock = CountZeros->getParent(); 1846 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1847 1848 // Create another block after the count zero intrinsic. A PHI will be added 1849 // in this block to select the result of the intrinsic or the bit-width 1850 // constant if the input to the intrinsic is zero. 1851 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1852 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1853 1854 // Set up a builder to create a compare, conditional branch, and PHI. 1855 IRBuilder<> Builder(CountZeros->getContext()); 1856 Builder.SetInsertPoint(StartBlock->getTerminator()); 1857 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1858 1859 // Replace the unconditional branch that was created by the first split with 1860 // a compare against zero and a conditional branch. 1861 Value *Zero = Constant::getNullValue(Ty); 1862 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1863 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1864 StartBlock->getTerminator()->eraseFromParent(); 1865 1866 // Create a PHI in the end block to select either the output of the intrinsic 1867 // or the bit width of the operand. 1868 Builder.SetInsertPoint(&EndBlock->front()); 1869 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1870 CountZeros->replaceAllUsesWith(PN); 1871 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1872 PN->addIncoming(BitWidth, StartBlock); 1873 PN->addIncoming(CountZeros, CallBlock); 1874 1875 // We are explicitly handling the zero case, so we can set the intrinsic's 1876 // undefined zero argument to 'true'. This will also prevent reprocessing the 1877 // intrinsic; we only despeculate when a zero input is defined. 1878 CountZeros->setArgOperand(1, Builder.getTrue()); 1879 ModifiedDT = true; 1880 return true; 1881 } 1882 1883 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1884 BasicBlock *BB = CI->getParent(); 1885 1886 // Lower inline assembly if we can. 1887 // If we found an inline asm expession, and if the target knows how to 1888 // lower it to normal LLVM code, do so now. 1889 if (isa<InlineAsm>(CI->getCalledValue())) { 1890 if (TLI->ExpandInlineAsm(CI)) { 1891 // Avoid invalidating the iterator. 1892 CurInstIterator = BB->begin(); 1893 // Avoid processing instructions out of order, which could cause 1894 // reuse before a value is defined. 1895 SunkAddrs.clear(); 1896 return true; 1897 } 1898 // Sink address computing for memory operands into the block. 1899 if (optimizeInlineAsmInst(CI)) 1900 return true; 1901 } 1902 1903 // Align the pointer arguments to this call if the target thinks it's a good 1904 // idea 1905 unsigned MinSize, PrefAlign; 1906 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1907 for (auto &Arg : CI->arg_operands()) { 1908 // We want to align both objects whose address is used directly and 1909 // objects whose address is used in casts and GEPs, though it only makes 1910 // sense for GEPs if the offset is a multiple of the desired alignment and 1911 // if size - offset meets the size threshold. 1912 if (!Arg->getType()->isPointerTy()) 1913 continue; 1914 APInt Offset(DL->getIndexSizeInBits( 1915 cast<PointerType>(Arg->getType())->getAddressSpace()), 1916 0); 1917 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1918 uint64_t Offset2 = Offset.getLimitedValue(); 1919 if ((Offset2 & (PrefAlign-1)) != 0) 1920 continue; 1921 AllocaInst *AI; 1922 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1923 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1924 AI->setAlignment(MaybeAlign(PrefAlign)); 1925 // Global variables can only be aligned if they are defined in this 1926 // object (i.e. they are uniquely initialized in this object), and 1927 // over-aligning global variables that have an explicit section is 1928 // forbidden. 1929 GlobalVariable *GV; 1930 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1931 GV->getPointerAlignment(*DL) < PrefAlign && 1932 DL->getTypeAllocSize(GV->getValueType()) >= 1933 MinSize + Offset2) 1934 GV->setAlignment(MaybeAlign(PrefAlign)); 1935 } 1936 // If this is a memcpy (or similar) then we may be able to improve the 1937 // alignment 1938 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1939 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1940 if (DestAlign > MI->getDestAlignment()) 1941 MI->setDestAlignment(DestAlign); 1942 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1943 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1944 if (SrcAlign > MTI->getSourceAlignment()) 1945 MTI->setSourceAlignment(SrcAlign); 1946 } 1947 } 1948 } 1949 1950 // If we have a cold call site, try to sink addressing computation into the 1951 // cold block. This interacts with our handling for loads and stores to 1952 // ensure that we can fold all uses of a potential addressing computation 1953 // into their uses. TODO: generalize this to work over profiling data 1954 if (CI->hasFnAttr(Attribute::Cold) && 1955 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1956 for (auto &Arg : CI->arg_operands()) { 1957 if (!Arg->getType()->isPointerTy()) 1958 continue; 1959 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1960 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1961 } 1962 1963 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1964 if (II) { 1965 switch (II->getIntrinsicID()) { 1966 default: break; 1967 case Intrinsic::experimental_widenable_condition: { 1968 // Give up on future widening oppurtunties so that we can fold away dead 1969 // paths and merge blocks before going into block-local instruction 1970 // selection. 1971 if (II->use_empty()) { 1972 II->eraseFromParent(); 1973 return true; 1974 } 1975 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1976 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1977 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1978 }); 1979 return true; 1980 } 1981 case Intrinsic::objectsize: 1982 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1983 case Intrinsic::is_constant: 1984 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1985 case Intrinsic::aarch64_stlxr: 1986 case Intrinsic::aarch64_stxr: { 1987 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1988 if (!ExtVal || !ExtVal->hasOneUse() || 1989 ExtVal->getParent() == CI->getParent()) 1990 return false; 1991 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1992 ExtVal->moveBefore(CI); 1993 // Mark this instruction as "inserted by CGP", so that other 1994 // optimizations don't touch it. 1995 InsertedInsts.insert(ExtVal); 1996 return true; 1997 } 1998 1999 case Intrinsic::launder_invariant_group: 2000 case Intrinsic::strip_invariant_group: { 2001 Value *ArgVal = II->getArgOperand(0); 2002 auto it = LargeOffsetGEPMap.find(II); 2003 if (it != LargeOffsetGEPMap.end()) { 2004 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2005 // Make sure not to have to deal with iterator invalidation 2006 // after possibly adding ArgVal to LargeOffsetGEPMap. 2007 auto GEPs = std::move(it->second); 2008 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2009 LargeOffsetGEPMap.erase(II); 2010 } 2011 2012 II->replaceAllUsesWith(ArgVal); 2013 II->eraseFromParent(); 2014 return true; 2015 } 2016 case Intrinsic::cttz: 2017 case Intrinsic::ctlz: 2018 // If counting zeros is expensive, try to avoid it. 2019 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2020 case Intrinsic::dbg_value: 2021 return fixupDbgValue(II); 2022 case Intrinsic::vscale: { 2023 // If datalayout has no special restrictions on vector data layout, 2024 // replace `llvm.vscale` by an equivalent constant expression 2025 // to benefit from cheap constant propagation. 2026 Type *ScalableVectorTy = 2027 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2028 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2029 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2030 auto One = ConstantInt::getSigned(II->getType(), 1); 2031 auto *CGep = 2032 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2033 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2034 II->eraseFromParent(); 2035 return true; 2036 } 2037 } 2038 } 2039 2040 SmallVector<Value *, 2> PtrOps; 2041 Type *AccessTy; 2042 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2043 while (!PtrOps.empty()) { 2044 Value *PtrVal = PtrOps.pop_back_val(); 2045 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2046 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2047 return true; 2048 } 2049 } 2050 2051 // From here on out we're working with named functions. 2052 if (!CI->getCalledFunction()) return false; 2053 2054 // Lower all default uses of _chk calls. This is very similar 2055 // to what InstCombineCalls does, but here we are only lowering calls 2056 // to fortified library functions (e.g. __memcpy_chk) that have the default 2057 // "don't know" as the objectsize. Anything else should be left alone. 2058 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2059 IRBuilder<> Builder(CI); 2060 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2061 CI->replaceAllUsesWith(V); 2062 CI->eraseFromParent(); 2063 return true; 2064 } 2065 2066 return false; 2067 } 2068 2069 /// Look for opportunities to duplicate return instructions to the predecessor 2070 /// to enable tail call optimizations. The case it is currently looking for is: 2071 /// @code 2072 /// bb0: 2073 /// %tmp0 = tail call i32 @f0() 2074 /// br label %return 2075 /// bb1: 2076 /// %tmp1 = tail call i32 @f1() 2077 /// br label %return 2078 /// bb2: 2079 /// %tmp2 = tail call i32 @f2() 2080 /// br label %return 2081 /// return: 2082 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2083 /// ret i32 %retval 2084 /// @endcode 2085 /// 2086 /// => 2087 /// 2088 /// @code 2089 /// bb0: 2090 /// %tmp0 = tail call i32 @f0() 2091 /// ret i32 %tmp0 2092 /// bb1: 2093 /// %tmp1 = tail call i32 @f1() 2094 /// ret i32 %tmp1 2095 /// bb2: 2096 /// %tmp2 = tail call i32 @f2() 2097 /// ret i32 %tmp2 2098 /// @endcode 2099 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2100 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2101 if (!RetI) 2102 return false; 2103 2104 PHINode *PN = nullptr; 2105 BitCastInst *BCI = nullptr; 2106 Value *V = RetI->getReturnValue(); 2107 if (V) { 2108 BCI = dyn_cast<BitCastInst>(V); 2109 if (BCI) 2110 V = BCI->getOperand(0); 2111 2112 PN = dyn_cast<PHINode>(V); 2113 if (!PN) 2114 return false; 2115 } 2116 2117 if (PN && PN->getParent() != BB) 2118 return false; 2119 2120 // Make sure there are no instructions between the PHI and return, or that the 2121 // return is the first instruction in the block. 2122 if (PN) { 2123 BasicBlock::iterator BI = BB->begin(); 2124 // Skip over debug and the bitcast. 2125 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2126 if (&*BI != RetI) 2127 return false; 2128 } else { 2129 BasicBlock::iterator BI = BB->begin(); 2130 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2131 if (&*BI != RetI) 2132 return false; 2133 } 2134 2135 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2136 /// call. 2137 const Function *F = BB->getParent(); 2138 SmallVector<BasicBlock*, 4> TailCallBBs; 2139 if (PN) { 2140 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2141 // Look through bitcasts. 2142 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2143 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2144 BasicBlock *PredBB = PN->getIncomingBlock(I); 2145 // Make sure the phi value is indeed produced by the tail call. 2146 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2147 TLI->mayBeEmittedAsTailCall(CI) && 2148 attributesPermitTailCall(F, CI, RetI, *TLI)) 2149 TailCallBBs.push_back(PredBB); 2150 } 2151 } else { 2152 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2153 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2154 if (!VisitedBBs.insert(*PI).second) 2155 continue; 2156 2157 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2158 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2159 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2160 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2161 if (RI == RE) 2162 continue; 2163 2164 CallInst *CI = dyn_cast<CallInst>(&*RI); 2165 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2166 attributesPermitTailCall(F, CI, RetI, *TLI)) 2167 TailCallBBs.push_back(*PI); 2168 } 2169 } 2170 2171 bool Changed = false; 2172 for (auto const &TailCallBB : TailCallBBs) { 2173 // Make sure the call instruction is followed by an unconditional branch to 2174 // the return block. 2175 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2176 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2177 continue; 2178 2179 // Duplicate the return into TailCallBB. 2180 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2181 ModifiedDT = Changed = true; 2182 ++NumRetsDup; 2183 } 2184 2185 // If we eliminated all predecessors of the block, delete the block now. 2186 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2187 BB->eraseFromParent(); 2188 2189 return Changed; 2190 } 2191 2192 //===----------------------------------------------------------------------===// 2193 // Memory Optimization 2194 //===----------------------------------------------------------------------===// 2195 2196 namespace { 2197 2198 /// This is an extended version of TargetLowering::AddrMode 2199 /// which holds actual Value*'s for register values. 2200 struct ExtAddrMode : public TargetLowering::AddrMode { 2201 Value *BaseReg = nullptr; 2202 Value *ScaledReg = nullptr; 2203 Value *OriginalValue = nullptr; 2204 bool InBounds = true; 2205 2206 enum FieldName { 2207 NoField = 0x00, 2208 BaseRegField = 0x01, 2209 BaseGVField = 0x02, 2210 BaseOffsField = 0x04, 2211 ScaledRegField = 0x08, 2212 ScaleField = 0x10, 2213 MultipleFields = 0xff 2214 }; 2215 2216 2217 ExtAddrMode() = default; 2218 2219 void print(raw_ostream &OS) const; 2220 void dump() const; 2221 2222 FieldName compare(const ExtAddrMode &other) { 2223 // First check that the types are the same on each field, as differing types 2224 // is something we can't cope with later on. 2225 if (BaseReg && other.BaseReg && 2226 BaseReg->getType() != other.BaseReg->getType()) 2227 return MultipleFields; 2228 if (BaseGV && other.BaseGV && 2229 BaseGV->getType() != other.BaseGV->getType()) 2230 return MultipleFields; 2231 if (ScaledReg && other.ScaledReg && 2232 ScaledReg->getType() != other.ScaledReg->getType()) 2233 return MultipleFields; 2234 2235 // Conservatively reject 'inbounds' mismatches. 2236 if (InBounds != other.InBounds) 2237 return MultipleFields; 2238 2239 // Check each field to see if it differs. 2240 unsigned Result = NoField; 2241 if (BaseReg != other.BaseReg) 2242 Result |= BaseRegField; 2243 if (BaseGV != other.BaseGV) 2244 Result |= BaseGVField; 2245 if (BaseOffs != other.BaseOffs) 2246 Result |= BaseOffsField; 2247 if (ScaledReg != other.ScaledReg) 2248 Result |= ScaledRegField; 2249 // Don't count 0 as being a different scale, because that actually means 2250 // unscaled (which will already be counted by having no ScaledReg). 2251 if (Scale && other.Scale && Scale != other.Scale) 2252 Result |= ScaleField; 2253 2254 if (countPopulation(Result) > 1) 2255 return MultipleFields; 2256 else 2257 return static_cast<FieldName>(Result); 2258 } 2259 2260 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2261 // with no offset. 2262 bool isTrivial() { 2263 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2264 // trivial if at most one of these terms is nonzero, except that BaseGV and 2265 // BaseReg both being zero actually means a null pointer value, which we 2266 // consider to be 'non-zero' here. 2267 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2268 } 2269 2270 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2271 switch (Field) { 2272 default: 2273 return nullptr; 2274 case BaseRegField: 2275 return BaseReg; 2276 case BaseGVField: 2277 return BaseGV; 2278 case ScaledRegField: 2279 return ScaledReg; 2280 case BaseOffsField: 2281 return ConstantInt::get(IntPtrTy, BaseOffs); 2282 } 2283 } 2284 2285 void SetCombinedField(FieldName Field, Value *V, 2286 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2287 switch (Field) { 2288 default: 2289 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2290 break; 2291 case ExtAddrMode::BaseRegField: 2292 BaseReg = V; 2293 break; 2294 case ExtAddrMode::BaseGVField: 2295 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2296 // in the BaseReg field. 2297 assert(BaseReg == nullptr); 2298 BaseReg = V; 2299 BaseGV = nullptr; 2300 break; 2301 case ExtAddrMode::ScaledRegField: 2302 ScaledReg = V; 2303 // If we have a mix of scaled and unscaled addrmodes then we want scale 2304 // to be the scale and not zero. 2305 if (!Scale) 2306 for (const ExtAddrMode &AM : AddrModes) 2307 if (AM.Scale) { 2308 Scale = AM.Scale; 2309 break; 2310 } 2311 break; 2312 case ExtAddrMode::BaseOffsField: 2313 // The offset is no longer a constant, so it goes in ScaledReg with a 2314 // scale of 1. 2315 assert(ScaledReg == nullptr); 2316 ScaledReg = V; 2317 Scale = 1; 2318 BaseOffs = 0; 2319 break; 2320 } 2321 } 2322 }; 2323 2324 } // end anonymous namespace 2325 2326 #ifndef NDEBUG 2327 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2328 AM.print(OS); 2329 return OS; 2330 } 2331 #endif 2332 2333 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2334 void ExtAddrMode::print(raw_ostream &OS) const { 2335 bool NeedPlus = false; 2336 OS << "["; 2337 if (InBounds) 2338 OS << "inbounds "; 2339 if (BaseGV) { 2340 OS << (NeedPlus ? " + " : "") 2341 << "GV:"; 2342 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2343 NeedPlus = true; 2344 } 2345 2346 if (BaseOffs) { 2347 OS << (NeedPlus ? " + " : "") 2348 << BaseOffs; 2349 NeedPlus = true; 2350 } 2351 2352 if (BaseReg) { 2353 OS << (NeedPlus ? " + " : "") 2354 << "Base:"; 2355 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2356 NeedPlus = true; 2357 } 2358 if (Scale) { 2359 OS << (NeedPlus ? " + " : "") 2360 << Scale << "*"; 2361 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2362 } 2363 2364 OS << ']'; 2365 } 2366 2367 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2368 print(dbgs()); 2369 dbgs() << '\n'; 2370 } 2371 #endif 2372 2373 namespace { 2374 2375 /// This class provides transaction based operation on the IR. 2376 /// Every change made through this class is recorded in the internal state and 2377 /// can be undone (rollback) until commit is called. 2378 class TypePromotionTransaction { 2379 /// This represents the common interface of the individual transaction. 2380 /// Each class implements the logic for doing one specific modification on 2381 /// the IR via the TypePromotionTransaction. 2382 class TypePromotionAction { 2383 protected: 2384 /// The Instruction modified. 2385 Instruction *Inst; 2386 2387 public: 2388 /// Constructor of the action. 2389 /// The constructor performs the related action on the IR. 2390 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2391 2392 virtual ~TypePromotionAction() = default; 2393 2394 /// Undo the modification done by this action. 2395 /// When this method is called, the IR must be in the same state as it was 2396 /// before this action was applied. 2397 /// \pre Undoing the action works if and only if the IR is in the exact same 2398 /// state as it was directly after this action was applied. 2399 virtual void undo() = 0; 2400 2401 /// Advocate every change made by this action. 2402 /// When the results on the IR of the action are to be kept, it is important 2403 /// to call this function, otherwise hidden information may be kept forever. 2404 virtual void commit() { 2405 // Nothing to be done, this action is not doing anything. 2406 } 2407 }; 2408 2409 /// Utility to remember the position of an instruction. 2410 class InsertionHandler { 2411 /// Position of an instruction. 2412 /// Either an instruction: 2413 /// - Is the first in a basic block: BB is used. 2414 /// - Has a previous instruction: PrevInst is used. 2415 union { 2416 Instruction *PrevInst; 2417 BasicBlock *BB; 2418 } Point; 2419 2420 /// Remember whether or not the instruction had a previous instruction. 2421 bool HasPrevInstruction; 2422 2423 public: 2424 /// Record the position of \p Inst. 2425 InsertionHandler(Instruction *Inst) { 2426 BasicBlock::iterator It = Inst->getIterator(); 2427 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2428 if (HasPrevInstruction) 2429 Point.PrevInst = &*--It; 2430 else 2431 Point.BB = Inst->getParent(); 2432 } 2433 2434 /// Insert \p Inst at the recorded position. 2435 void insert(Instruction *Inst) { 2436 if (HasPrevInstruction) { 2437 if (Inst->getParent()) 2438 Inst->removeFromParent(); 2439 Inst->insertAfter(Point.PrevInst); 2440 } else { 2441 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2442 if (Inst->getParent()) 2443 Inst->moveBefore(Position); 2444 else 2445 Inst->insertBefore(Position); 2446 } 2447 } 2448 }; 2449 2450 /// Move an instruction before another. 2451 class InstructionMoveBefore : public TypePromotionAction { 2452 /// Original position of the instruction. 2453 InsertionHandler Position; 2454 2455 public: 2456 /// Move \p Inst before \p Before. 2457 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2458 : TypePromotionAction(Inst), Position(Inst) { 2459 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2460 << "\n"); 2461 Inst->moveBefore(Before); 2462 } 2463 2464 /// Move the instruction back to its original position. 2465 void undo() override { 2466 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2467 Position.insert(Inst); 2468 } 2469 }; 2470 2471 /// Set the operand of an instruction with a new value. 2472 class OperandSetter : public TypePromotionAction { 2473 /// Original operand of the instruction. 2474 Value *Origin; 2475 2476 /// Index of the modified instruction. 2477 unsigned Idx; 2478 2479 public: 2480 /// Set \p Idx operand of \p Inst with \p NewVal. 2481 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2482 : TypePromotionAction(Inst), Idx(Idx) { 2483 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2484 << "for:" << *Inst << "\n" 2485 << "with:" << *NewVal << "\n"); 2486 Origin = Inst->getOperand(Idx); 2487 Inst->setOperand(Idx, NewVal); 2488 } 2489 2490 /// Restore the original value of the instruction. 2491 void undo() override { 2492 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2493 << "for: " << *Inst << "\n" 2494 << "with: " << *Origin << "\n"); 2495 Inst->setOperand(Idx, Origin); 2496 } 2497 }; 2498 2499 /// Hide the operands of an instruction. 2500 /// Do as if this instruction was not using any of its operands. 2501 class OperandsHider : public TypePromotionAction { 2502 /// The list of original operands. 2503 SmallVector<Value *, 4> OriginalValues; 2504 2505 public: 2506 /// Remove \p Inst from the uses of the operands of \p Inst. 2507 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2508 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2509 unsigned NumOpnds = Inst->getNumOperands(); 2510 OriginalValues.reserve(NumOpnds); 2511 for (unsigned It = 0; It < NumOpnds; ++It) { 2512 // Save the current operand. 2513 Value *Val = Inst->getOperand(It); 2514 OriginalValues.push_back(Val); 2515 // Set a dummy one. 2516 // We could use OperandSetter here, but that would imply an overhead 2517 // that we are not willing to pay. 2518 Inst->setOperand(It, UndefValue::get(Val->getType())); 2519 } 2520 } 2521 2522 /// Restore the original list of uses. 2523 void undo() override { 2524 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2525 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2526 Inst->setOperand(It, OriginalValues[It]); 2527 } 2528 }; 2529 2530 /// Build a truncate instruction. 2531 class TruncBuilder : public TypePromotionAction { 2532 Value *Val; 2533 2534 public: 2535 /// Build a truncate instruction of \p Opnd producing a \p Ty 2536 /// result. 2537 /// trunc Opnd to Ty. 2538 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2539 IRBuilder<> Builder(Opnd); 2540 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2541 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2542 } 2543 2544 /// Get the built value. 2545 Value *getBuiltValue() { return Val; } 2546 2547 /// Remove the built instruction. 2548 void undo() override { 2549 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2550 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2551 IVal->eraseFromParent(); 2552 } 2553 }; 2554 2555 /// Build a sign extension instruction. 2556 class SExtBuilder : public TypePromotionAction { 2557 Value *Val; 2558 2559 public: 2560 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2561 /// result. 2562 /// sext Opnd to Ty. 2563 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2564 : TypePromotionAction(InsertPt) { 2565 IRBuilder<> Builder(InsertPt); 2566 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2567 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2568 } 2569 2570 /// Get the built value. 2571 Value *getBuiltValue() { return Val; } 2572 2573 /// Remove the built instruction. 2574 void undo() override { 2575 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2576 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2577 IVal->eraseFromParent(); 2578 } 2579 }; 2580 2581 /// Build a zero extension instruction. 2582 class ZExtBuilder : public TypePromotionAction { 2583 Value *Val; 2584 2585 public: 2586 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2587 /// result. 2588 /// zext Opnd to Ty. 2589 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2590 : TypePromotionAction(InsertPt) { 2591 IRBuilder<> Builder(InsertPt); 2592 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2593 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2594 } 2595 2596 /// Get the built value. 2597 Value *getBuiltValue() { return Val; } 2598 2599 /// Remove the built instruction. 2600 void undo() override { 2601 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2602 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2603 IVal->eraseFromParent(); 2604 } 2605 }; 2606 2607 /// Mutate an instruction to another type. 2608 class TypeMutator : public TypePromotionAction { 2609 /// Record the original type. 2610 Type *OrigTy; 2611 2612 public: 2613 /// Mutate the type of \p Inst into \p NewTy. 