1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 68 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 69 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 70 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 71 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 72 73 static cl::opt<bool> DisableBranchOpts( 74 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 75 cl::desc("Disable branch optimizations in CodeGenPrepare")); 76 77 static cl::opt<bool> 78 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 79 cl::desc("Disable GC optimizations in CodeGenPrepare")); 80 81 static cl::opt<bool> DisableSelectToBranch( 82 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 83 cl::desc("Disable select to branch conversion.")); 84 85 static cl::opt<bool> AddrSinkUsingGEPs( 86 "addr-sink-using-gep", cl::Hidden, cl::init(false), 87 cl::desc("Address sinking in CGP using GEPs.")); 88 89 static cl::opt<bool> EnableAndCmpSinking( 90 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 91 cl::desc("Enable sinkinig and/cmp into branches.")); 92 93 static cl::opt<bool> DisableStoreExtract( 94 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 95 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 96 97 static cl::opt<bool> StressStoreExtract( 98 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 99 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 100 101 static cl::opt<bool> DisableExtLdPromotion( 102 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 103 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 104 "CodeGenPrepare")); 105 106 static cl::opt<bool> StressExtLdPromotion( 107 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 108 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 109 "optimization in CodeGenPrepare")); 110 111 namespace { 112 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 113 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 114 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 115 class TypePromotionTransaction; 116 117 class CodeGenPrepare : public FunctionPass { 118 const TargetMachine *TM; 119 const TargetLowering *TLI; 120 const TargetTransformInfo *TTI; 121 const TargetLibraryInfo *TLInfo; 122 123 /// As we scan instructions optimizing them, this is the next instruction 124 /// to optimize. Transforms that can invalidate this should update it. 125 BasicBlock::iterator CurInstIterator; 126 127 /// Keeps track of non-local addresses that have been sunk into a block. 128 /// This allows us to avoid inserting duplicate code for blocks with 129 /// multiple load/stores of the same address. 130 ValueMap<Value*, Value*> SunkAddrs; 131 132 /// Keeps track of all instructions inserted for the current function. 133 SetOfInstrs InsertedInsts; 134 /// Keeps track of the type of the related instruction before their 135 /// promotion for the current function. 136 InstrToOrigTy PromotedInsts; 137 138 /// True if CFG is modified in any way. 139 bool ModifiedDT; 140 141 /// True if optimizing for size. 142 bool OptSize; 143 144 /// DataLayout for the Function being processed. 145 const DataLayout *DL; 146 147 public: 148 static char ID; // Pass identification, replacement for typeid 149 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 150 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 151 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 152 } 153 bool runOnFunction(Function &F) override; 154 155 const char *getPassName() const override { return "CodeGen Prepare"; } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetLibraryInfoWrapperPass>(); 160 AU.addRequired<TargetTransformInfoWrapperPass>(); 161 } 162 163 private: 164 bool eliminateFallThrough(Function &F); 165 bool eliminateMostlyEmptyBlocks(Function &F); 166 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 167 void eliminateMostlyEmptyBlock(BasicBlock *BB); 168 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 169 bool optimizeInst(Instruction *I, bool& ModifiedDT); 170 bool optimizeMemoryInst(Instruction *I, Value *Addr, 171 Type *AccessTy, unsigned AS); 172 bool optimizeInlineAsmInst(CallInst *CS); 173 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 174 bool moveExtToFormExtLoad(Instruction *&I); 175 bool optimizeExtUses(Instruction *I); 176 bool optimizeSelectInst(SelectInst *SI); 177 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 178 bool optimizeSwitchInst(SwitchInst *CI); 179 bool optimizeExtractElementInst(Instruction *Inst); 180 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 181 bool placeDbgValues(Function &F); 182 bool sinkAndCmp(Function &F); 183 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 184 Instruction *&Inst, 185 const SmallVectorImpl<Instruction *> &Exts, 186 unsigned CreatedInstCost); 187 bool splitBranchCondition(Function &F); 188 bool simplifyOffsetableRelocate(Instruction &I); 189 void stripInvariantGroupMetadata(Instruction &I); 190 }; 191 } 192 193 char CodeGenPrepare::ID = 0; 194 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 195 "Optimize for code generation", false, false) 196 197 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 198 return new CodeGenPrepare(TM); 199 } 200 201 bool CodeGenPrepare::runOnFunction(Function &F) { 202 if (skipOptnoneFunction(F)) 203 return false; 204 205 DL = &F.getParent()->getDataLayout(); 206 207 bool EverMadeChange = false; 208 // Clear per function information. 209 InsertedInsts.clear(); 210 PromotedInsts.clear(); 211 212 ModifiedDT = false; 213 if (TM) 214 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 215 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 OptSize = F.optForSize(); 218 219 /// This optimization identifies DIV instructions that can be 220 /// profitably bypassed and carried out with a shorter, faster divide. 221 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 222 const DenseMap<unsigned int, unsigned int> &BypassWidths = 223 TLI->getBypassSlowDivWidths(); 224 for (Function::iterator I = F.begin(); I != F.end(); I++) 225 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 226 } 227 228 // Eliminate blocks that contain only PHI nodes and an 229 // unconditional branch. 230 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 231 232 // llvm.dbg.value is far away from the value then iSel may not be able 233 // handle it properly. iSel will drop llvm.dbg.value if it can not 234 // find a node corresponding to the value. 235 EverMadeChange |= placeDbgValues(F); 236 237 // If there is a mask, compare against zero, and branch that can be combined 238 // into a single target instruction, push the mask and compare into branch 239 // users. Do this before OptimizeBlock -> OptimizeInst -> 240 // OptimizeCmpExpression, which perturbs the pattern being searched for. 241 if (!DisableBranchOpts) { 242 EverMadeChange |= sinkAndCmp(F); 243 EverMadeChange |= splitBranchCondition(F); 244 } 245 246 bool MadeChange = true; 247 while (MadeChange) { 248 MadeChange = false; 249 for (Function::iterator I = F.begin(); I != F.end(); ) { 250 BasicBlock *BB = &*I++; 251 bool ModifiedDTOnIteration = false; 252 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 253 254 // Restart BB iteration if the dominator tree of the Function was changed 255 if (ModifiedDTOnIteration) 256 break; 257 } 258 EverMadeChange |= MadeChange; 259 } 260 261 SunkAddrs.clear(); 262 263 if (!DisableBranchOpts) { 264 MadeChange = false; 265 SmallPtrSet<BasicBlock*, 8> WorkList; 266 for (BasicBlock &BB : F) { 267 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 268 MadeChange |= ConstantFoldTerminator(&BB, true); 269 if (!MadeChange) continue; 270 271 for (SmallVectorImpl<BasicBlock*>::iterator 272 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 273 if (pred_begin(*II) == pred_end(*II)) 274 WorkList.insert(*II); 275 } 276 277 // Delete the dead blocks and any of their dead successors. 278 MadeChange |= !WorkList.empty(); 279 while (!WorkList.empty()) { 280 BasicBlock *BB = *WorkList.begin(); 281 WorkList.erase(BB); 282 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 283 284 DeleteDeadBlock(BB); 285 286 for (SmallVectorImpl<BasicBlock*>::iterator 287 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 288 if (pred_begin(*II) == pred_end(*II)) 289 WorkList.insert(*II); 290 } 291 292 // Merge pairs of basic blocks with unconditional branches, connected by 293 // a single edge. 294 if (EverMadeChange || MadeChange) 295 MadeChange |= eliminateFallThrough(F); 296 297 EverMadeChange |= MadeChange; 298 } 299 300 if (!DisableGCOpts) { 301 SmallVector<Instruction *, 2> Statepoints; 302 for (BasicBlock &BB : F) 303 for (Instruction &I : BB) 304 if (isStatepoint(I)) 305 Statepoints.push_back(&I); 306 for (auto &I : Statepoints) 307 EverMadeChange |= simplifyOffsetableRelocate(*I); 308 } 309 310 return EverMadeChange; 311 } 312 313 /// Merge basic blocks which are connected by a single edge, where one of the 314 /// basic blocks has a single successor pointing to the other basic block, 315 /// which has a single predecessor. 316 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 317 bool Changed = false; 318 // Scan all of the blocks in the function, except for the entry block. 319 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 320 BasicBlock *BB = &*I++; 321 // If the destination block has a single pred, then this is a trivial 322 // edge, just collapse it. 323 BasicBlock *SinglePred = BB->getSinglePredecessor(); 324 325 // Don't merge if BB's address is taken. 326 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 327 328 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 329 if (Term && !Term->isConditional()) { 330 Changed = true; 331 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 332 // Remember if SinglePred was the entry block of the function. 333 // If so, we will need to move BB back to the entry position. 334 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 335 MergeBasicBlockIntoOnlyPred(BB, nullptr); 336 337 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 338 BB->moveBefore(&BB->getParent()->getEntryBlock()); 339 340 // We have erased a block. Update the iterator. 341 I = BB->getIterator(); 342 } 343 } 344 return Changed; 345 } 346 347 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 348 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 349 /// edges in ways that are non-optimal for isel. Start by eliminating these 350 /// blocks so we can split them the way we want them. 351 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 352 bool MadeChange = false; 353 // Note that this intentionally skips the entry block. 354 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 355 BasicBlock *BB = &*I++; 356 357 // If this block doesn't end with an uncond branch, ignore it. 358 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 359 if (!BI || !BI->isUnconditional()) 360 continue; 361 362 // If the instruction before the branch (skipping debug info) isn't a phi 363 // node, then other stuff is happening here. 364 BasicBlock::iterator BBI = BI->getIterator(); 365 if (BBI != BB->begin()) { 366 --BBI; 367 while (isa<DbgInfoIntrinsic>(BBI)) { 368 if (BBI == BB->begin()) 369 break; 370 --BBI; 371 } 372 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 373 continue; 374 } 375 376 // Do not break infinite loops. 377 BasicBlock *DestBB = BI->getSuccessor(0); 378 if (DestBB == BB) 379 continue; 380 381 if (!canMergeBlocks(BB, DestBB)) 382 continue; 383 384 eliminateMostlyEmptyBlock(BB); 385 MadeChange = true; 386 } 387 return MadeChange; 388 } 389 390 /// Return true if we can merge BB into DestBB if there is a single 391 /// unconditional branch between them, and BB contains no other non-phi 392 /// instructions. 393 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 394 const BasicBlock *DestBB) const { 395 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 396 // the successor. If there are more complex condition (e.g. preheaders), 397 // don't mess around with them. 398 BasicBlock::const_iterator BBI = BB->begin(); 399 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 400 for (const User *U : PN->users()) { 401 const Instruction *UI = cast<Instruction>(U); 402 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 403 return false; 404 // If User is inside DestBB block and it is a PHINode then check 405 // incoming value. If incoming value is not from BB then this is 406 // a complex condition (e.g. preheaders) we want to avoid here. 407 if (UI->getParent() == DestBB) { 408 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 409 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 410 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 411 if (Insn && Insn->getParent() == BB && 412 Insn->getParent() != UPN->getIncomingBlock(I)) 413 return false; 414 } 415 } 416 } 417 } 418 419 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 420 // and DestBB may have conflicting incoming values for the block. If so, we 421 // can't merge the block. 422 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 423 if (!DestBBPN) return true; // no conflict. 424 425 // Collect the preds of BB. 426 SmallPtrSet<const BasicBlock*, 16> BBPreds; 427 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 428 // It is faster to get preds from a PHI than with pred_iterator. 429 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 430 BBPreds.insert(BBPN->getIncomingBlock(i)); 431 } else { 432 BBPreds.insert(pred_begin(BB), pred_end(BB)); 433 } 434 435 // Walk the preds of DestBB. 436 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 437 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 438 if (BBPreds.count(Pred)) { // Common predecessor? 439 BBI = DestBB->begin(); 440 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 441 const Value *V1 = PN->getIncomingValueForBlock(Pred); 442 const Value *V2 = PN->getIncomingValueForBlock(BB); 443 444 // If V2 is a phi node in BB, look up what the mapped value will be. 445 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 446 if (V2PN->getParent() == BB) 447 V2 = V2PN->getIncomingValueForBlock(Pred); 448 449 // If there is a conflict, bail out. 450 if (V1 != V2) return false; 451 } 452 } 453 } 454 455 return true; 456 } 457 458 459 /// Eliminate a basic block that has only phi's and an unconditional branch in 460 /// it. 461 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 462 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 463 BasicBlock *DestBB = BI->getSuccessor(0); 464 465 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 466 467 // If the destination block has a single pred, then this is a trivial edge, 468 // just collapse it. 469 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 470 if (SinglePred != DestBB) { 471 // Remember if SinglePred was the entry block of the function. If so, we 472 // will need to move BB back to the entry position. 473 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 474 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 475 476 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 477 BB->moveBefore(&BB->getParent()->getEntryBlock()); 478 479 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 480 return; 481 } 482 } 483 484 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 485 // to handle the new incoming edges it is about to have. 486 PHINode *PN; 487 for (BasicBlock::iterator BBI = DestBB->begin(); 488 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 489 // Remove the incoming value for BB, and remember it. 490 Value *InVal = PN->removeIncomingValue(BB, false); 491 492 // Two options: either the InVal is a phi node defined in BB or it is some 493 // value that dominates BB. 494 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 495 if (InValPhi && InValPhi->getParent() == BB) { 496 // Add all of the input values of the input PHI as inputs of this phi. 497 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 498 PN->addIncoming(InValPhi->getIncomingValue(i), 499 InValPhi->getIncomingBlock(i)); 500 } else { 501 // Otherwise, add one instance of the dominating value for each edge that 502 // we will be adding. 503 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 504 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 505 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 506 } else { 507 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 508 PN->addIncoming(InVal, *PI); 509 } 510 } 511 } 512 513 // The PHIs are now updated, change everything that refers to BB to use 514 // DestBB and remove BB. 515 BB->replaceAllUsesWith(DestBB); 516 BB->eraseFromParent(); 517 ++NumBlocksElim; 518 519 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 520 } 521 522 // Computes a map of base pointer relocation instructions to corresponding 523 // derived pointer relocation instructions given a vector of all relocate calls 524 static void computeBaseDerivedRelocateMap( 525 const SmallVectorImpl<User *> &AllRelocateCalls, 526 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 527 RelocateInstMap) { 528 // Collect information in two maps: one primarily for locating the base object 529 // while filling the second map; the second map is the final structure holding 530 // a mapping between Base and corresponding Derived relocate calls 531 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 532 for (auto &U : AllRelocateCalls) { 533 GCRelocateOperands ThisRelocate(U); 534 IntrinsicInst *I = cast<IntrinsicInst>(U); 535 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 536 ThisRelocate.getDerivedPtrIndex()); 537 RelocateIdxMap.insert(std::make_pair(K, I)); 538 } 539 for (auto &Item : RelocateIdxMap) { 540 std::pair<unsigned, unsigned> Key = Item.first; 541 if (Key.first == Key.second) 542 // Base relocation: nothing to insert 543 continue; 544 545 IntrinsicInst *I = Item.second; 546 auto BaseKey = std::make_pair(Key.first, Key.first); 547 548 // We're iterating over RelocateIdxMap so we cannot modify it. 549 auto MaybeBase = RelocateIdxMap.find(BaseKey); 550 if (MaybeBase == RelocateIdxMap.end()) 551 // TODO: We might want to insert a new base object relocate and gep off 552 // that, if there are enough derived object relocates. 553 continue; 554 555 RelocateInstMap[MaybeBase->second].push_back(I); 556 } 557 } 558 559 // Accepts a GEP and extracts the operands into a vector provided they're all 560 // small integer constants 561 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 562 SmallVectorImpl<Value *> &OffsetV) { 563 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 564 // Only accept small constant integer operands 565 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 566 if (!Op || Op->getZExtValue() > 20) 567 return false; 568 } 569 570 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 571 OffsetV.push_back(GEP->getOperand(i)); 572 return true; 573 } 574 575 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 576 // replace, computes a replacement, and affects it. 577 static bool 578 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 579 const SmallVectorImpl<IntrinsicInst *> &Targets) { 580 bool MadeChange = false; 581 for (auto &ToReplace : Targets) { 582 GCRelocateOperands MasterRelocate(RelocatedBase); 583 GCRelocateOperands ThisRelocate(ToReplace); 584 585 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 586 "Not relocating a derived object of the original base object"); 587 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 588 // A duplicate relocate call. TODO: coalesce duplicates. 589 continue; 590 } 591 592 if (RelocatedBase->getParent() != ToReplace->getParent()) { 593 // Base and derived relocates are in different basic blocks. 594 // In this case transform is only valid when base dominates derived 595 // relocate. However it would be too expensive to check dominance 596 // for each such relocate, so we skip the whole transformation. 597 continue; 598 } 599 600 Value *Base = ThisRelocate.getBasePtr(); 601 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 602 if (!Derived || Derived->getPointerOperand() != Base) 603 continue; 604 605 SmallVector<Value *, 2> OffsetV; 606 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 607 continue; 608 609 // Create a Builder and replace the target callsite with a gep 610 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 611 612 // Insert after RelocatedBase 613 IRBuilder<> Builder(RelocatedBase->getNextNode()); 614 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 615 616 // If gc_relocate does not match the actual type, cast it to the right type. 617 // In theory, there must be a bitcast after gc_relocate if the type does not 618 // match, and we should reuse it to get the derived pointer. But it could be 619 // cases like this: 620 // bb1: 621 // ... 622 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 623 // br label %merge 624 // 625 // bb2: 626 // ... 627 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 628 // br label %merge 629 // 630 // merge: 631 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 632 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 633 // 634 // In this case, we can not find the bitcast any more. So we insert a new bitcast 635 // no matter there is already one or not. In this way, we can handle all cases, and 636 // the extra bitcast should be optimized away in later passes. 637 Instruction *ActualRelocatedBase = RelocatedBase; 638 if (RelocatedBase->getType() != Base->getType()) { 639 ActualRelocatedBase = 640 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 641 } 642 Value *Replacement = Builder.CreateGEP( 643 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 644 Instruction *ReplacementInst = cast<Instruction>(Replacement); 645 Replacement->takeName(ToReplace); 646 // If the newly generated derived pointer's type does not match the original derived 647 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 648 Instruction *ActualReplacement = ReplacementInst; 649 if (ReplacementInst->getType() != ToReplace->getType()) { 650 ActualReplacement = 651 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 652 } 653 ToReplace->replaceAllUsesWith(ActualReplacement); 654 ToReplace->eraseFromParent(); 655 656 MadeChange = true; 657 } 658 return MadeChange; 659 } 660 661 // Turns this: 662 // 663 // %base = ... 664 // %ptr = gep %base + 15 665 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 666 // %base' = relocate(%tok, i32 4, i32 4) 667 // %ptr' = relocate(%tok, i32 4, i32 5) 668 // %val = load %ptr' 669 // 670 // into this: 671 // 672 // %base = ... 673 // %ptr = gep %base + 15 674 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 675 // %base' = gc.relocate(%tok, i32 4, i32 4) 676 // %ptr' = gep %base' + 15 677 // %val = load %ptr' 678 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 679 bool MadeChange = false; 680 SmallVector<User *, 2> AllRelocateCalls; 681 682 for (auto *U : I.users()) 683 if (isGCRelocate(dyn_cast<Instruction>(U))) 684 // Collect all the relocate calls associated with a statepoint 685 AllRelocateCalls.push_back(U); 686 687 // We need atleast one base pointer relocation + one derived pointer 688 // relocation to mangle 689 if (AllRelocateCalls.size() < 2) 690 return false; 691 692 // RelocateInstMap is a mapping from the base relocate instruction to the 693 // corresponding derived relocate instructions 694 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 695 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 696 if (RelocateInstMap.empty()) 697 return false; 698 699 for (auto &Item : RelocateInstMap) 700 // Item.first is the RelocatedBase to offset against 701 // Item.second is the vector of Targets to replace 702 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 703 return MadeChange; 704 } 705 706 /// SinkCast - Sink the specified cast instruction into its user blocks 707 static bool SinkCast(CastInst *CI) { 708 BasicBlock *DefBB = CI->getParent(); 709 710 /// InsertedCasts - Only insert a cast in each block once. 711 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 712 713 bool MadeChange = false; 714 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 715 UI != E; ) { 716 Use &TheUse = UI.getUse(); 717 Instruction *User = cast<Instruction>(*UI); 718 719 // Figure out which BB this cast is used in. For PHI's this is the 720 // appropriate predecessor block. 