1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/IntrinsicsX86.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MachineValueType.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 using namespace llvm::PatternMatch;
107 
108 #define DEBUG_TYPE "codegenprepare"
109 
110 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                       "sunken Cmps");
115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                        "of sunken Casts");
117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                           "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated,
120           "Number of phis created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated,
123           "Number of select created when address "
124           "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded,
128           "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 
135 static cl::opt<bool> DisableBranchOpts(
136   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137   cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool>
140     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 
143 static cl::opt<bool> DisableSelectToBranch(
144   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
145   cl::desc("Disable select to branch conversion."));
146 
147 static cl::opt<bool> AddrSinkUsingGEPs(
148   "addr-sink-using-gep", cl::Hidden, cl::init(true),
149   cl::desc("Address sinking in CGP using GEPs."));
150 
151 static cl::opt<bool> EnableAndCmpSinking(
152    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
153    cl::desc("Enable sinkinig and/cmp into branches."));
154 
155 static cl::opt<bool> DisableStoreExtract(
156     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> StressStoreExtract(
160     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
161     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 
163 static cl::opt<bool> DisableExtLdPromotion(
164     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
166              "CodeGenPrepare"));
167 
168 static cl::opt<bool> StressExtLdPromotion(
169     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
170     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
171              "optimization in CodeGenPrepare"));
172 
173 static cl::opt<bool> DisablePreheaderProtect(
174     "disable-preheader-prot", cl::Hidden, cl::init(false),
175     cl::desc("Disable protection against removing loop preheaders"));
176 
177 static cl::opt<bool> ProfileGuidedSectionPrefix(
178     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
179     cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 
181 static cl::opt<unsigned> FreqRatioToSkipMerge(
182     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
183     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
184              "(frequency of destination block) is greater than this ratio"));
185 
186 static cl::opt<bool> ForceSplitStore(
187     "force-split-store", cl::Hidden, cl::init(false),
188     cl::desc("Force store splitting no matter what the target query says."));
189 
190 static cl::opt<bool>
191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
192     cl::desc("Enable merging of redundant sexts when one is dominating"
193     " the other."), cl::init(true));
194 
195 static cl::opt<bool> DisableComplexAddrModes(
196     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
197     cl::desc("Disables combining addressing modes with different parts "
198              "in optimizeMemoryInst."));
199 
200 static cl::opt<bool>
201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
202                 cl::desc("Allow creation of Phis in Address sinking."));
203 
204 static cl::opt<bool>
205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
206                    cl::desc("Allow creation of selects in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseReg(
209     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseReg field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseGV(
213     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseGV field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineBaseOffs(
217     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of BaseOffs field in Address sinking."));
219 
220 static cl::opt<bool> AddrSinkCombineScaledReg(
221     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
222     cl::desc("Allow combining of ScaledReg field in Address sinking."));
223 
224 static cl::opt<bool>
225     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
226                          cl::init(true),
227                          cl::desc("Enable splitting large offset of GEP."));
228 
229 static cl::opt<bool> EnableICMP_EQToICMP_ST(
230     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
231     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
232 
233 namespace {
234 
235 enum ExtType {
236   ZeroExtension,   // Zero extension has been seen.
237   SignExtension,   // Sign extension has been seen.
238   BothExtension    // This extension type is used if we saw sext after
239                    // ZeroExtension had been set, or if we saw zext after
240                    // SignExtension had been set. It makes the type
241                    // information of a promoted instruction invalid.
242 };
243 
244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
247 using SExts = SmallVector<Instruction *, 16>;
248 using ValueToSExts = DenseMap<Value *, SExts>;
249 
250 class TypePromotionTransaction;
251 
252   class CodeGenPrepare : public FunctionPass {
253     const TargetMachine *TM = nullptr;
254     const TargetSubtargetInfo *SubtargetInfo;
255     const TargetLowering *TLI = nullptr;
256     const TargetRegisterInfo *TRI;
257     const TargetTransformInfo *TTI = nullptr;
258     const TargetLibraryInfo *TLInfo;
259     const LoopInfo *LI;
260     std::unique_ptr<BlockFrequencyInfo> BFI;
261     std::unique_ptr<BranchProbabilityInfo> BPI;
262     ProfileSummaryInfo *PSI;
263 
264     /// As we scan instructions optimizing them, this is the next instruction
265     /// to optimize. Transforms that can invalidate this should update it.
266     BasicBlock::iterator CurInstIterator;
267 
268     /// Keeps track of non-local addresses that have been sunk into a block.
269     /// This allows us to avoid inserting duplicate code for blocks with
270     /// multiple load/stores of the same address. The usage of WeakTrackingVH
271     /// enables SunkAddrs to be treated as a cache whose entries can be
272     /// invalidated if a sunken address computation has been erased.
273     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
274 
275     /// Keeps track of all instructions inserted for the current function.
276     SetOfInstrs InsertedInsts;
277 
278     /// Keeps track of the type of the related instruction before their
279     /// promotion for the current function.
280     InstrToOrigTy PromotedInsts;
281 
282     /// Keep track of instructions removed during promotion.
283     SetOfInstrs RemovedInsts;
284 
285     /// Keep track of sext chains based on their initial value.
286     DenseMap<Value *, Instruction *> SeenChainsForSExt;
287 
288     /// Keep track of GEPs accessing the same data structures such as structs or
289     /// arrays that are candidates to be split later because of their large
290     /// size.
291     MapVector<
292         AssertingVH<Value>,
293         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
294         LargeOffsetGEPMap;
295 
296     /// Keep track of new GEP base after splitting the GEPs having large offset.
297     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
298 
299     /// Map serial numbers to Large offset GEPs.
300     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
301 
302     /// Keep track of SExt promoted.
303     ValueToSExts ValToSExtendedUses;
304 
305     /// True if the function has the OptSize attribute.
306     bool OptSize;
307 
308     /// DataLayout for the Function being processed.
309     const DataLayout *DL = nullptr;
310 
311     /// Building the dominator tree can be expensive, so we only build it
312     /// lazily and update it when required.
313     std::unique_ptr<DominatorTree> DT;
314 
315   public:
316     static char ID; // Pass identification, replacement for typeid
317 
318     CodeGenPrepare() : FunctionPass(ID) {
319       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
320     }
321 
322     bool runOnFunction(Function &F) override;
323 
324     StringRef getPassName() const override { return "CodeGen Prepare"; }
325 
326     void getAnalysisUsage(AnalysisUsage &AU) const override {
327       // FIXME: When we can selectively preserve passes, preserve the domtree.
328       AU.addRequired<ProfileSummaryInfoWrapperPass>();
329       AU.addRequired<TargetLibraryInfoWrapperPass>();
330       AU.addRequired<TargetPassConfig>();
331       AU.addRequired<TargetTransformInfoWrapperPass>();
332       AU.addRequired<LoopInfoWrapperPass>();
333     }
334 
335   private:
336     template <typename F>
337     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
338       // Substituting can cause recursive simplifications, which can invalidate
339       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
340       // happens.
341       Value *CurValue = &*CurInstIterator;
342       WeakTrackingVH IterHandle(CurValue);
343 
344       f();
345 
346       // If the iterator instruction was recursively deleted, start over at the
347       // start of the block.
348       if (IterHandle != CurValue) {
349         CurInstIterator = BB->begin();
350         SunkAddrs.clear();
351       }
352     }
353 
354     // Get the DominatorTree, building if necessary.
355     DominatorTree &getDT(Function &F) {
356       if (!DT)
357         DT = std::make_unique<DominatorTree>(F);
358       return *DT;
359     }
360 
361     bool eliminateFallThrough(Function &F);
362     bool eliminateMostlyEmptyBlocks(Function &F);
363     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
364     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
365     void eliminateMostlyEmptyBlock(BasicBlock *BB);
366     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
367                                        bool isPreheader);
368     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
369     bool optimizeInst(Instruction *I, bool &ModifiedDT);
370     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
371                             Type *AccessTy, unsigned AddrSpace);
372     bool optimizeInlineAsmInst(CallInst *CS);
373     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
374     bool optimizeExt(Instruction *&I);
375     bool optimizeExtUses(Instruction *I);
376     bool optimizeLoadExt(LoadInst *Load);
377     bool optimizeShiftInst(BinaryOperator *BO);
378     bool optimizeSelectInst(SelectInst *SI);
379     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
380     bool optimizeSwitchInst(SwitchInst *SI);
381     bool optimizeExtractElementInst(Instruction *Inst);
382     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
383     bool fixupDbgValue(Instruction *I);
384     bool placeDbgValues(Function &F);
385     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
386                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
387     bool tryToPromoteExts(TypePromotionTransaction &TPT,
388                           const SmallVectorImpl<Instruction *> &Exts,
389                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
390                           unsigned CreatedInstsCost = 0);
391     bool mergeSExts(Function &F);
392     bool splitLargeGEPOffsets();
393     bool performAddressTypePromotion(
394         Instruction *&Inst,
395         bool AllowPromotionWithoutCommonHeader,
396         bool HasPromoted, TypePromotionTransaction &TPT,
397         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
398     bool splitBranchCondition(Function &F, bool &ModifiedDT);
399     bool simplifyOffsetableRelocate(Instruction &I);
400 
401     bool tryToSinkFreeOperands(Instruction *I);
402     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
403                                      Value *Arg1, CmpInst *Cmp,
404                                      Intrinsic::ID IID);
405     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
406     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
407     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
408   };
409 
410 } // end anonymous namespace
411 
412 char CodeGenPrepare::ID = 0;
413 
414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
415                       "Optimize for code generation", false, false)
416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
418                     "Optimize for code generation", false, false)
419 
420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
421 
422 bool CodeGenPrepare::runOnFunction(Function &F) {
423   if (skipFunction(F))
424     return false;
425 
426   DL = &F.getParent()->getDataLayout();
427 
428   bool EverMadeChange = false;
429   // Clear per function information.
430   InsertedInsts.clear();
431   PromotedInsts.clear();
432 
433   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
434   SubtargetInfo = TM->getSubtargetImpl(F);
435   TLI = SubtargetInfo->getTargetLowering();
436   TRI = SubtargetInfo->getRegisterInfo();
437   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
438   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
439   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
440   BPI.reset(new BranchProbabilityInfo(F, *LI));
441   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
442   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
443   OptSize = F.hasOptSize();
444   if (ProfileGuidedSectionPrefix) {
445     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
446       F.setSectionPrefix(".hot");
447     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
448       F.setSectionPrefix(".unlikely");
449   }
450 
451   /// This optimization identifies DIV instructions that can be
452   /// profitably bypassed and carried out with a shorter, faster divide.
453   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
454     const DenseMap<unsigned int, unsigned int> &BypassWidths =
455         TLI->getBypassSlowDivWidths();
456     BasicBlock* BB = &*F.begin();
457     while (BB != nullptr) {
458       // bypassSlowDivision may create new BBs, but we don't want to reapply the
459       // optimization to those blocks.
460       BasicBlock* Next = BB->getNextNode();
461       // F.hasOptSize is already checked in the outer if statement.
462       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
463         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
464       BB = Next;
465     }
466   }
467 
468   // Eliminate blocks that contain only PHI nodes and an
469   // unconditional branch.
470   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
471 
472   bool ModifiedDT = false;
473   if (!DisableBranchOpts)
474     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
475 
476   // Split some critical edges where one of the sources is an indirect branch,
477   // to help generate sane code for PHIs involving such edges.
478   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
479 
480   bool MadeChange = true;
481   while (MadeChange) {
482     MadeChange = false;
483     DT.reset();
484     for (Function::iterator I = F.begin(); I != F.end(); ) {
485       BasicBlock *BB = &*I++;
486       bool ModifiedDTOnIteration = false;
487       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
488 
489       // Restart BB iteration if the dominator tree of the Function was changed
490       if (ModifiedDTOnIteration)
491         break;
492     }
493     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
494       MadeChange |= mergeSExts(F);
495     if (!LargeOffsetGEPMap.empty())
496       MadeChange |= splitLargeGEPOffsets();
497 
498     // Really free removed instructions during promotion.
499     for (Instruction *I : RemovedInsts)
500       I->deleteValue();
501 
502     EverMadeChange |= MadeChange;
503     SeenChainsForSExt.clear();
504     ValToSExtendedUses.clear();
505     RemovedInsts.clear();
506     LargeOffsetGEPMap.clear();
507     LargeOffsetGEPID.clear();
508   }
509 
510   SunkAddrs.clear();
511 
512   if (!DisableBranchOpts) {
513     MadeChange = false;
514     // Use a set vector to get deterministic iteration order. The order the
515     // blocks are removed may affect whether or not PHI nodes in successors
516     // are removed.
517     SmallSetVector<BasicBlock*, 8> WorkList;
518     for (BasicBlock &BB : F) {
519       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
520       MadeChange |= ConstantFoldTerminator(&BB, true);
521       if (!MadeChange) continue;
522 
523       for (SmallVectorImpl<BasicBlock*>::iterator
524              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
525         if (pred_begin(*II) == pred_end(*II))
526           WorkList.insert(*II);
527     }
528 
529     // Delete the dead blocks and any of their dead successors.
530     MadeChange |= !WorkList.empty();
531     while (!WorkList.empty()) {
532       BasicBlock *BB = WorkList.pop_back_val();
533       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
534 
535       DeleteDeadBlock(BB);
536 
537       for (SmallVectorImpl<BasicBlock*>::iterator
538              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
539         if (pred_begin(*II) == pred_end(*II))
540           WorkList.insert(*II);
541     }
542 
543     // Merge pairs of basic blocks with unconditional branches, connected by
544     // a single edge.
545     if (EverMadeChange || MadeChange)
546       MadeChange |= eliminateFallThrough(F);
547 
548     EverMadeChange |= MadeChange;
549   }
550 
551   if (!DisableGCOpts) {
552     SmallVector<Instruction *, 2> Statepoints;
553     for (BasicBlock &BB : F)
554       for (Instruction &I : BB)
555         if (isStatepoint(I))
556           Statepoints.push_back(&I);
557     for (auto &I : Statepoints)
558       EverMadeChange |= simplifyOffsetableRelocate(*I);
559   }
560 
561   // Do this last to clean up use-before-def scenarios introduced by other
562   // preparatory transforms.
563   EverMadeChange |= placeDbgValues(F);
564 
565   return EverMadeChange;
566 }
567 
568 /// Merge basic blocks which are connected by a single edge, where one of the
569 /// basic blocks has a single successor pointing to the other basic block,
570 /// which has a single predecessor.
571 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
572   bool Changed = false;
573   // Scan all of the blocks in the function, except for the entry block.
574   // Use a temporary array to avoid iterator being invalidated when
575   // deleting blocks.
576   SmallVector<WeakTrackingVH, 16> Blocks;
577   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
578     Blocks.push_back(&Block);
579 
580   for (auto &Block : Blocks) {
581     auto *BB = cast_or_null<BasicBlock>(Block);
582     if (!BB)
583       continue;
584     // If the destination block has a single pred, then this is a trivial
585     // edge, just collapse it.
586     BasicBlock *SinglePred = BB->getSinglePredecessor();
587 
588     // Don't merge if BB's address is taken.
589     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
590 
591     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
592     if (Term && !Term->isConditional()) {
593       Changed = true;
594       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
595 
596       // Merge BB into SinglePred and delete it.
597       MergeBlockIntoPredecessor(BB);
598     }
599   }
600   return Changed;
601 }
602 
603 /// Find a destination block from BB if BB is mergeable empty block.
604 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
605   // If this block doesn't end with an uncond branch, ignore it.
606   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
607   if (!BI || !BI->isUnconditional())
608     return nullptr;
609 
610   // If the instruction before the branch (skipping debug info) isn't a phi
611   // node, then other stuff is happening here.
612   BasicBlock::iterator BBI = BI->getIterator();
613   if (BBI != BB->begin()) {
614     --BBI;
615     while (isa<DbgInfoIntrinsic>(BBI)) {
616       if (BBI == BB->begin())
617         break;
618       --BBI;
619     }
620     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
621       return nullptr;
622   }
623 
624   // Do not break infinite loops.
625   BasicBlock *DestBB = BI->getSuccessor(0);
626   if (DestBB == BB)
627     return nullptr;
628 
629   if (!canMergeBlocks(BB, DestBB))
630     DestBB = nullptr;
631 
632   return DestBB;
633 }
634 
635 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
636 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
637 /// edges in ways that are non-optimal for isel. Start by eliminating these
638 /// blocks so we can split them the way we want them.
639 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
640   SmallPtrSet<BasicBlock *, 16> Preheaders;
641   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
642   while (!LoopList.empty()) {
643     Loop *L = LoopList.pop_back_val();
644     LoopList.insert(LoopList.end(), L->begin(), L->end());
645     if (BasicBlock *Preheader = L->getLoopPreheader())
646       Preheaders.insert(Preheader);
647   }
648 
649   bool MadeChange = false;
650   // Copy blocks into a temporary array to avoid iterator invalidation issues
651   // as we remove them.
652   // Note that this intentionally skips the entry block.
653   SmallVector<WeakTrackingVH, 16> Blocks;
654   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
655     Blocks.push_back(&Block);
656 
657   for (auto &Block : Blocks) {
658     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
659     if (!BB)
660       continue;
661     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
662     if (!DestBB ||
663         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
664       continue;
665 
666     eliminateMostlyEmptyBlock(BB);
667     MadeChange = true;
668   }
669   return MadeChange;
670 }
671 
672 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
673                                                    BasicBlock *DestBB,
674                                                    bool isPreheader) {
675   // Do not delete loop preheaders if doing so would create a critical edge.
676   // Loop preheaders can be good locations to spill registers. If the
677   // preheader is deleted and we create a critical edge, registers may be
678   // spilled in the loop body instead.
679   if (!DisablePreheaderProtect && isPreheader &&
680       !(BB->getSinglePredecessor() &&
681         BB->getSinglePredecessor()->getSingleSuccessor()))
682     return false;
683 
684   // Skip merging if the block's successor is also a successor to any callbr
685   // that leads to this block.
686   // FIXME: Is this really needed? Is this a correctness issue?
687   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
688     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
689       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
690         if (DestBB == CBI->getSuccessor(i))
691           return false;
692   }
693 
694   // Try to skip merging if the unique predecessor of BB is terminated by a
695   // switch or indirect branch instruction, and BB is used as an incoming block
696   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
697   // add COPY instructions in the predecessor of BB instead of BB (if it is not
698   // merged). Note that the critical edge created by merging such blocks wont be
699   // split in MachineSink because the jump table is not analyzable. By keeping
700   // such empty block (BB), ISel will place COPY instructions in BB, not in the
701   // predecessor of BB.
702   BasicBlock *Pred = BB->getUniquePredecessor();
703   if (!Pred ||
704       !(isa<SwitchInst>(Pred->getTerminator()) ||
705         isa<IndirectBrInst>(Pred->getTerminator())))
706     return true;
707 
708   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
709     return true;
710 
711   // We use a simple cost heuristic which determine skipping merging is
712   // profitable if the cost of skipping merging is less than the cost of
713   // merging : Cost(skipping merging) < Cost(merging BB), where the
714   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
715   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
716   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
717   //   Freq(Pred) / Freq(BB) > 2.
718   // Note that if there are multiple empty blocks sharing the same incoming
719   // value for the PHIs in the DestBB, we consider them together. In such
720   // case, Cost(merging BB) will be the sum of their frequencies.
721 
722   if (!isa<PHINode>(DestBB->begin()))
723     return true;
724 
725   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
726 
727   // Find all other incoming blocks from which incoming values of all PHIs in
728   // DestBB are the same as the ones from BB.
729   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
730        ++PI) {
731     BasicBlock *DestBBPred = *PI;
732     if (DestBBPred == BB)
733       continue;
734 
735     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
736           return DestPN.getIncomingValueForBlock(BB) ==
737                  DestPN.getIncomingValueForBlock(DestBBPred);
738         }))
739       SameIncomingValueBBs.insert(DestBBPred);
740   }
741 
742   // See if all BB's incoming values are same as the value from Pred. In this
743   // case, no reason to skip merging because COPYs are expected to be place in
744   // Pred already.
745   if (SameIncomingValueBBs.count(Pred))
746     return true;
747 
748   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
749   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
750 
751   for (auto SameValueBB : SameIncomingValueBBs)
752     if (SameValueBB->getUniquePredecessor() == Pred &&
753         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
754       BBFreq += BFI->getBlockFreq(SameValueBB);
755 
756   return PredFreq.getFrequency() <=
757          BBFreq.getFrequency() * FreqRatioToSkipMerge;
758 }
759 
760 /// Return true if we can merge BB into DestBB if there is a single
761 /// unconditional branch between them, and BB contains no other non-phi
762 /// instructions.
763 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
764                                     const BasicBlock *DestBB) const {
765   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
766   // the successor.  If there are more complex condition (e.g. preheaders),
767   // don't mess around with them.
768   for (const PHINode &PN : BB->phis()) {
769     for (const User *U : PN.users()) {
770       const Instruction *UI = cast<Instruction>(U);
771       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
772         return false;
773       // If User is inside DestBB block and it is a PHINode then check
774       // incoming value. If incoming value is not from BB then this is
775       // a complex condition (e.g. preheaders) we want to avoid here.
776       if (UI->getParent() == DestBB) {
777         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
778           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
779             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
780             if (Insn && Insn->getParent() == BB &&
781                 Insn->getParent() != UPN->getIncomingBlock(I))
782               return false;
783           }
784       }
785     }
786   }
787 
788   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
789   // and DestBB may have conflicting incoming values for the block.  If so, we
790   // can't merge the block.
791   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
792   if (!DestBBPN) return true;  // no conflict.
793 
794   // Collect the preds of BB.
795   SmallPtrSet<const BasicBlock*, 16> BBPreds;
796   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
797     // It is faster to get preds from a PHI than with pred_iterator.
798     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
799       BBPreds.insert(BBPN->getIncomingBlock(i));
800   } else {
801     BBPreds.insert(pred_begin(BB), pred_end(BB));
802   }
803 
804   // Walk the preds of DestBB.
805   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
806     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
807     if (BBPreds.count(Pred)) {   // Common predecessor?
808       for (const PHINode &PN : DestBB->phis()) {
809         const Value *V1 = PN.getIncomingValueForBlock(Pred);
810         const Value *V2 = PN.getIncomingValueForBlock(BB);
811 
812         // If V2 is a phi node in BB, look up what the mapped value will be.
813         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
814           if (V2PN->getParent() == BB)
815             V2 = V2PN->getIncomingValueForBlock(Pred);
816 
817         // If there is a conflict, bail out.
818         if (V1 != V2) return false;
819       }
820     }
821   }
822 
823   return true;
824 }
825 
826 /// Eliminate a basic block that has only phi's and an unconditional branch in
827 /// it.
828 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
829   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
830   BasicBlock *DestBB = BI->getSuccessor(0);
831 
832   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
833                     << *BB << *DestBB);
834 
835   // If the destination block has a single pred, then this is a trivial edge,
836   // just collapse it.
837   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
838     if (SinglePred != DestBB) {
839       assert(SinglePred == BB &&
840              "Single predecessor not the same as predecessor");
841       // Merge DestBB into SinglePred/BB and delete it.
842       MergeBlockIntoPredecessor(DestBB);
843       // Note: BB(=SinglePred) will not be deleted on this path.
844       // DestBB(=its single successor) is the one that was deleted.
845       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
846       return;
847     }
848   }
849 
850   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
851   // to handle the new incoming edges it is about to have.
852   for (PHINode &PN : DestBB->phis()) {
853     // Remove the incoming value for BB, and remember it.
854     Value *InVal = PN.removeIncomingValue(BB, false);
855 
856     // Two options: either the InVal is a phi node defined in BB or it is some
857     // value that dominates BB.
858     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
859     if (InValPhi && InValPhi->getParent() == BB) {
860       // Add all of the input values of the input PHI as inputs of this phi.
861       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
862         PN.addIncoming(InValPhi->getIncomingValue(i),
863                        InValPhi->getIncomingBlock(i));
864     } else {
865       // Otherwise, add one instance of the dominating value for each edge that
866       // we will be adding.
867       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
868         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
869           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
870       } else {
871         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
872           PN.addIncoming(InVal, *PI);
873       }
874     }
875   }
876 
877   // The PHIs are now updated, change everything that refers to BB to use
878   // DestBB and remove BB.
879   BB->replaceAllUsesWith(DestBB);
880   BB->eraseFromParent();
881   ++NumBlocksElim;
882 
883   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
884 }
885 
886 // Computes a map of base pointer relocation instructions to corresponding
887 // derived pointer relocation instructions given a vector of all relocate calls
888 static void computeBaseDerivedRelocateMap(
889     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
890     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
891         &RelocateInstMap) {
892   // Collect information in two maps: one primarily for locating the base object
893   // while filling the second map; the second map is the final structure holding
894   // a mapping between Base and corresponding Derived relocate calls
895   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
896   for (auto *ThisRelocate : AllRelocateCalls) {
897     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
898                             ThisRelocate->getDerivedPtrIndex());
899     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
900   }
901   for (auto &Item : RelocateIdxMap) {
902     std::pair<unsigned, unsigned> Key = Item.first;
903     if (Key.first == Key.second)
904       // Base relocation: nothing to insert
905       continue;
906 
907     GCRelocateInst *I = Item.second;
908     auto BaseKey = std::make_pair(Key.first, Key.first);
909 
910     // We're iterating over RelocateIdxMap so we cannot modify it.
911     auto MaybeBase = RelocateIdxMap.find(BaseKey);
912     if (MaybeBase == RelocateIdxMap.end())
913       // TODO: We might want to insert a new base object relocate and gep off
914       // that, if there are enough derived object relocates.
915       continue;
916 
917     RelocateInstMap[MaybeBase->second].push_back(I);
918   }
919 }
920 
921 // Accepts a GEP and extracts the operands into a vector provided they're all
922 // small integer constants
923 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
924                                           SmallVectorImpl<Value *> &OffsetV) {
925   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
926     // Only accept small constant integer operands
927     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
928     if (!Op || Op->getZExtValue() > 20)
929       return false;
930   }
931 
932   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
933     OffsetV.push_back(GEP->getOperand(i));
934   return true;
935 }
936 
937 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
938 // replace, computes a replacement, and affects it.
939 static bool
940 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
941                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
942   bool MadeChange = false;
943   // We must ensure the relocation of derived pointer is defined after
944   // relocation of base pointer. If we find a relocation corresponding to base
945   // defined earlier than relocation of base then we move relocation of base
946   // right before found relocation. We consider only relocation in the same
947   // basic block as relocation of base. Relocations from other basic block will
948   // be skipped by optimization and we do not care about them.
949   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
950        &*R != RelocatedBase; ++R)
951     if (auto RI = dyn_cast<GCRelocateInst>(R))
952       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
953         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
954           RelocatedBase->moveBefore(RI);
955           break;
956         }
957 
958   for (GCRelocateInst *ToReplace : Targets) {
959     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
960            "Not relocating a derived object of the original base object");
961     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
962       // A duplicate relocate call. TODO: coalesce duplicates.
963       continue;
964     }
965 
966     if (RelocatedBase->getParent() != ToReplace->getParent()) {
967       // Base and derived relocates are in different basic blocks.
968       // In this case transform is only valid when base dominates derived
969       // relocate. However it would be too expensive to check dominance
970       // for each such relocate, so we skip the whole transformation.
971       continue;
972     }
973 
974     Value *Base = ToReplace->getBasePtr();
975     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
976     if (!Derived || Derived->getPointerOperand() != Base)
977       continue;
978 
979     SmallVector<Value *, 2> OffsetV;
980     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
981       continue;
982 
983     // Create a Builder and replace the target callsite with a gep
984     assert(RelocatedBase->getNextNode() &&
985            "Should always have one since it's not a terminator");
986 
987     // Insert after RelocatedBase
988     IRBuilder<> Builder(RelocatedBase->getNextNode());
989     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
990 
991     // If gc_relocate does not match the actual type, cast it to the right type.
992     // In theory, there must be a bitcast after gc_relocate if the type does not
993     // match, and we should reuse it to get the derived pointer. But it could be
994     // cases like this:
995     // bb1:
996     //  ...
997     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
998     //  br label %merge
999     //
1000     // bb2:
1001     //  ...
1002     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1003     //  br label %merge
1004     //
1005     // merge:
1006     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1007     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1008     //
1009     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1010     // no matter there is already one or not. In this way, we can handle all cases, and
1011     // the extra bitcast should be optimized away in later passes.
1012     Value *ActualRelocatedBase = RelocatedBase;
1013     if (RelocatedBase->getType() != Base->getType()) {
1014       ActualRelocatedBase =
1015           Builder.CreateBitCast(RelocatedBase, Base->getType());
1016     }
1017     Value *Replacement = Builder.CreateGEP(
1018         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1019     Replacement->takeName(ToReplace);
1020     // If the newly generated derived pointer's type does not match the original derived
1021     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1022     Value *ActualReplacement = Replacement;
1023     if (Replacement->getType() != ToReplace->getType()) {
1024       ActualReplacement =
1025           Builder.CreateBitCast(Replacement, ToReplace->getType());
1026     }
1027     ToReplace->replaceAllUsesWith(ActualReplacement);
1028     ToReplace->eraseFromParent();
1029 
1030     MadeChange = true;
1031   }
1032   return MadeChange;
1033 }
1034 
1035 // Turns this:
1036 //
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = relocate(%tok, i32 4, i32 4)
1041 // %ptr' = relocate(%tok, i32 4, i32 5)
1042 // %val = load %ptr'
1043 //
1044 // into this:
1045 //
1046 // %base = ...