2614 TypeMutator(Instruction *Inst, Type *NewTy) 2615 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2616 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2617 << "\n"); 2618 Inst->mutateType(NewTy); 2619 } 2620 2621 /// Mutate the instruction back to its original type. 2622 void undo() override { 2623 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2624 << "\n"); 2625 Inst->mutateType(OrigTy); 2626 } 2627 }; 2628 2629 /// Replace the uses of an instruction by another instruction. 2630 class UsesReplacer : public TypePromotionAction { 2631 /// Helper structure to keep track of the replaced uses. 2632 struct InstructionAndIdx { 2633 /// The instruction using the instruction. 2634 Instruction *Inst; 2635 2636 /// The index where this instruction is used for Inst. 2637 unsigned Idx; 2638 2639 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2640 : Inst(Inst), Idx(Idx) {} 2641 }; 2642 2643 /// Keep track of the original uses (pair Instruction, Index). 2644 SmallVector<InstructionAndIdx, 4> OriginalUses; 2645 /// Keep track of the debug users. 2646 SmallVector<DbgValueInst *, 1> DbgValues; 2647 2648 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2649 2650 public: 2651 /// Replace all the use of \p Inst by \p New. 2652 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2653 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2654 << "\n"); 2655 // Record the original uses. 2656 for (Use &U : Inst->uses()) { 2657 Instruction *UserI = cast<Instruction>(U.getUser()); 2658 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2659 } 2660 // Record the debug uses separately. They are not in the instruction's 2661 // use list, but they are replaced by RAUW. 2662 findDbgValues(DbgValues, Inst); 2663 2664 // Now, we can replace the uses. 2665 Inst->replaceAllUsesWith(New); 2666 } 2667 2668 /// Reassign the original uses of Inst to Inst. 2669 void undo() override { 2670 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2671 for (use_iterator UseIt = OriginalUses.begin(), 2672 EndIt = OriginalUses.end(); 2673 UseIt != EndIt; ++UseIt) { 2674 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2675 } 2676 // RAUW has replaced all original uses with references to the new value, 2677 // including the debug uses. Since we are undoing the replacements, 2678 // the original debug uses must also be reinstated to maintain the 2679 // correctness and utility of debug value instructions. 2680 for (auto *DVI: DbgValues) { 2681 LLVMContext &Ctx = Inst->getType()->getContext(); 2682 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2683 DVI->setOperand(0, MV); 2684 } 2685 } 2686 }; 2687 2688 /// Remove an instruction from the IR. 2689 class InstructionRemover : public TypePromotionAction { 2690 /// Original position of the instruction. 2691 InsertionHandler Inserter; 2692 2693 /// Helper structure to hide all the link to the instruction. In other 2694 /// words, this helps to do as if the instruction was removed. 2695 OperandsHider Hider; 2696 2697 /// Keep track of the uses replaced, if any. 2698 UsesReplacer *Replacer = nullptr; 2699 2700 /// Keep track of instructions removed. 2701 SetOfInstrs &RemovedInsts; 2702 2703 public: 2704 /// Remove all reference of \p Inst and optionally replace all its 2705 /// uses with New. 2706 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2707 /// \pre If !Inst->use_empty(), then New != nullptr 2708 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2709 Value *New = nullptr) 2710 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2711 RemovedInsts(RemovedInsts) { 2712 if (New) 2713 Replacer = new UsesReplacer(Inst, New); 2714 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2715 RemovedInsts.insert(Inst); 2716 /// The instructions removed here will be freed after completing 2717 /// optimizeBlock() for all blocks as we need to keep track of the 2718 /// removed instructions during promotion. 2719 Inst->removeFromParent(); 2720 } 2721 2722 ~InstructionRemover() override { delete Replacer; } 2723 2724 /// Resurrect the instruction and reassign it to the proper uses if 2725 /// new value was provided when build this action. 2726 void undo() override { 2727 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2728 Inserter.insert(Inst); 2729 if (Replacer) 2730 Replacer->undo(); 2731 Hider.undo(); 2732 RemovedInsts.erase(Inst); 2733 } 2734 }; 2735 2736 public: 2737 /// Restoration point. 2738 /// The restoration point is a pointer to an action instead of an iterator 2739 /// because the iterator may be invalidated but not the pointer. 2740 using ConstRestorationPt = const TypePromotionAction *; 2741 2742 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2743 : RemovedInsts(RemovedInsts) {} 2744 2745 /// Advocate every changes made in that transaction. 2746 void commit(); 2747 2748 /// Undo all the changes made after the given point. 2749 void rollback(ConstRestorationPt Point); 2750 2751 /// Get the current restoration point. 2752 ConstRestorationPt getRestorationPoint() const; 2753 2754 /// \name API for IR modification with state keeping to support rollback. 2755 /// @{ 2756 /// Same as Instruction::setOperand. 2757 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2758 2759 /// Same as Instruction::eraseFromParent. 2760 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2761 2762 /// Same as Value::replaceAllUsesWith. 2763 void replaceAllUsesWith(Instruction *Inst, Value *New); 2764 2765 /// Same as Value::mutateType. 2766 void mutateType(Instruction *Inst, Type *NewTy); 2767 2768 /// Same as IRBuilder::createTrunc. 2769 Value *createTrunc(Instruction *Opnd, Type *Ty); 2770 2771 /// Same as IRBuilder::createSExt. 2772 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2773 2774 /// Same as IRBuilder::createZExt. 2775 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2776 2777 /// Same as Instruction::moveBefore. 2778 void moveBefore(Instruction *Inst, Instruction *Before); 2779 /// @} 2780 2781 private: 2782 /// The ordered list of actions made so far. 2783 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2784 2785 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2786 2787 SetOfInstrs &RemovedInsts; 2788 }; 2789 2790 } // end anonymous namespace 2791 2792 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2793 Value *NewVal) { 2794 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2795 Inst, Idx, NewVal)); 2796 } 2797 2798 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2799 Value *NewVal) { 2800 Actions.push_back( 2801 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2802 Inst, RemovedInsts, NewVal)); 2803 } 2804 2805 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2806 Value *New) { 2807 Actions.push_back( 2808 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2809 } 2810 2811 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2812 Actions.push_back( 2813 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2814 } 2815 2816 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2817 Type *Ty) { 2818 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2819 Value *Val = Ptr->getBuiltValue(); 2820 Actions.push_back(std::move(Ptr)); 2821 return Val; 2822 } 2823 2824 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2825 Value *Opnd, Type *Ty) { 2826 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2827 Value *Val = Ptr->getBuiltValue(); 2828 Actions.push_back(std::move(Ptr)); 2829 return Val; 2830 } 2831 2832 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2833 Value *Opnd, Type *Ty) { 2834 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2835 Value *Val = Ptr->getBuiltValue(); 2836 Actions.push_back(std::move(Ptr)); 2837 return Val; 2838 } 2839 2840 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2841 Instruction *Before) { 2842 Actions.push_back( 2843 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2844 Inst, Before)); 2845 } 2846 2847 TypePromotionTransaction::ConstRestorationPt 2848 TypePromotionTransaction::getRestorationPoint() const { 2849 return !Actions.empty() ? Actions.back().get() : nullptr; 2850 } 2851 2852 void TypePromotionTransaction::commit() { 2853 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2854 ++It) 2855 (*It)->commit(); 2856 Actions.clear(); 2857 } 2858 2859 void TypePromotionTransaction::rollback( 2860 TypePromotionTransaction::ConstRestorationPt Point) { 2861 while (!Actions.empty() && Point != Actions.back().get()) { 2862 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2863 Curr->undo(); 2864 } 2865 } 2866 2867 namespace { 2868 2869 /// A helper class for matching addressing modes. 2870 /// 2871 /// This encapsulates the logic for matching the target-legal addressing modes. 2872 class AddressingModeMatcher { 2873 SmallVectorImpl<Instruction*> &AddrModeInsts; 2874 const TargetLowering &TLI; 2875 const TargetRegisterInfo &TRI; 2876 const DataLayout &DL; 2877 2878 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2879 /// the memory instruction that we're computing this address for. 2880 Type *AccessTy; 2881 unsigned AddrSpace; 2882 Instruction *MemoryInst; 2883 2884 /// This is the addressing mode that we're building up. This is 2885 /// part of the return value of this addressing mode matching stuff. 2886 ExtAddrMode &AddrMode; 2887 2888 /// The instructions inserted by other CodeGenPrepare optimizations. 2889 const SetOfInstrs &InsertedInsts; 2890 2891 /// A map from the instructions to their type before promotion. 2892 InstrToOrigTy &PromotedInsts; 2893 2894 /// The ongoing transaction where every action should be registered. 2895 TypePromotionTransaction &TPT; 2896 2897 // A GEP which has too large offset to be folded into the addressing mode. 2898 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2899 2900 /// This is set to true when we should not do profitability checks. 2901 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2902 bool IgnoreProfitability; 2903 2904 /// True if we are optimizing for size. 2905 bool OptSize; 2906 2907 ProfileSummaryInfo *PSI; 2908 BlockFrequencyInfo *BFI; 2909 2910 AddressingModeMatcher( 2911 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2912 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2913 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2914 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2915 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2916 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2917 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2918 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2919 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2920 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2921 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2922 IgnoreProfitability = false; 2923 } 2924 2925 public: 2926 /// Find the maximal addressing mode that a load/store of V can fold, 2927 /// give an access type of AccessTy. This returns a list of involved 2928 /// instructions in AddrModeInsts. 2929 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2930 /// optimizations. 2931 /// \p PromotedInsts maps the instructions to their type before promotion. 2932 /// \p The ongoing transaction where every action should be registered. 2933 static ExtAddrMode 2934 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2935 SmallVectorImpl<Instruction *> &AddrModeInsts, 2936 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2937 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2938 TypePromotionTransaction &TPT, 2939 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2940 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2941 ExtAddrMode Result; 2942 2943 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2944 MemoryInst, Result, InsertedInsts, 2945 PromotedInsts, TPT, LargeOffsetGEP, 2946 OptSize, PSI, BFI) 2947 .matchAddr(V, 0); 2948 (void)Success; assert(Success && "Couldn't select *anything*?"); 2949 return Result; 2950 } 2951 2952 private: 2953 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2954 bool matchAddr(Value *Addr, unsigned Depth); 2955 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2956 bool *MovedAway = nullptr); 2957 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2958 ExtAddrMode &AMBefore, 2959 ExtAddrMode &AMAfter); 2960 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2961 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2962 Value *PromotedOperand) const; 2963 }; 2964 2965 class PhiNodeSet; 2966 2967 /// An iterator for PhiNodeSet. 2968 class PhiNodeSetIterator { 2969 PhiNodeSet * const Set; 2970 size_t CurrentIndex = 0; 2971 2972 public: 2973 /// The constructor. Start should point to either a valid element, or be equal 2974 /// to the size of the underlying SmallVector of the PhiNodeSet. 2975 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2976 PHINode * operator*() const; 2977 PhiNodeSetIterator& operator++(); 2978 bool operator==(const PhiNodeSetIterator &RHS) const; 2979 bool operator!=(const PhiNodeSetIterator &RHS) const; 2980 }; 2981 2982 /// Keeps a set of PHINodes. 2983 /// 2984 /// This is a minimal set implementation for a specific use case: 2985 /// It is very fast when there are very few elements, but also provides good 2986 /// performance when there are many. It is similar to SmallPtrSet, but also 2987 /// provides iteration by insertion order, which is deterministic and stable 2988 /// across runs. It is also similar to SmallSetVector, but provides removing 2989 /// elements in O(1) time. This is achieved by not actually removing the element 2990 /// from the underlying vector, so comes at the cost of using more memory, but 2991 /// that is fine, since PhiNodeSets are used as short lived objects. 2992 class PhiNodeSet { 2993 friend class PhiNodeSetIterator; 2994 2995 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2996 using iterator = PhiNodeSetIterator; 2997 2998 /// Keeps the elements in the order of their insertion in the underlying 2999 /// vector. To achieve constant time removal, it never deletes any element. 3000 SmallVector<PHINode *, 32> NodeList; 3001 3002 /// Keeps the elements in the underlying set implementation. This (and not the 3003 /// NodeList defined above) is the source of truth on whether an element 3004 /// is actually in the collection. 3005 MapType NodeMap; 3006 3007 /// Points to the first valid (not deleted) element when the set is not empty 3008 /// and the value is not zero. Equals to the size of the underlying vector 3009 /// when the set is empty. When the value is 0, as in the beginning, the 3010 /// first element may or may not be valid. 3011 size_t FirstValidElement = 0; 3012 3013 public: 3014 /// Inserts a new element to the collection. 3015 /// \returns true if the element is actually added, i.e. was not in the 3016 /// collection before the operation. 3017 bool insert(PHINode *Ptr) { 3018 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3019 NodeList.push_back(Ptr); 3020 return true; 3021 } 3022 return false; 3023 } 3024 3025 /// Removes the element from the collection. 3026 /// \returns whether the element is actually removed, i.e. was in the 3027 /// collection before the operation. 3028 bool erase(PHINode *Ptr) { 3029 auto it = NodeMap.find(Ptr); 3030 if (it != NodeMap.end()) { 3031 NodeMap.erase(Ptr); 3032 SkipRemovedElements(FirstValidElement); 3033 return true; 3034 } 3035 return false; 3036 } 3037 3038 /// Removes all elements and clears the collection. 3039 void clear() { 3040 NodeMap.clear(); 3041 NodeList.clear(); 3042 FirstValidElement = 0; 3043 } 3044 3045 /// \returns an iterator that will iterate the elements in the order of 3046 /// insertion. 3047 iterator begin() { 3048 if (FirstValidElement == 0) 3049 SkipRemovedElements(FirstValidElement); 3050 return PhiNodeSetIterator(this, FirstValidElement); 3051 } 3052 3053 /// \returns an iterator that points to the end of the collection. 3054 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3055 3056 /// Returns the number of elements in the collection. 3057 size_t size() const { 3058 return NodeMap.size(); 3059 } 3060 3061 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3062 size_t count(PHINode *Ptr) const { 3063 return NodeMap.count(Ptr); 3064 } 3065 3066 private: 3067 /// Updates the CurrentIndex so that it will point to a valid element. 3068 /// 3069 /// If the element of NodeList at CurrentIndex is valid, it does not 3070 /// change it. If there are no more valid elements, it updates CurrentIndex 3071 /// to point to the end of the NodeList. 3072 void SkipRemovedElements(size_t &CurrentIndex) { 3073 while (CurrentIndex < NodeList.size()) { 3074 auto it = NodeMap.find(NodeList[CurrentIndex]); 3075 // If the element has been deleted and added again later, NodeMap will 3076 // point to a different index, so CurrentIndex will still be invalid. 3077 if (it != NodeMap.end() && it->second == CurrentIndex) 3078 break; 3079 ++CurrentIndex; 3080 } 3081 } 3082 }; 3083 3084 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3085 : Set(Set), CurrentIndex(Start) {} 3086 3087 PHINode * PhiNodeSetIterator::operator*() const { 3088 assert(CurrentIndex < Set->NodeList.size() && 3089 "PhiNodeSet access out of range"); 3090 return Set->NodeList[CurrentIndex]; 3091 } 3092 3093 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3094 assert(CurrentIndex < Set->NodeList.size() && 3095 "PhiNodeSet access out of range"); 3096 ++CurrentIndex; 3097 Set->SkipRemovedElements(CurrentIndex); 3098 return *this; 3099 } 3100 3101 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3102 return CurrentIndex == RHS.CurrentIndex; 3103 } 3104 3105 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3106 return !((*this) == RHS); 3107 } 3108 3109 /// Keep track of simplification of Phi nodes. 3110 /// Accept the set of all phi nodes and erase phi node from this set 3111 /// if it is simplified. 3112 class SimplificationTracker { 3113 DenseMap<Value *, Value *> Storage; 3114 const SimplifyQuery &SQ; 3115 // Tracks newly created Phi nodes. The elements are iterated by insertion 3116 // order. 3117 PhiNodeSet AllPhiNodes; 3118 // Tracks newly created Select nodes. 3119 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3120 3121 public: 3122 SimplificationTracker(const SimplifyQuery &sq) 3123 : SQ(sq) {} 3124 3125 Value *Get(Value *V) { 3126 do { 3127 auto SV = Storage.find(V); 3128 if (SV == Storage.end()) 3129 return V; 3130 V = SV->second; 3131 } while (true); 3132 } 3133 3134 Value *Simplify(Value *Val) { 3135 SmallVector<Value *, 32> WorkList; 3136 SmallPtrSet<Value *, 32> Visited; 3137 WorkList.push_back(Val); 3138 while (!WorkList.empty()) { 3139 auto P = WorkList.pop_back_val(); 3140 if (!Visited.insert(P).second) 3141 continue; 3142 if (auto *PI = dyn_cast<Instruction>(P)) 3143 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3144 for (auto *U : PI->users()) 3145 WorkList.push_back(cast<Value>(U)); 3146 Put(PI, V); 3147 PI->replaceAllUsesWith(V); 3148 if (auto *PHI = dyn_cast<PHINode>(PI)) 3149 AllPhiNodes.erase(PHI); 3150 if (auto *Select = dyn_cast<SelectInst>(PI)) 3151 AllSelectNodes.erase(Select); 3152 PI->eraseFromParent(); 3153 } 3154 } 3155 return Get(Val); 3156 } 3157 3158 void Put(Value *From, Value *To) { 3159 Storage.insert({ From, To }); 3160 } 3161 3162 void ReplacePhi(PHINode *From, PHINode *To) { 3163 Value* OldReplacement = Get(From); 3164 while (OldReplacement != From) { 3165 From = To; 3166 To = dyn_cast<PHINode>(OldReplacement); 3167 OldReplacement = Get(From); 3168 } 3169 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3170 Put(From, To); 3171 From->replaceAllUsesWith(To); 3172 AllPhiNodes.erase(From); 3173 From->eraseFromParent(); 3174 } 3175 3176 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3177 3178 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3179 3180 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3181 3182 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3183 3184 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3185 3186 void destroyNewNodes(Type *CommonType) { 3187 // For safe erasing, replace the uses with dummy value first. 3188 auto Dummy = UndefValue::get(CommonType); 3189 for (auto I : AllPhiNodes) { 3190 I->replaceAllUsesWith(Dummy); 3191 I->eraseFromParent(); 3192 } 3193 AllPhiNodes.clear(); 3194 for (auto I : AllSelectNodes) { 3195 I->replaceAllUsesWith(Dummy); 3196 I->eraseFromParent(); 3197 } 3198 AllSelectNodes.clear(); 3199 } 3200 }; 3201 3202 /// A helper class for combining addressing modes. 3203 class AddressingModeCombiner { 3204 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3205 typedef std::pair<PHINode *, PHINode *> PHIPair; 3206 3207 private: 3208 /// The addressing modes we've collected. 3209 SmallVector<ExtAddrMode, 16> AddrModes; 3210 3211 /// The field in which the AddrModes differ, when we have more than one. 3212 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3213 3214 /// Are the AddrModes that we have all just equal to their original values? 3215 bool AllAddrModesTrivial = true; 3216 3217 /// Common Type for all different fields in addressing modes. 3218 Type *CommonType; 3219 3220 /// SimplifyQuery for simplifyInstruction utility. 3221 const SimplifyQuery &SQ; 3222 3223 /// Original Address. 3224 Value *Original; 3225 3226 public: 3227 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3228 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3229 3230 /// Get the combined AddrMode 3231 const ExtAddrMode &getAddrMode() const { 3232 return AddrModes[0]; 3233 } 3234 3235 /// Add a new AddrMode if it's compatible with the AddrModes we already 3236 /// have. 3237 /// \return True iff we succeeded in doing so. 3238 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3239 // Take note of if we have any non-trivial AddrModes, as we need to detect 3240 // when all AddrModes are trivial as then we would introduce a phi or select 3241 // which just duplicates what's already there. 3242 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3243 3244 // If this is the first addrmode then everything is fine. 3245 if (AddrModes.empty()) { 3246 AddrModes.emplace_back(NewAddrMode); 3247 return true; 3248 } 3249 3250 // Figure out how different this is from the other address modes, which we 3251 // can do just by comparing against the first one given that we only care 3252 // about the cumulative difference. 3253 ExtAddrMode::FieldName ThisDifferentField = 3254 AddrModes[0].compare(NewAddrMode); 3255 if (DifferentField == ExtAddrMode::NoField) 3256 DifferentField = ThisDifferentField; 3257 else if (DifferentField != ThisDifferentField) 3258 DifferentField = ExtAddrMode::MultipleFields; 3259 3260 // If NewAddrMode differs in more than one dimension we cannot handle it. 3261 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3262 3263 // If Scale Field is different then we reject. 3264 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3265 3266 // We also must reject the case when base offset is different and 3267 // scale reg is not null, we cannot handle this case due to merge of 3268 // different offsets will be used as ScaleReg. 3269 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3270 !NewAddrMode.ScaledReg); 3271 3272 // We also must reject the case when GV is different and BaseReg installed 3273 // due to we want to use base reg as a merge of GV values. 3274 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3275 !NewAddrMode.HasBaseReg); 3276 3277 // Even if NewAddMode is the same we still need to collect it due to 3278 // original value is different. And later we will need all original values 3279 // as anchors during finding the common Phi node. 3280 if (CanHandle) 3281 AddrModes.emplace_back(NewAddrMode); 3282 else 3283 AddrModes.clear(); 3284 3285 return CanHandle; 3286 } 3287 3288 /// Combine the addressing modes we've collected into a single 3289 /// addressing mode. 3290 /// \return True iff we successfully combined them or we only had one so 3291 /// didn't need to combine them anyway. 3292 bool combineAddrModes() { 3293 // If we have no AddrModes then they can't be combined. 3294 if (AddrModes.size() == 0) 3295 return false; 3296 3297 // A single AddrMode can trivially be combined. 3298 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3299 return true; 3300 3301 // If the AddrModes we collected are all just equal to the value they are 3302 // derived from then combining them wouldn't do anything useful. 3303 if (AllAddrModesTrivial) 3304 return false; 3305 3306 if (!addrModeCombiningAllowed()) 3307 return false; 3308 3309 // Build a map between <original value, basic block where we saw it> to 3310 // value of base register. 3311 // Bail out if there is no common type. 3312 FoldAddrToValueMapping Map; 3313 if (!initializeMap(Map)) 3314 return false; 3315 3316 Value *CommonValue = findCommon(Map); 3317 if (CommonValue) 3318 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3319 return CommonValue != nullptr; 3320 } 3321 3322 private: 3323 /// Initialize Map with anchor values. For address seen 3324 /// we set the value of different field saw in this address. 3325 /// At the same time we find a common type for different field we will 3326 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3327 /// Return false if there is no common type found. 3328 bool initializeMap(FoldAddrToValueMapping &Map) { 3329 // Keep track of keys where the value is null. We will need to replace it 3330 // with constant null when we know the common type. 3331 SmallVector<Value *, 2> NullValue; 3332 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3333 for (auto &AM : AddrModes) { 3334 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3335 if (DV) { 3336 auto *Type = DV->getType(); 3337 if (CommonType && CommonType != Type) 3338 return false; 3339 CommonType = Type; 3340 Map[AM.OriginalValue] = DV; 3341 } else { 3342 NullValue.push_back(AM.OriginalValue); 3343 } 3344 } 3345 assert(CommonType && "At least one non-null value must be!"); 3346 for (auto *V : NullValue) 3347 Map[V] = Constant::getNullValue(CommonType); 3348 return true; 3349 } 3350 3351 /// We have mapping between value A and other value B where B was a field in 3352 /// addressing mode represented by A. Also we have an original value C 3353 /// representing an address we start with. Traversing from C through phi and 3354 /// selects we ended up with A's in a map. This utility function tries to find 3355 /// a value V which is a field in addressing mode C and traversing through phi 3356 /// nodes and selects we will end up in corresponded values B in a map. 3357 /// The utility will create a new Phi/Selects if needed. 