721 BasicBlock *UserBB = User->getParent(); 722 if (PHINode *PN = dyn_cast<PHINode>(User)) { 723 UserBB = PN->getIncomingBlock(TheUse); 724 } 725 726 // Preincrement use iterator so we don't invalidate it. 727 ++UI; 728 729 // If this user is in the same block as the cast, don't change the cast. 730 if (UserBB == DefBB) continue; 731 732 // If we have already inserted a cast into this block, use it. 733 CastInst *&InsertedCast = InsertedCasts[UserBB]; 734 735 if (!InsertedCast) { 736 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 737 assert(InsertPt != UserBB->end()); 738 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 739 CI->getType(), "", &*InsertPt); 740 } 741 742 // Replace a use of the cast with a use of the new cast. 743 TheUse = InsertedCast; 744 MadeChange = true; 745 ++NumCastUses; 746 } 747 748 // If we removed all uses, nuke the cast. 749 if (CI->use_empty()) { 750 CI->eraseFromParent(); 751 MadeChange = true; 752 } 753 754 return MadeChange; 755 } 756 757 /// If the specified cast instruction is a noop copy (e.g. it's casting from 758 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 759 /// reduce the number of virtual registers that must be created and coalesced. 760 /// 761 /// Return true if any changes are made. 762 /// 763 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 764 const DataLayout &DL) { 765 // If this is a noop copy, 766 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 767 EVT DstVT = TLI.getValueType(DL, CI->getType()); 768 769 // This is an fp<->int conversion? 770 if (SrcVT.isInteger() != DstVT.isInteger()) 771 return false; 772 773 // If this is an extension, it will be a zero or sign extension, which 774 // isn't a noop. 775 if (SrcVT.bitsLT(DstVT)) return false; 776 777 // If these values will be promoted, find out what they will be promoted 778 // to. This helps us consider truncates on PPC as noop copies when they 779 // are. 780 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 781 TargetLowering::TypePromoteInteger) 782 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 783 if (TLI.getTypeAction(CI->getContext(), DstVT) == 784 TargetLowering::TypePromoteInteger) 785 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 786 787 // If, after promotion, these are the same types, this is a noop copy. 788 if (SrcVT != DstVT) 789 return false; 790 791 return SinkCast(CI); 792 } 793 794 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 795 /// possible. 796 /// 797 /// Return true if any changes were made. 798 static bool CombineUAddWithOverflow(CmpInst *CI) { 799 Value *A, *B; 800 Instruction *AddI; 801 if (!match(CI, 802 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 803 return false; 804 805 Type *Ty = AddI->getType(); 806 if (!isa<IntegerType>(Ty)) 807 return false; 808 809 // We don't want to move around uses of condition values this late, so we we 810 // check if it is legal to create the call to the intrinsic in the basic 811 // block containing the icmp: 812 813 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 814 return false; 815 816 #ifndef NDEBUG 817 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 818 // for now: 819 if (AddI->hasOneUse()) 820 assert(*AddI->user_begin() == CI && "expected!"); 821 #endif 822 823 Module *M = CI->getParent()->getParent()->getParent(); 824 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 825 826 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 827 828 auto *UAddWithOverflow = 829 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 830 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 831 auto *Overflow = 832 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 833 834 CI->replaceAllUsesWith(Overflow); 835 AddI->replaceAllUsesWith(UAdd); 836 CI->eraseFromParent(); 837 AddI->eraseFromParent(); 838 return true; 839 } 840 841 /// Sink the given CmpInst into user blocks to reduce the number of virtual 842 /// registers that must be created and coalesced. This is a clear win except on 843 /// targets with multiple condition code registers (PowerPC), where it might 844 /// lose; some adjustment may be wanted there. 845 /// 846 /// Return true if any changes are made. 847 static bool SinkCmpExpression(CmpInst *CI) { 848 BasicBlock *DefBB = CI->getParent(); 849 850 /// Only insert a cmp in each block once. 851 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 852 853 bool MadeChange = false; 854 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 855 UI != E; ) { 856 Use &TheUse = UI.getUse(); 857 Instruction *User = cast<Instruction>(*UI); 858 859 // Preincrement use iterator so we don't invalidate it. 860 ++UI; 861 862 // Don't bother for PHI nodes. 863 if (isa<PHINode>(User)) 864 continue; 865 866 // Figure out which BB this cmp is used in. 867 BasicBlock *UserBB = User->getParent(); 868 869 // If this user is in the same block as the cmp, don't change the cmp. 870 if (UserBB == DefBB) continue; 871 872 // If we have already inserted a cmp into this block, use it. 873 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 874 875 if (!InsertedCmp) { 876 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 877 assert(InsertPt != UserBB->end()); 878 InsertedCmp = 879 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 880 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 881 } 882 883 // Replace a use of the cmp with a use of the new cmp. 884 TheUse = InsertedCmp; 885 MadeChange = true; 886 ++NumCmpUses; 887 } 888 889 // If we removed all uses, nuke the cmp. 890 if (CI->use_empty()) { 891 CI->eraseFromParent(); 892 MadeChange = true; 893 } 894 895 return MadeChange; 896 } 897 898 static bool OptimizeCmpExpression(CmpInst *CI) { 899 if (SinkCmpExpression(CI)) 900 return true; 901 902 if (CombineUAddWithOverflow(CI)) 903 return true; 904 905 return false; 906 } 907 908 /// Check if the candidates could be combined with a shift instruction, which 909 /// includes: 910 /// 1. Truncate instruction 911 /// 2. And instruction and the imm is a mask of the low bits: 912 /// imm & (imm+1) == 0 913 static bool isExtractBitsCandidateUse(Instruction *User) { 914 if (!isa<TruncInst>(User)) { 915 if (User->getOpcode() != Instruction::And || 916 !isa<ConstantInt>(User->getOperand(1))) 917 return false; 918 919 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 920 921 if ((Cimm & (Cimm + 1)).getBoolValue()) 922 return false; 923 } 924 return true; 925 } 926 927 /// Sink both shift and truncate instruction to the use of truncate's BB. 928 static bool 929 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 930 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 931 const TargetLowering &TLI, const DataLayout &DL) { 932 BasicBlock *UserBB = User->getParent(); 933 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 934 TruncInst *TruncI = dyn_cast<TruncInst>(User); 935 bool MadeChange = false; 936 937 for (Value::user_iterator TruncUI = TruncI->user_begin(), 938 TruncE = TruncI->user_end(); 939 TruncUI != TruncE;) { 940 941 Use &TruncTheUse = TruncUI.getUse(); 942 Instruction *TruncUser = cast<Instruction>(*TruncUI); 943 // Preincrement use iterator so we don't invalidate it. 944 945 ++TruncUI; 946 947 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 948 if (!ISDOpcode) 949 continue; 950 951 // If the use is actually a legal node, there will not be an 952 // implicit truncate. 953 // FIXME: always querying the result type is just an 954 // approximation; some nodes' legality is determined by the 955 // operand or other means. There's no good way to find out though. 956 if (TLI.isOperationLegalOrCustom( 957 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 958 continue; 959 960 // Don't bother for PHI nodes. 961 if (isa<PHINode>(TruncUser)) 962 continue; 963 964 BasicBlock *TruncUserBB = TruncUser->getParent(); 965 966 if (UserBB == TruncUserBB) 967 continue; 968 969 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 970 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 971 972 if (!InsertedShift && !InsertedTrunc) { 973 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 974 assert(InsertPt != TruncUserBB->end()); 975 // Sink the shift 976 if (ShiftI->getOpcode() == Instruction::AShr) 977 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 978 "", &*InsertPt); 979 else 980 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 981 "", &*InsertPt); 982 983 // Sink the trunc 984 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 985 TruncInsertPt++; 986 assert(TruncInsertPt != TruncUserBB->end()); 987 988 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 989 TruncI->getType(), "", &*TruncInsertPt); 990 991 MadeChange = true; 992 993 TruncTheUse = InsertedTrunc; 994 } 995 } 996 return MadeChange; 997 } 998 999 /// Sink the shift *right* instruction into user blocks if the uses could 1000 /// potentially be combined with this shift instruction and generate BitExtract 1001 /// instruction. It will only be applied if the architecture supports BitExtract 1002 /// instruction. Here is an example: 1003 /// BB1: 1004 /// %x.extract.shift = lshr i64 %arg1, 32 1005 /// BB2: 1006 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1007 /// ==> 1008 /// 1009 /// BB2: 1010 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1011 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1012 /// 1013 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1014 /// instruction. 1015 /// Return true if any changes are made. 1016 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1017 const TargetLowering &TLI, 1018 const DataLayout &DL) { 1019 BasicBlock *DefBB = ShiftI->getParent(); 1020 1021 /// Only insert instructions in each block once. 1022 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1023 1024 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1025 1026 bool MadeChange = false; 1027 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1028 UI != E;) { 1029 Use &TheUse = UI.getUse(); 1030 Instruction *User = cast<Instruction>(*UI); 1031 // Preincrement use iterator so we don't invalidate it. 1032 ++UI; 1033 1034 // Don't bother for PHI nodes. 1035 if (isa<PHINode>(User)) 1036 continue; 1037 1038 if (!isExtractBitsCandidateUse(User)) 1039 continue; 1040 1041 BasicBlock *UserBB = User->getParent(); 1042 1043 if (UserBB == DefBB) { 1044 // If the shift and truncate instruction are in the same BB. The use of 1045 // the truncate(TruncUse) may still introduce another truncate if not 1046 // legal. In this case, we would like to sink both shift and truncate 1047 // instruction to the BB of TruncUse. 1048 // for example: 1049 // BB1: 1050 // i64 shift.result = lshr i64 opnd, imm 1051 // trunc.result = trunc shift.result to i16 1052 // 1053 // BB2: 1054 // ----> We will have an implicit truncate here if the architecture does 1055 // not have i16 compare. 1056 // cmp i16 trunc.result, opnd2 1057 // 1058 if (isa<TruncInst>(User) && shiftIsLegal 1059 // If the type of the truncate is legal, no trucate will be 1060 // introduced in other basic blocks. 1061 && 1062 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1063 MadeChange = 1064 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1065 1066 continue; 1067 } 1068 // If we have already inserted a shift into this block, use it. 1069 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1070 1071 if (!InsertedShift) { 1072 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1073 assert(InsertPt != UserBB->end()); 1074 1075 if (ShiftI->getOpcode() == Instruction::AShr) 1076 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1077 "", &*InsertPt); 1078 else 1079 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1080 "", &*InsertPt); 1081 1082 MadeChange = true; 1083 } 1084 1085 // Replace a use of the shift with a use of the new shift. 1086 TheUse = InsertedShift; 1087 } 1088 1089 // If we removed all uses, nuke the shift. 1090 if (ShiftI->use_empty()) 1091 ShiftI->eraseFromParent(); 1092 1093 return MadeChange; 1094 } 1095 1096 // Translate a masked load intrinsic like 1097 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1098 // <16 x i1> %mask, <16 x i32> %passthru) 1099 // to a chain of basic blocks, with loading element one-by-one if 1100 // the appropriate mask bit is set 1101 // 1102 // %1 = bitcast i8* %addr to i32* 1103 // %2 = extractelement <16 x i1> %mask, i32 0 1104 // %3 = icmp eq i1 %2, true 1105 // br i1 %3, label %cond.load, label %else 1106 // 1107 //cond.load: ; preds = %0 1108 // %4 = getelementptr i32* %1, i32 0 1109 // %5 = load i32* %4 1110 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1111 // br label %else 1112 // 1113 //else: ; preds = %0, %cond.load 1114 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1115 // %7 = extractelement <16 x i1> %mask, i32 1 1116 // %8 = icmp eq i1 %7, true 1117 // br i1 %8, label %cond.load1, label %else2 1118 // 1119 //cond.load1: ; preds = %else 1120 // %9 = getelementptr i32* %1, i32 1 1121 // %10 = load i32* %9 1122 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1123 // br label %else2 1124 // 1125 //else2: ; preds = %else, %cond.load1 1126 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1127 // %12 = extractelement <16 x i1> %mask, i32 2 1128 // %13 = icmp eq i1 %12, true 1129 // br i1 %13, label %cond.load4, label %else5 1130 // 1131 static void ScalarizeMaskedLoad(CallInst *CI) { 1132 Value *Ptr = CI->getArgOperand(0); 1133 Value *Alignment = CI->getArgOperand(1); 1134 Value *Mask = CI->getArgOperand(2); 1135 Value *Src0 = CI->getArgOperand(3); 1136 1137 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1138 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1139 assert(VecType && "Unexpected return type of masked load intrinsic"); 1140 1141 Type *EltTy = CI->getType()->getVectorElementType(); 1142 1143 IRBuilder<> Builder(CI->getContext()); 1144 Instruction *InsertPt = CI; 1145 BasicBlock *IfBlock = CI->getParent(); 1146 BasicBlock *CondBlock = nullptr; 1147 BasicBlock *PrevIfBlock = CI->getParent(); 1148 1149 Builder.SetInsertPoint(InsertPt); 1150 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1151 1152 // Short-cut if the mask is all-true. 1153 bool IsAllOnesMask = isa<Constant>(Mask) && 1154 cast<Constant>(Mask)->isAllOnesValue(); 1155 1156 if (IsAllOnesMask) { 1157 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1158 CI->replaceAllUsesWith(NewI); 1159 CI->eraseFromParent(); 1160 return; 1161 } 1162 1163 // Adjust alignment for the scalar instruction. 1164 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1165 // Bitcast %addr fron i8* to EltTy* 1166 Type *NewPtrType = 1167 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1168 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1169 unsigned VectorWidth = VecType->getNumElements(); 1170 1171 Value *UndefVal = UndefValue::get(VecType); 1172 1173 // The result vector 1174 Value *VResult = UndefVal; 1175 1176 if (isa<ConstantVector>(Mask)) { 1177 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1178 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1179 continue; 1180 Value *Gep = 1181 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1182 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1183 VResult = Builder.CreateInsertElement(VResult, Load, 1184 Builder.getInt32(Idx)); 1185 } 1186 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1187 CI->replaceAllUsesWith(NewI); 1188 CI->eraseFromParent(); 1189 return; 1190 } 1191 1192 PHINode *Phi = nullptr; 1193 Value *PrevPhi = UndefVal; 1194 1195 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1196 1197 // Fill the "else" block, created in the previous iteration 1198 // 1199 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1200 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1201 // %to_load = icmp eq i1 %mask_1, true 1202 // br i1 %to_load, label %cond.load, label %else 1203 // 1204 if (Idx > 0) { 1205 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1206 Phi->addIncoming(VResult, CondBlock); 1207 Phi->addIncoming(PrevPhi, PrevIfBlock); 1208 PrevPhi = Phi; 1209 VResult = Phi; 1210 } 1211 1212 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1213 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1214 ConstantInt::get(Predicate->getType(), 1)); 1215 1216 // Create "cond" block 1217 // 1218 // %EltAddr = getelementptr i32* %1, i32 0 1219 // %Elt = load i32* %EltAddr 1220 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1221 // 1222 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1223 Builder.SetInsertPoint(InsertPt); 1224 1225 Value *Gep = 1226 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1227 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1228 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1229 1230 // Create "else" block, fill it in the next iteration 1231 BasicBlock *NewIfBlock = 1232 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1233 Builder.SetInsertPoint(InsertPt); 1234 Instruction *OldBr = IfBlock->getTerminator(); 1235 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1236 OldBr->eraseFromParent(); 1237 PrevIfBlock = IfBlock; 1238 IfBlock = NewIfBlock; 1239 } 1240 1241 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1242 Phi->addIncoming(VResult, CondBlock); 1243 Phi->addIncoming(PrevPhi, PrevIfBlock); 1244 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1245 CI->replaceAllUsesWith(NewI); 1246 CI->eraseFromParent(); 1247 } 1248 1249 // Translate a masked store intrinsic, like 1250 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1251 // <16 x i1> %mask) 1252 // to a chain of basic blocks, that stores element one-by-one if 1253 // the appropriate mask bit is set 1254 // 1255 // %1 = bitcast i8* %addr to i32* 1256 // %2 = extractelement <16 x i1> %mask, i32 0 1257 // %3 = icmp eq i1 %2, true 1258 // br i1 %3, label %cond.store, label %else 1259 // 1260 // cond.store: ; preds = %0 1261 // %4 = extractelement <16 x i32> %val, i32 0 1262 // %5 = getelementptr i32* %1, i32 0 1263 // store i32 %4, i32* %5 1264 // br label %else 1265 // 1266 // else: ; preds = %0, %cond.store 1267 // %6 = extractelement <16 x i1> %mask, i32 1 1268 // %7 = icmp eq i1 %6, true 1269 // br i1 %7, label %cond.store1, label %else2 1270 // 1271 // cond.store1: ; preds = %else 1272 // %8 = extractelement <16 x i32> %val, i32 1 1273 // %9 = getelementptr i32* %1, i32 1 1274 // store i32 %8, i32* %9 1275 // br label %else2 1276 // . . . 1277 static void ScalarizeMaskedStore(CallInst *CI) { 1278 Value *Src = CI->getArgOperand(0); 1279 Value *Ptr = CI->getArgOperand(1); 1280 Value *Alignment = CI->getArgOperand(2); 1281 Value *Mask = CI->getArgOperand(3); 1282 1283 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1284 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1285 assert(VecType && "Unexpected data type in masked store intrinsic"); 1286 1287 Type *EltTy = VecType->getElementType(); 1288 1289 IRBuilder<> Builder(CI->getContext()); 1290 Instruction *InsertPt = CI; 1291 BasicBlock *IfBlock = CI->getParent(); 1292 Builder.SetInsertPoint(InsertPt); 1293 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1294 1295 // Short-cut if the mask is all-true. 1296 bool IsAllOnesMask = isa<Constant>(Mask) && 1297 cast<Constant>(Mask)->isAllOnesValue(); 1298 1299 if (IsAllOnesMask) { 1300 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1301 CI->eraseFromParent(); 1302 return; 1303 } 1304 1305 // Adjust alignment for the scalar instruction. 1306 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1307 // Bitcast %addr fron i8* to EltTy* 1308 Type *NewPtrType = 1309 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1310 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1311 unsigned VectorWidth = VecType->getNumElements(); 1312 1313 if (isa<ConstantVector>(Mask)) { 1314 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1315 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1316 continue; 1317 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1318 Value *Gep = 1319 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1320 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1321 } 1322 CI->eraseFromParent(); 1323 return; 1324 } 1325 1326 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1327 1328 // Fill the "else" block, created in the previous iteration 1329 // 1330 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1331 // %to_store = icmp eq i1 %mask_1, true 1332 // br i1 %to_store, label %cond.store, label %else 1333 // 1334 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1335 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1336 ConstantInt::get(Predicate->getType(), 1)); 1337 1338 // Create "cond" block 1339 // 1340 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1341 // %EltAddr = getelementptr i32* %1, i32 0 1342 // %store i32 %OneElt, i32* %EltAddr 1343 // 1344 BasicBlock *CondBlock = 1345 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1346 Builder.SetInsertPoint(InsertPt); 1347 1348 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1349 Value *Gep = 1350 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1351 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1352 1353 // Create "else" block, fill it in the next iteration 1354 BasicBlock *NewIfBlock = 1355 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1356 Builder.SetInsertPoint(InsertPt); 1357 Instruction *OldBr = IfBlock->getTerminator(); 1358 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1359 OldBr->eraseFromParent(); 1360 IfBlock = NewIfBlock; 1361 } 1362 CI->eraseFromParent(); 1363 } 1364 1365 // Translate a masked gather intrinsic like 1366 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1367 // <16 x i1> %Mask, <16 x i32> %Src) 1368 // to a chain of basic blocks, with loading element one-by-one if 1369 // the appropriate mask bit is set 1370 // 1371 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1372 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1373 // % ToLoad0 = icmp eq i1 % Mask0, true 1374 // br i1 % ToLoad0, label %cond.load, label %else 1375 // 1376 // cond.load: 1377 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1378 // % Load0 = load i32, i32* % Ptr0, align 4 1379 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1380 // br label %else 1381 // 1382 // else: 1383 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1384 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1385 // % ToLoad1 = icmp eq i1 % Mask1, true 1386 // br i1 % ToLoad1, label %cond.load1, label %else2 1387 // 1388 // cond.load1: 1389 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1390 // % Load1 = load i32, i32* % Ptr1, align 4 1391 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1392 // br label %else2 1393 // . . . 1394 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1395 // ret <16 x i32> %Result 1396 static void ScalarizeMaskedGather(CallInst *CI) { 1397 Value *Ptrs = CI->getArgOperand(0); 1398 Value *Alignment = CI->getArgOperand(1); 1399 Value *Mask = CI->getArgOperand(2); 1400 Value *Src0 = CI->getArgOperand(3); 1401 1402 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1403 1404 assert(VecType && "Unexpected return type of masked load intrinsic"); 1405 1406 IRBuilder<> Builder(CI->getContext()); 1407 Instruction *InsertPt = CI; 1408 BasicBlock *IfBlock = CI->getParent(); 1409 BasicBlock *CondBlock = nullptr; 1410 BasicBlock *PrevIfBlock = CI->getParent(); 1411 Builder.SetInsertPoint(InsertPt); 1412 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1413 1414 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1415 1416 Value *UndefVal = UndefValue::get(VecType); 1417 1418 // The result vector 1419 Value *VResult = UndefVal; 1420 unsigned VectorWidth = VecType->getNumElements(); 1421 1422 // Shorten the way if the mask is a vector of constants. 