1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 enum ExtType { 227 ZeroExtension, // Zero extension has been seen. 228 SignExtension, // Sign extension has been seen. 229 BothExtension // This extension type is used if we saw sext after 230 // ZeroExtension had been set, or if we saw zext after 231 // SignExtension had been set. It makes the type 232 // information of a promoted instruction invalid. 233 }; 234 235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 238 using SExts = SmallVector<Instruction *, 16>; 239 using ValueToSExts = DenseMap<Value *, SExts>; 240 241 class TypePromotionTransaction; 242 243 class CodeGenPrepare : public FunctionPass { 244 const TargetMachine *TM = nullptr; 245 const TargetSubtargetInfo *SubtargetInfo; 246 const TargetLowering *TLI = nullptr; 247 const TargetRegisterInfo *TRI; 248 const TargetTransformInfo *TTI = nullptr; 249 const TargetLibraryInfo *TLInfo; 250 const LoopInfo *LI; 251 std::unique_ptr<BlockFrequencyInfo> BFI; 252 std::unique_ptr<BranchProbabilityInfo> BPI; 253 254 /// As we scan instructions optimizing them, this is the next instruction 255 /// to optimize. Transforms that can invalidate this should update it. 256 BasicBlock::iterator CurInstIterator; 257 258 /// Keeps track of non-local addresses that have been sunk into a block. 259 /// This allows us to avoid inserting duplicate code for blocks with 260 /// multiple load/stores of the same address. The usage of WeakTrackingVH 261 /// enables SunkAddrs to be treated as a cache whose entries can be 262 /// invalidated if a sunken address computation has been erased. 263 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 264 265 /// Keeps track of all instructions inserted for the current function. 266 SetOfInstrs InsertedInsts; 267 268 /// Keeps track of the type of the related instruction before their 269 /// promotion for the current function. 270 InstrToOrigTy PromotedInsts; 271 272 /// Keep track of instructions removed during promotion. 273 SetOfInstrs RemovedInsts; 274 275 /// Keep track of sext chains based on their initial value. 276 DenseMap<Value *, Instruction *> SeenChainsForSExt; 277 278 /// Keep track of GEPs accessing the same data structures such as structs or 279 /// arrays that are candidates to be split later because of their large 280 /// size. 281 MapVector< 282 AssertingVH<Value>, 283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 284 LargeOffsetGEPMap; 285 286 /// Keep track of new GEP base after splitting the GEPs having large offset. 287 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 288 289 /// Map serial numbers to Large offset GEPs. 290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 291 292 /// Keep track of SExt promoted. 293 ValueToSExts ValToSExtendedUses; 294 295 /// True if optimizing for size. 296 bool OptSize; 297 298 /// DataLayout for the Function being processed. 299 const DataLayout *DL = nullptr; 300 301 /// Building the dominator tree can be expensive, so we only build it 302 /// lazily and update it when required. 303 std::unique_ptr<DominatorTree> DT; 304 305 public: 306 static char ID; // Pass identification, replacement for typeid 307 308 CodeGenPrepare() : FunctionPass(ID) { 309 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 310 } 311 312 bool runOnFunction(Function &F) override; 313 314 StringRef getPassName() const override { return "CodeGen Prepare"; } 315 316 void getAnalysisUsage(AnalysisUsage &AU) const override { 317 // FIXME: When we can selectively preserve passes, preserve the domtree. 318 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 319 AU.addRequired<TargetLibraryInfoWrapperPass>(); 320 AU.addRequired<TargetTransformInfoWrapperPass>(); 321 AU.addRequired<LoopInfoWrapperPass>(); 322 } 323 324 private: 325 template <typename F> 326 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 327 // Substituting can cause recursive simplifications, which can invalidate 328 // our iterator. Use a WeakTrackingVH to hold onto it in case this 329 // happens. 330 Value *CurValue = &*CurInstIterator; 331 WeakTrackingVH IterHandle(CurValue); 332 333 f(); 334 335 // If the iterator instruction was recursively deleted, start over at the 336 // start of the block. 337 if (IterHandle != CurValue) { 338 CurInstIterator = BB->begin(); 339 SunkAddrs.clear(); 340 } 341 } 342 343 // Get the DominatorTree, building if necessary. 344 DominatorTree &getDT(Function &F) { 345 if (!DT) 346 DT = llvm::make_unique<DominatorTree>(F); 347 return *DT; 348 } 349 350 bool eliminateFallThrough(Function &F); 351 bool eliminateMostlyEmptyBlocks(Function &F); 352 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 353 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 354 void eliminateMostlyEmptyBlock(BasicBlock *BB); 355 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 356 bool isPreheader); 357 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 358 bool optimizeInst(Instruction *I, bool &ModifiedDT); 359 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 360 Type *AccessTy, unsigned AddrSpace); 361 bool optimizeInlineAsmInst(CallInst *CS); 362 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 363 bool optimizeExt(Instruction *&I); 364 bool optimizeExtUses(Instruction *I); 365 bool optimizeLoadExt(LoadInst *Load); 366 bool optimizeSelectInst(SelectInst *SI); 367 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 368 bool optimizeSwitchInst(SwitchInst *SI); 369 bool optimizeExtractElementInst(Instruction *Inst); 370 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 371 bool placeDbgValues(Function &F); 372 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 373 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 374 bool tryToPromoteExts(TypePromotionTransaction &TPT, 375 const SmallVectorImpl<Instruction *> &Exts, 376 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 377 unsigned CreatedInstsCost = 0); 378 bool mergeSExts(Function &F); 379 bool splitLargeGEPOffsets(); 380 bool performAddressTypePromotion( 381 Instruction *&Inst, 382 bool AllowPromotionWithoutCommonHeader, 383 bool HasPromoted, TypePromotionTransaction &TPT, 384 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 385 bool splitBranchCondition(Function &F, bool &ModifiedDT); 386 bool simplifyOffsetableRelocate(Instruction &I); 387 388 bool tryToSinkFreeOperands(Instruction *I); 389 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 390 Intrinsic::ID IID); 391 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 392 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 393 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 394 }; 395 396 } // end anonymous namespace 397 398 char CodeGenPrepare::ID = 0; 399 400 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 401 "Optimize for code generation", false, false) 402 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 403 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 404 "Optimize for code generation", false, false) 405 406 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 407 408 bool CodeGenPrepare::runOnFunction(Function &F) { 409 if (skipFunction(F)) 410 return false; 411 412 DL = &F.getParent()->getDataLayout(); 413 414 bool EverMadeChange = false; 415 // Clear per function information. 416 InsertedInsts.clear(); 417 PromotedInsts.clear(); 418 419 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 420 TM = &TPC->getTM<TargetMachine>(); 421 SubtargetInfo = TM->getSubtargetImpl(F); 422 TLI = SubtargetInfo->getTargetLowering(); 423 TRI = SubtargetInfo->getRegisterInfo(); 424 } 425 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 426 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 427 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 428 BPI.reset(new BranchProbabilityInfo(F, *LI)); 429 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 430 OptSize = F.hasOptSize(); 431 432 ProfileSummaryInfo *PSI = 433 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 434 if (ProfileGuidedSectionPrefix) { 435 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 436 F.setSectionPrefix(".hot"); 437 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 438 F.setSectionPrefix(".unlikely"); 439 } 440 441 /// This optimization identifies DIV instructions that can be 442 /// profitably bypassed and carried out with a shorter, faster divide. 443 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 444 TLI->isSlowDivBypassed()) { 445 const DenseMap<unsigned int, unsigned int> &BypassWidths = 446 TLI->getBypassSlowDivWidths(); 447 BasicBlock* BB = &*F.begin(); 448 while (BB != nullptr) { 449 // bypassSlowDivision may create new BBs, but we don't want to reapply the 450 // optimization to those blocks. 451 BasicBlock* Next = BB->getNextNode(); 452 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 453 BB = Next; 454 } 455 } 456 457 // Eliminate blocks that contain only PHI nodes and an 458 // unconditional branch. 459 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 460 461 bool ModifiedDT = false; 462 if (!DisableBranchOpts) 463 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 464 465 // Split some critical edges where one of the sources is an indirect branch, 466 // to help generate sane code for PHIs involving such edges. 467 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 468 469 bool MadeChange = true; 470 while (MadeChange) { 471 MadeChange = false; 472 DT.reset(); 473 for (Function::iterator I = F.begin(); I != F.end(); ) { 474 BasicBlock *BB = &*I++; 475 bool ModifiedDTOnIteration = false; 476 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 477 478 // Restart BB iteration if the dominator tree of the Function was changed 479 if (ModifiedDTOnIteration) 480 break; 481 } 482 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 483 MadeChange |= mergeSExts(F); 484 if (!LargeOffsetGEPMap.empty()) 485 MadeChange |= splitLargeGEPOffsets(); 486 487 // Really free removed instructions during promotion. 488 for (Instruction *I : RemovedInsts) 489 I->deleteValue(); 490 491 EverMadeChange |= MadeChange; 492 SeenChainsForSExt.clear(); 493 ValToSExtendedUses.clear(); 494 RemovedInsts.clear(); 495 LargeOffsetGEPMap.clear(); 496 LargeOffsetGEPID.clear(); 497 } 498 499 SunkAddrs.clear(); 500 501 if (!DisableBranchOpts) { 502 MadeChange = false; 503 // Use a set vector to get deterministic iteration order. The order the 504 // blocks are removed may affect whether or not PHI nodes in successors 505 // are removed. 506 SmallSetVector<BasicBlock*, 8> WorkList; 507 for (BasicBlock &BB : F) { 508 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 509 MadeChange |= ConstantFoldTerminator(&BB, true); 510 if (!MadeChange) continue; 511 512 for (SmallVectorImpl<BasicBlock*>::iterator 513 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 514 if (pred_begin(*II) == pred_end(*II)) 515 WorkList.insert(*II); 516 } 517 518 // Delete the dead blocks and any of their dead successors. 519 MadeChange |= !WorkList.empty(); 520 while (!WorkList.empty()) { 521 BasicBlock *BB = WorkList.pop_back_val(); 522 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 523 524 DeleteDeadBlock(BB); 525 526 for (SmallVectorImpl<BasicBlock*>::iterator 527 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 528 if (pred_begin(*II) == pred_end(*II)) 529 WorkList.insert(*II); 530 } 531 532 // Merge pairs of basic blocks with unconditional branches, connected by 533 // a single edge. 534 if (EverMadeChange || MadeChange) 535 MadeChange |= eliminateFallThrough(F); 536 537 EverMadeChange |= MadeChange; 538 } 539 540 if (!DisableGCOpts) { 541 SmallVector<Instruction *, 2> Statepoints; 542 for (BasicBlock &BB : F) 543 for (Instruction &I : BB) 544 if (isStatepoint(I)) 545 Statepoints.push_back(&I); 546 for (auto &I : Statepoints) 547 EverMadeChange |= simplifyOffsetableRelocate(*I); 548 } 549 550 // Do this last to clean up use-before-def scenarios introduced by other 551 // preparatory transforms. 552 EverMadeChange |= placeDbgValues(F); 553 554 return EverMadeChange; 555 } 556 557 /// Merge basic blocks which are connected by a single edge, where one of the 558 /// basic blocks has a single successor pointing to the other basic block, 559 /// which has a single predecessor. 560 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 561 bool Changed = false; 562 // Scan all of the blocks in the function, except for the entry block. 563 // Use a temporary array to avoid iterator being invalidated when 564 // deleting blocks. 565 SmallVector<WeakTrackingVH, 16> Blocks; 566 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 567 Blocks.push_back(&Block); 568 569 for (auto &Block : Blocks) { 570 auto *BB = cast_or_null<BasicBlock>(Block); 571 if (!BB) 572 continue; 573 // If the destination block has a single pred, then this is a trivial 574 // edge, just collapse it. 575 BasicBlock *SinglePred = BB->getSinglePredecessor(); 576 577 // Don't merge if BB's address is taken. 578 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 579 580 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 581 if (Term && !Term->isConditional()) { 582 Changed = true; 583 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 584 585 // Merge BB into SinglePred and delete it. 586 MergeBlockIntoPredecessor(BB); 587 } 588 } 589 return Changed; 590 } 591 592 /// Find a destination block from BB if BB is mergeable empty block. 593 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 594 // If this block doesn't end with an uncond branch, ignore it. 595 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 596 if (!BI || !BI->isUnconditional()) 597 return nullptr; 598 599 // If the instruction before the branch (skipping debug info) isn't a phi 600 // node, then other stuff is happening here. 601 BasicBlock::iterator BBI = BI->getIterator(); 602 if (BBI != BB->begin()) { 603 --BBI; 604 while (isa<DbgInfoIntrinsic>(BBI)) { 605 if (BBI == BB->begin()) 606 break; 607 --BBI; 608 } 609 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 610 return nullptr; 611 } 612 613 // Do not break infinite loops. 614 BasicBlock *DestBB = BI->getSuccessor(0); 615 if (DestBB == BB) 616 return nullptr; 617 618 if (!canMergeBlocks(BB, DestBB)) 619 DestBB = nullptr; 620 621 return DestBB; 622 } 623 624 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 625 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 626 /// edges in ways that are non-optimal for isel. Start by eliminating these 627 /// blocks so we can split them the way we want them. 628 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 629 SmallPtrSet<BasicBlock *, 16> Preheaders; 630 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 631 while (!LoopList.empty()) { 632 Loop *L = LoopList.pop_back_val(); 633 LoopList.insert(LoopList.end(), L->begin(), L->end()); 634 if (BasicBlock *Preheader = L->getLoopPreheader()) 635 Preheaders.insert(Preheader); 636 } 637 638 bool MadeChange = false; 639 // Copy blocks into a temporary array to avoid iterator invalidation issues 640 // as we remove them. 641 // Note that this intentionally skips the entry block. 642 SmallVector<WeakTrackingVH, 16> Blocks; 643 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 644 Blocks.push_back(&Block); 645 646 for (auto &Block : Blocks) { 647 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 648 if (!BB) 649 continue; 650 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 651 if (!DestBB || 652 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 653 continue; 654 655 eliminateMostlyEmptyBlock(BB); 656 MadeChange = true; 657 } 658 return MadeChange; 659 } 660 661 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 662 BasicBlock *DestBB, 663 bool isPreheader) { 664 // Do not delete loop preheaders if doing so would create a critical edge. 665 // Loop preheaders can be good locations to spill registers. If the 666 // preheader is deleted and we create a critical edge, registers may be 667 // spilled in the loop body instead. 668 if (!DisablePreheaderProtect && isPreheader && 669 !(BB->getSinglePredecessor() && 670 BB->getSinglePredecessor()->getSingleSuccessor())) 671 return false; 672 673 // Skip merging if the block's successor is also a successor to any callbr 674 // that leads to this block. 