3358 // The simple example looks as follows: 3359 // BB1: 3360 // p1 = b1 + 40 3361 // br cond BB2, BB3 3362 // BB2: 3363 // p2 = b2 + 40 3364 // br BB3 3365 // BB3: 3366 // p = phi [p1, BB1], [p2, BB2] 3367 // v = load p 3368 // Map is 3369 // p1 -> b1 3370 // p2 -> b2 3371 // Request is 3372 // p -> ? 3373 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3374 Value *findCommon(FoldAddrToValueMapping &Map) { 3375 // Tracks the simplification of newly created phi nodes. The reason we use 3376 // this mapping is because we will add new created Phi nodes in AddrToBase. 3377 // Simplification of Phi nodes is recursive, so some Phi node may 3378 // be simplified after we added it to AddrToBase. In reality this 3379 // simplification is possible only if original phi/selects were not 3380 // simplified yet. 3381 // Using this mapping we can find the current value in AddrToBase. 3382 SimplificationTracker ST(SQ); 3383 3384 // First step, DFS to create PHI nodes for all intermediate blocks. 3385 // Also fill traverse order for the second step. 3386 SmallVector<Value *, 32> TraverseOrder; 3387 InsertPlaceholders(Map, TraverseOrder, ST); 3388 3389 // Second Step, fill new nodes by merged values and simplify if possible. 3390 FillPlaceholders(Map, TraverseOrder, ST); 3391 3392 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3393 ST.destroyNewNodes(CommonType); 3394 return nullptr; 3395 } 3396 3397 // Now we'd like to match New Phi nodes to existed ones. 3398 unsigned PhiNotMatchedCount = 0; 3399 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3400 ST.destroyNewNodes(CommonType); 3401 return nullptr; 3402 } 3403 3404 auto *Result = ST.Get(Map.find(Original)->second); 3405 if (Result) { 3406 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3407 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3408 } 3409 return Result; 3410 } 3411 3412 /// Try to match PHI node to Candidate. 3413 /// Matcher tracks the matched Phi nodes. 3414 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3415 SmallSetVector<PHIPair, 8> &Matcher, 3416 PhiNodeSet &PhiNodesToMatch) { 3417 SmallVector<PHIPair, 8> WorkList; 3418 Matcher.insert({ PHI, Candidate }); 3419 SmallSet<PHINode *, 8> MatchedPHIs; 3420 MatchedPHIs.insert(PHI); 3421 WorkList.push_back({ PHI, Candidate }); 3422 SmallSet<PHIPair, 8> Visited; 3423 while (!WorkList.empty()) { 3424 auto Item = WorkList.pop_back_val(); 3425 if (!Visited.insert(Item).second) 3426 continue; 3427 // We iterate over all incoming values to Phi to compare them. 3428 // If values are different and both of them Phi and the first one is a 3429 // Phi we added (subject to match) and both of them is in the same basic 3430 // block then we can match our pair if values match. So we state that 3431 // these values match and add it to work list to verify that. 3432 for (auto B : Item.first->blocks()) { 3433 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3434 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3435 if (FirstValue == SecondValue) 3436 continue; 3437 3438 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3439 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3440 3441 // One of them is not Phi or 3442 // The first one is not Phi node from the set we'd like to match or 3443 // Phi nodes from different basic blocks then 3444 // we will not be able to match. 3445 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3446 FirstPhi->getParent() != SecondPhi->getParent()) 3447 return false; 3448 3449 // If we already matched them then continue. 3450 if (Matcher.count({ FirstPhi, SecondPhi })) 3451 continue; 3452 // So the values are different and does not match. So we need them to 3453 // match. (But we register no more than one match per PHI node, so that 3454 // we won't later try to replace them twice.) 3455 if (MatchedPHIs.insert(FirstPhi).second) 3456 Matcher.insert({ FirstPhi, SecondPhi }); 3457 // But me must check it. 3458 WorkList.push_back({ FirstPhi, SecondPhi }); 3459 } 3460 } 3461 return true; 3462 } 3463 3464 /// For the given set of PHI nodes (in the SimplificationTracker) try 3465 /// to find their equivalents. 3466 /// Returns false if this matching fails and creation of new Phi is disabled. 3467 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3468 unsigned &PhiNotMatchedCount) { 3469 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3470 // order, so the replacements (ReplacePhi) are also done in a deterministic 3471 // order. 3472 SmallSetVector<PHIPair, 8> Matched; 3473 SmallPtrSet<PHINode *, 8> WillNotMatch; 3474 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3475 while (PhiNodesToMatch.size()) { 3476 PHINode *PHI = *PhiNodesToMatch.begin(); 3477 3478 // Add us, if no Phi nodes in the basic block we do not match. 3479 WillNotMatch.clear(); 3480 WillNotMatch.insert(PHI); 3481 3482 // Traverse all Phis until we found equivalent or fail to do that. 3483 bool IsMatched = false; 3484 for (auto &P : PHI->getParent()->phis()) { 3485 if (&P == PHI) 3486 continue; 3487 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3488 break; 3489 // If it does not match, collect all Phi nodes from matcher. 3490 // if we end up with no match, them all these Phi nodes will not match 3491 // later. 3492 for (auto M : Matched) 3493 WillNotMatch.insert(M.first); 3494 Matched.clear(); 3495 } 3496 if (IsMatched) { 3497 // Replace all matched values and erase them. 3498 for (auto MV : Matched) 3499 ST.ReplacePhi(MV.first, MV.second); 3500 Matched.clear(); 3501 continue; 3502 } 3503 // If we are not allowed to create new nodes then bail out. 3504 if (!AllowNewPhiNodes) 3505 return false; 3506 // Just remove all seen values in matcher. They will not match anything. 3507 PhiNotMatchedCount += WillNotMatch.size(); 3508 for (auto *P : WillNotMatch) 3509 PhiNodesToMatch.erase(P); 3510 } 3511 return true; 3512 } 3513 /// Fill the placeholders with values from predecessors and simplify them. 3514 void FillPlaceholders(FoldAddrToValueMapping &Map, 3515 SmallVectorImpl<Value *> &TraverseOrder, 3516 SimplificationTracker &ST) { 3517 while (!TraverseOrder.empty()) { 3518 Value *Current = TraverseOrder.pop_back_val(); 3519 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3520 Value *V = Map[Current]; 3521 3522 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3523 // CurrentValue also must be Select. 3524 auto *CurrentSelect = cast<SelectInst>(Current); 3525 auto *TrueValue = CurrentSelect->getTrueValue(); 3526 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3527 Select->setTrueValue(ST.Get(Map[TrueValue])); 3528 auto *FalseValue = CurrentSelect->getFalseValue(); 3529 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3530 Select->setFalseValue(ST.Get(Map[FalseValue])); 3531 } else { 3532 // Must be a Phi node then. 3533 auto *PHI = cast<PHINode>(V); 3534 // Fill the Phi node with values from predecessors. 3535 for (auto B : predecessors(PHI->getParent())) { 3536 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3537 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3538 PHI->addIncoming(ST.Get(Map[PV]), B); 3539 } 3540 } 3541 Map[Current] = ST.Simplify(V); 3542 } 3543 } 3544 3545 /// Starting from original value recursively iterates over def-use chain up to 3546 /// known ending values represented in a map. For each traversed phi/select 3547 /// inserts a placeholder Phi or Select. 3548 /// Reports all new created Phi/Select nodes by adding them to set. 3549 /// Also reports and order in what values have been traversed. 3550 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3551 SmallVectorImpl<Value *> &TraverseOrder, 3552 SimplificationTracker &ST) { 3553 SmallVector<Value *, 32> Worklist; 3554 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3555 "Address must be a Phi or Select node"); 3556 auto *Dummy = UndefValue::get(CommonType); 3557 Worklist.push_back(Original); 3558 while (!Worklist.empty()) { 3559 Value *Current = Worklist.pop_back_val(); 3560 // if it is already visited or it is an ending value then skip it. 3561 if (Map.find(Current) != Map.end()) 3562 continue; 3563 TraverseOrder.push_back(Current); 3564 3565 // CurrentValue must be a Phi node or select. All others must be covered 3566 // by anchors. 3567 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3568 // Is it OK to get metadata from OrigSelect?! 3569 // Create a Select placeholder with dummy value. 3570 SelectInst *Select = SelectInst::Create( 3571 CurrentSelect->getCondition(), Dummy, Dummy, 3572 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3573 Map[Current] = Select; 3574 ST.insertNewSelect(Select); 3575 // We are interested in True and False values. 3576 Worklist.push_back(CurrentSelect->getTrueValue()); 3577 Worklist.push_back(CurrentSelect->getFalseValue()); 3578 } else { 3579 // It must be a Phi node then. 3580 PHINode *CurrentPhi = cast<PHINode>(Current); 3581 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3582 PHINode *PHI = 3583 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3584 Map[Current] = PHI; 3585 ST.insertNewPhi(PHI); 3586 for (Value *P : CurrentPhi->incoming_values()) 3587 Worklist.push_back(P); 3588 } 3589 } 3590 } 3591 3592 bool addrModeCombiningAllowed() { 3593 if (DisableComplexAddrModes) 3594 return false; 3595 switch (DifferentField) { 3596 default: 3597 return false; 3598 case ExtAddrMode::BaseRegField: 3599 return AddrSinkCombineBaseReg; 3600 case ExtAddrMode::BaseGVField: 3601 return AddrSinkCombineBaseGV; 3602 case ExtAddrMode::BaseOffsField: 3603 return AddrSinkCombineBaseOffs; 3604 case ExtAddrMode::ScaledRegField: 3605 return AddrSinkCombineScaledReg; 3606 } 3607 } 3608 }; 3609 } // end anonymous namespace 3610 3611 /// Try adding ScaleReg*Scale to the current addressing mode. 3612 /// Return true and update AddrMode if this addr mode is legal for the target, 3613 /// false if not. 3614 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3615 unsigned Depth) { 3616 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3617 // mode. Just process that directly. 3618 if (Scale == 1) 3619 return matchAddr(ScaleReg, Depth); 3620 3621 // If the scale is 0, it takes nothing to add this. 3622 if (Scale == 0) 3623 return true; 3624 3625 // If we already have a scale of this value, we can add to it, otherwise, we 3626 // need an available scale field. 3627 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3628 return false; 3629 3630 ExtAddrMode TestAddrMode = AddrMode; 3631 3632 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3633 // [A+B + A*7] -> [B+A*8]. 3634 TestAddrMode.Scale += Scale; 3635 TestAddrMode.ScaledReg = ScaleReg; 3636 3637 // If the new address isn't legal, bail out. 3638 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3639 return false; 3640 3641 // It was legal, so commit it. 3642 AddrMode = TestAddrMode; 3643 3644 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3645 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3646 // X*Scale + C*Scale to addr mode. 3647 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3648 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3649 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3650 TestAddrMode.InBounds = false; 3651 TestAddrMode.ScaledReg = AddLHS; 3652 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3653 3654 // If this addressing mode is legal, commit it and remember that we folded 3655 // this instruction. 3656 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3657 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3658 AddrMode = TestAddrMode; 3659 return true; 3660 } 3661 } 3662 3663 // Otherwise, not (x+c)*scale, just return what we have. 3664 return true; 3665 } 3666 3667 /// This is a little filter, which returns true if an addressing computation 3668 /// involving I might be folded into a load/store accessing it. 3669 /// This doesn't need to be perfect, but needs to accept at least 3670 /// the set of instructions that MatchOperationAddr can. 3671 static bool MightBeFoldableInst(Instruction *I) { 3672 switch (I->getOpcode()) { 3673 case Instruction::BitCast: 3674 case Instruction::AddrSpaceCast: 3675 // Don't touch identity bitcasts. 3676 if (I->getType() == I->getOperand(0)->getType()) 3677 return false; 3678 return I->getType()->isIntOrPtrTy(); 3679 case Instruction::PtrToInt: 3680 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3681 return true; 3682 case Instruction::IntToPtr: 3683 // We know the input is intptr_t, so this is foldable. 3684 return true; 3685 case Instruction::Add: 3686 return true; 3687 case Instruction::Mul: 3688 case Instruction::Shl: 3689 // Can only handle X*C and X << C. 3690 return isa<ConstantInt>(I->getOperand(1)); 3691 case Instruction::GetElementPtr: 3692 return true; 3693 default: 3694 return false; 3695 } 3696 } 3697 3698 /// Check whether or not \p Val is a legal instruction for \p TLI. 3699 /// \note \p Val is assumed to be the product of some type promotion. 3700 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3701 /// to be legal, as the non-promoted value would have had the same state. 3702 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3703 const DataLayout &DL, Value *Val) { 3704 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3705 if (!PromotedInst) 3706 return false; 3707 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3708 // If the ISDOpcode is undefined, it was undefined before the promotion. 3709 if (!ISDOpcode) 3710 return true; 3711 // Otherwise, check if the promoted instruction is legal or not. 3712 return TLI.isOperationLegalOrCustom( 3713 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3714 } 3715 3716 namespace { 3717 3718 /// Hepler class to perform type promotion. 3719 class TypePromotionHelper { 3720 /// Utility function to add a promoted instruction \p ExtOpnd to 3721 /// \p PromotedInsts and record the type of extension we have seen. 3722 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3723 Instruction *ExtOpnd, 3724 bool IsSExt) { 3725 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3726 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3727 if (It != PromotedInsts.end()) { 3728 // If the new extension is same as original, the information in 3729 // PromotedInsts[ExtOpnd] is still correct. 3730 if (It->second.getInt() == ExtTy) 3731 return; 3732 3733 // Now the new extension is different from old extension, we make 3734 // the type information invalid by setting extension type to 3735 // BothExtension. 3736 ExtTy = BothExtension; 3737 } 3738 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3739 } 3740 3741 /// Utility function to query the original type of instruction \p Opnd 3742 /// with a matched extension type. If the extension doesn't match, we 3743 /// cannot use the information we had on the original type. 3744 /// BothExtension doesn't match any extension type. 3745 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3746 Instruction *Opnd, 3747 bool IsSExt) { 3748 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3749 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3750 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3751 return It->second.getPointer(); 3752 return nullptr; 3753 } 3754 3755 /// Utility function to check whether or not a sign or zero extension 3756 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3757 /// either using the operands of \p Inst or promoting \p Inst. 3758 /// The type of the extension is defined by \p IsSExt. 3759 /// In other words, check if: 3760 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3761 /// #1 Promotion applies: 3762 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3763 /// #2 Operand reuses: 3764 /// ext opnd1 to ConsideredExtType. 3765 /// \p PromotedInsts maps the instructions to their type before promotion. 3766 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3767 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3768 3769 /// Utility function to determine if \p OpIdx should be promoted when 3770 /// promoting \p Inst. 3771 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3772 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3773 } 3774 3775 /// Utility function to promote the operand of \p Ext when this 3776 /// operand is a promotable trunc or sext or zext. 3777 /// \p PromotedInsts maps the instructions to their type before promotion. 3778 /// \p CreatedInstsCost[out] contains the cost of all instructions 3779 /// created to promote the operand of Ext. 3780 /// Newly added extensions are inserted in \p Exts. 3781 /// Newly added truncates are inserted in \p Truncs. 3782 /// Should never be called directly. 3783 /// \return The promoted value which is used instead of Ext. 3784 static Value *promoteOperandForTruncAndAnyExt( 3785 Instruction *Ext, TypePromotionTransaction &TPT, 3786 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3787 SmallVectorImpl<Instruction *> *Exts, 3788 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3789 3790 /// Utility function to promote the operand of \p Ext when this 3791 /// operand is promotable and is not a supported trunc or sext. 3792 /// \p PromotedInsts maps the instructions to their type before promotion. 3793 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3794 /// created to promote the operand of Ext. 3795 /// Newly added extensions are inserted in \p Exts. 3796 /// Newly added truncates are inserted in \p Truncs. 3797 /// Should never be called directly. 3798 /// \return The promoted value which is used instead of Ext. 3799 static Value *promoteOperandForOther(Instruction *Ext, 3800 TypePromotionTransaction &TPT, 3801 InstrToOrigTy &PromotedInsts, 3802 unsigned &CreatedInstsCost, 3803 SmallVectorImpl<Instruction *> *Exts, 3804 SmallVectorImpl<Instruction *> *Truncs, 3805 const TargetLowering &TLI, bool IsSExt); 3806 3807 /// \see promoteOperandForOther. 3808 static Value *signExtendOperandForOther( 3809 Instruction *Ext, TypePromotionTransaction &TPT, 3810 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3811 SmallVectorImpl<Instruction *> *Exts, 3812 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3813 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3814 Exts, Truncs, TLI, true); 3815 } 3816 3817 /// \see promoteOperandForOther. 3818 static Value *zeroExtendOperandForOther( 3819 Instruction *Ext, TypePromotionTransaction &TPT, 3820 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3821 SmallVectorImpl<Instruction *> *Exts, 3822 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3823 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3824 Exts, Truncs, TLI, false); 3825 } 3826 3827 public: 3828 /// Type for the utility function that promotes the operand of Ext. 3829 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3830 InstrToOrigTy &PromotedInsts, 3831 unsigned &CreatedInstsCost, 3832 SmallVectorImpl<Instruction *> *Exts, 3833 SmallVectorImpl<Instruction *> *Truncs, 3834 const TargetLowering &TLI); 3835 3836 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3837 /// action to promote the operand of \p Ext instead of using Ext. 3838 /// \return NULL if no promotable action is possible with the current 3839 /// sign extension. 3840 /// \p InsertedInsts keeps track of all the instructions inserted by the 3841 /// other CodeGenPrepare optimizations. This information is important 3842 /// because we do not want to promote these instructions as CodeGenPrepare 3843 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3844 /// \p PromotedInsts maps the instructions to their type before promotion. 3845 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3846 const TargetLowering &TLI, 3847 const InstrToOrigTy &PromotedInsts); 3848 }; 3849 3850 } // end anonymous namespace 3851 3852 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3853 Type *ConsideredExtType, 3854 const InstrToOrigTy &PromotedInsts, 3855 bool IsSExt) { 3856 // The promotion helper does not know how to deal with vector types yet. 3857 // To be able to fix that, we would need to fix the places where we 3858 // statically extend, e.g., constants and such. 3859 if (Inst->getType()->isVectorTy()) 3860 return false; 3861 3862 // We can always get through zext. 3863 if (isa<ZExtInst>(Inst)) 3864 return true; 3865 3866 // sext(sext) is ok too. 3867 if (IsSExt && isa<SExtInst>(Inst)) 3868 return true; 3869 3870 // We can get through binary operator, if it is legal. In other words, the 3871 // binary operator must have a nuw or nsw flag. 3872 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3873 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3874 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3875 (IsSExt && BinOp->hasNoSignedWrap()))) 3876 return true; 3877 3878 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3879 if ((Inst->getOpcode() == Instruction::And || 3880 Inst->getOpcode() == Instruction::Or)) 3881 return true; 3882 3883 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3884 if (Inst->getOpcode() == Instruction::Xor) { 3885 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3886 // Make sure it is not a NOT. 3887 if (Cst && !Cst->getValue().isAllOnesValue()) 3888 return true; 3889 } 3890 3891 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3892 // It may change a poisoned value into a regular value, like 3893 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3894 // poisoned value regular value 3895 // It should be OK since undef covers valid value. 3896 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3897 return true; 3898 3899 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3900 // It may change a poisoned value into a regular value, like 3901 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3902 // poisoned value regular value 3903 // It should be OK since undef covers valid value. 3904 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3905 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3906 if (ExtInst->hasOneUse()) { 3907 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3908 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3909 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3910 if (Cst && 3911 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3912 return true; 3913 } 3914 } 3915 } 3916 3917 // Check if we can do the following simplification. 3918 // ext(trunc(opnd)) --> ext(opnd) 3919 if (!isa<TruncInst>(Inst)) 3920 return false; 3921 3922 Value *OpndVal = Inst->getOperand(0); 3923 // Check if we can use this operand in the extension. 3924 // If the type is larger than the result type of the extension, we cannot. 3925 if (!OpndVal->getType()->isIntegerTy() || 3926 OpndVal->getType()->getIntegerBitWidth() > 3927 ConsideredExtType->getIntegerBitWidth()) 3928 return false; 3929 3930 // If the operand of the truncate is not an instruction, we will not have 3931 // any information on the dropped bits. 3932 // (Actually we could for constant but it is not worth the extra logic). 3933 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3934 if (!Opnd) 3935 return false; 3936 3937 // Check if the source of the type is narrow enough. 3938 // I.e., check that trunc just drops extended bits of the same kind of 3939 // the extension. 3940 // #1 get the type of the operand and check the kind of the extended bits. 3941 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3942 if (OpndType) 3943 ; 3944 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3945 OpndType = Opnd->getOperand(0)->getType(); 3946 else 3947 return false; 3948 3949 // #2 check that the truncate just drops extended bits. 3950 return Inst->getType()->getIntegerBitWidth() >= 3951 OpndType->getIntegerBitWidth(); 3952 } 3953 3954 TypePromotionHelper::Action TypePromotionHelper::getAction( 3955 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3956 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3957 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3958 "Unexpected instruction type"); 3959 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3960 Type *ExtTy = Ext->getType(); 3961 bool IsSExt = isa<SExtInst>(Ext); 3962 // If the operand of the extension is not an instruction, we cannot 3963 // get through. 3964 // If it, check we can get through. 3965 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3966 return nullptr; 3967 3968 // Do not promote if the operand has been added by codegenprepare. 3969 // Otherwise, it means we are undoing an optimization that is likely to be 3970 // redone, thus causing potential infinite loop. 3971 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3972 return nullptr; 3973 3974 // SExt or Trunc instructions. 3975 // Return the related handler. 3976 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3977 isa<ZExtInst>(ExtOpnd)) 3978 return promoteOperandForTruncAndAnyExt; 3979 3980 // Regular instruction. 3981 // Abort early if we will have to insert non-free instructions. 3982 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3983 return nullptr; 3984 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3985 } 3986 3987 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3988 Instruction *SExt, TypePromotionTransaction &TPT, 3989 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3990 SmallVectorImpl<Instruction *> *Exts, 3991 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3992 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3993 // get through it and this method should not be called. 3994 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3995 Value *ExtVal = SExt; 3996 bool HasMergedNonFreeExt = false; 3997 if (isa<ZExtInst>(SExtOpnd)) { 3998 // Replace s|zext(zext(opnd)) 3999 // => zext(opnd). 4000 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4001 Value *ZExt = 4002 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4003 TPT.replaceAllUsesWith(SExt, ZExt); 4004 TPT.eraseInstruction(SExt); 4005 ExtVal = ZExt; 4006 } else { 4007 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4008 // => z|sext(opnd). 4009 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4010 } 4011 CreatedInstsCost = 0; 4012 4013 // Remove dead code. 4014 if (SExtOpnd->use_empty()) 4015 TPT.eraseInstruction(SExtOpnd); 4016 4017 // Check if the extension is still needed. 