1423 bool IsConstMask = isa<ConstantVector>(Mask); 1424 1425 if (IsConstMask) { 1426 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1427 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1428 continue; 1429 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1430 "Ptr" + Twine(Idx)); 1431 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1432 "Load" + Twine(Idx)); 1433 VResult = Builder.CreateInsertElement(VResult, Load, 1434 Builder.getInt32(Idx), 1435 "Res" + Twine(Idx)); 1436 } 1437 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1438 CI->replaceAllUsesWith(NewI); 1439 CI->eraseFromParent(); 1440 return; 1441 } 1442 1443 PHINode *Phi = nullptr; 1444 Value *PrevPhi = UndefVal; 1445 1446 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1447 1448 // Fill the "else" block, created in the previous iteration 1449 // 1450 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1451 // %ToLoad1 = icmp eq i1 %Mask1, true 1452 // br i1 %ToLoad1, label %cond.load, label %else 1453 // 1454 if (Idx > 0) { 1455 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1456 Phi->addIncoming(VResult, CondBlock); 1457 Phi->addIncoming(PrevPhi, PrevIfBlock); 1458 PrevPhi = Phi; 1459 VResult = Phi; 1460 } 1461 1462 Value *Predicate = Builder.CreateExtractElement(Mask, 1463 Builder.getInt32(Idx), 1464 "Mask" + Twine(Idx)); 1465 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1466 ConstantInt::get(Predicate->getType(), 1), 1467 "ToLoad" + Twine(Idx)); 1468 1469 // Create "cond" block 1470 // 1471 // %EltAddr = getelementptr i32* %1, i32 0 1472 // %Elt = load i32* %EltAddr 1473 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1474 // 1475 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1476 Builder.SetInsertPoint(InsertPt); 1477 1478 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1479 "Ptr" + Twine(Idx)); 1480 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1481 "Load" + Twine(Idx)); 1482 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1483 "Res" + Twine(Idx)); 1484 1485 // Create "else" block, fill it in the next iteration 1486 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1487 Builder.SetInsertPoint(InsertPt); 1488 Instruction *OldBr = IfBlock->getTerminator(); 1489 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1490 OldBr->eraseFromParent(); 1491 PrevIfBlock = IfBlock; 1492 IfBlock = NewIfBlock; 1493 } 1494 1495 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1496 Phi->addIncoming(VResult, CondBlock); 1497 Phi->addIncoming(PrevPhi, PrevIfBlock); 1498 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1499 CI->replaceAllUsesWith(NewI); 1500 CI->eraseFromParent(); 1501 } 1502 1503 // Translate a masked scatter intrinsic, like 1504 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1505 // <16 x i1> %Mask) 1506 // to a chain of basic blocks, that stores element one-by-one if 1507 // the appropriate mask bit is set. 1508 // 1509 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1510 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1511 // % ToStore0 = icmp eq i1 % Mask0, true 1512 // br i1 %ToStore0, label %cond.store, label %else 1513 // 1514 // cond.store: 1515 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1516 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1517 // store i32 %Elt0, i32* % Ptr0, align 4 1518 // br label %else 1519 // 1520 // else: 1521 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1522 // % ToStore1 = icmp eq i1 % Mask1, true 1523 // br i1 % ToStore1, label %cond.store1, label %else2 1524 // 1525 // cond.store1: 1526 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1527 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1528 // store i32 % Elt1, i32* % Ptr1, align 4 1529 // br label %else2 1530 // . . . 1531 static void ScalarizeMaskedScatter(CallInst *CI) { 1532 Value *Src = CI->getArgOperand(0); 1533 Value *Ptrs = CI->getArgOperand(1); 1534 Value *Alignment = CI->getArgOperand(2); 1535 Value *Mask = CI->getArgOperand(3); 1536 1537 assert(isa<VectorType>(Src->getType()) && 1538 "Unexpected data type in masked scatter intrinsic"); 1539 assert(isa<VectorType>(Ptrs->getType()) && 1540 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1541 "Vector of pointers is expected in masked scatter intrinsic"); 1542 1543 IRBuilder<> Builder(CI->getContext()); 1544 Instruction *InsertPt = CI; 1545 BasicBlock *IfBlock = CI->getParent(); 1546 Builder.SetInsertPoint(InsertPt); 1547 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1548 1549 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1550 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1551 1552 // Shorten the way if the mask is a vector of constants. 1553 bool IsConstMask = isa<ConstantVector>(Mask); 1554 1555 if (IsConstMask) { 1556 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1557 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1558 continue; 1559 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1560 "Elt" + Twine(Idx)); 1561 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1562 "Ptr" + Twine(Idx)); 1563 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1564 } 1565 CI->eraseFromParent(); 1566 return; 1567 } 1568 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1569 // Fill the "else" block, created in the previous iteration 1570 // 1571 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1572 // % ToStore = icmp eq i1 % Mask1, true 1573 // br i1 % ToStore, label %cond.store, label %else 1574 // 1575 Value *Predicate = Builder.CreateExtractElement(Mask, 1576 Builder.getInt32(Idx), 1577 "Mask" + Twine(Idx)); 1578 Value *Cmp = 1579 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1580 ConstantInt::get(Predicate->getType(), 1), 1581 "ToStore" + Twine(Idx)); 1582 1583 // Create "cond" block 1584 // 1585 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1586 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1587 // %store i32 % Elt1, i32* % Ptr1 1588 // 1589 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1590 Builder.SetInsertPoint(InsertPt); 1591 1592 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1593 "Elt" + Twine(Idx)); 1594 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1595 "Ptr" + Twine(Idx)); 1596 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1597 1598 // Create "else" block, fill it in the next iteration 1599 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1600 Builder.SetInsertPoint(InsertPt); 1601 Instruction *OldBr = IfBlock->getTerminator(); 1602 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1603 OldBr->eraseFromParent(); 1604 IfBlock = NewIfBlock; 1605 } 1606 CI->eraseFromParent(); 1607 } 1608 1609 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1610 BasicBlock *BB = CI->getParent(); 1611 1612 // Lower inline assembly if we can. 1613 // If we found an inline asm expession, and if the target knows how to 1614 // lower it to normal LLVM code, do so now. 1615 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1616 if (TLI->ExpandInlineAsm(CI)) { 1617 // Avoid invalidating the iterator. 1618 CurInstIterator = BB->begin(); 1619 // Avoid processing instructions out of order, which could cause 1620 // reuse before a value is defined. 1621 SunkAddrs.clear(); 1622 return true; 1623 } 1624 // Sink address computing for memory operands into the block. 1625 if (optimizeInlineAsmInst(CI)) 1626 return true; 1627 } 1628 1629 // Align the pointer arguments to this call if the target thinks it's a good 1630 // idea 1631 unsigned MinSize, PrefAlign; 1632 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1633 for (auto &Arg : CI->arg_operands()) { 1634 // We want to align both objects whose address is used directly and 1635 // objects whose address is used in casts and GEPs, though it only makes 1636 // sense for GEPs if the offset is a multiple of the desired alignment and 1637 // if size - offset meets the size threshold. 1638 if (!Arg->getType()->isPointerTy()) 1639 continue; 1640 APInt Offset(DL->getPointerSizeInBits( 1641 cast<PointerType>(Arg->getType())->getAddressSpace()), 1642 0); 1643 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1644 uint64_t Offset2 = Offset.getLimitedValue(); 1645 if ((Offset2 & (PrefAlign-1)) != 0) 1646 continue; 1647 AllocaInst *AI; 1648 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1649 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1650 AI->setAlignment(PrefAlign); 1651 // Global variables can only be aligned if they are defined in this 1652 // object (i.e. they are uniquely initialized in this object), and 1653 // over-aligning global variables that have an explicit section is 1654 // forbidden. 1655 GlobalVariable *GV; 1656 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1657 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1658 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1659 MinSize + Offset2) 1660 GV->setAlignment(PrefAlign); 1661 } 1662 // If this is a memcpy (or similar) then we may be able to improve the 1663 // alignment 1664 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1665 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1666 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1667 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1668 if (Align > MI->getAlignment()) 1669 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1670 } 1671 } 1672 1673 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1674 if (II) { 1675 switch (II->getIntrinsicID()) { 1676 default: break; 1677 case Intrinsic::objectsize: { 1678 // Lower all uses of llvm.objectsize.* 1679 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1680 Type *ReturnTy = CI->getType(); 1681 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1682 1683 // Substituting this can cause recursive simplifications, which can 1684 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1685 // happens. 1686 WeakVH IterHandle(&*CurInstIterator); 1687 1688 replaceAndRecursivelySimplify(CI, RetVal, 1689 TLInfo, nullptr); 1690 1691 // If the iterator instruction was recursively deleted, start over at the 1692 // start of the block. 1693 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1694 CurInstIterator = BB->begin(); 1695 SunkAddrs.clear(); 1696 } 1697 return true; 1698 } 1699 case Intrinsic::masked_load: { 1700 // Scalarize unsupported vector masked load 1701 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1702 ScalarizeMaskedLoad(CI); 1703 ModifiedDT = true; 1704 return true; 1705 } 1706 return false; 1707 } 1708 case Intrinsic::masked_store: { 1709 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1710 ScalarizeMaskedStore(CI); 1711 ModifiedDT = true; 1712 return true; 1713 } 1714 return false; 1715 } 1716 case Intrinsic::masked_gather: { 1717 if (!TTI->isLegalMaskedGather(CI->getType())) { 1718 ScalarizeMaskedGather(CI); 1719 ModifiedDT = true; 1720 return true; 1721 } 1722 return false; 1723 } 1724 case Intrinsic::masked_scatter: { 1725 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1726 ScalarizeMaskedScatter(CI); 1727 ModifiedDT = true; 1728 return true; 1729 } 1730 return false; 1731 } 1732 case Intrinsic::aarch64_stlxr: 1733 case Intrinsic::aarch64_stxr: { 1734 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1735 if (!ExtVal || !ExtVal->hasOneUse() || 1736 ExtVal->getParent() == CI->getParent()) 1737 return false; 1738 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1739 ExtVal->moveBefore(CI); 1740 // Mark this instruction as "inserted by CGP", so that other 1741 // optimizations don't touch it. 1742 InsertedInsts.insert(ExtVal); 1743 return true; 1744 } 1745 case Intrinsic::invariant_group_barrier: 1746 II->replaceAllUsesWith(II->getArgOperand(0)); 1747 II->eraseFromParent(); 1748 return true; 1749 } 1750 1751 if (TLI) { 1752 // Unknown address space. 1753 // TODO: Target hook to pick which address space the intrinsic cares 1754 // about? 1755 unsigned AddrSpace = ~0u; 1756 SmallVector<Value*, 2> PtrOps; 1757 Type *AccessTy; 1758 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1759 while (!PtrOps.empty()) 1760 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1761 return true; 1762 } 1763 } 1764 1765 // From here on out we're working with named functions. 1766 if (!CI->getCalledFunction()) return false; 1767 1768 // Lower all default uses of _chk calls. This is very similar 1769 // to what InstCombineCalls does, but here we are only lowering calls 1770 // to fortified library functions (e.g. __memcpy_chk) that have the default 1771 // "don't know" as the objectsize. Anything else should be left alone. 1772 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1773 if (Value *V = Simplifier.optimizeCall(CI)) { 1774 CI->replaceAllUsesWith(V); 1775 CI->eraseFromParent(); 1776 return true; 1777 } 1778 return false; 1779 } 1780 1781 /// Look for opportunities to duplicate return instructions to the predecessor 1782 /// to enable tail call optimizations. The case it is currently looking for is: 1783 /// @code 1784 /// bb0: 1785 /// %tmp0 = tail call i32 @f0() 1786 /// br label %return 1787 /// bb1: 1788 /// %tmp1 = tail call i32 @f1() 1789 /// br label %return 1790 /// bb2: 1791 /// %tmp2 = tail call i32 @f2() 1792 /// br label %return 1793 /// return: 1794 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1795 /// ret i32 %retval 1796 /// @endcode 1797 /// 1798 /// => 1799 /// 1800 /// @code 1801 /// bb0: 1802 /// %tmp0 = tail call i32 @f0() 1803 /// ret i32 %tmp0 1804 /// bb1: 1805 /// %tmp1 = tail call i32 @f1() 1806 /// ret i32 %tmp1 1807 /// bb2: 1808 /// %tmp2 = tail call i32 @f2() 1809 /// ret i32 %tmp2 1810 /// @endcode 1811 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1812 if (!TLI) 1813 return false; 1814 1815 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1816 if (!RI) 1817 return false; 1818 1819 PHINode *PN = nullptr; 1820 BitCastInst *BCI = nullptr; 1821 Value *V = RI->getReturnValue(); 1822 if (V) { 1823 BCI = dyn_cast<BitCastInst>(V); 1824 if (BCI) 1825 V = BCI->getOperand(0); 1826 1827 PN = dyn_cast<PHINode>(V); 1828 if (!PN) 1829 return false; 1830 } 1831 1832 if (PN && PN->getParent() != BB) 1833 return false; 1834 1835 // It's not safe to eliminate the sign / zero extension of the return value. 1836 // See llvm::isInTailCallPosition(). 1837 const Function *F = BB->getParent(); 1838 AttributeSet CallerAttrs = F->getAttributes(); 1839 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1840 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1841 return false; 1842 1843 // Make sure there are no instructions between the PHI and return, or that the 1844 // return is the first instruction in the block. 1845 if (PN) { 1846 BasicBlock::iterator BI = BB->begin(); 1847 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1848 if (&*BI == BCI) 1849 // Also skip over the bitcast. 1850 ++BI; 1851 if (&*BI != RI) 1852 return false; 1853 } else { 1854 BasicBlock::iterator BI = BB->begin(); 1855 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1856 if (&*BI != RI) 1857 return false; 1858 } 1859 1860 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1861 /// call. 1862 SmallVector<CallInst*, 4> TailCalls; 1863 if (PN) { 1864 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1865 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1866 // Make sure the phi value is indeed produced by the tail call. 1867 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1868 TLI->mayBeEmittedAsTailCall(CI)) 1869 TailCalls.push_back(CI); 1870 } 1871 } else { 1872 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1873 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1874 if (!VisitedBBs.insert(*PI).second) 1875 continue; 1876 1877 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1878 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1879 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1880 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1881 if (RI == RE) 1882 continue; 1883 1884 CallInst *CI = dyn_cast<CallInst>(&*RI); 1885 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1886 TailCalls.push_back(CI); 1887 } 1888 } 1889 1890 bool Changed = false; 1891 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1892 CallInst *CI = TailCalls[i]; 1893 CallSite CS(CI); 1894 1895 // Conservatively require the attributes of the call to match those of the 1896 // return. Ignore noalias because it doesn't affect the call sequence. 1897 AttributeSet CalleeAttrs = CS.getAttributes(); 1898 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1899 removeAttribute(Attribute::NoAlias) != 1900 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1901 removeAttribute(Attribute::NoAlias)) 1902 continue; 1903 1904 // Make sure the call instruction is followed by an unconditional branch to 1905 // the return block. 1906 BasicBlock *CallBB = CI->getParent(); 1907 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1908 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1909 continue; 1910 1911 // Duplicate the return into CallBB. 1912 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1913 ModifiedDT = Changed = true; 1914 ++NumRetsDup; 1915 } 1916 1917 // If we eliminated all predecessors of the block, delete the block now. 1918 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1919 BB->eraseFromParent(); 1920 1921 return Changed; 1922 } 1923 1924 //===----------------------------------------------------------------------===// 1925 // Memory Optimization 1926 //===----------------------------------------------------------------------===// 1927 1928 namespace { 1929 1930 /// This is an extended version of TargetLowering::AddrMode 1931 /// which holds actual Value*'s for register values. 1932 struct ExtAddrMode : public TargetLowering::AddrMode { 1933 Value *BaseReg; 1934 Value *ScaledReg; 1935 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1936 void print(raw_ostream &OS) const; 1937 void dump() const; 1938 1939 bool operator==(const ExtAddrMode& O) const { 1940 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1941 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1942 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1943 } 1944 }; 1945 1946 #ifndef NDEBUG 1947 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1948 AM.print(OS); 1949 return OS; 1950 } 1951 #endif 1952 1953 void ExtAddrMode::print(raw_ostream &OS) const { 1954 bool NeedPlus = false; 1955 OS << "["; 1956 if (BaseGV) { 1957 OS << (NeedPlus ? " + " : "") 1958 << "GV:"; 1959 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1960 NeedPlus = true; 1961 } 1962 1963 if (BaseOffs) { 1964 OS << (NeedPlus ? " + " : "") 1965 << BaseOffs; 1966 NeedPlus = true; 1967 } 1968 1969 if (BaseReg) { 1970 OS << (NeedPlus ? " + " : "") 1971 << "Base:"; 1972 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1973 NeedPlus = true; 1974 } 1975 if (Scale) { 1976 OS << (NeedPlus ? " + " : "") 1977 << Scale << "*"; 1978 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1979 } 1980 1981 OS << ']'; 1982 } 1983 1984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1985 void ExtAddrMode::dump() const { 1986 print(dbgs()); 1987 dbgs() << '\n'; 1988 } 1989 #endif 1990 1991 /// \brief This class provides transaction based operation on the IR. 1992 /// Every change made through this class is recorded in the internal state and 1993 /// can be undone (rollback) until commit is called. 1994 class TypePromotionTransaction { 1995 1996 /// \brief This represents the common interface of the individual transaction. 1997 /// Each class implements the logic for doing one specific modification on 1998 /// the IR via the TypePromotionTransaction. 1999 class TypePromotionAction { 2000 protected: 2001 /// The Instruction modified. 2002 Instruction *Inst; 2003 2004 public: 2005 /// \brief Constructor of the action. 2006 /// The constructor performs the related action on the IR. 2007 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2008 2009 virtual ~TypePromotionAction() {} 2010 2011 /// \brief Undo the modification done by this action. 2012 /// When this method is called, the IR must be in the same state as it was 2013 /// before this action was applied. 2014 /// \pre Undoing the action works if and only if the IR is in the exact same 2015 /// state as it was directly after this action was applied. 2016 virtual void undo() = 0; 2017 2018 /// \brief Advocate every change made by this action. 2019 /// When the results on the IR of the action are to be kept, it is important 2020 /// to call this function, otherwise hidden information may be kept forever. 2021 virtual void commit() { 2022 // Nothing to be done, this action is not doing anything. 2023 } 2024 }; 2025 2026 /// \brief Utility to remember the position of an instruction. 2027 class InsertionHandler { 2028 /// Position of an instruction. 2029 /// Either an instruction: 2030 /// - Is the first in a basic block: BB is used. 2031 /// - Has a previous instructon: PrevInst is used. 2032 union { 2033 Instruction *PrevInst; 2034 BasicBlock *BB; 2035 } Point; 2036 /// Remember whether or not the instruction had a previous instruction. 2037 bool HasPrevInstruction; 2038 2039 public: 2040 /// \brief Record the position of \p Inst. 2041 InsertionHandler(Instruction *Inst) { 2042 BasicBlock::iterator It = Inst->getIterator(); 2043 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2044 if (HasPrevInstruction) 2045 Point.PrevInst = &*--It; 2046 else 2047 Point.BB = Inst->getParent(); 2048 } 2049 2050 /// \brief Insert \p Inst at the recorded position. 2051 void insert(Instruction *Inst) { 2052 if (HasPrevInstruction) { 2053 if (Inst->getParent()) 2054 Inst->removeFromParent(); 2055 Inst->insertAfter(Point.PrevInst); 2056 } else { 2057 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2058 if (Inst->getParent()) 2059 Inst->moveBefore(Position); 2060 else 2061 Inst->insertBefore(Position); 2062 } 2063 } 2064 }; 2065 2066 /// \brief Move an instruction before another. 2067 class InstructionMoveBefore : public TypePromotionAction { 2068 /// Original position of the instruction. 2069 InsertionHandler Position; 2070 2071 public: 2072 /// \brief Move \p Inst before \p Before. 2073 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2074 : TypePromotionAction(Inst), Position(Inst) { 2075 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2076 Inst->moveBefore(Before); 2077 } 2078 2079 /// \brief Move the instruction back to its original position. 2080 void undo() override { 2081 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2082 Position.insert(Inst); 2083 } 2084 }; 2085 2086 /// \brief Set the operand of an instruction with a new value. 2087 class OperandSetter : public TypePromotionAction { 2088 /// Original operand of the instruction. 2089 Value *Origin; 2090 /// Index of the modified instruction. 2091 unsigned Idx; 2092 2093 public: 2094 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2095 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2096 : TypePromotionAction(Inst), Idx(Idx) { 2097 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2098 << "for:" << *Inst << "\n" 2099 << "with:" << *NewVal << "\n"); 2100 Origin = Inst->getOperand(Idx); 2101 Inst->setOperand(Idx, NewVal); 2102 } 2103 2104 /// \brief Restore the original value of the instruction. 2105 void undo() override { 2106 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2107 << "for: " << *Inst << "\n" 2108 << "with: " << *Origin << "\n"); 2109 Inst->setOperand(Idx, Origin); 2110 } 2111 }; 2112 2113 /// \brief Hide the operands of an instruction. 2114 /// Do as if this instruction was not using any of its operands. 2115 class OperandsHider : public TypePromotionAction { 2116 /// The list of original operands. 