1047 // %ptr = gep %base + 15
1048 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1049 // %base' = gc.relocate(%tok, i32 4, i32 4)
1050 // %ptr' = gep %base' + 15
1051 // %val = load %ptr'
1052 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1053   bool MadeChange = false;
1054   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1055 
1056   for (auto *U : I.users())
1057     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1058       // Collect all the relocate calls associated with a statepoint
1059       AllRelocateCalls.push_back(Relocate);
1060 
1061   // We need at least one base pointer relocation + one derived pointer
1062   // relocation to mangle
1063   if (AllRelocateCalls.size() < 2)
1064     return false;
1065 
1066   // RelocateInstMap is a mapping from the base relocate instruction to the
1067   // corresponding derived relocate instructions
1068   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1069   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1070   if (RelocateInstMap.empty())
1071     return false;
1072 
1073   for (auto &Item : RelocateInstMap)
1074     // Item.first is the RelocatedBase to offset against
1075     // Item.second is the vector of Targets to replace
1076     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1077   return MadeChange;
1078 }
1079 
1080 /// Sink the specified cast instruction into its user blocks.
1081 static bool SinkCast(CastInst *CI) {
1082   BasicBlock *DefBB = CI->getParent();
1083 
1084   /// InsertedCasts - Only insert a cast in each block once.
1085   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1086 
1087   bool MadeChange = false;
1088   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1089        UI != E; ) {
1090     Use &TheUse = UI.getUse();
1091     Instruction *User = cast<Instruction>(*UI);
1092 
1093     // Figure out which BB this cast is used in.  For PHI's this is the
1094     // appropriate predecessor block.
1095     BasicBlock *UserBB = User->getParent();
1096     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1097       UserBB = PN->getIncomingBlock(TheUse);
1098     }
1099 
1100     // Preincrement use iterator so we don't invalidate it.
1101     ++UI;
1102 
1103     // The first insertion point of a block containing an EH pad is after the
1104     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1105     if (User->isEHPad())
1106       continue;
1107 
1108     // If the block selected to receive the cast is an EH pad that does not
1109     // allow non-PHI instructions before the terminator, we can't sink the
1110     // cast.
1111     if (UserBB->getTerminator()->isEHPad())
1112       continue;
1113 
1114     // If this user is in the same block as the cast, don't change the cast.
1115     if (UserBB == DefBB) continue;
1116 
1117     // If we have already inserted a cast into this block, use it.
1118     CastInst *&InsertedCast = InsertedCasts[UserBB];
1119 
1120     if (!InsertedCast) {
1121       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1122       assert(InsertPt != UserBB->end());
1123       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1124                                       CI->getType(), "", &*InsertPt);
1125       InsertedCast->setDebugLoc(CI->getDebugLoc());
1126     }
1127 
1128     // Replace a use of the cast with a use of the new cast.
1129     TheUse = InsertedCast;
1130     MadeChange = true;
1131     ++NumCastUses;
1132   }
1133 
1134   // If we removed all uses, nuke the cast.
1135   if (CI->use_empty()) {
1136     salvageDebugInfo(*CI);
1137     CI->eraseFromParent();
1138     MadeChange = true;
1139   }
1140 
1141   return MadeChange;
1142 }
1143 
1144 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1145 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1146 /// reduce the number of virtual registers that must be created and coalesced.
1147 ///
1148 /// Return true if any changes are made.
1149 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1150                                        const DataLayout &DL) {
1151   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1152   // than sinking only nop casts, but is helpful on some platforms.
1153   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1154     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1155                                  ASC->getDestAddressSpace()))
1156       return false;
1157   }
1158 
1159   // If this is a noop copy,
1160   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1161   EVT DstVT = TLI.getValueType(DL, CI->getType());
1162 
1163   // This is an fp<->int conversion?
1164   if (SrcVT.isInteger() != DstVT.isInteger())
1165     return false;
1166 
1167   // If this is an extension, it will be a zero or sign extension, which
1168   // isn't a noop.
1169   if (SrcVT.bitsLT(DstVT)) return false;
1170 
1171   // If these values will be promoted, find out what they will be promoted
1172   // to.  This helps us consider truncates on PPC as noop copies when they
1173   // are.
1174   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1175       TargetLowering::TypePromoteInteger)
1176     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1177   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1178       TargetLowering::TypePromoteInteger)
1179     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1180 
1181   // If, after promotion, these are the same types, this is a noop copy.
1182   if (SrcVT != DstVT)
1183     return false;
1184 
1185   return SinkCast(CI);
1186 }
1187 
1188 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1189                                                  Value *Arg0, Value *Arg1,
1190                                                  CmpInst *Cmp,
1191                                                  Intrinsic::ID IID) {
1192   if (BO->getParent() != Cmp->getParent()) {
1193     // We used to use a dominator tree here to allow multi-block optimization.
1194     // But that was problematic because:
1195     // 1. It could cause a perf regression by hoisting the math op into the
1196     //    critical path.
1197     // 2. It could cause a perf regression by creating a value that was live
1198     //    across multiple blocks and increasing register pressure.
1199     // 3. Use of a dominator tree could cause large compile-time regression.
1200     //    This is because we recompute the DT on every change in the main CGP
1201     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1202     //    that was fixed, using a DT here would be ok.
1203     return false;
1204   }
1205 
1206   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1207   if (BO->getOpcode() == Instruction::Add &&
1208       IID == Intrinsic::usub_with_overflow) {
1209     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1210     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1211   }
1212 
1213   // Insert at the first instruction of the pair.
1214   Instruction *InsertPt = nullptr;
1215   for (Instruction &Iter : *Cmp->getParent()) {
1216     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1217     // the overflow intrinsic are defined.
1218     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1219       InsertPt = &Iter;
1220       break;
1221     }
1222   }
1223   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1224 
1225   IRBuilder<> Builder(InsertPt);
1226   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1227   if (BO->getOpcode() != Instruction::Xor) {
1228     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1229     BO->replaceAllUsesWith(Math);
1230   } else
1231     assert(BO->hasOneUse() &&
1232            "Patterns with XOr should use the BO only in the compare");
1233   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1234   Cmp->replaceAllUsesWith(OV);
1235   Cmp->eraseFromParent();
1236   BO->eraseFromParent();
1237   return true;
1238 }
1239 
1240 /// Match special-case patterns that check for unsigned add overflow.
1241 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1242                                                    BinaryOperator *&Add) {
1243   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1244   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1245   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1246 
1247   // We are not expecting non-canonical/degenerate code. Just bail out.
1248   if (isa<Constant>(A))
1249     return false;
1250 
1251   ICmpInst::Predicate Pred = Cmp->getPredicate();
1252   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1253     B = ConstantInt::get(B->getType(), 1);
1254   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1255     B = ConstantInt::get(B->getType(), -1);
1256   else
1257     return false;
1258 
1259   // Check the users of the variable operand of the compare looking for an add
1260   // with the adjusted constant.
1261   for (User *U : A->users()) {
1262     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1263       Add = cast<BinaryOperator>(U);
1264       return true;
1265     }
1266   }
1267   return false;
1268 }
1269 
1270 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1271 /// intrinsic. Return true if any changes were made.
1272 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1273                                                bool &ModifiedDT) {
1274   Value *A, *B;
1275   BinaryOperator *Add;
1276   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1277     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1278       return false;
1279     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1280     A = Add->getOperand(0);
1281     B = Add->getOperand(1);
1282   }
1283 
1284   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1285                                  TLI->getValueType(*DL, Add->getType()),
1286                                  Add->hasNUsesOrMore(2)))
1287     return false;
1288 
1289   // We don't want to move around uses of condition values this late, so we
1290   // check if it is legal to create the call to the intrinsic in the basic
1291   // block containing the icmp.
1292   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1293     return false;
1294 
1295   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1296                                    Intrinsic::uadd_with_overflow))
1297     return false;
1298 
1299   // Reset callers - do not crash by iterating over a dead instruction.
1300   ModifiedDT = true;
1301   return true;
1302 }
1303 
1304 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1305                                                bool &ModifiedDT) {
1306   // We are not expecting non-canonical/degenerate code. Just bail out.
1307   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1308   if (isa<Constant>(A) && isa<Constant>(B))
1309     return false;
1310 
1311   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1312   ICmpInst::Predicate Pred = Cmp->getPredicate();
1313   if (Pred == ICmpInst::ICMP_UGT) {
1314     std::swap(A, B);
1315     Pred = ICmpInst::ICMP_ULT;
1316   }
1317   // Convert special-case: (A == 0) is the same as (A u< 1).
1318   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1319     B = ConstantInt::get(B->getType(), 1);
1320     Pred = ICmpInst::ICMP_ULT;
1321   }
1322   // Convert special-case: (A != 0) is the same as (0 u< A).
1323   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1324     std::swap(A, B);
1325     Pred = ICmpInst::ICMP_ULT;
1326   }
1327   if (Pred != ICmpInst::ICMP_ULT)
1328     return false;
1329 
1330   // Walk the users of a variable operand of a compare looking for a subtract or
1331   // add with that same operand. Also match the 2nd operand of the compare to
1332   // the add/sub, but that may be a negated constant operand of an add.
1333   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1334   BinaryOperator *Sub = nullptr;
1335   for (User *U : CmpVariableOperand->users()) {
1336     // A - B, A u< B --> usubo(A, B)
1337     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1338       Sub = cast<BinaryOperator>(U);
1339       break;
1340     }
1341 
1342     // A + (-C), A u< C (canonicalized form of (sub A, C))
1343     const APInt *CmpC, *AddC;
1344     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1345         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1346       Sub = cast<BinaryOperator>(U);
1347       break;
1348     }
1349   }
1350   if (!Sub)
1351     return false;
1352 
1353   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1354                                  TLI->getValueType(*DL, Sub->getType()),
1355                                  Sub->hasNUsesOrMore(2)))
1356     return false;
1357 
1358   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1359                                    Cmp, Intrinsic::usub_with_overflow))
1360     return false;
1361 
1362   // Reset callers - do not crash by iterating over a dead instruction.
1363   ModifiedDT = true;
1364   return true;
1365 }
1366 
1367 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1368 /// registers that must be created and coalesced. This is a clear win except on
1369 /// targets with multiple condition code registers (PowerPC), where it might
1370 /// lose; some adjustment may be wanted there.
1371 ///
1372 /// Return true if any changes are made.
1373 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1374   if (TLI.hasMultipleConditionRegisters())
1375     return false;
1376 
1377   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1378   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1379     return false;
1380 
1381   // Only insert a cmp in each block once.
1382   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1383 
1384   bool MadeChange = false;
1385   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1386        UI != E; ) {
1387     Use &TheUse = UI.getUse();
1388     Instruction *User = cast<Instruction>(*UI);
1389 
1390     // Preincrement use iterator so we don't invalidate it.
1391     ++UI;
1392 
1393     // Don't bother for PHI nodes.
1394     if (isa<PHINode>(User))
1395       continue;
1396 
1397     // Figure out which BB this cmp is used in.
1398     BasicBlock *UserBB = User->getParent();
1399     BasicBlock *DefBB = Cmp->getParent();
1400 
1401     // If this user is in the same block as the cmp, don't change the cmp.
1402     if (UserBB == DefBB) continue;
1403 
1404     // If we have already inserted a cmp into this block, use it.
1405     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1406 
1407     if (!InsertedCmp) {
1408       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1409       assert(InsertPt != UserBB->end());
1410       InsertedCmp =
1411           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1412                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1413                           &*InsertPt);
1414       // Propagate the debug info.
1415       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1416     }
1417 
1418     // Replace a use of the cmp with a use of the new cmp.
1419     TheUse = InsertedCmp;
1420     MadeChange = true;
1421     ++NumCmpUses;
1422   }
1423 
1424   // If we removed all uses, nuke the cmp.
1425   if (Cmp->use_empty()) {
1426     Cmp->eraseFromParent();
1427     MadeChange = true;
1428   }
1429 
1430   return MadeChange;
1431 }
1432 
1433 /// For pattern like:
1434 ///
1435 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1436 ///   ...
1437 /// DomBB:
1438 ///   ...
1439 ///   br DomCond, TrueBB, CmpBB
1440 /// CmpBB: (with DomBB being the single predecessor)
1441 ///   ...
1442 ///   Cmp = icmp eq CmpOp0, CmpOp1
1443 ///   ...
1444 ///
1445 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1446 /// different from lowering of icmp eq (PowerPC). This function try to convert
1447 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1448 /// After that, DomCond and Cmp can use the same comparison so reduce one
1449 /// comparison.
1450 ///
1451 /// Return true if any changes are made.
1452 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1453                                        const TargetLowering &TLI) {
1454   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1455     return false;
1456 
1457   ICmpInst::Predicate Pred = Cmp->getPredicate();
1458   if (Pred != ICmpInst::ICMP_EQ)
1459     return false;
1460 
1461   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1462   // icmp slt/sgt would introduce more redundant LLVM IR.
1463   for (User *U : Cmp->users()) {
1464     if (isa<BranchInst>(U))
1465       continue;
1466     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1467       continue;
1468     return false;
1469   }
1470 
1471   // This is a cheap/incomplete check for dominance - just match a single
1472   // predecessor with a conditional branch.
1473   BasicBlock *CmpBB = Cmp->getParent();
1474   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1475   if (!DomBB)
1476     return false;
1477 
1478   // We want to ensure that the only way control gets to the comparison of
1479   // interest is that a less/greater than comparison on the same operands is
1480   // false.
1481   Value *DomCond;
1482   BasicBlock *TrueBB, *FalseBB;
1483   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1484     return false;
1485   if (CmpBB != FalseBB)
1486     return false;
1487 
1488   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1489   ICmpInst::Predicate DomPred;
1490   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1491     return false;
1492   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1493     return false;
1494 
1495   // Convert the equality comparison to the opposite of the dominating
1496   // comparison and swap the direction for all branch/select users.
1497   // We have conceptually converted:
1498   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1499   // to
1500   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1501   // And similarly for branches.
1502   for (User *U : Cmp->users()) {
1503     if (auto *BI = dyn_cast<BranchInst>(U)) {
1504       assert(BI->isConditional() && "Must be conditional");
1505       BI->swapSuccessors();
1506       continue;
1507     }
1508     if (auto *SI = dyn_cast<SelectInst>(U)) {
1509       // Swap operands
1510       SI->swapValues();
1511       SI->swapProfMetadata();
1512       continue;
1513     }
1514     llvm_unreachable("Must be a branch or a select");
1515   }
1516   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1517   return true;
1518 }
1519 
1520 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1521   if (sinkCmpExpression(Cmp, *TLI))
1522     return true;
1523 
1524   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1525     return true;
1526 
1527   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1528     return true;
1529 
1530   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1531     return true;
1532 
1533   return false;
1534 }
1535 
1536 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1537 /// used in a compare to allow isel to generate better code for targets where
1538 /// this operation can be combined.
1539 ///
1540 /// Return true if any changes are made.
1541 static bool sinkAndCmp0Expression(Instruction *AndI,
1542                                   const TargetLowering &TLI,
1543                                   SetOfInstrs &InsertedInsts) {
1544   // Double-check that we're not trying to optimize an instruction that was
1545   // already optimized by some other part of this pass.
1546   assert(!InsertedInsts.count(AndI) &&
1547          "Attempting to optimize already optimized and instruction");
1548   (void) InsertedInsts;
1549 
1550   // Nothing to do for single use in same basic block.
1551   if (AndI->hasOneUse() &&
1552       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1553     return false;
1554 
1555   // Try to avoid cases where sinking/duplicating is likely to increase register
1556   // pressure.
1557   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1558       !isa<ConstantInt>(AndI->getOperand(1)) &&
1559       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1560     return false;
1561 
1562   for (auto *U : AndI->users()) {
1563     Instruction *User = cast<Instruction>(U);
1564 
1565     // Only sink 'and' feeding icmp with 0.
1566     if (!isa<ICmpInst>(User))
1567       return false;
1568 
1569     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1570     if (!CmpC || !CmpC->isZero())
1571       return false;
1572   }
1573 
1574   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1575     return false;
1576 
1577   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1578   LLVM_DEBUG(AndI->getParent()->dump());
1579 
1580   // Push the 'and' into the same block as the icmp 0.  There should only be
1581   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1582   // others, so we don't need to keep track of which BBs we insert into.
1583   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1584        UI != E; ) {
1585     Use &TheUse = UI.getUse();
1586     Instruction *User = cast<Instruction>(*UI);
1587 
1588     // Preincrement use iterator so we don't invalidate it.
1589     ++UI;
1590 
1591     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1592 
1593     // Keep the 'and' in the same place if the use is already in the same block.
1594     Instruction *InsertPt =
1595         User->getParent() == AndI->getParent() ? AndI : User;
1596     Instruction *InsertedAnd =
1597         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1598                                AndI->getOperand(1), "", InsertPt);
1599     // Propagate the debug info.
1600     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1601 
1602     // Replace a use of the 'and' with a use of the new 'and'.
1603     TheUse = InsertedAnd;
1604     ++NumAndUses;
1605     LLVM_DEBUG(User->getParent()->dump());
1606   }
1607 
1608   // We removed all uses, nuke the and.
1609   AndI->eraseFromParent();
1610   return true;
1611 }
1612 
1613 /// Check if the candidates could be combined with a shift instruction, which
1614 /// includes:
1615 /// 1. Truncate instruction
1616 /// 2. And instruction and the imm is a mask of the low bits:
1617 /// imm & (imm+1) == 0
1618 static bool isExtractBitsCandidateUse(Instruction *User) {
1619   if (!isa<TruncInst>(User)) {
1620     if (User->getOpcode() != Instruction::And ||
1621         !isa<ConstantInt>(User->getOperand(1)))
1622       return false;
1623 
1624     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1625 
1626     if ((Cimm & (Cimm + 1)).getBoolValue())
1627       return false;
1628   }
1629   return true;
1630 }
1631 
1632 /// Sink both shift and truncate instruction to the use of truncate's BB.
1633 static bool
1634 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1635                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1636                      const TargetLowering &TLI, const DataLayout &DL) {
1637   BasicBlock *UserBB = User->getParent();
1638   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1639   auto *TruncI = cast<TruncInst>(User);
1640   bool MadeChange = false;
1641 
1642   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1643                             TruncE = TruncI->user_end();
1644        TruncUI != TruncE;) {
1645 
1646     Use &TruncTheUse = TruncUI.getUse();
1647     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1648     // Preincrement use iterator so we don't invalidate it.
1649 
1650     ++TruncUI;
1651 
1652     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1653     if (!ISDOpcode)
1654       continue;
1655 
1656     // If the use is actually a legal node, there will not be an
1657     // implicit truncate.
1658     // FIXME: always querying the result type is just an
1659     // approximation; some nodes' legality is determined by the
1660     // operand or other means. There's no good way to find out though.
1661     if (TLI.isOperationLegalOrCustom(
1662             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1663       continue;
1664 
1665     // Don't bother for PHI nodes.
1666     if (isa<PHINode>(TruncUser))
1667       continue;
1668 
1669     BasicBlock *TruncUserBB = TruncUser->getParent();
1670 
1671     if (UserBB == TruncUserBB)
1672       continue;
1673 
1674     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1675     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1676 
1677     if (!InsertedShift && !InsertedTrunc) {
1678       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1679       assert(InsertPt != TruncUserBB->end());
1680       // Sink the shift
1681       if (ShiftI->getOpcode() == Instruction::AShr)
1682         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1683                                                    "", &*InsertPt);
1684       else
1685         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1686                                                    "", &*InsertPt);
1687       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1688 
1689       // Sink the trunc
1690       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1691       TruncInsertPt++;
1692       assert(TruncInsertPt != TruncUserBB->end());
1693 
1694       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1695                                        TruncI->getType(), "", &*TruncInsertPt);
1696       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1697 
1698       MadeChange = true;
1699 
1700       TruncTheUse = InsertedTrunc;
1701     }
1702   }
1703   return MadeChange;
1704 }
1705 
1706 /// Sink the shift *right* instruction into user blocks if the uses could
1707 /// potentially be combined with this shift instruction and generate BitExtract
1708 /// instruction. It will only be applied if the architecture supports BitExtract
1709 /// instruction. Here is an example:
1710 /// BB1:
1711 ///   %x.extract.shift = lshr i64 %arg1, 32
1712 /// BB2:
1713 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1714 /// ==>
1715 ///
1716 /// BB2:
1717 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1718 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1719 ///
1720 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1721 /// instruction.
1722 /// Return true if any changes are made.
1723 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1724                                 const TargetLowering &TLI,
1725                                 const DataLayout &DL) {
1726   BasicBlock *DefBB = ShiftI->getParent();
1727 
1728   /// Only insert instructions in each block once.
1729   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1730 
1731   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1732 
1733   bool MadeChange = false;
1734   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1735        UI != E;) {
1736     Use &TheUse = UI.getUse();
1737     Instruction *User = cast<Instruction>(*UI);
1738     // Preincrement use iterator so we don't invalidate it.
1739     ++UI;
1740 
1741     // Don't bother for PHI nodes.
1742     if (isa<PHINode>(User))
1743       continue;
1744 
1745     if (!isExtractBitsCandidateUse(User))
1746       continue;
1747 
1748     BasicBlock *UserBB = User->getParent();
1749 
1750     if (UserBB == DefBB) {
1751       // If the shift and truncate instruction are in the same BB. The use of
1752       // the truncate(TruncUse) may still introduce another truncate if not
1753       // legal. In this case, we would like to sink both shift and truncate
1754       // instruction to the BB of TruncUse.
1755       // for example:
1756       // BB1:
1757       // i64 shift.result = lshr i64 opnd, imm
1758       // trunc.result = trunc shift.result to i16
1759       //
1760       // BB2:
1761       //   ----> We will have an implicit truncate here if the architecture does
1762       //   not have i16 compare.
1763       // cmp i16 trunc.result, opnd2
1764       //
1765       if (isa<TruncInst>(User) && shiftIsLegal
1766           // If the type of the truncate is legal, no truncate will be
1767           // introduced in other basic blocks.
1768           &&
1769           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1770         MadeChange =
1771             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1772 
1773       continue;
1774     }
1775     // If we have already inserted a shift into this block, use it.
1776     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1777 
1778     if (!InsertedShift) {
1779       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1780       assert(InsertPt != UserBB->end());
1781 
1782       if (ShiftI->getOpcode() == Instruction::AShr)
1783         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1784                                                    "", &*InsertPt);
1785       else
1786         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1787                                                    "", &*InsertPt);
1788       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1789 
1790       MadeChange = true;
1791     }
1792 
1793     // Replace a use of the shift with a use of the new shift.
1794     TheUse = InsertedShift;
1795   }
1796 
1797   // If we removed all uses, or there are none, nuke the shift.
1798   if (ShiftI->use_empty()) {
1799     salvageDebugInfo(*ShiftI);
1800     ShiftI->eraseFromParent();
1801     MadeChange = true;
1802   }
1803 
1804   return MadeChange;
1805 }
1806 
1807 /// If counting leading or trailing zeros is an expensive operation and a zero
1808 /// input is defined, add a check for zero to avoid calling the intrinsic.
1809 ///
1810 /// We want to transform:
1811 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1812 ///
1813 /// into:
1814 ///   entry:
1815 ///     %cmpz = icmp eq i64 %A, 0
1816 ///     br i1 %cmpz, label %cond.end, label %cond.false
1817 ///   cond.false:
1818 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1819 ///     br label %cond.end
1820 ///   cond.end:
1821 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1822 ///
1823 /// If the transform is performed, return true and set ModifiedDT to true.
1824 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1825                                   const TargetLowering *TLI,
1826                                   const DataLayout *DL,
1827                                   bool &ModifiedDT) {
1828   // If a zero input is undefined, it doesn't make sense to despeculate that.
1829   if (match(CountZeros->getOperand(1), m_One()))
1830     return false;
1831 
1832   // If it's cheap to speculate, there's nothing to do.
1833   auto IntrinsicID = CountZeros->getIntrinsicID();
1834   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1835       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1836     return false;
1837 
1838   // Only handle legal scalar cases. Anything else requires too much work.
1839   Type *Ty = CountZeros->getType();
1840   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1841   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1842     return false;
1843 
1844   // The intrinsic will be sunk behind a compare against zero and branch.
1845   BasicBlock *StartBlock = CountZeros->getParent();
1846   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1847 
1848   // Create another block after the count zero intrinsic. A PHI will be added
1849   // in this block to select the result of the intrinsic or the bit-width
1850   // constant if the input to the intrinsic is zero.
1851   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1852   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1853 
1854   // Set up a builder to create a compare, conditional branch, and PHI.
1855   IRBuilder<> Builder(CountZeros->getContext());
1856   Builder.SetInsertPoint(StartBlock->getTerminator());
1857   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1858 
1859   // Replace the unconditional branch that was created by the first split with
1860   // a compare against zero and a conditional branch.
1861   Value *Zero = Constant::getNullValue(Ty);
1862   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1863   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1864   StartBlock->getTerminator()->eraseFromParent();
1865 
1866   // Create a PHI in the end block to select either the output of the intrinsic
1867   // or the bit width of the operand.
1868   Builder.SetInsertPoint(&EndBlock->front());
1869   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1870   CountZeros->replaceAllUsesWith(PN);
1871   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1872   PN->addIncoming(BitWidth, StartBlock);
1873   PN->addIncoming(CountZeros, CallBlock);
1874 
1875   // We are explicitly handling the zero case, so we can set the intrinsic's
1876   // undefined zero argument to 'true'. This will also prevent reprocessing the
1877   // intrinsic; we only despeculate when a zero input is defined.
1878   CountZeros->setArgOperand(1, Builder.getTrue());
1879   ModifiedDT = true;
1880   return true;
1881 }
1882 
1883 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1884   BasicBlock *BB = CI->getParent();
1885 
1886   // Lower inline assembly if we can.
1887   // If we found an inline asm expession, and if the target knows how to
1888   // lower it to normal LLVM code, do so now.
1889   if (isa<InlineAsm>(CI->getCalledValue())) {
1890     if (TLI->ExpandInlineAsm(CI)) {
1891       // Avoid invalidating the iterator.
1892       CurInstIterator = BB->begin();
1893       // Avoid processing instructions out of order, which could cause
1894       // reuse before a value is defined.
1895       SunkAddrs.clear();
1896       return true;
1897     }
1898     // Sink address computing for memory operands into the block.
1899     if (optimizeInlineAsmInst(CI))
1900       return true;
1901   }
1902 
1903   // Align the pointer arguments to this call if the target thinks it's a good
1904   // idea
1905   unsigned MinSize, PrefAlign;
1906   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1907     for (auto &Arg : CI->arg_operands()) {
1908       // We want to align both objects whose address is used directly and
1909       // objects whose address is used in casts and GEPs, though it only makes
1910       // sense for GEPs if the offset is a multiple of the desired alignment and
1911       // if size - offset meets the size threshold.
1912       if (!Arg->getType()->isPointerTy())
1913         continue;
1914       APInt Offset(DL->getIndexSizeInBits(
1915                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1916                    0);
1917       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1918       uint64_t Offset2 = Offset.getLimitedValue();
1919       if ((Offset2 & (PrefAlign-1)) != 0)
1920         continue;
1921       AllocaInst *AI;
1922       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1923           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1924         AI->setAlignment(MaybeAlign(PrefAlign));
1925       // Global variables can only be aligned if they are defined in this
1926       // object (i.e. they are uniquely initialized in this object), and
1927       // over-aligning global variables that have an explicit section is
1928       // forbidden.
1929       GlobalVariable *GV;
1930       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1931           GV->getPointerAlignment(*DL) < PrefAlign &&
1932           DL->getTypeAllocSize(GV->getValueType()) >=
1933               MinSize + Offset2)
1934         GV->setAlignment(MaybeAlign(PrefAlign));
1935     }
1936     // If this is a memcpy (or similar) then we may be able to improve the
1937     // alignment
1938     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1939       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1940       if (DestAlign > MI->getDestAlignment())
1941         MI->setDestAlignment(DestAlign);
1942       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1943         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1944         if (SrcAlign > MTI->getSourceAlignment())
1945           MTI->setSourceAlignment(SrcAlign);
1946       }
1947     }
1948   }
1949 
1950   // If we have a cold call site, try to sink addressing computation into the
1951   // cold block.  This interacts with our handling for loads and stores to
1952   // ensure that we can fold all uses of a potential addressing computation
1953   // into their uses.  TODO: generalize this to work over profiling data
1954   if (CI->hasFnAttr(Attribute::Cold) &&
1955       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
1956     for (auto &Arg : CI->arg_operands()) {
1957       if (!Arg->getType()->isPointerTy())
1958         continue;
1959       unsigned AS = Arg->getType()->getPointerAddressSpace();
1960       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1961     }
1962 
1963   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1964   if (II) {
1965     switch (II->getIntrinsicID()) {
1966     default: break;
1967     case Intrinsic::experimental_widenable_condition: {
1968       // Give up on future widening oppurtunties so that we can fold away dead
1969       // paths and merge blocks before going into block-local instruction
1970       // selection.
1971       if (II->use_empty()) {
1972         II->eraseFromParent();
1973         return true;
1974       }
1975       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1976       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1977         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1978       });
1979       return true;
1980     }
1981     case Intrinsic::objectsize:
1982       llvm_unreachable("llvm.objectsize.* should have been lowered already");
1983     case Intrinsic::is_constant:
1984       llvm_unreachable("llvm.is.constant.* should have been lowered already");
1985     case Intrinsic::aarch64_stlxr:
1986     case Intrinsic::aarch64_stxr: {
1987       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1988       if (!ExtVal || !ExtVal->hasOneUse() ||
1989           ExtVal->getParent() == CI->getParent())
1990         return false;
1991       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1992       ExtVal->moveBefore(CI);
1993       // Mark this instruction as "inserted by CGP", so that other
1994       // optimizations don't touch it.
1995       InsertedInsts.insert(ExtVal);
1996       return true;
1997     }
1998 
1999     case Intrinsic::launder_invariant_group:
2000     case Intrinsic::strip_invariant_group: {
2001       Value *ArgVal = II->getArgOperand(0);
2002       auto it = LargeOffsetGEPMap.find(II);
2003       if (it != LargeOffsetGEPMap.end()) {
2004           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2005           // Make sure not to have to deal with iterator invalidation
2006           // after possibly adding ArgVal to LargeOffsetGEPMap.
2007           auto GEPs = std::move(it->second);
2008           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2009           LargeOffsetGEPMap.erase(II);
2010       }
2011 
2012       II->replaceAllUsesWith(ArgVal);
2013       II->eraseFromParent();
2014       return true;
2015     }
2016     case Intrinsic::cttz:
2017     case Intrinsic::ctlz:
2018       // If counting zeros is expensive, try to avoid it.