675 // FIXME: Is this really needed? Is this a correctness issue? 676 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 677 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 678 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 679 if (DestBB == CBI->getSuccessor(i)) 680 return false; 681 } 682 683 // Try to skip merging if the unique predecessor of BB is terminated by a 684 // switch or indirect branch instruction, and BB is used as an incoming block 685 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 686 // add COPY instructions in the predecessor of BB instead of BB (if it is not 687 // merged). Note that the critical edge created by merging such blocks wont be 688 // split in MachineSink because the jump table is not analyzable. By keeping 689 // such empty block (BB), ISel will place COPY instructions in BB, not in the 690 // predecessor of BB. 691 BasicBlock *Pred = BB->getUniquePredecessor(); 692 if (!Pred || 693 !(isa<SwitchInst>(Pred->getTerminator()) || 694 isa<IndirectBrInst>(Pred->getTerminator()))) 695 return true; 696 697 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 698 return true; 699 700 // We use a simple cost heuristic which determine skipping merging is 701 // profitable if the cost of skipping merging is less than the cost of 702 // merging : Cost(skipping merging) < Cost(merging BB), where the 703 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 704 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 705 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 706 // Freq(Pred) / Freq(BB) > 2. 707 // Note that if there are multiple empty blocks sharing the same incoming 708 // value for the PHIs in the DestBB, we consider them together. In such 709 // case, Cost(merging BB) will be the sum of their frequencies. 710 711 if (!isa<PHINode>(DestBB->begin())) 712 return true; 713 714 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 715 716 // Find all other incoming blocks from which incoming values of all PHIs in 717 // DestBB are the same as the ones from BB. 718 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 719 ++PI) { 720 BasicBlock *DestBBPred = *PI; 721 if (DestBBPred == BB) 722 continue; 723 724 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 725 return DestPN.getIncomingValueForBlock(BB) == 726 DestPN.getIncomingValueForBlock(DestBBPred); 727 })) 728 SameIncomingValueBBs.insert(DestBBPred); 729 } 730 731 // See if all BB's incoming values are same as the value from Pred. In this 732 // case, no reason to skip merging because COPYs are expected to be place in 733 // Pred already. 734 if (SameIncomingValueBBs.count(Pred)) 735 return true; 736 737 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 738 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 739 740 for (auto SameValueBB : SameIncomingValueBBs) 741 if (SameValueBB->getUniquePredecessor() == Pred && 742 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 743 BBFreq += BFI->getBlockFreq(SameValueBB); 744 745 return PredFreq.getFrequency() <= 746 BBFreq.getFrequency() * FreqRatioToSkipMerge; 747 } 748 749 /// Return true if we can merge BB into DestBB if there is a single 750 /// unconditional branch between them, and BB contains no other non-phi 751 /// instructions. 752 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 753 const BasicBlock *DestBB) const { 754 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 755 // the successor. If there are more complex condition (e.g. preheaders), 756 // don't mess around with them. 757 for (const PHINode &PN : BB->phis()) { 758 for (const User *U : PN.users()) { 759 const Instruction *UI = cast<Instruction>(U); 760 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 761 return false; 762 // If User is inside DestBB block and it is a PHINode then check 763 // incoming value. If incoming value is not from BB then this is 764 // a complex condition (e.g. preheaders) we want to avoid here. 765 if (UI->getParent() == DestBB) { 766 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 767 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 768 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 769 if (Insn && Insn->getParent() == BB && 770 Insn->getParent() != UPN->getIncomingBlock(I)) 771 return false; 772 } 773 } 774 } 775 } 776 777 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 778 // and DestBB may have conflicting incoming values for the block. If so, we 779 // can't merge the block. 780 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 781 if (!DestBBPN) return true; // no conflict. 782 783 // Collect the preds of BB. 784 SmallPtrSet<const BasicBlock*, 16> BBPreds; 785 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 786 // It is faster to get preds from a PHI than with pred_iterator. 787 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 788 BBPreds.insert(BBPN->getIncomingBlock(i)); 789 } else { 790 BBPreds.insert(pred_begin(BB), pred_end(BB)); 791 } 792 793 // Walk the preds of DestBB. 794 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 795 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 796 if (BBPreds.count(Pred)) { // Common predecessor? 797 for (const PHINode &PN : DestBB->phis()) { 798 const Value *V1 = PN.getIncomingValueForBlock(Pred); 799 const Value *V2 = PN.getIncomingValueForBlock(BB); 800 801 // If V2 is a phi node in BB, look up what the mapped value will be. 802 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 803 if (V2PN->getParent() == BB) 804 V2 = V2PN->getIncomingValueForBlock(Pred); 805 806 // If there is a conflict, bail out. 807 if (V1 != V2) return false; 808 } 809 } 810 } 811 812 return true; 813 } 814 815 /// Eliminate a basic block that has only phi's and an unconditional branch in 816 /// it. 817 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 818 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 819 BasicBlock *DestBB = BI->getSuccessor(0); 820 821 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 822 << *BB << *DestBB); 823 824 // If the destination block has a single pred, then this is a trivial edge, 825 // just collapse it. 826 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 827 if (SinglePred != DestBB) { 828 assert(SinglePred == BB && 829 "Single predecessor not the same as predecessor"); 830 // Merge DestBB into SinglePred/BB and delete it. 831 MergeBlockIntoPredecessor(DestBB); 832 // Note: BB(=SinglePred) will not be deleted on this path. 833 // DestBB(=its single successor) is the one that was deleted. 834 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 835 return; 836 } 837 } 838 839 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 840 // to handle the new incoming edges it is about to have. 841 for (PHINode &PN : DestBB->phis()) { 842 // Remove the incoming value for BB, and remember it. 843 Value *InVal = PN.removeIncomingValue(BB, false); 844 845 // Two options: either the InVal is a phi node defined in BB or it is some 846 // value that dominates BB. 847 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 848 if (InValPhi && InValPhi->getParent() == BB) { 849 // Add all of the input values of the input PHI as inputs of this phi. 850 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 851 PN.addIncoming(InValPhi->getIncomingValue(i), 852 InValPhi->getIncomingBlock(i)); 853 } else { 854 // Otherwise, add one instance of the dominating value for each edge that 855 // we will be adding. 856 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 857 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 858 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 859 } else { 860 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 861 PN.addIncoming(InVal, *PI); 862 } 863 } 864 } 865 866 // The PHIs are now updated, change everything that refers to BB to use 867 // DestBB and remove BB. 868 BB->replaceAllUsesWith(DestBB); 869 BB->eraseFromParent(); 870 ++NumBlocksElim; 871 872 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 873 } 874 875 // Computes a map of base pointer relocation instructions to corresponding 876 // derived pointer relocation instructions given a vector of all relocate calls 877 static void computeBaseDerivedRelocateMap( 878 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 879 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 880 &RelocateInstMap) { 881 // Collect information in two maps: one primarily for locating the base object 882 // while filling the second map; the second map is the final structure holding 883 // a mapping between Base and corresponding Derived relocate calls 884 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 885 for (auto *ThisRelocate : AllRelocateCalls) { 886 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 887 ThisRelocate->getDerivedPtrIndex()); 888 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 889 } 890 for (auto &Item : RelocateIdxMap) { 891 std::pair<unsigned, unsigned> Key = Item.first; 892 if (Key.first == Key.second) 893 // Base relocation: nothing to insert 894 continue; 895 896 GCRelocateInst *I = Item.second; 897 auto BaseKey = std::make_pair(Key.first, Key.first); 898 899 // We're iterating over RelocateIdxMap so we cannot modify it. 900 auto MaybeBase = RelocateIdxMap.find(BaseKey); 901 if (MaybeBase == RelocateIdxMap.end()) 902 // TODO: We might want to insert a new base object relocate and gep off 903 // that, if there are enough derived object relocates. 904 continue; 905 906 RelocateInstMap[MaybeBase->second].push_back(I); 907 } 908 } 909 910 // Accepts a GEP and extracts the operands into a vector provided they're all 911 // small integer constants 912 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 913 SmallVectorImpl<Value *> &OffsetV) { 914 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 915 // Only accept small constant integer operands 916 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 917 if (!Op || Op->getZExtValue() > 20) 918 return false; 919 } 920 921 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 922 OffsetV.push_back(GEP->getOperand(i)); 923 return true; 924 } 925 926 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 927 // replace, computes a replacement, and affects it. 928 static bool 929 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 930 const SmallVectorImpl<GCRelocateInst *> &Targets) { 931 bool MadeChange = false; 932 // We must ensure the relocation of derived pointer is defined after 933 // relocation of base pointer. If we find a relocation corresponding to base 934 // defined earlier than relocation of base then we move relocation of base 935 // right before found relocation. We consider only relocation in the same 936 // basic block as relocation of base. Relocations from other basic block will 937 // be skipped by optimization and we do not care about them. 938 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 939 &*R != RelocatedBase; ++R) 940 if (auto RI = dyn_cast<GCRelocateInst>(R)) 941 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 942 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 943 RelocatedBase->moveBefore(RI); 944 break; 945 } 946 947 for (GCRelocateInst *ToReplace : Targets) { 948 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 949 "Not relocating a derived object of the original base object"); 950 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 951 // A duplicate relocate call. TODO: coalesce duplicates. 952 continue; 953 } 954 955 if (RelocatedBase->getParent() != ToReplace->getParent()) { 956 // Base and derived relocates are in different basic blocks. 957 // In this case transform is only valid when base dominates derived 958 // relocate. However it would be too expensive to check dominance 959 // for each such relocate, so we skip the whole transformation. 960 continue; 961 } 962 963 Value *Base = ToReplace->getBasePtr(); 964 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 965 if (!Derived || Derived->getPointerOperand() != Base) 966 continue; 967 968 SmallVector<Value *, 2> OffsetV; 969 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 970 continue; 971 972 // Create a Builder and replace the target callsite with a gep 973 assert(RelocatedBase->getNextNode() && 974 "Should always have one since it's not a terminator"); 975 976 // Insert after RelocatedBase 977 IRBuilder<> Builder(RelocatedBase->getNextNode()); 978 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 979 980 // If gc_relocate does not match the actual type, cast it to the right type. 981 // In theory, there must be a bitcast after gc_relocate if the type does not 982 // match, and we should reuse it to get the derived pointer. But it could be 983 // cases like this: 984 // bb1: 985 // ... 986 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 987 // br label %merge 988 // 989 // bb2: 990 // ... 991 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 992 // br label %merge 993 // 994 // merge: 995 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 996 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 997 // 998 // In this case, we can not find the bitcast any more. So we insert a new bitcast 999 // no matter there is already one or not. In this way, we can handle all cases, and 1000 // the extra bitcast should be optimized away in later passes. 1001 Value *ActualRelocatedBase = RelocatedBase; 1002 if (RelocatedBase->getType() != Base->getType()) { 1003 ActualRelocatedBase = 1004 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1005 } 1006 Value *Replacement = Builder.CreateGEP( 1007 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1008 Replacement->takeName(ToReplace); 1009 // If the newly generated derived pointer's type does not match the original derived 1010 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1011 Value *ActualReplacement = Replacement; 1012 if (Replacement->getType() != ToReplace->getType()) { 1013 ActualReplacement = 1014 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1015 } 1016 ToReplace->replaceAllUsesWith(ActualReplacement); 1017 ToReplace->eraseFromParent(); 1018 1019 MadeChange = true; 1020 } 1021 return MadeChange; 1022 } 1023 1024 // Turns this: 1025 // 1026 // %base = ... 1027 // %ptr = gep %base + 15 1028 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1029 // %base' = relocate(%tok, i32 4, i32 4) 1030 // %ptr' = relocate(%tok, i32 4, i32 5) 1031 // %val = load %ptr' 1032 // 1033 // into this: 1034 // 1035 // %base = ... 1036 // %ptr = gep %base + 15 1037 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1038 // %base' = gc.relocate(%tok, i32 4, i32 4) 1039 // %ptr' = gep %base' + 15 1040 // %val = load %ptr' 1041 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1042 bool MadeChange = false; 1043 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1044 1045 for (auto *U : I.users()) 1046 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1047 // Collect all the relocate calls associated with a statepoint 1048 AllRelocateCalls.push_back(Relocate); 1049 1050 // We need atleast one base pointer relocation + one derived pointer 1051 // relocation to mangle 1052 if (AllRelocateCalls.size() < 2) 1053 return false; 1054 1055 // RelocateInstMap is a mapping from the base relocate instruction to the 1056 // corresponding derived relocate instructions 1057 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1058 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1059 if (RelocateInstMap.empty()) 1060 return false; 1061 1062 for (auto &Item : RelocateInstMap) 1063 // Item.first is the RelocatedBase to offset against 1064 // Item.second is the vector of Targets to replace 1065 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1066 return MadeChange; 1067 } 1068 1069 /// Sink the specified cast instruction into its user blocks. 1070 static bool SinkCast(CastInst *CI) { 1071 BasicBlock *DefBB = CI->getParent(); 1072 1073 /// InsertedCasts - Only insert a cast in each block once. 1074 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1075 1076 bool MadeChange = false; 1077 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1078 UI != E; ) { 1079 Use &TheUse = UI.getUse(); 1080 Instruction *User = cast<Instruction>(*UI); 1081 1082 // Figure out which BB this cast is used in. For PHI's this is the 1083 // appropriate predecessor block. 