2117 SmallVector<Value *, 4> OriginalValues; 2118 2119 public: 2120 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2121 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2122 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2123 unsigned NumOpnds = Inst->getNumOperands(); 2124 OriginalValues.reserve(NumOpnds); 2125 for (unsigned It = 0; It < NumOpnds; ++It) { 2126 // Save the current operand. 2127 Value *Val = Inst->getOperand(It); 2128 OriginalValues.push_back(Val); 2129 // Set a dummy one. 2130 // We could use OperandSetter here, but that would imply an overhead 2131 // that we are not willing to pay. 2132 Inst->setOperand(It, UndefValue::get(Val->getType())); 2133 } 2134 } 2135 2136 /// \brief Restore the original list of uses. 2137 void undo() override { 2138 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2139 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2140 Inst->setOperand(It, OriginalValues[It]); 2141 } 2142 }; 2143 2144 /// \brief Build a truncate instruction. 2145 class TruncBuilder : public TypePromotionAction { 2146 Value *Val; 2147 public: 2148 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2149 /// result. 2150 /// trunc Opnd to Ty. 2151 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2152 IRBuilder<> Builder(Opnd); 2153 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2154 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2155 } 2156 2157 /// \brief Get the built value. 2158 Value *getBuiltValue() { return Val; } 2159 2160 /// \brief Remove the built instruction. 2161 void undo() override { 2162 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2163 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2164 IVal->eraseFromParent(); 2165 } 2166 }; 2167 2168 /// \brief Build a sign extension instruction. 2169 class SExtBuilder : public TypePromotionAction { 2170 Value *Val; 2171 public: 2172 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2173 /// result. 2174 /// sext Opnd to Ty. 2175 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2176 : TypePromotionAction(InsertPt) { 2177 IRBuilder<> Builder(InsertPt); 2178 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2179 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2180 } 2181 2182 /// \brief Get the built value. 2183 Value *getBuiltValue() { return Val; } 2184 2185 /// \brief Remove the built instruction. 2186 void undo() override { 2187 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2188 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2189 IVal->eraseFromParent(); 2190 } 2191 }; 2192 2193 /// \brief Build a zero extension instruction. 2194 class ZExtBuilder : public TypePromotionAction { 2195 Value *Val; 2196 public: 2197 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2198 /// result. 2199 /// zext Opnd to Ty. 2200 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2201 : TypePromotionAction(InsertPt) { 2202 IRBuilder<> Builder(InsertPt); 2203 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2204 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2205 } 2206 2207 /// \brief Get the built value. 2208 Value *getBuiltValue() { return Val; } 2209 2210 /// \brief Remove the built instruction. 2211 void undo() override { 2212 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2213 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2214 IVal->eraseFromParent(); 2215 } 2216 }; 2217 2218 /// \brief Mutate an instruction to another type. 2219 class TypeMutator : public TypePromotionAction { 2220 /// Record the original type. 2221 Type *OrigTy; 2222 2223 public: 2224 /// \brief Mutate the type of \p Inst into \p NewTy. 2225 TypeMutator(Instruction *Inst, Type *NewTy) 2226 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2227 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2228 << "\n"); 2229 Inst->mutateType(NewTy); 2230 } 2231 2232 /// \brief Mutate the instruction back to its original type. 2233 void undo() override { 2234 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2235 << "\n"); 2236 Inst->mutateType(OrigTy); 2237 } 2238 }; 2239 2240 /// \brief Replace the uses of an instruction by another instruction. 2241 class UsesReplacer : public TypePromotionAction { 2242 /// Helper structure to keep track of the replaced uses. 2243 struct InstructionAndIdx { 2244 /// The instruction using the instruction. 2245 Instruction *Inst; 2246 /// The index where this instruction is used for Inst. 2247 unsigned Idx; 2248 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2249 : Inst(Inst), Idx(Idx) {} 2250 }; 2251 2252 /// Keep track of the original uses (pair Instruction, Index). 2253 SmallVector<InstructionAndIdx, 4> OriginalUses; 2254 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2255 2256 public: 2257 /// \brief Replace all the use of \p Inst by \p New. 2258 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2259 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2260 << "\n"); 2261 // Record the original uses. 2262 for (Use &U : Inst->uses()) { 2263 Instruction *UserI = cast<Instruction>(U.getUser()); 2264 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2265 } 2266 // Now, we can replace the uses. 2267 Inst->replaceAllUsesWith(New); 2268 } 2269 2270 /// \brief Reassign the original uses of Inst to Inst. 2271 void undo() override { 2272 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2273 for (use_iterator UseIt = OriginalUses.begin(), 2274 EndIt = OriginalUses.end(); 2275 UseIt != EndIt; ++UseIt) { 2276 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2277 } 2278 } 2279 }; 2280 2281 /// \brief Remove an instruction from the IR. 2282 class InstructionRemover : public TypePromotionAction { 2283 /// Original position of the instruction. 2284 InsertionHandler Inserter; 2285 /// Helper structure to hide all the link to the instruction. In other 2286 /// words, this helps to do as if the instruction was removed. 2287 OperandsHider Hider; 2288 /// Keep track of the uses replaced, if any. 2289 UsesReplacer *Replacer; 2290 2291 public: 2292 /// \brief Remove all reference of \p Inst and optinally replace all its 2293 /// uses with New. 2294 /// \pre If !Inst->use_empty(), then New != nullptr 2295 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2296 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2297 Replacer(nullptr) { 2298 if (New) 2299 Replacer = new UsesReplacer(Inst, New); 2300 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2301 Inst->removeFromParent(); 2302 } 2303 2304 ~InstructionRemover() override { delete Replacer; } 2305 2306 /// \brief Really remove the instruction. 2307 void commit() override { delete Inst; } 2308 2309 /// \brief Resurrect the instruction and reassign it to the proper uses if 2310 /// new value was provided when build this action. 2311 void undo() override { 2312 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2313 Inserter.insert(Inst); 2314 if (Replacer) 2315 Replacer->undo(); 2316 Hider.undo(); 2317 } 2318 }; 2319 2320 public: 2321 /// Restoration point. 2322 /// The restoration point is a pointer to an action instead of an iterator 2323 /// because the iterator may be invalidated but not the pointer. 2324 typedef const TypePromotionAction *ConstRestorationPt; 2325 /// Advocate every changes made in that transaction. 2326 void commit(); 2327 /// Undo all the changes made after the given point. 2328 void rollback(ConstRestorationPt Point); 2329 /// Get the current restoration point. 2330 ConstRestorationPt getRestorationPoint() const; 2331 2332 /// \name API for IR modification with state keeping to support rollback. 2333 /// @{ 2334 /// Same as Instruction::setOperand. 2335 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2336 /// Same as Instruction::eraseFromParent. 2337 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2338 /// Same as Value::replaceAllUsesWith. 2339 void replaceAllUsesWith(Instruction *Inst, Value *New); 2340 /// Same as Value::mutateType. 2341 void mutateType(Instruction *Inst, Type *NewTy); 2342 /// Same as IRBuilder::createTrunc. 2343 Value *createTrunc(Instruction *Opnd, Type *Ty); 2344 /// Same as IRBuilder::createSExt. 2345 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2346 /// Same as IRBuilder::createZExt. 2347 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2348 /// Same as Instruction::moveBefore. 2349 void moveBefore(Instruction *Inst, Instruction *Before); 2350 /// @} 2351 2352 private: 2353 /// The ordered list of actions made so far. 2354 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2355 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2356 }; 2357 2358 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2359 Value *NewVal) { 2360 Actions.push_back( 2361 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2362 } 2363 2364 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2365 Value *NewVal) { 2366 Actions.push_back( 2367 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2368 } 2369 2370 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2371 Value *New) { 2372 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2373 } 2374 2375 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2376 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2377 } 2378 2379 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2380 Type *Ty) { 2381 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2382 Value *Val = Ptr->getBuiltValue(); 2383 Actions.push_back(std::move(Ptr)); 2384 return Val; 2385 } 2386 2387 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2388 Value *Opnd, Type *Ty) { 2389 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2390 Value *Val = Ptr->getBuiltValue(); 2391 Actions.push_back(std::move(Ptr)); 2392 return Val; 2393 } 2394 2395 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2396 Value *Opnd, Type *Ty) { 2397 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2398 Value *Val = Ptr->getBuiltValue(); 2399 Actions.push_back(std::move(Ptr)); 2400 return Val; 2401 } 2402 2403 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2404 Instruction *Before) { 2405 Actions.push_back( 2406 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2407 } 2408 2409 TypePromotionTransaction::ConstRestorationPt 2410 TypePromotionTransaction::getRestorationPoint() const { 2411 return !Actions.empty() ? Actions.back().get() : nullptr; 2412 } 2413 2414 void TypePromotionTransaction::commit() { 2415 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2416 ++It) 2417 (*It)->commit(); 2418 Actions.clear(); 2419 } 2420 2421 void TypePromotionTransaction::rollback( 2422 TypePromotionTransaction::ConstRestorationPt Point) { 2423 while (!Actions.empty() && Point != Actions.back().get()) { 2424 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2425 Curr->undo(); 2426 } 2427 } 2428 2429 /// \brief A helper class for matching addressing modes. 2430 /// 2431 /// This encapsulates the logic for matching the target-legal addressing modes. 2432 class AddressingModeMatcher { 2433 SmallVectorImpl<Instruction*> &AddrModeInsts; 2434 const TargetMachine &TM; 2435 const TargetLowering &TLI; 2436 const DataLayout &DL; 2437 2438 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2439 /// the memory instruction that we're computing this address for. 2440 Type *AccessTy; 2441 unsigned AddrSpace; 2442 Instruction *MemoryInst; 2443 2444 /// This is the addressing mode that we're building up. This is 2445 /// part of the return value of this addressing mode matching stuff. 2446 ExtAddrMode &AddrMode; 2447 2448 /// The instructions inserted by other CodeGenPrepare optimizations. 2449 const SetOfInstrs &InsertedInsts; 2450 /// A map from the instructions to their type before promotion. 2451 InstrToOrigTy &PromotedInsts; 2452 /// The ongoing transaction where every action should be registered. 2453 TypePromotionTransaction &TPT; 2454 2455 /// This is set to true when we should not do profitability checks. 2456 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2457 bool IgnoreProfitability; 2458 2459 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2460 const TargetMachine &TM, Type *AT, unsigned AS, 2461 Instruction *MI, ExtAddrMode &AM, 2462 const SetOfInstrs &InsertedInsts, 2463 InstrToOrigTy &PromotedInsts, 2464 TypePromotionTransaction &TPT) 2465 : AddrModeInsts(AMI), TM(TM), 2466 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2467 ->getTargetLowering()), 2468 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2469 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2470 PromotedInsts(PromotedInsts), TPT(TPT) { 2471 IgnoreProfitability = false; 2472 } 2473 public: 2474 2475 /// Find the maximal addressing mode that a load/store of V can fold, 2476 /// give an access type of AccessTy. This returns a list of involved 2477 /// instructions in AddrModeInsts. 2478 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2479 /// optimizations. 2480 /// \p PromotedInsts maps the instructions to their type before promotion. 2481 /// \p The ongoing transaction where every action should be registered. 2482 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2483 Instruction *MemoryInst, 2484 SmallVectorImpl<Instruction*> &AddrModeInsts, 2485 const TargetMachine &TM, 2486 const SetOfInstrs &InsertedInsts, 2487 InstrToOrigTy &PromotedInsts, 2488 TypePromotionTransaction &TPT) { 2489 ExtAddrMode Result; 2490 2491 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2492 MemoryInst, Result, InsertedInsts, 2493 PromotedInsts, TPT).matchAddr(V, 0); 2494 (void)Success; assert(Success && "Couldn't select *anything*?"); 2495 return Result; 2496 } 2497 private: 2498 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2499 bool matchAddr(Value *V, unsigned Depth); 2500 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2501 bool *MovedAway = nullptr); 2502 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2503 ExtAddrMode &AMBefore, 2504 ExtAddrMode &AMAfter); 2505 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2506 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2507 Value *PromotedOperand) const; 2508 }; 2509 2510 /// Try adding ScaleReg*Scale to the current addressing mode. 2511 /// Return true and update AddrMode if this addr mode is legal for the target, 2512 /// false if not. 2513 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2514 unsigned Depth) { 2515 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2516 // mode. Just process that directly. 2517 if (Scale == 1) 2518 return matchAddr(ScaleReg, Depth); 2519 2520 // If the scale is 0, it takes nothing to add this. 2521 if (Scale == 0) 2522 return true; 2523 2524 // If we already have a scale of this value, we can add to it, otherwise, we 2525 // need an available scale field. 2526 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2527 return false; 2528 2529 ExtAddrMode TestAddrMode = AddrMode; 2530 2531 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2532 // [A+B + A*7] -> [B+A*8]. 2533 TestAddrMode.Scale += Scale; 2534 TestAddrMode.ScaledReg = ScaleReg; 2535 2536 // If the new address isn't legal, bail out. 2537 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2538 return false; 2539 2540 // It was legal, so commit it. 2541 AddrMode = TestAddrMode; 2542 2543 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2544 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2545 // X*Scale + C*Scale to addr mode. 2546 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2547 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2548 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2549 TestAddrMode.ScaledReg = AddLHS; 2550 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2551 2552 // If this addressing mode is legal, commit it and remember that we folded 2553 // this instruction. 2554 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2555 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2556 AddrMode = TestAddrMode; 2557 return true; 2558 } 2559 } 2560 2561 // Otherwise, not (x+c)*scale, just return what we have. 2562 return true; 2563 } 2564 2565 /// This is a little filter, which returns true if an addressing computation 2566 /// involving I might be folded into a load/store accessing it. 2567 /// This doesn't need to be perfect, but needs to accept at least 2568 /// the set of instructions that MatchOperationAddr can. 2569 static bool MightBeFoldableInst(Instruction *I) { 2570 switch (I->getOpcode()) { 2571 case Instruction::BitCast: 2572 case Instruction::AddrSpaceCast: 2573 // Don't touch identity bitcasts. 2574 if (I->getType() == I->getOperand(0)->getType()) 2575 return false; 2576 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2577 case Instruction::PtrToInt: 2578 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2579 return true; 2580 case Instruction::IntToPtr: 2581 // We know the input is intptr_t, so this is foldable. 2582 return true; 2583 case Instruction::Add: 2584 return true; 2585 case Instruction::Mul: 2586 case Instruction::Shl: 2587 // Can only handle X*C and X << C. 2588 return isa<ConstantInt>(I->getOperand(1)); 2589 case Instruction::GetElementPtr: 2590 return true; 2591 default: 2592 return false; 2593 } 2594 } 2595 2596 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2597 /// \note \p Val is assumed to be the product of some type promotion. 2598 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2599 /// to be legal, as the non-promoted value would have had the same state. 2600 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2601 const DataLayout &DL, Value *Val) { 2602 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2603 if (!PromotedInst) 2604 return false; 2605 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2606 // If the ISDOpcode is undefined, it was undefined before the promotion. 2607 if (!ISDOpcode) 2608 return true; 2609 // Otherwise, check if the promoted instruction is legal or not. 2610 return TLI.isOperationLegalOrCustom( 2611 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2612 } 2613 2614 /// \brief Hepler class to perform type promotion. 2615 class TypePromotionHelper { 2616 /// \brief Utility function to check whether or not a sign or zero extension 2617 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2618 /// either using the operands of \p Inst or promoting \p Inst. 2619 /// The type of the extension is defined by \p IsSExt. 2620 /// In other words, check if: 2621 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2622 /// #1 Promotion applies: 2623 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2624 /// #2 Operand reuses: 2625 /// ext opnd1 to ConsideredExtType. 2626 /// \p PromotedInsts maps the instructions to their type before promotion. 2627 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2628 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2629 2630 /// \brief Utility function to determine if \p OpIdx should be promoted when 2631 /// promoting \p Inst. 2632 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2633 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2634 } 2635 2636 /// \brief Utility function to promote the operand of \p Ext when this 2637 /// operand is a promotable trunc or sext or zext. 2638 /// \p PromotedInsts maps the instructions to their type before promotion. 2639 /// \p CreatedInstsCost[out] contains the cost of all instructions 2640 /// created to promote the operand of Ext. 2641 /// Newly added extensions are inserted in \p Exts. 2642 /// Newly added truncates are inserted in \p Truncs. 2643 /// Should never be called directly. 2644 /// \return The promoted value which is used instead of Ext. 2645 static Value *promoteOperandForTruncAndAnyExt( 2646 Instruction *Ext, TypePromotionTransaction &TPT, 2647 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2648 SmallVectorImpl<Instruction *> *Exts, 2649 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2650 2651 /// \brief Utility function to promote the operand of \p Ext when this 2652 /// operand is promotable and is not a supported trunc or sext. 2653 /// \p PromotedInsts maps the instructions to their type before promotion. 2654 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2655 /// created to promote the operand of Ext. 2656 /// Newly added extensions are inserted in \p Exts. 2657 /// Newly added truncates are inserted in \p Truncs. 2658 /// Should never be called directly. 2659 /// \return The promoted value which is used instead of Ext. 2660 static Value *promoteOperandForOther(Instruction *Ext, 2661 TypePromotionTransaction &TPT, 2662 InstrToOrigTy &PromotedInsts, 2663 unsigned &CreatedInstsCost, 2664 SmallVectorImpl<Instruction *> *Exts, 2665 SmallVectorImpl<Instruction *> *Truncs, 2666 const TargetLowering &TLI, bool IsSExt); 2667 2668 /// \see promoteOperandForOther. 2669 static Value *signExtendOperandForOther( 2670 Instruction *Ext, TypePromotionTransaction &TPT, 2671 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2672 SmallVectorImpl<Instruction *> *Exts, 2673 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2674 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2675 Exts, Truncs, TLI, true); 2676 } 2677 2678 /// \see promoteOperandForOther. 2679 static Value *zeroExtendOperandForOther( 2680 Instruction *Ext, TypePromotionTransaction &TPT, 2681 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2682 SmallVectorImpl<Instruction *> *Exts, 2683 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2684 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2685 Exts, Truncs, TLI, false); 2686 } 2687 2688 public: 2689 /// Type for the utility function that promotes the operand of Ext. 2690 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2691 InstrToOrigTy &PromotedInsts, 2692 unsigned &CreatedInstsCost, 2693 SmallVectorImpl<Instruction *> *Exts, 2694 SmallVectorImpl<Instruction *> *Truncs, 2695 const TargetLowering &TLI); 2696 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2697 /// action to promote the operand of \p Ext instead of using Ext. 2698 /// \return NULL if no promotable action is possible with the current 2699 /// sign extension. 2700 /// \p InsertedInsts keeps track of all the instructions inserted by the 2701 /// other CodeGenPrepare optimizations. This information is important 2702 /// because we do not want to promote these instructions as CodeGenPrepare 2703 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2704 /// \p PromotedInsts maps the instructions to their type before promotion. 2705 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2706 const TargetLowering &TLI, 2707 const InstrToOrigTy &PromotedInsts); 2708 }; 2709 2710 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2711 Type *ConsideredExtType, 2712 const InstrToOrigTy &PromotedInsts, 2713 bool IsSExt) { 2714 // The promotion helper does not know how to deal with vector types yet. 2715 // To be able to fix that, we would need to fix the places where we 2716 // statically extend, e.g., constants and such. 2717 if (Inst->getType()->isVectorTy()) 2718 return false; 2719 2720 // We can always get through zext. 2721 if (isa<ZExtInst>(Inst)) 2722 return true; 2723 2724 // sext(sext) is ok too. 2725 if (IsSExt && isa<SExtInst>(Inst)) 2726 return true; 2727 2728 // We can get through binary operator, if it is legal. In other words, the 2729 // binary operator must have a nuw or nsw flag. 2730 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2731 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2732 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2733 (IsSExt && BinOp->hasNoSignedWrap()))) 2734 return true; 2735 2736 // Check if we can do the following simplification. 2737 // ext(trunc(opnd)) --> ext(opnd) 2738 if (!isa<TruncInst>(Inst)) 2739 return false; 2740 2741 Value *OpndVal = Inst->getOperand(0); 2742 // Check if we can use this operand in the extension. 2743 // If the type is larger than the result type of the extension, we cannot. 