2019       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2020     case Intrinsic::dbg_value:
2021       return fixupDbgValue(II);
2022     case Intrinsic::vscale: {
2023       // If datalayout has no special restrictions on vector data layout,
2024       // replace `llvm.vscale` by an equivalent constant expression
2025       // to benefit from cheap constant propagation.
2026       Type *ScalableVectorTy =
2027           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2028       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2029         auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2030         auto One = ConstantInt::getSigned(II->getType(), 1);
2031         auto *CGep =
2032             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2033         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2034         II->eraseFromParent();
2035         return true;
2036       }
2037     }
2038     }
2039 
2040     SmallVector<Value *, 2> PtrOps;
2041     Type *AccessTy;
2042     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2043       while (!PtrOps.empty()) {
2044         Value *PtrVal = PtrOps.pop_back_val();
2045         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2046         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2047           return true;
2048       }
2049   }
2050 
2051   // From here on out we're working with named functions.
2052   if (!CI->getCalledFunction()) return false;
2053 
2054   // Lower all default uses of _chk calls.  This is very similar
2055   // to what InstCombineCalls does, but here we are only lowering calls
2056   // to fortified library functions (e.g. __memcpy_chk) that have the default
2057   // "don't know" as the objectsize.  Anything else should be left alone.
2058   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2059   IRBuilder<> Builder(CI);
2060   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2061     CI->replaceAllUsesWith(V);
2062     CI->eraseFromParent();
2063     return true;
2064   }
2065 
2066   return false;
2067 }
2068 
2069 /// Look for opportunities to duplicate return instructions to the predecessor
2070 /// to enable tail call optimizations. The case it is currently looking for is:
2071 /// @code
2072 /// bb0:
2073 ///   %tmp0 = tail call i32 @f0()
2074 ///   br label %return
2075 /// bb1:
2076 ///   %tmp1 = tail call i32 @f1()
2077 ///   br label %return
2078 /// bb2:
2079 ///   %tmp2 = tail call i32 @f2()
2080 ///   br label %return
2081 /// return:
2082 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2083 ///   ret i32 %retval
2084 /// @endcode
2085 ///
2086 /// =>
2087 ///
2088 /// @code
2089 /// bb0:
2090 ///   %tmp0 = tail call i32 @f0()
2091 ///   ret i32 %tmp0
2092 /// bb1:
2093 ///   %tmp1 = tail call i32 @f1()
2094 ///   ret i32 %tmp1
2095 /// bb2:
2096 ///   %tmp2 = tail call i32 @f2()
2097 ///   ret i32 %tmp2
2098 /// @endcode
2099 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2100   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2101   if (!RetI)
2102     return false;
2103 
2104   PHINode *PN = nullptr;
2105   BitCastInst *BCI = nullptr;
2106   Value *V = RetI->getReturnValue();
2107   if (V) {
2108     BCI = dyn_cast<BitCastInst>(V);
2109     if (BCI)
2110       V = BCI->getOperand(0);
2111 
2112     PN = dyn_cast<PHINode>(V);
2113     if (!PN)
2114       return false;
2115   }
2116 
2117   if (PN && PN->getParent() != BB)
2118     return false;
2119 
2120   // Make sure there are no instructions between the PHI and return, or that the
2121   // return is the first instruction in the block.
2122   if (PN) {
2123     BasicBlock::iterator BI = BB->begin();
2124     // Skip over debug and the bitcast.
2125     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2126     if (&*BI != RetI)
2127       return false;
2128   } else {
2129     BasicBlock::iterator BI = BB->begin();
2130     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2131     if (&*BI != RetI)
2132       return false;
2133   }
2134 
2135   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2136   /// call.
2137   const Function *F = BB->getParent();
2138   SmallVector<BasicBlock*, 4> TailCallBBs;
2139   if (PN) {
2140     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2141       // Look through bitcasts.
2142       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2143       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2144       BasicBlock *PredBB = PN->getIncomingBlock(I);
2145       // Make sure the phi value is indeed produced by the tail call.
2146       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2147           TLI->mayBeEmittedAsTailCall(CI) &&
2148           attributesPermitTailCall(F, CI, RetI, *TLI))
2149         TailCallBBs.push_back(PredBB);
2150     }
2151   } else {
2152     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2153     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2154       if (!VisitedBBs.insert(*PI).second)
2155         continue;
2156 
2157       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2158       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2159       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2160       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2161       if (RI == RE)
2162         continue;
2163 
2164       CallInst *CI = dyn_cast<CallInst>(&*RI);
2165       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2166           attributesPermitTailCall(F, CI, RetI, *TLI))
2167         TailCallBBs.push_back(*PI);
2168     }
2169   }
2170 
2171   bool Changed = false;
2172   for (auto const &TailCallBB : TailCallBBs) {
2173     // Make sure the call instruction is followed by an unconditional branch to
2174     // the return block.
2175     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2176     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2177       continue;
2178 
2179     // Duplicate the return into TailCallBB.
2180     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2181     ModifiedDT = Changed = true;
2182     ++NumRetsDup;
2183   }
2184 
2185   // If we eliminated all predecessors of the block, delete the block now.
2186   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2187     BB->eraseFromParent();
2188 
2189   return Changed;
2190 }
2191 
2192 //===----------------------------------------------------------------------===//
2193 // Memory Optimization
2194 //===----------------------------------------------------------------------===//
2195 
2196 namespace {
2197 
2198 /// This is an extended version of TargetLowering::AddrMode
2199 /// which holds actual Value*'s for register values.
2200 struct ExtAddrMode : public TargetLowering::AddrMode {
2201   Value *BaseReg = nullptr;
2202   Value *ScaledReg = nullptr;
2203   Value *OriginalValue = nullptr;
2204   bool InBounds = true;
2205 
2206   enum FieldName {
2207     NoField        = 0x00,
2208     BaseRegField   = 0x01,
2209     BaseGVField    = 0x02,
2210     BaseOffsField  = 0x04,
2211     ScaledRegField = 0x08,
2212     ScaleField     = 0x10,
2213     MultipleFields = 0xff
2214   };
2215 
2216 
2217   ExtAddrMode() = default;
2218 
2219   void print(raw_ostream &OS) const;
2220   void dump() const;
2221 
2222   FieldName compare(const ExtAddrMode &other) {
2223     // First check that the types are the same on each field, as differing types
2224     // is something we can't cope with later on.
2225     if (BaseReg && other.BaseReg &&
2226         BaseReg->getType() != other.BaseReg->getType())
2227       return MultipleFields;
2228     if (BaseGV && other.BaseGV &&
2229         BaseGV->getType() != other.BaseGV->getType())
2230       return MultipleFields;
2231     if (ScaledReg && other.ScaledReg &&
2232         ScaledReg->getType() != other.ScaledReg->getType())
2233       return MultipleFields;
2234 
2235     // Conservatively reject 'inbounds' mismatches.
2236     if (InBounds != other.InBounds)
2237       return MultipleFields;
2238 
2239     // Check each field to see if it differs.
2240     unsigned Result = NoField;
2241     if (BaseReg != other.BaseReg)
2242       Result |= BaseRegField;
2243     if (BaseGV != other.BaseGV)
2244       Result |= BaseGVField;
2245     if (BaseOffs != other.BaseOffs)
2246       Result |= BaseOffsField;
2247     if (ScaledReg != other.ScaledReg)
2248       Result |= ScaledRegField;
2249     // Don't count 0 as being a different scale, because that actually means
2250     // unscaled (which will already be counted by having no ScaledReg).
2251     if (Scale && other.Scale && Scale != other.Scale)
2252       Result |= ScaleField;
2253 
2254     if (countPopulation(Result) > 1)
2255       return MultipleFields;
2256     else
2257       return static_cast<FieldName>(Result);
2258   }
2259 
2260   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2261   // with no offset.
2262   bool isTrivial() {
2263     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2264     // trivial if at most one of these terms is nonzero, except that BaseGV and
2265     // BaseReg both being zero actually means a null pointer value, which we
2266     // consider to be 'non-zero' here.
2267     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2268   }
2269 
2270   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2271     switch (Field) {
2272     default:
2273       return nullptr;
2274     case BaseRegField:
2275       return BaseReg;
2276     case BaseGVField:
2277       return BaseGV;
2278     case ScaledRegField:
2279       return ScaledReg;
2280     case BaseOffsField:
2281       return ConstantInt::get(IntPtrTy, BaseOffs);
2282     }
2283   }
2284 
2285   void SetCombinedField(FieldName Field, Value *V,
2286                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2287     switch (Field) {
2288     default:
2289       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2290       break;
2291     case ExtAddrMode::BaseRegField:
2292       BaseReg = V;
2293       break;
2294     case ExtAddrMode::BaseGVField:
2295       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2296       // in the BaseReg field.
2297       assert(BaseReg == nullptr);
2298       BaseReg = V;
2299       BaseGV = nullptr;
2300       break;
2301     case ExtAddrMode::ScaledRegField:
2302       ScaledReg = V;
2303       // If we have a mix of scaled and unscaled addrmodes then we want scale
2304       // to be the scale and not zero.
2305       if (!Scale)
2306         for (const ExtAddrMode &AM : AddrModes)
2307           if (AM.Scale) {
2308             Scale = AM.Scale;
2309             break;
2310           }
2311       break;
2312     case ExtAddrMode::BaseOffsField:
2313       // The offset is no longer a constant, so it goes in ScaledReg with a
2314       // scale of 1.
2315       assert(ScaledReg == nullptr);
2316       ScaledReg = V;
2317       Scale = 1;
2318       BaseOffs = 0;
2319       break;
2320     }
2321   }
2322 };
2323 
2324 } // end anonymous namespace
2325 
2326 #ifndef NDEBUG
2327 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2328   AM.print(OS);
2329   return OS;
2330 }
2331 #endif
2332 
2333 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2334 void ExtAddrMode::print(raw_ostream &OS) const {
2335   bool NeedPlus = false;
2336   OS << "[";
2337   if (InBounds)
2338     OS << "inbounds ";
2339   if (BaseGV) {
2340     OS << (NeedPlus ? " + " : "")
2341        << "GV:";
2342     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2343     NeedPlus = true;
2344   }
2345 
2346   if (BaseOffs) {
2347     OS << (NeedPlus ? " + " : "")
2348        << BaseOffs;
2349     NeedPlus = true;
2350   }
2351 
2352   if (BaseReg) {
2353     OS << (NeedPlus ? " + " : "")
2354        << "Base:";
2355     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2356     NeedPlus = true;
2357   }
2358   if (Scale) {
2359     OS << (NeedPlus ? " + " : "")
2360        << Scale << "*";
2361     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2362   }
2363 
2364   OS << ']';
2365 }
2366 
2367 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2368   print(dbgs());
2369   dbgs() << '\n';
2370 }
2371 #endif
2372 
2373 namespace {
2374 
2375 /// This class provides transaction based operation on the IR.
2376 /// Every change made through this class is recorded in the internal state and
2377 /// can be undone (rollback) until commit is called.
2378 class TypePromotionTransaction {
2379   /// This represents the common interface of the individual transaction.
2380   /// Each class implements the logic for doing one specific modification on
2381   /// the IR via the TypePromotionTransaction.
2382   class TypePromotionAction {
2383   protected:
2384     /// The Instruction modified.
2385     Instruction *Inst;
2386 
2387   public:
2388     /// Constructor of the action.
2389     /// The constructor performs the related action on the IR.
2390     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2391 
2392     virtual ~TypePromotionAction() = default;
2393 
2394     /// Undo the modification done by this action.
2395     /// When this method is called, the IR must be in the same state as it was
2396     /// before this action was applied.
2397     /// \pre Undoing the action works if and only if the IR is in the exact same
2398     /// state as it was directly after this action was applied.
2399     virtual void undo() = 0;
2400 
2401     /// Advocate every change made by this action.
2402     /// When the results on the IR of the action are to be kept, it is important
2403     /// to call this function, otherwise hidden information may be kept forever.
2404     virtual void commit() {
2405       // Nothing to be done, this action is not doing anything.
2406     }
2407   };
2408 
2409   /// Utility to remember the position of an instruction.
2410   class InsertionHandler {
2411     /// Position of an instruction.
2412     /// Either an instruction:
2413     /// - Is the first in a basic block: BB is used.
2414     /// - Has a previous instruction: PrevInst is used.
2415     union {
2416       Instruction *PrevInst;
2417       BasicBlock *BB;
2418     } Point;
2419 
2420     /// Remember whether or not the instruction had a previous instruction.
2421     bool HasPrevInstruction;
2422 
2423   public:
2424     /// Record the position of \p Inst.
2425     InsertionHandler(Instruction *Inst) {
2426       BasicBlock::iterator It = Inst->getIterator();
2427       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2428       if (HasPrevInstruction)
2429         Point.PrevInst = &*--It;
2430       else
2431         Point.BB = Inst->getParent();
2432     }
2433 
2434     /// Insert \p Inst at the recorded position.
2435     void insert(Instruction *Inst) {
2436       if (HasPrevInstruction) {
2437         if (Inst->getParent())
2438           Inst->removeFromParent();
2439         Inst->insertAfter(Point.PrevInst);
2440       } else {
2441         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2442         if (Inst->getParent())
2443           Inst->moveBefore(Position);
2444         else
2445           Inst->insertBefore(Position);
2446       }
2447     }
2448   };
2449 
2450   /// Move an instruction before another.
2451   class InstructionMoveBefore : public TypePromotionAction {
2452     /// Original position of the instruction.
2453     InsertionHandler Position;
2454 
2455   public:
2456     /// Move \p Inst before \p Before.
2457     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2458         : TypePromotionAction(Inst), Position(Inst) {
2459       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2460                         << "\n");
2461       Inst->moveBefore(Before);
2462     }
2463 
2464     /// Move the instruction back to its original position.
2465     void undo() override {
2466       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2467       Position.insert(Inst);
2468     }
2469   };
2470 
2471   /// Set the operand of an instruction with a new value.
2472   class OperandSetter : public TypePromotionAction {
2473     /// Original operand of the instruction.
2474     Value *Origin;
2475 
2476     /// Index of the modified instruction.
2477     unsigned Idx;
2478 
2479   public:
2480     /// Set \p Idx operand of \p Inst with \p NewVal.
2481     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2482         : TypePromotionAction(Inst), Idx(Idx) {
2483       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2484                         << "for:" << *Inst << "\n"
2485                         << "with:" << *NewVal << "\n");
2486       Origin = Inst->getOperand(Idx);
2487       Inst->setOperand(Idx, NewVal);
2488     }
2489 
2490     /// Restore the original value of the instruction.
2491     void undo() override {
2492       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2493                         << "for: " << *Inst << "\n"
2494                         << "with: " << *Origin << "\n");
2495       Inst->setOperand(Idx, Origin);
2496     }
2497   };
2498 
2499   /// Hide the operands of an instruction.
2500   /// Do as if this instruction was not using any of its operands.
2501   class OperandsHider : public TypePromotionAction {
2502     /// The list of original operands.
2503     SmallVector<Value *, 4> OriginalValues;
2504 
2505   public:
2506     /// Remove \p Inst from the uses of the operands of \p Inst.
2507     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2508       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2509       unsigned NumOpnds = Inst->getNumOperands();
2510       OriginalValues.reserve(NumOpnds);
2511       for (unsigned It = 0; It < NumOpnds; ++It) {
2512         // Save the current operand.
2513         Value *Val = Inst->getOperand(It);
2514         OriginalValues.push_back(Val);
2515         // Set a dummy one.
2516         // We could use OperandSetter here, but that would imply an overhead
2517         // that we are not willing to pay.
2518         Inst->setOperand(It, UndefValue::get(Val->getType()));
2519       }
2520     }
2521 
2522     /// Restore the original list of uses.
2523     void undo() override {
2524       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2525       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2526         Inst->setOperand(It, OriginalValues[It]);
2527     }
2528   };
2529 
2530   /// Build a truncate instruction.
2531   class TruncBuilder : public TypePromotionAction {
2532     Value *Val;
2533 
2534   public:
2535     /// Build a truncate instruction of \p Opnd producing a \p Ty
2536     /// result.
2537     /// trunc Opnd to Ty.
2538     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2539       IRBuilder<> Builder(Opnd);
2540       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2541       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2542     }
2543 
2544     /// Get the built value.
2545     Value *getBuiltValue() { return Val; }
2546 
2547     /// Remove the built instruction.
2548     void undo() override {
2549       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2550       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2551         IVal->eraseFromParent();
2552     }
2553   };
2554 
2555   /// Build a sign extension instruction.
2556   class SExtBuilder : public TypePromotionAction {
2557     Value *Val;
2558 
2559   public:
2560     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2561     /// result.
2562     /// sext Opnd to Ty.
2563     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2564         : TypePromotionAction(InsertPt) {
2565       IRBuilder<> Builder(InsertPt);
2566       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2567       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2568     }
2569 
2570     /// Get the built value.
2571     Value *getBuiltValue() { return Val; }
2572 
2573     /// Remove the built instruction.
2574     void undo() override {
2575       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2576       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2577         IVal->eraseFromParent();
2578     }
2579   };
2580 
2581   /// Build a zero extension instruction.
2582   class ZExtBuilder : public TypePromotionAction {
2583     Value *Val;
2584 
2585   public:
2586     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2587     /// result.
2588     /// zext Opnd to Ty.
2589     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2590         : TypePromotionAction(InsertPt) {
2591       IRBuilder<> Builder(InsertPt);
2592       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2593       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2594     }
2595 
2596     /// Get the built value.
2597     Value *getBuiltValue() { return Val; }
2598 
2599     /// Remove the built instruction.
2600     void undo() override {
2601       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2602       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2603         IVal->eraseFromParent();
2604     }
2605   };
2606 
2607   /// Mutate an instruction to another type.
2608   class TypeMutator : public TypePromotionAction {
2609     /// Record the original type.
2610     Type *OrigTy;
2611 
2612   public:
2613     /// Mutate the type of \p Inst into \p NewTy.
2614     TypeMutator(Instruction *Inst, Type *NewTy)
2615         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2616       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2617                         << "\n");
2618       Inst->mutateType(NewTy);
2619     }
2620 
2621     /// Mutate the instruction back to its original type.
2622     void undo() override {
2623       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2624                         << "\n");
2625       Inst->mutateType(OrigTy);
2626     }
2627   };
2628 
2629   /// Replace the uses of an instruction by another instruction.
2630   class UsesReplacer : public TypePromotionAction {
2631     /// Helper structure to keep track of the replaced uses.
2632     struct InstructionAndIdx {
2633       /// The instruction using the instruction.
2634       Instruction *Inst;
2635 
2636       /// The index where this instruction is used for Inst.
2637       unsigned Idx;
2638 
2639       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2640           : Inst(Inst), Idx(Idx) {}
2641     };
2642 
2643     /// Keep track of the original uses (pair Instruction, Index).
2644     SmallVector<InstructionAndIdx, 4> OriginalUses;
2645     /// Keep track of the debug users.
2646     SmallVector<DbgValueInst *, 1> DbgValues;
2647 
2648     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2649 
2650   public:
2651     /// Replace all the use of \p Inst by \p New.
2652     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2653       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2654                         << "\n");
2655       // Record the original uses.
2656       for (Use &U : Inst->uses()) {
2657         Instruction *UserI = cast<Instruction>(U.getUser());
2658         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2659       }
2660       // Record the debug uses separately. They are not in the instruction's
2661       // use list, but they are replaced by RAUW.
2662       findDbgValues(DbgValues, Inst);
2663 
2664       // Now, we can replace the uses.
2665       Inst->replaceAllUsesWith(New);
2666     }
2667 
2668     /// Reassign the original uses of Inst to Inst.
2669     void undo() override {
2670       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2671       for (use_iterator UseIt = OriginalUses.begin(),
2672                         EndIt = OriginalUses.end();
2673            UseIt != EndIt; ++UseIt) {
2674         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2675       }
2676       // RAUW has replaced all original uses with references to the new value,
2677       // including the debug uses. Since we are undoing the replacements,
2678       // the original debug uses must also be reinstated to maintain the
2679       // correctness and utility of debug value instructions.
2680       for (auto *DVI: DbgValues) {
2681         LLVMContext &Ctx = Inst->getType()->getContext();
2682         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2683         DVI->setOperand(0, MV);
2684       }
2685     }
2686   };
2687 
2688   /// Remove an instruction from the IR.
2689   class InstructionRemover : public TypePromotionAction {
2690     /// Original position of the instruction.
2691     InsertionHandler Inserter;
2692 
2693     /// Helper structure to hide all the link to the instruction. In other
2694     /// words, this helps to do as if the instruction was removed.
2695     OperandsHider Hider;
2696 
2697     /// Keep track of the uses replaced, if any.
2698     UsesReplacer *Replacer = nullptr;
2699 
2700     /// Keep track of instructions removed.
2701     SetOfInstrs &RemovedInsts;
2702 
2703   public:
2704     /// Remove all reference of \p Inst and optionally replace all its
2705     /// uses with New.
2706     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2707     /// \pre If !Inst->use_empty(), then New != nullptr
2708     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2709                        Value *New = nullptr)
2710         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2711           RemovedInsts(RemovedInsts) {
2712       if (New)
2713         Replacer = new UsesReplacer(Inst, New);
2714       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2715       RemovedInsts.insert(Inst);
2716       /// The instructions removed here will be freed after completing
2717       /// optimizeBlock() for all blocks as we need to keep track of the
2718       /// removed instructions during promotion.
2719       Inst->removeFromParent();
2720     }
2721 
2722     ~InstructionRemover() override { delete Replacer; }
2723 
2724     /// Resurrect the instruction and reassign it to the proper uses if
2725     /// new value was provided when build this action.
2726     void undo() override {
2727       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2728       Inserter.insert(Inst);
2729       if (Replacer)
2730         Replacer->undo();
2731       Hider.undo();
2732       RemovedInsts.erase(Inst);
2733     }
2734   };
2735 
2736 public:
2737   /// Restoration point.
2738   /// The restoration point is a pointer to an action instead of an iterator
2739   /// because the iterator may be invalidated but not the pointer.
2740   using ConstRestorationPt = const TypePromotionAction *;
2741 
2742   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2743       : RemovedInsts(RemovedInsts) {}
2744 
2745   /// Advocate every changes made in that transaction.
2746   void commit();
2747 
2748   /// Undo all the changes made after the given point.
2749   void rollback(ConstRestorationPt Point);
2750 
2751   /// Get the current restoration point.
2752   ConstRestorationPt getRestorationPoint() const;
2753 
2754   /// \name API for IR modification with state keeping to support rollback.
2755   /// @{
2756   /// Same as Instruction::setOperand.
2757   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2758 
2759   /// Same as Instruction::eraseFromParent.
2760   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2761 
2762   /// Same as Value::replaceAllUsesWith.
2763   void replaceAllUsesWith(Instruction *Inst, Value *New);
2764 
2765   /// Same as Value::mutateType.
2766   void mutateType(Instruction *Inst, Type *NewTy);
2767 
2768   /// Same as IRBuilder::createTrunc.
2769   Value *createTrunc(Instruction *Opnd, Type *Ty);
2770 
2771   /// Same as IRBuilder::createSExt.
2772   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2773 
2774   /// Same as IRBuilder::createZExt.
2775   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2776 
2777   /// Same as Instruction::moveBefore.
2778   void moveBefore(Instruction *Inst, Instruction *Before);
2779   /// @}
2780 
2781 private:
2782   /// The ordered list of actions made so far.
2783   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2784 
2785   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2786 
2787   SetOfInstrs &RemovedInsts;
2788 };
2789 
2790 } // end anonymous namespace
2791 
2792 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2793                                           Value *NewVal) {
2794   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2795       Inst, Idx, NewVal));
2796 }
2797 
2798 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2799                                                 Value *NewVal) {
2800   Actions.push_back(
2801       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2802           Inst, RemovedInsts, NewVal));
2803 }
2804 
2805 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2806                                                   Value *New) {
2807   Actions.push_back(
2808       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2809 }
2810 
2811 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2812   Actions.push_back(
2813       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2814 }
2815 
2816 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2817                                              Type *Ty) {
2818   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2819   Value *Val = Ptr->getBuiltValue();
2820   Actions.push_back(std::move(Ptr));
2821   return Val;
2822 }
2823 
2824 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2825                                             Value *Opnd, Type *Ty) {
2826   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2827   Value *Val = Ptr->getBuiltValue();
2828   Actions.push_back(std::move(Ptr));
2829   return Val;
2830 }
2831 
2832 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2833                                             Value *Opnd, Type *Ty) {
2834   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2835   Value *Val = Ptr->getBuiltValue();
2836   Actions.push_back(std::move(Ptr));
2837   return Val;
2838 }
2839 
2840 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2841                                           Instruction *Before) {
2842   Actions.push_back(
2843       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2844           Inst, Before));
2845 }
2846 
2847 TypePromotionTransaction::ConstRestorationPt
2848 TypePromotionTransaction::getRestorationPoint() const {
2849   return !Actions.empty() ? Actions.back().get() : nullptr;
2850 }
2851 
2852 void TypePromotionTransaction::commit() {
2853   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2854        ++It)
2855     (*It)->commit();
2856   Actions.clear();
2857 }
2858 
2859 void TypePromotionTransaction::rollback(
2860     TypePromotionTransaction::ConstRestorationPt Point) {
2861   while (!Actions.empty() && Point != Actions.back().get()) {
2862     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2863     Curr->undo();
2864   }
2865 }
2866 
2867 namespace {
2868 
2869 /// A helper class for matching addressing modes.
2870 ///
2871 /// This encapsulates the logic for matching the target-legal addressing modes.
2872 class AddressingModeMatcher {
2873   SmallVectorImpl<Instruction*> &AddrModeInsts;
2874   const TargetLowering &TLI;
2875   const TargetRegisterInfo &TRI;
2876   const DataLayout &DL;
2877 
2878   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2879   /// the memory instruction that we're computing this address for.
2880   Type *AccessTy;
2881   unsigned AddrSpace;
2882   Instruction *MemoryInst;
2883 
2884   /// This is the addressing mode that we're building up. This is
2885   /// part of the return value of this addressing mode matching stuff.
2886   ExtAddrMode &AddrMode;
2887 
2888   /// The instructions inserted by other CodeGenPrepare optimizations.
2889   const SetOfInstrs &InsertedInsts;
2890 
2891   /// A map from the instructions to their type before promotion.
2892   InstrToOrigTy &PromotedInsts;
2893 
2894   /// The ongoing transaction where every action should be registered.
2895   TypePromotionTransaction &TPT;
2896 
2897   // A GEP which has too large offset to be folded into the addressing mode.
2898   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2899 
2900   /// This is set to true when we should not do profitability checks.
2901   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2902   bool IgnoreProfitability;
2903 
2904   /// True if we are optimizing for size.
2905   bool OptSize;
2906 
2907   ProfileSummaryInfo *PSI;
2908   BlockFrequencyInfo *BFI;
2909 
2910   AddressingModeMatcher(
2911       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2912       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2913       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2914       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2915       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2916       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
2917       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2918         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2919         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2920         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
2921         OptSize(OptSize), PSI(PSI), BFI(BFI) {
2922     IgnoreProfitability = false;
2923   }
2924 
2925 public:
2926   /// Find the maximal addressing mode that a load/store of V can fold,
2927   /// give an access type of AccessTy.  This returns a list of involved
2928   /// instructions in AddrModeInsts.
2929   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2930   /// optimizations.
2931   /// \p PromotedInsts maps the instructions to their type before promotion.
2932   /// \p The ongoing transaction where every action should be registered.
2933   static ExtAddrMode
2934   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2935         SmallVectorImpl<Instruction *> &AddrModeInsts,
2936         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2937         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2938         TypePromotionTransaction &TPT,
2939         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2940         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
2941     ExtAddrMode Result;
2942 
2943     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2944                                          MemoryInst, Result, InsertedInsts,
2945                                          PromotedInsts, TPT, LargeOffsetGEP,
2946                                          OptSize, PSI, BFI)
2947                        .matchAddr(V, 0);
2948     (void)Success; assert(Success && "Couldn't select *anything*?");
2949     return Result;
2950   }
2951 
2952 private:
2953   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2954   bool matchAddr(Value *Addr, unsigned Depth);
2955   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2956                           bool *MovedAway = nullptr);
2957   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2958                                             ExtAddrMode &AMBefore,
2959                                             ExtAddrMode &AMAfter);
2960   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2961   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2962                              Value *PromotedOperand) const;
2963 };
2964 
2965 class PhiNodeSet;
2966 
2967 /// An iterator for PhiNodeSet.
2968 class PhiNodeSetIterator {
2969   PhiNodeSet * const Set;
2970   size_t CurrentIndex = 0;
2971 
2972 public:
2973   /// The constructor. Start should point to either a valid element, or be equal
2974   /// to the size of the underlying SmallVector of the PhiNodeSet.
2975   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2976   PHINode * operator*() const;
2977   PhiNodeSetIterator& operator++();
2978   bool operator==(const PhiNodeSetIterator &RHS) const;
2979   bool operator!=(const PhiNodeSetIterator &RHS) const;
2980 };
2981 
2982 /// Keeps a set of PHINodes.
2983 ///
2984 /// This is a minimal set implementation for a specific use case:
2985 /// It is very fast when there are very few elements, but also provides good
2986 /// performance when there are many. It is similar to SmallPtrSet, but also
2987 /// provides iteration by insertion order, which is deterministic and stable
2988 /// across runs. It is also similar to SmallSetVector, but provides removing
2989 /// elements in O(1) time. This is achieved by not actually removing the element
2990 /// from the underlying vector, so comes at the cost of using more memory, but
2991 /// that is fine, since PhiNodeSets are used as short lived objects.
2992 class PhiNodeSet {
2993   friend class PhiNodeSetIterator;
2994 
2995   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2996   using iterator =  PhiNodeSetIterator;
2997 
2998   /// Keeps the elements in the order of their insertion in the underlying
2999   /// vector. To achieve constant time removal, it never deletes any element.