4018 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4019 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4020 if (ExtInst) { 4021 if (Exts) 4022 Exts->push_back(ExtInst); 4023 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4024 } 4025 return ExtVal; 4026 } 4027 4028 // At this point we have: ext ty opnd to ty. 4029 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4030 Value *NextVal = ExtInst->getOperand(0); 4031 TPT.eraseInstruction(ExtInst, NextVal); 4032 return NextVal; 4033 } 4034 4035 Value *TypePromotionHelper::promoteOperandForOther( 4036 Instruction *Ext, TypePromotionTransaction &TPT, 4037 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4038 SmallVectorImpl<Instruction *> *Exts, 4039 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4040 bool IsSExt) { 4041 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4042 // get through it and this method should not be called. 4043 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4044 CreatedInstsCost = 0; 4045 if (!ExtOpnd->hasOneUse()) { 4046 // ExtOpnd will be promoted. 4047 // All its uses, but Ext, will need to use a truncated value of the 4048 // promoted version. 4049 // Create the truncate now. 4050 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4051 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4052 // Insert it just after the definition. 4053 ITrunc->moveAfter(ExtOpnd); 4054 if (Truncs) 4055 Truncs->push_back(ITrunc); 4056 } 4057 4058 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4059 // Restore the operand of Ext (which has been replaced by the previous call 4060 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4061 TPT.setOperand(Ext, 0, ExtOpnd); 4062 } 4063 4064 // Get through the Instruction: 4065 // 1. Update its type. 4066 // 2. Replace the uses of Ext by Inst. 4067 // 3. Extend each operand that needs to be extended. 4068 4069 // Remember the original type of the instruction before promotion. 4070 // This is useful to know that the high bits are sign extended bits. 4071 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4072 // Step #1. 4073 TPT.mutateType(ExtOpnd, Ext->getType()); 4074 // Step #2. 4075 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4076 // Step #3. 4077 Instruction *ExtForOpnd = Ext; 4078 4079 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4080 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4081 ++OpIdx) { 4082 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4083 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4084 !shouldExtOperand(ExtOpnd, OpIdx)) { 4085 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4086 continue; 4087 } 4088 // Check if we can statically extend the operand. 4089 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4090 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4091 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4092 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4093 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4094 : Cst->getValue().zext(BitWidth); 4095 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4096 continue; 4097 } 4098 // UndefValue are typed, so we have to statically sign extend them. 4099 if (isa<UndefValue>(Opnd)) { 4100 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4101 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4102 continue; 4103 } 4104 4105 // Otherwise we have to explicitly sign extend the operand. 4106 // Check if Ext was reused to extend an operand. 4107 if (!ExtForOpnd) { 4108 // If yes, create a new one. 4109 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4110 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4111 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4112 if (!isa<Instruction>(ValForExtOpnd)) { 4113 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4114 continue; 4115 } 4116 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4117 } 4118 if (Exts) 4119 Exts->push_back(ExtForOpnd); 4120 TPT.setOperand(ExtForOpnd, 0, Opnd); 4121 4122 // Move the sign extension before the insertion point. 4123 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4124 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4125 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4126 // If more sext are required, new instructions will have to be created. 4127 ExtForOpnd = nullptr; 4128 } 4129 if (ExtForOpnd == Ext) { 4130 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4131 TPT.eraseInstruction(Ext); 4132 } 4133 return ExtOpnd; 4134 } 4135 4136 /// Check whether or not promoting an instruction to a wider type is profitable. 4137 /// \p NewCost gives the cost of extension instructions created by the 4138 /// promotion. 4139 /// \p OldCost gives the cost of extension instructions before the promotion 4140 /// plus the number of instructions that have been 4141 /// matched in the addressing mode the promotion. 4142 /// \p PromotedOperand is the value that has been promoted. 4143 /// \return True if the promotion is profitable, false otherwise. 4144 bool AddressingModeMatcher::isPromotionProfitable( 4145 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4146 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4147 << '\n'); 4148 // The cost of the new extensions is greater than the cost of the 4149 // old extension plus what we folded. 4150 // This is not profitable. 4151 if (NewCost > OldCost) 4152 return false; 4153 if (NewCost < OldCost) 4154 return true; 4155 // The promotion is neutral but it may help folding the sign extension in 4156 // loads for instance. 4157 // Check that we did not create an illegal instruction. 4158 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4159 } 4160 4161 /// Given an instruction or constant expr, see if we can fold the operation 4162 /// into the addressing mode. If so, update the addressing mode and return 4163 /// true, otherwise return false without modifying AddrMode. 4164 /// If \p MovedAway is not NULL, it contains the information of whether or 4165 /// not AddrInst has to be folded into the addressing mode on success. 4166 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4167 /// because it has been moved away. 4168 /// Thus AddrInst must not be added in the matched instructions. 4169 /// This state can happen when AddrInst is a sext, since it may be moved away. 4170 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4171 /// not be referenced anymore. 4172 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4173 unsigned Depth, 4174 bool *MovedAway) { 4175 // Avoid exponential behavior on extremely deep expression trees. 4176 if (Depth >= 5) return false; 4177 4178 // By default, all matched instructions stay in place. 4179 if (MovedAway) 4180 *MovedAway = false; 4181 4182 switch (Opcode) { 4183 case Instruction::PtrToInt: 4184 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4185 return matchAddr(AddrInst->getOperand(0), Depth); 4186 case Instruction::IntToPtr: { 4187 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4188 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4189 // This inttoptr is a no-op if the integer type is pointer sized. 4190 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4191 return matchAddr(AddrInst->getOperand(0), Depth); 4192 return false; 4193 } 4194 case Instruction::BitCast: 4195 // BitCast is always a noop, and we can handle it as long as it is 4196 // int->int or pointer->pointer (we don't want int<->fp or something). 4197 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4198 // Don't touch identity bitcasts. These were probably put here by LSR, 4199 // and we don't want to mess around with them. Assume it knows what it 4200 // is doing. 4201 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4202 return matchAddr(AddrInst->getOperand(0), Depth); 4203 return false; 4204 case Instruction::AddrSpaceCast: { 4205 unsigned SrcAS 4206 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4207 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4208 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4209 return matchAddr(AddrInst->getOperand(0), Depth); 4210 return false; 4211 } 4212 case Instruction::Add: { 4213 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4214 ExtAddrMode BackupAddrMode = AddrMode; 4215 unsigned OldSize = AddrModeInsts.size(); 4216 // Start a transaction at this point. 4217 // The LHS may match but not the RHS. 4218 // Therefore, we need a higher level restoration point to undo partially 4219 // matched operation. 4220 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4221 TPT.getRestorationPoint(); 4222 4223 AddrMode.InBounds = false; 4224 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4225 matchAddr(AddrInst->getOperand(0), Depth+1)) 4226 return true; 4227 4228 // Restore the old addr mode info. 4229 AddrMode = BackupAddrMode; 4230 AddrModeInsts.resize(OldSize); 4231 TPT.rollback(LastKnownGood); 4232 4233 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4234 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4235 matchAddr(AddrInst->getOperand(1), Depth+1)) 4236 return true; 4237 4238 // Otherwise we definitely can't merge the ADD in. 4239 AddrMode = BackupAddrMode; 4240 AddrModeInsts.resize(OldSize); 4241 TPT.rollback(LastKnownGood); 4242 break; 4243 } 4244 //case Instruction::Or: 4245 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4246 //break; 4247 case Instruction::Mul: 4248 case Instruction::Shl: { 4249 // Can only handle X*C and X << C. 4250 AddrMode.InBounds = false; 4251 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4252 if (!RHS || RHS->getBitWidth() > 64) 4253 return false; 4254 int64_t Scale = RHS->getSExtValue(); 4255 if (Opcode == Instruction::Shl) 4256 Scale = 1LL << Scale; 4257 4258 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4259 } 4260 case Instruction::GetElementPtr: { 4261 // Scan the GEP. We check it if it contains constant offsets and at most 4262 // one variable offset. 4263 int VariableOperand = -1; 4264 unsigned VariableScale = 0; 4265 4266 int64_t ConstantOffset = 0; 4267 gep_type_iterator GTI = gep_type_begin(AddrInst); 4268 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4269 if (StructType *STy = GTI.getStructTypeOrNull()) { 4270 const StructLayout *SL = DL.getStructLayout(STy); 4271 unsigned Idx = 4272 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4273 ConstantOffset += SL->getElementOffset(Idx); 4274 } else { 4275 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4276 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4277 const APInt &CVal = CI->getValue(); 4278 if (CVal.getMinSignedBits() <= 64) { 4279 ConstantOffset += CVal.getSExtValue() * TypeSize; 4280 continue; 4281 } 4282 } 4283 if (TypeSize) { // Scales of zero don't do anything. 4284 // We only allow one variable index at the moment. 4285 if (VariableOperand != -1) 4286 return false; 4287 4288 // Remember the variable index. 4289 VariableOperand = i; 4290 VariableScale = TypeSize; 4291 } 4292 } 4293 } 4294 4295 // A common case is for the GEP to only do a constant offset. In this case, 4296 // just add it to the disp field and check validity. 4297 if (VariableOperand == -1) { 4298 AddrMode.BaseOffs += ConstantOffset; 4299 if (ConstantOffset == 0 || 4300 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4301 // Check to see if we can fold the base pointer in too. 4302 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4303 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4304 AddrMode.InBounds = false; 4305 return true; 4306 } 4307 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4308 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4309 ConstantOffset > 0) { 4310 // Record GEPs with non-zero offsets as candidates for splitting in the 4311 // event that the offset cannot fit into the r+i addressing mode. 4312 // Simple and common case that only one GEP is used in calculating the 4313 // address for the memory access. 4314 Value *Base = AddrInst->getOperand(0); 4315 auto *BaseI = dyn_cast<Instruction>(Base); 4316 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4317 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4318 (BaseI && !isa<CastInst>(BaseI) && 4319 !isa<GetElementPtrInst>(BaseI))) { 4320 // Make sure the parent block allows inserting non-PHI instructions 4321 // before the terminator. 4322 BasicBlock *Parent = 4323 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4324 if (!Parent->getTerminator()->isEHPad()) 4325 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4326 } 4327 } 4328 AddrMode.BaseOffs -= ConstantOffset; 4329 return false; 4330 } 4331 4332 // Save the valid addressing mode in case we can't match. 4333 ExtAddrMode BackupAddrMode = AddrMode; 4334 unsigned OldSize = AddrModeInsts.size(); 4335 4336 // See if the scale and offset amount is valid for this target. 4337 AddrMode.BaseOffs += ConstantOffset; 4338 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4339 AddrMode.InBounds = false; 4340 4341 // Match the base operand of the GEP. 4342 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4343 // If it couldn't be matched, just stuff the value in a register. 4344 if (AddrMode.HasBaseReg) { 4345 AddrMode = BackupAddrMode; 4346 AddrModeInsts.resize(OldSize); 4347 return false; 4348 } 4349 AddrMode.HasBaseReg = true; 4350 AddrMode.BaseReg = AddrInst->getOperand(0); 4351 } 4352 4353 // Match the remaining variable portion of the GEP. 4354 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4355 Depth)) { 4356 // If it couldn't be matched, try stuffing the base into a register 4357 // instead of matching it, and retrying the match of the scale. 4358 AddrMode = BackupAddrMode; 4359 AddrModeInsts.resize(OldSize); 4360 if (AddrMode.HasBaseReg) 4361 return false; 4362 AddrMode.HasBaseReg = true; 4363 AddrMode.BaseReg = AddrInst->getOperand(0); 4364 AddrMode.BaseOffs += ConstantOffset; 4365 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4366 VariableScale, Depth)) { 4367 // If even that didn't work, bail. 4368 AddrMode = BackupAddrMode; 4369 AddrModeInsts.resize(OldSize); 4370 return false; 4371 } 4372 } 4373 4374 return true; 4375 } 4376 case Instruction::SExt: 4377 case Instruction::ZExt: { 4378 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4379 if (!Ext) 4380 return false; 4381 4382 // Try to move this ext out of the way of the addressing mode. 4383 // Ask for a method for doing so. 4384 TypePromotionHelper::Action TPH = 4385 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4386 if (!TPH) 4387 return false; 4388 4389 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4390 TPT.getRestorationPoint(); 4391 unsigned CreatedInstsCost = 0; 4392 unsigned ExtCost = !TLI.isExtFree(Ext); 4393 Value *PromotedOperand = 4394 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4395 // SExt has been moved away. 4396 // Thus either it will be rematched later in the recursive calls or it is 4397 // gone. Anyway, we must not fold it into the addressing mode at this point. 4398 // E.g., 4399 // op = add opnd, 1 4400 // idx = ext op 4401 // addr = gep base, idx 4402 // is now: 4403 // promotedOpnd = ext opnd <- no match here 4404 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4405 // addr = gep base, op <- match 4406 if (MovedAway) 4407 *MovedAway = true; 4408 4409 assert(PromotedOperand && 4410 "TypePromotionHelper should have filtered out those cases"); 4411 4412 ExtAddrMode BackupAddrMode = AddrMode; 4413 unsigned OldSize = AddrModeInsts.size(); 4414 4415 if (!matchAddr(PromotedOperand, Depth) || 4416 // The total of the new cost is equal to the cost of the created 4417 // instructions. 4418 // The total of the old cost is equal to the cost of the extension plus 4419 // what we have saved in the addressing mode. 4420 !isPromotionProfitable(CreatedInstsCost, 4421 ExtCost + (AddrModeInsts.size() - OldSize), 4422 PromotedOperand)) { 4423 AddrMode = BackupAddrMode; 4424 AddrModeInsts.resize(OldSize); 4425 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4426 TPT.rollback(LastKnownGood); 4427 return false; 4428 } 4429 return true; 4430 } 4431 } 4432 return false; 4433 } 4434 4435 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4436 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4437 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4438 /// for the target. 4439 /// 4440 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4441 // Start a transaction at this point that we will rollback if the matching 4442 // fails. 4443 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4444 TPT.getRestorationPoint(); 4445 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4446 // Fold in immediates if legal for the target. 4447 AddrMode.BaseOffs += CI->getSExtValue(); 4448 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4449 return true; 4450 AddrMode.BaseOffs -= CI->getSExtValue(); 4451 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4452 // If this is a global variable, try to fold it into the addressing mode. 4453 if (!AddrMode.BaseGV) { 4454 AddrMode.BaseGV = GV; 4455 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4456 return true; 4457 AddrMode.BaseGV = nullptr; 4458 } 4459 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4460 ExtAddrMode BackupAddrMode = AddrMode; 4461 unsigned OldSize = AddrModeInsts.size(); 4462 4463 // Check to see if it is possible to fold this operation. 4464 bool MovedAway = false; 4465 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4466 // This instruction may have been moved away. If so, there is nothing 4467 // to check here. 4468 if (MovedAway) 4469 return true; 4470 // Okay, it's possible to fold this. Check to see if it is actually 4471 // *profitable* to do so. We use a simple cost model to avoid increasing 4472 // register pressure too much. 4473 if (I->hasOneUse() || 4474 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4475 AddrModeInsts.push_back(I); 4476 return true; 4477 } 4478 4479 // It isn't profitable to do this, roll back. 4480 //cerr << "NOT FOLDING: " << *I; 4481 AddrMode = BackupAddrMode; 4482 AddrModeInsts.resize(OldSize); 4483 TPT.rollback(LastKnownGood); 4484 } 4485 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4486 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4487 return true; 4488 TPT.rollback(LastKnownGood); 4489 } else if (isa<ConstantPointerNull>(Addr)) { 4490 // Null pointer gets folded without affecting the addressing mode. 4491 return true; 4492 } 4493 4494 // Worse case, the target should support [reg] addressing modes. :) 4495 if (!AddrMode.HasBaseReg) { 4496 AddrMode.HasBaseReg = true; 4497 AddrMode.BaseReg = Addr; 4498 // Still check for legality in case the target supports [imm] but not [i+r]. 4499 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4500 return true; 4501 AddrMode.HasBaseReg = false; 4502 AddrMode.BaseReg = nullptr; 4503 } 4504 4505 // If the base register is already taken, see if we can do [r+r]. 4506 if (AddrMode.Scale == 0) { 4507 AddrMode.Scale = 1; 4508 AddrMode.ScaledReg = Addr; 4509 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4510 return true; 4511 AddrMode.Scale = 0; 4512 AddrMode.ScaledReg = nullptr; 4513 } 4514 // Couldn't match. 4515 TPT.rollback(LastKnownGood); 4516 return false; 4517 } 4518 4519 /// Check to see if all uses of OpVal by the specified inline asm call are due 4520 /// to memory operands. If so, return true, otherwise return false. 4521 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4522 const TargetLowering &TLI, 4523 const TargetRegisterInfo &TRI) { 4524 const Function *F = CI->getFunction(); 4525 TargetLowering::AsmOperandInfoVector TargetConstraints = 4526 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4527 ImmutableCallSite(CI)); 4528 4529 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4530 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4531 4532 // Compute the constraint code and ConstraintType to use. 4533 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4534 4535 // If this asm operand is our Value*, and if it isn't an indirect memory 4536 // operand, we can't fold it! 4537 if (OpInfo.CallOperandVal == OpVal && 4538 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4539 !OpInfo.isIndirect)) 4540 return false; 4541 } 4542 4543 return true; 4544 } 4545 4546 // Max number of memory uses to look at before aborting the search to conserve 4547 // compile time. 4548 static constexpr int MaxMemoryUsesToScan = 20; 4549 4550 /// Recursively walk all the uses of I until we find a memory use. 4551 /// If we find an obviously non-foldable instruction, return true. 4552 /// Add the ultimately found memory instructions to MemoryUses. 4553 static bool FindAllMemoryUses( 4554 Instruction *I, 4555 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4556 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4557 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4558 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4559 // If we already considered this instruction, we're done. 4560 if (!ConsideredInsts.insert(I).second) 4561 return false; 4562 4563 // If this is an obviously unfoldable instruction, bail out. 4564 if (!MightBeFoldableInst(I)) 4565 return true; 4566 4567 // Loop over all the uses, recursively processing them. 4568 for (Use &U : I->uses()) { 4569 // Conservatively return true if we're seeing a large number or a deep chain 4570 // of users. This avoids excessive compilation times in pathological cases. 4571 if (SeenInsts++ >= MaxMemoryUsesToScan) 4572 return true; 4573 4574 Instruction *UserI = cast<Instruction>(U.getUser()); 4575 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4576 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4577 continue; 4578 } 4579 4580 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4581 unsigned opNo = U.getOperandNo(); 4582 if (opNo != StoreInst::getPointerOperandIndex()) 4583 return true; // Storing addr, not into addr. 4584 MemoryUses.push_back(std::make_pair(SI, opNo)); 4585 continue; 4586 } 4587 4588 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4589 unsigned opNo = U.getOperandNo(); 4590 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4591 return true; // Storing addr, not into addr. 4592 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4593 continue; 4594 } 4595 4596 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4597 unsigned opNo = U.getOperandNo(); 4598 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4599 return true; // Storing addr, not into addr. 4600 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4601 continue; 4602 } 4603 4604 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4605 if (CI->hasFnAttr(Attribute::Cold)) { 4606 // If this is a cold call, we can sink the addressing calculation into 4607 // the cold path. See optimizeCallInst 4608 bool OptForSize = OptSize || 4609 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4610 if (!OptForSize) 4611 continue; 4612 } 4613 4614 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4615 if (!IA) return true; 4616 4617 // If this is a memory operand, we're cool, otherwise bail out. 4618 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4619 return true; 4620 continue; 4621 } 4622 4623 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4624 PSI, BFI, SeenInsts)) 4625 return true; 4626 } 4627 4628 return false; 4629 } 4630 4631 /// Return true if Val is already known to be live at the use site that we're 4632 /// folding it into. If so, there is no cost to include it in the addressing 4633 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4634 /// instruction already. 4635 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4636 Value *KnownLive2) { 4637 // If Val is either of the known-live values, we know it is live! 4638 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4639 return true; 4640 4641 // All values other than instructions and arguments (e.g. constants) are live. 4642 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4643 4644 // If Val is a constant sized alloca in the entry block, it is live, this is 4645 // true because it is just a reference to the stack/frame pointer, which is 4646 // live for the whole function. 4647 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4648 if (AI->isStaticAlloca()) 4649 return true; 4650 4651 // Check to see if this value is already used in the memory instruction's 4652 // block. If so, it's already live into the block at the very least, so we 4653 // can reasonably fold it. 4654 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4655 } 4656 4657 /// It is possible for the addressing mode of the machine to fold the specified 4658 /// instruction into a load or store that ultimately uses it. 4659 /// However, the specified instruction has multiple uses. 4660 /// Given this, it may actually increase register pressure to fold it 4661 /// into the load. For example, consider this code: 4662 /// 4663 /// X = ... 4664 /// Y = X+1 4665 /// use(Y) -> nonload/store 4666 /// Z = Y+1 4667 /// load Z 4668 /// 4669 /// In this case, Y has multiple uses, and can be folded into the load of Z 4670 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4671 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4672 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4673 /// number of computations either. 4674 /// 4675 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4676 /// X was live across 'load Z' for other reasons, we actually *would* want to 4677 /// fold the addressing mode in the Z case. This would make Y die earlier. 4678 bool AddressingModeMatcher:: 4679 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4680 ExtAddrMode &AMAfter) { 4681 if (IgnoreProfitability) return true; 4682 4683 // AMBefore is the addressing mode before this instruction was folded into it, 4684 // and AMAfter is the addressing mode after the instruction was folded. Get 4685 // the set of registers referenced by AMAfter and subtract out those 4686 // referenced by AMBefore: this is the set of values which folding in this 4687 // address extends the lifetime of. 4688 // 4689 // Note that there are only two potential values being referenced here, 4690 // BaseReg and ScaleReg (global addresses are always available, as are any 4691 // folded immediates). 4692 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4693 4694 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4695 // lifetime wasn't extended by adding this instruction. 