2744 if (!OpndVal->getType()->isIntegerTy() || 2745 OpndVal->getType()->getIntegerBitWidth() > 2746 ConsideredExtType->getIntegerBitWidth()) 2747 return false; 2748 2749 // If the operand of the truncate is not an instruction, we will not have 2750 // any information on the dropped bits. 2751 // (Actually we could for constant but it is not worth the extra logic). 2752 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2753 if (!Opnd) 2754 return false; 2755 2756 // Check if the source of the type is narrow enough. 2757 // I.e., check that trunc just drops extended bits of the same kind of 2758 // the extension. 2759 // #1 get the type of the operand and check the kind of the extended bits. 2760 const Type *OpndType; 2761 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2762 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2763 OpndType = It->second.getPointer(); 2764 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2765 OpndType = Opnd->getOperand(0)->getType(); 2766 else 2767 return false; 2768 2769 // #2 check that the truncate just drops extended bits. 2770 return Inst->getType()->getIntegerBitWidth() >= 2771 OpndType->getIntegerBitWidth(); 2772 } 2773 2774 TypePromotionHelper::Action TypePromotionHelper::getAction( 2775 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2776 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2777 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2778 "Unexpected instruction type"); 2779 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2780 Type *ExtTy = Ext->getType(); 2781 bool IsSExt = isa<SExtInst>(Ext); 2782 // If the operand of the extension is not an instruction, we cannot 2783 // get through. 2784 // If it, check we can get through. 2785 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2786 return nullptr; 2787 2788 // Do not promote if the operand has been added by codegenprepare. 2789 // Otherwise, it means we are undoing an optimization that is likely to be 2790 // redone, thus causing potential infinite loop. 2791 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2792 return nullptr; 2793 2794 // SExt or Trunc instructions. 2795 // Return the related handler. 2796 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2797 isa<ZExtInst>(ExtOpnd)) 2798 return promoteOperandForTruncAndAnyExt; 2799 2800 // Regular instruction. 2801 // Abort early if we will have to insert non-free instructions. 2802 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2803 return nullptr; 2804 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2805 } 2806 2807 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2808 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2809 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2810 SmallVectorImpl<Instruction *> *Exts, 2811 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2812 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2813 // get through it and this method should not be called. 2814 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2815 Value *ExtVal = SExt; 2816 bool HasMergedNonFreeExt = false; 2817 if (isa<ZExtInst>(SExtOpnd)) { 2818 // Replace s|zext(zext(opnd)) 2819 // => zext(opnd). 2820 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2821 Value *ZExt = 2822 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2823 TPT.replaceAllUsesWith(SExt, ZExt); 2824 TPT.eraseInstruction(SExt); 2825 ExtVal = ZExt; 2826 } else { 2827 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2828 // => z|sext(opnd). 2829 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2830 } 2831 CreatedInstsCost = 0; 2832 2833 // Remove dead code. 2834 if (SExtOpnd->use_empty()) 2835 TPT.eraseInstruction(SExtOpnd); 2836 2837 // Check if the extension is still needed. 2838 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2839 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2840 if (ExtInst) { 2841 if (Exts) 2842 Exts->push_back(ExtInst); 2843 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2844 } 2845 return ExtVal; 2846 } 2847 2848 // At this point we have: ext ty opnd to ty. 2849 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2850 Value *NextVal = ExtInst->getOperand(0); 2851 TPT.eraseInstruction(ExtInst, NextVal); 2852 return NextVal; 2853 } 2854 2855 Value *TypePromotionHelper::promoteOperandForOther( 2856 Instruction *Ext, TypePromotionTransaction &TPT, 2857 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2858 SmallVectorImpl<Instruction *> *Exts, 2859 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2860 bool IsSExt) { 2861 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2862 // get through it and this method should not be called. 2863 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2864 CreatedInstsCost = 0; 2865 if (!ExtOpnd->hasOneUse()) { 2866 // ExtOpnd will be promoted. 2867 // All its uses, but Ext, will need to use a truncated value of the 2868 // promoted version. 2869 // Create the truncate now. 2870 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2871 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2872 ITrunc->removeFromParent(); 2873 // Insert it just after the definition. 2874 ITrunc->insertAfter(ExtOpnd); 2875 if (Truncs) 2876 Truncs->push_back(ITrunc); 2877 } 2878 2879 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2880 // Restore the operand of Ext (which has been replaced by the previous call 2881 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2882 TPT.setOperand(Ext, 0, ExtOpnd); 2883 } 2884 2885 // Get through the Instruction: 2886 // 1. Update its type. 2887 // 2. Replace the uses of Ext by Inst. 2888 // 3. Extend each operand that needs to be extended. 2889 2890 // Remember the original type of the instruction before promotion. 2891 // This is useful to know that the high bits are sign extended bits. 2892 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2893 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2894 // Step #1. 2895 TPT.mutateType(ExtOpnd, Ext->getType()); 2896 // Step #2. 2897 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2898 // Step #3. 2899 Instruction *ExtForOpnd = Ext; 2900 2901 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2902 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2903 ++OpIdx) { 2904 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2905 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2906 !shouldExtOperand(ExtOpnd, OpIdx)) { 2907 DEBUG(dbgs() << "No need to propagate\n"); 2908 continue; 2909 } 2910 // Check if we can statically extend the operand. 2911 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2912 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2913 DEBUG(dbgs() << "Statically extend\n"); 2914 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2915 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2916 : Cst->getValue().zext(BitWidth); 2917 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2918 continue; 2919 } 2920 // UndefValue are typed, so we have to statically sign extend them. 2921 if (isa<UndefValue>(Opnd)) { 2922 DEBUG(dbgs() << "Statically extend\n"); 2923 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2924 continue; 2925 } 2926 2927 // Otherwise we have to explicity sign extend the operand. 2928 // Check if Ext was reused to extend an operand. 2929 if (!ExtForOpnd) { 2930 // If yes, create a new one. 2931 DEBUG(dbgs() << "More operands to ext\n"); 2932 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2933 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2934 if (!isa<Instruction>(ValForExtOpnd)) { 2935 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2936 continue; 2937 } 2938 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2939 } 2940 if (Exts) 2941 Exts->push_back(ExtForOpnd); 2942 TPT.setOperand(ExtForOpnd, 0, Opnd); 2943 2944 // Move the sign extension before the insertion point. 2945 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2946 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2947 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2948 // If more sext are required, new instructions will have to be created. 2949 ExtForOpnd = nullptr; 2950 } 2951 if (ExtForOpnd == Ext) { 2952 DEBUG(dbgs() << "Extension is useless now\n"); 2953 TPT.eraseInstruction(Ext); 2954 } 2955 return ExtOpnd; 2956 } 2957 2958 /// Check whether or not promoting an instruction to a wider type is profitable. 2959 /// \p NewCost gives the cost of extension instructions created by the 2960 /// promotion. 2961 /// \p OldCost gives the cost of extension instructions before the promotion 2962 /// plus the number of instructions that have been 2963 /// matched in the addressing mode the promotion. 2964 /// \p PromotedOperand is the value that has been promoted. 2965 /// \return True if the promotion is profitable, false otherwise. 2966 bool AddressingModeMatcher::isPromotionProfitable( 2967 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2968 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2969 // The cost of the new extensions is greater than the cost of the 2970 // old extension plus what we folded. 2971 // This is not profitable. 2972 if (NewCost > OldCost) 2973 return false; 2974 if (NewCost < OldCost) 2975 return true; 2976 // The promotion is neutral but it may help folding the sign extension in 2977 // loads for instance. 2978 // Check that we did not create an illegal instruction. 2979 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2980 } 2981 2982 /// Given an instruction or constant expr, see if we can fold the operation 2983 /// into the addressing mode. If so, update the addressing mode and return 2984 /// true, otherwise return false without modifying AddrMode. 2985 /// If \p MovedAway is not NULL, it contains the information of whether or 2986 /// not AddrInst has to be folded into the addressing mode on success. 2987 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2988 /// because it has been moved away. 2989 /// Thus AddrInst must not be added in the matched instructions. 2990 /// This state can happen when AddrInst is a sext, since it may be moved away. 2991 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2992 /// not be referenced anymore. 2993 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 2994 unsigned Depth, 2995 bool *MovedAway) { 2996 // Avoid exponential behavior on extremely deep expression trees. 2997 if (Depth >= 5) return false; 2998 2999 // By default, all matched instructions stay in place. 3000 if (MovedAway) 3001 *MovedAway = false; 3002 3003 switch (Opcode) { 3004 case Instruction::PtrToInt: 3005 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3006 return matchAddr(AddrInst->getOperand(0), Depth); 3007 case Instruction::IntToPtr: { 3008 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3009 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3010 // This inttoptr is a no-op if the integer type is pointer sized. 3011 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3012 return matchAddr(AddrInst->getOperand(0), Depth); 3013 return false; 3014 } 3015 case Instruction::BitCast: 3016 // BitCast is always a noop, and we can handle it as long as it is 3017 // int->int or pointer->pointer (we don't want int<->fp or something). 3018 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3019 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3020 // Don't touch identity bitcasts. These were probably put here by LSR, 3021 // and we don't want to mess around with them. Assume it knows what it 3022 // is doing. 3023 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3024 return matchAddr(AddrInst->getOperand(0), Depth); 3025 return false; 3026 case Instruction::AddrSpaceCast: { 3027 unsigned SrcAS 3028 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3029 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3030 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3031 return matchAddr(AddrInst->getOperand(0), Depth); 3032 return false; 3033 } 3034 case Instruction::Add: { 3035 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3036 ExtAddrMode BackupAddrMode = AddrMode; 3037 unsigned OldSize = AddrModeInsts.size(); 3038 // Start a transaction at this point. 3039 // The LHS may match but not the RHS. 3040 // Therefore, we need a higher level restoration point to undo partially 3041 // matched operation. 3042 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3043 TPT.getRestorationPoint(); 3044 3045 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3046 matchAddr(AddrInst->getOperand(0), Depth+1)) 3047 return true; 3048 3049 // Restore the old addr mode info. 3050 AddrMode = BackupAddrMode; 3051 AddrModeInsts.resize(OldSize); 3052 TPT.rollback(LastKnownGood); 3053 3054 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3055 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3056 matchAddr(AddrInst->getOperand(1), Depth+1)) 3057 return true; 3058 3059 // Otherwise we definitely can't merge the ADD in. 3060 AddrMode = BackupAddrMode; 3061 AddrModeInsts.resize(OldSize); 3062 TPT.rollback(LastKnownGood); 3063 break; 3064 } 3065 //case Instruction::Or: 3066 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3067 //break; 3068 case Instruction::Mul: 3069 case Instruction::Shl: { 3070 // Can only handle X*C and X << C. 3071 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3072 if (!RHS) 3073 return false; 3074 int64_t Scale = RHS->getSExtValue(); 3075 if (Opcode == Instruction::Shl) 3076 Scale = 1LL << Scale; 3077 3078 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3079 } 3080 case Instruction::GetElementPtr: { 3081 // Scan the GEP. We check it if it contains constant offsets and at most 3082 // one variable offset. 3083 int VariableOperand = -1; 3084 unsigned VariableScale = 0; 3085 3086 int64_t ConstantOffset = 0; 3087 gep_type_iterator GTI = gep_type_begin(AddrInst); 3088 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3089 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3090 const StructLayout *SL = DL.getStructLayout(STy); 3091 unsigned Idx = 3092 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3093 ConstantOffset += SL->getElementOffset(Idx); 3094 } else { 3095 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3096 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3097 ConstantOffset += CI->getSExtValue()*TypeSize; 3098 } else if (TypeSize) { // Scales of zero don't do anything. 3099 // We only allow one variable index at the moment. 3100 if (VariableOperand != -1) 3101 return false; 3102 3103 // Remember the variable index. 3104 VariableOperand = i; 3105 VariableScale = TypeSize; 3106 } 3107 } 3108 } 3109 3110 // A common case is for the GEP to only do a constant offset. In this case, 3111 // just add it to the disp field and check validity. 3112 if (VariableOperand == -1) { 3113 AddrMode.BaseOffs += ConstantOffset; 3114 if (ConstantOffset == 0 || 3115 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3116 // Check to see if we can fold the base pointer in too. 3117 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3118 return true; 3119 } 3120 AddrMode.BaseOffs -= ConstantOffset; 3121 return false; 3122 } 3123 3124 // Save the valid addressing mode in case we can't match. 3125 ExtAddrMode BackupAddrMode = AddrMode; 3126 unsigned OldSize = AddrModeInsts.size(); 3127 3128 // See if the scale and offset amount is valid for this target. 3129 AddrMode.BaseOffs += ConstantOffset; 3130 3131 // Match the base operand of the GEP. 3132 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3133 // If it couldn't be matched, just stuff the value in a register. 3134 if (AddrMode.HasBaseReg) { 3135 AddrMode = BackupAddrMode; 3136 AddrModeInsts.resize(OldSize); 3137 return false; 3138 } 3139 AddrMode.HasBaseReg = true; 3140 AddrMode.BaseReg = AddrInst->getOperand(0); 3141 } 3142 3143 // Match the remaining variable portion of the GEP. 3144 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3145 Depth)) { 3146 // If it couldn't be matched, try stuffing the base into a register 3147 // instead of matching it, and retrying the match of the scale. 3148 AddrMode = BackupAddrMode; 3149 AddrModeInsts.resize(OldSize); 3150 if (AddrMode.HasBaseReg) 3151 return false; 3152 AddrMode.HasBaseReg = true; 3153 AddrMode.BaseReg = AddrInst->getOperand(0); 3154 AddrMode.BaseOffs += ConstantOffset; 3155 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3156 VariableScale, Depth)) { 3157 // If even that didn't work, bail. 3158 AddrMode = BackupAddrMode; 3159 AddrModeInsts.resize(OldSize); 3160 return false; 3161 } 3162 } 3163 3164 return true; 3165 } 3166 case Instruction::SExt: 3167 case Instruction::ZExt: { 3168 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3169 if (!Ext) 3170 return false; 3171 3172 // Try to move this ext out of the way of the addressing mode. 3173 // Ask for a method for doing so. 3174 TypePromotionHelper::Action TPH = 3175 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3176 if (!TPH) 3177 return false; 3178 3179 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3180 TPT.getRestorationPoint(); 3181 unsigned CreatedInstsCost = 0; 3182 unsigned ExtCost = !TLI.isExtFree(Ext); 3183 Value *PromotedOperand = 3184 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3185 // SExt has been moved away. 3186 // Thus either it will be rematched later in the recursive calls or it is 3187 // gone. Anyway, we must not fold it into the addressing mode at this point. 3188 // E.g., 3189 // op = add opnd, 1 3190 // idx = ext op 3191 // addr = gep base, idx 3192 // is now: 3193 // promotedOpnd = ext opnd <- no match here 3194 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3195 // addr = gep base, op <- match 3196 if (MovedAway) 3197 *MovedAway = true; 3198 3199 assert(PromotedOperand && 3200 "TypePromotionHelper should have filtered out those cases"); 3201 3202 ExtAddrMode BackupAddrMode = AddrMode; 3203 unsigned OldSize = AddrModeInsts.size(); 3204 3205 if (!matchAddr(PromotedOperand, Depth) || 3206 // The total of the new cost is equal to the cost of the created 3207 // instructions. 3208 // The total of the old cost is equal to the cost of the extension plus 3209 // what we have saved in the addressing mode. 3210 !isPromotionProfitable(CreatedInstsCost, 3211 ExtCost + (AddrModeInsts.size() - OldSize), 3212 PromotedOperand)) { 3213 AddrMode = BackupAddrMode; 3214 AddrModeInsts.resize(OldSize); 3215 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3216 TPT.rollback(LastKnownGood); 3217 return false; 3218 } 3219 return true; 3220 } 3221 } 3222 return false; 3223 } 3224 3225 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3226 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3227 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3228 /// for the target. 3229 /// 3230 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3231 // Start a transaction at this point that we will rollback if the matching 3232 // fails. 3233 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3234 TPT.getRestorationPoint(); 3235 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3236 // Fold in immediates if legal for the target. 3237 AddrMode.BaseOffs += CI->getSExtValue(); 3238 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3239 return true; 3240 AddrMode.BaseOffs -= CI->getSExtValue(); 3241 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3242 // If this is a global variable, try to fold it into the addressing mode. 3243 if (!AddrMode.BaseGV) { 3244 AddrMode.BaseGV = GV; 3245 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3246 return true; 3247 AddrMode.BaseGV = nullptr; 3248 } 3249 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3250 ExtAddrMode BackupAddrMode = AddrMode; 3251 unsigned OldSize = AddrModeInsts.size(); 3252 3253 // Check to see if it is possible to fold this operation. 3254 bool MovedAway = false; 3255 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3256 // This instruction may have been moved away. If so, there is nothing 3257 // to check here. 3258 if (MovedAway) 3259 return true; 3260 // Okay, it's possible to fold this. Check to see if it is actually 3261 // *profitable* to do so. We use a simple cost model to avoid increasing 3262 // register pressure too much. 3263 if (I->hasOneUse() || 3264 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3265 AddrModeInsts.push_back(I); 3266 return true; 3267 } 3268 3269 // It isn't profitable to do this, roll back. 3270 //cerr << "NOT FOLDING: " << *I; 3271 AddrMode = BackupAddrMode; 3272 AddrModeInsts.resize(OldSize); 3273 TPT.rollback(LastKnownGood); 3274 } 3275 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3276 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3277 return true; 3278 TPT.rollback(LastKnownGood); 3279 } else if (isa<ConstantPointerNull>(Addr)) { 3280 // Null pointer gets folded without affecting the addressing mode. 3281 return true; 3282 } 3283 3284 // Worse case, the target should support [reg] addressing modes. :) 3285 if (!AddrMode.HasBaseReg) { 3286 AddrMode.HasBaseReg = true; 3287 AddrMode.BaseReg = Addr; 3288 // Still check for legality in case the target supports [imm] but not [i+r]. 3289 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3290 return true; 3291 AddrMode.HasBaseReg = false; 3292 AddrMode.BaseReg = nullptr; 3293 } 3294 3295 // If the base register is already taken, see if we can do [r+r]. 3296 if (AddrMode.Scale == 0) { 3297 AddrMode.Scale = 1; 3298 AddrMode.ScaledReg = Addr; 3299 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3300 return true; 3301 AddrMode.Scale = 0; 3302 AddrMode.ScaledReg = nullptr; 3303 } 3304 // Couldn't match. 3305 TPT.rollback(LastKnownGood); 3306 return false; 3307 } 3308 3309 /// Check to see if all uses of OpVal by the specified inline asm call are due 3310 /// to memory operands. If so, return true, otherwise return false. 3311 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3312 const TargetMachine &TM) { 3313 const Function *F = CI->getParent()->getParent(); 3314 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3315 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3316 TargetLowering::AsmOperandInfoVector TargetConstraints = 3317 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3318 ImmutableCallSite(CI)); 3319 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3320 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3321 3322 // Compute the constraint code and ConstraintType to use. 3323 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3324 3325 // If this asm operand is our Value*, and if it isn't an indirect memory 3326 // operand, we can't fold it! 3327 if (OpInfo.CallOperandVal == OpVal && 3328 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3329 !OpInfo.isIndirect)) 3330 return false; 3331 } 3332 3333 return true; 3334 } 3335 3336 /// Recursively walk all the uses of I until we find a memory use. 3337 /// If we find an obviously non-foldable instruction, return true. 3338 /// Add the ultimately found memory instructions to MemoryUses. 3339 static bool FindAllMemoryUses( 3340 Instruction *I, 3341 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3342 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3343 // If we already considered this instruction, we're done. 3344 if (!ConsideredInsts.insert(I).second) 3345 return false; 3346 3347 // If this is an obviously unfoldable instruction, bail out. 3348 if (!MightBeFoldableInst(I)) 3349 return true; 3350 3351 // Loop over all the uses, recursively processing them. 3352 for (Use &U : I->uses()) { 3353 Instruction *UserI = cast<Instruction>(U.getUser()); 3354 3355 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3356 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3357 continue; 3358 } 3359 3360 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3361 unsigned opNo = U.getOperandNo(); 3362 if (opNo == 0) return true; // Storing addr, not into addr. 3363 MemoryUses.push_back(std::make_pair(SI, opNo)); 3364 continue; 3365 } 3366 3367 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3368 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3369 if (!IA) return true; 3370 3371 // If this is a memory operand, we're cool, otherwise bail out. 3372 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3373 return true; 3374 continue; 3375 } 3376 3377 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3378 return true; 3379 } 3380 3381 return false; 3382 } 3383 3384 /// Return true if Val is already known to be live at the use site that we're 3385 /// folding it into. If so, there is no cost to include it in the addressing 3386 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3387 /// instruction already. 