1084 BasicBlock *UserBB = User->getParent(); 1085 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1086 UserBB = PN->getIncomingBlock(TheUse); 1087 } 1088 1089 // Preincrement use iterator so we don't invalidate it. 1090 ++UI; 1091 1092 // The first insertion point of a block containing an EH pad is after the 1093 // pad. If the pad is the user, we cannot sink the cast past the pad. 1094 if (User->isEHPad()) 1095 continue; 1096 1097 // If the block selected to receive the cast is an EH pad that does not 1098 // allow non-PHI instructions before the terminator, we can't sink the 1099 // cast. 1100 if (UserBB->getTerminator()->isEHPad()) 1101 continue; 1102 1103 // If this user is in the same block as the cast, don't change the cast. 1104 if (UserBB == DefBB) continue; 1105 1106 // If we have already inserted a cast into this block, use it. 1107 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1108 1109 if (!InsertedCast) { 1110 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1111 assert(InsertPt != UserBB->end()); 1112 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1113 CI->getType(), "", &*InsertPt); 1114 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1115 } 1116 1117 // Replace a use of the cast with a use of the new cast. 1118 TheUse = InsertedCast; 1119 MadeChange = true; 1120 ++NumCastUses; 1121 } 1122 1123 // If we removed all uses, nuke the cast. 1124 if (CI->use_empty()) { 1125 salvageDebugInfo(*CI); 1126 CI->eraseFromParent(); 1127 MadeChange = true; 1128 } 1129 1130 return MadeChange; 1131 } 1132 1133 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1134 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1135 /// reduce the number of virtual registers that must be created and coalesced. 1136 /// 1137 /// Return true if any changes are made. 1138 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1139 const DataLayout &DL) { 1140 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1141 // than sinking only nop casts, but is helpful on some platforms. 1142 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1143 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1144 ASC->getDestAddressSpace())) 1145 return false; 1146 } 1147 1148 // If this is a noop copy, 1149 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1150 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1151 1152 // This is an fp<->int conversion? 1153 if (SrcVT.isInteger() != DstVT.isInteger()) 1154 return false; 1155 1156 // If this is an extension, it will be a zero or sign extension, which 1157 // isn't a noop. 1158 if (SrcVT.bitsLT(DstVT)) return false; 1159 1160 // If these values will be promoted, find out what they will be promoted 1161 // to. This helps us consider truncates on PPC as noop copies when they 1162 // are. 1163 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1164 TargetLowering::TypePromoteInteger) 1165 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1166 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1167 TargetLowering::TypePromoteInteger) 1168 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1169 1170 // If, after promotion, these are the same types, this is a noop copy. 1171 if (SrcVT != DstVT) 1172 return false; 1173 1174 return SinkCast(CI); 1175 } 1176 1177 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1178 CmpInst *Cmp, 1179 Intrinsic::ID IID) { 1180 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1181 Value *Arg0 = BO->getOperand(0); 1182 Value *Arg1 = BO->getOperand(1); 1183 if (BO->getOpcode() == Instruction::Add && 1184 IID == Intrinsic::usub_with_overflow) { 1185 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1186 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1187 } 1188 1189 Instruction *InsertPt; 1190 if (BO->hasOneUse() && BO->user_back() == Cmp) { 1191 // If the math is only used by the compare, insert at the compare to keep 1192 // the condition in the same block as its users. (CGP aggressively sinks 1193 // compares to help out SDAG.) 1194 InsertPt = Cmp; 1195 } else { 1196 // The math and compare may be independent instructions. Check dominance to 1197 // determine the insertion point for the intrinsic. 1198 bool MathDominates = getDT(*BO->getFunction()).dominates(BO, Cmp); 1199 if (!MathDominates && !getDT(*BO->getFunction()).dominates(Cmp, BO)) 1200 return false; 1201 1202 BasicBlock *MathBB = BO->getParent(), *CmpBB = Cmp->getParent(); 1203 if (MathBB != CmpBB) { 1204 // Avoid hoisting an extra op into a dominating block and creating a 1205 // potentially longer critical path. 1206 if (!MathDominates) 1207 return false; 1208 // Check that the insertion doesn't create a value that is live across 1209 // more than two blocks, so to minimise the increase in register pressure. 1210 BasicBlock *Dominator = MathDominates ? MathBB : CmpBB; 1211 BasicBlock *Dominated = MathDominates ? CmpBB : MathBB; 1212 auto Successors = successors(Dominator); 1213 if (llvm::find(Successors, Dominated) == Successors.end()) 1214 return false; 1215 } 1216 1217 InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp); 1218 } 1219 1220 IRBuilder<> Builder(InsertPt); 1221 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1222 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1223 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1224 BO->replaceAllUsesWith(Math); 1225 Cmp->replaceAllUsesWith(OV); 1226 BO->eraseFromParent(); 1227 Cmp->eraseFromParent(); 1228 return true; 1229 } 1230 1231 /// Match special-case patterns that check for unsigned add overflow. 1232 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1233 BinaryOperator *&Add) { 1234 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1235 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1236 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1237 1238 // We are not expecting non-canonical/degenerate code. Just bail out. 1239 if (isa<Constant>(A)) 1240 return false; 1241 1242 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1243 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1244 B = ConstantInt::get(B->getType(), 1); 1245 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1246 B = ConstantInt::get(B->getType(), -1); 1247 else 1248 return false; 1249 1250 // Check the users of the variable operand of the compare looking for an add 1251 // with the adjusted constant. 1252 for (User *U : A->users()) { 1253 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1254 Add = cast<BinaryOperator>(U); 1255 return true; 1256 } 1257 } 1258 return false; 1259 } 1260 1261 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1262 /// intrinsic. Return true if any changes were made. 1263 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1264 bool &ModifiedDT) { 1265 Value *A, *B; 1266 BinaryOperator *Add; 1267 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1268 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1269 return false; 1270 1271 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1272 TLI->getValueType(*DL, Add->getType()))) 1273 return false; 1274 1275 // We don't want to move around uses of condition values this late, so we 1276 // check if it is legal to create the call to the intrinsic in the basic 1277 // block containing the icmp. 1278 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1279 return false; 1280 1281 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1282 return false; 1283 1284 // Reset callers - do not crash by iterating over a dead instruction. 1285 ModifiedDT = true; 1286 return true; 1287 } 1288 1289 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1290 bool &ModifiedDT) { 1291 // We are not expecting non-canonical/degenerate code. Just bail out. 1292 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1293 if (isa<Constant>(A) && isa<Constant>(B)) 1294 return false; 1295 1296 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1297 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1298 if (Pred == ICmpInst::ICMP_UGT) { 1299 std::swap(A, B); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A == 0) is the same as (A u< 1). 1303 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1304 B = ConstantInt::get(B->getType(), 1); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 // Convert special-case: (A != 0) is the same as (0 u< A). 1308 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1309 std::swap(A, B); 1310 Pred = ICmpInst::ICMP_ULT; 1311 } 1312 if (Pred != ICmpInst::ICMP_ULT) 1313 return false; 1314 1315 // Walk the users of a variable operand of a compare looking for a subtract or 1316 // add with that same operand. Also match the 2nd operand of the compare to 1317 // the add/sub, but that may be a negated constant operand of an add. 1318 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1319 BinaryOperator *Sub = nullptr; 1320 for (User *U : CmpVariableOperand->users()) { 1321 // A - B, A u< B --> usubo(A, B) 1322 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1323 Sub = cast<BinaryOperator>(U); 1324 break; 1325 } 1326 1327 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1328 const APInt *CmpC, *AddC; 1329 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1330 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1331 Sub = cast<BinaryOperator>(U); 1332 break; 1333 } 1334 } 1335 if (!Sub) 1336 return false; 1337 1338 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1339 TLI->getValueType(*DL, Sub->getType()))) 1340 return false; 1341 1342 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1343 return false; 1344 1345 // Reset callers - do not crash by iterating over a dead instruction. 1346 ModifiedDT = true; 1347 return true; 1348 } 1349 1350 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1351 /// registers that must be created and coalesced. This is a clear win except on 1352 /// targets with multiple condition code registers (PowerPC), where it might 1353 /// lose; some adjustment may be wanted there. 1354 /// 1355 /// Return true if any changes are made. 1356 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1357 if (TLI.hasMultipleConditionRegisters()) 1358 return false; 1359 1360 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1361 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1362 return false; 1363 1364 // Only insert a cmp in each block once. 1365 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1366 1367 bool MadeChange = false; 1368 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1369 UI != E; ) { 1370 Use &TheUse = UI.getUse(); 1371 Instruction *User = cast<Instruction>(*UI); 1372 1373 // Preincrement use iterator so we don't invalidate it. 1374 ++UI; 1375 1376 // Don't bother for PHI nodes. 1377 if (isa<PHINode>(User)) 1378 continue; 1379 1380 // Figure out which BB this cmp is used in. 1381 BasicBlock *UserBB = User->getParent(); 1382 BasicBlock *DefBB = Cmp->getParent(); 1383 1384 // If this user is in the same block as the cmp, don't change the cmp. 1385 if (UserBB == DefBB) continue; 1386 1387 // If we have already inserted a cmp into this block, use it. 1388 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1389 1390 if (!InsertedCmp) { 1391 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1392 assert(InsertPt != UserBB->end()); 1393 InsertedCmp = 1394 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1395 Cmp->getOperand(0), Cmp->getOperand(1), "", 1396 &*InsertPt); 1397 // Propagate the debug info. 1398 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1399 } 1400 1401 // Replace a use of the cmp with a use of the new cmp. 1402 TheUse = InsertedCmp; 1403 MadeChange = true; 1404 ++NumCmpUses; 1405 } 1406 1407 // If we removed all uses, nuke the cmp. 1408 if (Cmp->use_empty()) { 1409 Cmp->eraseFromParent(); 1410 MadeChange = true; 1411 } 1412 1413 return MadeChange; 1414 } 1415 1416 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1417 if (sinkCmpExpression(Cmp, *TLI)) 1418 return true; 1419 1420 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1421 return true; 1422 1423 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1424 return true; 1425 1426 return false; 1427 } 1428 1429 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1430 /// used in a compare to allow isel to generate better code for targets where 1431 /// this operation can be combined. 1432 /// 1433 /// Return true if any changes are made. 1434 static bool sinkAndCmp0Expression(Instruction *AndI, 1435 const TargetLowering &TLI, 1436 SetOfInstrs &InsertedInsts) { 1437 // Double-check that we're not trying to optimize an instruction that was 1438 // already optimized by some other part of this pass. 1439 assert(!InsertedInsts.count(AndI) && 1440 "Attempting to optimize already optimized and instruction"); 1441 (void) InsertedInsts; 1442 1443 // Nothing to do for single use in same basic block. 1444 if (AndI->hasOneUse() && 1445 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1446 return false; 1447 1448 // Try to avoid cases where sinking/duplicating is likely to increase register 1449 // pressure. 1450 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1451 !isa<ConstantInt>(AndI->getOperand(1)) && 1452 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1453 return false; 1454 1455 for (auto *U : AndI->users()) { 1456 Instruction *User = cast<Instruction>(U); 1457 1458 // Only sink 'and' feeding icmp with 0. 1459 if (!isa<ICmpInst>(User)) 1460 return false; 1461 1462 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1463 if (!CmpC || !CmpC->isZero()) 1464 return false; 1465 } 1466 1467 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1468 return false; 1469 1470 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1471 LLVM_DEBUG(AndI->getParent()->dump()); 1472 1473 // Push the 'and' into the same block as the icmp 0. There should only be 1474 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1475 // others, so we don't need to keep track of which BBs we insert into. 1476 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1477 UI != E; ) { 1478 Use &TheUse = UI.getUse(); 1479 Instruction *User = cast<Instruction>(*UI); 1480 1481 // Preincrement use iterator so we don't invalidate it. 1482 ++UI; 1483 1484 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1485 1486 // Keep the 'and' in the same place if the use is already in the same block. 1487 Instruction *InsertPt = 1488 User->getParent() == AndI->getParent() ? AndI : User; 1489 Instruction *InsertedAnd = 1490 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1491 AndI->getOperand(1), "", InsertPt); 1492 // Propagate the debug info. 1493 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1494 1495 // Replace a use of the 'and' with a use of the new 'and'. 1496 TheUse = InsertedAnd; 1497 ++NumAndUses; 1498 LLVM_DEBUG(User->getParent()->dump()); 1499 } 1500 1501 // We removed all uses, nuke the and. 1502 AndI->eraseFromParent(); 1503 return true; 1504 } 1505 1506 /// Check if the candidates could be combined with a shift instruction, which 1507 /// includes: 1508 /// 1. Truncate instruction 1509 /// 2. And instruction and the imm is a mask of the low bits: 1510 /// imm & (imm+1) == 0 1511 static bool isExtractBitsCandidateUse(Instruction *User) { 1512 if (!isa<TruncInst>(User)) { 1513 if (User->getOpcode() != Instruction::And || 1514 !isa<ConstantInt>(User->getOperand(1))) 1515 return false; 1516 1517 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1518 1519 if ((Cimm & (Cimm + 1)).getBoolValue()) 1520 return false; 1521 } 1522 return true; 1523 } 1524 1525 /// Sink both shift and truncate instruction to the use of truncate's BB. 1526 static bool 1527 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1528 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1529 const TargetLowering &TLI, const DataLayout &DL) { 1530 BasicBlock *UserBB = User->getParent(); 1531 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1532 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1533 bool MadeChange = false; 1534 1535 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1536 TruncE = TruncI->user_end(); 1537 TruncUI != TruncE;) { 1538 1539 Use &TruncTheUse = TruncUI.getUse(); 1540 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1541 // Preincrement use iterator so we don't invalidate it. 1542 1543 ++TruncUI; 1544 1545 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1546 if (!ISDOpcode) 1547 continue; 1548 1549 // If the use is actually a legal node, there will not be an 1550 // implicit truncate. 