3000   SmallVector<PHINode *, 32> NodeList;
3001 
3002   /// Keeps the elements in the underlying set implementation. This (and not the
3003   /// NodeList defined above) is the source of truth on whether an element
3004   /// is actually in the collection.
3005   MapType NodeMap;
3006 
3007   /// Points to the first valid (not deleted) element when the set is not empty
3008   /// and the value is not zero. Equals to the size of the underlying vector
3009   /// when the set is empty. When the value is 0, as in the beginning, the
3010   /// first element may or may not be valid.
3011   size_t FirstValidElement = 0;
3012 
3013 public:
3014   /// Inserts a new element to the collection.
3015   /// \returns true if the element is actually added, i.e. was not in the
3016   /// collection before the operation.
3017   bool insert(PHINode *Ptr) {
3018     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3019       NodeList.push_back(Ptr);
3020       return true;
3021     }
3022     return false;
3023   }
3024 
3025   /// Removes the element from the collection.
3026   /// \returns whether the element is actually removed, i.e. was in the
3027   /// collection before the operation.
3028   bool erase(PHINode *Ptr) {
3029     auto it = NodeMap.find(Ptr);
3030     if (it != NodeMap.end()) {
3031       NodeMap.erase(Ptr);
3032       SkipRemovedElements(FirstValidElement);
3033       return true;
3034     }
3035     return false;
3036   }
3037 
3038   /// Removes all elements and clears the collection.
3039   void clear() {
3040     NodeMap.clear();
3041     NodeList.clear();
3042     FirstValidElement = 0;
3043   }
3044 
3045   /// \returns an iterator that will iterate the elements in the order of
3046   /// insertion.
3047   iterator begin() {
3048     if (FirstValidElement == 0)
3049       SkipRemovedElements(FirstValidElement);
3050     return PhiNodeSetIterator(this, FirstValidElement);
3051   }
3052 
3053   /// \returns an iterator that points to the end of the collection.
3054   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3055 
3056   /// Returns the number of elements in the collection.
3057   size_t size() const {
3058     return NodeMap.size();
3059   }
3060 
3061   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3062   size_t count(PHINode *Ptr) const {
3063     return NodeMap.count(Ptr);
3064   }
3065 
3066 private:
3067   /// Updates the CurrentIndex so that it will point to a valid element.
3068   ///
3069   /// If the element of NodeList at CurrentIndex is valid, it does not
3070   /// change it. If there are no more valid elements, it updates CurrentIndex
3071   /// to point to the end of the NodeList.
3072   void SkipRemovedElements(size_t &CurrentIndex) {
3073     while (CurrentIndex < NodeList.size()) {
3074       auto it = NodeMap.find(NodeList[CurrentIndex]);
3075       // If the element has been deleted and added again later, NodeMap will
3076       // point to a different index, so CurrentIndex will still be invalid.
3077       if (it != NodeMap.end() && it->second == CurrentIndex)
3078         break;
3079       ++CurrentIndex;
3080     }
3081   }
3082 };
3083 
3084 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3085     : Set(Set), CurrentIndex(Start) {}
3086 
3087 PHINode * PhiNodeSetIterator::operator*() const {
3088   assert(CurrentIndex < Set->NodeList.size() &&
3089          "PhiNodeSet access out of range");
3090   return Set->NodeList[CurrentIndex];
3091 }
3092 
3093 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3094   assert(CurrentIndex < Set->NodeList.size() &&
3095          "PhiNodeSet access out of range");
3096   ++CurrentIndex;
3097   Set->SkipRemovedElements(CurrentIndex);
3098   return *this;
3099 }
3100 
3101 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3102   return CurrentIndex == RHS.CurrentIndex;
3103 }
3104 
3105 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3106   return !((*this) == RHS);
3107 }
3108 
3109 /// Keep track of simplification of Phi nodes.
3110 /// Accept the set of all phi nodes and erase phi node from this set
3111 /// if it is simplified.
3112 class SimplificationTracker {
3113   DenseMap<Value *, Value *> Storage;
3114   const SimplifyQuery &SQ;
3115   // Tracks newly created Phi nodes. The elements are iterated by insertion
3116   // order.
3117   PhiNodeSet AllPhiNodes;
3118   // Tracks newly created Select nodes.
3119   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3120 
3121 public:
3122   SimplificationTracker(const SimplifyQuery &sq)
3123       : SQ(sq) {}
3124 
3125   Value *Get(Value *V) {
3126     do {
3127       auto SV = Storage.find(V);
3128       if (SV == Storage.end())
3129         return V;
3130       V = SV->second;
3131     } while (true);
3132   }
3133 
3134   Value *Simplify(Value *Val) {
3135     SmallVector<Value *, 32> WorkList;
3136     SmallPtrSet<Value *, 32> Visited;
3137     WorkList.push_back(Val);
3138     while (!WorkList.empty()) {
3139       auto P = WorkList.pop_back_val();
3140       if (!Visited.insert(P).second)
3141         continue;
3142       if (auto *PI = dyn_cast<Instruction>(P))
3143         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3144           for (auto *U : PI->users())
3145             WorkList.push_back(cast<Value>(U));
3146           Put(PI, V);
3147           PI->replaceAllUsesWith(V);
3148           if (auto *PHI = dyn_cast<PHINode>(PI))
3149             AllPhiNodes.erase(PHI);
3150           if (auto *Select = dyn_cast<SelectInst>(PI))
3151             AllSelectNodes.erase(Select);
3152           PI->eraseFromParent();
3153         }
3154     }
3155     return Get(Val);
3156   }
3157 
3158   void Put(Value *From, Value *To) {
3159     Storage.insert({ From, To });
3160   }
3161 
3162   void ReplacePhi(PHINode *From, PHINode *To) {
3163     Value* OldReplacement = Get(From);
3164     while (OldReplacement != From) {
3165       From = To;
3166       To = dyn_cast<PHINode>(OldReplacement);
3167       OldReplacement = Get(From);
3168     }
3169     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3170     Put(From, To);
3171     From->replaceAllUsesWith(To);
3172     AllPhiNodes.erase(From);
3173     From->eraseFromParent();
3174   }
3175 
3176   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3177 
3178   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3179 
3180   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3181 
3182   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3183 
3184   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3185 
3186   void destroyNewNodes(Type *CommonType) {
3187     // For safe erasing, replace the uses with dummy value first.
3188     auto Dummy = UndefValue::get(CommonType);
3189     for (auto I : AllPhiNodes) {
3190       I->replaceAllUsesWith(Dummy);
3191       I->eraseFromParent();
3192     }
3193     AllPhiNodes.clear();
3194     for (auto I : AllSelectNodes) {
3195       I->replaceAllUsesWith(Dummy);
3196       I->eraseFromParent();
3197     }
3198     AllSelectNodes.clear();
3199   }
3200 };
3201 
3202 /// A helper class for combining addressing modes.
3203 class AddressingModeCombiner {
3204   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3205   typedef std::pair<PHINode *, PHINode *> PHIPair;
3206 
3207 private:
3208   /// The addressing modes we've collected.
3209   SmallVector<ExtAddrMode, 16> AddrModes;
3210 
3211   /// The field in which the AddrModes differ, when we have more than one.
3212   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3213 
3214   /// Are the AddrModes that we have all just equal to their original values?
3215   bool AllAddrModesTrivial = true;
3216 
3217   /// Common Type for all different fields in addressing modes.
3218   Type *CommonType;
3219 
3220   /// SimplifyQuery for simplifyInstruction utility.
3221   const SimplifyQuery &SQ;
3222 
3223   /// Original Address.
3224   Value *Original;
3225 
3226 public:
3227   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3228       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3229 
3230   /// Get the combined AddrMode
3231   const ExtAddrMode &getAddrMode() const {
3232     return AddrModes[0];
3233   }
3234 
3235   /// Add a new AddrMode if it's compatible with the AddrModes we already
3236   /// have.
3237   /// \return True iff we succeeded in doing so.
3238   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3239     // Take note of if we have any non-trivial AddrModes, as we need to detect
3240     // when all AddrModes are trivial as then we would introduce a phi or select
3241     // which just duplicates what's already there.
3242     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3243 
3244     // If this is the first addrmode then everything is fine.
3245     if (AddrModes.empty()) {
3246       AddrModes.emplace_back(NewAddrMode);
3247       return true;
3248     }
3249 
3250     // Figure out how different this is from the other address modes, which we
3251     // can do just by comparing against the first one given that we only care
3252     // about the cumulative difference.
3253     ExtAddrMode::FieldName ThisDifferentField =
3254       AddrModes[0].compare(NewAddrMode);
3255     if (DifferentField == ExtAddrMode::NoField)
3256       DifferentField = ThisDifferentField;
3257     else if (DifferentField != ThisDifferentField)
3258       DifferentField = ExtAddrMode::MultipleFields;
3259 
3260     // If NewAddrMode differs in more than one dimension we cannot handle it.
3261     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3262 
3263     // If Scale Field is different then we reject.
3264     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3265 
3266     // We also must reject the case when base offset is different and
3267     // scale reg is not null, we cannot handle this case due to merge of
3268     // different offsets will be used as ScaleReg.
3269     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3270                               !NewAddrMode.ScaledReg);
3271 
3272     // We also must reject the case when GV is different and BaseReg installed
3273     // due to we want to use base reg as a merge of GV values.
3274     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3275                               !NewAddrMode.HasBaseReg);
3276 
3277     // Even if NewAddMode is the same we still need to collect it due to
3278     // original value is different. And later we will need all original values
3279     // as anchors during finding the common Phi node.
3280     if (CanHandle)
3281       AddrModes.emplace_back(NewAddrMode);
3282     else
3283       AddrModes.clear();
3284 
3285     return CanHandle;
3286   }
3287 
3288   /// Combine the addressing modes we've collected into a single
3289   /// addressing mode.
3290   /// \return True iff we successfully combined them or we only had one so
3291   /// didn't need to combine them anyway.
3292   bool combineAddrModes() {
3293     // If we have no AddrModes then they can't be combined.
3294     if (AddrModes.size() == 0)
3295       return false;
3296 
3297     // A single AddrMode can trivially be combined.
3298     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3299       return true;
3300 
3301     // If the AddrModes we collected are all just equal to the value they are
3302     // derived from then combining them wouldn't do anything useful.
3303     if (AllAddrModesTrivial)
3304       return false;
3305 
3306     if (!addrModeCombiningAllowed())
3307       return false;
3308 
3309     // Build a map between <original value, basic block where we saw it> to
3310     // value of base register.
3311     // Bail out if there is no common type.
3312     FoldAddrToValueMapping Map;
3313     if (!initializeMap(Map))
3314       return false;
3315 
3316     Value *CommonValue = findCommon(Map);
3317     if (CommonValue)
3318       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3319     return CommonValue != nullptr;
3320   }
3321 
3322 private:
3323   /// Initialize Map with anchor values. For address seen
3324   /// we set the value of different field saw in this address.
3325   /// At the same time we find a common type for different field we will
3326   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3327   /// Return false if there is no common type found.
3328   bool initializeMap(FoldAddrToValueMapping &Map) {
3329     // Keep track of keys where the value is null. We will need to replace it
3330     // with constant null when we know the common type.
3331     SmallVector<Value *, 2> NullValue;
3332     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3333     for (auto &AM : AddrModes) {
3334       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3335       if (DV) {
3336         auto *Type = DV->getType();
3337         if (CommonType && CommonType != Type)
3338           return false;
3339         CommonType = Type;
3340         Map[AM.OriginalValue] = DV;
3341       } else {
3342         NullValue.push_back(AM.OriginalValue);
3343       }
3344     }
3345     assert(CommonType && "At least one non-null value must be!");
3346     for (auto *V : NullValue)
3347       Map[V] = Constant::getNullValue(CommonType);
3348     return true;
3349   }
3350 
3351   /// We have mapping between value A and other value B where B was a field in
3352   /// addressing mode represented by A. Also we have an original value C
3353   /// representing an address we start with. Traversing from C through phi and
3354   /// selects we ended up with A's in a map. This utility function tries to find
3355   /// a value V which is a field in addressing mode C and traversing through phi
3356   /// nodes and selects we will end up in corresponded values B in a map.
3357   /// The utility will create a new Phi/Selects if needed.
3358   // The simple example looks as follows:
3359   // BB1:
3360   //   p1 = b1 + 40
3361   //   br cond BB2, BB3
3362   // BB2:
3363   //   p2 = b2 + 40
3364   //   br BB3
3365   // BB3:
3366   //   p = phi [p1, BB1], [p2, BB2]
3367   //   v = load p
3368   // Map is
3369   //   p1 -> b1
3370   //   p2 -> b2
3371   // Request is
3372   //   p -> ?
3373   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3374   Value *findCommon(FoldAddrToValueMapping &Map) {
3375     // Tracks the simplification of newly created phi nodes. The reason we use
3376     // this mapping is because we will add new created Phi nodes in AddrToBase.
3377     // Simplification of Phi nodes is recursive, so some Phi node may
3378     // be simplified after we added it to AddrToBase. In reality this
3379     // simplification is possible only if original phi/selects were not
3380     // simplified yet.
3381     // Using this mapping we can find the current value in AddrToBase.
3382     SimplificationTracker ST(SQ);
3383 
3384     // First step, DFS to create PHI nodes for all intermediate blocks.
3385     // Also fill traverse order for the second step.
3386     SmallVector<Value *, 32> TraverseOrder;
3387     InsertPlaceholders(Map, TraverseOrder, ST);
3388 
3389     // Second Step, fill new nodes by merged values and simplify if possible.
3390     FillPlaceholders(Map, TraverseOrder, ST);
3391 
3392     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3393       ST.destroyNewNodes(CommonType);
3394       return nullptr;
3395     }
3396 
3397     // Now we'd like to match New Phi nodes to existed ones.
3398     unsigned PhiNotMatchedCount = 0;
3399     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3400       ST.destroyNewNodes(CommonType);
3401       return nullptr;
3402     }
3403 
3404     auto *Result = ST.Get(Map.find(Original)->second);
3405     if (Result) {
3406       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3407       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3408     }
3409     return Result;
3410   }
3411 
3412   /// Try to match PHI node to Candidate.
3413   /// Matcher tracks the matched Phi nodes.
3414   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3415                     SmallSetVector<PHIPair, 8> &Matcher,
3416                     PhiNodeSet &PhiNodesToMatch) {
3417     SmallVector<PHIPair, 8> WorkList;
3418     Matcher.insert({ PHI, Candidate });
3419     SmallSet<PHINode *, 8> MatchedPHIs;
3420     MatchedPHIs.insert(PHI);
3421     WorkList.push_back({ PHI, Candidate });
3422     SmallSet<PHIPair, 8> Visited;
3423     while (!WorkList.empty()) {
3424       auto Item = WorkList.pop_back_val();
3425       if (!Visited.insert(Item).second)
3426         continue;
3427       // We iterate over all incoming values to Phi to compare them.
3428       // If values are different and both of them Phi and the first one is a
3429       // Phi we added (subject to match) and both of them is in the same basic
3430       // block then we can match our pair if values match. So we state that
3431       // these values match and add it to work list to verify that.
3432       for (auto B : Item.first->blocks()) {
3433         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3434         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3435         if (FirstValue == SecondValue)
3436           continue;
3437 
3438         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3439         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3440 
3441         // One of them is not Phi or
3442         // The first one is not Phi node from the set we'd like to match or
3443         // Phi nodes from different basic blocks then
3444         // we will not be able to match.
3445         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3446             FirstPhi->getParent() != SecondPhi->getParent())
3447           return false;
3448 
3449         // If we already matched them then continue.
3450         if (Matcher.count({ FirstPhi, SecondPhi }))
3451           continue;
3452         // So the values are different and does not match. So we need them to
3453         // match. (But we register no more than one match per PHI node, so that
3454         // we won't later try to replace them twice.)
3455         if (MatchedPHIs.insert(FirstPhi).second)
3456           Matcher.insert({ FirstPhi, SecondPhi });
3457         // But me must check it.
3458         WorkList.push_back({ FirstPhi, SecondPhi });
3459       }
3460     }
3461     return true;
3462   }
3463 
3464   /// For the given set of PHI nodes (in the SimplificationTracker) try
3465   /// to find their equivalents.
3466   /// Returns false if this matching fails and creation of new Phi is disabled.
3467   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3468                    unsigned &PhiNotMatchedCount) {
3469     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3470     // order, so the replacements (ReplacePhi) are also done in a deterministic
3471     // order.
3472     SmallSetVector<PHIPair, 8> Matched;
3473     SmallPtrSet<PHINode *, 8> WillNotMatch;
3474     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3475     while (PhiNodesToMatch.size()) {
3476       PHINode *PHI = *PhiNodesToMatch.begin();
3477 
3478       // Add us, if no Phi nodes in the basic block we do not match.
3479       WillNotMatch.clear();
3480       WillNotMatch.insert(PHI);
3481 
3482       // Traverse all Phis until we found equivalent or fail to do that.
3483       bool IsMatched = false;
3484       for (auto &P : PHI->getParent()->phis()) {
3485         if (&P == PHI)
3486           continue;
3487         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3488           break;
3489         // If it does not match, collect all Phi nodes from matcher.
3490         // if we end up with no match, them all these Phi nodes will not match
3491         // later.
3492         for (auto M : Matched)
3493           WillNotMatch.insert(M.first);
3494         Matched.clear();
3495       }
3496       if (IsMatched) {
3497         // Replace all matched values and erase them.
3498         for (auto MV : Matched)
3499           ST.ReplacePhi(MV.first, MV.second);
3500         Matched.clear();
3501         continue;
3502       }
3503       // If we are not allowed to create new nodes then bail out.
3504       if (!AllowNewPhiNodes)
3505         return false;
3506       // Just remove all seen values in matcher. They will not match anything.
3507       PhiNotMatchedCount += WillNotMatch.size();
3508       for (auto *P : WillNotMatch)
3509         PhiNodesToMatch.erase(P);
3510     }
3511     return true;
3512   }
3513   /// Fill the placeholders with values from predecessors and simplify them.
3514   void FillPlaceholders(FoldAddrToValueMapping &Map,
3515                         SmallVectorImpl<Value *> &TraverseOrder,
3516                         SimplificationTracker &ST) {
3517     while (!TraverseOrder.empty()) {
3518       Value *Current = TraverseOrder.pop_back_val();
3519       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3520       Value *V = Map[Current];
3521 
3522       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3523         // CurrentValue also must be Select.
3524         auto *CurrentSelect = cast<SelectInst>(Current);
3525         auto *TrueValue = CurrentSelect->getTrueValue();
3526         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3527         Select->setTrueValue(ST.Get(Map[TrueValue]));
3528         auto *FalseValue = CurrentSelect->getFalseValue();
3529         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3530         Select->setFalseValue(ST.Get(Map[FalseValue]));
3531       } else {
3532         // Must be a Phi node then.
3533         auto *PHI = cast<PHINode>(V);
3534         // Fill the Phi node with values from predecessors.
3535         for (auto B : predecessors(PHI->getParent())) {
3536           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3537           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3538           PHI->addIncoming(ST.Get(Map[PV]), B);
3539         }
3540       }
3541       Map[Current] = ST.Simplify(V);
3542     }
3543   }
3544 
3545   /// Starting from original value recursively iterates over def-use chain up to
3546   /// known ending values represented in a map. For each traversed phi/select
3547   /// inserts a placeholder Phi or Select.
3548   /// Reports all new created Phi/Select nodes by adding them to set.
3549   /// Also reports and order in what values have been traversed.
3550   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3551                           SmallVectorImpl<Value *> &TraverseOrder,
3552                           SimplificationTracker &ST) {
3553     SmallVector<Value *, 32> Worklist;
3554     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3555            "Address must be a Phi or Select node");
3556     auto *Dummy = UndefValue::get(CommonType);
3557     Worklist.push_back(Original);
3558     while (!Worklist.empty()) {
3559       Value *Current = Worklist.pop_back_val();
3560       // if it is already visited or it is an ending value then skip it.
3561       if (Map.find(Current) != Map.end())
3562         continue;
3563       TraverseOrder.push_back(Current);
3564 
3565       // CurrentValue must be a Phi node or select. All others must be covered
3566       // by anchors.
3567       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3568         // Is it OK to get metadata from OrigSelect?!
3569         // Create a Select placeholder with dummy value.
3570         SelectInst *Select = SelectInst::Create(
3571             CurrentSelect->getCondition(), Dummy, Dummy,
3572             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3573         Map[Current] = Select;
3574         ST.insertNewSelect(Select);
3575         // We are interested in True and False values.
3576         Worklist.push_back(CurrentSelect->getTrueValue());
3577         Worklist.push_back(CurrentSelect->getFalseValue());
3578       } else {
3579         // It must be a Phi node then.
3580         PHINode *CurrentPhi = cast<PHINode>(Current);
3581         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3582         PHINode *PHI =
3583             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3584         Map[Current] = PHI;
3585         ST.insertNewPhi(PHI);
3586         for (Value *P : CurrentPhi->incoming_values())
3587           Worklist.push_back(P);
3588       }
3589     }
3590   }
3591 
3592   bool addrModeCombiningAllowed() {
3593     if (DisableComplexAddrModes)
3594       return false;
3595     switch (DifferentField) {
3596     default:
3597       return false;
3598     case ExtAddrMode::BaseRegField:
3599       return AddrSinkCombineBaseReg;
3600     case ExtAddrMode::BaseGVField:
3601       return AddrSinkCombineBaseGV;
3602     case ExtAddrMode::BaseOffsField:
3603       return AddrSinkCombineBaseOffs;
3604     case ExtAddrMode::ScaledRegField:
3605       return AddrSinkCombineScaledReg;
3606     }
3607   }
3608 };
3609 } // end anonymous namespace
3610 
3611 /// Try adding ScaleReg*Scale to the current addressing mode.
3612 /// Return true and update AddrMode if this addr mode is legal for the target,
3613 /// false if not.
3614 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3615                                              unsigned Depth) {
3616   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3617   // mode.  Just process that directly.
3618   if (Scale == 1)
3619     return matchAddr(ScaleReg, Depth);
3620 
3621   // If the scale is 0, it takes nothing to add this.
3622   if (Scale == 0)
3623     return true;
3624 
3625   // If we already have a scale of this value, we can add to it, otherwise, we
3626   // need an available scale field.
3627   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3628     return false;
3629 
3630   ExtAddrMode TestAddrMode = AddrMode;
3631 
3632   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3633   // [A+B + A*7] -> [B+A*8].
3634   TestAddrMode.Scale += Scale;
3635   TestAddrMode.ScaledReg = ScaleReg;
3636 
3637   // If the new address isn't legal, bail out.
3638   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3639     return false;
3640 
3641   // It was legal, so commit it.
3642   AddrMode = TestAddrMode;
3643 
3644   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3645   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3646   // X*Scale + C*Scale to addr mode.
3647   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3648   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3649       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3650     TestAddrMode.InBounds = false;
3651     TestAddrMode.ScaledReg = AddLHS;
3652     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3653 
3654     // If this addressing mode is legal, commit it and remember that we folded
3655     // this instruction.
3656     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3657       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3658       AddrMode = TestAddrMode;
3659       return true;
3660     }
3661   }
3662 
3663   // Otherwise, not (x+c)*scale, just return what we have.
3664   return true;
3665 }
3666 
3667 /// This is a little filter, which returns true if an addressing computation
3668 /// involving I might be folded into a load/store accessing it.
3669 /// This doesn't need to be perfect, but needs to accept at least
3670 /// the set of instructions that MatchOperationAddr can.
3671 static bool MightBeFoldableInst(Instruction *I) {
3672   switch (I->getOpcode()) {
3673   case Instruction::BitCast:
3674   case Instruction::AddrSpaceCast:
3675     // Don't touch identity bitcasts.
3676     if (I->getType() == I->getOperand(0)->getType())
3677       return false;
3678     return I->getType()->isIntOrPtrTy();
3679   case Instruction::PtrToInt:
3680     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3681     return true;
3682   case Instruction::IntToPtr:
3683     // We know the input is intptr_t, so this is foldable.
3684     return true;
3685   case Instruction::Add:
3686     return true;
3687   case Instruction::Mul:
3688   case Instruction::Shl:
3689     // Can only handle X*C and X << C.
3690     return isa<ConstantInt>(I->getOperand(1));
3691   case Instruction::GetElementPtr:
3692     return true;
3693   default:
3694     return false;
3695   }
3696 }
3697 
3698 /// Check whether or not \p Val is a legal instruction for \p TLI.
3699 /// \note \p Val is assumed to be the product of some type promotion.
3700 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3701 /// to be legal, as the non-promoted value would have had the same state.
3702 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3703                                        const DataLayout &DL, Value *Val) {
3704   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3705   if (!PromotedInst)
3706     return false;
3707   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3708   // If the ISDOpcode is undefined, it was undefined before the promotion.
3709   if (!ISDOpcode)
3710     return true;
3711   // Otherwise, check if the promoted instruction is legal or not.
3712   return TLI.isOperationLegalOrCustom(
3713       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3714 }
3715 
3716 namespace {
3717 
3718 /// Hepler class to perform type promotion.
3719 class TypePromotionHelper {
3720   /// Utility function to add a promoted instruction \p ExtOpnd to
3721   /// \p PromotedInsts and record the type of extension we have seen.
3722   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3723                               Instruction *ExtOpnd,
3724                               bool IsSExt) {
3725     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3726     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3727     if (It != PromotedInsts.end()) {
3728       // If the new extension is same as original, the information in
3729       // PromotedInsts[ExtOpnd] is still correct.
3730       if (It->second.getInt() == ExtTy)
3731         return;
3732 
3733       // Now the new extension is different from old extension, we make
3734       // the type information invalid by setting extension type to
3735       // BothExtension.
3736       ExtTy = BothExtension;
3737     }
3738     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3739   }
3740 
3741   /// Utility function to query the original type of instruction \p Opnd
3742   /// with a matched extension type. If the extension doesn't match, we
3743   /// cannot use the information we had on the original type.
3744   /// BothExtension doesn't match any extension type.
3745   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3746                                  Instruction *Opnd,
3747                                  bool IsSExt) {
3748     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3749     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3750     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3751       return It->second.getPointer();
3752     return nullptr;
3753   }
3754 
3755   /// Utility function to check whether or not a sign or zero extension
3756   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3757   /// either using the operands of \p Inst or promoting \p Inst.
3758   /// The type of the extension is defined by \p IsSExt.
3759   /// In other words, check if:
3760   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3761   /// #1 Promotion applies:
3762   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3763   /// #2 Operand reuses:
3764   /// ext opnd1 to ConsideredExtType.
3765   /// \p PromotedInsts maps the instructions to their type before promotion.
3766   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3767                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3768 
3769   /// Utility function to determine if \p OpIdx should be promoted when
3770   /// promoting \p Inst.
3771   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3772     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3773   }
3774 
3775   /// Utility function to promote the operand of \p Ext when this
3776   /// operand is a promotable trunc or sext or zext.
3777   /// \p PromotedInsts maps the instructions to their type before promotion.
3778   /// \p CreatedInstsCost[out] contains the cost of all instructions
3779   /// created to promote the operand of Ext.
3780   /// Newly added extensions are inserted in \p Exts.
3781   /// Newly added truncates are inserted in \p Truncs.
3782   /// Should never be called directly.
3783   /// \return The promoted value which is used instead of Ext.
3784   static Value *promoteOperandForTruncAndAnyExt(
3785       Instruction *Ext, TypePromotionTransaction &TPT,
3786       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3787       SmallVectorImpl<Instruction *> *Exts,
3788       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3789 
3790   /// Utility function to promote the operand of \p Ext when this
3791   /// operand is promotable and is not a supported trunc or sext.
3792   /// \p PromotedInsts maps the instructions to their type before promotion.
3793   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3794   /// created to promote the operand of Ext.
3795   /// Newly added extensions are inserted in \p Exts.
3796   /// Newly added truncates are inserted in \p Truncs.
3797   /// Should never be called directly.
3798   /// \return The promoted value which is used instead of Ext.
3799   static Value *promoteOperandForOther(Instruction *Ext,
3800                                        TypePromotionTransaction &TPT,
3801                                        InstrToOrigTy &PromotedInsts,
3802                                        unsigned &CreatedInstsCost,
3803                                        SmallVectorImpl<Instruction *> *Exts,
3804                                        SmallVectorImpl<Instruction *> *Truncs,
3805                                        const TargetLowering &TLI, bool IsSExt);
3806 
3807   /// \see promoteOperandForOther.
3808   static Value *signExtendOperandForOther(
3809       Instruction *Ext, TypePromotionTransaction &TPT,
3810       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3811       SmallVectorImpl<Instruction *> *Exts,
3812       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3813     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3814                                   Exts, Truncs, TLI, true);
3815   }
3816 
3817   /// \see promoteOperandForOther.
3818   static Value *zeroExtendOperandForOther(
3819       Instruction *Ext, TypePromotionTransaction &TPT,
3820       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3821       SmallVectorImpl<Instruction *> *Exts,
3822       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3823     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3824                                   Exts, Truncs, TLI, false);
3825   }
3826 
3827 public:
3828   /// Type for the utility function that promotes the operand of Ext.
3829   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3830                             InstrToOrigTy &PromotedInsts,
3831                             unsigned &CreatedInstsCost,
3832                             SmallVectorImpl<Instruction *> *Exts,
3833                             SmallVectorImpl<Instruction *> *Truncs,
3834                             const TargetLowering &TLI);
3835 
3836   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3837   /// action to promote the operand of \p Ext instead of using Ext.
3838   /// \return NULL if no promotable action is possible with the current
3839   /// sign extension.
3840   /// \p InsertedInsts keeps track of all the instructions inserted by the
3841   /// other CodeGenPrepare optimizations. This information is important
3842   /// because we do not want to promote these instructions as CodeGenPrepare
3843   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3844   /// \p PromotedInsts maps the instructions to their type before promotion.
3845   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3846                           const TargetLowering &TLI,
3847                           const InstrToOrigTy &PromotedInsts);
3848 };
3849 
3850 } // end anonymous namespace
3851 
3852 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3853                                         Type *ConsideredExtType,
3854                                         const InstrToOrigTy &PromotedInsts,
3855                                         bool IsSExt) {
3856   // The promotion helper does not know how to deal with vector types yet.