3388 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3389 Value *KnownLive2) { 3390 // If Val is either of the known-live values, we know it is live! 3391 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3392 return true; 3393 3394 // All values other than instructions and arguments (e.g. constants) are live. 3395 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3396 3397 // If Val is a constant sized alloca in the entry block, it is live, this is 3398 // true because it is just a reference to the stack/frame pointer, which is 3399 // live for the whole function. 3400 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3401 if (AI->isStaticAlloca()) 3402 return true; 3403 3404 // Check to see if this value is already used in the memory instruction's 3405 // block. If so, it's already live into the block at the very least, so we 3406 // can reasonably fold it. 3407 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3408 } 3409 3410 /// It is possible for the addressing mode of the machine to fold the specified 3411 /// instruction into a load or store that ultimately uses it. 3412 /// However, the specified instruction has multiple uses. 3413 /// Given this, it may actually increase register pressure to fold it 3414 /// into the load. For example, consider this code: 3415 /// 3416 /// X = ... 3417 /// Y = X+1 3418 /// use(Y) -> nonload/store 3419 /// Z = Y+1 3420 /// load Z 3421 /// 3422 /// In this case, Y has multiple uses, and can be folded into the load of Z 3423 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3424 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3425 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3426 /// number of computations either. 3427 /// 3428 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3429 /// X was live across 'load Z' for other reasons, we actually *would* want to 3430 /// fold the addressing mode in the Z case. This would make Y die earlier. 3431 bool AddressingModeMatcher:: 3432 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3433 ExtAddrMode &AMAfter) { 3434 if (IgnoreProfitability) return true; 3435 3436 // AMBefore is the addressing mode before this instruction was folded into it, 3437 // and AMAfter is the addressing mode after the instruction was folded. Get 3438 // the set of registers referenced by AMAfter and subtract out those 3439 // referenced by AMBefore: this is the set of values which folding in this 3440 // address extends the lifetime of. 3441 // 3442 // Note that there are only two potential values being referenced here, 3443 // BaseReg and ScaleReg (global addresses are always available, as are any 3444 // folded immediates). 3445 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3446 3447 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3448 // lifetime wasn't extended by adding this instruction. 3449 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3450 BaseReg = nullptr; 3451 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3452 ScaledReg = nullptr; 3453 3454 // If folding this instruction (and it's subexprs) didn't extend any live 3455 // ranges, we're ok with it. 3456 if (!BaseReg && !ScaledReg) 3457 return true; 3458 3459 // If all uses of this instruction are ultimately load/store/inlineasm's, 3460 // check to see if their addressing modes will include this instruction. If 3461 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3462 // uses. 3463 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3464 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3465 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3466 return false; // Has a non-memory, non-foldable use! 3467 3468 // Now that we know that all uses of this instruction are part of a chain of 3469 // computation involving only operations that could theoretically be folded 3470 // into a memory use, loop over each of these uses and see if they could 3471 // *actually* fold the instruction. 3472 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3473 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3474 Instruction *User = MemoryUses[i].first; 3475 unsigned OpNo = MemoryUses[i].second; 3476 3477 // Get the access type of this use. If the use isn't a pointer, we don't 3478 // know what it accesses. 3479 Value *Address = User->getOperand(OpNo); 3480 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3481 if (!AddrTy) 3482 return false; 3483 Type *AddressAccessTy = AddrTy->getElementType(); 3484 unsigned AS = AddrTy->getAddressSpace(); 3485 3486 // Do a match against the root of this address, ignoring profitability. This 3487 // will tell us if the addressing mode for the memory operation will 3488 // *actually* cover the shared instruction. 3489 ExtAddrMode Result; 3490 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3491 TPT.getRestorationPoint(); 3492 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3493 MemoryInst, Result, InsertedInsts, 3494 PromotedInsts, TPT); 3495 Matcher.IgnoreProfitability = true; 3496 bool Success = Matcher.matchAddr(Address, 0); 3497 (void)Success; assert(Success && "Couldn't select *anything*?"); 3498 3499 // The match was to check the profitability, the changes made are not 3500 // part of the original matcher. Therefore, they should be dropped 3501 // otherwise the original matcher will not present the right state. 3502 TPT.rollback(LastKnownGood); 3503 3504 // If the match didn't cover I, then it won't be shared by it. 3505 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3506 I) == MatchedAddrModeInsts.end()) 3507 return false; 3508 3509 MatchedAddrModeInsts.clear(); 3510 } 3511 3512 return true; 3513 } 3514 3515 } // end anonymous namespace 3516 3517 /// Return true if the specified values are defined in a 3518 /// different basic block than BB. 3519 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3520 if (Instruction *I = dyn_cast<Instruction>(V)) 3521 return I->getParent() != BB; 3522 return false; 3523 } 3524 3525 /// Load and Store Instructions often have addressing modes that can do 3526 /// significant amounts of computation. As such, instruction selection will try 3527 /// to get the load or store to do as much computation as possible for the 3528 /// program. The problem is that isel can only see within a single block. As 3529 /// such, we sink as much legal addressing mode work into the block as possible. 3530 /// 3531 /// This method is used to optimize both load/store and inline asms with memory 3532 /// operands. 3533 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3534 Type *AccessTy, unsigned AddrSpace) { 3535 Value *Repl = Addr; 3536 3537 // Try to collapse single-value PHI nodes. This is necessary to undo 3538 // unprofitable PRE transformations. 3539 SmallVector<Value*, 8> worklist; 3540 SmallPtrSet<Value*, 16> Visited; 3541 worklist.push_back(Addr); 3542 3543 // Use a worklist to iteratively look through PHI nodes, and ensure that 3544 // the addressing mode obtained from the non-PHI roots of the graph 3545 // are equivalent. 3546 Value *Consensus = nullptr; 3547 unsigned NumUsesConsensus = 0; 3548 bool IsNumUsesConsensusValid = false; 3549 SmallVector<Instruction*, 16> AddrModeInsts; 3550 ExtAddrMode AddrMode; 3551 TypePromotionTransaction TPT; 3552 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3553 TPT.getRestorationPoint(); 3554 while (!worklist.empty()) { 3555 Value *V = worklist.back(); 3556 worklist.pop_back(); 3557 3558 // Break use-def graph loops. 3559 if (!Visited.insert(V).second) { 3560 Consensus = nullptr; 3561 break; 3562 } 3563 3564 // For a PHI node, push all of its incoming values. 3565 if (PHINode *P = dyn_cast<PHINode>(V)) { 3566 for (Value *IncValue : P->incoming_values()) 3567 worklist.push_back(IncValue); 3568 continue; 3569 } 3570 3571 // For non-PHIs, determine the addressing mode being computed. 3572 SmallVector<Instruction*, 16> NewAddrModeInsts; 3573 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3574 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3575 InsertedInsts, PromotedInsts, TPT); 3576 3577 // This check is broken into two cases with very similar code to avoid using 3578 // getNumUses() as much as possible. Some values have a lot of uses, so 3579 // calling getNumUses() unconditionally caused a significant compile-time 3580 // regression. 3581 if (!Consensus) { 3582 Consensus = V; 3583 AddrMode = NewAddrMode; 3584 AddrModeInsts = NewAddrModeInsts; 3585 continue; 3586 } else if (NewAddrMode == AddrMode) { 3587 if (!IsNumUsesConsensusValid) { 3588 NumUsesConsensus = Consensus->getNumUses(); 3589 IsNumUsesConsensusValid = true; 3590 } 3591 3592 // Ensure that the obtained addressing mode is equivalent to that obtained 3593 // for all other roots of the PHI traversal. Also, when choosing one 3594 // such root as representative, select the one with the most uses in order 3595 // to keep the cost modeling heuristics in AddressingModeMatcher 3596 // applicable. 3597 unsigned NumUses = V->getNumUses(); 3598 if (NumUses > NumUsesConsensus) { 3599 Consensus = V; 3600 NumUsesConsensus = NumUses; 3601 AddrModeInsts = NewAddrModeInsts; 3602 } 3603 continue; 3604 } 3605 3606 Consensus = nullptr; 3607 break; 3608 } 3609 3610 // If the addressing mode couldn't be determined, or if multiple different 3611 // ones were determined, bail out now. 3612 if (!Consensus) { 3613 TPT.rollback(LastKnownGood); 3614 return false; 3615 } 3616 TPT.commit(); 3617 3618 // Check to see if any of the instructions supersumed by this addr mode are 3619 // non-local to I's BB. 3620 bool AnyNonLocal = false; 3621 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3622 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3623 AnyNonLocal = true; 3624 break; 3625 } 3626 } 3627 3628 // If all the instructions matched are already in this BB, don't do anything. 3629 if (!AnyNonLocal) { 3630 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3631 return false; 3632 } 3633 3634 // Insert this computation right after this user. Since our caller is 3635 // scanning from the top of the BB to the bottom, reuse of the expr are 3636 // guaranteed to happen later. 3637 IRBuilder<> Builder(MemoryInst); 3638 3639 // Now that we determined the addressing expression we want to use and know 3640 // that we have to sink it into this block. Check to see if we have already 3641 // done this for some other load/store instr in this block. If so, reuse the 3642 // computation. 3643 Value *&SunkAddr = SunkAddrs[Addr]; 3644 if (SunkAddr) { 3645 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3646 << *MemoryInst << "\n"); 3647 if (SunkAddr->getType() != Addr->getType()) 3648 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3649 } else if (AddrSinkUsingGEPs || 3650 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3651 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3652 ->useAA())) { 3653 // By default, we use the GEP-based method when AA is used later. This 3654 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3655 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3656 << *MemoryInst << "\n"); 3657 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3658 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3659 3660 // First, find the pointer. 3661 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3662 ResultPtr = AddrMode.BaseReg; 3663 AddrMode.BaseReg = nullptr; 3664 } 3665 3666 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3667 // We can't add more than one pointer together, nor can we scale a 3668 // pointer (both of which seem meaningless). 3669 if (ResultPtr || AddrMode.Scale != 1) 3670 return false; 3671 3672 ResultPtr = AddrMode.ScaledReg; 3673 AddrMode.Scale = 0; 3674 } 3675 3676 if (AddrMode.BaseGV) { 3677 if (ResultPtr) 3678 return false; 3679 3680 ResultPtr = AddrMode.BaseGV; 3681 } 3682 3683 // If the real base value actually came from an inttoptr, then the matcher 3684 // will look through it and provide only the integer value. In that case, 3685 // use it here. 3686 if (!ResultPtr && AddrMode.BaseReg) { 3687 ResultPtr = 3688 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3689 AddrMode.BaseReg = nullptr; 3690 } else if (!ResultPtr && AddrMode.Scale == 1) { 3691 ResultPtr = 3692 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3693 AddrMode.Scale = 0; 3694 } 3695 3696 if (!ResultPtr && 3697 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3698 SunkAddr = Constant::getNullValue(Addr->getType()); 3699 } else if (!ResultPtr) { 3700 return false; 3701 } else { 3702 Type *I8PtrTy = 3703 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3704 Type *I8Ty = Builder.getInt8Ty(); 3705 3706 // Start with the base register. Do this first so that subsequent address 3707 // matching finds it last, which will prevent it from trying to match it 3708 // as the scaled value in case it happens to be a mul. That would be 3709 // problematic if we've sunk a different mul for the scale, because then 3710 // we'd end up sinking both muls. 3711 if (AddrMode.BaseReg) { 3712 Value *V = AddrMode.BaseReg; 3713 if (V->getType() != IntPtrTy) 3714 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3715 3716 ResultIndex = V; 3717 } 3718 3719 // Add the scale value. 3720 if (AddrMode.Scale) { 3721 Value *V = AddrMode.ScaledReg; 3722 if (V->getType() == IntPtrTy) { 3723 // done. 3724 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3725 cast<IntegerType>(V->getType())->getBitWidth()) { 3726 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3727 } else { 3728 // It is only safe to sign extend the BaseReg if we know that the math 3729 // required to create it did not overflow before we extend it. Since 3730 // the original IR value was tossed in favor of a constant back when 3731 // the AddrMode was created we need to bail out gracefully if widths 3732 // do not match instead of extending it. 3733 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3734 if (I && (ResultIndex != AddrMode.BaseReg)) 3735 I->eraseFromParent(); 3736 return false; 3737 } 3738 3739 if (AddrMode.Scale != 1) 3740 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3741 "sunkaddr"); 3742 if (ResultIndex) 3743 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3744 else 3745 ResultIndex = V; 3746 } 3747 3748 // Add in the Base Offset if present. 3749 if (AddrMode.BaseOffs) { 3750 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3751 if (ResultIndex) { 3752 // We need to add this separately from the scale above to help with 3753 // SDAG consecutive load/store merging. 3754 if (ResultPtr->getType() != I8PtrTy) 3755 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3756 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3757 } 3758 3759 ResultIndex = V; 3760 } 3761 3762 if (!ResultIndex) { 3763 SunkAddr = ResultPtr; 3764 } else { 3765 if (ResultPtr->getType() != I8PtrTy) 3766 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3767 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3768 } 3769 3770 if (SunkAddr->getType() != Addr->getType()) 3771 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3772 } 3773 } else { 3774 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3775 << *MemoryInst << "\n"); 3776 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3777 Value *Result = nullptr; 3778 3779 // Start with the base register. Do this first so that subsequent address 3780 // matching finds it last, which will prevent it from trying to match it 3781 // as the scaled value in case it happens to be a mul. That would be 3782 // problematic if we've sunk a different mul for the scale, because then 3783 // we'd end up sinking both muls. 3784 if (AddrMode.BaseReg) { 3785 Value *V = AddrMode.BaseReg; 3786 if (V->getType()->isPointerTy()) 3787 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3788 if (V->getType() != IntPtrTy) 3789 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3790 Result = V; 3791 } 3792 3793 // Add the scale value. 3794 if (AddrMode.Scale) { 3795 Value *V = AddrMode.ScaledReg; 3796 if (V->getType() == IntPtrTy) { 3797 // done. 3798 } else if (V->getType()->isPointerTy()) { 3799 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3800 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3801 cast<IntegerType>(V->getType())->getBitWidth()) { 3802 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3803 } else { 3804 // It is only safe to sign extend the BaseReg if we know that the math 3805 // required to create it did not overflow before we extend it. Since 3806 // the original IR value was tossed in favor of a constant back when 3807 // the AddrMode was created we need to bail out gracefully if widths 3808 // do not match instead of extending it. 3809 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3810 if (I && (Result != AddrMode.BaseReg)) 3811 I->eraseFromParent(); 3812 return false; 3813 } 3814 if (AddrMode.Scale != 1) 3815 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3816 "sunkaddr"); 3817 if (Result) 3818 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3819 else 3820 Result = V; 3821 } 3822 3823 // Add in the BaseGV if present. 3824 if (AddrMode.BaseGV) { 3825 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3826 if (Result) 3827 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3828 else 3829 Result = V; 3830 } 3831 3832 // Add in the Base Offset if present. 3833 if (AddrMode.BaseOffs) { 3834 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3835 if (Result) 3836 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3837 else 3838 Result = V; 3839 } 3840 3841 if (!Result) 3842 SunkAddr = Constant::getNullValue(Addr->getType()); 3843 else 3844 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3845 } 3846 3847 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3848 3849 // If we have no uses, recursively delete the value and all dead instructions 3850 // using it. 3851 if (Repl->use_empty()) { 3852 // This can cause recursive deletion, which can invalidate our iterator. 3853 // Use a WeakVH to hold onto it in case this happens. 3854 WeakVH IterHandle(&*CurInstIterator); 3855 BasicBlock *BB = CurInstIterator->getParent(); 3856 3857 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3858 3859 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3860 // If the iterator instruction was recursively deleted, start over at the 3861 // start of the block. 3862 CurInstIterator = BB->begin(); 3863 SunkAddrs.clear(); 3864 } 3865 } 3866 ++NumMemoryInsts; 3867 return true; 3868 } 3869 3870 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3871 /// address computing into the block when possible / profitable. 3872 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3873 bool MadeChange = false; 3874 3875 const TargetRegisterInfo *TRI = 3876 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3877 TargetLowering::AsmOperandInfoVector TargetConstraints = 3878 TLI->ParseConstraints(*DL, TRI, CS); 3879 unsigned ArgNo = 0; 3880 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3881 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3882 3883 // Compute the constraint code and ConstraintType to use. 3884 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3885 3886 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3887 OpInfo.isIndirect) { 3888 Value *OpVal = CS->getArgOperand(ArgNo++); 3889 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3890 } else if (OpInfo.Type == InlineAsm::isInput) 3891 ArgNo++; 3892 } 3893 3894 return MadeChange; 3895 } 3896 3897 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3898 /// sign extensions. 3899 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3900 assert(!Inst->use_empty() && "Input must have at least one use"); 3901 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3902 bool IsSExt = isa<SExtInst>(FirstUser); 3903 Type *ExtTy = FirstUser->getType(); 3904 for (const User *U : Inst->users()) { 3905 const Instruction *UI = cast<Instruction>(U); 3906 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3907 return false; 3908 Type *CurTy = UI->getType(); 3909 // Same input and output types: Same instruction after CSE. 3910 if (CurTy == ExtTy) 3911 continue; 3912 3913 // If IsSExt is true, we are in this situation: 3914 // a = Inst 3915 // b = sext ty1 a to ty2 3916 // c = sext ty1 a to ty3 3917 // Assuming ty2 is shorter than ty3, this could be turned into: 3918 // a = Inst 3919 // b = sext ty1 a to ty2 3920 // c = sext ty2 b to ty3 3921 // However, the last sext is not free. 3922 if (IsSExt) 3923 return false; 3924 3925 // This is a ZExt, maybe this is free to extend from one type to another. 3926 // In that case, we would not account for a different use. 3927 Type *NarrowTy; 3928 Type *LargeTy; 3929 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3930 CurTy->getScalarType()->getIntegerBitWidth()) { 3931 NarrowTy = CurTy; 3932 LargeTy = ExtTy; 3933 } else { 3934 NarrowTy = ExtTy; 3935 LargeTy = CurTy; 3936 } 3937 3938 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3939 return false; 3940 } 3941 // All uses are the same or can be derived from one another for free. 3942 return true; 3943 } 3944 3945 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3946 /// load instruction. 3947 /// If an ext(load) can be formed, it is returned via \p LI for the load 3948 /// and \p Inst for the extension. 3949 /// Otherwise LI == nullptr and Inst == nullptr. 3950 /// When some promotion happened, \p TPT contains the proper state to 3951 /// revert them. 3952 /// 3953 /// \return true when promoting was necessary to expose the ext(load) 3954 /// opportunity, false otherwise. 3955 /// 3956 /// Example: 3957 /// \code 3958 /// %ld = load i32* %addr 3959 /// %add = add nuw i32 %ld, 4 3960 /// %zext = zext i32 %add to i64 3961 /// \endcode 3962 /// => 3963 /// \code 3964 /// %ld = load i32* %addr 3965 /// %zext = zext i32 %ld to i64 3966 /// %add = add nuw i64 %zext, 4 3967 /// \encode 3968 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3969 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 3970 LoadInst *&LI, Instruction *&Inst, 3971 const SmallVectorImpl<Instruction *> &Exts, 3972 unsigned CreatedInstsCost = 0) { 3973 // Iterate over all the extensions to see if one form an ext(load). 3974 for (auto I : Exts) { 3975 // Check if we directly have ext(load). 3976 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3977 Inst = I; 3978 // No promotion happened here. 3979 return false; 3980 } 3981 // Check whether or not we want to do any promotion. 3982 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3983 continue; 3984 // Get the action to perform the promotion. 3985 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3986 I, InsertedInsts, *TLI, PromotedInsts); 3987 // Check if we can promote. 3988 if (!TPH) 3989 continue; 3990 // Save the current state. 3991 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3992 TPT.getRestorationPoint(); 3993 SmallVector<Instruction *, 4> NewExts; 3994 unsigned NewCreatedInstsCost = 0; 3995 unsigned ExtCost = !TLI->isExtFree(I); 3996 // Promote. 3997 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3998 &NewExts, nullptr, *TLI); 3999 assert(PromotedVal && 4000 "TypePromotionHelper should have filtered out those cases"); 4001 4002 // We would be able to merge only one extension in a load. 4003 // Therefore, if we have more than 1 new extension we heuristically 4004 // cut this search path, because it means we degrade the code quality. 