1551 // FIXME: always querying the result type is just an 1552 // approximation; some nodes' legality is determined by the 1553 // operand or other means. There's no good way to find out though. 1554 if (TLI.isOperationLegalOrCustom( 1555 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1556 continue; 1557 1558 // Don't bother for PHI nodes. 1559 if (isa<PHINode>(TruncUser)) 1560 continue; 1561 1562 BasicBlock *TruncUserBB = TruncUser->getParent(); 1563 1564 if (UserBB == TruncUserBB) 1565 continue; 1566 1567 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1568 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1569 1570 if (!InsertedShift && !InsertedTrunc) { 1571 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1572 assert(InsertPt != TruncUserBB->end()); 1573 // Sink the shift 1574 if (ShiftI->getOpcode() == Instruction::AShr) 1575 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1576 "", &*InsertPt); 1577 else 1578 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1579 "", &*InsertPt); 1580 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1581 1582 // Sink the trunc 1583 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1584 TruncInsertPt++; 1585 assert(TruncInsertPt != TruncUserBB->end()); 1586 1587 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1588 TruncI->getType(), "", &*TruncInsertPt); 1589 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1590 1591 MadeChange = true; 1592 1593 TruncTheUse = InsertedTrunc; 1594 } 1595 } 1596 return MadeChange; 1597 } 1598 1599 /// Sink the shift *right* instruction into user blocks if the uses could 1600 /// potentially be combined with this shift instruction and generate BitExtract 1601 /// instruction. It will only be applied if the architecture supports BitExtract 1602 /// instruction. Here is an example: 1603 /// BB1: 1604 /// %x.extract.shift = lshr i64 %arg1, 32 1605 /// BB2: 1606 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1607 /// ==> 1608 /// 1609 /// BB2: 1610 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1611 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1612 /// 1613 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1614 /// instruction. 1615 /// Return true if any changes are made. 1616 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1617 const TargetLowering &TLI, 1618 const DataLayout &DL) { 1619 BasicBlock *DefBB = ShiftI->getParent(); 1620 1621 /// Only insert instructions in each block once. 1622 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1623 1624 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1625 1626 bool MadeChange = false; 1627 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1628 UI != E;) { 1629 Use &TheUse = UI.getUse(); 1630 Instruction *User = cast<Instruction>(*UI); 1631 // Preincrement use iterator so we don't invalidate it. 1632 ++UI; 1633 1634 // Don't bother for PHI nodes. 1635 if (isa<PHINode>(User)) 1636 continue; 1637 1638 if (!isExtractBitsCandidateUse(User)) 1639 continue; 1640 1641 BasicBlock *UserBB = User->getParent(); 1642 1643 if (UserBB == DefBB) { 1644 // If the shift and truncate instruction are in the same BB. The use of 1645 // the truncate(TruncUse) may still introduce another truncate if not 1646 // legal. In this case, we would like to sink both shift and truncate 1647 // instruction to the BB of TruncUse. 1648 // for example: 1649 // BB1: 1650 // i64 shift.result = lshr i64 opnd, imm 1651 // trunc.result = trunc shift.result to i16 1652 // 1653 // BB2: 1654 // ----> We will have an implicit truncate here if the architecture does 1655 // not have i16 compare. 1656 // cmp i16 trunc.result, opnd2 1657 // 1658 if (isa<TruncInst>(User) && shiftIsLegal 1659 // If the type of the truncate is legal, no truncate will be 1660 // introduced in other basic blocks. 1661 && 1662 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1663 MadeChange = 1664 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1665 1666 continue; 1667 } 1668 // If we have already inserted a shift into this block, use it. 1669 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1670 1671 if (!InsertedShift) { 1672 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1673 assert(InsertPt != UserBB->end()); 1674 1675 if (ShiftI->getOpcode() == Instruction::AShr) 1676 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1677 "", &*InsertPt); 1678 else 1679 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1680 "", &*InsertPt); 1681 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1682 1683 MadeChange = true; 1684 } 1685 1686 // Replace a use of the shift with a use of the new shift. 1687 TheUse = InsertedShift; 1688 } 1689 1690 // If we removed all uses, nuke the shift. 1691 if (ShiftI->use_empty()) { 1692 salvageDebugInfo(*ShiftI); 1693 ShiftI->eraseFromParent(); 1694 } 1695 1696 return MadeChange; 1697 } 1698 1699 /// If counting leading or trailing zeros is an expensive operation and a zero 1700 /// input is defined, add a check for zero to avoid calling the intrinsic. 1701 /// 1702 /// We want to transform: 1703 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1704 /// 1705 /// into: 1706 /// entry: 1707 /// %cmpz = icmp eq i64 %A, 0 1708 /// br i1 %cmpz, label %cond.end, label %cond.false 1709 /// cond.false: 1710 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1711 /// br label %cond.end 1712 /// cond.end: 1713 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1714 /// 1715 /// If the transform is performed, return true and set ModifiedDT to true. 1716 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1717 const TargetLowering *TLI, 1718 const DataLayout *DL, 1719 bool &ModifiedDT) { 1720 if (!TLI || !DL) 1721 return false; 1722 1723 // If a zero input is undefined, it doesn't make sense to despeculate that. 1724 if (match(CountZeros->getOperand(1), m_One())) 1725 return false; 1726 1727 // If it's cheap to speculate, there's nothing to do. 1728 auto IntrinsicID = CountZeros->getIntrinsicID(); 1729 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1730 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1731 return false; 1732 1733 // Only handle legal scalar cases. Anything else requires too much work. 1734 Type *Ty = CountZeros->getType(); 1735 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1736 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1737 return false; 1738 1739 // The intrinsic will be sunk behind a compare against zero and branch. 1740 BasicBlock *StartBlock = CountZeros->getParent(); 1741 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1742 1743 // Create another block after the count zero intrinsic. A PHI will be added 1744 // in this block to select the result of the intrinsic or the bit-width 1745 // constant if the input to the intrinsic is zero. 1746 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1747 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1748 1749 // Set up a builder to create a compare, conditional branch, and PHI. 1750 IRBuilder<> Builder(CountZeros->getContext()); 1751 Builder.SetInsertPoint(StartBlock->getTerminator()); 1752 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1753 1754 // Replace the unconditional branch that was created by the first split with 1755 // a compare against zero and a conditional branch. 1756 Value *Zero = Constant::getNullValue(Ty); 1757 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1758 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1759 StartBlock->getTerminator()->eraseFromParent(); 1760 1761 // Create a PHI in the end block to select either the output of the intrinsic 1762 // or the bit width of the operand. 1763 Builder.SetInsertPoint(&EndBlock->front()); 1764 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1765 CountZeros->replaceAllUsesWith(PN); 1766 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1767 PN->addIncoming(BitWidth, StartBlock); 1768 PN->addIncoming(CountZeros, CallBlock); 1769 1770 // We are explicitly handling the zero case, so we can set the intrinsic's 1771 // undefined zero argument to 'true'. This will also prevent reprocessing the 1772 // intrinsic; we only despeculate when a zero input is defined. 1773 CountZeros->setArgOperand(1, Builder.getTrue()); 1774 ModifiedDT = true; 1775 return true; 1776 } 1777 1778 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1779 BasicBlock *BB = CI->getParent(); 1780 1781 // Lower inline assembly if we can. 1782 // If we found an inline asm expession, and if the target knows how to 1783 // lower it to normal LLVM code, do so now. 1784 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1785 if (TLI->ExpandInlineAsm(CI)) { 1786 // Avoid invalidating the iterator. 1787 CurInstIterator = BB->begin(); 1788 // Avoid processing instructions out of order, which could cause 1789 // reuse before a value is defined. 1790 SunkAddrs.clear(); 1791 return true; 1792 } 1793 // Sink address computing for memory operands into the block. 1794 if (optimizeInlineAsmInst(CI)) 1795 return true; 1796 } 1797 1798 // Align the pointer arguments to this call if the target thinks it's a good 1799 // idea 1800 unsigned MinSize, PrefAlign; 1801 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1802 for (auto &Arg : CI->arg_operands()) { 1803 // We want to align both objects whose address is used directly and 1804 // objects whose address is used in casts and GEPs, though it only makes 1805 // sense for GEPs if the offset is a multiple of the desired alignment and 1806 // if size - offset meets the size threshold. 1807 if (!Arg->getType()->isPointerTy()) 1808 continue; 1809 APInt Offset(DL->getIndexSizeInBits( 1810 cast<PointerType>(Arg->getType())->getAddressSpace()), 1811 0); 1812 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1813 uint64_t Offset2 = Offset.getLimitedValue(); 1814 if ((Offset2 & (PrefAlign-1)) != 0) 1815 continue; 1816 AllocaInst *AI; 1817 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1818 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1819 AI->setAlignment(PrefAlign); 1820 // Global variables can only be aligned if they are defined in this 1821 // object (i.e. they are uniquely initialized in this object), and 1822 // over-aligning global variables that have an explicit section is 1823 // forbidden. 1824 GlobalVariable *GV; 1825 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1826 GV->getPointerAlignment(*DL) < PrefAlign && 1827 DL->getTypeAllocSize(GV->getValueType()) >= 1828 MinSize + Offset2) 1829 GV->setAlignment(PrefAlign); 1830 } 1831 // If this is a memcpy (or similar) then we may be able to improve the 1832 // alignment 1833 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1834 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1835 if (DestAlign > MI->getDestAlignment()) 1836 MI->setDestAlignment(DestAlign); 1837 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1838 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1839 if (SrcAlign > MTI->getSourceAlignment()) 1840 MTI->setSourceAlignment(SrcAlign); 1841 } 1842 } 1843 } 1844 1845 // If we have a cold call site, try to sink addressing computation into the 1846 // cold block. This interacts with our handling for loads and stores to 1847 // ensure that we can fold all uses of a potential addressing computation 1848 // into their uses. TODO: generalize this to work over profiling data 1849 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1850 for (auto &Arg : CI->arg_operands()) { 1851 if (!Arg->getType()->isPointerTy()) 1852 continue; 1853 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1854 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1855 } 1856 1857 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1858 if (II) { 1859 switch (II->getIntrinsicID()) { 1860 default: break; 1861 case Intrinsic::experimental_widenable_condition: { 1862 // Give up on future widening oppurtunties so that we can fold away dead 1863 // paths and merge blocks before going into block-local instruction 1864 // selection. 1865 if (II->use_empty()) { 1866 II->eraseFromParent(); 1867 return true; 1868 } 1869 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1870 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1871 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1872 }); 1873 return true; 1874 } 1875 case Intrinsic::objectsize: { 1876 // Lower all uses of llvm.objectsize.* 1877 Value *RetVal = 1878 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1879 1880 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1881 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1882 }); 1883 return true; 1884 } 1885 case Intrinsic::is_constant: { 1886 // If is_constant hasn't folded away yet, lower it to false now. 1887 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1888 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1889 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1890 }); 1891 return true; 1892 } 1893 case Intrinsic::aarch64_stlxr: 1894 case Intrinsic::aarch64_stxr: { 1895 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1896 if (!ExtVal || !ExtVal->hasOneUse() || 1897 ExtVal->getParent() == CI->getParent()) 1898 return false; 1899 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1900 ExtVal->moveBefore(CI); 1901 // Mark this instruction as "inserted by CGP", so that other 1902 // optimizations don't touch it. 1903 InsertedInsts.insert(ExtVal); 1904 return true; 1905 } 1906 1907 case Intrinsic::launder_invariant_group: 1908 case Intrinsic::strip_invariant_group: { 1909 Value *ArgVal = II->getArgOperand(0); 1910 auto it = LargeOffsetGEPMap.find(II); 1911 if (it != LargeOffsetGEPMap.end()) { 1912 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1913 // Make sure not to have to deal with iterator invalidation 1914 // after possibly adding ArgVal to LargeOffsetGEPMap. 1915 auto GEPs = std::move(it->second); 1916 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1917 LargeOffsetGEPMap.erase(II); 1918 } 1919 1920 II->replaceAllUsesWith(ArgVal); 1921 II->eraseFromParent(); 1922 return true; 1923 } 1924 case Intrinsic::cttz: 1925 case Intrinsic::ctlz: 1926 // If counting zeros is expensive, try to avoid it. 1927 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1928 } 1929 1930 if (TLI) { 1931 SmallVector<Value*, 2> PtrOps; 1932 Type *AccessTy; 1933 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1934 while (!PtrOps.empty()) { 1935 Value *PtrVal = PtrOps.pop_back_val(); 1936 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1937 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1938 return true; 1939 } 1940 } 1941 } 1942 1943 // From here on out we're working with named functions. 1944 if (!CI->getCalledFunction()) return false; 1945 1946 // Lower all default uses of _chk calls. This is very similar 1947 // to what InstCombineCalls does, but here we are only lowering calls 1948 // to fortified library functions (e.g. __memcpy_chk) that have the default 1949 // "don't know" as the objectsize. Anything else should be left alone. 1950 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1951 if (Value *V = Simplifier.optimizeCall(CI)) { 1952 CI->replaceAllUsesWith(V); 1953 CI->eraseFromParent(); 1954 return true; 1955 } 1956 1957 return false; 1958 } 1959 1960 /// Look for opportunities to duplicate return instructions to the predecessor 1961 /// to enable tail call optimizations. The case it is currently looking for is: 1962 /// @code 1963 /// bb0: 1964 /// %tmp0 = tail call i32 @f0() 1965 /// br label %return 1966 /// bb1: 1967 /// %tmp1 = tail call i32 @f1() 1968 /// br label %return 1969 /// bb2: 1970 /// %tmp2 = tail call i32 @f2() 1971 /// br label %return 1972 /// return: 1973 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1974 /// ret i32 %retval 1975 /// @endcode 1976 /// 1977 /// => 1978 /// 1979 /// @code 1980 /// bb0: 1981 /// %tmp0 = tail call i32 @f0() 1982 /// ret i32 %tmp0 1983 /// bb1: 1984 /// %tmp1 = tail call i32 @f1() 1985 /// ret i32 %tmp1 1986 /// bb2: 1987 /// %tmp2 = tail call i32 @f2() 1988 /// ret i32 %tmp2 1989 /// @endcode 1990 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1991 if (!TLI) 1992 return false; 1993 1994 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1995 if (!RetI) 1996 return false; 1997 1998 PHINode *PN = nullptr; 1999 BitCastInst *BCI = nullptr; 2000 Value *V = RetI->getReturnValue(); 2001 if (V) { 2002 BCI = dyn_cast<BitCastInst>(V); 2003 if (BCI) 2004 V = BCI->getOperand(0); 2005 2006 PN = dyn_cast<PHINode>(V); 2007 if (!PN) 2008 return false; 2009 } 2010 2011 if (PN && PN->getParent() != BB) 2012 return false; 2013 2014 // Make sure there are no instructions between the PHI and return, or that the 2015 // return is the first instruction in the block. 