3857   // To be able to fix that, we would need to fix the places where we
3858   // statically extend, e.g., constants and such.
3859   if (Inst->getType()->isVectorTy())
3860     return false;
3861 
3862   // We can always get through zext.
3863   if (isa<ZExtInst>(Inst))
3864     return true;
3865 
3866   // sext(sext) is ok too.
3867   if (IsSExt && isa<SExtInst>(Inst))
3868     return true;
3869 
3870   // We can get through binary operator, if it is legal. In other words, the
3871   // binary operator must have a nuw or nsw flag.
3872   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3873   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3874       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3875        (IsSExt && BinOp->hasNoSignedWrap())))
3876     return true;
3877 
3878   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3879   if ((Inst->getOpcode() == Instruction::And ||
3880        Inst->getOpcode() == Instruction::Or))
3881     return true;
3882 
3883   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3884   if (Inst->getOpcode() == Instruction::Xor) {
3885     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3886     // Make sure it is not a NOT.
3887     if (Cst && !Cst->getValue().isAllOnesValue())
3888       return true;
3889   }
3890 
3891   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3892   // It may change a poisoned value into a regular value, like
3893   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3894   //          poisoned value                    regular value
3895   // It should be OK since undef covers valid value.
3896   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3897     return true;
3898 
3899   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3900   // It may change a poisoned value into a regular value, like
3901   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3902   //          poisoned value                    regular value
3903   // It should be OK since undef covers valid value.
3904   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3905     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3906     if (ExtInst->hasOneUse()) {
3907       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3908       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3909         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3910         if (Cst &&
3911             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3912           return true;
3913       }
3914     }
3915   }
3916 
3917   // Check if we can do the following simplification.
3918   // ext(trunc(opnd)) --> ext(opnd)
3919   if (!isa<TruncInst>(Inst))
3920     return false;
3921 
3922   Value *OpndVal = Inst->getOperand(0);
3923   // Check if we can use this operand in the extension.
3924   // If the type is larger than the result type of the extension, we cannot.
3925   if (!OpndVal->getType()->isIntegerTy() ||
3926       OpndVal->getType()->getIntegerBitWidth() >
3927           ConsideredExtType->getIntegerBitWidth())
3928     return false;
3929 
3930   // If the operand of the truncate is not an instruction, we will not have
3931   // any information on the dropped bits.
3932   // (Actually we could for constant but it is not worth the extra logic).
3933   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3934   if (!Opnd)
3935     return false;
3936 
3937   // Check if the source of the type is narrow enough.
3938   // I.e., check that trunc just drops extended bits of the same kind of
3939   // the extension.
3940   // #1 get the type of the operand and check the kind of the extended bits.
3941   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3942   if (OpndType)
3943     ;
3944   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3945     OpndType = Opnd->getOperand(0)->getType();
3946   else
3947     return false;
3948 
3949   // #2 check that the truncate just drops extended bits.
3950   return Inst->getType()->getIntegerBitWidth() >=
3951          OpndType->getIntegerBitWidth();
3952 }
3953 
3954 TypePromotionHelper::Action TypePromotionHelper::getAction(
3955     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3956     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3957   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3958          "Unexpected instruction type");
3959   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3960   Type *ExtTy = Ext->getType();
3961   bool IsSExt = isa<SExtInst>(Ext);
3962   // If the operand of the extension is not an instruction, we cannot
3963   // get through.
3964   // If it, check we can get through.
3965   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3966     return nullptr;
3967 
3968   // Do not promote if the operand has been added by codegenprepare.
3969   // Otherwise, it means we are undoing an optimization that is likely to be
3970   // redone, thus causing potential infinite loop.
3971   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3972     return nullptr;
3973 
3974   // SExt or Trunc instructions.
3975   // Return the related handler.
3976   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3977       isa<ZExtInst>(ExtOpnd))
3978     return promoteOperandForTruncAndAnyExt;
3979 
3980   // Regular instruction.
3981   // Abort early if we will have to insert non-free instructions.
3982   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3983     return nullptr;
3984   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3985 }
3986 
3987 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3988     Instruction *SExt, TypePromotionTransaction &TPT,
3989     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3990     SmallVectorImpl<Instruction *> *Exts,
3991     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3992   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3993   // get through it and this method should not be called.
3994   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3995   Value *ExtVal = SExt;
3996   bool HasMergedNonFreeExt = false;
3997   if (isa<ZExtInst>(SExtOpnd)) {
3998     // Replace s|zext(zext(opnd))
3999     // => zext(opnd).
4000     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4001     Value *ZExt =
4002         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4003     TPT.replaceAllUsesWith(SExt, ZExt);
4004     TPT.eraseInstruction(SExt);
4005     ExtVal = ZExt;
4006   } else {
4007     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4008     // => z|sext(opnd).
4009     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4010   }
4011   CreatedInstsCost = 0;
4012 
4013   // Remove dead code.
4014   if (SExtOpnd->use_empty())
4015     TPT.eraseInstruction(SExtOpnd);
4016 
4017   // Check if the extension is still needed.
4018   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4019   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4020     if (ExtInst) {
4021       if (Exts)
4022         Exts->push_back(ExtInst);
4023       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4024     }
4025     return ExtVal;
4026   }
4027 
4028   // At this point we have: ext ty opnd to ty.
4029   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4030   Value *NextVal = ExtInst->getOperand(0);
4031   TPT.eraseInstruction(ExtInst, NextVal);
4032   return NextVal;
4033 }
4034 
4035 Value *TypePromotionHelper::promoteOperandForOther(
4036     Instruction *Ext, TypePromotionTransaction &TPT,
4037     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4038     SmallVectorImpl<Instruction *> *Exts,
4039     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4040     bool IsSExt) {
4041   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4042   // get through it and this method should not be called.
4043   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4044   CreatedInstsCost = 0;
4045   if (!ExtOpnd->hasOneUse()) {
4046     // ExtOpnd will be promoted.
4047     // All its uses, but Ext, will need to use a truncated value of the
4048     // promoted version.
4049     // Create the truncate now.
4050     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4051     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4052       // Insert it just after the definition.
4053       ITrunc->moveAfter(ExtOpnd);
4054       if (Truncs)
4055         Truncs->push_back(ITrunc);
4056     }
4057 
4058     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4059     // Restore the operand of Ext (which has been replaced by the previous call
4060     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4061     TPT.setOperand(Ext, 0, ExtOpnd);
4062   }
4063 
4064   // Get through the Instruction:
4065   // 1. Update its type.
4066   // 2. Replace the uses of Ext by Inst.
4067   // 3. Extend each operand that needs to be extended.
4068 
4069   // Remember the original type of the instruction before promotion.
4070   // This is useful to know that the high bits are sign extended bits.
4071   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4072   // Step #1.
4073   TPT.mutateType(ExtOpnd, Ext->getType());
4074   // Step #2.
4075   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4076   // Step #3.
4077   Instruction *ExtForOpnd = Ext;
4078 
4079   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4080   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4081        ++OpIdx) {
4082     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4083     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4084         !shouldExtOperand(ExtOpnd, OpIdx)) {
4085       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4086       continue;
4087     }
4088     // Check if we can statically extend the operand.
4089     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4090     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4091       LLVM_DEBUG(dbgs() << "Statically extend\n");
4092       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4093       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4094                             : Cst->getValue().zext(BitWidth);
4095       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4096       continue;
4097     }
4098     // UndefValue are typed, so we have to statically sign extend them.
4099     if (isa<UndefValue>(Opnd)) {
4100       LLVM_DEBUG(dbgs() << "Statically extend\n");
4101       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4102       continue;
4103     }
4104 
4105     // Otherwise we have to explicitly sign extend the operand.
4106     // Check if Ext was reused to extend an operand.
4107     if (!ExtForOpnd) {
4108       // If yes, create a new one.
4109       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4110       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4111         : TPT.createZExt(Ext, Opnd, Ext->getType());
4112       if (!isa<Instruction>(ValForExtOpnd)) {
4113         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4114         continue;
4115       }
4116       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4117     }
4118     if (Exts)
4119       Exts->push_back(ExtForOpnd);
4120     TPT.setOperand(ExtForOpnd, 0, Opnd);
4121 
4122     // Move the sign extension before the insertion point.
4123     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4124     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4125     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4126     // If more sext are required, new instructions will have to be created.
4127     ExtForOpnd = nullptr;
4128   }
4129   if (ExtForOpnd == Ext) {
4130     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4131     TPT.eraseInstruction(Ext);
4132   }
4133   return ExtOpnd;
4134 }
4135 
4136 /// Check whether or not promoting an instruction to a wider type is profitable.
4137 /// \p NewCost gives the cost of extension instructions created by the
4138 /// promotion.
4139 /// \p OldCost gives the cost of extension instructions before the promotion
4140 /// plus the number of instructions that have been
4141 /// matched in the addressing mode the promotion.
4142 /// \p PromotedOperand is the value that has been promoted.
4143 /// \return True if the promotion is profitable, false otherwise.
4144 bool AddressingModeMatcher::isPromotionProfitable(
4145     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4146   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4147                     << '\n');
4148   // The cost of the new extensions is greater than the cost of the
4149   // old extension plus what we folded.
4150   // This is not profitable.
4151   if (NewCost > OldCost)
4152     return false;
4153   if (NewCost < OldCost)
4154     return true;
4155   // The promotion is neutral but it may help folding the sign extension in
4156   // loads for instance.
4157   // Check that we did not create an illegal instruction.
4158   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4159 }
4160 
4161 /// Given an instruction or constant expr, see if we can fold the operation
4162 /// into the addressing mode. If so, update the addressing mode and return
4163 /// true, otherwise return false without modifying AddrMode.
4164 /// If \p MovedAway is not NULL, it contains the information of whether or
4165 /// not AddrInst has to be folded into the addressing mode on success.
4166 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4167 /// because it has been moved away.
4168 /// Thus AddrInst must not be added in the matched instructions.
4169 /// This state can happen when AddrInst is a sext, since it may be moved away.
4170 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4171 /// not be referenced anymore.
4172 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4173                                                unsigned Depth,
4174                                                bool *MovedAway) {
4175   // Avoid exponential behavior on extremely deep expression trees.
4176   if (Depth >= 5) return false;
4177 
4178   // By default, all matched instructions stay in place.
4179   if (MovedAway)
4180     *MovedAway = false;
4181 
4182   switch (Opcode) {
4183   case Instruction::PtrToInt:
4184     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4185     return matchAddr(AddrInst->getOperand(0), Depth);
4186   case Instruction::IntToPtr: {
4187     auto AS = AddrInst->getType()->getPointerAddressSpace();
4188     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4189     // This inttoptr is a no-op if the integer type is pointer sized.
4190     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4191       return matchAddr(AddrInst->getOperand(0), Depth);
4192     return false;
4193   }
4194   case Instruction::BitCast:
4195     // BitCast is always a noop, and we can handle it as long as it is
4196     // int->int or pointer->pointer (we don't want int<->fp or something).
4197     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4198         // Don't touch identity bitcasts.  These were probably put here by LSR,
4199         // and we don't want to mess around with them.  Assume it knows what it
4200         // is doing.
4201         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4202       return matchAddr(AddrInst->getOperand(0), Depth);
4203     return false;
4204   case Instruction::AddrSpaceCast: {
4205     unsigned SrcAS
4206       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4207     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4208     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4209       return matchAddr(AddrInst->getOperand(0), Depth);
4210     return false;
4211   }
4212   case Instruction::Add: {
4213     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4214     ExtAddrMode BackupAddrMode = AddrMode;
4215     unsigned OldSize = AddrModeInsts.size();
4216     // Start a transaction at this point.
4217     // The LHS may match but not the RHS.
4218     // Therefore, we need a higher level restoration point to undo partially
4219     // matched operation.
4220     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4221         TPT.getRestorationPoint();
4222 
4223     AddrMode.InBounds = false;
4224     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4225         matchAddr(AddrInst->getOperand(0), Depth+1))
4226       return true;
4227 
4228     // Restore the old addr mode info.
4229     AddrMode = BackupAddrMode;
4230     AddrModeInsts.resize(OldSize);
4231     TPT.rollback(LastKnownGood);
4232 
4233     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4234     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4235         matchAddr(AddrInst->getOperand(1), Depth+1))
4236       return true;
4237 
4238     // Otherwise we definitely can't merge the ADD in.
4239     AddrMode = BackupAddrMode;
4240     AddrModeInsts.resize(OldSize);
4241     TPT.rollback(LastKnownGood);
4242     break;
4243   }
4244   //case Instruction::Or:
4245   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4246   //break;
4247   case Instruction::Mul:
4248   case Instruction::Shl: {
4249     // Can only handle X*C and X << C.
4250     AddrMode.InBounds = false;
4251     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4252     if (!RHS || RHS->getBitWidth() > 64)
4253       return false;
4254     int64_t Scale = RHS->getSExtValue();
4255     if (Opcode == Instruction::Shl)
4256       Scale = 1LL << Scale;
4257 
4258     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4259   }
4260   case Instruction::GetElementPtr: {
4261     // Scan the GEP.  We check it if it contains constant offsets and at most
4262     // one variable offset.
4263     int VariableOperand = -1;
4264     unsigned VariableScale = 0;
4265 
4266     int64_t ConstantOffset = 0;
4267     gep_type_iterator GTI = gep_type_begin(AddrInst);
4268     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4269       if (StructType *STy = GTI.getStructTypeOrNull()) {
4270         const StructLayout *SL = DL.getStructLayout(STy);
4271         unsigned Idx =
4272           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4273         ConstantOffset += SL->getElementOffset(Idx);
4274       } else {
4275         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4276         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4277           const APInt &CVal = CI->getValue();
4278           if (CVal.getMinSignedBits() <= 64) {
4279             ConstantOffset += CVal.getSExtValue() * TypeSize;
4280             continue;
4281           }
4282         }
4283         if (TypeSize) {  // Scales of zero don't do anything.
4284           // We only allow one variable index at the moment.
4285           if (VariableOperand != -1)
4286             return false;
4287 
4288           // Remember the variable index.
4289           VariableOperand = i;
4290           VariableScale = TypeSize;
4291         }
4292       }
4293     }
4294 
4295     // A common case is for the GEP to only do a constant offset.  In this case,
4296     // just add it to the disp field and check validity.
4297     if (VariableOperand == -1) {
4298       AddrMode.BaseOffs += ConstantOffset;
4299       if (ConstantOffset == 0 ||
4300           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4301         // Check to see if we can fold the base pointer in too.
4302         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4303           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4304             AddrMode.InBounds = false;
4305           return true;
4306         }
4307       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4308                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4309                  ConstantOffset > 0) {
4310         // Record GEPs with non-zero offsets as candidates for splitting in the
4311         // event that the offset cannot fit into the r+i addressing mode.
4312         // Simple and common case that only one GEP is used in calculating the
4313         // address for the memory access.
4314         Value *Base = AddrInst->getOperand(0);
4315         auto *BaseI = dyn_cast<Instruction>(Base);
4316         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4317         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4318             (BaseI && !isa<CastInst>(BaseI) &&
4319              !isa<GetElementPtrInst>(BaseI))) {
4320           // Make sure the parent block allows inserting non-PHI instructions
4321           // before the terminator.
4322           BasicBlock *Parent =
4323               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4324           if (!Parent->getTerminator()->isEHPad())
4325             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4326         }
4327       }
4328       AddrMode.BaseOffs -= ConstantOffset;
4329       return false;
4330     }
4331 
4332     // Save the valid addressing mode in case we can't match.
4333     ExtAddrMode BackupAddrMode = AddrMode;
4334     unsigned OldSize = AddrModeInsts.size();
4335 
4336     // See if the scale and offset amount is valid for this target.
4337     AddrMode.BaseOffs += ConstantOffset;
4338     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4339       AddrMode.InBounds = false;
4340 
4341     // Match the base operand of the GEP.
4342     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4343       // If it couldn't be matched, just stuff the value in a register.
4344       if (AddrMode.HasBaseReg) {
4345         AddrMode = BackupAddrMode;
4346         AddrModeInsts.resize(OldSize);
4347         return false;
4348       }
4349       AddrMode.HasBaseReg = true;
4350       AddrMode.BaseReg = AddrInst->getOperand(0);
4351     }
4352 
4353     // Match the remaining variable portion of the GEP.
4354     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4355                           Depth)) {
4356       // If it couldn't be matched, try stuffing the base into a register
4357       // instead of matching it, and retrying the match of the scale.
4358       AddrMode = BackupAddrMode;
4359       AddrModeInsts.resize(OldSize);
4360       if (AddrMode.HasBaseReg)
4361         return false;
4362       AddrMode.HasBaseReg = true;
4363       AddrMode.BaseReg = AddrInst->getOperand(0);
4364       AddrMode.BaseOffs += ConstantOffset;
4365       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4366                             VariableScale, Depth)) {
4367         // If even that didn't work, bail.
4368         AddrMode = BackupAddrMode;
4369         AddrModeInsts.resize(OldSize);
4370         return false;
4371       }
4372     }
4373 
4374     return true;
4375   }
4376   case Instruction::SExt:
4377   case Instruction::ZExt: {
4378     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4379     if (!Ext)
4380       return false;
4381 
4382     // Try to move this ext out of the way of the addressing mode.
4383     // Ask for a method for doing so.
4384     TypePromotionHelper::Action TPH =
4385         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4386     if (!TPH)
4387       return false;
4388 
4389     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4390         TPT.getRestorationPoint();
4391     unsigned CreatedInstsCost = 0;
4392     unsigned ExtCost = !TLI.isExtFree(Ext);
4393     Value *PromotedOperand =
4394         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4395     // SExt has been moved away.
4396     // Thus either it will be rematched later in the recursive calls or it is
4397     // gone. Anyway, we must not fold it into the addressing mode at this point.
4398     // E.g.,
4399     // op = add opnd, 1
4400     // idx = ext op
4401     // addr = gep base, idx
4402     // is now:
4403     // promotedOpnd = ext opnd            <- no match here
4404     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4405     // addr = gep base, op                <- match
4406     if (MovedAway)
4407       *MovedAway = true;
4408 
4409     assert(PromotedOperand &&
4410            "TypePromotionHelper should have filtered out those cases");
4411 
4412     ExtAddrMode BackupAddrMode = AddrMode;
4413     unsigned OldSize = AddrModeInsts.size();
4414 
4415     if (!matchAddr(PromotedOperand, Depth) ||
4416         // The total of the new cost is equal to the cost of the created
4417         // instructions.
4418         // The total of the old cost is equal to the cost of the extension plus
4419         // what we have saved in the addressing mode.
4420         !isPromotionProfitable(CreatedInstsCost,
4421                                ExtCost + (AddrModeInsts.size() - OldSize),
4422                                PromotedOperand)) {
4423       AddrMode = BackupAddrMode;
4424       AddrModeInsts.resize(OldSize);
4425       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4426       TPT.rollback(LastKnownGood);
4427       return false;
4428     }
4429     return true;
4430   }
4431   }
4432   return false;
4433 }
4434 
4435 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4436 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4437 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4438 /// for the target.
4439 ///
4440 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4441   // Start a transaction at this point that we will rollback if the matching
4442   // fails.
4443   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4444       TPT.getRestorationPoint();
4445   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4446     // Fold in immediates if legal for the target.
4447     AddrMode.BaseOffs += CI->getSExtValue();
4448     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4449       return true;
4450     AddrMode.BaseOffs -= CI->getSExtValue();
4451   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4452     // If this is a global variable, try to fold it into the addressing mode.
4453     if (!AddrMode.BaseGV) {
4454       AddrMode.BaseGV = GV;
4455       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4456         return true;
4457       AddrMode.BaseGV = nullptr;
4458     }
4459   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4460     ExtAddrMode BackupAddrMode = AddrMode;
4461     unsigned OldSize = AddrModeInsts.size();
4462 
4463     // Check to see if it is possible to fold this operation.
4464     bool MovedAway = false;
4465     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4466       // This instruction may have been moved away. If so, there is nothing
4467       // to check here.
4468       if (MovedAway)
4469         return true;
4470       // Okay, it's possible to fold this.  Check to see if it is actually
4471       // *profitable* to do so.  We use a simple cost model to avoid increasing
4472       // register pressure too much.
4473       if (I->hasOneUse() ||
4474           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4475         AddrModeInsts.push_back(I);
4476         return true;
4477       }
4478 
4479       // It isn't profitable to do this, roll back.
4480       //cerr << "NOT FOLDING: " << *I;
4481       AddrMode = BackupAddrMode;
4482       AddrModeInsts.resize(OldSize);
4483       TPT.rollback(LastKnownGood);
4484     }
4485   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4486     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4487       return true;
4488     TPT.rollback(LastKnownGood);
4489   } else if (isa<ConstantPointerNull>(Addr)) {
4490     // Null pointer gets folded without affecting the addressing mode.
4491     return true;
4492   }
4493 
4494   // Worse case, the target should support [reg] addressing modes. :)
4495   if (!AddrMode.HasBaseReg) {
4496     AddrMode.HasBaseReg = true;
4497     AddrMode.BaseReg = Addr;
4498     // Still check for legality in case the target supports [imm] but not [i+r].
4499     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4500       return true;
4501     AddrMode.HasBaseReg = false;
4502     AddrMode.BaseReg = nullptr;
4503   }
4504 
4505   // If the base register is already taken, see if we can do [r+r].
4506   if (AddrMode.Scale == 0) {
4507     AddrMode.Scale = 1;
4508     AddrMode.ScaledReg = Addr;
4509     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4510       return true;
4511     AddrMode.Scale = 0;
4512     AddrMode.ScaledReg = nullptr;
4513   }
4514   // Couldn't match.
4515   TPT.rollback(LastKnownGood);
4516   return false;
4517 }
4518 
4519 /// Check to see if all uses of OpVal by the specified inline asm call are due
4520 /// to memory operands. If so, return true, otherwise return false.
4521 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4522                                     const TargetLowering &TLI,
4523                                     const TargetRegisterInfo &TRI) {
4524   const Function *F = CI->getFunction();
4525   TargetLowering::AsmOperandInfoVector TargetConstraints =
4526       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4527                             ImmutableCallSite(CI));
4528 
4529   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4530     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4531 
4532     // Compute the constraint code and ConstraintType to use.
4533     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4534 
4535     // If this asm operand is our Value*, and if it isn't an indirect memory
4536     // operand, we can't fold it!
4537     if (OpInfo.CallOperandVal == OpVal &&
4538         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4539          !OpInfo.isIndirect))
4540       return false;
4541   }
4542 
4543   return true;
4544 }
4545 
4546 // Max number of memory uses to look at before aborting the search to conserve
4547 // compile time.
4548 static constexpr int MaxMemoryUsesToScan = 20;
4549 
4550 /// Recursively walk all the uses of I until we find a memory use.
4551 /// If we find an obviously non-foldable instruction, return true.
4552 /// Add the ultimately found memory instructions to MemoryUses.
4553 static bool FindAllMemoryUses(
4554     Instruction *I,
4555     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4556     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4557     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4558     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4559   // If we already considered this instruction, we're done.
4560   if (!ConsideredInsts.insert(I).second)
4561     return false;
4562 
4563   // If this is an obviously unfoldable instruction, bail out.
4564   if (!MightBeFoldableInst(I))
4565     return true;
4566 
4567   // Loop over all the uses, recursively processing them.
4568   for (Use &U : I->uses()) {
4569     // Conservatively return true if we're seeing a large number or a deep chain
4570     // of users. This avoids excessive compilation times in pathological cases.
4571     if (SeenInsts++ >= MaxMemoryUsesToScan)
4572       return true;
4573 
4574     Instruction *UserI = cast<Instruction>(U.getUser());
4575     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4576       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4577       continue;
4578     }
4579 
4580     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4581       unsigned opNo = U.getOperandNo();
4582       if (opNo != StoreInst::getPointerOperandIndex())
4583         return true; // Storing addr, not into addr.
4584       MemoryUses.push_back(std::make_pair(SI, opNo));
4585       continue;
4586     }
4587 
4588     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4589       unsigned opNo = U.getOperandNo();
4590       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4591         return true; // Storing addr, not into addr.
4592       MemoryUses.push_back(std::make_pair(RMW, opNo));
4593       continue;
4594     }
4595 
4596     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4597       unsigned opNo = U.getOperandNo();
4598       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4599         return true; // Storing addr, not into addr.
4600       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4601       continue;
4602     }
4603 
4604     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4605       if (CI->hasFnAttr(Attribute::Cold)) {
4606         // If this is a cold call, we can sink the addressing calculation into
4607         // the cold path.  See optimizeCallInst
4608         bool OptForSize = OptSize ||
4609           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4610         if (!OptForSize)
4611           continue;
4612       }
4613 
4614       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4615       if (!IA) return true;
4616 
4617       // If this is a memory operand, we're cool, otherwise bail out.
4618       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4619         return true;
4620       continue;
4621     }
4622 
4623     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4624                           PSI, BFI, SeenInsts))
4625       return true;
4626   }
4627 
4628   return false;
4629 }
4630 
4631 /// Return true if Val is already known to be live at the use site that we're
4632 /// folding it into. If so, there is no cost to include it in the addressing
4633 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4634 /// instruction already.
4635 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4636                                                    Value *KnownLive2) {
4637   // If Val is either of the known-live values, we know it is live!
4638   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4639     return true;
4640 
4641   // All values other than instructions and arguments (e.g. constants) are live.
4642   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4643 
4644   // If Val is a constant sized alloca in the entry block, it is live, this is
4645   // true because it is just a reference to the stack/frame pointer, which is
4646   // live for the whole function.
4647   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4648     if (AI->isStaticAlloca())
4649       return true;
4650 
4651   // Check to see if this value is already used in the memory instruction's
4652   // block.  If so, it's already live into the block at the very least, so we
4653   // can reasonably fold it.
4654   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4655 }
4656 
4657 /// It is possible for the addressing mode of the machine to fold the specified
4658 /// instruction into a load or store that ultimately uses it.
4659 /// However, the specified instruction has multiple uses.
4660 /// Given this, it may actually increase register pressure to fold it
4661 /// into the load. For example, consider this code:
4662 ///
4663 ///     X = ...
4664 ///     Y = X+1
4665 ///     use(Y)   -> nonload/store
4666 ///     Z = Y+1
4667 ///     load Z
4668 ///
4669 /// In this case, Y has multiple uses, and can be folded into the load of Z
4670 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4671 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4672 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4673 /// number of computations either.
4674 ///
4675 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4676 /// X was live across 'load Z' for other reasons, we actually *would* want to
4677 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4678 bool AddressingModeMatcher::
4679 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4680                                      ExtAddrMode &AMAfter) {
4681   if (IgnoreProfitability) return true;
4682 
4683   // AMBefore is the addressing mode before this instruction was folded into it,
4684   // and AMAfter is the addressing mode after the instruction was folded.  Get
4685   // the set of registers referenced by AMAfter and subtract out those
4686   // referenced by AMBefore: this is the set of values which folding in this
4687   // address extends the lifetime of.
4688   //
4689   // Note that there are only two potential values being referenced here,
4690   // BaseReg and ScaleReg (global addresses are always available, as are any
4691   // folded immediates).
4692   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4693 
4694   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4695   // lifetime wasn't extended by adding this instruction.
4696   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4697     BaseReg = nullptr;
4698   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4699     ScaledReg = nullptr;
4700 
4701   // If folding this instruction (and it's subexprs) didn't extend any live
4702   // ranges, we're ok with it.
4703   if (!BaseReg && !ScaledReg)
4704     return true;
4705 
4706   // If all uses of this instruction can have the address mode sunk into them,
4707   // we can remove the addressing mode and effectively trade one live register
4708   // for another (at worst.)  In this context, folding an addressing mode into
4709   // the use is just a particularly nice way of sinking it.
4710   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4711   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4712   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4713                         PSI, BFI))
4714     return false;  // Has a non-memory, non-foldable use!
4715 
4716   // Now that we know that all uses of this instruction are part of a chain of
4717   // computation involving only operations that could theoretically be folded
4718   // into a memory use, loop over each of these memory operation uses and see
4719   // if they could  *actually* fold the instruction.  The assumption is that
4720   // addressing modes are cheap and that duplicating the computation involved
4721   // many times is worthwhile, even on a fastpath. For sinking candidates
4722   // (i.e. cold call sites), this serves as a way to prevent excessive code
4723   // growth since most architectures have some reasonable small and fast way to
4724   // compute an effective address.  (i.e LEA on x86)
4725   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4726   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4727     Instruction *User = MemoryUses[i].first;
4728     unsigned OpNo = MemoryUses[i].second;
4729 
4730     // Get the access type of this use.  If the use isn't a pointer, we don't
4731     // know what it accesses.
4732     Value *Address = User->getOperand(OpNo);
4733     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4734     if (!AddrTy)
4735       return false;
4736     Type *AddressAccessTy = AddrTy->getElementType();
4737     unsigned AS = AddrTy->getAddressSpace();
4738 
4739     // Do a match against the root of this address, ignoring profitability. This
4740     // will tell us if the addressing mode for the memory operation will
4741     // *actually* cover the shared instruction.
4742     ExtAddrMode Result;
4743     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4744                                                                       0);
4745     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4746         TPT.getRestorationPoint();
4747     AddressingModeMatcher Matcher(
4748         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4749         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4750     Matcher.IgnoreProfitability = true;
4751     bool Success = Matcher.matchAddr(Address, 0);
4752     (void)Success; assert(Success && "Couldn't select *anything*?");
4753 
4754     // The match was to check the profitability, the changes made are not
4755     // part of the original matcher. Therefore, they should be dropped
4756     // otherwise the original matcher will not present the right state.
4757     TPT.rollback(LastKnownGood);
4758 
4759     // If the match didn't cover I, then it won't be shared by it.
4760     if (!is_contained(MatchedAddrModeInsts, I))
4761       return false;
4762 
4763     MatchedAddrModeInsts.clear();
4764   }
4765 
4766   return true;
4767 }
4768 
4769 /// Return true if the specified values are defined in a
4770 /// different basic block than BB.