4696 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4697 BaseReg = nullptr; 4698 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4699 ScaledReg = nullptr; 4700 4701 // If folding this instruction (and it's subexprs) didn't extend any live 4702 // ranges, we're ok with it. 4703 if (!BaseReg && !ScaledReg) 4704 return true; 4705 4706 // If all uses of this instruction can have the address mode sunk into them, 4707 // we can remove the addressing mode and effectively trade one live register 4708 // for another (at worst.) In this context, folding an addressing mode into 4709 // the use is just a particularly nice way of sinking it. 4710 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4711 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4712 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4713 PSI, BFI)) 4714 return false; // Has a non-memory, non-foldable use! 4715 4716 // Now that we know that all uses of this instruction are part of a chain of 4717 // computation involving only operations that could theoretically be folded 4718 // into a memory use, loop over each of these memory operation uses and see 4719 // if they could *actually* fold the instruction. The assumption is that 4720 // addressing modes are cheap and that duplicating the computation involved 4721 // many times is worthwhile, even on a fastpath. For sinking candidates 4722 // (i.e. cold call sites), this serves as a way to prevent excessive code 4723 // growth since most architectures have some reasonable small and fast way to 4724 // compute an effective address. (i.e LEA on x86) 4725 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4726 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4727 Instruction *User = MemoryUses[i].first; 4728 unsigned OpNo = MemoryUses[i].second; 4729 4730 // Get the access type of this use. If the use isn't a pointer, we don't 4731 // know what it accesses. 4732 Value *Address = User->getOperand(OpNo); 4733 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4734 if (!AddrTy) 4735 return false; 4736 Type *AddressAccessTy = AddrTy->getElementType(); 4737 unsigned AS = AddrTy->getAddressSpace(); 4738 4739 // Do a match against the root of this address, ignoring profitability. This 4740 // will tell us if the addressing mode for the memory operation will 4741 // *actually* cover the shared instruction. 4742 ExtAddrMode Result; 4743 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4744 0); 4745 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4746 TPT.getRestorationPoint(); 4747 AddressingModeMatcher Matcher( 4748 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4749 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4750 Matcher.IgnoreProfitability = true; 4751 bool Success = Matcher.matchAddr(Address, 0); 4752 (void)Success; assert(Success && "Couldn't select *anything*?"); 4753 4754 // The match was to check the profitability, the changes made are not 4755 // part of the original matcher. Therefore, they should be dropped 4756 // otherwise the original matcher will not present the right state. 4757 TPT.rollback(LastKnownGood); 4758 4759 // If the match didn't cover I, then it won't be shared by it. 4760 if (!is_contained(MatchedAddrModeInsts, I)) 4761 return false; 4762 4763 MatchedAddrModeInsts.clear(); 4764 } 4765 4766 return true; 4767 } 4768 4769 /// Return true if the specified values are defined in a 4770 /// different basic block than BB. 4771 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4772 if (Instruction *I = dyn_cast<Instruction>(V)) 4773 return I->getParent() != BB; 4774 return false; 4775 } 4776 4777 /// Sink addressing mode computation immediate before MemoryInst if doing so 4778 /// can be done without increasing register pressure. The need for the 4779 /// register pressure constraint means this can end up being an all or nothing 4780 /// decision for all uses of the same addressing computation. 4781 /// 4782 /// Load and Store Instructions often have addressing modes that can do 4783 /// significant amounts of computation. As such, instruction selection will try 4784 /// to get the load or store to do as much computation as possible for the 4785 /// program. The problem is that isel can only see within a single block. As 4786 /// such, we sink as much legal addressing mode work into the block as possible. 4787 /// 4788 /// This method is used to optimize both load/store and inline asms with memory 4789 /// operands. It's also used to sink addressing computations feeding into cold 4790 /// call sites into their (cold) basic block. 4791 /// 4792 /// The motivation for handling sinking into cold blocks is that doing so can 4793 /// both enable other address mode sinking (by satisfying the register pressure 4794 /// constraint above), and reduce register pressure globally (by removing the 4795 /// addressing mode computation from the fast path entirely.). 4796 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4797 Type *AccessTy, unsigned AddrSpace) { 4798 Value *Repl = Addr; 4799 4800 // Try to collapse single-value PHI nodes. This is necessary to undo 4801 // unprofitable PRE transformations. 4802 SmallVector<Value*, 8> worklist; 4803 SmallPtrSet<Value*, 16> Visited; 4804 worklist.push_back(Addr); 4805 4806 // Use a worklist to iteratively look through PHI and select nodes, and 4807 // ensure that the addressing mode obtained from the non-PHI/select roots of 4808 // the graph are compatible. 4809 bool PhiOrSelectSeen = false; 4810 SmallVector<Instruction*, 16> AddrModeInsts; 4811 const SimplifyQuery SQ(*DL, TLInfo); 4812 AddressingModeCombiner AddrModes(SQ, Addr); 4813 TypePromotionTransaction TPT(RemovedInsts); 4814 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4815 TPT.getRestorationPoint(); 4816 while (!worklist.empty()) { 4817 Value *V = worklist.back(); 4818 worklist.pop_back(); 4819 4820 // We allow traversing cyclic Phi nodes. 4821 // In case of success after this loop we ensure that traversing through 4822 // Phi nodes ends up with all cases to compute address of the form 4823 // BaseGV + Base + Scale * Index + Offset 4824 // where Scale and Offset are constans and BaseGV, Base and Index 4825 // are exactly the same Values in all cases. 4826 // It means that BaseGV, Scale and Offset dominate our memory instruction 4827 // and have the same value as they had in address computation represented 4828 // as Phi. So we can safely sink address computation to memory instruction. 4829 if (!Visited.insert(V).second) 4830 continue; 4831 4832 // For a PHI node, push all of its incoming values. 4833 if (PHINode *P = dyn_cast<PHINode>(V)) { 4834 for (Value *IncValue : P->incoming_values()) 4835 worklist.push_back(IncValue); 4836 PhiOrSelectSeen = true; 4837 continue; 4838 } 4839 // Similar for select. 4840 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4841 worklist.push_back(SI->getFalseValue()); 4842 worklist.push_back(SI->getTrueValue()); 4843 PhiOrSelectSeen = true; 4844 continue; 4845 } 4846 4847 // For non-PHIs, determine the addressing mode being computed. Note that 4848 // the result may differ depending on what other uses our candidate 4849 // addressing instructions might have. 4850 AddrModeInsts.clear(); 4851 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4852 0); 4853 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4854 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4855 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4856 BFI.get()); 4857 4858 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4859 if (GEP && !NewGEPBases.count(GEP)) { 4860 // If splitting the underlying data structure can reduce the offset of a 4861 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4862 // previously split data structures. 4863 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4864 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4865 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4866 } 4867 4868 NewAddrMode.OriginalValue = V; 4869 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4870 break; 4871 } 4872 4873 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4874 // or we have multiple but either couldn't combine them or combining them 4875 // wouldn't do anything useful, bail out now. 4876 if (!AddrModes.combineAddrModes()) { 4877 TPT.rollback(LastKnownGood); 4878 return false; 4879 } 4880 TPT.commit(); 4881 4882 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4883 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4884 4885 // If all the instructions matched are already in this BB, don't do anything. 4886 // If we saw a Phi node then it is not local definitely, and if we saw a select 4887 // then we want to push the address calculation past it even if it's already 4888 // in this BB. 4889 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4890 return IsNonLocalValue(V, MemoryInst->getParent()); 4891 })) { 4892 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4893 << "\n"); 4894 return false; 4895 } 4896 4897 // Insert this computation right after this user. Since our caller is 4898 // scanning from the top of the BB to the bottom, reuse of the expr are 4899 // guaranteed to happen later. 4900 IRBuilder<> Builder(MemoryInst); 4901 4902 // Now that we determined the addressing expression we want to use and know 4903 // that we have to sink it into this block. Check to see if we have already 4904 // done this for some other load/store instr in this block. If so, reuse 4905 // the computation. Before attempting reuse, check if the address is valid 4906 // as it may have been erased. 4907 4908 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4909 4910 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4911 if (SunkAddr) { 4912 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4913 << " for " << *MemoryInst << "\n"); 4914 if (SunkAddr->getType() != Addr->getType()) 4915 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4916 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4917 SubtargetInfo->addrSinkUsingGEPs())) { 4918 // By default, we use the GEP-based method when AA is used later. This 4919 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4920 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4921 << " for " << *MemoryInst << "\n"); 4922 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4923 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4924 4925 // First, find the pointer. 4926 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4927 ResultPtr = AddrMode.BaseReg; 4928 AddrMode.BaseReg = nullptr; 4929 } 4930 4931 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4932 // We can't add more than one pointer together, nor can we scale a 4933 // pointer (both of which seem meaningless). 4934 if (ResultPtr || AddrMode.Scale != 1) 4935 return false; 4936 4937 ResultPtr = AddrMode.ScaledReg; 4938 AddrMode.Scale = 0; 4939 } 4940 4941 // It is only safe to sign extend the BaseReg if we know that the math 4942 // required to create it did not overflow before we extend it. Since 4943 // the original IR value was tossed in favor of a constant back when 4944 // the AddrMode was created we need to bail out gracefully if widths 4945 // do not match instead of extending it. 4946 // 4947 // (See below for code to add the scale.) 4948 if (AddrMode.Scale) { 4949 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4950 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4951 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4952 return false; 4953 } 4954 4955 if (AddrMode.BaseGV) { 4956 if (ResultPtr) 4957 return false; 4958 4959 ResultPtr = AddrMode.BaseGV; 4960 } 4961 4962 // If the real base value actually came from an inttoptr, then the matcher 4963 // will look through it and provide only the integer value. In that case, 4964 // use it here. 4965 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4966 if (!ResultPtr && AddrMode.BaseReg) { 4967 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4968 "sunkaddr"); 4969 AddrMode.BaseReg = nullptr; 4970 } else if (!ResultPtr && AddrMode.Scale == 1) { 4971 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4972 "sunkaddr"); 4973 AddrMode.Scale = 0; 4974 } 4975 } 4976 4977 if (!ResultPtr && 4978 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4979 SunkAddr = Constant::getNullValue(Addr->getType()); 4980 } else if (!ResultPtr) { 4981 return false; 4982 } else { 4983 Type *I8PtrTy = 4984 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4985 Type *I8Ty = Builder.getInt8Ty(); 4986 4987 // Start with the base register. Do this first so that subsequent address 4988 // matching finds it last, which will prevent it from trying to match it 4989 // as the scaled value in case it happens to be a mul. That would be 4990 // problematic if we've sunk a different mul for the scale, because then 4991 // we'd end up sinking both muls. 4992 if (AddrMode.BaseReg) { 4993 Value *V = AddrMode.BaseReg; 4994 if (V->getType() != IntPtrTy) 4995 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4996 4997 ResultIndex = V; 4998 } 4999 5000 // Add the scale value. 5001 if (AddrMode.Scale) { 5002 Value *V = AddrMode.ScaledReg; 5003 if (V->getType() == IntPtrTy) { 5004 // done. 5005 } else { 5006 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5007 cast<IntegerType>(V->getType())->getBitWidth() && 5008 "We can't transform if ScaledReg is too narrow"); 5009 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5010 } 5011 5012 if (AddrMode.Scale != 1) 5013 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5014 "sunkaddr"); 5015 if (ResultIndex) 5016 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5017 else 5018 ResultIndex = V; 5019 } 5020 5021 // Add in the Base Offset if present. 5022 if (AddrMode.BaseOffs) { 5023 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5024 if (ResultIndex) { 5025 // We need to add this separately from the scale above to help with 5026 // SDAG consecutive load/store merging. 5027 if (ResultPtr->getType() != I8PtrTy) 5028 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5029 ResultPtr = 5030 AddrMode.InBounds 5031 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5032 "sunkaddr") 5033 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5034 } 5035 5036 ResultIndex = V; 5037 } 5038 5039 if (!ResultIndex) { 5040 SunkAddr = ResultPtr; 5041 } else { 5042 if (ResultPtr->getType() != I8PtrTy) 5043 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5044 SunkAddr = 5045 AddrMode.InBounds 5046 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5047 "sunkaddr") 5048 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5049 } 5050 5051 if (SunkAddr->getType() != Addr->getType()) 5052 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5053 } 5054 } else { 5055 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5056 // non-integral pointers, so in that case bail out now. 5057 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5058 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5059 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5060 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5061 if (DL->isNonIntegralPointerType(Addr->getType()) || 5062 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5063 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5064 (AddrMode.BaseGV && 5065 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5066 return false; 5067 5068 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5069 << " for " << *MemoryInst << "\n"); 5070 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5071 Value *Result = nullptr; 5072 5073 // Start with the base register. Do this first so that subsequent address 5074 // matching finds it last, which will prevent it from trying to match it 5075 // as the scaled value in case it happens to be a mul. That would be 5076 // problematic if we've sunk a different mul for the scale, because then 5077 // we'd end up sinking both muls. 5078 if (AddrMode.BaseReg) { 5079 Value *V = AddrMode.BaseReg; 5080 if (V->getType()->isPointerTy()) 5081 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5082 if (V->getType() != IntPtrTy) 5083 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5084 Result = V; 5085 } 5086 5087 // Add the scale value. 5088 if (AddrMode.Scale) { 5089 Value *V = AddrMode.ScaledReg; 5090 if (V->getType() == IntPtrTy) { 5091 // done. 5092 } else if (V->getType()->isPointerTy()) { 5093 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5094 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5095 cast<IntegerType>(V->getType())->getBitWidth()) { 5096 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5097 } else { 5098 // It is only safe to sign extend the BaseReg if we know that the math 5099 // required to create it did not overflow before we extend it. Since 5100 // the original IR value was tossed in favor of a constant back when 5101 // the AddrMode was created we need to bail out gracefully if widths 5102 // do not match instead of extending it. 5103 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5104 if (I && (Result != AddrMode.BaseReg)) 5105 I->eraseFromParent(); 5106 return false; 5107 } 5108 if (AddrMode.Scale != 1) 5109 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5110 "sunkaddr"); 5111 if (Result) 5112 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5113 else 5114 Result = V; 5115 } 5116 5117 // Add in the BaseGV if present. 5118 if (AddrMode.BaseGV) { 5119 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5120 if (Result) 5121 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5122 else 5123 Result = V; 5124 } 5125 5126 // Add in the Base Offset if present. 5127 if (AddrMode.BaseOffs) { 5128 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5129 if (Result) 5130 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5131 else 5132 Result = V; 5133 } 5134 5135 if (!Result) 5136 SunkAddr = Constant::getNullValue(Addr->getType()); 5137 else 5138 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5139 } 5140 5141 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5142 // Store the newly computed address into the cache. In the case we reused a 5143 // value, this should be idempotent. 5144 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5145 5146 // If we have no uses, recursively delete the value and all dead instructions 5147 // using it. 5148 if (Repl->use_empty()) { 5149 // This can cause recursive deletion, which can invalidate our iterator. 5150 // Use a WeakTrackingVH to hold onto it in case this happens. 5151 Value *CurValue = &*CurInstIterator; 5152 WeakTrackingVH IterHandle(CurValue); 5153 BasicBlock *BB = CurInstIterator->getParent(); 5154 5155 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5156 5157 if (IterHandle != CurValue) { 5158 // If the iterator instruction was recursively deleted, start over at the 5159 // start of the block. 5160 CurInstIterator = BB->begin(); 5161 SunkAddrs.clear(); 5162 } 5163 } 5164 ++NumMemoryInsts; 5165 return true; 5166 } 5167 5168 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5169 /// address computing into the block when possible / profitable. 5170 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5171 bool MadeChange = false; 5172 5173 const TargetRegisterInfo *TRI = 5174 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5175 TargetLowering::AsmOperandInfoVector TargetConstraints = 5176 TLI->ParseConstraints(*DL, TRI, CS); 5177 unsigned ArgNo = 0; 5178 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5179 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5180 5181 // Compute the constraint code and ConstraintType to use. 5182 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5183 5184 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5185 OpInfo.isIndirect) { 5186 Value *OpVal = CS->getArgOperand(ArgNo++); 5187 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5188 } else if (OpInfo.Type == InlineAsm::isInput) 5189 ArgNo++; 5190 } 5191 5192 return MadeChange; 5193 } 5194 5195 /// Check if all the uses of \p Val are equivalent (or free) zero or 5196 /// sign extensions. 5197 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5198 assert(!Val->use_empty() && "Input must have at least one use"); 5199 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5200 bool IsSExt = isa<SExtInst>(FirstUser); 5201 Type *ExtTy = FirstUser->getType(); 5202 for (const User *U : Val->users()) { 5203 const Instruction *UI = cast<Instruction>(U); 5204 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5205 return false; 5206 Type *CurTy = UI->getType(); 5207 // Same input and output types: Same instruction after CSE. 5208 if (CurTy == ExtTy) 5209 continue; 5210 5211 // If IsSExt is true, we are in this situation: 5212 // a = Val 5213 // b = sext ty1 a to ty2 5214 // c = sext ty1 a to ty3 5215 // Assuming ty2 is shorter than ty3, this could be turned into: 5216 // a = Val 5217 // b = sext ty1 a to ty2 5218 // c = sext ty2 b to ty3 5219 // However, the last sext is not free. 5220 if (IsSExt) 5221 return false; 5222 5223 // This is a ZExt, maybe this is free to extend from one type to another. 5224 // In that case, we would not account for a different use. 5225 Type *NarrowTy; 5226 Type *LargeTy; 5227 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5228 CurTy->getScalarType()->getIntegerBitWidth()) { 5229 NarrowTy = CurTy; 5230 LargeTy = ExtTy; 5231 } else { 5232 NarrowTy = ExtTy; 5233 LargeTy = CurTy; 5234 } 5235 5236 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5237 return false; 5238 } 5239 // All uses are the same or can be derived from one another for free. 5240 return true; 5241 } 5242 5243 /// Try to speculatively promote extensions in \p Exts and continue 5244 /// promoting through newly promoted operands recursively as far as doing so is 5245 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5246 /// When some promotion happened, \p TPT contains the proper state to revert 5247 /// them. 5248 /// 5249 /// \return true if some promotion happened, false otherwise. 5250 bool CodeGenPrepare::tryToPromoteExts( 5251 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5252 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5253 unsigned CreatedInstsCost) { 5254 bool Promoted = false; 5255 5256 // Iterate over all the extensions to try to promote them. 5257 for (auto I : Exts) { 5258 // Early check if we directly have ext(load). 5259 if (isa<LoadInst>(I->getOperand(0))) { 5260 ProfitablyMovedExts.push_back(I); 5261 continue; 5262 } 5263 5264 // Check whether or not we want to do any promotion. The reason we have 5265 // this check inside the for loop is to catch the case where an extension 5266 // is directly fed by a load because in such case the extension can be moved 5267 // up without any promotion on its operands. 5268 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5269 return false; 5270 5271 // Get the action to perform the promotion. 5272 TypePromotionHelper::Action TPH = 5273 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5274 // Check if we can promote. 5275 if (!TPH) { 5276 // Save the current extension as we cannot move up through its operand. 5277 ProfitablyMovedExts.push_back(I); 5278 continue; 5279 } 5280 5281 // Save the current state. 5282 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5283 TPT.getRestorationPoint(); 5284 SmallVector<Instruction *, 4> NewExts; 5285 unsigned NewCreatedInstsCost = 0; 5286 unsigned ExtCost = !TLI->isExtFree(I); 5287 // Promote. 5288 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5289 &NewExts, nullptr, *TLI); 5290 assert(PromotedVal && 5291 "TypePromotionHelper should have filtered out those cases"); 5292 5293 // We would be able to merge only one extension in a load. 5294 // Therefore, if we have more than 1 new extension we heuristically 5295 // cut this search path, because it means we degrade the code quality. 5296 // With exactly 2, the transformation is neutral, because we will merge 5297 // one extension but leave one. However, we optimistically keep going, 5298 // because the new extension may be removed too. 5299 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5300 // FIXME: It would be possible to propagate a negative value instead of 5301 // conservatively ceiling it to 0. 5302 TotalCreatedInstsCost = 5303 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5304 if (!StressExtLdPromotion && 5305 (TotalCreatedInstsCost > 1 || 5306 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5307 // This promotion is not profitable, rollback to the previous state, and 5308 // save the current extension in ProfitablyMovedExts as the latest 5309 // speculative promotion turned out to be unprofitable. 5310 TPT.rollback(LastKnownGood); 5311 ProfitablyMovedExts.push_back(I); 5312 continue; 5313 } 5314 // Continue promoting NewExts as far as doing so is profitable. 5315 SmallVector<Instruction *, 2> NewlyMovedExts; 5316 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5317 bool NewPromoted = false; 5318 for (auto ExtInst : NewlyMovedExts) { 5319 Instruction *MovedExt = cast<Instruction>(ExtInst); 5320 Value *ExtOperand = MovedExt->getOperand(0); 5321 // If we have reached to a load, we need this extra profitability check 5322 // as it could potentially be merged into an ext(load). 5323 if (isa<LoadInst>(ExtOperand) && 5324 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5325 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5326 continue; 5327 5328 ProfitablyMovedExts.push_back(MovedExt); 5329 NewPromoted = true; 5330 } 5331 5332 // If none of speculative promotions for NewExts is profitable, rollback 5333 // and save the current extension (I) as the last profitable extension. 5334 if (!NewPromoted) { 5335 TPT.rollback(LastKnownGood); 5336 ProfitablyMovedExts.push_back(I); 5337 continue; 5338 } 5339 // The promotion is profitable. 5340 Promoted = true; 5341 } 5342 return Promoted; 5343 } 5344 5345 /// Merging redundant sexts when one is dominating the other. 5346 bool CodeGenPrepare::mergeSExts(Function &F) { 5347 bool Changed = false; 5348 for (auto &Entry : ValToSExtendedUses) { 5349 SExts &Insts = Entry.second; 5350 SExts CurPts; 5351 for (Instruction *Inst : Insts) { 5352 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5353 Inst->getOperand(0) != Entry.first) 5354 continue; 5355 bool inserted = false; 5356 for (auto &Pt : CurPts) { 5357 if (getDT(F).dominates(Inst, Pt)) { 5358 Pt->replaceAllUsesWith(Inst); 5359 RemovedInsts.insert(Pt); 5360 Pt->removeFromParent(); 5361 Pt = Inst; 5362 inserted = true; 5363 Changed = true; 5364 break; 5365 } 5366 if (!getDT(F).dominates(Pt, Inst)) 5367 // Give up if we need to merge in a common dominator as the 5368 // experiments show it is not profitable. 