2016 if (PN) { 2017 BasicBlock::iterator BI = BB->begin(); 2018 // Skip over debug and the bitcast. 2019 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2020 if (&*BI != RetI) 2021 return false; 2022 } else { 2023 BasicBlock::iterator BI = BB->begin(); 2024 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2025 if (&*BI != RetI) 2026 return false; 2027 } 2028 2029 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2030 /// call. 2031 const Function *F = BB->getParent(); 2032 SmallVector<CallInst*, 4> TailCalls; 2033 if (PN) { 2034 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2035 // Look through bitcasts. 2036 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2037 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2038 // Make sure the phi value is indeed produced by the tail call. 2039 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2040 TLI->mayBeEmittedAsTailCall(CI) && 2041 attributesPermitTailCall(F, CI, RetI, *TLI)) 2042 TailCalls.push_back(CI); 2043 } 2044 } else { 2045 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2046 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2047 if (!VisitedBBs.insert(*PI).second) 2048 continue; 2049 2050 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2051 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2052 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2053 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2054 if (RI == RE) 2055 continue; 2056 2057 CallInst *CI = dyn_cast<CallInst>(&*RI); 2058 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2059 attributesPermitTailCall(F, CI, RetI, *TLI)) 2060 TailCalls.push_back(CI); 2061 } 2062 } 2063 2064 bool Changed = false; 2065 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2066 CallInst *CI = TailCalls[i]; 2067 CallSite CS(CI); 2068 2069 // Make sure the call instruction is followed by an unconditional branch to 2070 // the return block. 2071 BasicBlock *CallBB = CI->getParent(); 2072 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2073 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2074 continue; 2075 2076 // Duplicate the return into CallBB. 2077 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2078 ModifiedDT = Changed = true; 2079 ++NumRetsDup; 2080 } 2081 2082 // If we eliminated all predecessors of the block, delete the block now. 2083 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2084 BB->eraseFromParent(); 2085 2086 return Changed; 2087 } 2088 2089 //===----------------------------------------------------------------------===// 2090 // Memory Optimization 2091 //===----------------------------------------------------------------------===// 2092 2093 namespace { 2094 2095 /// This is an extended version of TargetLowering::AddrMode 2096 /// which holds actual Value*'s for register values. 2097 struct ExtAddrMode : public TargetLowering::AddrMode { 2098 Value *BaseReg = nullptr; 2099 Value *ScaledReg = nullptr; 2100 Value *OriginalValue = nullptr; 2101 bool InBounds = true; 2102 2103 enum FieldName { 2104 NoField = 0x00, 2105 BaseRegField = 0x01, 2106 BaseGVField = 0x02, 2107 BaseOffsField = 0x04, 2108 ScaledRegField = 0x08, 2109 ScaleField = 0x10, 2110 MultipleFields = 0xff 2111 }; 2112 2113 2114 ExtAddrMode() = default; 2115 2116 void print(raw_ostream &OS) const; 2117 void dump() const; 2118 2119 FieldName compare(const ExtAddrMode &other) { 2120 // First check that the types are the same on each field, as differing types 2121 // is something we can't cope with later on. 2122 if (BaseReg && other.BaseReg && 2123 BaseReg->getType() != other.BaseReg->getType()) 2124 return MultipleFields; 2125 if (BaseGV && other.BaseGV && 2126 BaseGV->getType() != other.BaseGV->getType()) 2127 return MultipleFields; 2128 if (ScaledReg && other.ScaledReg && 2129 ScaledReg->getType() != other.ScaledReg->getType()) 2130 return MultipleFields; 2131 2132 // Conservatively reject 'inbounds' mismatches. 2133 if (InBounds != other.InBounds) 2134 return MultipleFields; 2135 2136 // Check each field to see if it differs. 2137 unsigned Result = NoField; 2138 if (BaseReg != other.BaseReg) 2139 Result |= BaseRegField; 2140 if (BaseGV != other.BaseGV) 2141 Result |= BaseGVField; 2142 if (BaseOffs != other.BaseOffs) 2143 Result |= BaseOffsField; 2144 if (ScaledReg != other.ScaledReg) 2145 Result |= ScaledRegField; 2146 // Don't count 0 as being a different scale, because that actually means 2147 // unscaled (which will already be counted by having no ScaledReg). 2148 if (Scale && other.Scale && Scale != other.Scale) 2149 Result |= ScaleField; 2150 2151 if (countPopulation(Result) > 1) 2152 return MultipleFields; 2153 else 2154 return static_cast<FieldName>(Result); 2155 } 2156 2157 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2158 // with no offset. 2159 bool isTrivial() { 2160 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2161 // trivial if at most one of these terms is nonzero, except that BaseGV and 2162 // BaseReg both being zero actually means a null pointer value, which we 2163 // consider to be 'non-zero' here. 2164 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2165 } 2166 2167 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2168 switch (Field) { 2169 default: 2170 return nullptr; 2171 case BaseRegField: 2172 return BaseReg; 2173 case BaseGVField: 2174 return BaseGV; 2175 case ScaledRegField: 2176 return ScaledReg; 2177 case BaseOffsField: 2178 return ConstantInt::get(IntPtrTy, BaseOffs); 2179 } 2180 } 2181 2182 void SetCombinedField(FieldName Field, Value *V, 2183 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2184 switch (Field) { 2185 default: 2186 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2187 break; 2188 case ExtAddrMode::BaseRegField: 2189 BaseReg = V; 2190 break; 2191 case ExtAddrMode::BaseGVField: 2192 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2193 // in the BaseReg field. 2194 assert(BaseReg == nullptr); 2195 BaseReg = V; 2196 BaseGV = nullptr; 2197 break; 2198 case ExtAddrMode::ScaledRegField: 2199 ScaledReg = V; 2200 // If we have a mix of scaled and unscaled addrmodes then we want scale 2201 // to be the scale and not zero. 2202 if (!Scale) 2203 for (const ExtAddrMode &AM : AddrModes) 2204 if (AM.Scale) { 2205 Scale = AM.Scale; 2206 break; 2207 } 2208 break; 2209 case ExtAddrMode::BaseOffsField: 2210 // The offset is no longer a constant, so it goes in ScaledReg with a 2211 // scale of 1. 2212 assert(ScaledReg == nullptr); 2213 ScaledReg = V; 2214 Scale = 1; 2215 BaseOffs = 0; 2216 break; 2217 } 2218 } 2219 }; 2220 2221 } // end anonymous namespace 2222 2223 #ifndef NDEBUG 2224 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2225 AM.print(OS); 2226 return OS; 2227 } 2228 #endif 2229 2230 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2231 void ExtAddrMode::print(raw_ostream &OS) const { 2232 bool NeedPlus = false; 2233 OS << "["; 2234 if (InBounds) 2235 OS << "inbounds "; 2236 if (BaseGV) { 2237 OS << (NeedPlus ? " + " : "") 2238 << "GV:"; 2239 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2240 NeedPlus = true; 2241 } 2242 2243 if (BaseOffs) { 2244 OS << (NeedPlus ? " + " : "") 2245 << BaseOffs; 2246 NeedPlus = true; 2247 } 2248 2249 if (BaseReg) { 2250 OS << (NeedPlus ? " + " : "") 2251 << "Base:"; 2252 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2253 NeedPlus = true; 2254 } 2255 if (Scale) { 2256 OS << (NeedPlus ? " + " : "") 2257 << Scale << "*"; 2258 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2259 } 2260 2261 OS << ']'; 2262 } 2263 2264 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2265 print(dbgs()); 2266 dbgs() << '\n'; 2267 } 2268 #endif 2269 2270 namespace { 2271 2272 /// This class provides transaction based operation on the IR. 2273 /// Every change made through this class is recorded in the internal state and 2274 /// can be undone (rollback) until commit is called. 2275 class TypePromotionTransaction { 2276 /// This represents the common interface of the individual transaction. 2277 /// Each class implements the logic for doing one specific modification on 2278 /// the IR via the TypePromotionTransaction. 2279 class TypePromotionAction { 2280 protected: 2281 /// The Instruction modified. 2282 Instruction *Inst; 2283 2284 public: 2285 /// Constructor of the action. 2286 /// The constructor performs the related action on the IR. 2287 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2288 2289 virtual ~TypePromotionAction() = default; 2290 2291 /// Undo the modification done by this action. 2292 /// When this method is called, the IR must be in the same state as it was 2293 /// before this action was applied. 2294 /// \pre Undoing the action works if and only if the IR is in the exact same 2295 /// state as it was directly after this action was applied. 2296 virtual void undo() = 0; 2297 2298 /// Advocate every change made by this action. 2299 /// When the results on the IR of the action are to be kept, it is important 2300 /// to call this function, otherwise hidden information may be kept forever. 2301 virtual void commit() { 2302 // Nothing to be done, this action is not doing anything. 2303 } 2304 }; 2305 2306 /// Utility to remember the position of an instruction. 2307 class InsertionHandler { 2308 /// Position of an instruction. 2309 /// Either an instruction: 2310 /// - Is the first in a basic block: BB is used. 2311 /// - Has a previous instruction: PrevInst is used. 2312 union { 2313 Instruction *PrevInst; 2314 BasicBlock *BB; 2315 } Point; 2316 2317 /// Remember whether or not the instruction had a previous instruction. 2318 bool HasPrevInstruction; 2319 2320 public: 2321 /// Record the position of \p Inst. 2322 InsertionHandler(Instruction *Inst) { 2323 BasicBlock::iterator It = Inst->getIterator(); 2324 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2325 if (HasPrevInstruction) 2326 Point.PrevInst = &*--It; 2327 else 2328 Point.BB = Inst->getParent(); 2329 } 2330 2331 /// Insert \p Inst at the recorded position. 2332 void insert(Instruction *Inst) { 2333 if (HasPrevInstruction) { 2334 if (Inst->getParent()) 2335 Inst->removeFromParent(); 2336 Inst->insertAfter(Point.PrevInst); 2337 } else { 2338 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2339 if (Inst->getParent()) 2340 Inst->moveBefore(Position); 2341 else 2342 Inst->insertBefore(Position); 2343 } 2344 } 2345 }; 2346 2347 /// Move an instruction before another. 2348 class InstructionMoveBefore : public TypePromotionAction { 2349 /// Original position of the instruction. 2350 InsertionHandler Position; 2351 2352 public: 2353 /// Move \p Inst before \p Before. 2354 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2355 : TypePromotionAction(Inst), Position(Inst) { 2356 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2357 << "\n"); 2358 Inst->moveBefore(Before); 2359 } 2360 2361 /// Move the instruction back to its original position. 2362 void undo() override { 2363 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2364 Position.insert(Inst); 2365 } 2366 }; 2367 2368 /// Set the operand of an instruction with a new value. 2369 class OperandSetter : public TypePromotionAction { 2370 /// Original operand of the instruction. 2371 Value *Origin; 2372 2373 /// Index of the modified instruction. 2374 unsigned Idx; 2375 2376 public: 2377 /// Set \p Idx operand of \p Inst with \p NewVal. 2378 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2379 : TypePromotionAction(Inst), Idx(Idx) { 2380 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2381 << "for:" << *Inst << "\n" 2382 << "with:" << *NewVal << "\n"); 2383 Origin = Inst->getOperand(Idx); 2384 Inst->setOperand(Idx, NewVal); 2385 } 2386 2387 /// Restore the original value of the instruction. 2388 void undo() override { 2389 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2390 << "for: " << *Inst << "\n" 2391 << "with: " << *Origin << "\n"); 2392 Inst->setOperand(Idx, Origin); 2393 } 2394 }; 2395 2396 /// Hide the operands of an instruction. 2397 /// Do as if this instruction was not using any of its operands. 2398 class OperandsHider : public TypePromotionAction { 2399 /// The list of original operands. 2400 SmallVector<Value *, 4> OriginalValues; 2401 2402 public: 2403 /// Remove \p Inst from the uses of the operands of \p Inst. 2404 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2405 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2406 unsigned NumOpnds = Inst->getNumOperands(); 2407 OriginalValues.reserve(NumOpnds); 2408 for (unsigned It = 0; It < NumOpnds; ++It) { 2409 // Save the current operand. 2410 Value *Val = Inst->getOperand(It); 2411 OriginalValues.push_back(Val); 2412 // Set a dummy one. 2413 // We could use OperandSetter here, but that would imply an overhead 2414 // that we are not willing to pay. 2415 Inst->setOperand(It, UndefValue::get(Val->getType())); 2416 } 2417 } 2418 2419 /// Restore the original list of uses. 2420 void undo() override { 2421 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2422 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2423 Inst->setOperand(It, OriginalValues[It]); 2424 } 2425 }; 2426 2427 /// Build a truncate instruction. 2428 class TruncBuilder : public TypePromotionAction { 2429 Value *Val; 2430 2431 public: 2432 /// Build a truncate instruction of \p Opnd producing a \p Ty 2433 /// result. 2434 /// trunc Opnd to Ty. 2435 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2436 IRBuilder<> Builder(Opnd); 2437 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2438 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2439 } 2440 2441 /// Get the built value. 2442 Value *getBuiltValue() { return Val; } 2443 2444 /// Remove the built instruction. 2445 void undo() override { 2446 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2447 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2448 IVal->eraseFromParent(); 2449 } 2450 }; 2451 2452 /// Build a sign extension instruction. 2453 class SExtBuilder : public TypePromotionAction { 2454 Value *Val; 2455 2456 public: 2457 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2458 /// result. 2459 /// sext Opnd to Ty. 2460 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2461 : TypePromotionAction(InsertPt) { 2462 IRBuilder<> Builder(InsertPt); 2463 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2464 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2465 } 2466 2467 /// Get the built value. 2468 Value *getBuiltValue() { return Val; } 2469 2470 /// Remove the built instruction. 2471 void undo() override { 2472 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2473 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2474 IVal->eraseFromParent(); 2475 } 2476 }; 2477 2478 /// Build a zero extension instruction. 2479 class ZExtBuilder : public TypePromotionAction { 2480 Value *Val; 2481 2482 public: 2483 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2484 /// result. 2485 /// zext Opnd to Ty. 2486 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2487 : TypePromotionAction(InsertPt) { 2488 IRBuilder<> Builder(InsertPt); 2489 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2490 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2491 } 2492 2493 /// Get the built value. 2494 Value *getBuiltValue() { return Val; } 2495 2496 /// Remove the built instruction. 2497 void undo() override { 2498 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2499 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2500 IVal->eraseFromParent(); 2501 } 2502 }; 2503 2504 /// Mutate an instruction to another type. 2505 class TypeMutator : public TypePromotionAction { 2506 /// Record the original type. 2507 Type *OrigTy; 2508 2509 public: 2510 /// Mutate the type of \p Inst into \p NewTy. 