4771 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4772   if (Instruction *I = dyn_cast<Instruction>(V))
4773     return I->getParent() != BB;
4774   return false;
4775 }
4776 
4777 /// Sink addressing mode computation immediate before MemoryInst if doing so
4778 /// can be done without increasing register pressure.  The need for the
4779 /// register pressure constraint means this can end up being an all or nothing
4780 /// decision for all uses of the same addressing computation.
4781 ///
4782 /// Load and Store Instructions often have addressing modes that can do
4783 /// significant amounts of computation. As such, instruction selection will try
4784 /// to get the load or store to do as much computation as possible for the
4785 /// program. The problem is that isel can only see within a single block. As
4786 /// such, we sink as much legal addressing mode work into the block as possible.
4787 ///
4788 /// This method is used to optimize both load/store and inline asms with memory
4789 /// operands.  It's also used to sink addressing computations feeding into cold
4790 /// call sites into their (cold) basic block.
4791 ///
4792 /// The motivation for handling sinking into cold blocks is that doing so can
4793 /// both enable other address mode sinking (by satisfying the register pressure
4794 /// constraint above), and reduce register pressure globally (by removing the
4795 /// addressing mode computation from the fast path entirely.).
4796 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4797                                         Type *AccessTy, unsigned AddrSpace) {
4798   Value *Repl = Addr;
4799 
4800   // Try to collapse single-value PHI nodes.  This is necessary to undo
4801   // unprofitable PRE transformations.
4802   SmallVector<Value*, 8> worklist;
4803   SmallPtrSet<Value*, 16> Visited;
4804   worklist.push_back(Addr);
4805 
4806   // Use a worklist to iteratively look through PHI and select nodes, and
4807   // ensure that the addressing mode obtained from the non-PHI/select roots of
4808   // the graph are compatible.
4809   bool PhiOrSelectSeen = false;
4810   SmallVector<Instruction*, 16> AddrModeInsts;
4811   const SimplifyQuery SQ(*DL, TLInfo);
4812   AddressingModeCombiner AddrModes(SQ, Addr);
4813   TypePromotionTransaction TPT(RemovedInsts);
4814   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4815       TPT.getRestorationPoint();
4816   while (!worklist.empty()) {
4817     Value *V = worklist.back();
4818     worklist.pop_back();
4819 
4820     // We allow traversing cyclic Phi nodes.
4821     // In case of success after this loop we ensure that traversing through
4822     // Phi nodes ends up with all cases to compute address of the form
4823     //    BaseGV + Base + Scale * Index + Offset
4824     // where Scale and Offset are constans and BaseGV, Base and Index
4825     // are exactly the same Values in all cases.
4826     // It means that BaseGV, Scale and Offset dominate our memory instruction
4827     // and have the same value as they had in address computation represented
4828     // as Phi. So we can safely sink address computation to memory instruction.
4829     if (!Visited.insert(V).second)
4830       continue;
4831 
4832     // For a PHI node, push all of its incoming values.
4833     if (PHINode *P = dyn_cast<PHINode>(V)) {
4834       for (Value *IncValue : P->incoming_values())
4835         worklist.push_back(IncValue);
4836       PhiOrSelectSeen = true;
4837       continue;
4838     }
4839     // Similar for select.
4840     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4841       worklist.push_back(SI->getFalseValue());
4842       worklist.push_back(SI->getTrueValue());
4843       PhiOrSelectSeen = true;
4844       continue;
4845     }
4846 
4847     // For non-PHIs, determine the addressing mode being computed.  Note that
4848     // the result may differ depending on what other uses our candidate
4849     // addressing instructions might have.
4850     AddrModeInsts.clear();
4851     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4852                                                                       0);
4853     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4854         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4855         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4856         BFI.get());
4857 
4858     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4859     if (GEP && !NewGEPBases.count(GEP)) {
4860       // If splitting the underlying data structure can reduce the offset of a
4861       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4862       // previously split data structures.
4863       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4864       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4865         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4866     }
4867 
4868     NewAddrMode.OriginalValue = V;
4869     if (!AddrModes.addNewAddrMode(NewAddrMode))
4870       break;
4871   }
4872 
4873   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4874   // or we have multiple but either couldn't combine them or combining them
4875   // wouldn't do anything useful, bail out now.
4876   if (!AddrModes.combineAddrModes()) {
4877     TPT.rollback(LastKnownGood);
4878     return false;
4879   }
4880   TPT.commit();
4881 
4882   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4883   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4884 
4885   // If all the instructions matched are already in this BB, don't do anything.
4886   // If we saw a Phi node then it is not local definitely, and if we saw a select
4887   // then we want to push the address calculation past it even if it's already
4888   // in this BB.
4889   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4890         return IsNonLocalValue(V, MemoryInst->getParent());
4891                   })) {
4892     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4893                       << "\n");
4894     return false;
4895   }
4896 
4897   // Insert this computation right after this user.  Since our caller is
4898   // scanning from the top of the BB to the bottom, reuse of the expr are
4899   // guaranteed to happen later.
4900   IRBuilder<> Builder(MemoryInst);
4901 
4902   // Now that we determined the addressing expression we want to use and know
4903   // that we have to sink it into this block.  Check to see if we have already
4904   // done this for some other load/store instr in this block.  If so, reuse
4905   // the computation.  Before attempting reuse, check if the address is valid
4906   // as it may have been erased.
4907 
4908   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4909 
4910   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4911   if (SunkAddr) {
4912     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4913                       << " for " << *MemoryInst << "\n");
4914     if (SunkAddr->getType() != Addr->getType())
4915       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4916   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4917                                    SubtargetInfo->addrSinkUsingGEPs())) {
4918     // By default, we use the GEP-based method when AA is used later. This
4919     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4920     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4921                       << " for " << *MemoryInst << "\n");
4922     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4923     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4924 
4925     // First, find the pointer.
4926     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4927       ResultPtr = AddrMode.BaseReg;
4928       AddrMode.BaseReg = nullptr;
4929     }
4930 
4931     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4932       // We can't add more than one pointer together, nor can we scale a
4933       // pointer (both of which seem meaningless).
4934       if (ResultPtr || AddrMode.Scale != 1)
4935         return false;
4936 
4937       ResultPtr = AddrMode.ScaledReg;
4938       AddrMode.Scale = 0;
4939     }
4940 
4941     // It is only safe to sign extend the BaseReg if we know that the math
4942     // required to create it did not overflow before we extend it. Since
4943     // the original IR value was tossed in favor of a constant back when
4944     // the AddrMode was created we need to bail out gracefully if widths
4945     // do not match instead of extending it.
4946     //
4947     // (See below for code to add the scale.)
4948     if (AddrMode.Scale) {
4949       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4950       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4951           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4952         return false;
4953     }
4954 
4955     if (AddrMode.BaseGV) {
4956       if (ResultPtr)
4957         return false;
4958 
4959       ResultPtr = AddrMode.BaseGV;
4960     }
4961 
4962     // If the real base value actually came from an inttoptr, then the matcher
4963     // will look through it and provide only the integer value. In that case,
4964     // use it here.
4965     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4966       if (!ResultPtr && AddrMode.BaseReg) {
4967         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4968                                            "sunkaddr");
4969         AddrMode.BaseReg = nullptr;
4970       } else if (!ResultPtr && AddrMode.Scale == 1) {
4971         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4972                                            "sunkaddr");
4973         AddrMode.Scale = 0;
4974       }
4975     }
4976 
4977     if (!ResultPtr &&
4978         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4979       SunkAddr = Constant::getNullValue(Addr->getType());
4980     } else if (!ResultPtr) {
4981       return false;
4982     } else {
4983       Type *I8PtrTy =
4984           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4985       Type *I8Ty = Builder.getInt8Ty();
4986 
4987       // Start with the base register. Do this first so that subsequent address
4988       // matching finds it last, which will prevent it from trying to match it
4989       // as the scaled value in case it happens to be a mul. That would be
4990       // problematic if we've sunk a different mul for the scale, because then
4991       // we'd end up sinking both muls.
4992       if (AddrMode.BaseReg) {
4993         Value *V = AddrMode.BaseReg;
4994         if (V->getType() != IntPtrTy)
4995           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4996 
4997         ResultIndex = V;
4998       }
4999 
5000       // Add the scale value.
5001       if (AddrMode.Scale) {
5002         Value *V = AddrMode.ScaledReg;
5003         if (V->getType() == IntPtrTy) {
5004           // done.
5005         } else {
5006           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5007                  cast<IntegerType>(V->getType())->getBitWidth() &&
5008                  "We can't transform if ScaledReg is too narrow");
5009           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5010         }
5011 
5012         if (AddrMode.Scale != 1)
5013           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5014                                 "sunkaddr");
5015         if (ResultIndex)
5016           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5017         else
5018           ResultIndex = V;
5019       }
5020 
5021       // Add in the Base Offset if present.
5022       if (AddrMode.BaseOffs) {
5023         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5024         if (ResultIndex) {
5025           // We need to add this separately from the scale above to help with
5026           // SDAG consecutive load/store merging.
5027           if (ResultPtr->getType() != I8PtrTy)
5028             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5029           ResultPtr =
5030               AddrMode.InBounds
5031                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5032                                               "sunkaddr")
5033                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5034         }
5035 
5036         ResultIndex = V;
5037       }
5038 
5039       if (!ResultIndex) {
5040         SunkAddr = ResultPtr;
5041       } else {
5042         if (ResultPtr->getType() != I8PtrTy)
5043           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5044         SunkAddr =
5045             AddrMode.InBounds
5046                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5047                                             "sunkaddr")
5048                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5049       }
5050 
5051       if (SunkAddr->getType() != Addr->getType())
5052         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5053     }
5054   } else {
5055     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5056     // non-integral pointers, so in that case bail out now.
5057     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5058     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5059     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5060     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5061     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5062         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5063         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5064         (AddrMode.BaseGV &&
5065          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5066       return false;
5067 
5068     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5069                       << " for " << *MemoryInst << "\n");
5070     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5071     Value *Result = nullptr;
5072 
5073     // Start with the base register. Do this first so that subsequent address
5074     // matching finds it last, which will prevent it from trying to match it
5075     // as the scaled value in case it happens to be a mul. That would be
5076     // problematic if we've sunk a different mul for the scale, because then
5077     // we'd end up sinking both muls.
5078     if (AddrMode.BaseReg) {
5079       Value *V = AddrMode.BaseReg;
5080       if (V->getType()->isPointerTy())
5081         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5082       if (V->getType() != IntPtrTy)
5083         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5084       Result = V;
5085     }
5086 
5087     // Add the scale value.
5088     if (AddrMode.Scale) {
5089       Value *V = AddrMode.ScaledReg;
5090       if (V->getType() == IntPtrTy) {
5091         // done.
5092       } else if (V->getType()->isPointerTy()) {
5093         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5094       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5095                  cast<IntegerType>(V->getType())->getBitWidth()) {
5096         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5097       } else {
5098         // It is only safe to sign extend the BaseReg if we know that the math
5099         // required to create it did not overflow before we extend it. Since
5100         // the original IR value was tossed in favor of a constant back when
5101         // the AddrMode was created we need to bail out gracefully if widths
5102         // do not match instead of extending it.
5103         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5104         if (I && (Result != AddrMode.BaseReg))
5105           I->eraseFromParent();
5106         return false;
5107       }
5108       if (AddrMode.Scale != 1)
5109         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5110                               "sunkaddr");
5111       if (Result)
5112         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5113       else
5114         Result = V;
5115     }
5116 
5117     // Add in the BaseGV if present.
5118     if (AddrMode.BaseGV) {
5119       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5120       if (Result)
5121         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5122       else
5123         Result = V;
5124     }
5125 
5126     // Add in the Base Offset if present.
5127     if (AddrMode.BaseOffs) {
5128       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5129       if (Result)
5130         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5131       else
5132         Result = V;
5133     }
5134 
5135     if (!Result)
5136       SunkAddr = Constant::getNullValue(Addr->getType());
5137     else
5138       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5139   }
5140 
5141   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5142   // Store the newly computed address into the cache. In the case we reused a
5143   // value, this should be idempotent.
5144   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5145 
5146   // If we have no uses, recursively delete the value and all dead instructions
5147   // using it.
5148   if (Repl->use_empty()) {
5149     // This can cause recursive deletion, which can invalidate our iterator.
5150     // Use a WeakTrackingVH to hold onto it in case this happens.
5151     Value *CurValue = &*CurInstIterator;
5152     WeakTrackingVH IterHandle(CurValue);
5153     BasicBlock *BB = CurInstIterator->getParent();
5154 
5155     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5156 
5157     if (IterHandle != CurValue) {
5158       // If the iterator instruction was recursively deleted, start over at the
5159       // start of the block.
5160       CurInstIterator = BB->begin();
5161       SunkAddrs.clear();
5162     }
5163   }
5164   ++NumMemoryInsts;
5165   return true;
5166 }
5167 
5168 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5169 /// address computing into the block when possible / profitable.
5170 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5171   bool MadeChange = false;
5172 
5173   const TargetRegisterInfo *TRI =
5174       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5175   TargetLowering::AsmOperandInfoVector TargetConstraints =
5176       TLI->ParseConstraints(*DL, TRI, CS);
5177   unsigned ArgNo = 0;
5178   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5179     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5180 
5181     // Compute the constraint code and ConstraintType to use.
5182     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5183 
5184     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5185         OpInfo.isIndirect) {
5186       Value *OpVal = CS->getArgOperand(ArgNo++);
5187       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5188     } else if (OpInfo.Type == InlineAsm::isInput)
5189       ArgNo++;
5190   }
5191 
5192   return MadeChange;
5193 }
5194 
5195 /// Check if all the uses of \p Val are equivalent (or free) zero or
5196 /// sign extensions.
5197 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5198   assert(!Val->use_empty() && "Input must have at least one use");
5199   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5200   bool IsSExt = isa<SExtInst>(FirstUser);
5201   Type *ExtTy = FirstUser->getType();
5202   for (const User *U : Val->users()) {
5203     const Instruction *UI = cast<Instruction>(U);
5204     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5205       return false;
5206     Type *CurTy = UI->getType();
5207     // Same input and output types: Same instruction after CSE.
5208     if (CurTy == ExtTy)
5209       continue;
5210 
5211     // If IsSExt is true, we are in this situation:
5212     // a = Val
5213     // b = sext ty1 a to ty2
5214     // c = sext ty1 a to ty3
5215     // Assuming ty2 is shorter than ty3, this could be turned into:
5216     // a = Val
5217     // b = sext ty1 a to ty2
5218     // c = sext ty2 b to ty3
5219     // However, the last sext is not free.
5220     if (IsSExt)
5221       return false;
5222 
5223     // This is a ZExt, maybe this is free to extend from one type to another.
5224     // In that case, we would not account for a different use.
5225     Type *NarrowTy;
5226     Type *LargeTy;
5227     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5228         CurTy->getScalarType()->getIntegerBitWidth()) {
5229       NarrowTy = CurTy;
5230       LargeTy = ExtTy;
5231     } else {
5232       NarrowTy = ExtTy;
5233       LargeTy = CurTy;
5234     }
5235 
5236     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5237       return false;
5238   }
5239   // All uses are the same or can be derived from one another for free.
5240   return true;
5241 }
5242 
5243 /// Try to speculatively promote extensions in \p Exts and continue
5244 /// promoting through newly promoted operands recursively as far as doing so is
5245 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5246 /// When some promotion happened, \p TPT contains the proper state to revert
5247 /// them.
5248 ///
5249 /// \return true if some promotion happened, false otherwise.
5250 bool CodeGenPrepare::tryToPromoteExts(
5251     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5252     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5253     unsigned CreatedInstsCost) {
5254   bool Promoted = false;
5255 
5256   // Iterate over all the extensions to try to promote them.
5257   for (auto I : Exts) {
5258     // Early check if we directly have ext(load).
5259     if (isa<LoadInst>(I->getOperand(0))) {
5260       ProfitablyMovedExts.push_back(I);
5261       continue;
5262     }
5263 
5264     // Check whether or not we want to do any promotion.  The reason we have
5265     // this check inside the for loop is to catch the case where an extension
5266     // is directly fed by a load because in such case the extension can be moved
5267     // up without any promotion on its operands.
5268     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5269       return false;
5270 
5271     // Get the action to perform the promotion.
5272     TypePromotionHelper::Action TPH =
5273         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5274     // Check if we can promote.
5275     if (!TPH) {
5276       // Save the current extension as we cannot move up through its operand.
5277       ProfitablyMovedExts.push_back(I);
5278       continue;
5279     }
5280 
5281     // Save the current state.
5282     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5283         TPT.getRestorationPoint();
5284     SmallVector<Instruction *, 4> NewExts;
5285     unsigned NewCreatedInstsCost = 0;
5286     unsigned ExtCost = !TLI->isExtFree(I);
5287     // Promote.
5288     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5289                              &NewExts, nullptr, *TLI);
5290     assert(PromotedVal &&
5291            "TypePromotionHelper should have filtered out those cases");
5292 
5293     // We would be able to merge only one extension in a load.
5294     // Therefore, if we have more than 1 new extension we heuristically
5295     // cut this search path, because it means we degrade the code quality.
5296     // With exactly 2, the transformation is neutral, because we will merge
5297     // one extension but leave one. However, we optimistically keep going,
5298     // because the new extension may be removed too.
5299     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5300     // FIXME: It would be possible to propagate a negative value instead of
5301     // conservatively ceiling it to 0.
5302     TotalCreatedInstsCost =
5303         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5304     if (!StressExtLdPromotion &&
5305         (TotalCreatedInstsCost > 1 ||
5306          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5307       // This promotion is not profitable, rollback to the previous state, and
5308       // save the current extension in ProfitablyMovedExts as the latest
5309       // speculative promotion turned out to be unprofitable.
5310       TPT.rollback(LastKnownGood);
5311       ProfitablyMovedExts.push_back(I);
5312       continue;
5313     }
5314     // Continue promoting NewExts as far as doing so is profitable.
5315     SmallVector<Instruction *, 2> NewlyMovedExts;
5316     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5317     bool NewPromoted = false;
5318     for (auto ExtInst : NewlyMovedExts) {
5319       Instruction *MovedExt = cast<Instruction>(ExtInst);
5320       Value *ExtOperand = MovedExt->getOperand(0);
5321       // If we have reached to a load, we need this extra profitability check
5322       // as it could potentially be merged into an ext(load).
5323       if (isa<LoadInst>(ExtOperand) &&
5324           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5325             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5326         continue;
5327 
5328       ProfitablyMovedExts.push_back(MovedExt);
5329       NewPromoted = true;
5330     }
5331 
5332     // If none of speculative promotions for NewExts is profitable, rollback
5333     // and save the current extension (I) as the last profitable extension.
5334     if (!NewPromoted) {
5335       TPT.rollback(LastKnownGood);
5336       ProfitablyMovedExts.push_back(I);
5337       continue;
5338     }
5339     // The promotion is profitable.
5340     Promoted = true;
5341   }
5342   return Promoted;
5343 }
5344 
5345 /// Merging redundant sexts when one is dominating the other.
5346 bool CodeGenPrepare::mergeSExts(Function &F) {
5347   bool Changed = false;
5348   for (auto &Entry : ValToSExtendedUses) {
5349     SExts &Insts = Entry.second;
5350     SExts CurPts;
5351     for (Instruction *Inst : Insts) {
5352       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5353           Inst->getOperand(0) != Entry.first)
5354         continue;
5355       bool inserted = false;
5356       for (auto &Pt : CurPts) {
5357         if (getDT(F).dominates(Inst, Pt)) {
5358           Pt->replaceAllUsesWith(Inst);
5359           RemovedInsts.insert(Pt);
5360           Pt->removeFromParent();
5361           Pt = Inst;
5362           inserted = true;
5363           Changed = true;
5364           break;
5365         }
5366         if (!getDT(F).dominates(Pt, Inst))
5367           // Give up if we need to merge in a common dominator as the
5368           // experiments show it is not profitable.
5369           continue;
5370         Inst->replaceAllUsesWith(Pt);
5371         RemovedInsts.insert(Inst);
5372         Inst->removeFromParent();
5373         inserted = true;
5374         Changed = true;
5375         break;
5376       }
5377       if (!inserted)
5378         CurPts.push_back(Inst);
5379     }
5380   }
5381   return Changed;
5382 }
5383 
5384 // Spliting large data structures so that the GEPs accessing them can have
5385 // smaller offsets so that they can be sunk to the same blocks as their users.
5386 // For example, a large struct starting from %base is splitted into two parts
5387 // where the second part starts from %new_base.
5388 //
5389 // Before:
5390 // BB0:
5391 //   %base     =
5392 //
5393 // BB1:
5394 //   %gep0     = gep %base, off0
5395 //   %gep1     = gep %base, off1
5396 //   %gep2     = gep %base, off2
5397 //
5398 // BB2:
5399 //   %load1    = load %gep0
5400 //   %load2    = load %gep1
5401 //   %load3    = load %gep2
5402 //
5403 // After:
5404 // BB0:
5405 //   %base     =
5406 //   %new_base = gep %base, off0
5407 //
5408 // BB1:
5409 //   %new_gep0 = %new_base
5410 //   %new_gep1 = gep %new_base, off1 - off0
5411 //   %new_gep2 = gep %new_base, off2 - off0
5412 //
5413 // BB2:
5414 //   %load1    = load i32, i32* %new_gep0
5415 //   %load2    = load i32, i32* %new_gep1
5416 //   %load3    = load i32, i32* %new_gep2
5417 //
5418 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5419 // their offsets are smaller enough to fit into the addressing mode.
5420 bool CodeGenPrepare::splitLargeGEPOffsets() {
5421   bool Changed = false;
5422   for (auto &Entry : LargeOffsetGEPMap) {
5423     Value *OldBase = Entry.first;
5424     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5425         &LargeOffsetGEPs = Entry.second;
5426     auto compareGEPOffset =
5427         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5428             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5429           if (LHS.first == RHS.first)
5430             return false;
5431           if (LHS.second != RHS.second)
5432             return LHS.second < RHS.second;
5433           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5434         };
5435     // Sorting all the GEPs of the same data structures based on the offsets.
5436     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5437     LargeOffsetGEPs.erase(
5438         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5439         LargeOffsetGEPs.end());
5440     // Skip if all the GEPs have the same offsets.
5441     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5442       continue;
5443     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5444     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5445     Value *NewBaseGEP = nullptr;
5446 
5447     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5448     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5449       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5450       int64_t Offset = LargeOffsetGEP->second;
5451       if (Offset != BaseOffset) {
5452         TargetLowering::AddrMode AddrMode;
5453         AddrMode.BaseOffs = Offset - BaseOffset;
5454         // The result type of the GEP might not be the type of the memory
5455         // access.
5456         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5457                                         GEP->getResultElementType(),
5458                                         GEP->getAddressSpace())) {
5459           // We need to create a new base if the offset to the current base is
5460           // too large to fit into the addressing mode. So, a very large struct
5461           // may be splitted into several parts.
5462           BaseGEP = GEP;
5463           BaseOffset = Offset;
5464           NewBaseGEP = nullptr;
5465         }
5466       }
5467 
5468       // Generate a new GEP to replace the current one.
5469       LLVMContext &Ctx = GEP->getContext();
5470       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5471       Type *I8PtrTy =
5472           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5473       Type *I8Ty = Type::getInt8Ty(Ctx);
5474 
5475       if (!NewBaseGEP) {
5476         // Create a new base if we don't have one yet.  Find the insertion
5477         // pointer for the new base first.
5478         BasicBlock::iterator NewBaseInsertPt;
5479         BasicBlock *NewBaseInsertBB;
5480         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5481           // If the base of the struct is an instruction, the new base will be
5482           // inserted close to it.
5483           NewBaseInsertBB = BaseI->getParent();
5484           if (isa<PHINode>(BaseI))
5485             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5486           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5487             NewBaseInsertBB =
5488                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5489             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5490           } else
5491             NewBaseInsertPt = std::next(BaseI->getIterator());
5492         } else {
5493           // If the current base is an argument or global value, the new base
5494           // will be inserted to the entry block.
5495           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5496           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5497         }
5498         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5499         // Create a new base.
5500         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5501         NewBaseGEP = OldBase;
5502         if (NewBaseGEP->getType() != I8PtrTy)
5503           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5504         NewBaseGEP =
5505             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5506         NewGEPBases.insert(NewBaseGEP);
5507       }
5508 
5509       IRBuilder<> Builder(GEP);
5510       Value *NewGEP = NewBaseGEP;
5511       if (Offset == BaseOffset) {
5512         if (GEP->getType() != I8PtrTy)
5513           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5514       } else {
5515         // Calculate the new offset for the new GEP.
5516         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5517         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5518 
5519         if (GEP->getType() != I8PtrTy)
5520           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5521       }
5522       GEP->replaceAllUsesWith(NewGEP);
5523       LargeOffsetGEPID.erase(GEP);
5524       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5525       GEP->eraseFromParent();
5526       Changed = true;
5527     }
5528   }
5529   return Changed;
5530 }
5531 
5532 /// Return true, if an ext(load) can be formed from an extension in
5533 /// \p MovedExts.
5534 bool CodeGenPrepare::canFormExtLd(
5535     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5536     Instruction *&Inst, bool HasPromoted) {
5537   for (auto *MovedExtInst : MovedExts) {
5538     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5539       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5540       Inst = MovedExtInst;
5541       break;
5542     }
5543   }
5544   if (!LI)
5545     return false;
5546 
5547   // If they're already in the same block, there's nothing to do.
5548   // Make the cheap checks first if we did not promote.
5549   // If we promoted, we need to check if it is indeed profitable.
5550   if (!HasPromoted && LI->getParent() == Inst->getParent())
5551     return false;
5552 
5553   return TLI->isExtLoad(LI, Inst, *DL);
5554 }
5555 
5556 /// Move a zext or sext fed by a load into the same basic block as the load,
5557 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5558 /// extend into the load.
5559 ///
5560 /// E.g.,
5561 /// \code
5562 /// %ld = load i32* %addr
5563 /// %add = add nuw i32 %ld, 4
5564 /// %zext = zext i32 %add to i64
5565 // \endcode
5566 /// =>
5567 /// \code
5568 /// %ld = load i32* %addr
5569 /// %zext = zext i32 %ld to i64
5570 /// %add = add nuw i64 %zext, 4
5571 /// \encode
5572 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5573 /// allow us to match zext(load i32*) to i64.
5574 ///
5575 /// Also, try to promote the computations used to obtain a sign extended
5576 /// value used into memory accesses.
5577 /// E.g.,
5578 /// \code
5579 /// a = add nsw i32 b, 3
5580 /// d = sext i32 a to i64
5581 /// e = getelementptr ..., i64 d
5582 /// \endcode
5583 /// =>
5584 /// \code
5585 /// f = sext i32 b to i64
5586 /// a = add nsw i64 f, 3
5587 /// e = getelementptr ..., i64 a
5588 /// \endcode
5589 ///
5590 /// \p Inst[in/out] the extension may be modified during the process if some
5591 /// promotions apply.
5592 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5593   bool AllowPromotionWithoutCommonHeader = false;
5594   /// See if it is an interesting sext operations for the address type
5595   /// promotion before trying to promote it, e.g., the ones with the right
5596   /// type and used in memory accesses.
5597   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5598       *Inst, AllowPromotionWithoutCommonHeader);
5599   TypePromotionTransaction TPT(RemovedInsts);
5600   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5601       TPT.getRestorationPoint();
5602   SmallVector<Instruction *, 1> Exts;
5603   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5604   Exts.push_back(Inst);
5605 
5606   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5607 
5608   // Look for a load being extended.
5609   LoadInst *LI = nullptr;
5610   Instruction *ExtFedByLoad;
5611 
5612   // Try to promote a chain of computation if it allows to form an extended
5613   // load.
5614   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5615     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5616     TPT.commit();
5617     // Move the extend into the same block as the load
5618     ExtFedByLoad->moveAfter(LI);
5619     // CGP does not check if the zext would be speculatively executed when moved
5620     // to the same basic block as the load. Preserving its original location
5621     // would pessimize the debugging experience, as well as negatively impact
5622     // the quality of sample pgo. We don't want to use "line 0" as that has a
5623     // size cost in the line-table section and logically the zext can be seen as
5624     // part of the load. Therefore we conservatively reuse the same debug
5625     // location for the load and the zext.
5626     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5627     ++NumExtsMoved;
5628     Inst = ExtFedByLoad;
5629     return true;
5630   }
5631 
5632   // Continue promoting SExts if known as considerable depending on targets.
5633   if (ATPConsiderable &&
5634       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5635                                   HasPromoted, TPT, SpeculativelyMovedExts))
5636     return true;
5637 
5638   TPT.rollback(LastKnownGood);
5639   return false;
5640 }
5641 
5642 // Perform address type promotion if doing so is profitable.
5643 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5644 // instructions that sign extended the same initial value. However, if
5645 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5646 // extension is just profitable.
5647 bool CodeGenPrepare::performAddressTypePromotion(
5648     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5649     bool HasPromoted, TypePromotionTransaction &TPT,
5650     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5651   bool Promoted = false;
5652   SmallPtrSet<Instruction *, 1> UnhandledExts;
5653   bool AllSeenFirst = true;
5654   for (auto I : SpeculativelyMovedExts) {
5655     Value *HeadOfChain = I->getOperand(0);
5656     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5657         SeenChainsForSExt.find(HeadOfChain);
5658     // If there is an unhandled SExt which has the same header, try to promote
5659     // it as well.
5660     if (AlreadySeen != SeenChainsForSExt.end()) {
5661       if (AlreadySeen->second != nullptr)
5662         UnhandledExts.insert(AlreadySeen->second);
5663       AllSeenFirst = false;
5664     }
5665   }
5666 
5667   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5668                         SpeculativelyMovedExts.size() == 1)) {
5669     TPT.commit();
5670     if (HasPromoted)
5671       Promoted = true;
5672     for (auto I : SpeculativelyMovedExts) {
5673       Value *HeadOfChain = I->getOperand(0);
5674       SeenChainsForSExt[HeadOfChain] = nullptr;
5675       ValToSExtendedUses[HeadOfChain].push_back(I);
5676     }
5677     // Update Inst as promotion happen.