4005 // With exactly 2, the transformation is neutral, because we will merge 4006 // one extension but leave one. However, we optimistically keep going, 4007 // because the new extension may be removed too. 4008 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4009 TotalCreatedInstsCost -= ExtCost; 4010 if (!StressExtLdPromotion && 4011 (TotalCreatedInstsCost > 1 || 4012 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4013 // The promotion is not profitable, rollback to the previous state. 4014 TPT.rollback(LastKnownGood); 4015 continue; 4016 } 4017 // The promotion is profitable. 4018 // Check if it exposes an ext(load). 4019 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4020 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4021 // If we have created a new extension, i.e., now we have two 4022 // extensions. We must make sure one of them is merged with 4023 // the load, otherwise we may degrade the code quality. 4024 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4025 // Promotion happened. 4026 return true; 4027 // If this does not help to expose an ext(load) then, rollback. 4028 TPT.rollback(LastKnownGood); 4029 } 4030 // None of the extension can form an ext(load). 4031 LI = nullptr; 4032 Inst = nullptr; 4033 return false; 4034 } 4035 4036 /// Move a zext or sext fed by a load into the same basic block as the load, 4037 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4038 /// extend into the load. 4039 /// \p I[in/out] the extension may be modified during the process if some 4040 /// promotions apply. 4041 /// 4042 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4043 // Try to promote a chain of computation if it allows to form 4044 // an extended load. 4045 TypePromotionTransaction TPT; 4046 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4047 TPT.getRestorationPoint(); 4048 SmallVector<Instruction *, 1> Exts; 4049 Exts.push_back(I); 4050 // Look for a load being extended. 4051 LoadInst *LI = nullptr; 4052 Instruction *OldExt = I; 4053 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4054 if (!LI || !I) { 4055 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4056 "the code must remain the same"); 4057 I = OldExt; 4058 return false; 4059 } 4060 4061 // If they're already in the same block, there's nothing to do. 4062 // Make the cheap checks first if we did not promote. 4063 // If we promoted, we need to check if it is indeed profitable. 4064 if (!HasPromoted && LI->getParent() == I->getParent()) 4065 return false; 4066 4067 EVT VT = TLI->getValueType(*DL, I->getType()); 4068 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4069 4070 // If the load has other users and the truncate is not free, this probably 4071 // isn't worthwhile. 4072 if (!LI->hasOneUse() && TLI && 4073 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4074 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4075 I = OldExt; 4076 TPT.rollback(LastKnownGood); 4077 return false; 4078 } 4079 4080 // Check whether the target supports casts folded into loads. 4081 unsigned LType; 4082 if (isa<ZExtInst>(I)) 4083 LType = ISD::ZEXTLOAD; 4084 else { 4085 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4086 LType = ISD::SEXTLOAD; 4087 } 4088 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4089 I = OldExt; 4090 TPT.rollback(LastKnownGood); 4091 return false; 4092 } 4093 4094 // Move the extend into the same block as the load, so that SelectionDAG 4095 // can fold it. 4096 TPT.commit(); 4097 I->removeFromParent(); 4098 I->insertAfter(LI); 4099 ++NumExtsMoved; 4100 return true; 4101 } 4102 4103 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4104 BasicBlock *DefBB = I->getParent(); 4105 4106 // If the result of a {s|z}ext and its source are both live out, rewrite all 4107 // other uses of the source with result of extension. 4108 Value *Src = I->getOperand(0); 4109 if (Src->hasOneUse()) 4110 return false; 4111 4112 // Only do this xform if truncating is free. 4113 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4114 return false; 4115 4116 // Only safe to perform the optimization if the source is also defined in 4117 // this block. 4118 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4119 return false; 4120 4121 bool DefIsLiveOut = false; 4122 for (User *U : I->users()) { 4123 Instruction *UI = cast<Instruction>(U); 4124 4125 // Figure out which BB this ext is used in. 4126 BasicBlock *UserBB = UI->getParent(); 4127 if (UserBB == DefBB) continue; 4128 DefIsLiveOut = true; 4129 break; 4130 } 4131 if (!DefIsLiveOut) 4132 return false; 4133 4134 // Make sure none of the uses are PHI nodes. 4135 for (User *U : Src->users()) { 4136 Instruction *UI = cast<Instruction>(U); 4137 BasicBlock *UserBB = UI->getParent(); 4138 if (UserBB == DefBB) continue; 4139 // Be conservative. We don't want this xform to end up introducing 4140 // reloads just before load / store instructions. 4141 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4142 return false; 4143 } 4144 4145 // InsertedTruncs - Only insert one trunc in each block once. 4146 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4147 4148 bool MadeChange = false; 4149 for (Use &U : Src->uses()) { 4150 Instruction *User = cast<Instruction>(U.getUser()); 4151 4152 // Figure out which BB this ext is used in. 4153 BasicBlock *UserBB = User->getParent(); 4154 if (UserBB == DefBB) continue; 4155 4156 // Both src and def are live in this block. Rewrite the use. 4157 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4158 4159 if (!InsertedTrunc) { 4160 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4161 assert(InsertPt != UserBB->end()); 4162 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4163 InsertedInsts.insert(InsertedTrunc); 4164 } 4165 4166 // Replace a use of the {s|z}ext source with a use of the result. 4167 U = InsertedTrunc; 4168 ++NumExtUses; 4169 MadeChange = true; 4170 } 4171 4172 return MadeChange; 4173 } 4174 4175 /// Check if V (an operand of a select instruction) is an expensive instruction 4176 /// that is only used once. 4177 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4178 auto *I = dyn_cast<Instruction>(V); 4179 // If it's safe to speculatively execute, then it should not have side 4180 // effects; therefore, it's safe to sink and possibly *not* execute. 4181 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4182 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4183 } 4184 4185 /// Returns true if a SelectInst should be turned into an explicit branch. 4186 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4187 SelectInst *SI) { 4188 // FIXME: This should use the same heuristics as IfConversion to determine 4189 // whether a select is better represented as a branch. This requires that 4190 // branch probability metadata is preserved for the select, which is not the 4191 // case currently. 4192 4193 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4194 4195 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4196 // comparison condition. If the compare has more than one use, there's 4197 // probably another cmov or setcc around, so it's not worth emitting a branch. 4198 if (!Cmp || !Cmp->hasOneUse()) 4199 return false; 4200 4201 Value *CmpOp0 = Cmp->getOperand(0); 4202 Value *CmpOp1 = Cmp->getOperand(1); 4203 4204 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 4205 // on a load from memory. But if the load is used more than once, do not 4206 // change the select to a branch because the load is probably needed 4207 // regardless of whether the branch is taken or not. 4208 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 4209 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 4210 return true; 4211 4212 // If either operand of the select is expensive and only needed on one side 4213 // of the select, we should form a branch. 4214 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4215 sinkSelectOperand(TTI, SI->getFalseValue())) 4216 return true; 4217 4218 return false; 4219 } 4220 4221 4222 /// If we have a SelectInst that will likely profit from branch prediction, 4223 /// turn it into a branch. 4224 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4225 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4226 4227 // Can we convert the 'select' to CF ? 4228 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4229 return false; 4230 4231 TargetLowering::SelectSupportKind SelectKind; 4232 if (VectorCond) 4233 SelectKind = TargetLowering::VectorMaskSelect; 4234 else if (SI->getType()->isVectorTy()) 4235 SelectKind = TargetLowering::ScalarCondVectorVal; 4236 else 4237 SelectKind = TargetLowering::ScalarValSelect; 4238 4239 // Do we have efficient codegen support for this kind of 'selects' ? 4240 if (TLI->isSelectSupported(SelectKind)) { 4241 // We have efficient codegen support for the select instruction. 4242 // Check if it is profitable to keep this 'select'. 4243 if (!TLI->isPredictableSelectExpensive() || 4244 !isFormingBranchFromSelectProfitable(TTI, SI)) 4245 return false; 4246 } 4247 4248 ModifiedDT = true; 4249 4250 // Transform a sequence like this: 4251 // start: 4252 // %cmp = cmp uge i32 %a, %b 4253 // %sel = select i1 %cmp, i32 %c, i32 %d 4254 // 4255 // Into: 4256 // start: 4257 // %cmp = cmp uge i32 %a, %b 4258 // br i1 %cmp, label %select.true, label %select.false 4259 // select.true: 4260 // br label %select.end 4261 // select.false: 4262 // br label %select.end 4263 // select.end: 4264 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4265 // 4266 // In addition, we may sink instructions that produce %c or %d from 4267 // the entry block into the destination(s) of the new branch. 4268 // If the true or false blocks do not contain a sunken instruction, that 4269 // block and its branch may be optimized away. In that case, one side of the 4270 // first branch will point directly to select.end, and the corresponding PHI 4271 // predecessor block will be the start block. 4272 4273 // First, we split the block containing the select into 2 blocks. 4274 BasicBlock *StartBlock = SI->getParent(); 4275 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4276 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4277 4278 // Delete the unconditional branch that was just created by the split. 4279 StartBlock->getTerminator()->eraseFromParent(); 4280 4281 // These are the new basic blocks for the conditional branch. 4282 // At least one will become an actual new basic block. 4283 BasicBlock *TrueBlock = nullptr; 4284 BasicBlock *FalseBlock = nullptr; 4285 4286 // Sink expensive instructions into the conditional blocks to avoid executing 4287 // them speculatively. 4288 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4289 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4290 EndBlock->getParent(), EndBlock); 4291 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4292 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4293 TrueInst->moveBefore(TrueBranch); 4294 } 4295 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4296 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4297 EndBlock->getParent(), EndBlock); 4298 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4299 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4300 FalseInst->moveBefore(FalseBranch); 4301 } 4302 4303 // If there was nothing to sink, then arbitrarily choose the 'false' side 4304 // for a new input value to the PHI. 4305 if (TrueBlock == FalseBlock) { 4306 assert(TrueBlock == nullptr && 4307 "Unexpected basic block transform while optimizing select"); 4308 4309 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4310 EndBlock->getParent(), EndBlock); 4311 BranchInst::Create(EndBlock, FalseBlock); 4312 } 4313 4314 // Insert the real conditional branch based on the original condition. 4315 // If we did not create a new block for one of the 'true' or 'false' paths 4316 // of the condition, it means that side of the branch goes to the end block 4317 // directly and the path originates from the start block from the point of 4318 // view of the new PHI. 4319 if (TrueBlock == nullptr) { 4320 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4321 TrueBlock = StartBlock; 4322 } else if (FalseBlock == nullptr) { 4323 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4324 FalseBlock = StartBlock; 4325 } else { 4326 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4327 } 4328 4329 // The select itself is replaced with a PHI Node. 4330 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4331 PN->takeName(SI); 4332 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4333 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4334 4335 SI->replaceAllUsesWith(PN); 4336 SI->eraseFromParent(); 4337 4338 // Instruct OptimizeBlock to skip to the next block. 4339 CurInstIterator = StartBlock->end(); 4340 ++NumSelectsExpanded; 4341 return true; 4342 } 4343 4344 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4345 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4346 int SplatElem = -1; 4347 for (unsigned i = 0; i < Mask.size(); ++i) { 4348 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4349 return false; 4350 SplatElem = Mask[i]; 4351 } 4352 4353 return true; 4354 } 4355 4356 /// Some targets have expensive vector shifts if the lanes aren't all the same 4357 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4358 /// it's often worth sinking a shufflevector splat down to its use so that 4359 /// codegen can spot all lanes are identical. 4360 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4361 BasicBlock *DefBB = SVI->getParent(); 4362 4363 // Only do this xform if variable vector shifts are particularly expensive. 4364 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4365 return false; 4366 4367 // We only expect better codegen by sinking a shuffle if we can recognise a 4368 // constant splat. 4369 if (!isBroadcastShuffle(SVI)) 4370 return false; 4371 4372 // InsertedShuffles - Only insert a shuffle in each block once. 4373 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4374 4375 bool MadeChange = false; 4376 for (User *U : SVI->users()) { 4377 Instruction *UI = cast<Instruction>(U); 4378 4379 // Figure out which BB this ext is used in. 4380 BasicBlock *UserBB = UI->getParent(); 4381 if (UserBB == DefBB) continue; 4382 4383 // For now only apply this when the splat is used by a shift instruction. 4384 if (!UI->isShift()) continue; 4385 4386 // Everything checks out, sink the shuffle if the user's block doesn't 4387 // already have a copy. 4388 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4389 4390 if (!InsertedShuffle) { 4391 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4392 assert(InsertPt != UserBB->end()); 4393 InsertedShuffle = 4394 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4395 SVI->getOperand(2), "", &*InsertPt); 4396 } 4397 4398 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4399 MadeChange = true; 4400 } 4401 4402 // If we removed all uses, nuke the shuffle. 4403 if (SVI->use_empty()) { 4404 SVI->eraseFromParent(); 4405 MadeChange = true; 4406 } 4407 4408 return MadeChange; 4409 } 4410 4411 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4412 if (!TLI || !DL) 4413 return false; 4414 4415 Value *Cond = SI->getCondition(); 4416 Type *OldType = Cond->getType(); 4417 LLVMContext &Context = Cond->getContext(); 4418 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4419 unsigned RegWidth = RegType.getSizeInBits(); 4420 4421 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4422 return false; 4423 4424 // If the register width is greater than the type width, expand the condition 4425 // of the switch instruction and each case constant to the width of the 4426 // register. By widening the type of the switch condition, subsequent 4427 // comparisons (for case comparisons) will not need to be extended to the 4428 // preferred register width, so we will potentially eliminate N-1 extends, 4429 // where N is the number of cases in the switch. 4430 auto *NewType = Type::getIntNTy(Context, RegWidth); 4431 4432 // Zero-extend the switch condition and case constants unless the switch 4433 // condition is a function argument that is already being sign-extended. 4434 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4435 // everything instead. 4436 Instruction::CastOps ExtType = Instruction::ZExt; 4437 if (auto *Arg = dyn_cast<Argument>(Cond)) 4438 if (Arg->hasSExtAttr()) 4439 ExtType = Instruction::SExt; 4440 4441 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4442 ExtInst->insertBefore(SI); 4443 SI->setCondition(ExtInst); 4444 for (SwitchInst::CaseIt Case : SI->cases()) { 4445 APInt NarrowConst = Case.getCaseValue()->getValue(); 4446 APInt WideConst = (ExtType == Instruction::ZExt) ? 4447 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4448 Case.setValue(ConstantInt::get(Context, WideConst)); 4449 } 4450 4451 return true; 4452 } 4453 4454 namespace { 4455 /// \brief Helper class to promote a scalar operation to a vector one. 4456 /// This class is used to move downward extractelement transition. 4457 /// E.g., 4458 /// a = vector_op <2 x i32> 4459 /// b = extractelement <2 x i32> a, i32 0 4460 /// c = scalar_op b 4461 /// store c 4462 /// 4463 /// => 4464 /// a = vector_op <2 x i32> 4465 /// c = vector_op a (equivalent to scalar_op on the related lane) 4466 /// * d = extractelement <2 x i32> c, i32 0 4467 /// * store d 4468 /// Assuming both extractelement and store can be combine, we get rid of the 4469 /// transition. 4470 class VectorPromoteHelper { 4471 /// DataLayout associated with the current module. 4472 const DataLayout &DL; 4473 4474 /// Used to perform some checks on the legality of vector operations. 4475 const TargetLowering &TLI; 4476 4477 /// Used to estimated the cost of the promoted chain. 4478 const TargetTransformInfo &TTI; 4479 4480 /// The transition being moved downwards. 4481 Instruction *Transition; 4482 /// The sequence of instructions to be promoted. 4483 SmallVector<Instruction *, 4> InstsToBePromoted; 4484 /// Cost of combining a store and an extract. 4485 unsigned StoreExtractCombineCost; 4486 /// Instruction that will be combined with the transition. 4487 Instruction *CombineInst; 4488 4489 /// \brief The instruction that represents the current end of the transition. 4490 /// Since we are faking the promotion until we reach the end of the chain 4491 /// of computation, we need a way to get the current end of the transition. 4492 Instruction *getEndOfTransition() const { 4493 if (InstsToBePromoted.empty()) 4494 return Transition; 4495 return InstsToBePromoted.back(); 4496 } 4497 4498 /// \brief Return the index of the original value in the transition. 4499 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4500 /// c, is at index 0. 4501 unsigned getTransitionOriginalValueIdx() const { 4502 assert(isa<ExtractElementInst>(Transition) && 4503 "Other kind of transitions are not supported yet"); 4504 return 0; 4505 } 4506 4507 /// \brief Return the index of the index in the transition. 4508 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4509 /// is at index 1. 4510 unsigned getTransitionIdx() const { 4511 assert(isa<ExtractElementInst>(Transition) && 4512 "Other kind of transitions are not supported yet"); 4513 return 1; 4514 } 4515 4516 /// \brief Get the type of the transition. 4517 /// This is the type of the original value. 4518 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4519 /// transition is <2 x i32>. 4520 Type *getTransitionType() const { 4521 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4522 } 4523 4524 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4525 /// I.e., we have the following sequence: 4526 /// Def = Transition <ty1> a to <ty2> 4527 /// b = ToBePromoted <ty2> Def, ... 4528 /// => 4529 /// b = ToBePromoted <ty1> a, ... 4530 /// Def = Transition <ty1> ToBePromoted to <ty2> 4531 void promoteImpl(Instruction *ToBePromoted); 4532 4533 /// \brief Check whether or not it is profitable to promote all the 4534 /// instructions enqueued to be promoted. 4535 bool isProfitableToPromote() { 4536 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4537 unsigned Index = isa<ConstantInt>(ValIdx) 4538 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4539 : -1; 4540 Type *PromotedType = getTransitionType(); 4541 4542 StoreInst *ST = cast<StoreInst>(CombineInst); 4543 unsigned AS = ST->getPointerAddressSpace(); 4544 unsigned Align = ST->getAlignment(); 4545 // Check if this store is supported. 4546 if (!TLI.allowsMisalignedMemoryAccesses( 4547 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4548 Align)) { 4549 // If this is not supported, there is no way we can combine 4550 // the extract with the store. 4551 return false; 4552 } 4553 4554 // The scalar chain of computation has to pay for the transition 4555 // scalar to vector. 4556 // The vector chain has to account for the combining cost. 4557 uint64_t ScalarCost = 4558 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4559 uint64_t VectorCost = StoreExtractCombineCost; 4560 for (const auto &Inst : InstsToBePromoted) { 4561 // Compute the cost. 4562 // By construction, all instructions being promoted are arithmetic ones. 4563 // Moreover, one argument is a constant that can be viewed as a splat 4564 // constant. 4565 Value *Arg0 = Inst->getOperand(0); 4566 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4567 isa<ConstantFP>(Arg0); 4568 TargetTransformInfo::OperandValueKind Arg0OVK = 4569 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4570 : TargetTransformInfo::OK_AnyValue; 4571 TargetTransformInfo::OperandValueKind Arg1OVK = 4572 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4573 : TargetTransformInfo::OK_AnyValue; 4574 ScalarCost += TTI.getArithmeticInstrCost( 4575 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4576 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4577 Arg0OVK, Arg1OVK); 4578 } 4579 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4580 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4581 return ScalarCost > VectorCost; 4582 } 4583 4584 /// \brief Generate a constant vector with \p Val with the same 4585 /// number of elements as the transition. 4586 /// \p UseSplat defines whether or not \p Val should be replicated 4587 /// across the whole vector. 4588 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4589 /// otherwise we generate a vector with as many undef as possible: 4590 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4591 /// used at the index of the extract. 4592 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4593 unsigned ExtractIdx = UINT_MAX; 4594 if (!UseSplat) { 4595 // If we cannot determine where the constant must be, we have to 4596 // use a splat constant. 4597 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4598 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4599 ExtractIdx = CstVal->getSExtValue(); 4600 else 4601 UseSplat = true; 4602 } 4603 4604 unsigned End = getTransitionType()->getVectorNumElements(); 4605 if (UseSplat) 4606 return ConstantVector::getSplat(End, Val); 4607 4608 SmallVector<Constant *, 4> ConstVec; 4609 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4610 for (unsigned Idx = 0; Idx != End; ++Idx) { 4611 if (Idx == ExtractIdx) 4612 ConstVec.push_back(Val); 4613 else 4614 ConstVec.push_back(UndefVal); 4615 } 4616 return ConstantVector::get(ConstVec); 4617 } 4618 4619 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4620 /// in \p Use can trigger undefined behavior. 4621 static bool canCauseUndefinedBehavior(const Instruction *Use, 4622 unsigned OperandIdx) { 4623 // This is not safe to introduce undef when the operand is on 4624 // the right hand side of a division-like instruction. 