2511 TypeMutator(Instruction *Inst, Type *NewTy) 2512 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2513 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2514 << "\n"); 2515 Inst->mutateType(NewTy); 2516 } 2517 2518 /// Mutate the instruction back to its original type. 2519 void undo() override { 2520 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2521 << "\n"); 2522 Inst->mutateType(OrigTy); 2523 } 2524 }; 2525 2526 /// Replace the uses of an instruction by another instruction. 2527 class UsesReplacer : public TypePromotionAction { 2528 /// Helper structure to keep track of the replaced uses. 2529 struct InstructionAndIdx { 2530 /// The instruction using the instruction. 2531 Instruction *Inst; 2532 2533 /// The index where this instruction is used for Inst. 2534 unsigned Idx; 2535 2536 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2537 : Inst(Inst), Idx(Idx) {} 2538 }; 2539 2540 /// Keep track of the original uses (pair Instruction, Index). 2541 SmallVector<InstructionAndIdx, 4> OriginalUses; 2542 /// Keep track of the debug users. 2543 SmallVector<DbgValueInst *, 1> DbgValues; 2544 2545 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2546 2547 public: 2548 /// Replace all the use of \p Inst by \p New. 2549 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2550 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2551 << "\n"); 2552 // Record the original uses. 2553 for (Use &U : Inst->uses()) { 2554 Instruction *UserI = cast<Instruction>(U.getUser()); 2555 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2556 } 2557 // Record the debug uses separately. They are not in the instruction's 2558 // use list, but they are replaced by RAUW. 2559 findDbgValues(DbgValues, Inst); 2560 2561 // Now, we can replace the uses. 2562 Inst->replaceAllUsesWith(New); 2563 } 2564 2565 /// Reassign the original uses of Inst to Inst. 2566 void undo() override { 2567 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2568 for (use_iterator UseIt = OriginalUses.begin(), 2569 EndIt = OriginalUses.end(); 2570 UseIt != EndIt; ++UseIt) { 2571 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2572 } 2573 // RAUW has replaced all original uses with references to the new value, 2574 // including the debug uses. Since we are undoing the replacements, 2575 // the original debug uses must also be reinstated to maintain the 2576 // correctness and utility of debug value instructions. 2577 for (auto *DVI: DbgValues) { 2578 LLVMContext &Ctx = Inst->getType()->getContext(); 2579 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2580 DVI->setOperand(0, MV); 2581 } 2582 } 2583 }; 2584 2585 /// Remove an instruction from the IR. 2586 class InstructionRemover : public TypePromotionAction { 2587 /// Original position of the instruction. 2588 InsertionHandler Inserter; 2589 2590 /// Helper structure to hide all the link to the instruction. In other 2591 /// words, this helps to do as if the instruction was removed. 2592 OperandsHider Hider; 2593 2594 /// Keep track of the uses replaced, if any. 2595 UsesReplacer *Replacer = nullptr; 2596 2597 /// Keep track of instructions removed. 2598 SetOfInstrs &RemovedInsts; 2599 2600 public: 2601 /// Remove all reference of \p Inst and optionally replace all its 2602 /// uses with New. 2603 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2604 /// \pre If !Inst->use_empty(), then New != nullptr 2605 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2606 Value *New = nullptr) 2607 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2608 RemovedInsts(RemovedInsts) { 2609 if (New) 2610 Replacer = new UsesReplacer(Inst, New); 2611 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2612 RemovedInsts.insert(Inst); 2613 /// The instructions removed here will be freed after completing 2614 /// optimizeBlock() for all blocks as we need to keep track of the 2615 /// removed instructions during promotion. 2616 Inst->removeFromParent(); 2617 } 2618 2619 ~InstructionRemover() override { delete Replacer; } 2620 2621 /// Resurrect the instruction and reassign it to the proper uses if 2622 /// new value was provided when build this action. 2623 void undo() override { 2624 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2625 Inserter.insert(Inst); 2626 if (Replacer) 2627 Replacer->undo(); 2628 Hider.undo(); 2629 RemovedInsts.erase(Inst); 2630 } 2631 }; 2632 2633 public: 2634 /// Restoration point. 2635 /// The restoration point is a pointer to an action instead of an iterator 2636 /// because the iterator may be invalidated but not the pointer. 2637 using ConstRestorationPt = const TypePromotionAction *; 2638 2639 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2640 : RemovedInsts(RemovedInsts) {} 2641 2642 /// Advocate every changes made in that transaction. 2643 void commit(); 2644 2645 /// Undo all the changes made after the given point. 2646 void rollback(ConstRestorationPt Point); 2647 2648 /// Get the current restoration point. 2649 ConstRestorationPt getRestorationPoint() const; 2650 2651 /// \name API for IR modification with state keeping to support rollback. 2652 /// @{ 2653 /// Same as Instruction::setOperand. 2654 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2655 2656 /// Same as Instruction::eraseFromParent. 2657 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2658 2659 /// Same as Value::replaceAllUsesWith. 2660 void replaceAllUsesWith(Instruction *Inst, Value *New); 2661 2662 /// Same as Value::mutateType. 2663 void mutateType(Instruction *Inst, Type *NewTy); 2664 2665 /// Same as IRBuilder::createTrunc. 2666 Value *createTrunc(Instruction *Opnd, Type *Ty); 2667 2668 /// Same as IRBuilder::createSExt. 2669 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2670 2671 /// Same as IRBuilder::createZExt. 2672 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2673 2674 /// Same as Instruction::moveBefore. 2675 void moveBefore(Instruction *Inst, Instruction *Before); 2676 /// @} 2677 2678 private: 2679 /// The ordered list of actions made so far. 2680 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2681 2682 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2683 2684 SetOfInstrs &RemovedInsts; 2685 }; 2686 2687 } // end anonymous namespace 2688 2689 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2690 Value *NewVal) { 2691 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2692 Inst, Idx, NewVal)); 2693 } 2694 2695 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2696 Value *NewVal) { 2697 Actions.push_back( 2698 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2699 Inst, RemovedInsts, NewVal)); 2700 } 2701 2702 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2703 Value *New) { 2704 Actions.push_back( 2705 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2706 } 2707 2708 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2709 Actions.push_back( 2710 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2711 } 2712 2713 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2714 Type *Ty) { 2715 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2716 Value *Val = Ptr->getBuiltValue(); 2717 Actions.push_back(std::move(Ptr)); 2718 return Val; 2719 } 2720 2721 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2722 Value *Opnd, Type *Ty) { 2723 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2724 Value *Val = Ptr->getBuiltValue(); 2725 Actions.push_back(std::move(Ptr)); 2726 return Val; 2727 } 2728 2729 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2730 Value *Opnd, Type *Ty) { 2731 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2732 Value *Val = Ptr->getBuiltValue(); 2733 Actions.push_back(std::move(Ptr)); 2734 return Val; 2735 } 2736 2737 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2738 Instruction *Before) { 2739 Actions.push_back( 2740 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2741 Inst, Before)); 2742 } 2743 2744 TypePromotionTransaction::ConstRestorationPt 2745 TypePromotionTransaction::getRestorationPoint() const { 2746 return !Actions.empty() ? Actions.back().get() : nullptr; 2747 } 2748 2749 void TypePromotionTransaction::commit() { 2750 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2751 ++It) 2752 (*It)->commit(); 2753 Actions.clear(); 2754 } 2755 2756 void TypePromotionTransaction::rollback( 2757 TypePromotionTransaction::ConstRestorationPt Point) { 2758 while (!Actions.empty() && Point != Actions.back().get()) { 2759 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2760 Curr->undo(); 2761 } 2762 } 2763 2764 namespace { 2765 2766 /// A helper class for matching addressing modes. 2767 /// 2768 /// This encapsulates the logic for matching the target-legal addressing modes. 2769 class AddressingModeMatcher { 2770 SmallVectorImpl<Instruction*> &AddrModeInsts; 2771 const TargetLowering &TLI; 2772 const TargetRegisterInfo &TRI; 2773 const DataLayout &DL; 2774 2775 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2776 /// the memory instruction that we're computing this address for. 2777 Type *AccessTy; 2778 unsigned AddrSpace; 2779 Instruction *MemoryInst; 2780 2781 /// This is the addressing mode that we're building up. This is 2782 /// part of the return value of this addressing mode matching stuff. 2783 ExtAddrMode &AddrMode; 2784 2785 /// The instructions inserted by other CodeGenPrepare optimizations. 2786 const SetOfInstrs &InsertedInsts; 2787 2788 /// A map from the instructions to their type before promotion. 2789 InstrToOrigTy &PromotedInsts; 2790 2791 /// The ongoing transaction where every action should be registered. 2792 TypePromotionTransaction &TPT; 2793 2794 // A GEP which has too large offset to be folded into the addressing mode. 2795 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2796 2797 /// This is set to true when we should not do profitability checks. 2798 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2799 bool IgnoreProfitability; 2800 2801 AddressingModeMatcher( 2802 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2803 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2804 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2805 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2806 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2807 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2808 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2809 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2810 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2811 IgnoreProfitability = false; 2812 } 2813 2814 public: 2815 /// Find the maximal addressing mode that a load/store of V can fold, 2816 /// give an access type of AccessTy. This returns a list of involved 2817 /// instructions in AddrModeInsts. 2818 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2819 /// optimizations. 2820 /// \p PromotedInsts maps the instructions to their type before promotion. 2821 /// \p The ongoing transaction where every action should be registered. 2822 static ExtAddrMode 2823 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2824 SmallVectorImpl<Instruction *> &AddrModeInsts, 2825 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2826 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2827 TypePromotionTransaction &TPT, 2828 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2829 ExtAddrMode Result; 2830 2831 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2832 MemoryInst, Result, InsertedInsts, 2833 PromotedInsts, TPT, LargeOffsetGEP) 2834 .matchAddr(V, 0); 2835 (void)Success; assert(Success && "Couldn't select *anything*?"); 2836 return Result; 2837 } 2838 2839 private: 2840 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2841 bool matchAddr(Value *Addr, unsigned Depth); 2842 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2843 bool *MovedAway = nullptr); 2844 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2845 ExtAddrMode &AMBefore, 2846 ExtAddrMode &AMAfter); 2847 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2848 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2849 Value *PromotedOperand) const; 2850 }; 2851 2852 class PhiNodeSet; 2853 2854 /// An iterator for PhiNodeSet. 2855 class PhiNodeSetIterator { 2856 PhiNodeSet * const Set; 2857 size_t CurrentIndex = 0; 2858 2859 public: 2860 /// The constructor. Start should point to either a valid element, or be equal 2861 /// to the size of the underlying SmallVector of the PhiNodeSet. 2862 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2863 PHINode * operator*() const; 2864 PhiNodeSetIterator& operator++(); 2865 bool operator==(const PhiNodeSetIterator &RHS) const; 2866 bool operator!=(const PhiNodeSetIterator &RHS) const; 2867 }; 2868 2869 /// Keeps a set of PHINodes. 2870 /// 2871 /// This is a minimal set implementation for a specific use case: 2872 /// It is very fast when there are very few elements, but also provides good 2873 /// performance when there are many. It is similar to SmallPtrSet, but also 2874 /// provides iteration by insertion order, which is deterministic and stable 2875 /// across runs. It is also similar to SmallSetVector, but provides removing 2876 /// elements in O(1) time. This is achieved by not actually removing the element 2877 /// from the underlying vector, so comes at the cost of using more memory, but 2878 /// that is fine, since PhiNodeSets are used as short lived objects. 2879 class PhiNodeSet { 2880 friend class PhiNodeSetIterator; 2881 2882 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2883 using iterator = PhiNodeSetIterator; 2884 2885 /// Keeps the elements in the order of their insertion in the underlying 2886 /// vector. To achieve constant time removal, it never deletes any element. 2887 SmallVector<PHINode *, 32> NodeList; 2888 2889 /// Keeps the elements in the underlying set implementation. This (and not the 2890 /// NodeList defined above) is the source of truth on whether an element 2891 /// is actually in the collection. 2892 MapType NodeMap; 2893 2894 /// Points to the first valid (not deleted) element when the set is not empty 2895 /// and the value is not zero. Equals to the size of the underlying vector 2896 /// when the set is empty. When the value is 0, as in the beginning, the 2897 /// first element may or may not be valid. 2898 size_t FirstValidElement = 0; 2899 2900 public: 2901 /// Inserts a new element to the collection. 2902 /// \returns true if the element is actually added, i.e. was not in the 2903 /// collection before the operation. 2904 bool insert(PHINode *Ptr) { 2905 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2906 NodeList.push_back(Ptr); 2907 return true; 2908 } 2909 return false; 2910 } 2911 2912 /// Removes the element from the collection. 2913 /// \returns whether the element is actually removed, i.e. was in the 2914 /// collection before the operation. 2915 bool erase(PHINode *Ptr) { 2916 auto it = NodeMap.find(Ptr); 2917 if (it != NodeMap.end()) { 2918 NodeMap.erase(Ptr); 2919 SkipRemovedElements(FirstValidElement); 2920 return true; 2921 } 2922 return false; 2923 } 2924 2925 /// Removes all elements and clears the collection. 2926 void clear() { 2927 NodeMap.clear(); 2928 NodeList.clear(); 2929 FirstValidElement = 0; 2930 } 2931 2932 /// \returns an iterator that will iterate the elements in the order of 2933 /// insertion. 2934 iterator begin() { 2935 if (FirstValidElement == 0) 2936 SkipRemovedElements(FirstValidElement); 2937 return PhiNodeSetIterator(this, FirstValidElement); 2938 } 2939 2940 /// \returns an iterator that points to the end of the collection. 2941 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2942 2943 /// Returns the number of elements in the collection. 2944 size_t size() const { 2945 return NodeMap.size(); 2946 } 2947 2948 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2949 size_t count(PHINode *Ptr) const { 2950 return NodeMap.count(Ptr); 2951 } 2952 2953 private: 2954 /// Updates the CurrentIndex so that it will point to a valid element. 2955 /// 2956 /// If the element of NodeList at CurrentIndex is valid, it does not 2957 /// change it. If there are no more valid elements, it updates CurrentIndex 2958 /// to point to the end of the NodeList. 