5678     Inst = SpeculativelyMovedExts.pop_back_val();
5679   } else {
5680     // This is the first chain visited from the header, keep the current chain
5681     // as unhandled. Defer to promote this until we encounter another SExt
5682     // chain derived from the same header.
5683     for (auto I : SpeculativelyMovedExts) {
5684       Value *HeadOfChain = I->getOperand(0);
5685       SeenChainsForSExt[HeadOfChain] = Inst;
5686     }
5687     return false;
5688   }
5689 
5690   if (!AllSeenFirst && !UnhandledExts.empty())
5691     for (auto VisitedSExt : UnhandledExts) {
5692       if (RemovedInsts.count(VisitedSExt))
5693         continue;
5694       TypePromotionTransaction TPT(RemovedInsts);
5695       SmallVector<Instruction *, 1> Exts;
5696       SmallVector<Instruction *, 2> Chains;
5697       Exts.push_back(VisitedSExt);
5698       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5699       TPT.commit();
5700       if (HasPromoted)
5701         Promoted = true;
5702       for (auto I : Chains) {
5703         Value *HeadOfChain = I->getOperand(0);
5704         // Mark this as handled.
5705         SeenChainsForSExt[HeadOfChain] = nullptr;
5706         ValToSExtendedUses[HeadOfChain].push_back(I);
5707       }
5708     }
5709   return Promoted;
5710 }
5711 
5712 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5713   BasicBlock *DefBB = I->getParent();
5714 
5715   // If the result of a {s|z}ext and its source are both live out, rewrite all
5716   // other uses of the source with result of extension.
5717   Value *Src = I->getOperand(0);
5718   if (Src->hasOneUse())
5719     return false;
5720 
5721   // Only do this xform if truncating is free.
5722   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
5723     return false;
5724 
5725   // Only safe to perform the optimization if the source is also defined in
5726   // this block.
5727   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5728     return false;
5729 
5730   bool DefIsLiveOut = false;
5731   for (User *U : I->users()) {
5732     Instruction *UI = cast<Instruction>(U);
5733 
5734     // Figure out which BB this ext is used in.
5735     BasicBlock *UserBB = UI->getParent();
5736     if (UserBB == DefBB) continue;
5737     DefIsLiveOut = true;
5738     break;
5739   }
5740   if (!DefIsLiveOut)
5741     return false;
5742 
5743   // Make sure none of the uses are PHI nodes.
5744   for (User *U : Src->users()) {
5745     Instruction *UI = cast<Instruction>(U);
5746     BasicBlock *UserBB = UI->getParent();
5747     if (UserBB == DefBB) continue;
5748     // Be conservative. We don't want this xform to end up introducing
5749     // reloads just before load / store instructions.
5750     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5751       return false;
5752   }
5753 
5754   // InsertedTruncs - Only insert one trunc in each block once.
5755   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5756 
5757   bool MadeChange = false;
5758   for (Use &U : Src->uses()) {
5759     Instruction *User = cast<Instruction>(U.getUser());
5760 
5761     // Figure out which BB this ext is used in.
5762     BasicBlock *UserBB = User->getParent();
5763     if (UserBB == DefBB) continue;
5764 
5765     // Both src and def are live in this block. Rewrite the use.
5766     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5767 
5768     if (!InsertedTrunc) {
5769       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5770       assert(InsertPt != UserBB->end());
5771       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5772       InsertedInsts.insert(InsertedTrunc);
5773     }
5774 
5775     // Replace a use of the {s|z}ext source with a use of the result.
5776     U = InsertedTrunc;
5777     ++NumExtUses;
5778     MadeChange = true;
5779   }
5780 
5781   return MadeChange;
5782 }
5783 
5784 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5785 // just after the load if the target can fold this into one extload instruction,
5786 // with the hope of eliminating some of the other later "and" instructions using
5787 // the loaded value.  "and"s that are made trivially redundant by the insertion
5788 // of the new "and" are removed by this function, while others (e.g. those whose
5789 // path from the load goes through a phi) are left for isel to potentially
5790 // remove.
5791 //
5792 // For example:
5793 //
5794 // b0:
5795 //   x = load i32
5796 //   ...
5797 // b1:
5798 //   y = and x, 0xff
5799 //   z = use y
5800 //
5801 // becomes:
5802 //
5803 // b0:
5804 //   x = load i32
5805 //   x' = and x, 0xff
5806 //   ...
5807 // b1:
5808 //   z = use x'
5809 //
5810 // whereas:
5811 //
5812 // b0:
5813 //   x1 = load i32
5814 //   ...
5815 // b1:
5816 //   x2 = load i32
5817 //   ...
5818 // b2:
5819 //   x = phi x1, x2
5820 //   y = and x, 0xff
5821 //
5822 // becomes (after a call to optimizeLoadExt for each load):
5823 //
5824 // b0:
5825 //   x1 = load i32
5826 //   x1' = and x1, 0xff
5827 //   ...
5828 // b1:
5829 //   x2 = load i32
5830 //   x2' = and x2, 0xff
5831 //   ...
5832 // b2:
5833 //   x = phi x1', x2'
5834 //   y = and x, 0xff
5835 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5836   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5837     return false;
5838 
5839   // Skip loads we've already transformed.
5840   if (Load->hasOneUse() &&
5841       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5842     return false;
5843 
5844   // Look at all uses of Load, looking through phis, to determine how many bits
5845   // of the loaded value are needed.
5846   SmallVector<Instruction *, 8> WorkList;
5847   SmallPtrSet<Instruction *, 16> Visited;
5848   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5849   for (auto *U : Load->users())
5850     WorkList.push_back(cast<Instruction>(U));
5851 
5852   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5853   unsigned BitWidth = LoadResultVT.getSizeInBits();
5854   APInt DemandBits(BitWidth, 0);
5855   APInt WidestAndBits(BitWidth, 0);
5856 
5857   while (!WorkList.empty()) {
5858     Instruction *I = WorkList.back();
5859     WorkList.pop_back();
5860 
5861     // Break use-def graph loops.
5862     if (!Visited.insert(I).second)
5863       continue;
5864 
5865     // For a PHI node, push all of its users.
5866     if (auto *Phi = dyn_cast<PHINode>(I)) {
5867       for (auto *U : Phi->users())
5868         WorkList.push_back(cast<Instruction>(U));
5869       continue;
5870     }
5871 
5872     switch (I->getOpcode()) {
5873     case Instruction::And: {
5874       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5875       if (!AndC)
5876         return false;
5877       APInt AndBits = AndC->getValue();
5878       DemandBits |= AndBits;
5879       // Keep track of the widest and mask we see.
5880       if (AndBits.ugt(WidestAndBits))
5881         WidestAndBits = AndBits;
5882       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5883         AndsToMaybeRemove.push_back(I);
5884       break;
5885     }
5886 
5887     case Instruction::Shl: {
5888       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5889       if (!ShlC)
5890         return false;
5891       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5892       DemandBits.setLowBits(BitWidth - ShiftAmt);
5893       break;
5894     }
5895 
5896     case Instruction::Trunc: {
5897       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5898       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5899       DemandBits.setLowBits(TruncBitWidth);
5900       break;
5901     }
5902 
5903     default:
5904       return false;
5905     }
5906   }
5907 
5908   uint32_t ActiveBits = DemandBits.getActiveBits();
5909   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5910   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5911   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5912   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5913   // followed by an AND.
5914   // TODO: Look into removing this restriction by fixing backends to either
5915   // return false for isLoadExtLegal for i1 or have them select this pattern to
5916   // a single instruction.
5917   //
5918   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5919   // mask, since these are the only ands that will be removed by isel.
5920   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5921       WidestAndBits != DemandBits)
5922     return false;
5923 
5924   LLVMContext &Ctx = Load->getType()->getContext();
5925   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5926   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5927 
5928   // Reject cases that won't be matched as extloads.
5929   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5930       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5931     return false;
5932 
5933   IRBuilder<> Builder(Load->getNextNode());
5934   auto *NewAnd = cast<Instruction>(
5935       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5936   // Mark this instruction as "inserted by CGP", so that other
5937   // optimizations don't touch it.
5938   InsertedInsts.insert(NewAnd);
5939 
5940   // Replace all uses of load with new and (except for the use of load in the
5941   // new and itself).
5942   Load->replaceAllUsesWith(NewAnd);
5943   NewAnd->setOperand(0, Load);
5944 
5945   // Remove any and instructions that are now redundant.
5946   for (auto *And : AndsToMaybeRemove)
5947     // Check that the and mask is the same as the one we decided to put on the
5948     // new and.
5949     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5950       And->replaceAllUsesWith(NewAnd);
5951       if (&*CurInstIterator == And)
5952         CurInstIterator = std::next(And->getIterator());
5953       And->eraseFromParent();
5954       ++NumAndUses;
5955     }
5956 
5957   ++NumAndsAdded;
5958   return true;
5959 }
5960 
5961 /// Check if V (an operand of a select instruction) is an expensive instruction
5962 /// that is only used once.
5963 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5964   auto *I = dyn_cast<Instruction>(V);
5965   // If it's safe to speculatively execute, then it should not have side
5966   // effects; therefore, it's safe to sink and possibly *not* execute.
5967   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5968          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5969 }
5970 
5971 /// Returns true if a SelectInst should be turned into an explicit branch.
5972 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5973                                                 const TargetLowering *TLI,
5974                                                 SelectInst *SI) {
5975   // If even a predictable select is cheap, then a branch can't be cheaper.
5976   if (!TLI->isPredictableSelectExpensive())
5977     return false;
5978 
5979   // FIXME: This should use the same heuristics as IfConversion to determine
5980   // whether a select is better represented as a branch.
5981 
5982   // If metadata tells us that the select condition is obviously predictable,
5983   // then we want to replace the select with a branch.
5984   uint64_t TrueWeight, FalseWeight;
5985   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5986     uint64_t Max = std::max(TrueWeight, FalseWeight);
5987     uint64_t Sum = TrueWeight + FalseWeight;
5988     if (Sum != 0) {
5989       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5990       if (Probability > TLI->getPredictableBranchThreshold())
5991         return true;
5992     }
5993   }
5994 
5995   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5996 
5997   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5998   // comparison condition. If the compare has more than one use, there's
5999   // probably another cmov or setcc around, so it's not worth emitting a branch.
6000   if (!Cmp || !Cmp->hasOneUse())
6001     return false;
6002 
6003   // If either operand of the select is expensive and only needed on one side
6004   // of the select, we should form a branch.
6005   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6006       sinkSelectOperand(TTI, SI->getFalseValue()))
6007     return true;
6008 
6009   return false;
6010 }
6011 
6012 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6013 /// false value of \p SI. If the true/false value of \p SI is defined by any
6014 /// select instructions in \p Selects, look through the defining select
6015 /// instruction until the true/false value is not defined in \p Selects.
6016 static Value *getTrueOrFalseValue(
6017     SelectInst *SI, bool isTrue,
6018     const SmallPtrSet<const Instruction *, 2> &Selects) {
6019   Value *V = nullptr;
6020 
6021   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6022        DefSI = dyn_cast<SelectInst>(V)) {
6023     assert(DefSI->getCondition() == SI->getCondition() &&
6024            "The condition of DefSI does not match with SI");
6025     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6026   }
6027 
6028   assert(V && "Failed to get select true/false value");
6029   return V;
6030 }
6031 
6032 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6033   assert(Shift->isShift() && "Expected a shift");
6034 
6035   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6036   // general vector shifts, and (3) the shift amount is a select-of-splatted
6037   // values, hoist the shifts before the select:
6038   //   shift Op0, (select Cond, TVal, FVal) -->
6039   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6040   //
6041   // This is inverting a generic IR transform when we know that the cost of a
6042   // general vector shift is more than the cost of 2 shift-by-scalars.
6043   // We can't do this effectively in SDAG because we may not be able to
6044   // determine if the select operands are splats from within a basic block.
6045   Type *Ty = Shift->getType();
6046   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6047     return false;
6048   Value *Cond, *TVal, *FVal;
6049   if (!match(Shift->getOperand(1),
6050              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6051     return false;
6052   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6053     return false;
6054 
6055   IRBuilder<> Builder(Shift);
6056   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6057   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6058   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6059   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6060   Shift->replaceAllUsesWith(NewSel);
6061   Shift->eraseFromParent();
6062   return true;
6063 }
6064 
6065 /// If we have a SelectInst that will likely profit from branch prediction,
6066 /// turn it into a branch.
6067 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6068   // If branch conversion isn't desirable, exit early.
6069   if (DisableSelectToBranch || OptSize ||
6070       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))
6071     return false;
6072 
6073   // Find all consecutive select instructions that share the same condition.
6074   SmallVector<SelectInst *, 2> ASI;
6075   ASI.push_back(SI);
6076   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6077        It != SI->getParent()->end(); ++It) {
6078     SelectInst *I = dyn_cast<SelectInst>(&*It);
6079     if (I && SI->getCondition() == I->getCondition()) {
6080       ASI.push_back(I);
6081     } else {
6082       break;
6083     }
6084   }
6085 
6086   SelectInst *LastSI = ASI.back();
6087   // Increment the current iterator to skip all the rest of select instructions
6088   // because they will be either "not lowered" or "all lowered" to branch.
6089   CurInstIterator = std::next(LastSI->getIterator());
6090 
6091   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6092 
6093   // Can we convert the 'select' to CF ?
6094   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6095     return false;
6096 
6097   TargetLowering::SelectSupportKind SelectKind;
6098   if (VectorCond)
6099     SelectKind = TargetLowering::VectorMaskSelect;
6100   else if (SI->getType()->isVectorTy())
6101     SelectKind = TargetLowering::ScalarCondVectorVal;
6102   else
6103     SelectKind = TargetLowering::ScalarValSelect;
6104 
6105   if (TLI->isSelectSupported(SelectKind) &&
6106       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
6107     return false;
6108 
6109   // The DominatorTree needs to be rebuilt by any consumers after this
6110   // transformation. We simply reset here rather than setting the ModifiedDT
6111   // flag to avoid restarting the function walk in runOnFunction for each
6112   // select optimized.
6113   DT.reset();
6114 
6115   // Transform a sequence like this:
6116   //    start:
6117   //       %cmp = cmp uge i32 %a, %b
6118   //       %sel = select i1 %cmp, i32 %c, i32 %d
6119   //
6120   // Into:
6121   //    start:
6122   //       %cmp = cmp uge i32 %a, %b
6123   //       br i1 %cmp, label %select.true, label %select.false
6124   //    select.true:
6125   //       br label %select.end
6126   //    select.false:
6127   //       br label %select.end
6128   //    select.end:
6129   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6130   //
6131   // In addition, we may sink instructions that produce %c or %d from
6132   // the entry block into the destination(s) of the new branch.
6133   // If the true or false blocks do not contain a sunken instruction, that
6134   // block and its branch may be optimized away. In that case, one side of the
6135   // first branch will point directly to select.end, and the corresponding PHI
6136   // predecessor block will be the start block.
6137 
6138   // First, we split the block containing the select into 2 blocks.
6139   BasicBlock *StartBlock = SI->getParent();
6140   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6141   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6142   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6143 
6144   // Delete the unconditional branch that was just created by the split.
6145   StartBlock->getTerminator()->eraseFromParent();
6146 
6147   // These are the new basic blocks for the conditional branch.
6148   // At least one will become an actual new basic block.
6149   BasicBlock *TrueBlock = nullptr;
6150   BasicBlock *FalseBlock = nullptr;
6151   BranchInst *TrueBranch = nullptr;
6152   BranchInst *FalseBranch = nullptr;
6153 
6154   // Sink expensive instructions into the conditional blocks to avoid executing
6155   // them speculatively.
6156   for (SelectInst *SI : ASI) {
6157     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6158       if (TrueBlock == nullptr) {
6159         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6160                                        EndBlock->getParent(), EndBlock);
6161         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6162         TrueBranch->setDebugLoc(SI->getDebugLoc());
6163       }
6164       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6165       TrueInst->moveBefore(TrueBranch);
6166     }
6167     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6168       if (FalseBlock == nullptr) {
6169         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6170                                         EndBlock->getParent(), EndBlock);
6171         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6172         FalseBranch->setDebugLoc(SI->getDebugLoc());
6173       }
6174       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6175       FalseInst->moveBefore(FalseBranch);
6176     }
6177   }
6178 
6179   // If there was nothing to sink, then arbitrarily choose the 'false' side
6180   // for a new input value to the PHI.
6181   if (TrueBlock == FalseBlock) {
6182     assert(TrueBlock == nullptr &&
6183            "Unexpected basic block transform while optimizing select");
6184 
6185     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6186                                     EndBlock->getParent(), EndBlock);
6187     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6188     FalseBranch->setDebugLoc(SI->getDebugLoc());
6189   }
6190 
6191   // Insert the real conditional branch based on the original condition.
6192   // If we did not create a new block for one of the 'true' or 'false' paths
6193   // of the condition, it means that side of the branch goes to the end block
6194   // directly and the path originates from the start block from the point of
6195   // view of the new PHI.
6196   BasicBlock *TT, *FT;
6197   if (TrueBlock == nullptr) {
6198     TT = EndBlock;
6199     FT = FalseBlock;
6200     TrueBlock = StartBlock;
6201   } else if (FalseBlock == nullptr) {
6202     TT = TrueBlock;
6203     FT = EndBlock;
6204     FalseBlock = StartBlock;
6205   } else {
6206     TT = TrueBlock;
6207     FT = FalseBlock;
6208   }
6209   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6210 
6211   SmallPtrSet<const Instruction *, 2> INS;
6212   INS.insert(ASI.begin(), ASI.end());
6213   // Use reverse iterator because later select may use the value of the
6214   // earlier select, and we need to propagate value through earlier select
6215   // to get the PHI operand.
6216   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6217     SelectInst *SI = *It;
6218     // The select itself is replaced with a PHI Node.
6219     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6220     PN->takeName(SI);
6221     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6222     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6223     PN->setDebugLoc(SI->getDebugLoc());
6224 
6225     SI->replaceAllUsesWith(PN);
6226     SI->eraseFromParent();
6227     INS.erase(SI);
6228     ++NumSelectsExpanded;
6229   }
6230 
6231   // Instruct OptimizeBlock to skip to the next block.
6232   CurInstIterator = StartBlock->end();
6233   return true;
6234 }
6235 
6236 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6237   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6238   int SplatElem = -1;
6239   for (unsigned i = 0; i < Mask.size(); ++i) {
6240     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6241       return false;
6242     SplatElem = Mask[i];
6243   }
6244 
6245   return true;
6246 }
6247 
6248 /// Some targets have expensive vector shifts if the lanes aren't all the same
6249 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6250 /// it's often worth sinking a shufflevector splat down to its use so that
6251 /// codegen can spot all lanes are identical.
6252 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6253   BasicBlock *DefBB = SVI->getParent();
6254 
6255   // Only do this xform if variable vector shifts are particularly expensive.
6256   if (!TLI->isVectorShiftByScalarCheap(SVI->getType()))
6257     return false;
6258 
6259   // We only expect better codegen by sinking a shuffle if we can recognise a
6260   // constant splat.
6261   if (!isBroadcastShuffle(SVI))
6262     return false;
6263 
6264   // InsertedShuffles - Only insert a shuffle in each block once.
6265   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6266 
6267   bool MadeChange = false;
6268   for (User *U : SVI->users()) {
6269     Instruction *UI = cast<Instruction>(U);
6270 
6271     // Figure out which BB this ext is used in.
6272     BasicBlock *UserBB = UI->getParent();
6273     if (UserBB == DefBB) continue;
6274 
6275     // For now only apply this when the splat is used by a shift instruction.
6276     if (!UI->isShift()) continue;
6277 
6278     // Everything checks out, sink the shuffle if the user's block doesn't
6279     // already have a copy.
6280     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6281 
6282     if (!InsertedShuffle) {
6283       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6284       assert(InsertPt != UserBB->end());
6285       InsertedShuffle =
6286           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6287                                 SVI->getOperand(2), "", &*InsertPt);
6288       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6289     }
6290 
6291     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6292     MadeChange = true;
6293   }
6294 
6295   // If we removed all uses, nuke the shuffle.
6296   if (SVI->use_empty()) {
6297     SVI->eraseFromParent();
6298     MadeChange = true;
6299   }
6300 
6301   return MadeChange;
6302 }
6303 
6304 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6305   // If the operands of I can be folded into a target instruction together with
6306   // I, duplicate and sink them.
6307   SmallVector<Use *, 4> OpsToSink;
6308   if (!TLI->shouldSinkOperands(I, OpsToSink))
6309     return false;
6310 
6311   // OpsToSink can contain multiple uses in a use chain (e.g.
6312   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6313   // uses must come first, so we process the ops in reverse order so as to not
6314   // create invalid IR.
6315   BasicBlock *TargetBB = I->getParent();
6316   bool Changed = false;
6317   SmallVector<Use *, 4> ToReplace;
6318   for (Use *U : reverse(OpsToSink)) {
6319     auto *UI = cast<Instruction>(U->get());
6320     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6321       continue;
6322     ToReplace.push_back(U);
6323   }
6324 
6325   SetVector<Instruction *> MaybeDead;
6326   DenseMap<Instruction *, Instruction *> NewInstructions;
6327   Instruction *InsertPoint = I;
6328   for (Use *U : ToReplace) {
6329     auto *UI = cast<Instruction>(U->get());
6330     Instruction *NI = UI->clone();
6331     NewInstructions[UI] = NI;
6332     MaybeDead.insert(UI);
6333     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6334     NI->insertBefore(InsertPoint);
6335     InsertPoint = NI;
6336     InsertedInsts.insert(NI);
6337 
6338     // Update the use for the new instruction, making sure that we update the
6339     // sunk instruction uses, if it is part of a chain that has already been
6340     // sunk.
6341     Instruction *OldI = cast<Instruction>(U->getUser());
6342     if (NewInstructions.count(OldI))
6343       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6344     else
6345       U->set(NI);
6346     Changed = true;
6347   }
6348 
6349   // Remove instructions that are dead after sinking.
6350   for (auto *I : MaybeDead) {
6351     if (!I->hasNUsesOrMore(1)) {
6352       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6353       I->eraseFromParent();
6354     }
6355   }
6356 
6357   return Changed;
6358 }
6359 
6360 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6361   Value *Cond = SI->getCondition();
6362   Type *OldType = Cond->getType();
6363   LLVMContext &Context = Cond->getContext();
6364   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6365   unsigned RegWidth = RegType.getSizeInBits();
6366 
6367   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6368     return false;
6369 
6370   // If the register width is greater than the type width, expand the condition
6371   // of the switch instruction and each case constant to the width of the
6372   // register. By widening the type of the switch condition, subsequent
6373   // comparisons (for case comparisons) will not need to be extended to the
6374   // preferred register width, so we will potentially eliminate N-1 extends,
6375   // where N is the number of cases in the switch.
6376   auto *NewType = Type::getIntNTy(Context, RegWidth);
6377 
6378   // Zero-extend the switch condition and case constants unless the switch
6379   // condition is a function argument that is already being sign-extended.
6380   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6381   // everything instead.
6382   Instruction::CastOps ExtType = Instruction::ZExt;
6383   if (auto *Arg = dyn_cast<Argument>(Cond))
6384     if (Arg->hasSExtAttr())
6385       ExtType = Instruction::SExt;
6386 
6387   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6388   ExtInst->insertBefore(SI);
6389   ExtInst->setDebugLoc(SI->getDebugLoc());
6390   SI->setCondition(ExtInst);
6391   for (auto Case : SI->cases()) {
6392     APInt NarrowConst = Case.getCaseValue()->getValue();
6393     APInt WideConst = (ExtType == Instruction::ZExt) ?
6394                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6395     Case.setValue(ConstantInt::get(Context, WideConst));
6396   }
6397 
6398   return true;
6399 }
6400 
6401 
6402 namespace {
6403 
6404 /// Helper class to promote a scalar operation to a vector one.
6405 /// This class is used to move downward extractelement transition.
6406 /// E.g.,
6407 /// a = vector_op <2 x i32>
6408 /// b = extractelement <2 x i32> a, i32 0
6409 /// c = scalar_op b
6410 /// store c
6411 ///
6412 /// =>
6413 /// a = vector_op <2 x i32>
6414 /// c = vector_op a (equivalent to scalar_op on the related lane)
6415 /// * d = extractelement <2 x i32> c, i32 0
6416 /// * store d
6417 /// Assuming both extractelement and store can be combine, we get rid of the
6418 /// transition.
6419 class VectorPromoteHelper {
6420   /// DataLayout associated with the current module.
6421   const DataLayout &DL;
6422 
6423   /// Used to perform some checks on the legality of vector operations.
6424   const TargetLowering &TLI;
6425 
6426   /// Used to estimated the cost of the promoted chain.
6427   const TargetTransformInfo &TTI;
6428 
6429   /// The transition being moved downwards.
6430   Instruction *Transition;
6431 
6432   /// The sequence of instructions to be promoted.
6433   SmallVector<Instruction *, 4> InstsToBePromoted;
6434 
6435   /// Cost of combining a store and an extract.
6436   unsigned StoreExtractCombineCost;
6437 
6438   /// Instruction that will be combined with the transition.
6439   Instruction *CombineInst = nullptr;
6440 
6441   /// The instruction that represents the current end of the transition.
6442   /// Since we are faking the promotion until we reach the end of the chain
6443   /// of computation, we need a way to get the current end of the transition.
6444   Instruction *getEndOfTransition() const {
6445     if (InstsToBePromoted.empty())
6446       return Transition;
6447     return InstsToBePromoted.back();
6448   }
6449 
6450   /// Return the index of the original value in the transition.
6451   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6452   /// c, is at index 0.
6453   unsigned getTransitionOriginalValueIdx() const {
6454     assert(isa<ExtractElementInst>(Transition) &&
6455            "Other kind of transitions are not supported yet");
6456     return 0;
6457   }
6458 
6459   /// Return the index of the index in the transition.
6460   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6461   /// is at index 1.
6462   unsigned getTransitionIdx() const {
6463     assert(isa<ExtractElementInst>(Transition) &&
6464            "Other kind of transitions are not supported yet");
6465     return 1;
6466   }
6467 
6468   /// Get the type of the transition.
6469   /// This is the type of the original value.
6470   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6471   /// transition is <2 x i32>.
6472   Type *getTransitionType() const {
6473     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6474   }
6475 
6476   /// Promote \p ToBePromoted by moving \p Def downward through.
6477   /// I.e., we have the following sequence:
6478   /// Def = Transition <ty1> a to <ty2>
6479   /// b = ToBePromoted <ty2> Def, ...
6480   /// =>
6481   /// b = ToBePromoted <ty1> a, ...
6482   /// Def = Transition <ty1> ToBePromoted to <ty2>
6483   void promoteImpl(Instruction *ToBePromoted);
6484 
6485   /// Check whether or not it is profitable to promote all the
6486   /// instructions enqueued to be promoted.
6487   bool isProfitableToPromote() {
6488     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6489     unsigned Index = isa<ConstantInt>(ValIdx)
6490                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6491                          : -1;
6492     Type *PromotedType = getTransitionType();
6493 
6494     StoreInst *ST = cast<StoreInst>(CombineInst);
6495     unsigned AS = ST->getPointerAddressSpace();
6496     unsigned Align = ST->getAlignment();
6497     // Check if this store is supported.
6498     if (!TLI.allowsMisalignedMemoryAccesses(
6499             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6500             Align)) {
6501       // If this is not supported, there is no way we can combine
6502       // the extract with the store.
6503       return false;
6504     }
6505 
6506     // The scalar chain of computation has to pay for the transition
6507     // scalar to vector.
6508     // The vector chain has to account for the combining cost.
6509     uint64_t ScalarCost =
6510         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6511     uint64_t VectorCost = StoreExtractCombineCost;
6512     for (const auto &Inst : InstsToBePromoted) {
6513       // Compute the cost.
6514       // By construction, all instructions being promoted are arithmetic ones.
6515       // Moreover, one argument is a constant that can be viewed as a splat
6516       // constant.
6517       Value *Arg0 = Inst->getOperand(0);
6518       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6519                             isa<ConstantFP>(Arg0);
6520       TargetTransformInfo::OperandValueKind Arg0OVK =
6521           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6522                          : TargetTransformInfo::OK_AnyValue;
6523       TargetTransformInfo::OperandValueKind Arg1OVK =
6524           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6525                           : TargetTransformInfo::OK_AnyValue;
6526       ScalarCost += TTI.getArithmeticInstrCost(
6527           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6528       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6529                                                Arg0OVK, Arg1OVK);
6530     }
6531     LLVM_DEBUG(
6532         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6533                << ScalarCost << "\nVector: " << VectorCost << '\n');
6534     return ScalarCost > VectorCost;
6535   }
6536 
6537   /// Generate a constant vector with \p Val with the same
6538   /// number of elements as the transition.
6539   /// \p UseSplat defines whether or not \p Val should be replicated
6540   /// across the whole vector.
6541   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6542   /// otherwise we generate a vector with as many undef as possible:
6543   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6544   /// used at the index of the extract.
6545   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6546     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6547     if (!UseSplat) {
6548       // If we cannot determine where the constant must be, we have to
6549       // use a splat constant.
6550       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6551       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6552         ExtractIdx = CstVal->getSExtValue();
6553       else
6554         UseSplat = true;
6555     }
6556 
6557     unsigned End = getTransitionType()->getVectorNumElements();
6558     if (UseSplat)
6559       return ConstantVector::getSplat(End, Val);
6560 
6561     SmallVector<Constant *, 4> ConstVec;
6562     UndefValue *UndefVal = UndefValue::get(Val->getType());
6563     for (unsigned Idx = 0; Idx != End; ++Idx) {
6564       if (Idx == ExtractIdx)
6565         ConstVec.push_back(Val);
6566       else
6567         ConstVec.push_back(UndefVal);
6568     }
6569     return ConstantVector::get(ConstVec);
6570   }
6571 
6572   /// Check if promoting to a vector type an operand at \p OperandIdx
6573   /// in \p Use can trigger undefined behavior.