5369 continue; 5370 Inst->replaceAllUsesWith(Pt); 5371 RemovedInsts.insert(Inst); 5372 Inst->removeFromParent(); 5373 inserted = true; 5374 Changed = true; 5375 break; 5376 } 5377 if (!inserted) 5378 CurPts.push_back(Inst); 5379 } 5380 } 5381 return Changed; 5382 } 5383 5384 // Spliting large data structures so that the GEPs accessing them can have 5385 // smaller offsets so that they can be sunk to the same blocks as their users. 5386 // For example, a large struct starting from %base is splitted into two parts 5387 // where the second part starts from %new_base. 5388 // 5389 // Before: 5390 // BB0: 5391 // %base = 5392 // 5393 // BB1: 5394 // %gep0 = gep %base, off0 5395 // %gep1 = gep %base, off1 5396 // %gep2 = gep %base, off2 5397 // 5398 // BB2: 5399 // %load1 = load %gep0 5400 // %load2 = load %gep1 5401 // %load3 = load %gep2 5402 // 5403 // After: 5404 // BB0: 5405 // %base = 5406 // %new_base = gep %base, off0 5407 // 5408 // BB1: 5409 // %new_gep0 = %new_base 5410 // %new_gep1 = gep %new_base, off1 - off0 5411 // %new_gep2 = gep %new_base, off2 - off0 5412 // 5413 // BB2: 5414 // %load1 = load i32, i32* %new_gep0 5415 // %load2 = load i32, i32* %new_gep1 5416 // %load3 = load i32, i32* %new_gep2 5417 // 5418 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5419 // their offsets are smaller enough to fit into the addressing mode. 5420 bool CodeGenPrepare::splitLargeGEPOffsets() { 5421 bool Changed = false; 5422 for (auto &Entry : LargeOffsetGEPMap) { 5423 Value *OldBase = Entry.first; 5424 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5425 &LargeOffsetGEPs = Entry.second; 5426 auto compareGEPOffset = 5427 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5428 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5429 if (LHS.first == RHS.first) 5430 return false; 5431 if (LHS.second != RHS.second) 5432 return LHS.second < RHS.second; 5433 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5434 }; 5435 // Sorting all the GEPs of the same data structures based on the offsets. 5436 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5437 LargeOffsetGEPs.erase( 5438 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5439 LargeOffsetGEPs.end()); 5440 // Skip if all the GEPs have the same offsets. 5441 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5442 continue; 5443 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5444 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5445 Value *NewBaseGEP = nullptr; 5446 5447 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5448 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5449 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5450 int64_t Offset = LargeOffsetGEP->second; 5451 if (Offset != BaseOffset) { 5452 TargetLowering::AddrMode AddrMode; 5453 AddrMode.BaseOffs = Offset - BaseOffset; 5454 // The result type of the GEP might not be the type of the memory 5455 // access. 5456 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5457 GEP->getResultElementType(), 5458 GEP->getAddressSpace())) { 5459 // We need to create a new base if the offset to the current base is 5460 // too large to fit into the addressing mode. So, a very large struct 5461 // may be splitted into several parts. 5462 BaseGEP = GEP; 5463 BaseOffset = Offset; 5464 NewBaseGEP = nullptr; 5465 } 5466 } 5467 5468 // Generate a new GEP to replace the current one. 5469 LLVMContext &Ctx = GEP->getContext(); 5470 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5471 Type *I8PtrTy = 5472 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5473 Type *I8Ty = Type::getInt8Ty(Ctx); 5474 5475 if (!NewBaseGEP) { 5476 // Create a new base if we don't have one yet. Find the insertion 5477 // pointer for the new base first. 5478 BasicBlock::iterator NewBaseInsertPt; 5479 BasicBlock *NewBaseInsertBB; 5480 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5481 // If the base of the struct is an instruction, the new base will be 5482 // inserted close to it. 5483 NewBaseInsertBB = BaseI->getParent(); 5484 if (isa<PHINode>(BaseI)) 5485 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5486 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5487 NewBaseInsertBB = 5488 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5489 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5490 } else 5491 NewBaseInsertPt = std::next(BaseI->getIterator()); 5492 } else { 5493 // If the current base is an argument or global value, the new base 5494 // will be inserted to the entry block. 5495 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5496 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5497 } 5498 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5499 // Create a new base. 5500 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5501 NewBaseGEP = OldBase; 5502 if (NewBaseGEP->getType() != I8PtrTy) 5503 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5504 NewBaseGEP = 5505 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5506 NewGEPBases.insert(NewBaseGEP); 5507 } 5508 5509 IRBuilder<> Builder(GEP); 5510 Value *NewGEP = NewBaseGEP; 5511 if (Offset == BaseOffset) { 5512 if (GEP->getType() != I8PtrTy) 5513 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5514 } else { 5515 // Calculate the new offset for the new GEP. 5516 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5517 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5518 5519 if (GEP->getType() != I8PtrTy) 5520 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5521 } 5522 GEP->replaceAllUsesWith(NewGEP); 5523 LargeOffsetGEPID.erase(GEP); 5524 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5525 GEP->eraseFromParent(); 5526 Changed = true; 5527 } 5528 } 5529 return Changed; 5530 } 5531 5532 /// Return true, if an ext(load) can be formed from an extension in 5533 /// \p MovedExts. 5534 bool CodeGenPrepare::canFormExtLd( 5535 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5536 Instruction *&Inst, bool HasPromoted) { 5537 for (auto *MovedExtInst : MovedExts) { 5538 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5539 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5540 Inst = MovedExtInst; 5541 break; 5542 } 5543 } 5544 if (!LI) 5545 return false; 5546 5547 // If they're already in the same block, there's nothing to do. 5548 // Make the cheap checks first if we did not promote. 5549 // If we promoted, we need to check if it is indeed profitable. 5550 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5551 return false; 5552 5553 return TLI->isExtLoad(LI, Inst, *DL); 5554 } 5555 5556 /// Move a zext or sext fed by a load into the same basic block as the load, 5557 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5558 /// extend into the load. 5559 /// 5560 /// E.g., 5561 /// \code 5562 /// %ld = load i32* %addr 5563 /// %add = add nuw i32 %ld, 4 5564 /// %zext = zext i32 %add to i64 5565 // \endcode 5566 /// => 5567 /// \code 5568 /// %ld = load i32* %addr 5569 /// %zext = zext i32 %ld to i64 5570 /// %add = add nuw i64 %zext, 4 5571 /// \encode 5572 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5573 /// allow us to match zext(load i32*) to i64. 5574 /// 5575 /// Also, try to promote the computations used to obtain a sign extended 5576 /// value used into memory accesses. 5577 /// E.g., 5578 /// \code 5579 /// a = add nsw i32 b, 3 5580 /// d = sext i32 a to i64 5581 /// e = getelementptr ..., i64 d 5582 /// \endcode 5583 /// => 5584 /// \code 5585 /// f = sext i32 b to i64 5586 /// a = add nsw i64 f, 3 5587 /// e = getelementptr ..., i64 a 5588 /// \endcode 5589 /// 5590 /// \p Inst[in/out] the extension may be modified during the process if some 5591 /// promotions apply. 5592 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5593 bool AllowPromotionWithoutCommonHeader = false; 5594 /// See if it is an interesting sext operations for the address type 5595 /// promotion before trying to promote it, e.g., the ones with the right 5596 /// type and used in memory accesses. 5597 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5598 *Inst, AllowPromotionWithoutCommonHeader); 5599 TypePromotionTransaction TPT(RemovedInsts); 5600 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5601 TPT.getRestorationPoint(); 5602 SmallVector<Instruction *, 1> Exts; 5603 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5604 Exts.push_back(Inst); 5605 5606 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5607 5608 // Look for a load being extended. 5609 LoadInst *LI = nullptr; 5610 Instruction *ExtFedByLoad; 5611 5612 // Try to promote a chain of computation if it allows to form an extended 5613 // load. 5614 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5615 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5616 TPT.commit(); 5617 // Move the extend into the same block as the load 5618 ExtFedByLoad->moveAfter(LI); 5619 // CGP does not check if the zext would be speculatively executed when moved 5620 // to the same basic block as the load. Preserving its original location 5621 // would pessimize the debugging experience, as well as negatively impact 5622 // the quality of sample pgo. We don't want to use "line 0" as that has a 5623 // size cost in the line-table section and logically the zext can be seen as 5624 // part of the load. Therefore we conservatively reuse the same debug 5625 // location for the load and the zext. 5626 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5627 ++NumExtsMoved; 5628 Inst = ExtFedByLoad; 5629 return true; 5630 } 5631 5632 // Continue promoting SExts if known as considerable depending on targets. 5633 if (ATPConsiderable && 5634 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5635 HasPromoted, TPT, SpeculativelyMovedExts)) 5636 return true; 5637 5638 TPT.rollback(LastKnownGood); 5639 return false; 5640 } 5641 5642 // Perform address type promotion if doing so is profitable. 5643 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5644 // instructions that sign extended the same initial value. However, if 5645 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5646 // extension is just profitable. 5647 bool CodeGenPrepare::performAddressTypePromotion( 5648 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5649 bool HasPromoted, TypePromotionTransaction &TPT, 5650 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5651 bool Promoted = false; 5652 SmallPtrSet<Instruction *, 1> UnhandledExts; 5653 bool AllSeenFirst = true; 5654 for (auto I : SpeculativelyMovedExts) { 5655 Value *HeadOfChain = I->getOperand(0); 5656 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5657 SeenChainsForSExt.find(HeadOfChain); 5658 // If there is an unhandled SExt which has the same header, try to promote 5659 // it as well. 5660 if (AlreadySeen != SeenChainsForSExt.end()) { 5661 if (AlreadySeen->second != nullptr) 5662 UnhandledExts.insert(AlreadySeen->second); 5663 AllSeenFirst = false; 5664 } 5665 } 5666 5667 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5668 SpeculativelyMovedExts.size() == 1)) { 5669 TPT.commit(); 5670 if (HasPromoted) 5671 Promoted = true; 5672 for (auto I : SpeculativelyMovedExts) { 5673 Value *HeadOfChain = I->getOperand(0); 5674 SeenChainsForSExt[HeadOfChain] = nullptr; 5675 ValToSExtendedUses[HeadOfChain].push_back(I); 5676 } 5677 // Update Inst as promotion happen. 5678 Inst = SpeculativelyMovedExts.pop_back_val(); 5679 } else { 5680 // This is the first chain visited from the header, keep the current chain 5681 // as unhandled. Defer to promote this until we encounter another SExt 5682 // chain derived from the same header. 5683 for (auto I : SpeculativelyMovedExts) { 5684 Value *HeadOfChain = I->getOperand(0); 5685 SeenChainsForSExt[HeadOfChain] = Inst; 5686 } 5687 return false; 5688 } 5689 5690 if (!AllSeenFirst && !UnhandledExts.empty()) 5691 for (auto VisitedSExt : UnhandledExts) { 5692 if (RemovedInsts.count(VisitedSExt)) 5693 continue; 5694 TypePromotionTransaction TPT(RemovedInsts); 5695 SmallVector<Instruction *, 1> Exts; 5696 SmallVector<Instruction *, 2> Chains; 5697 Exts.push_back(VisitedSExt); 5698 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5699 TPT.commit(); 5700 if (HasPromoted) 5701 Promoted = true; 5702 for (auto I : Chains) { 5703 Value *HeadOfChain = I->getOperand(0); 5704 // Mark this as handled. 5705 SeenChainsForSExt[HeadOfChain] = nullptr; 5706 ValToSExtendedUses[HeadOfChain].push_back(I); 5707 } 5708 } 5709 return Promoted; 5710 } 5711 5712 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5713 BasicBlock *DefBB = I->getParent(); 5714 5715 // If the result of a {s|z}ext and its source are both live out, rewrite all 5716 // other uses of the source with result of extension. 5717 Value *Src = I->getOperand(0); 5718 if (Src->hasOneUse()) 5719 return false; 5720 5721 // Only do this xform if truncating is free. 5722 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5723 return false; 5724 5725 // Only safe to perform the optimization if the source is also defined in 5726 // this block. 5727 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5728 return false; 5729 5730 bool DefIsLiveOut = false; 5731 for (User *U : I->users()) { 5732 Instruction *UI = cast<Instruction>(U); 5733 5734 // Figure out which BB this ext is used in. 5735 BasicBlock *UserBB = UI->getParent(); 5736 if (UserBB == DefBB) continue; 5737 DefIsLiveOut = true; 5738 break; 5739 } 5740 if (!DefIsLiveOut) 5741 return false; 5742 5743 // Make sure none of the uses are PHI nodes. 5744 for (User *U : Src->users()) { 5745 Instruction *UI = cast<Instruction>(U); 5746 BasicBlock *UserBB = UI->getParent(); 5747 if (UserBB == DefBB) continue; 5748 // Be conservative. We don't want this xform to end up introducing 5749 // reloads just before load / store instructions. 5750 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5751 return false; 5752 } 5753 5754 // InsertedTruncs - Only insert one trunc in each block once. 5755 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5756 5757 bool MadeChange = false; 5758 for (Use &U : Src->uses()) { 5759 Instruction *User = cast<Instruction>(U.getUser()); 5760 5761 // Figure out which BB this ext is used in. 5762 BasicBlock *UserBB = User->getParent(); 5763 if (UserBB == DefBB) continue; 5764 5765 // Both src and def are live in this block. Rewrite the use. 5766 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5767 5768 if (!InsertedTrunc) { 5769 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5770 assert(InsertPt != UserBB->end()); 5771 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5772 InsertedInsts.insert(InsertedTrunc); 5773 } 5774 5775 // Replace a use of the {s|z}ext source with a use of the result. 5776 U = InsertedTrunc; 5777 ++NumExtUses; 5778 MadeChange = true; 5779 } 5780 5781 return MadeChange; 5782 } 5783 5784 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5785 // just after the load if the target can fold this into one extload instruction, 5786 // with the hope of eliminating some of the other later "and" instructions using 5787 // the loaded value. "and"s that are made trivially redundant by the insertion 5788 // of the new "and" are removed by this function, while others (e.g. those whose 5789 // path from the load goes through a phi) are left for isel to potentially 5790 // remove. 5791 // 5792 // For example: 5793 // 5794 // b0: 5795 // x = load i32 5796 // ... 5797 // b1: 5798 // y = and x, 0xff 5799 // z = use y 5800 // 5801 // becomes: 5802 // 5803 // b0: 5804 // x = load i32 5805 // x' = and x, 0xff 5806 // ... 5807 // b1: 5808 // z = use x' 5809 // 5810 // whereas: 5811 // 5812 // b0: 5813 // x1 = load i32 5814 // ... 5815 // b1: 5816 // x2 = load i32 5817 // ... 5818 // b2: 5819 // x = phi x1, x2 5820 // y = and x, 0xff 5821 // 5822 // becomes (after a call to optimizeLoadExt for each load): 5823 // 5824 // b0: 5825 // x1 = load i32 5826 // x1' = and x1, 0xff 5827 // ... 5828 // b1: 5829 // x2 = load i32 5830 // x2' = and x2, 0xff 5831 // ... 5832 // b2: 5833 // x = phi x1', x2' 5834 // y = and x, 0xff 5835 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5836 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5837 return false; 5838 5839 // Skip loads we've already transformed. 5840 if (Load->hasOneUse() && 5841 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5842 return false; 5843 5844 // Look at all uses of Load, looking through phis, to determine how many bits 5845 // of the loaded value are needed. 5846 SmallVector<Instruction *, 8> WorkList; 5847 SmallPtrSet<Instruction *, 16> Visited; 5848 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5849 for (auto *U : Load->users()) 5850 WorkList.push_back(cast<Instruction>(U)); 5851 5852 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5853 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5854 APInt DemandBits(BitWidth, 0); 5855 APInt WidestAndBits(BitWidth, 0); 5856 5857 while (!WorkList.empty()) { 5858 Instruction *I = WorkList.back(); 5859 WorkList.pop_back(); 5860 5861 // Break use-def graph loops. 5862 if (!Visited.insert(I).second) 5863 continue; 5864 5865 // For a PHI node, push all of its users. 5866 if (auto *Phi = dyn_cast<PHINode>(I)) { 5867 for (auto *U : Phi->users()) 5868 WorkList.push_back(cast<Instruction>(U)); 5869 continue; 5870 } 5871 5872 switch (I->getOpcode()) { 5873 case Instruction::And: { 5874 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5875 if (!AndC) 5876 return false; 5877 APInt AndBits = AndC->getValue(); 5878 DemandBits |= AndBits; 5879 // Keep track of the widest and mask we see. 5880 if (AndBits.ugt(WidestAndBits)) 5881 WidestAndBits = AndBits; 5882 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5883 AndsToMaybeRemove.push_back(I); 5884 break; 5885 } 5886 5887 case Instruction::Shl: { 5888 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5889 if (!ShlC) 5890 return false; 5891 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5892 DemandBits.setLowBits(BitWidth - ShiftAmt); 5893 break; 5894 } 5895 5896 case Instruction::Trunc: { 5897 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5898 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5899 DemandBits.setLowBits(TruncBitWidth); 5900 break; 5901 } 5902 5903 default: 5904 return false; 5905 } 5906 } 5907 5908 uint32_t ActiveBits = DemandBits.getActiveBits(); 5909 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5910 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5911 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5912 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5913 // followed by an AND. 5914 // TODO: Look into removing this restriction by fixing backends to either 5915 // return false for isLoadExtLegal for i1 or have them select this pattern to 5916 // a single instruction. 5917 // 5918 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5919 // mask, since these are the only ands that will be removed by isel. 5920 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5921 WidestAndBits != DemandBits) 5922 return false; 5923 5924 LLVMContext &Ctx = Load->getType()->getContext(); 5925 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5926 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5927 5928 // Reject cases that won't be matched as extloads. 5929 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5930 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5931 return false; 5932 5933 IRBuilder<> Builder(Load->getNextNode()); 5934 auto *NewAnd = cast<Instruction>( 5935 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5936 // Mark this instruction as "inserted by CGP", so that other 5937 // optimizations don't touch it. 5938 InsertedInsts.insert(NewAnd); 5939 5940 // Replace all uses of load with new and (except for the use of load in the 5941 // new and itself). 5942 Load->replaceAllUsesWith(NewAnd); 5943 NewAnd->setOperand(0, Load); 5944 5945 // Remove any and instructions that are now redundant. 5946 for (auto *And : AndsToMaybeRemove) 5947 // Check that the and mask is the same as the one we decided to put on the 5948 // new and. 5949 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5950 And->replaceAllUsesWith(NewAnd); 5951 if (&*CurInstIterator == And) 5952 CurInstIterator = std::next(And->getIterator()); 5953 And->eraseFromParent(); 5954 ++NumAndUses; 5955 } 5956 5957 ++NumAndsAdded; 5958 return true; 5959 } 5960 5961 /// Check if V (an operand of a select instruction) is an expensive instruction 5962 /// that is only used once. 5963 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5964 auto *I = dyn_cast<Instruction>(V); 5965 // If it's safe to speculatively execute, then it should not have side 5966 // effects; therefore, it's safe to sink and possibly *not* execute. 5967 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5968 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5969 } 5970 5971 /// Returns true if a SelectInst should be turned into an explicit branch. 5972 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5973 const TargetLowering *TLI, 5974 SelectInst *SI) { 5975 // If even a predictable select is cheap, then a branch can't be cheaper. 5976 if (!TLI->isPredictableSelectExpensive()) 5977 return false; 5978 5979 // FIXME: This should use the same heuristics as IfConversion to determine 5980 // whether a select is better represented as a branch. 5981 5982 // If metadata tells us that the select condition is obviously predictable, 5983 // then we want to replace the select with a branch. 5984 uint64_t TrueWeight, FalseWeight; 5985 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5986 uint64_t Max = std::max(TrueWeight, FalseWeight); 5987 uint64_t Sum = TrueWeight + FalseWeight; 5988 if (Sum != 0) { 5989 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5990 if (Probability > TLI->getPredictableBranchThreshold()) 5991 return true; 5992 } 5993 } 5994 5995 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5996 5997 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5998 // comparison condition. If the compare has more than one use, there's 5999 // probably another cmov or setcc around, so it's not worth emitting a branch. 6000 if (!Cmp || !Cmp->hasOneUse()) 6001 return false; 6002 6003 // If either operand of the select is expensive and only needed on one side 6004 // of the select, we should form a branch. 6005 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6006 sinkSelectOperand(TTI, SI->getFalseValue())) 6007 return true; 6008 6009 return false; 6010 } 6011 6012 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6013 /// false value of \p SI. If the true/false value of \p SI is defined by any 6014 /// select instructions in \p Selects, look through the defining select 6015 /// instruction until the true/false value is not defined in \p Selects. 6016 static Value *getTrueOrFalseValue( 6017 SelectInst *SI, bool isTrue, 6018 const SmallPtrSet<const Instruction *, 2> &Selects) { 6019 Value *V = nullptr; 6020 6021 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6022 DefSI = dyn_cast<SelectInst>(V)) { 6023 assert(DefSI->getCondition() == SI->getCondition() && 6024 "The condition of DefSI does not match with SI"); 6025 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6026 } 6027 6028 assert(V && "Failed to get select true/false value"); 6029 return V; 6030 } 6031 6032 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6033 assert(Shift->isShift() && "Expected a shift"); 6034 6035 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6036 // general vector shifts, and (3) the shift amount is a select-of-splatted 6037 // values, hoist the shifts before the select: 6038 // shift Op0, (select Cond, TVal, FVal) --> 6039 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6040 // 6041 // This is inverting a generic IR transform when we know that the cost of a 6042 // general vector shift is more than the cost of 2 shift-by-scalars. 6043 // We can't do this effectively in SDAG because we may not be able to 6044 // determine if the select operands are splats from within a basic block. 6045 Type *Ty = Shift->getType(); 6046 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6047 return false; 6048 Value *Cond, *TVal, *FVal; 6049 if (!match(Shift->getOperand(1), 6050 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6051 return false; 6052 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6053 return false; 6054 6055 IRBuilder<> Builder(Shift); 6056 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6057 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6058 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6059 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6060 Shift->replaceAllUsesWith(NewSel); 6061 Shift->eraseFromParent(); 6062 return true; 6063 } 6064 6065 /// If we have a SelectInst that will likely profit from branch prediction, 6066 /// turn it into a branch. 6067 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6068 // If branch conversion isn't desirable, exit early. 6069 if (DisableSelectToBranch || OptSize || 6070 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6071 return false; 6072 6073 // Find all consecutive select instructions that share the same condition. 6074 SmallVector<SelectInst *, 2> ASI; 6075 ASI.push_back(SI); 6076 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6077 It != SI->getParent()->end(); ++It) { 6078 SelectInst *I = dyn_cast<SelectInst>(&*It); 6079 if (I && SI->getCondition() == I->getCondition()) { 6080 ASI.push_back(I); 6081 } else { 6082 break; 6083 } 6084 } 6085 6086 SelectInst *LastSI = ASI.back(); 6087 // Increment the current iterator to skip all the rest of select instructions 6088 // because they will be either "not lowered" or "all lowered" to branch. 6089 CurInstIterator = std::next(LastSI->getIterator()); 6090 6091 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6092 6093 // Can we convert the 'select' to CF ? 