2959 void SkipRemovedElements(size_t &CurrentIndex) { 2960 while (CurrentIndex < NodeList.size()) { 2961 auto it = NodeMap.find(NodeList[CurrentIndex]); 2962 // If the element has been deleted and added again later, NodeMap will 2963 // point to a different index, so CurrentIndex will still be invalid. 2964 if (it != NodeMap.end() && it->second == CurrentIndex) 2965 break; 2966 ++CurrentIndex; 2967 } 2968 } 2969 }; 2970 2971 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2972 : Set(Set), CurrentIndex(Start) {} 2973 2974 PHINode * PhiNodeSetIterator::operator*() const { 2975 assert(CurrentIndex < Set->NodeList.size() && 2976 "PhiNodeSet access out of range"); 2977 return Set->NodeList[CurrentIndex]; 2978 } 2979 2980 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2981 assert(CurrentIndex < Set->NodeList.size() && 2982 "PhiNodeSet access out of range"); 2983 ++CurrentIndex; 2984 Set->SkipRemovedElements(CurrentIndex); 2985 return *this; 2986 } 2987 2988 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2989 return CurrentIndex == RHS.CurrentIndex; 2990 } 2991 2992 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2993 return !((*this) == RHS); 2994 } 2995 2996 /// Keep track of simplification of Phi nodes. 2997 /// Accept the set of all phi nodes and erase phi node from this set 2998 /// if it is simplified. 2999 class SimplificationTracker { 3000 DenseMap<Value *, Value *> Storage; 3001 const SimplifyQuery &SQ; 3002 // Tracks newly created Phi nodes. The elements are iterated by insertion 3003 // order. 3004 PhiNodeSet AllPhiNodes; 3005 // Tracks newly created Select nodes. 3006 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3007 3008 public: 3009 SimplificationTracker(const SimplifyQuery &sq) 3010 : SQ(sq) {} 3011 3012 Value *Get(Value *V) { 3013 do { 3014 auto SV = Storage.find(V); 3015 if (SV == Storage.end()) 3016 return V; 3017 V = SV->second; 3018 } while (true); 3019 } 3020 3021 Value *Simplify(Value *Val) { 3022 SmallVector<Value *, 32> WorkList; 3023 SmallPtrSet<Value *, 32> Visited; 3024 WorkList.push_back(Val); 3025 while (!WorkList.empty()) { 3026 auto P = WorkList.pop_back_val(); 3027 if (!Visited.insert(P).second) 3028 continue; 3029 if (auto *PI = dyn_cast<Instruction>(P)) 3030 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3031 for (auto *U : PI->users()) 3032 WorkList.push_back(cast<Value>(U)); 3033 Put(PI, V); 3034 PI->replaceAllUsesWith(V); 3035 if (auto *PHI = dyn_cast<PHINode>(PI)) 3036 AllPhiNodes.erase(PHI); 3037 if (auto *Select = dyn_cast<SelectInst>(PI)) 3038 AllSelectNodes.erase(Select); 3039 PI->eraseFromParent(); 3040 } 3041 } 3042 return Get(Val); 3043 } 3044 3045 void Put(Value *From, Value *To) { 3046 Storage.insert({ From, To }); 3047 } 3048 3049 void ReplacePhi(PHINode *From, PHINode *To) { 3050 Value* OldReplacement = Get(From); 3051 while (OldReplacement != From) { 3052 From = To; 3053 To = dyn_cast<PHINode>(OldReplacement); 3054 OldReplacement = Get(From); 3055 } 3056 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3057 Put(From, To); 3058 From->replaceAllUsesWith(To); 3059 AllPhiNodes.erase(From); 3060 From->eraseFromParent(); 3061 } 3062 3063 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3064 3065 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3066 3067 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3068 3069 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3070 3071 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3072 3073 void destroyNewNodes(Type *CommonType) { 3074 // For safe erasing, replace the uses with dummy value first. 3075 auto Dummy = UndefValue::get(CommonType); 3076 for (auto I : AllPhiNodes) { 3077 I->replaceAllUsesWith(Dummy); 3078 I->eraseFromParent(); 3079 } 3080 AllPhiNodes.clear(); 3081 for (auto I : AllSelectNodes) { 3082 I->replaceAllUsesWith(Dummy); 3083 I->eraseFromParent(); 3084 } 3085 AllSelectNodes.clear(); 3086 } 3087 }; 3088 3089 /// A helper class for combining addressing modes. 3090 class AddressingModeCombiner { 3091 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3092 typedef std::pair<PHINode *, PHINode *> PHIPair; 3093 3094 private: 3095 /// The addressing modes we've collected. 3096 SmallVector<ExtAddrMode, 16> AddrModes; 3097 3098 /// The field in which the AddrModes differ, when we have more than one. 3099 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3100 3101 /// Are the AddrModes that we have all just equal to their original values? 3102 bool AllAddrModesTrivial = true; 3103 3104 /// Common Type for all different fields in addressing modes. 3105 Type *CommonType; 3106 3107 /// SimplifyQuery for simplifyInstruction utility. 3108 const SimplifyQuery &SQ; 3109 3110 /// Original Address. 3111 Value *Original; 3112 3113 public: 3114 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3115 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3116 3117 /// Get the combined AddrMode 3118 const ExtAddrMode &getAddrMode() const { 3119 return AddrModes[0]; 3120 } 3121 3122 /// Add a new AddrMode if it's compatible with the AddrModes we already 3123 /// have. 3124 /// \return True iff we succeeded in doing so. 3125 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3126 // Take note of if we have any non-trivial AddrModes, as we need to detect 3127 // when all AddrModes are trivial as then we would introduce a phi or select 3128 // which just duplicates what's already there. 3129 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3130 3131 // If this is the first addrmode then everything is fine. 3132 if (AddrModes.empty()) { 3133 AddrModes.emplace_back(NewAddrMode); 3134 return true; 3135 } 3136 3137 // Figure out how different this is from the other address modes, which we 3138 // can do just by comparing against the first one given that we only care 3139 // about the cumulative difference. 3140 ExtAddrMode::FieldName ThisDifferentField = 3141 AddrModes[0].compare(NewAddrMode); 3142 if (DifferentField == ExtAddrMode::NoField) 3143 DifferentField = ThisDifferentField; 3144 else if (DifferentField != ThisDifferentField) 3145 DifferentField = ExtAddrMode::MultipleFields; 3146 3147 // If NewAddrMode differs in more than one dimension we cannot handle it. 3148 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3149 3150 // If Scale Field is different then we reject. 3151 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3152 3153 // We also must reject the case when base offset is different and 3154 // scale reg is not null, we cannot handle this case due to merge of 3155 // different offsets will be used as ScaleReg. 3156 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3157 !NewAddrMode.ScaledReg); 3158 3159 // We also must reject the case when GV is different and BaseReg installed 3160 // due to we want to use base reg as a merge of GV values. 3161 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3162 !NewAddrMode.HasBaseReg); 3163 3164 // Even if NewAddMode is the same we still need to collect it due to 3165 // original value is different. And later we will need all original values 3166 // as anchors during finding the common Phi node. 3167 if (CanHandle) 3168 AddrModes.emplace_back(NewAddrMode); 3169 else 3170 AddrModes.clear(); 3171 3172 return CanHandle; 3173 } 3174 3175 /// Combine the addressing modes we've collected into a single 3176 /// addressing mode. 3177 /// \return True iff we successfully combined them or we only had one so 3178 /// didn't need to combine them anyway. 3179 bool combineAddrModes() { 3180 // If we have no AddrModes then they can't be combined. 3181 if (AddrModes.size() == 0) 3182 return false; 3183 3184 // A single AddrMode can trivially be combined. 3185 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3186 return true; 3187 3188 // If the AddrModes we collected are all just equal to the value they are 3189 // derived from then combining them wouldn't do anything useful. 3190 if (AllAddrModesTrivial) 3191 return false; 3192 3193 if (!addrModeCombiningAllowed()) 3194 return false; 3195 3196 // Build a map between <original value, basic block where we saw it> to 3197 // value of base register. 3198 // Bail out if there is no common type. 3199 FoldAddrToValueMapping Map; 3200 if (!initializeMap(Map)) 3201 return false; 3202 3203 Value *CommonValue = findCommon(Map); 3204 if (CommonValue) 3205 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3206 return CommonValue != nullptr; 3207 } 3208 3209 private: 3210 /// Initialize Map with anchor values. For address seen 3211 /// we set the value of different field saw in this address. 3212 /// At the same time we find a common type for different field we will 3213 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3214 /// Return false if there is no common type found. 3215 bool initializeMap(FoldAddrToValueMapping &Map) { 3216 // Keep track of keys where the value is null. We will need to replace it 3217 // with constant null when we know the common type. 3218 SmallVector<Value *, 2> NullValue; 3219 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3220 for (auto &AM : AddrModes) { 3221 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3222 if (DV) { 3223 auto *Type = DV->getType(); 3224 if (CommonType && CommonType != Type) 3225 return false; 3226 CommonType = Type; 3227 Map[AM.OriginalValue] = DV; 3228 } else { 3229 NullValue.push_back(AM.OriginalValue); 3230 } 3231 } 3232 assert(CommonType && "At least one non-null value must be!"); 3233 for (auto *V : NullValue) 3234 Map[V] = Constant::getNullValue(CommonType); 3235 return true; 3236 } 3237 3238 /// We have mapping between value A and other value B where B was a field in 3239 /// addressing mode represented by A. Also we have an original value C 3240 /// representing an address we start with. Traversing from C through phi and 3241 /// selects we ended up with A's in a map. This utility function tries to find 3242 /// a value V which is a field in addressing mode C and traversing through phi 3243 /// nodes and selects we will end up in corresponded values B in a map. 3244 /// The utility will create a new Phi/Selects if needed. 3245 // The simple example looks as follows: 3246 // BB1: 3247 // p1 = b1 + 40 3248 // br cond BB2, BB3 3249 // BB2: 3250 // p2 = b2 + 40 3251 // br BB3 3252 // BB3: 3253 // p = phi [p1, BB1], [p2, BB2] 3254 // v = load p 3255 // Map is 3256 // p1 -> b1 3257 // p2 -> b2 3258 // Request is 3259 // p -> ? 3260 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3261 Value *findCommon(FoldAddrToValueMapping &Map) { 3262 // Tracks the simplification of newly created phi nodes. The reason we use 3263 // this mapping is because we will add new created Phi nodes in AddrToBase. 3264 // Simplification of Phi nodes is recursive, so some Phi node may 3265 // be simplified after we added it to AddrToBase. In reality this 3266 // simplification is possible only if original phi/selects were not 3267 // simplified yet. 3268 // Using this mapping we can find the current value in AddrToBase. 3269 SimplificationTracker ST(SQ); 3270 3271 // First step, DFS to create PHI nodes for all intermediate blocks. 3272 // Also fill traverse order for the second step. 3273 SmallVector<Value *, 32> TraverseOrder; 3274 InsertPlaceholders(Map, TraverseOrder, ST); 3275 3276 // Second Step, fill new nodes by merged values and simplify if possible. 3277 FillPlaceholders(Map, TraverseOrder, ST); 3278 3279 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3280 ST.destroyNewNodes(CommonType); 3281 return nullptr; 3282 } 3283 3284 // Now we'd like to match New Phi nodes to existed ones. 3285 unsigned PhiNotMatchedCount = 0; 3286 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3287 ST.destroyNewNodes(CommonType); 3288 return nullptr; 3289 } 3290 3291 auto *Result = ST.Get(Map.find(Original)->second); 3292 if (Result) { 3293 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3294 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3295 } 3296 return Result; 3297 } 3298 3299 /// Try to match PHI node to Candidate. 3300 /// Matcher tracks the matched Phi nodes. 3301 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3302 SmallSetVector<PHIPair, 8> &Matcher, 3303 PhiNodeSet &PhiNodesToMatch) { 3304 SmallVector<PHIPair, 8> WorkList; 3305 Matcher.insert({ PHI, Candidate }); 3306 SmallSet<PHINode *, 8> MatchedPHIs; 3307 MatchedPHIs.insert(PHI); 3308 WorkList.push_back({ PHI, Candidate }); 3309 SmallSet<PHIPair, 8> Visited; 3310 while (!WorkList.empty()) { 3311 auto Item = WorkList.pop_back_val(); 3312 if (!Visited.insert(Item).second) 3313 continue; 3314 // We iterate over all incoming values to Phi to compare them. 3315 // If values are different and both of them Phi and the first one is a 3316 // Phi we added (subject to match) and both of them is in the same basic 3317 // block then we can match our pair if values match. So we state that 3318 // these values match and add it to work list to verify that. 3319 for (auto B : Item.first->blocks()) { 3320 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3321 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3322 if (FirstValue == SecondValue) 3323 continue; 3324 3325 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3326 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3327 3328 // One of them is not Phi or 3329 // The first one is not Phi node from the set we'd like to match or 3330 // Phi nodes from different basic blocks then 3331 // we will not be able to match. 3332 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3333 FirstPhi->getParent() != SecondPhi->getParent()) 3334 return false; 3335 3336 // If we already matched them then continue. 3337 if (Matcher.count({ FirstPhi, SecondPhi })) 3338 continue; 3339 // So the values are different and does not match. So we need them to 3340 // match. (But we register no more than one match per PHI node, so that 3341 // we won't later try to replace them twice.) 3342 if (!MatchedPHIs.insert(FirstPhi).second) 3343 Matcher.insert({ FirstPhi, SecondPhi }); 3344 // But me must check it. 3345 WorkList.push_back({ FirstPhi, SecondPhi }); 3346 } 3347 } 3348 return true; 3349 } 3350 3351 /// For the given set of PHI nodes (in the SimplificationTracker) try 3352 /// to find their equivalents. 3353 /// Returns false if this matching fails and creation of new Phi is disabled. 3354 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3355 unsigned &PhiNotMatchedCount) { 3356 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3357 // order, so the replacements (ReplacePhi) are also done in a deterministic 3358 // order. 3359 SmallSetVector<PHIPair, 8> Matched; 3360 SmallPtrSet<PHINode *, 8> WillNotMatch; 3361 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3362 while (PhiNodesToMatch.size()) { 3363 PHINode *PHI = *PhiNodesToMatch.begin(); 3364 3365 // Add us, if no Phi nodes in the basic block we do not match. 3366 WillNotMatch.clear(); 3367 WillNotMatch.insert(PHI); 3368 3369 // Traverse all Phis until we found equivalent or fail to do that. 3370 bool IsMatched = false; 3371 for (auto &P : PHI->getParent()->phis()) { 3372 if (&P == PHI) 3373 continue; 3374 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3375 break; 3376 // If it does not match, collect all Phi nodes from matcher. 3377 // if we end up with no match, them all these Phi nodes will not match 3378 // later. 3379 for (auto M : Matched) 3380 WillNotMatch.insert(M.first); 3381 Matched.clear(); 3382 } 3383 if (IsMatched) { 3384 // Replace all matched values and erase them. 3385 for (auto MV : Matched) 3386 ST.ReplacePhi(MV.first, MV.second); 3387 Matched.clear(); 3388 continue; 3389 } 3390 // If we are not allowed to create new nodes then bail out. 3391 if (!AllowNewPhiNodes) 3392 return false; 3393 // Just remove all seen values in matcher. They will not match anything. 3394 PhiNotMatchedCount += WillNotMatch.size(); 3395 for (auto *P : WillNotMatch) 3396 PhiNodesToMatch.erase(P); 3397 } 3398 return true; 3399 } 3400 /// Fill the placeholders with values from predecessors and simplify them. 3401 void FillPlaceholders(FoldAddrToValueMapping &Map, 3402 SmallVectorImpl<Value *> &TraverseOrder, 3403 SimplificationTracker &ST) { 3404 while (!TraverseOrder.empty()) { 3405 Value *Current = TraverseOrder.pop_back_val(); 3406 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3407 Value *V = Map[Current]; 3408 3409 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3410 // CurrentValue also must be Select. 