4625 if (OperandIdx != 1) 4626 return false; 4627 switch (Use->getOpcode()) { 4628 default: 4629 return false; 4630 case Instruction::SDiv: 4631 case Instruction::UDiv: 4632 case Instruction::SRem: 4633 case Instruction::URem: 4634 return true; 4635 case Instruction::FDiv: 4636 case Instruction::FRem: 4637 return !Use->hasNoNaNs(); 4638 } 4639 llvm_unreachable(nullptr); 4640 } 4641 4642 public: 4643 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4644 const TargetTransformInfo &TTI, Instruction *Transition, 4645 unsigned CombineCost) 4646 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4647 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4648 assert(Transition && "Do not know how to promote null"); 4649 } 4650 4651 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4652 bool canPromote(const Instruction *ToBePromoted) const { 4653 // We could support CastInst too. 4654 return isa<BinaryOperator>(ToBePromoted); 4655 } 4656 4657 /// \brief Check if it is profitable to promote \p ToBePromoted 4658 /// by moving downward the transition through. 4659 bool shouldPromote(const Instruction *ToBePromoted) const { 4660 // Promote only if all the operands can be statically expanded. 4661 // Indeed, we do not want to introduce any new kind of transitions. 4662 for (const Use &U : ToBePromoted->operands()) { 4663 const Value *Val = U.get(); 4664 if (Val == getEndOfTransition()) { 4665 // If the use is a division and the transition is on the rhs, 4666 // we cannot promote the operation, otherwise we may create a 4667 // division by zero. 4668 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4669 return false; 4670 continue; 4671 } 4672 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4673 !isa<ConstantFP>(Val)) 4674 return false; 4675 } 4676 // Check that the resulting operation is legal. 4677 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4678 if (!ISDOpcode) 4679 return false; 4680 return StressStoreExtract || 4681 TLI.isOperationLegalOrCustom( 4682 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4683 } 4684 4685 /// \brief Check whether or not \p Use can be combined 4686 /// with the transition. 4687 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4688 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4689 4690 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4691 void enqueueForPromotion(Instruction *ToBePromoted) { 4692 InstsToBePromoted.push_back(ToBePromoted); 4693 } 4694 4695 /// \brief Set the instruction that will be combined with the transition. 4696 void recordCombineInstruction(Instruction *ToBeCombined) { 4697 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4698 CombineInst = ToBeCombined; 4699 } 4700 4701 /// \brief Promote all the instructions enqueued for promotion if it is 4702 /// is profitable. 4703 /// \return True if the promotion happened, false otherwise. 4704 bool promote() { 4705 // Check if there is something to promote. 4706 // Right now, if we do not have anything to combine with, 4707 // we assume the promotion is not profitable. 4708 if (InstsToBePromoted.empty() || !CombineInst) 4709 return false; 4710 4711 // Check cost. 4712 if (!StressStoreExtract && !isProfitableToPromote()) 4713 return false; 4714 4715 // Promote. 4716 for (auto &ToBePromoted : InstsToBePromoted) 4717 promoteImpl(ToBePromoted); 4718 InstsToBePromoted.clear(); 4719 return true; 4720 } 4721 }; 4722 } // End of anonymous namespace. 4723 4724 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4725 // At this point, we know that all the operands of ToBePromoted but Def 4726 // can be statically promoted. 4727 // For Def, we need to use its parameter in ToBePromoted: 4728 // b = ToBePromoted ty1 a 4729 // Def = Transition ty1 b to ty2 4730 // Move the transition down. 4731 // 1. Replace all uses of the promoted operation by the transition. 4732 // = ... b => = ... Def. 4733 assert(ToBePromoted->getType() == Transition->getType() && 4734 "The type of the result of the transition does not match " 4735 "the final type"); 4736 ToBePromoted->replaceAllUsesWith(Transition); 4737 // 2. Update the type of the uses. 4738 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4739 Type *TransitionTy = getTransitionType(); 4740 ToBePromoted->mutateType(TransitionTy); 4741 // 3. Update all the operands of the promoted operation with promoted 4742 // operands. 4743 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4744 for (Use &U : ToBePromoted->operands()) { 4745 Value *Val = U.get(); 4746 Value *NewVal = nullptr; 4747 if (Val == Transition) 4748 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4749 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4750 isa<ConstantFP>(Val)) { 4751 // Use a splat constant if it is not safe to use undef. 4752 NewVal = getConstantVector( 4753 cast<Constant>(Val), 4754 isa<UndefValue>(Val) || 4755 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4756 } else 4757 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4758 "this?"); 4759 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4760 } 4761 Transition->removeFromParent(); 4762 Transition->insertAfter(ToBePromoted); 4763 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4764 } 4765 4766 /// Some targets can do store(extractelement) with one instruction. 4767 /// Try to push the extractelement towards the stores when the target 4768 /// has this feature and this is profitable. 4769 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 4770 unsigned CombineCost = UINT_MAX; 4771 if (DisableStoreExtract || !TLI || 4772 (!StressStoreExtract && 4773 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4774 Inst->getOperand(1), CombineCost))) 4775 return false; 4776 4777 // At this point we know that Inst is a vector to scalar transition. 4778 // Try to move it down the def-use chain, until: 4779 // - We can combine the transition with its single use 4780 // => we got rid of the transition. 4781 // - We escape the current basic block 4782 // => we would need to check that we are moving it at a cheaper place and 4783 // we do not do that for now. 4784 BasicBlock *Parent = Inst->getParent(); 4785 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4786 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4787 // If the transition has more than one use, assume this is not going to be 4788 // beneficial. 4789 while (Inst->hasOneUse()) { 4790 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4791 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4792 4793 if (ToBePromoted->getParent() != Parent) { 4794 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4795 << ToBePromoted->getParent()->getName() 4796 << ") than the transition (" << Parent->getName() << ").\n"); 4797 return false; 4798 } 4799 4800 if (VPH.canCombine(ToBePromoted)) { 4801 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4802 << "will be combined with: " << *ToBePromoted << '\n'); 4803 VPH.recordCombineInstruction(ToBePromoted); 4804 bool Changed = VPH.promote(); 4805 NumStoreExtractExposed += Changed; 4806 return Changed; 4807 } 4808 4809 DEBUG(dbgs() << "Try promoting.\n"); 4810 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4811 return false; 4812 4813 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4814 4815 VPH.enqueueForPromotion(ToBePromoted); 4816 Inst = ToBePromoted; 4817 } 4818 return false; 4819 } 4820 4821 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 4822 // Bail out if we inserted the instruction to prevent optimizations from 4823 // stepping on each other's toes. 4824 if (InsertedInsts.count(I)) 4825 return false; 4826 4827 if (PHINode *P = dyn_cast<PHINode>(I)) { 4828 // It is possible for very late stage optimizations (such as SimplifyCFG) 4829 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4830 // trivial PHI, go ahead and zap it here. 4831 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4832 P->replaceAllUsesWith(V); 4833 P->eraseFromParent(); 4834 ++NumPHIsElim; 4835 return true; 4836 } 4837 return false; 4838 } 4839 4840 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4841 // If the source of the cast is a constant, then this should have 4842 // already been constant folded. The only reason NOT to constant fold 4843 // it is if something (e.g. LSR) was careful to place the constant 4844 // evaluation in a block other than then one that uses it (e.g. to hoist 4845 // the address of globals out of a loop). If this is the case, we don't 4846 // want to forward-subst the cast. 4847 if (isa<Constant>(CI->getOperand(0))) 4848 return false; 4849 4850 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4851 return true; 4852 4853 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4854 /// Sink a zext or sext into its user blocks if the target type doesn't 4855 /// fit in one register 4856 if (TLI && 4857 TLI->getTypeAction(CI->getContext(), 4858 TLI->getValueType(*DL, CI->getType())) == 4859 TargetLowering::TypeExpandInteger) { 4860 return SinkCast(CI); 4861 } else { 4862 bool MadeChange = moveExtToFormExtLoad(I); 4863 return MadeChange | optimizeExtUses(I); 4864 } 4865 } 4866 return false; 4867 } 4868 4869 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4870 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4871 return OptimizeCmpExpression(CI); 4872 4873 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4874 stripInvariantGroupMetadata(*LI); 4875 if (TLI) { 4876 unsigned AS = LI->getPointerAddressSpace(); 4877 return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4878 } 4879 return false; 4880 } 4881 4882 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4883 stripInvariantGroupMetadata(*SI); 4884 if (TLI) { 4885 unsigned AS = SI->getPointerAddressSpace(); 4886 return optimizeMemoryInst(I, SI->getOperand(1), 4887 SI->getOperand(0)->getType(), AS); 4888 } 4889 return false; 4890 } 4891 4892 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4893 4894 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4895 BinOp->getOpcode() == Instruction::LShr)) { 4896 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4897 if (TLI && CI && TLI->hasExtractBitsInsn()) 4898 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4899 4900 return false; 4901 } 4902 4903 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4904 if (GEPI->hasAllZeroIndices()) { 4905 /// The GEP operand must be a pointer, so must its result -> BitCast 4906 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4907 GEPI->getName(), GEPI); 4908 GEPI->replaceAllUsesWith(NC); 4909 GEPI->eraseFromParent(); 4910 ++NumGEPsElim; 4911 optimizeInst(NC, ModifiedDT); 4912 return true; 4913 } 4914 return false; 4915 } 4916 4917 if (CallInst *CI = dyn_cast<CallInst>(I)) 4918 return optimizeCallInst(CI, ModifiedDT); 4919 4920 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4921 return optimizeSelectInst(SI); 4922 4923 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4924 return optimizeShuffleVectorInst(SVI); 4925 4926 if (auto *Switch = dyn_cast<SwitchInst>(I)) 4927 return optimizeSwitchInst(Switch); 4928 4929 if (isa<ExtractElementInst>(I)) 4930 return optimizeExtractElementInst(I); 4931 4932 return false; 4933 } 4934 4935 // In this pass we look for GEP and cast instructions that are used 4936 // across basic blocks and rewrite them to improve basic-block-at-a-time 4937 // selection. 4938 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4939 SunkAddrs.clear(); 4940 bool MadeChange = false; 4941 4942 CurInstIterator = BB.begin(); 4943 while (CurInstIterator != BB.end()) { 4944 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 4945 if (ModifiedDT) 4946 return true; 4947 } 4948 MadeChange |= dupRetToEnableTailCallOpts(&BB); 4949 4950 return MadeChange; 4951 } 4952 4953 // llvm.dbg.value is far away from the value then iSel may not be able 4954 // handle it properly. iSel will drop llvm.dbg.value if it can not 4955 // find a node corresponding to the value. 4956 bool CodeGenPrepare::placeDbgValues(Function &F) { 4957 bool MadeChange = false; 4958 for (BasicBlock &BB : F) { 4959 Instruction *PrevNonDbgInst = nullptr; 4960 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4961 Instruction *Insn = &*BI++; 4962 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4963 // Leave dbg.values that refer to an alloca alone. These 4964 // instrinsics describe the address of a variable (= the alloca) 4965 // being taken. They should not be moved next to the alloca 4966 // (and to the beginning of the scope), but rather stay close to 4967 // where said address is used. 4968 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4969 PrevNonDbgInst = Insn; 4970 continue; 4971 } 4972 4973 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4974 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4975 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4976 DVI->removeFromParent(); 4977 if (isa<PHINode>(VI)) 4978 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 4979 else 4980 DVI->insertAfter(VI); 4981 MadeChange = true; 4982 ++NumDbgValueMoved; 4983 } 4984 } 4985 } 4986 return MadeChange; 4987 } 4988 4989 // If there is a sequence that branches based on comparing a single bit 4990 // against zero that can be combined into a single instruction, and the 4991 // target supports folding these into a single instruction, sink the 4992 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4993 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4994 // searched for. 4995 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4996 if (!EnableAndCmpSinking) 4997 return false; 4998 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4999 return false; 5000 bool MadeChange = false; 5001 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 5002 BasicBlock *BB = &*I++; 5003 5004 // Does this BB end with the following? 5005 // %andVal = and %val, #single-bit-set 5006 // %icmpVal = icmp %andResult, 0 5007 // br i1 %cmpVal label %dest1, label %dest2" 5008 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 5009 if (!Brcc || !Brcc->isConditional()) 5010 continue; 5011 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5012 if (!Cmp || Cmp->getParent() != BB) 5013 continue; 5014 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5015 if (!Zero || !Zero->isZero()) 5016 continue; 5017 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5018 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 5019 continue; 5020 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5021 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5022 continue; 5023 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 5024 5025 // Push the "and; icmp" for any users that are conditional branches. 5026 // Since there can only be one branch use per BB, we don't need to keep 5027 // track of which BBs we insert into. 5028 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 5029 UI != E; ) { 5030 Use &TheUse = *UI; 5031 // Find brcc use. 5032 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 5033 ++UI; 5034 if (!BrccUser || !BrccUser->isConditional()) 5035 continue; 5036 BasicBlock *UserBB = BrccUser->getParent(); 5037 if (UserBB == BB) continue; 5038 DEBUG(dbgs() << "found Brcc use\n"); 5039 5040 // Sink the "and; icmp" to use. 5041 MadeChange = true; 5042 BinaryOperator *NewAnd = 5043 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5044 BrccUser); 5045 CmpInst *NewCmp = 5046 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5047 "", BrccUser); 5048 TheUse = NewCmp; 5049 ++NumAndCmpsMoved; 5050 DEBUG(BrccUser->getParent()->dump()); 5051 } 5052 } 5053 return MadeChange; 5054 } 5055 5056 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5057 /// success, or returns false if no or invalid metadata was found. 5058 static bool extractBranchMetadata(BranchInst *BI, 5059 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5060 assert(BI->isConditional() && 5061 "Looking for probabilities on unconditional branch?"); 5062 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5063 if (!ProfileData || ProfileData->getNumOperands() != 3) 5064 return false; 5065 5066 const auto *CITrue = 5067 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5068 const auto *CIFalse = 5069 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5070 if (!CITrue || !CIFalse) 5071 return false; 5072 5073 ProbTrue = CITrue->getValue().getZExtValue(); 5074 ProbFalse = CIFalse->getValue().getZExtValue(); 5075 5076 return true; 5077 } 5078 5079 /// \brief Scale down both weights to fit into uint32_t. 5080 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5081 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5082 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5083 NewTrue = NewTrue / Scale; 5084 NewFalse = NewFalse / Scale; 5085 } 5086 5087 /// \brief Some targets prefer to split a conditional branch like: 5088 /// \code 5089 /// %0 = icmp ne i32 %a, 0 5090 /// %1 = icmp ne i32 %b, 0 5091 /// %or.cond = or i1 %0, %1 5092 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5093 /// \endcode 5094 /// into multiple branch instructions like: 5095 /// \code 5096 /// bb1: 5097 /// %0 = icmp ne i32 %a, 0 5098 /// br i1 %0, label %TrueBB, label %bb2 5099 /// bb2: 5100 /// %1 = icmp ne i32 %b, 0 5101 /// br i1 %1, label %TrueBB, label %FalseBB 5102 /// \endcode 5103 /// This usually allows instruction selection to do even further optimizations 5104 /// and combine the compare with the branch instruction. Currently this is 5105 /// applied for targets which have "cheap" jump instructions. 5106 /// 5107 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5108 /// 5109 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5110 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5111 return false; 5112 5113 bool MadeChange = false; 5114 for (auto &BB : F) { 5115 // Does this BB end with the following? 5116 // %cond1 = icmp|fcmp|binary instruction ... 5117 // %cond2 = icmp|fcmp|binary instruction ... 5118 // %cond.or = or|and i1 %cond1, cond2 5119 // br i1 %cond.or label %dest1, label %dest2" 5120 BinaryOperator *LogicOp; 5121 BasicBlock *TBB, *FBB; 5122 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5123 continue; 5124 5125 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5126 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5127 continue; 5128 5129 unsigned Opc; 5130 Value *Cond1, *Cond2; 5131 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5132 m_OneUse(m_Value(Cond2))))) 5133 Opc = Instruction::And; 5134 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5135 m_OneUse(m_Value(Cond2))))) 5136 Opc = Instruction::Or; 5137 else 5138 continue; 5139 5140 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5141 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5142 continue; 5143 5144 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5145 5146 // Create a new BB. 5147 auto *InsertBefore = std::next(Function::iterator(BB)) 5148 .getNodePtrUnchecked(); 5149 auto TmpBB = BasicBlock::Create(BB.getContext(), 5150 BB.getName() + ".cond.split", 5151 BB.getParent(), InsertBefore); 5152 5153 // Update original basic block by using the first condition directly by the 5154 // branch instruction and removing the no longer needed and/or instruction. 5155 Br1->setCondition(Cond1); 5156 LogicOp->eraseFromParent(); 5157 5158 // Depending on the conditon we have to either replace the true or the false 5159 // successor of the original branch instruction. 5160 if (Opc == Instruction::And) 5161 Br1->setSuccessor(0, TmpBB); 5162 else 5163 Br1->setSuccessor(1, TmpBB); 5164 5165 // Fill in the new basic block. 5166 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5167 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5168 I->removeFromParent(); 5169 I->insertBefore(Br2); 5170 } 5171 5172 // Update PHI nodes in both successors. The original BB needs to be 5173 // replaced in one succesor's PHI nodes, because the branch comes now from 5174 // the newly generated BB (NewBB). In the other successor we need to add one 5175 // incoming edge to the PHI nodes, because both branch instructions target 5176 // now the same successor. Depending on the original branch condition 5177 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5178 // we perfrom the correct update for the PHI nodes. 5179 // This doesn't change the successor order of the just created branch 5180 // instruction (or any other instruction). 5181 if (Opc == Instruction::Or) 5182 std::swap(TBB, FBB); 5183 5184 // Replace the old BB with the new BB. 5185 for (auto &I : *TBB) { 5186 PHINode *PN = dyn_cast<PHINode>(&I); 5187 if (!PN) 5188 break; 5189 int i; 5190 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5191 PN->setIncomingBlock(i, TmpBB); 5192 } 5193 5194 // Add another incoming edge form the new BB. 5195 for (auto &I : *FBB) { 5196 PHINode *PN = dyn_cast<PHINode>(&I); 5197 if (!PN) 5198 break; 5199 auto *Val = PN->getIncomingValueForBlock(&BB); 5200 PN->addIncoming(Val, TmpBB); 5201 } 5202 5203 // Update the branch weights (from SelectionDAGBuilder:: 5204 // FindMergedConditions). 5205 if (Opc == Instruction::Or) { 5206 // Codegen X | Y as: 5207 // BB1: 5208 // jmp_if_X TBB 5209 // jmp TmpBB 5210 // TmpBB: 5211 // jmp_if_Y TBB 5212 // jmp FBB 5213 // 5214 5215 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5216 // The requirement is that 5217 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5218 // = TrueProb for orignal BB. 5219 // Assuming the orignal weights are A and B, one choice is to set BB1's 5220 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5221 // assumes that 5222 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5223 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5224 // TmpBB, but the math is more complicated. 5225 uint64_t TrueWeight, FalseWeight; 5226 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5227 uint64_t NewTrueWeight = TrueWeight; 5228 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5229 scaleWeights(NewTrueWeight, NewFalseWeight); 5230 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5231 .createBranchWeights(TrueWeight, FalseWeight)); 5232 5233 NewTrueWeight = TrueWeight; 5234 NewFalseWeight = 2 * FalseWeight; 5235 scaleWeights(NewTrueWeight, NewFalseWeight); 5236 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5237 .createBranchWeights(TrueWeight, FalseWeight)); 5238 } 5239 } else { 5240 // Codegen X & Y as: 5241 // BB1: 5242 // jmp_if_X TmpBB 5243 // jmp FBB 5244 // TmpBB: 5245 // jmp_if_Y TBB 5246 // jmp FBB 5247 // 5248 // This requires creation of TmpBB after CurBB. 5249 5250 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5251 // The requirement is that 5252 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5253 // = FalseProb for orignal BB. 5254 // Assuming the orignal weights are A and B, one choice is to set BB1's 5255 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5256 // assumes that 5257 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5258 uint64_t TrueWeight, FalseWeight; 5259 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5260 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5261 uint64_t NewFalseWeight = FalseWeight; 5262 scaleWeights(NewTrueWeight, NewFalseWeight); 5263 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5264 .createBranchWeights(TrueWeight, FalseWeight)); 5265 5266 NewTrueWeight = 2 * TrueWeight; 5267 NewFalseWeight = FalseWeight; 5268 scaleWeights(NewTrueWeight, NewFalseWeight); 5269 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5270 .createBranchWeights(TrueWeight, FalseWeight)); 5271 } 5272 } 5273 5274 // Note: No point in getting fancy here, since the DT info is never 5275 // available to CodeGenPrepare. 5276 ModifiedDT = true; 5277 5278 MadeChange = true; 5279 5280 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5281 TmpBB->dump()); 5282 } 5283 return MadeChange; 5284 } 5285 5286 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5287 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5288 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5289 } 5290