6094 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6095 return false; 6096 6097 TargetLowering::SelectSupportKind SelectKind; 6098 if (VectorCond) 6099 SelectKind = TargetLowering::VectorMaskSelect; 6100 else if (SI->getType()->isVectorTy()) 6101 SelectKind = TargetLowering::ScalarCondVectorVal; 6102 else 6103 SelectKind = TargetLowering::ScalarValSelect; 6104 6105 if (TLI->isSelectSupported(SelectKind) && 6106 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6107 return false; 6108 6109 // The DominatorTree needs to be rebuilt by any consumers after this 6110 // transformation. We simply reset here rather than setting the ModifiedDT 6111 // flag to avoid restarting the function walk in runOnFunction for each 6112 // select optimized. 6113 DT.reset(); 6114 6115 // Transform a sequence like this: 6116 // start: 6117 // %cmp = cmp uge i32 %a, %b 6118 // %sel = select i1 %cmp, i32 %c, i32 %d 6119 // 6120 // Into: 6121 // start: 6122 // %cmp = cmp uge i32 %a, %b 6123 // br i1 %cmp, label %select.true, label %select.false 6124 // select.true: 6125 // br label %select.end 6126 // select.false: 6127 // br label %select.end 6128 // select.end: 6129 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6130 // 6131 // In addition, we may sink instructions that produce %c or %d from 6132 // the entry block into the destination(s) of the new branch. 6133 // If the true or false blocks do not contain a sunken instruction, that 6134 // block and its branch may be optimized away. In that case, one side of the 6135 // first branch will point directly to select.end, and the corresponding PHI 6136 // predecessor block will be the start block. 6137 6138 // First, we split the block containing the select into 2 blocks. 6139 BasicBlock *StartBlock = SI->getParent(); 6140 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6141 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6142 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6143 6144 // Delete the unconditional branch that was just created by the split. 6145 StartBlock->getTerminator()->eraseFromParent(); 6146 6147 // These are the new basic blocks for the conditional branch. 6148 // At least one will become an actual new basic block. 6149 BasicBlock *TrueBlock = nullptr; 6150 BasicBlock *FalseBlock = nullptr; 6151 BranchInst *TrueBranch = nullptr; 6152 BranchInst *FalseBranch = nullptr; 6153 6154 // Sink expensive instructions into the conditional blocks to avoid executing 6155 // them speculatively. 6156 for (SelectInst *SI : ASI) { 6157 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6158 if (TrueBlock == nullptr) { 6159 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6160 EndBlock->getParent(), EndBlock); 6161 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6162 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6163 } 6164 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6165 TrueInst->moveBefore(TrueBranch); 6166 } 6167 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6168 if (FalseBlock == nullptr) { 6169 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6170 EndBlock->getParent(), EndBlock); 6171 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6172 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6173 } 6174 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6175 FalseInst->moveBefore(FalseBranch); 6176 } 6177 } 6178 6179 // If there was nothing to sink, then arbitrarily choose the 'false' side 6180 // for a new input value to the PHI. 6181 if (TrueBlock == FalseBlock) { 6182 assert(TrueBlock == nullptr && 6183 "Unexpected basic block transform while optimizing select"); 6184 6185 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6186 EndBlock->getParent(), EndBlock); 6187 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6188 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6189 } 6190 6191 // Insert the real conditional branch based on the original condition. 6192 // If we did not create a new block for one of the 'true' or 'false' paths 6193 // of the condition, it means that side of the branch goes to the end block 6194 // directly and the path originates from the start block from the point of 6195 // view of the new PHI. 6196 BasicBlock *TT, *FT; 6197 if (TrueBlock == nullptr) { 6198 TT = EndBlock; 6199 FT = FalseBlock; 6200 TrueBlock = StartBlock; 6201 } else if (FalseBlock == nullptr) { 6202 TT = TrueBlock; 6203 FT = EndBlock; 6204 FalseBlock = StartBlock; 6205 } else { 6206 TT = TrueBlock; 6207 FT = FalseBlock; 6208 } 6209 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6210 6211 SmallPtrSet<const Instruction *, 2> INS; 6212 INS.insert(ASI.begin(), ASI.end()); 6213 // Use reverse iterator because later select may use the value of the 6214 // earlier select, and we need to propagate value through earlier select 6215 // to get the PHI operand. 6216 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6217 SelectInst *SI = *It; 6218 // The select itself is replaced with a PHI Node. 6219 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6220 PN->takeName(SI); 6221 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6222 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6223 PN->setDebugLoc(SI->getDebugLoc()); 6224 6225 SI->replaceAllUsesWith(PN); 6226 SI->eraseFromParent(); 6227 INS.erase(SI); 6228 ++NumSelectsExpanded; 6229 } 6230 6231 // Instruct OptimizeBlock to skip to the next block. 6232 CurInstIterator = StartBlock->end(); 6233 return true; 6234 } 6235 6236 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6237 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6238 int SplatElem = -1; 6239 for (unsigned i = 0; i < Mask.size(); ++i) { 6240 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6241 return false; 6242 SplatElem = Mask[i]; 6243 } 6244 6245 return true; 6246 } 6247 6248 /// Some targets have expensive vector shifts if the lanes aren't all the same 6249 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6250 /// it's often worth sinking a shufflevector splat down to its use so that 6251 /// codegen can spot all lanes are identical. 6252 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6253 BasicBlock *DefBB = SVI->getParent(); 6254 6255 // Only do this xform if variable vector shifts are particularly expensive. 6256 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6257 return false; 6258 6259 // We only expect better codegen by sinking a shuffle if we can recognise a 6260 // constant splat. 6261 if (!isBroadcastShuffle(SVI)) 6262 return false; 6263 6264 // InsertedShuffles - Only insert a shuffle in each block once. 6265 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6266 6267 bool MadeChange = false; 6268 for (User *U : SVI->users()) { 6269 Instruction *UI = cast<Instruction>(U); 6270 6271 // Figure out which BB this ext is used in. 6272 BasicBlock *UserBB = UI->getParent(); 6273 if (UserBB == DefBB) continue; 6274 6275 // For now only apply this when the splat is used by a shift instruction. 6276 if (!UI->isShift()) continue; 6277 6278 // Everything checks out, sink the shuffle if the user's block doesn't 6279 // already have a copy. 6280 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6281 6282 if (!InsertedShuffle) { 6283 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6284 assert(InsertPt != UserBB->end()); 6285 InsertedShuffle = 6286 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6287 SVI->getOperand(2), "", &*InsertPt); 6288 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6289 } 6290 6291 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6292 MadeChange = true; 6293 } 6294 6295 // If we removed all uses, nuke the shuffle. 6296 if (SVI->use_empty()) { 6297 SVI->eraseFromParent(); 6298 MadeChange = true; 6299 } 6300 6301 return MadeChange; 6302 } 6303 6304 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6305 // If the operands of I can be folded into a target instruction together with 6306 // I, duplicate and sink them. 6307 SmallVector<Use *, 4> OpsToSink; 6308 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6309 return false; 6310 6311 // OpsToSink can contain multiple uses in a use chain (e.g. 6312 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6313 // uses must come first, so we process the ops in reverse order so as to not 6314 // create invalid IR. 6315 BasicBlock *TargetBB = I->getParent(); 6316 bool Changed = false; 6317 SmallVector<Use *, 4> ToReplace; 6318 for (Use *U : reverse(OpsToSink)) { 6319 auto *UI = cast<Instruction>(U->get()); 6320 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6321 continue; 6322 ToReplace.push_back(U); 6323 } 6324 6325 SetVector<Instruction *> MaybeDead; 6326 DenseMap<Instruction *, Instruction *> NewInstructions; 6327 Instruction *InsertPoint = I; 6328 for (Use *U : ToReplace) { 6329 auto *UI = cast<Instruction>(U->get()); 6330 Instruction *NI = UI->clone(); 6331 NewInstructions[UI] = NI; 6332 MaybeDead.insert(UI); 6333 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6334 NI->insertBefore(InsertPoint); 6335 InsertPoint = NI; 6336 InsertedInsts.insert(NI); 6337 6338 // Update the use for the new instruction, making sure that we update the 6339 // sunk instruction uses, if it is part of a chain that has already been 6340 // sunk. 6341 Instruction *OldI = cast<Instruction>(U->getUser()); 6342 if (NewInstructions.count(OldI)) 6343 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6344 else 6345 U->set(NI); 6346 Changed = true; 6347 } 6348 6349 // Remove instructions that are dead after sinking. 6350 for (auto *I : MaybeDead) { 6351 if (!I->hasNUsesOrMore(1)) { 6352 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6353 I->eraseFromParent(); 6354 } 6355 } 6356 6357 return Changed; 6358 } 6359 6360 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6361 Value *Cond = SI->getCondition(); 6362 Type *OldType = Cond->getType(); 6363 LLVMContext &Context = Cond->getContext(); 6364 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6365 unsigned RegWidth = RegType.getSizeInBits(); 6366 6367 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6368 return false; 6369 6370 // If the register width is greater than the type width, expand the condition 6371 // of the switch instruction and each case constant to the width of the 6372 // register. By widening the type of the switch condition, subsequent 6373 // comparisons (for case comparisons) will not need to be extended to the 6374 // preferred register width, so we will potentially eliminate N-1 extends, 6375 // where N is the number of cases in the switch. 6376 auto *NewType = Type::getIntNTy(Context, RegWidth); 6377 6378 // Zero-extend the switch condition and case constants unless the switch 6379 // condition is a function argument that is already being sign-extended. 6380 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6381 // everything instead. 6382 Instruction::CastOps ExtType = Instruction::ZExt; 6383 if (auto *Arg = dyn_cast<Argument>(Cond)) 6384 if (Arg->hasSExtAttr()) 6385 ExtType = Instruction::SExt; 6386 6387 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6388 ExtInst->insertBefore(SI); 6389 ExtInst->setDebugLoc(SI->getDebugLoc()); 6390 SI->setCondition(ExtInst); 6391 for (auto Case : SI->cases()) { 6392 APInt NarrowConst = Case.getCaseValue()->getValue(); 6393 APInt WideConst = (ExtType == Instruction::ZExt) ? 6394 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6395 Case.setValue(ConstantInt::get(Context, WideConst)); 6396 } 6397 6398 return true; 6399 } 6400 6401 6402 namespace { 6403 6404 /// Helper class to promote a scalar operation to a vector one. 6405 /// This class is used to move downward extractelement transition. 6406 /// E.g., 6407 /// a = vector_op <2 x i32> 6408 /// b = extractelement <2 x i32> a, i32 0 6409 /// c = scalar_op b 6410 /// store c 6411 /// 6412 /// => 6413 /// a = vector_op <2 x i32> 6414 /// c = vector_op a (equivalent to scalar_op on the related lane) 6415 /// * d = extractelement <2 x i32> c, i32 0 6416 /// * store d 6417 /// Assuming both extractelement and store can be combine, we get rid of the 6418 /// transition. 6419 class VectorPromoteHelper { 6420 /// DataLayout associated with the current module. 6421 const DataLayout &DL; 6422 6423 /// Used to perform some checks on the legality of vector operations. 6424 const TargetLowering &TLI; 6425 6426 /// Used to estimated the cost of the promoted chain. 6427 const TargetTransformInfo &TTI; 6428 6429 /// The transition being moved downwards. 6430 Instruction *Transition; 6431 6432 /// The sequence of instructions to be promoted. 6433 SmallVector<Instruction *, 4> InstsToBePromoted; 6434 6435 /// Cost of combining a store and an extract. 6436 unsigned StoreExtractCombineCost; 6437 6438 /// Instruction that will be combined with the transition. 6439 Instruction *CombineInst = nullptr; 6440 6441 /// The instruction that represents the current end of the transition. 6442 /// Since we are faking the promotion until we reach the end of the chain 6443 /// of computation, we need a way to get the current end of the transition. 6444 Instruction *getEndOfTransition() const { 6445 if (InstsToBePromoted.empty()) 6446 return Transition; 6447 return InstsToBePromoted.back(); 6448 } 6449 6450 /// Return the index of the original value in the transition. 6451 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6452 /// c, is at index 0. 6453 unsigned getTransitionOriginalValueIdx() const { 6454 assert(isa<ExtractElementInst>(Transition) && 6455 "Other kind of transitions are not supported yet"); 6456 return 0; 6457 } 6458 6459 /// Return the index of the index in the transition. 6460 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6461 /// is at index 1. 6462 unsigned getTransitionIdx() const { 6463 assert(isa<ExtractElementInst>(Transition) && 6464 "Other kind of transitions are not supported yet"); 6465 return 1; 6466 } 6467 6468 /// Get the type of the transition. 6469 /// This is the type of the original value. 6470 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6471 /// transition is <2 x i32>. 6472 Type *getTransitionType() const { 6473 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6474 } 6475 6476 /// Promote \p ToBePromoted by moving \p Def downward through. 6477 /// I.e., we have the following sequence: 6478 /// Def = Transition <ty1> a to <ty2> 6479 /// b = ToBePromoted <ty2> Def, ... 6480 /// => 6481 /// b = ToBePromoted <ty1> a, ... 6482 /// Def = Transition <ty1> ToBePromoted to <ty2> 6483 void promoteImpl(Instruction *ToBePromoted); 6484 6485 /// Check whether or not it is profitable to promote all the 6486 /// instructions enqueued to be promoted. 6487 bool isProfitableToPromote() { 6488 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6489 unsigned Index = isa<ConstantInt>(ValIdx) 6490 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6491 : -1; 6492 Type *PromotedType = getTransitionType(); 6493 6494 StoreInst *ST = cast<StoreInst>(CombineInst); 6495 unsigned AS = ST->getPointerAddressSpace(); 6496 unsigned Align = ST->getAlignment(); 6497 // Check if this store is supported. 6498 if (!TLI.allowsMisalignedMemoryAccesses( 6499 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6500 Align)) { 6501 // If this is not supported, there is no way we can combine 6502 // the extract with the store. 6503 return false; 6504 } 6505 6506 // The scalar chain of computation has to pay for the transition 6507 // scalar to vector. 6508 // The vector chain has to account for the combining cost. 6509 uint64_t ScalarCost = 6510 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6511 uint64_t VectorCost = StoreExtractCombineCost; 6512 for (const auto &Inst : InstsToBePromoted) { 6513 // Compute the cost. 6514 // By construction, all instructions being promoted are arithmetic ones. 6515 // Moreover, one argument is a constant that can be viewed as a splat 6516 // constant. 6517 Value *Arg0 = Inst->getOperand(0); 6518 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6519 isa<ConstantFP>(Arg0); 6520 TargetTransformInfo::OperandValueKind Arg0OVK = 6521 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6522 : TargetTransformInfo::OK_AnyValue; 6523 TargetTransformInfo::OperandValueKind Arg1OVK = 6524 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6525 : TargetTransformInfo::OK_AnyValue; 6526 ScalarCost += TTI.getArithmeticInstrCost( 6527 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6528 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6529 Arg0OVK, Arg1OVK); 6530 } 6531 LLVM_DEBUG( 6532 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6533 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6534 return ScalarCost > VectorCost; 6535 } 6536 6537 /// Generate a constant vector with \p Val with the same 6538 /// number of elements as the transition. 6539 /// \p UseSplat defines whether or not \p Val should be replicated 6540 /// across the whole vector. 6541 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6542 /// otherwise we generate a vector with as many undef as possible: 6543 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6544 /// used at the index of the extract. 6545 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6546 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6547 if (!UseSplat) { 6548 // If we cannot determine where the constant must be, we have to 6549 // use a splat constant. 6550 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6551 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6552 ExtractIdx = CstVal->getSExtValue(); 6553 else 6554 UseSplat = true; 6555 } 6556 6557 unsigned End = getTransitionType()->getVectorNumElements(); 6558 if (UseSplat) 6559 return ConstantVector::getSplat(End, Val); 6560 6561 SmallVector<Constant *, 4> ConstVec; 6562 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6563 for (unsigned Idx = 0; Idx != End; ++Idx) { 6564 if (Idx == ExtractIdx) 6565 ConstVec.push_back(Val); 6566 else 6567 ConstVec.push_back(UndefVal); 6568 } 6569 return ConstantVector::get(ConstVec); 6570 } 6571 6572 /// Check if promoting to a vector type an operand at \p OperandIdx 6573 /// in \p Use can trigger undefined behavior. 6574 static bool canCauseUndefinedBehavior(const Instruction *Use, 6575 unsigned OperandIdx) { 6576 // This is not safe to introduce undef when the operand is on 6577 // the right hand side of a division-like instruction. 6578 if (OperandIdx != 1) 6579 return false; 6580 switch (Use->getOpcode()) { 6581 default: 6582 return false; 6583 case Instruction::SDiv: 6584 case Instruction::UDiv: 6585 case Instruction::SRem: 6586 case Instruction::URem: 6587 return true; 6588 case Instruction::FDiv: 6589 case Instruction::FRem: 6590 return !Use->hasNoNaNs(); 6591 } 6592 llvm_unreachable(nullptr); 6593 } 6594 6595 public: 6596 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6597 const TargetTransformInfo &TTI, Instruction *Transition, 6598 unsigned CombineCost) 6599 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6600 StoreExtractCombineCost(CombineCost) { 6601 assert(Transition && "Do not know how to promote null"); 6602 } 6603 6604 /// Check if we can promote \p ToBePromoted to \p Type. 6605 bool canPromote(const Instruction *ToBePromoted) const { 6606 // We could support CastInst too. 6607 return isa<BinaryOperator>(ToBePromoted); 6608 } 6609 6610 /// Check if it is profitable to promote \p ToBePromoted 6611 /// by moving downward the transition through. 6612 bool shouldPromote(const Instruction *ToBePromoted) const { 6613 // Promote only if all the operands can be statically expanded. 6614 // Indeed, we do not want to introduce any new kind of transitions. 6615 for (const Use &U : ToBePromoted->operands()) { 6616 const Value *Val = U.get(); 6617 if (Val == getEndOfTransition()) { 6618 // If the use is a division and the transition is on the rhs, 6619 // we cannot promote the operation, otherwise we may create a 6620 // division by zero. 6621 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6622 return false; 6623 continue; 6624 } 6625 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6626 !isa<ConstantFP>(Val)) 6627 return false; 6628 } 6629 // Check that the resulting operation is legal. 6630 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6631 if (!ISDOpcode) 6632 return false; 6633 return StressStoreExtract || 6634 TLI.isOperationLegalOrCustom( 6635 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6636 } 6637 6638 /// Check whether or not \p Use can be combined 6639 /// with the transition. 6640 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6641 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6642 6643 /// Record \p ToBePromoted as part of the chain to be promoted. 6644 void enqueueForPromotion(Instruction *ToBePromoted) { 6645 InstsToBePromoted.push_back(ToBePromoted); 6646 } 6647 6648 /// Set the instruction that will be combined with the transition. 6649 void recordCombineInstruction(Instruction *ToBeCombined) { 6650 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6651 CombineInst = ToBeCombined; 6652 } 6653 6654 /// Promote all the instructions enqueued for promotion if it is 6655 /// is profitable. 6656 /// \return True if the promotion happened, false otherwise. 6657 bool promote() { 6658 // Check if there is something to promote. 6659 // Right now, if we do not have anything to combine with, 6660 // we assume the promotion is not profitable. 6661 if (InstsToBePromoted.empty() || !CombineInst) 6662 return false; 6663 6664 // Check cost. 6665 if (!StressStoreExtract && !isProfitableToPromote()) 6666 return false; 6667 6668 // Promote. 6669 for (auto &ToBePromoted : InstsToBePromoted) 6670 promoteImpl(ToBePromoted); 6671 InstsToBePromoted.clear(); 6672 return true; 6673 } 6674 }; 6675 6676 } // end anonymous namespace 6677 6678 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6679 // At this point, we know that all the operands of ToBePromoted but Def 6680 // can be statically promoted. 6681 // For Def, we need to use its parameter in ToBePromoted: 6682 // b = ToBePromoted ty1 a 6683 // Def = Transition ty1 b to ty2 6684 // Move the transition down. 6685 // 1. Replace all uses of the promoted operation by the transition. 6686 // = ... b => = ... Def. 6687 assert(ToBePromoted->getType() == Transition->getType() && 6688 "The type of the result of the transition does not match " 6689 "the final type"); 6690 ToBePromoted->replaceAllUsesWith(Transition); 6691 // 2. Update the type of the uses. 6692 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6693 Type *TransitionTy = getTransitionType(); 6694 ToBePromoted->mutateType(TransitionTy); 6695 // 3. Update all the operands of the promoted operation with promoted 6696 // operands. 6697 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6698 for (Use &U : ToBePromoted->operands()) { 6699 Value *Val = U.get(); 6700 Value *NewVal = nullptr; 6701 if (Val == Transition) 6702 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6703 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6704 isa<ConstantFP>(Val)) { 6705 // Use a splat constant if it is not safe to use undef. 6706 NewVal = getConstantVector( 6707 cast<Constant>(Val), 6708 isa<UndefValue>(Val) || 6709 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6710 } else 6711 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6712 "this?"); 6713 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6714 } 6715 Transition->moveAfter(ToBePromoted); 6716 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6717 } 6718 6719 /// Some targets can do store(extractelement) with one instruction. 6720 /// Try to push the extractelement towards the stores when the target 6721 /// has this feature and this is profitable. 6722 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6723 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6724 if (DisableStoreExtract || 6725 (!StressStoreExtract && 6726 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6727 Inst->getOperand(1), CombineCost))) 6728 return false; 6729 6730 // At this point we know that Inst is a vector to scalar transition. 6731 // Try to move it down the def-use chain, until: 6732 // - We can combine the transition with its single use 6733 // => we got rid of the transition. 6734 // - We escape the current basic block 6735 // => we would need to check that we are moving it at a cheaper place and 6736 // we do not do that for now. 6737 BasicBlock *Parent = Inst->getParent(); 6738 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6739 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6740 // If the transition has more than one use, assume this is not going to be 6741 // beneficial. 6742 while (Inst->hasOneUse()) { 6743 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6744 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6745 6746 if (ToBePromoted->getParent() != Parent) { 6747 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6748 << ToBePromoted->getParent()->getName() 6749 << ") than the transition (" << Parent->getName() 6750 << ").\n"); 6751 return false; 6752 } 6753 6754 if (VPH.canCombine(ToBePromoted)) { 6755 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6756 << "will be combined with: " << *ToBePromoted << '\n'); 6757 VPH.recordCombineInstruction(ToBePromoted); 6758 bool Changed = VPH.promote(); 6759 NumStoreExtractExposed += Changed; 6760 return Changed; 6761 } 6762 6763 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6764 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6765 return false; 6766 6767 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6768 6769 VPH.enqueueForPromotion(ToBePromoted); 6770 Inst = ToBePromoted; 6771 } 6772 return false; 6773 } 6774 6775 /// For the instruction sequence of store below, F and I values 6776 /// are bundled together as an i64 value before being stored into memory. 6777 /// Sometimes it is more efficient to generate separate stores for F and I, 6778 /// which can remove the bitwise instructions or sink them to colder places. 6779 /// 6780 /// (store (or (zext (bitcast F to i32) to i64), 6781 /// (shl (zext I to i64), 32)), addr) --> 6782 /// (store F, addr) and (store I, addr+4) 6783 /// 6784 /// Similarly, splitting for other merged store can also be beneficial, like: 6785 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6786 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6787 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6788 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6789 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6790 /// 6791 /// We allow each target to determine specifically which kind of splitting is 6792 /// supported. 