6574   static bool canCauseUndefinedBehavior(const Instruction *Use,
6575                                         unsigned OperandIdx) {
6576     // This is not safe to introduce undef when the operand is on
6577     // the right hand side of a division-like instruction.
6578     if (OperandIdx != 1)
6579       return false;
6580     switch (Use->getOpcode()) {
6581     default:
6582       return false;
6583     case Instruction::SDiv:
6584     case Instruction::UDiv:
6585     case Instruction::SRem:
6586     case Instruction::URem:
6587       return true;
6588     case Instruction::FDiv:
6589     case Instruction::FRem:
6590       return !Use->hasNoNaNs();
6591     }
6592     llvm_unreachable(nullptr);
6593   }
6594 
6595 public:
6596   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6597                       const TargetTransformInfo &TTI, Instruction *Transition,
6598                       unsigned CombineCost)
6599       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6600         StoreExtractCombineCost(CombineCost) {
6601     assert(Transition && "Do not know how to promote null");
6602   }
6603 
6604   /// Check if we can promote \p ToBePromoted to \p Type.
6605   bool canPromote(const Instruction *ToBePromoted) const {
6606     // We could support CastInst too.
6607     return isa<BinaryOperator>(ToBePromoted);
6608   }
6609 
6610   /// Check if it is profitable to promote \p ToBePromoted
6611   /// by moving downward the transition through.
6612   bool shouldPromote(const Instruction *ToBePromoted) const {
6613     // Promote only if all the operands can be statically expanded.
6614     // Indeed, we do not want to introduce any new kind of transitions.
6615     for (const Use &U : ToBePromoted->operands()) {
6616       const Value *Val = U.get();
6617       if (Val == getEndOfTransition()) {
6618         // If the use is a division and the transition is on the rhs,
6619         // we cannot promote the operation, otherwise we may create a
6620         // division by zero.
6621         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6622           return false;
6623         continue;
6624       }
6625       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6626           !isa<ConstantFP>(Val))
6627         return false;
6628     }
6629     // Check that the resulting operation is legal.
6630     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6631     if (!ISDOpcode)
6632       return false;
6633     return StressStoreExtract ||
6634            TLI.isOperationLegalOrCustom(
6635                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6636   }
6637 
6638   /// Check whether or not \p Use can be combined
6639   /// with the transition.
6640   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6641   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6642 
6643   /// Record \p ToBePromoted as part of the chain to be promoted.
6644   void enqueueForPromotion(Instruction *ToBePromoted) {
6645     InstsToBePromoted.push_back(ToBePromoted);
6646   }
6647 
6648   /// Set the instruction that will be combined with the transition.
6649   void recordCombineInstruction(Instruction *ToBeCombined) {
6650     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6651     CombineInst = ToBeCombined;
6652   }
6653 
6654   /// Promote all the instructions enqueued for promotion if it is
6655   /// is profitable.
6656   /// \return True if the promotion happened, false otherwise.
6657   bool promote() {
6658     // Check if there is something to promote.
6659     // Right now, if we do not have anything to combine with,
6660     // we assume the promotion is not profitable.
6661     if (InstsToBePromoted.empty() || !CombineInst)
6662       return false;
6663 
6664     // Check cost.
6665     if (!StressStoreExtract && !isProfitableToPromote())
6666       return false;
6667 
6668     // Promote.
6669     for (auto &ToBePromoted : InstsToBePromoted)
6670       promoteImpl(ToBePromoted);
6671     InstsToBePromoted.clear();
6672     return true;
6673   }
6674 };
6675 
6676 } // end anonymous namespace
6677 
6678 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6679   // At this point, we know that all the operands of ToBePromoted but Def
6680   // can be statically promoted.
6681   // For Def, we need to use its parameter in ToBePromoted:
6682   // b = ToBePromoted ty1 a
6683   // Def = Transition ty1 b to ty2
6684   // Move the transition down.
6685   // 1. Replace all uses of the promoted operation by the transition.
6686   // = ... b => = ... Def.
6687   assert(ToBePromoted->getType() == Transition->getType() &&
6688          "The type of the result of the transition does not match "
6689          "the final type");
6690   ToBePromoted->replaceAllUsesWith(Transition);
6691   // 2. Update the type of the uses.
6692   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6693   Type *TransitionTy = getTransitionType();
6694   ToBePromoted->mutateType(TransitionTy);
6695   // 3. Update all the operands of the promoted operation with promoted
6696   // operands.
6697   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6698   for (Use &U : ToBePromoted->operands()) {
6699     Value *Val = U.get();
6700     Value *NewVal = nullptr;
6701     if (Val == Transition)
6702       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6703     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6704              isa<ConstantFP>(Val)) {
6705       // Use a splat constant if it is not safe to use undef.
6706       NewVal = getConstantVector(
6707           cast<Constant>(Val),
6708           isa<UndefValue>(Val) ||
6709               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6710     } else
6711       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6712                        "this?");
6713     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6714   }
6715   Transition->moveAfter(ToBePromoted);
6716   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6717 }
6718 
6719 /// Some targets can do store(extractelement) with one instruction.
6720 /// Try to push the extractelement towards the stores when the target
6721 /// has this feature and this is profitable.
6722 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6723   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6724   if (DisableStoreExtract ||
6725       (!StressStoreExtract &&
6726        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6727                                        Inst->getOperand(1), CombineCost)))
6728     return false;
6729 
6730   // At this point we know that Inst is a vector to scalar transition.
6731   // Try to move it down the def-use chain, until:
6732   // - We can combine the transition with its single use
6733   //   => we got rid of the transition.
6734   // - We escape the current basic block
6735   //   => we would need to check that we are moving it at a cheaper place and
6736   //      we do not do that for now.
6737   BasicBlock *Parent = Inst->getParent();
6738   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6739   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6740   // If the transition has more than one use, assume this is not going to be
6741   // beneficial.
6742   while (Inst->hasOneUse()) {
6743     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6744     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6745 
6746     if (ToBePromoted->getParent() != Parent) {
6747       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6748                         << ToBePromoted->getParent()->getName()
6749                         << ") than the transition (" << Parent->getName()
6750                         << ").\n");
6751       return false;
6752     }
6753 
6754     if (VPH.canCombine(ToBePromoted)) {
6755       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6756                         << "will be combined with: " << *ToBePromoted << '\n');
6757       VPH.recordCombineInstruction(ToBePromoted);
6758       bool Changed = VPH.promote();
6759       NumStoreExtractExposed += Changed;
6760       return Changed;
6761     }
6762 
6763     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6764     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6765       return false;
6766 
6767     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6768 
6769     VPH.enqueueForPromotion(ToBePromoted);
6770     Inst = ToBePromoted;
6771   }
6772   return false;
6773 }
6774 
6775 /// For the instruction sequence of store below, F and I values
6776 /// are bundled together as an i64 value before being stored into memory.
6777 /// Sometimes it is more efficient to generate separate stores for F and I,
6778 /// which can remove the bitwise instructions or sink them to colder places.
6779 ///
6780 ///   (store (or (zext (bitcast F to i32) to i64),
6781 ///              (shl (zext I to i64), 32)), addr)  -->
6782 ///   (store F, addr) and (store I, addr+4)
6783 ///
6784 /// Similarly, splitting for other merged store can also be beneficial, like:
6785 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6786 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6787 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6788 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6789 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6790 ///
6791 /// We allow each target to determine specifically which kind of splitting is
6792 /// supported.
6793 ///
6794 /// The store patterns are commonly seen from the simple code snippet below
6795 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6796 ///   void goo(const std::pair<int, float> &);
6797 ///   hoo() {
6798 ///     ...
6799 ///     goo(std::make_pair(tmp, ftmp));
6800 ///     ...
6801 ///   }
6802 ///
6803 /// Although we already have similar splitting in DAG Combine, we duplicate
6804 /// it in CodeGenPrepare to catch the case in which pattern is across
6805 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6806 /// during code expansion.
6807 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6808                                 const TargetLowering &TLI) {
6809   // Handle simple but common cases only.
6810   Type *StoreType = SI.getValueOperand()->getType();
6811 
6812   // The code below assumes shifting a value by <number of bits>,
6813   // whereas scalable vectors would have to be shifted by
6814   // <2log(vscale) + number of bits> in order to store the
6815   // low/high parts. Bailing out for now.
6816   if (StoreType->isVectorTy() && StoreType->getVectorIsScalable())
6817     return false;
6818 
6819   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6820       DL.getTypeSizeInBits(StoreType) == 0)
6821     return false;
6822 
6823   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6824   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6825   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6826     return false;
6827 
6828   // Don't split the store if it is volatile.
6829   if (SI.isVolatile())
6830     return false;
6831 
6832   // Match the following patterns:
6833   // (store (or (zext LValue to i64),
6834   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6835   //  or
6836   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6837   //            (zext LValue to i64),
6838   // Expect both operands of OR and the first operand of SHL have only
6839   // one use.
6840   Value *LValue, *HValue;
6841   if (!match(SI.getValueOperand(),
6842              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6843                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6844                                    m_SpecificInt(HalfValBitSize))))))
6845     return false;
6846 
6847   // Check LValue and HValue are int with size less or equal than 32.
6848   if (!LValue->getType()->isIntegerTy() ||
6849       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6850       !HValue->getType()->isIntegerTy() ||
6851       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6852     return false;
6853 
6854   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6855   // as the input of target query.
6856   auto *LBC = dyn_cast<BitCastInst>(LValue);
6857   auto *HBC = dyn_cast<BitCastInst>(HValue);
6858   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6859                   : EVT::getEVT(LValue->getType());
6860   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6861                    : EVT::getEVT(HValue->getType());
6862   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6863     return false;
6864 
6865   // Start to split store.
6866   IRBuilder<> Builder(SI.getContext());
6867   Builder.SetInsertPoint(&SI);
6868 
6869   // If LValue/HValue is a bitcast in another BB, create a new one in current
6870   // BB so it may be merged with the splitted stores by dag combiner.
6871   if (LBC && LBC->getParent() != SI.getParent())
6872     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6873   if (HBC && HBC->getParent() != SI.getParent())
6874     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6875 
6876   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6877   auto CreateSplitStore = [&](Value *V, bool Upper) {
6878     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6879     Value *Addr = Builder.CreateBitCast(
6880         SI.getOperand(1),
6881         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6882     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
6883     if (IsOffsetStore)
6884       Addr = Builder.CreateGEP(
6885           SplitStoreType, Addr,
6886           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6887     MaybeAlign Alignment = SI.getAlign();
6888     if (IsOffsetStore && Alignment) {
6889       // When splitting the store in half, naturally one half will retain the
6890       // alignment of the original wider store, regardless of whether it was
6891       // over-aligned or not, while the other will require adjustment.
6892       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
6893     }
6894     Builder.CreateAlignedStore(V, Addr, Alignment);
6895   };
6896 
6897   CreateSplitStore(LValue, false);
6898   CreateSplitStore(HValue, true);
6899 
6900   // Delete the old store.
6901   SI.eraseFromParent();
6902   return true;
6903 }
6904 
6905 // Return true if the GEP has two operands, the first operand is of a sequential
6906 // type, and the second operand is a constant.
6907 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6908   gep_type_iterator I = gep_type_begin(*GEP);
6909   return GEP->getNumOperands() == 2 &&
6910       I.isSequential() &&
6911       isa<ConstantInt>(GEP->getOperand(1));
6912 }
6913 
6914 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6915 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6916 // reducing liveness interference across those edges benefits global register
6917 // allocation. Currently handles only certain cases.
6918 //
6919 // For example, unmerge %GEPI and %UGEPI as below.
6920 //
6921 // ---------- BEFORE ----------
6922 // SrcBlock:
6923 //   ...
6924 //   %GEPIOp = ...
6925 //   ...
6926 //   %GEPI = gep %GEPIOp, Idx
6927 //   ...
6928 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6929 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6930 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6931 //   %UGEPI)
6932 //
6933 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6934 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6935 // ...
6936 //
6937 // DstBi:
6938 //   ...
6939 //   %UGEPI = gep %GEPIOp, UIdx
6940 // ...
6941 // ---------------------------
6942 //
6943 // ---------- AFTER ----------
6944 // SrcBlock:
6945 //   ... (same as above)
6946 //    (* %GEPI is still alive on the indirectbr edges)
6947 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6948 //    unmerging)
6949 // ...
6950 //
6951 // DstBi:
6952 //   ...
6953 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6954 //   ...
6955 // ---------------------------
6956 //
6957 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6958 // no longer alive on them.
6959 //
6960 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6961 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6962 // not to disable further simplications and optimizations as a result of GEP
6963 // merging.
6964 //
6965 // Note this unmerging may increase the length of the data flow critical path
6966 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6967 // between the register pressure and the length of data-flow critical
6968 // path. Restricting this to the uncommon IndirectBr case would minimize the
6969 // impact of potentially longer critical path, if any, and the impact on compile
6970 // time.
6971 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6972                                              const TargetTransformInfo *TTI) {
6973   BasicBlock *SrcBlock = GEPI->getParent();
6974   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6975   // (non-IndirectBr) cases exit early here.
6976   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6977     return false;
6978   // Check that GEPI is a simple gep with a single constant index.
6979   if (!GEPSequentialConstIndexed(GEPI))
6980     return false;
6981   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6982   // Check that GEPI is a cheap one.
6983   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6984       > TargetTransformInfo::TCC_Basic)
6985     return false;
6986   Value *GEPIOp = GEPI->getOperand(0);
6987   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6988   if (!isa<Instruction>(GEPIOp))
6989     return false;
6990   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6991   if (GEPIOpI->getParent() != SrcBlock)
6992     return false;
6993   // Check that GEP is used outside the block, meaning it's alive on the
6994   // IndirectBr edge(s).
6995   if (find_if(GEPI->users(), [&](User *Usr) {
6996         if (auto *I = dyn_cast<Instruction>(Usr)) {
6997           if (I->getParent() != SrcBlock) {
6998             return true;
6999           }
7000         }
7001         return false;
7002       }) == GEPI->users().end())
7003     return false;
7004   // The second elements of the GEP chains to be unmerged.
7005   std::vector<GetElementPtrInst *> UGEPIs;
7006   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7007   // on IndirectBr edges.
7008   for (User *Usr : GEPIOp->users()) {
7009     if (Usr == GEPI) continue;
7010     // Check if Usr is an Instruction. If not, give up.
7011     if (!isa<Instruction>(Usr))
7012       return false;
7013     auto *UI = cast<Instruction>(Usr);
7014     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7015     if (UI->getParent() == SrcBlock)
7016       continue;
7017     // Check if Usr is a GEP. If not, give up.
7018     if (!isa<GetElementPtrInst>(Usr))
7019       return false;
7020     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7021     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7022     // the pointer operand to it. If so, record it in the vector. If not, give
7023     // up.
7024     if (!GEPSequentialConstIndexed(UGEPI))
7025       return false;
7026     if (UGEPI->getOperand(0) != GEPIOp)
7027       return false;
7028     if (GEPIIdx->getType() !=
7029         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7030       return false;
7031     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7032     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
7033         > TargetTransformInfo::TCC_Basic)
7034       return false;
7035     UGEPIs.push_back(UGEPI);
7036   }
7037   if (UGEPIs.size() == 0)
7038     return false;
7039   // Check the materializing cost of (Uidx-Idx).
7040   for (GetElementPtrInst *UGEPI : UGEPIs) {
7041     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7042     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7043     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
7044     if (ImmCost > TargetTransformInfo::TCC_Basic)
7045       return false;
7046   }
7047   // Now unmerge between GEPI and UGEPIs.
7048   for (GetElementPtrInst *UGEPI : UGEPIs) {
7049     UGEPI->setOperand(0, GEPI);
7050     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7051     Constant *NewUGEPIIdx =
7052         ConstantInt::get(GEPIIdx->getType(),
7053                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7054     UGEPI->setOperand(1, NewUGEPIIdx);
7055     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7056     // inbounds to avoid UB.
7057     if (!GEPI->isInBounds()) {
7058       UGEPI->setIsInBounds(false);
7059     }
7060   }
7061   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7062   // alive on IndirectBr edges).
7063   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7064         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7065       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7066   return true;
7067 }
7068 
7069 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7070   // Bail out if we inserted the instruction to prevent optimizations from
7071   // stepping on each other's toes.
7072   if (InsertedInsts.count(I))
7073     return false;
7074 
7075   // TODO: Move into the switch on opcode below here.
7076   if (PHINode *P = dyn_cast<PHINode>(I)) {
7077     // It is possible for very late stage optimizations (such as SimplifyCFG)
7078     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7079     // trivial PHI, go ahead and zap it here.
7080     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7081       LargeOffsetGEPMap.erase(P);
7082       P->replaceAllUsesWith(V);
7083       P->eraseFromParent();
7084       ++NumPHIsElim;
7085       return true;
7086     }
7087     return false;
7088   }
7089 
7090   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7091     // If the source of the cast is a constant, then this should have
7092     // already been constant folded.  The only reason NOT to constant fold
7093     // it is if something (e.g. LSR) was careful to place the constant
7094     // evaluation in a block other than then one that uses it (e.g. to hoist
7095     // the address of globals out of a loop).  If this is the case, we don't
7096     // want to forward-subst the cast.
7097     if (isa<Constant>(CI->getOperand(0)))
7098       return false;
7099 
7100     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7101       return true;
7102 
7103     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7104       /// Sink a zext or sext into its user blocks if the target type doesn't
7105       /// fit in one register
7106       if (TLI->getTypeAction(CI->getContext(),
7107                              TLI->getValueType(*DL, CI->getType())) ==
7108           TargetLowering::TypeExpandInteger) {
7109         return SinkCast(CI);
7110       } else {
7111         bool MadeChange = optimizeExt(I);
7112         return MadeChange | optimizeExtUses(I);
7113       }
7114     }
7115     return false;
7116   }
7117 
7118   if (auto *Cmp = dyn_cast<CmpInst>(I))
7119     if (optimizeCmp(Cmp, ModifiedDT))
7120       return true;
7121 
7122   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7123     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7124     bool Modified = optimizeLoadExt(LI);
7125     unsigned AS = LI->getPointerAddressSpace();
7126     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7127     return Modified;
7128   }
7129 
7130   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7131     if (splitMergedValStore(*SI, *DL, *TLI))
7132       return true;
7133     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7134     unsigned AS = SI->getPointerAddressSpace();
7135     return optimizeMemoryInst(I, SI->getOperand(1),
7136                               SI->getOperand(0)->getType(), AS);
7137   }
7138 
7139   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7140       unsigned AS = RMW->getPointerAddressSpace();
7141       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7142                                 RMW->getType(), AS);
7143   }
7144 
7145   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7146       unsigned AS = CmpX->getPointerAddressSpace();
7147       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7148                                 CmpX->getCompareOperand()->getType(), AS);
7149   }
7150 
7151   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7152 
7153   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7154     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7155 
7156   // TODO: Move this into the switch on opcode - it handles shifts already.
7157   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7158                 BinOp->getOpcode() == Instruction::LShr)) {
7159     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7160     if (CI && TLI->hasExtractBitsInsn())
7161       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7162         return true;
7163   }
7164 
7165   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7166     if (GEPI->hasAllZeroIndices()) {
7167       /// The GEP operand must be a pointer, so must its result -> BitCast
7168       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7169                                         GEPI->getName(), GEPI);
7170       NC->setDebugLoc(GEPI->getDebugLoc());
7171       GEPI->replaceAllUsesWith(NC);
7172       GEPI->eraseFromParent();
7173       ++NumGEPsElim;
7174       optimizeInst(NC, ModifiedDT);
7175       return true;
7176     }
7177     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7178       return true;
7179     }
7180     return false;
7181   }
7182 
7183   if (tryToSinkFreeOperands(I))
7184     return true;
7185 
7186   switch (I->getOpcode()) {
7187   case Instruction::Shl:
7188   case Instruction::LShr:
7189   case Instruction::AShr:
7190     return optimizeShiftInst(cast<BinaryOperator>(I));
7191   case Instruction::Call:
7192     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7193   case Instruction::Select:
7194     return optimizeSelectInst(cast<SelectInst>(I));
7195   case Instruction::ShuffleVector:
7196     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7197   case Instruction::Switch:
7198     return optimizeSwitchInst(cast<SwitchInst>(I));
7199   case Instruction::ExtractElement:
7200     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7201   }
7202 
7203   return false;
7204 }
7205 
7206 /// Given an OR instruction, check to see if this is a bitreverse
7207 /// idiom. If so, insert the new intrinsic and return true.
7208 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7209                            const TargetLowering &TLI) {
7210   if (!I.getType()->isIntegerTy() ||
7211       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7212                                     TLI.getValueType(DL, I.getType(), true)))
7213     return false;
7214 
7215   SmallVector<Instruction*, 4> Insts;
7216   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7217     return false;
7218   Instruction *LastInst = Insts.back();
7219   I.replaceAllUsesWith(LastInst);
7220   RecursivelyDeleteTriviallyDeadInstructions(&I);
7221   return true;
7222 }
7223 
7224 // In this pass we look for GEP and cast instructions that are used
7225 // across basic blocks and rewrite them to improve basic-block-at-a-time
7226 // selection.
7227 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7228   SunkAddrs.clear();
7229   bool MadeChange = false;
7230 
7231   CurInstIterator = BB.begin();
7232   while (CurInstIterator != BB.end()) {
7233     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7234     if (ModifiedDT)
7235       return true;
7236   }
7237 
7238   bool MadeBitReverse = true;
7239   while (MadeBitReverse) {
7240     MadeBitReverse = false;
7241     for (auto &I : reverse(BB)) {
7242       if (makeBitReverse(I, *DL, *TLI)) {
7243         MadeBitReverse = MadeChange = true;
7244         break;
7245       }
7246     }
7247   }
7248   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7249 
7250   return MadeChange;
7251 }
7252 
7253 // Some CGP optimizations may move or alter what's computed in a block. Check
7254 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7255 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7256   assert(isa<DbgValueInst>(I));
7257   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7258 
7259   // Does this dbg.value refer to a sunk address calculation?
7260   Value *Location = DVI.getVariableLocation();
7261   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7262   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7263   if (SunkAddr) {
7264     // Point dbg.value at locally computed address, which should give the best
7265     // opportunity to be accurately lowered. This update may change the type of
7266     // pointer being referred to; however this makes no difference to debugging
7267     // information, and we can't generate bitcasts that may affect codegen.
7268     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7269                                            ValueAsMetadata::get(SunkAddr)));
7270     return true;
7271   }
7272   return false;
7273 }
7274 
7275 // A llvm.dbg.value may be using a value before its definition, due to
7276 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7277 // them by moving the dbg.value to immediately after the value definition.
7278 // FIXME: Ideally this should never be necessary, and this has the potential
7279 // to re-order dbg.value intrinsics.
7280 bool CodeGenPrepare::placeDbgValues(Function &F) {
7281   bool MadeChange = false;
7282   DominatorTree DT(F);
7283 
7284   for (BasicBlock &BB : F) {
7285     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7286       Instruction *Insn = &*BI++;
7287       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7288       if (!DVI)
7289         continue;
7290 
7291       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7292 
7293       if (!VI || VI->isTerminator())
7294         continue;
7295 
7296       // If VI is a phi in a block with an EHPad terminator, we can't insert
7297       // after it.
7298       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7299         continue;
7300 
7301       // If the defining instruction dominates the dbg.value, we do not need
7302       // to move the dbg.value.
7303       if (DT.dominates(VI, DVI))
7304         continue;
7305 
7306       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7307                         << *DVI << ' ' << *VI);
7308       DVI->removeFromParent();
7309       if (isa<PHINode>(VI))
7310         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7311       else
7312         DVI->insertAfter(VI);
7313       MadeChange = true;
7314       ++NumDbgValueMoved;
7315     }
7316   }
7317   return MadeChange;
7318 }
7319 
7320 /// Scale down both weights to fit into uint32_t.
7321 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7322   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7323   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7324   NewTrue = NewTrue / Scale;
7325   NewFalse = NewFalse / Scale;
7326 }
7327 
7328 /// Some targets prefer to split a conditional branch like:
7329 /// \code
7330 ///   %0 = icmp ne i32 %a, 0
7331 ///   %1 = icmp ne i32 %b, 0
7332 ///   %or.cond = or i1 %0, %1
7333 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7334 /// \endcode
7335 /// into multiple branch instructions like:
7336 /// \code
7337 ///   bb1:
7338 ///     %0 = icmp ne i32 %a, 0
7339 ///     br i1 %0, label %TrueBB, label %bb2
7340 ///   bb2:
7341 ///     %1 = icmp ne i32 %b, 0
7342 ///     br i1 %1, label %TrueBB, label %FalseBB
7343 /// \endcode
7344 /// This usually allows instruction selection to do even further optimizations
7345 /// and combine the compare with the branch instruction. Currently this is
7346 /// applied for targets which have "cheap" jump instructions.
7347 ///
7348 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7349 ///
7350 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7351   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7352     return false;
7353 
7354   bool MadeChange = false;
7355   for (auto &BB : F) {
7356     // Does this BB end with the following?
7357     //   %cond1 = icmp|fcmp|binary instruction ...
7358     //   %cond2 = icmp|fcmp|binary instruction ...
7359     //   %cond.or = or|and i1 %cond1, cond2
7360     //   br i1 %cond.or label %dest1, label %dest2"
7361     BinaryOperator *LogicOp;
7362     BasicBlock *TBB, *FBB;
7363     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7364       continue;
7365 
7366     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7367     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7368       continue;
7369 
7370     // The merging of mostly empty BB can cause a degenerate branch.
7371     if (TBB == FBB)
7372       continue;
7373 
7374     unsigned Opc;
7375     Value *Cond1, *Cond2;
7376     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7377                              m_OneUse(m_Value(Cond2)))))
7378       Opc = Instruction::And;
7379     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7380                                  m_OneUse(m_Value(Cond2)))))
7381       Opc = Instruction::Or;
7382     else
7383       continue;
7384 
7385     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7386         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7387       continue;
7388 
7389     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7390 
7391     // Create a new BB.
7392     auto TmpBB =
7393         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7394                            BB.getParent(), BB.getNextNode());
7395 
7396     // Update original basic block by using the first condition directly by the
7397     // branch instruction and removing the no longer needed and/or instruction.
7398     Br1->setCondition(Cond1);
7399     LogicOp->eraseFromParent();
7400 
7401     // Depending on the condition we have to either replace the true or the
7402     // false successor of the original branch instruction.
7403     if (Opc == Instruction::And)
7404       Br1->setSuccessor(0, TmpBB);
7405     else
7406       Br1->setSuccessor(1, TmpBB);
7407 
7408     // Fill in the new basic block.
7409     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7410     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7411       I->removeFromParent();
7412       I->insertBefore(Br2);
7413     }
7414 
7415     // Update PHI nodes in both successors. The original BB needs to be
7416     // replaced in one successor's PHI nodes, because the branch comes now from
7417     // the newly generated BB (NewBB). In the other successor we need to add one
7418     // incoming edge to the PHI nodes, because both branch instructions target
7419     // now the same successor. Depending on the original branch condition
7420     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7421     // we perform the correct update for the PHI nodes.
7422     // This doesn't change the successor order of the just created branch
7423     // instruction (or any other instruction).
7424     if (Opc == Instruction::Or)
7425       std::swap(TBB, FBB);
7426 
7427     // Replace the old BB with the new BB.
7428     TBB->replacePhiUsesWith(&BB, TmpBB);
7429 
7430     // Add another incoming edge form the new BB.
7431     for (PHINode &PN : FBB->phis()) {
7432       auto *Val = PN.getIncomingValueForBlock(&BB);
7433       PN.addIncoming(Val, TmpBB);
7434     }
7435 
7436     // Update the branch weights (from SelectionDAGBuilder::
7437     // FindMergedConditions).
7438     if (Opc == Instruction::Or) {
7439       // Codegen X | Y as:
7440       // BB1:
7441       //   jmp_if_X TBB
7442       //   jmp TmpBB
7443       // TmpBB:
7444       //   jmp_if_Y TBB
7445       //   jmp FBB
7446       //
7447 
7448       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7449       // The requirement is that
7450       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7451       //     = TrueProb for original BB.
7452       // Assuming the original weights are A and B, one choice is to set BB1's
7453       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7454       // assumes that
7455       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7456       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7457       // TmpBB, but the math is more complicated.
7458       uint64_t TrueWeight, FalseWeight;
7459       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7460         uint64_t NewTrueWeight = TrueWeight;
7461         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7462         scaleWeights(NewTrueWeight, NewFalseWeight);
7463         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7464                          .createBranchWeights(TrueWeight, FalseWeight));
7465 
7466         NewTrueWeight = TrueWeight;
7467         NewFalseWeight = 2 * FalseWeight;
7468         scaleWeights(NewTrueWeight, NewFalseWeight);
7469         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7470                          .createBranchWeights(TrueWeight, FalseWeight));
7471       }
7472     } else {
7473       // Codegen X & Y as:
7474       // BB1:
7475       //   jmp_if_X TmpBB
7476       //   jmp FBB
7477       // TmpBB:
7478       //   jmp_if_Y TBB
7479       //   jmp FBB
7480       //
7481       //  This requires creation of TmpBB after CurBB.
7482 
7483       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7484       // The requirement is that
7485       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7486       //     = FalseProb for original BB.
7487       // Assuming the original weights are A and B, one choice is to set BB1's
7488       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7489       // assumes that
7490       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7491       uint64_t TrueWeight, FalseWeight;
7492       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7493         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7494         uint64_t NewFalseWeight = FalseWeight;
7495         scaleWeights(NewTrueWeight, NewFalseWeight);
7496         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7497                          .createBranchWeights(TrueWeight, FalseWeight));
7498 
7499         NewTrueWeight = 2 * TrueWeight;
7500         NewFalseWeight = FalseWeight;
7501         scaleWeights(NewTrueWeight, NewFalseWeight);
7502         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7503                          .createBranchWeights(TrueWeight, FalseWeight));
7504       }
7505     }
7506 
7507     ModifiedDT = true;
7508     MadeChange = true;
7509 
7510     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7511                TmpBB->dump());
7512   }
7513   return MadeChange;
7514 }
7515