6793 /// 6794 /// The store patterns are commonly seen from the simple code snippet below 6795 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6796 /// void goo(const std::pair<int, float> &); 6797 /// hoo() { 6798 /// ... 6799 /// goo(std::make_pair(tmp, ftmp)); 6800 /// ... 6801 /// } 6802 /// 6803 /// Although we already have similar splitting in DAG Combine, we duplicate 6804 /// it in CodeGenPrepare to catch the case in which pattern is across 6805 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6806 /// during code expansion. 6807 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6808 const TargetLowering &TLI) { 6809 // Handle simple but common cases only. 6810 Type *StoreType = SI.getValueOperand()->getType(); 6811 6812 // The code below assumes shifting a value by <number of bits>, 6813 // whereas scalable vectors would have to be shifted by 6814 // <2log(vscale) + number of bits> in order to store the 6815 // low/high parts. Bailing out for now. 6816 if (StoreType->isVectorTy() && StoreType->getVectorIsScalable()) 6817 return false; 6818 6819 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6820 DL.getTypeSizeInBits(StoreType) == 0) 6821 return false; 6822 6823 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6824 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6825 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6826 return false; 6827 6828 // Don't split the store if it is volatile. 6829 if (SI.isVolatile()) 6830 return false; 6831 6832 // Match the following patterns: 6833 // (store (or (zext LValue to i64), 6834 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6835 // or 6836 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6837 // (zext LValue to i64), 6838 // Expect both operands of OR and the first operand of SHL have only 6839 // one use. 6840 Value *LValue, *HValue; 6841 if (!match(SI.getValueOperand(), 6842 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6843 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6844 m_SpecificInt(HalfValBitSize)))))) 6845 return false; 6846 6847 // Check LValue and HValue are int with size less or equal than 32. 6848 if (!LValue->getType()->isIntegerTy() || 6849 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6850 !HValue->getType()->isIntegerTy() || 6851 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6852 return false; 6853 6854 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6855 // as the input of target query. 6856 auto *LBC = dyn_cast<BitCastInst>(LValue); 6857 auto *HBC = dyn_cast<BitCastInst>(HValue); 6858 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6859 : EVT::getEVT(LValue->getType()); 6860 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6861 : EVT::getEVT(HValue->getType()); 6862 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6863 return false; 6864 6865 // Start to split store. 6866 IRBuilder<> Builder(SI.getContext()); 6867 Builder.SetInsertPoint(&SI); 6868 6869 // If LValue/HValue is a bitcast in another BB, create a new one in current 6870 // BB so it may be merged with the splitted stores by dag combiner. 6871 if (LBC && LBC->getParent() != SI.getParent()) 6872 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6873 if (HBC && HBC->getParent() != SI.getParent()) 6874 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6875 6876 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6877 auto CreateSplitStore = [&](Value *V, bool Upper) { 6878 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6879 Value *Addr = Builder.CreateBitCast( 6880 SI.getOperand(1), 6881 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6882 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6883 if (IsOffsetStore) 6884 Addr = Builder.CreateGEP( 6885 SplitStoreType, Addr, 6886 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6887 MaybeAlign Alignment = SI.getAlign(); 6888 if (IsOffsetStore && Alignment) { 6889 // When splitting the store in half, naturally one half will retain the 6890 // alignment of the original wider store, regardless of whether it was 6891 // over-aligned or not, while the other will require adjustment. 6892 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6893 } 6894 Builder.CreateAlignedStore(V, Addr, Alignment); 6895 }; 6896 6897 CreateSplitStore(LValue, false); 6898 CreateSplitStore(HValue, true); 6899 6900 // Delete the old store. 6901 SI.eraseFromParent(); 6902 return true; 6903 } 6904 6905 // Return true if the GEP has two operands, the first operand is of a sequential 6906 // type, and the second operand is a constant. 6907 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6908 gep_type_iterator I = gep_type_begin(*GEP); 6909 return GEP->getNumOperands() == 2 && 6910 I.isSequential() && 6911 isa<ConstantInt>(GEP->getOperand(1)); 6912 } 6913 6914 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6915 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6916 // reducing liveness interference across those edges benefits global register 6917 // allocation. Currently handles only certain cases. 6918 // 6919 // For example, unmerge %GEPI and %UGEPI as below. 6920 // 6921 // ---------- BEFORE ---------- 6922 // SrcBlock: 6923 // ... 6924 // %GEPIOp = ... 6925 // ... 6926 // %GEPI = gep %GEPIOp, Idx 6927 // ... 6928 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6929 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6930 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6931 // %UGEPI) 6932 // 6933 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6934 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6935 // ... 6936 // 6937 // DstBi: 6938 // ... 6939 // %UGEPI = gep %GEPIOp, UIdx 6940 // ... 6941 // --------------------------- 6942 // 6943 // ---------- AFTER ---------- 6944 // SrcBlock: 6945 // ... (same as above) 6946 // (* %GEPI is still alive on the indirectbr edges) 6947 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6948 // unmerging) 6949 // ... 6950 // 6951 // DstBi: 6952 // ... 6953 // %UGEPI = gep %GEPI, (UIdx-Idx) 6954 // ... 6955 // --------------------------- 6956 // 6957 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6958 // no longer alive on them. 6959 // 6960 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6961 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6962 // not to disable further simplications and optimizations as a result of GEP 6963 // merging. 6964 // 6965 // Note this unmerging may increase the length of the data flow critical path 6966 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6967 // between the register pressure and the length of data-flow critical 6968 // path. Restricting this to the uncommon IndirectBr case would minimize the 6969 // impact of potentially longer critical path, if any, and the impact on compile 6970 // time. 6971 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6972 const TargetTransformInfo *TTI) { 6973 BasicBlock *SrcBlock = GEPI->getParent(); 6974 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6975 // (non-IndirectBr) cases exit early here. 6976 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6977 return false; 6978 // Check that GEPI is a simple gep with a single constant index. 6979 if (!GEPSequentialConstIndexed(GEPI)) 6980 return false; 6981 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6982 // Check that GEPI is a cheap one. 6983 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6984 > TargetTransformInfo::TCC_Basic) 6985 return false; 6986 Value *GEPIOp = GEPI->getOperand(0); 6987 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6988 if (!isa<Instruction>(GEPIOp)) 6989 return false; 6990 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6991 if (GEPIOpI->getParent() != SrcBlock) 6992 return false; 6993 // Check that GEP is used outside the block, meaning it's alive on the 6994 // IndirectBr edge(s). 6995 if (find_if(GEPI->users(), [&](User *Usr) { 6996 if (auto *I = dyn_cast<Instruction>(Usr)) { 6997 if (I->getParent() != SrcBlock) { 6998 return true; 6999 } 7000 } 7001 return false; 7002 }) == GEPI->users().end()) 7003 return false; 7004 // The second elements of the GEP chains to be unmerged. 7005 std::vector<GetElementPtrInst *> UGEPIs; 7006 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7007 // on IndirectBr edges. 7008 for (User *Usr : GEPIOp->users()) { 7009 if (Usr == GEPI) continue; 7010 // Check if Usr is an Instruction. If not, give up. 7011 if (!isa<Instruction>(Usr)) 7012 return false; 7013 auto *UI = cast<Instruction>(Usr); 7014 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7015 if (UI->getParent() == SrcBlock) 7016 continue; 7017 // Check if Usr is a GEP. If not, give up. 7018 if (!isa<GetElementPtrInst>(Usr)) 7019 return false; 7020 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7021 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7022 // the pointer operand to it. If so, record it in the vector. If not, give 7023 // up. 7024 if (!GEPSequentialConstIndexed(UGEPI)) 7025 return false; 7026 if (UGEPI->getOperand(0) != GEPIOp) 7027 return false; 7028 if (GEPIIdx->getType() != 7029 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7030 return false; 7031 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7032 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7033 > TargetTransformInfo::TCC_Basic) 7034 return false; 7035 UGEPIs.push_back(UGEPI); 7036 } 7037 if (UGEPIs.size() == 0) 7038 return false; 7039 // Check the materializing cost of (Uidx-Idx). 7040 for (GetElementPtrInst *UGEPI : UGEPIs) { 7041 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7042 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7043 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7044 if (ImmCost > TargetTransformInfo::TCC_Basic) 7045 return false; 7046 } 7047 // Now unmerge between GEPI and UGEPIs. 7048 for (GetElementPtrInst *UGEPI : UGEPIs) { 7049 UGEPI->setOperand(0, GEPI); 7050 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7051 Constant *NewUGEPIIdx = 7052 ConstantInt::get(GEPIIdx->getType(), 7053 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7054 UGEPI->setOperand(1, NewUGEPIIdx); 7055 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7056 // inbounds to avoid UB. 7057 if (!GEPI->isInBounds()) { 7058 UGEPI->setIsInBounds(false); 7059 } 7060 } 7061 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7062 // alive on IndirectBr edges). 7063 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7064 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7065 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7066 return true; 7067 } 7068 7069 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7070 // Bail out if we inserted the instruction to prevent optimizations from 7071 // stepping on each other's toes. 7072 if (InsertedInsts.count(I)) 7073 return false; 7074 7075 // TODO: Move into the switch on opcode below here. 7076 if (PHINode *P = dyn_cast<PHINode>(I)) { 7077 // It is possible for very late stage optimizations (such as SimplifyCFG) 7078 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7079 // trivial PHI, go ahead and zap it here. 7080 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7081 LargeOffsetGEPMap.erase(P); 7082 P->replaceAllUsesWith(V); 7083 P->eraseFromParent(); 7084 ++NumPHIsElim; 7085 return true; 7086 } 7087 return false; 7088 } 7089 7090 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7091 // If the source of the cast is a constant, then this should have 7092 // already been constant folded. The only reason NOT to constant fold 7093 // it is if something (e.g. LSR) was careful to place the constant 7094 // evaluation in a block other than then one that uses it (e.g. to hoist 7095 // the address of globals out of a loop). If this is the case, we don't 7096 // want to forward-subst the cast. 7097 if (isa<Constant>(CI->getOperand(0))) 7098 return false; 7099 7100 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7101 return true; 7102 7103 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7104 /// Sink a zext or sext into its user blocks if the target type doesn't 7105 /// fit in one register 7106 if (TLI->getTypeAction(CI->getContext(), 7107 TLI->getValueType(*DL, CI->getType())) == 7108 TargetLowering::TypeExpandInteger) { 7109 return SinkCast(CI); 7110 } else { 7111 bool MadeChange = optimizeExt(I); 7112 return MadeChange | optimizeExtUses(I); 7113 } 7114 } 7115 return false; 7116 } 7117 7118 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7119 if (optimizeCmp(Cmp, ModifiedDT)) 7120 return true; 7121 7122 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7123 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7124 bool Modified = optimizeLoadExt(LI); 7125 unsigned AS = LI->getPointerAddressSpace(); 7126 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7127 return Modified; 7128 } 7129 7130 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7131 if (splitMergedValStore(*SI, *DL, *TLI)) 7132 return true; 7133 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7134 unsigned AS = SI->getPointerAddressSpace(); 7135 return optimizeMemoryInst(I, SI->getOperand(1), 7136 SI->getOperand(0)->getType(), AS); 7137 } 7138 7139 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7140 unsigned AS = RMW->getPointerAddressSpace(); 7141 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7142 RMW->getType(), AS); 7143 } 7144 7145 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7146 unsigned AS = CmpX->getPointerAddressSpace(); 7147 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7148 CmpX->getCompareOperand()->getType(), AS); 7149 } 7150 7151 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7152 7153 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7154 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7155 7156 // TODO: Move this into the switch on opcode - it handles shifts already. 7157 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7158 BinOp->getOpcode() == Instruction::LShr)) { 7159 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7160 if (CI && TLI->hasExtractBitsInsn()) 7161 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7162 return true; 7163 } 7164 7165 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7166 if (GEPI->hasAllZeroIndices()) { 7167 /// The GEP operand must be a pointer, so must its result -> BitCast 7168 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7169 GEPI->getName(), GEPI); 7170 NC->setDebugLoc(GEPI->getDebugLoc()); 7171 GEPI->replaceAllUsesWith(NC); 7172 GEPI->eraseFromParent(); 7173 ++NumGEPsElim; 7174 optimizeInst(NC, ModifiedDT); 7175 return true; 7176 } 7177 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7178 return true; 7179 } 7180 return false; 7181 } 7182 7183 if (tryToSinkFreeOperands(I)) 7184 return true; 7185 7186 switch (I->getOpcode()) { 7187 case Instruction::Shl: 7188 case Instruction::LShr: 7189 case Instruction::AShr: 7190 return optimizeShiftInst(cast<BinaryOperator>(I)); 7191 case Instruction::Call: 7192 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7193 case Instruction::Select: 7194 return optimizeSelectInst(cast<SelectInst>(I)); 7195 case Instruction::ShuffleVector: 7196 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7197 case Instruction::Switch: 7198 return optimizeSwitchInst(cast<SwitchInst>(I)); 7199 case Instruction::ExtractElement: 7200 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7201 } 7202 7203 return false; 7204 } 7205 7206 /// Given an OR instruction, check to see if this is a bitreverse 7207 /// idiom. If so, insert the new intrinsic and return true. 7208 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7209 const TargetLowering &TLI) { 7210 if (!I.getType()->isIntegerTy() || 7211 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7212 TLI.getValueType(DL, I.getType(), true))) 7213 return false; 7214 7215 SmallVector<Instruction*, 4> Insts; 7216 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7217 return false; 7218 Instruction *LastInst = Insts.back(); 7219 I.replaceAllUsesWith(LastInst); 7220 RecursivelyDeleteTriviallyDeadInstructions(&I); 7221 return true; 7222 } 7223 7224 // In this pass we look for GEP and cast instructions that are used 7225 // across basic blocks and rewrite them to improve basic-block-at-a-time 7226 // selection. 7227 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7228 SunkAddrs.clear(); 7229 bool MadeChange = false; 7230 7231 CurInstIterator = BB.begin(); 7232 while (CurInstIterator != BB.end()) { 7233 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7234 if (ModifiedDT) 7235 return true; 7236 } 7237 7238 bool MadeBitReverse = true; 7239 while (MadeBitReverse) { 7240 MadeBitReverse = false; 7241 for (auto &I : reverse(BB)) { 7242 if (makeBitReverse(I, *DL, *TLI)) { 7243 MadeBitReverse = MadeChange = true; 7244 break; 7245 } 7246 } 7247 } 7248 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7249 7250 return MadeChange; 7251 } 7252 7253 // Some CGP optimizations may move or alter what's computed in a block. Check 7254 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7255 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7256 assert(isa<DbgValueInst>(I)); 7257 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7258 7259 // Does this dbg.value refer to a sunk address calculation? 7260 Value *Location = DVI.getVariableLocation(); 7261 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7262 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7263 if (SunkAddr) { 7264 // Point dbg.value at locally computed address, which should give the best 7265 // opportunity to be accurately lowered. This update may change the type of 7266 // pointer being referred to; however this makes no difference to debugging 7267 // information, and we can't generate bitcasts that may affect codegen. 7268 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7269 ValueAsMetadata::get(SunkAddr))); 7270 return true; 7271 } 7272 return false; 7273 } 7274 7275 // A llvm.dbg.value may be using a value before its definition, due to 7276 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7277 // them by moving the dbg.value to immediately after the value definition. 7278 // FIXME: Ideally this should never be necessary, and this has the potential 7279 // to re-order dbg.value intrinsics. 7280 bool CodeGenPrepare::placeDbgValues(Function &F) { 7281 bool MadeChange = false; 7282 DominatorTree DT(F); 7283 7284 for (BasicBlock &BB : F) { 7285 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7286 Instruction *Insn = &*BI++; 7287 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7288 if (!DVI) 7289 continue; 7290 7291 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7292 7293 if (!VI || VI->isTerminator()) 7294 continue; 7295 7296 // If VI is a phi in a block with an EHPad terminator, we can't insert 7297 // after it. 7298 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7299 continue; 7300 7301 // If the defining instruction dominates the dbg.value, we do not need 7302 // to move the dbg.value. 7303 if (DT.dominates(VI, DVI)) 7304 continue; 7305 7306 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7307 << *DVI << ' ' << *VI); 7308 DVI->removeFromParent(); 7309 if (isa<PHINode>(VI)) 7310 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7311 else 7312 DVI->insertAfter(VI); 7313 MadeChange = true; 7314 ++NumDbgValueMoved; 7315 } 7316 } 7317 return MadeChange; 7318 } 7319 7320 /// Scale down both weights to fit into uint32_t. 7321 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7322 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7323 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7324 NewTrue = NewTrue / Scale; 7325 NewFalse = NewFalse / Scale; 7326 } 7327 7328 /// Some targets prefer to split a conditional branch like: 7329 /// \code 7330 /// %0 = icmp ne i32 %a, 0 7331 /// %1 = icmp ne i32 %b, 0 7332 /// %or.cond = or i1 %0, %1 7333 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7334 /// \endcode 7335 /// into multiple branch instructions like: 7336 /// \code 7337 /// bb1: 7338 /// %0 = icmp ne i32 %a, 0 7339 /// br i1 %0, label %TrueBB, label %bb2 7340 /// bb2: 7341 /// %1 = icmp ne i32 %b, 0 7342 /// br i1 %1, label %TrueBB, label %FalseBB 7343 /// \endcode 7344 /// This usually allows instruction selection to do even further optimizations 7345 /// and combine the compare with the branch instruction. Currently this is 7346 /// applied for targets which have "cheap" jump instructions. 7347 /// 7348 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7349 /// 7350 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7351 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7352 return false; 7353 7354 bool MadeChange = false; 7355 for (auto &BB : F) { 7356 // Does this BB end with the following? 7357 // %cond1 = icmp|fcmp|binary instruction ... 7358 // %cond2 = icmp|fcmp|binary instruction ... 7359 // %cond.or = or|and i1 %cond1, cond2 7360 // br i1 %cond.or label %dest1, label %dest2" 7361 BinaryOperator *LogicOp; 7362 BasicBlock *TBB, *FBB; 7363 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7364 continue; 7365 7366 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7367 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7368 continue; 7369 7370 // The merging of mostly empty BB can cause a degenerate branch. 7371 if (TBB == FBB) 7372 continue; 7373 7374 unsigned Opc; 7375 Value *Cond1, *Cond2; 7376 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7377 m_OneUse(m_Value(Cond2))))) 7378 Opc = Instruction::And; 7379 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7380 m_OneUse(m_Value(Cond2))))) 7381 Opc = Instruction::Or; 7382 else 7383 continue; 7384 7385 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7386 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7387 continue; 7388 7389 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7390 7391 // Create a new BB. 7392 auto TmpBB = 7393 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7394 BB.getParent(), BB.getNextNode()); 7395 7396 // Update original basic block by using the first condition directly by the 7397 // branch instruction and removing the no longer needed and/or instruction. 7398 Br1->setCondition(Cond1); 7399 LogicOp->eraseFromParent(); 7400 7401 // Depending on the condition we have to either replace the true or the 7402 // false successor of the original branch instruction. 7403 if (Opc == Instruction::And) 7404 Br1->setSuccessor(0, TmpBB); 7405 else 7406 Br1->setSuccessor(1, TmpBB); 7407 7408 // Fill in the new basic block. 7409 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7410 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7411 I->removeFromParent(); 7412 I->insertBefore(Br2); 7413 } 7414 7415 // Update PHI nodes in both successors. The original BB needs to be 7416 // replaced in one successor's PHI nodes, because the branch comes now from 7417 // the newly generated BB (NewBB). In the other successor we need to add one 7418 // incoming edge to the PHI nodes, because both branch instructions target 7419 // now the same successor. Depending on the original branch condition 7420 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7421 // we perform the correct update for the PHI nodes. 7422 // This doesn't change the successor order of the just created branch 7423 // instruction (or any other instruction). 7424 if (Opc == Instruction::Or) 7425 std::swap(TBB, FBB); 7426 7427 // Replace the old BB with the new BB. 7428 TBB->replacePhiUsesWith(&BB, TmpBB); 7429 7430 // Add another incoming edge form the new BB. 7431 for (PHINode &PN : FBB->phis()) { 7432 auto *Val = PN.getIncomingValueForBlock(&BB); 7433 PN.addIncoming(Val, TmpBB); 7434 } 7435 7436 // Update the branch weights (from SelectionDAGBuilder:: 7437 // FindMergedConditions). 7438 if (Opc == Instruction::Or) { 7439 // Codegen X | Y as: 7440 // BB1: 7441 // jmp_if_X TBB 7442 // jmp TmpBB 7443 // TmpBB: 7444 // jmp_if_Y TBB 7445 // jmp FBB 7446 // 7447 7448 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7449 // The requirement is that 7450 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7451 // = TrueProb for original BB. 7452 // Assuming the original weights are A and B, one choice is to set BB1's 7453 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7454 // assumes that 7455 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7456 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7457 // TmpBB, but the math is more complicated. 7458 uint64_t TrueWeight, FalseWeight; 7459 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7460 uint64_t NewTrueWeight = TrueWeight; 7461 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7462 scaleWeights(NewTrueWeight, NewFalseWeight); 7463 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7464 .createBranchWeights(TrueWeight, FalseWeight)); 7465 7466 NewTrueWeight = TrueWeight; 7467 NewFalseWeight = 2 * FalseWeight; 7468 scaleWeights(NewTrueWeight, NewFalseWeight); 7469 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7470 .createBranchWeights(TrueWeight, FalseWeight)); 7471 } 7472 } else { 7473 // Codegen X & Y as: 7474 // BB1: 7475 // jmp_if_X TmpBB 7476 // jmp FBB 7477 // TmpBB: 7478 // jmp_if_Y TBB 7479 // jmp FBB 7480 // 7481 // This requires creation of TmpBB after CurBB. 7482 7483 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7484 // The requirement is that 7485 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7486 // = FalseProb for original BB. 7487 // Assuming the original weights are A and B, one choice is to set BB1's 7488 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7489 // assumes that 7490 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7491 uint64_t TrueWeight, FalseWeight; 7492 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7493 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7494 uint64_t NewFalseWeight = FalseWeight; 7495 scaleWeights(NewTrueWeight, NewFalseWeight); 7496 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7497 .createBranchWeights(TrueWeight, FalseWeight)); 7498 7499 NewTrueWeight = 2 * TrueWeight; 7500 NewFalseWeight = FalseWeight; 7501 scaleWeights(NewTrueWeight, NewFalseWeight); 7502 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7503 .createBranchWeights(TrueWeight, FalseWeight)); 7504 } 7505 } 7506 7507 ModifiedDT = true; 7508 MadeChange = true; 7509 7510 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7511 TmpBB->dump()); 7512 } 7513 return MadeChange; 7514 } 7515