3411 auto *CurrentSelect = cast<SelectInst>(Current); 3412 auto *TrueValue = CurrentSelect->getTrueValue(); 3413 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3414 Select->setTrueValue(ST.Get(Map[TrueValue])); 3415 auto *FalseValue = CurrentSelect->getFalseValue(); 3416 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3417 Select->setFalseValue(ST.Get(Map[FalseValue])); 3418 } else { 3419 // Must be a Phi node then. 3420 PHINode *PHI = cast<PHINode>(V); 3421 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3422 // Fill the Phi node with values from predecessors. 3423 for (auto B : predecessors(PHI->getParent())) { 3424 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3425 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3426 PHI->addIncoming(ST.Get(Map[PV]), B); 3427 } 3428 } 3429 Map[Current] = ST.Simplify(V); 3430 } 3431 } 3432 3433 /// Starting from original value recursively iterates over def-use chain up to 3434 /// known ending values represented in a map. For each traversed phi/select 3435 /// inserts a placeholder Phi or Select. 3436 /// Reports all new created Phi/Select nodes by adding them to set. 3437 /// Also reports and order in what values have been traversed. 3438 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3439 SmallVectorImpl<Value *> &TraverseOrder, 3440 SimplificationTracker &ST) { 3441 SmallVector<Value *, 32> Worklist; 3442 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3443 "Address must be a Phi or Select node"); 3444 auto *Dummy = UndefValue::get(CommonType); 3445 Worklist.push_back(Original); 3446 while (!Worklist.empty()) { 3447 Value *Current = Worklist.pop_back_val(); 3448 // if it is already visited or it is an ending value then skip it. 3449 if (Map.find(Current) != Map.end()) 3450 continue; 3451 TraverseOrder.push_back(Current); 3452 3453 // CurrentValue must be a Phi node or select. All others must be covered 3454 // by anchors. 3455 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3456 // Is it OK to get metadata from OrigSelect?! 3457 // Create a Select placeholder with dummy value. 3458 SelectInst *Select = SelectInst::Create( 3459 CurrentSelect->getCondition(), Dummy, Dummy, 3460 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3461 Map[Current] = Select; 3462 ST.insertNewSelect(Select); 3463 // We are interested in True and False values. 3464 Worklist.push_back(CurrentSelect->getTrueValue()); 3465 Worklist.push_back(CurrentSelect->getFalseValue()); 3466 } else { 3467 // It must be a Phi node then. 3468 PHINode *CurrentPhi = cast<PHINode>(Current); 3469 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3470 PHINode *PHI = 3471 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3472 Map[Current] = PHI; 3473 ST.insertNewPhi(PHI); 3474 for (Value *P : CurrentPhi->incoming_values()) 3475 Worklist.push_back(P); 3476 } 3477 } 3478 } 3479 3480 bool addrModeCombiningAllowed() { 3481 if (DisableComplexAddrModes) 3482 return false; 3483 switch (DifferentField) { 3484 default: 3485 return false; 3486 case ExtAddrMode::BaseRegField: 3487 return AddrSinkCombineBaseReg; 3488 case ExtAddrMode::BaseGVField: 3489 return AddrSinkCombineBaseGV; 3490 case ExtAddrMode::BaseOffsField: 3491 return AddrSinkCombineBaseOffs; 3492 case ExtAddrMode::ScaledRegField: 3493 return AddrSinkCombineScaledReg; 3494 } 3495 } 3496 }; 3497 } // end anonymous namespace 3498 3499 /// Try adding ScaleReg*Scale to the current addressing mode. 3500 /// Return true and update AddrMode if this addr mode is legal for the target, 3501 /// false if not. 3502 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3503 unsigned Depth) { 3504 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3505 // mode. Just process that directly. 3506 if (Scale == 1) 3507 return matchAddr(ScaleReg, Depth); 3508 3509 // If the scale is 0, it takes nothing to add this. 3510 if (Scale == 0) 3511 return true; 3512 3513 // If we already have a scale of this value, we can add to it, otherwise, we 3514 // need an available scale field. 3515 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3516 return false; 3517 3518 ExtAddrMode TestAddrMode = AddrMode; 3519 3520 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3521 // [A+B + A*7] -> [B+A*8]. 3522 TestAddrMode.Scale += Scale; 3523 TestAddrMode.ScaledReg = ScaleReg; 3524 3525 // If the new address isn't legal, bail out. 3526 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3527 return false; 3528 3529 // It was legal, so commit it. 3530 AddrMode = TestAddrMode; 3531 3532 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3533 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3534 // X*Scale + C*Scale to addr mode. 3535 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3536 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3537 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3538 TestAddrMode.InBounds = false; 3539 TestAddrMode.ScaledReg = AddLHS; 3540 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3541 3542 // If this addressing mode is legal, commit it and remember that we folded 3543 // this instruction. 3544 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3545 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3546 AddrMode = TestAddrMode; 3547 return true; 3548 } 3549 } 3550 3551 // Otherwise, not (x+c)*scale, just return what we have. 3552 return true; 3553 } 3554 3555 /// This is a little filter, which returns true if an addressing computation 3556 /// involving I might be folded into a load/store accessing it. 3557 /// This doesn't need to be perfect, but needs to accept at least 3558 /// the set of instructions that MatchOperationAddr can. 3559 static bool MightBeFoldableInst(Instruction *I) { 3560 switch (I->getOpcode()) { 3561 case Instruction::BitCast: 3562 case Instruction::AddrSpaceCast: 3563 // Don't touch identity bitcasts. 3564 if (I->getType() == I->getOperand(0)->getType()) 3565 return false; 3566 return I->getType()->isIntOrPtrTy(); 3567 case Instruction::PtrToInt: 3568 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3569 return true; 3570 case Instruction::IntToPtr: 3571 // We know the input is intptr_t, so this is foldable. 3572 return true; 3573 case Instruction::Add: 3574 return true; 3575 case Instruction::Mul: 3576 case Instruction::Shl: 3577 // Can only handle X*C and X << C. 3578 return isa<ConstantInt>(I->getOperand(1)); 3579 case Instruction::GetElementPtr: 3580 return true; 3581 default: 3582 return false; 3583 } 3584 } 3585 3586 /// Check whether or not \p Val is a legal instruction for \p TLI. 3587 /// \note \p Val is assumed to be the product of some type promotion. 3588 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3589 /// to be legal, as the non-promoted value would have had the same state. 3590 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3591 const DataLayout &DL, Value *Val) { 3592 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3593 if (!PromotedInst) 3594 return false; 3595 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3596 // If the ISDOpcode is undefined, it was undefined before the promotion. 3597 if (!ISDOpcode) 3598 return true; 3599 // Otherwise, check if the promoted instruction is legal or not. 3600 return TLI.isOperationLegalOrCustom( 3601 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3602 } 3603 3604 namespace { 3605 3606 /// Hepler class to perform type promotion. 3607 class TypePromotionHelper { 3608 /// Utility function to add a promoted instruction \p ExtOpnd to 3609 /// \p PromotedInsts and record the type of extension we have seen. 3610 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3611 Instruction *ExtOpnd, 3612 bool IsSExt) { 3613 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3614 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3615 if (It != PromotedInsts.end()) { 3616 // If the new extension is same as original, the information in 3617 // PromotedInsts[ExtOpnd] is still correct. 3618 if (It->second.getInt() == ExtTy) 3619 return; 3620 3621 // Now the new extension is different from old extension, we make 3622 // the type information invalid by setting extension type to 3623 // BothExtension. 3624 ExtTy = BothExtension; 3625 } 3626 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3627 } 3628 3629 /// Utility function to query the original type of instruction \p Opnd 3630 /// with a matched extension type. If the extension doesn't match, we 3631 /// cannot use the information we had on the original type. 3632 /// BothExtension doesn't match any extension type. 3633 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3634 Instruction *Opnd, 3635 bool IsSExt) { 3636 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3637 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3638 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3639 return It->second.getPointer(); 3640 return nullptr; 3641 } 3642 3643 /// Utility function to check whether or not a sign or zero extension 3644 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3645 /// either using the operands of \p Inst or promoting \p Inst. 3646 /// The type of the extension is defined by \p IsSExt. 3647 /// In other words, check if: 3648 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3649 /// #1 Promotion applies: 3650 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3651 /// #2 Operand reuses: 3652 /// ext opnd1 to ConsideredExtType. 3653 /// \p PromotedInsts maps the instructions to their type before promotion. 3654 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3655 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3656 3657 /// Utility function to determine if \p OpIdx should be promoted when 3658 /// promoting \p Inst. 3659 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3660 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3661 } 3662 3663 /// Utility function to promote the operand of \p Ext when this 3664 /// operand is a promotable trunc or sext or zext. 3665 /// \p PromotedInsts maps the instructions to their type before promotion. 3666 /// \p CreatedInstsCost[out] contains the cost of all instructions 3667 /// created to promote the operand of Ext. 3668 /// Newly added extensions are inserted in \p Exts. 3669 /// Newly added truncates are inserted in \p Truncs. 3670 /// Should never be called directly. 3671 /// \return The promoted value which is used instead of Ext. 3672 static Value *promoteOperandForTruncAndAnyExt( 3673 Instruction *Ext, TypePromotionTransaction &TPT, 3674 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3675 SmallVectorImpl<Instruction *> *Exts, 3676 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3677 3678 /// Utility function to promote the operand of \p Ext when this 3679 /// operand is promotable and is not a supported trunc or sext. 3680 /// \p PromotedInsts maps the instructions to their type before promotion. 3681 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3682 /// created to promote the operand of Ext. 3683 /// Newly added extensions are inserted in \p Exts. 3684 /// Newly added truncates are inserted in \p Truncs. 3685 /// Should never be called directly. 3686 /// \return The promoted value which is used instead of Ext. 3687 static Value *promoteOperandForOther(Instruction *Ext, 3688 TypePromotionTransaction &TPT, 3689 InstrToOrigTy &PromotedInsts, 3690 unsigned &CreatedInstsCost, 3691 SmallVectorImpl<Instruction *> *Exts, 3692 SmallVectorImpl<Instruction *> *Truncs, 3693 const TargetLowering &TLI, bool IsSExt); 3694 3695 /// \see promoteOperandForOther. 3696 static Value *signExtendOperandForOther( 3697 Instruction *Ext, TypePromotionTransaction &TPT, 3698 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3699 SmallVectorImpl<Instruction *> *Exts, 3700 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3701 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3702 Exts, Truncs, TLI, true); 3703 } 3704 3705 /// \see promoteOperandForOther. 3706 static Value *zeroExtendOperandForOther( 3707 Instruction *Ext, TypePromotionTransaction &TPT, 3708 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3709 SmallVectorImpl<Instruction *> *Exts, 3710 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3711 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3712 Exts, Truncs, TLI, false); 3713 } 3714 3715 public: 3716 /// Type for the utility function that promotes the operand of Ext. 3717 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3718 InstrToOrigTy &PromotedInsts, 3719 unsigned &CreatedInstsCost, 3720 SmallVectorImpl<Instruction *> *Exts, 3721 SmallVectorImpl<Instruction *> *Truncs, 3722 const TargetLowering &TLI); 3723 3724 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3725 /// action to promote the operand of \p Ext instead of using Ext. 3726 /// \return NULL if no promotable action is possible with the current 3727 /// sign extension. 3728 /// \p InsertedInsts keeps track of all the instructions inserted by the 3729 /// other CodeGenPrepare optimizations. This information is important 3730 /// because we do not want to promote these instructions as CodeGenPrepare 3731 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3732 /// \p PromotedInsts maps the instructions to their type before promotion. 3733 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3734 const TargetLowering &TLI, 3735 const InstrToOrigTy &PromotedInsts); 3736 }; 3737 3738 } // end anonymous namespace 3739 3740 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3741 Type *ConsideredExtType, 3742 const InstrToOrigTy &PromotedInsts, 3743 bool IsSExt) { 3744 // The promotion helper does not know how to deal with vector types yet. 3745 // To be able to fix that, we would need to fix the places where we 3746 // statically extend, e.g., constants and such. 3747 if (Inst->getType()->isVectorTy()) 3748 return false; 3749 3750 // We can always get through zext. 3751 if (isa<ZExtInst>(Inst)) 3752 return true; 3753 3754 // sext(sext) is ok too. 3755 if (IsSExt && isa<SExtInst>(Inst)) 3756 return true; 3757 3758 // We can get through binary operator, if it is legal. In other words, the 3759 // binary operator must have a nuw or nsw flag. 3760 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3761 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3762 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3763 (IsSExt && BinOp->hasNoSignedWrap()))) 3764 return true; 3765 3766 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3767 if ((Inst->getOpcode() == Instruction::And || 3768 Inst->getOpcode() == Instruction::Or)) 3769 return true; 3770 3771 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3772 if (Inst->getOpcode() == Instruction::Xor) { 3773 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3774 // Make sure it is not a NOT. 3775 if (Cst && !Cst->getValue().isAllOnesValue()) 3776 return true; 3777 } 3778 3779 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3780 // It may change a poisoned value into a regular value, like 3781 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3782 // poisoned value regular value 3783 // It should be OK since undef covers valid value. 3784 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3785 return true; 3786 3787 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3788 // It may change a poisoned value into a regular value, like 3789 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3790 // poisoned value regular value 3791 // It should be OK since undef covers valid value. 3792 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3793 const Instruction *ExtInst = 3794 dyn_cast<const Instruction>(*Inst->user_begin()); 3795 if (ExtInst->hasOneUse()) { 3796 const Instruction *AndInst = 3797 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3798 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3799 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3800 if (Cst && 3801 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3802 return true; 3803 } 3804 } 3805 } 3806 3807 // Check if we can do the following simplification. 3808 // ext(trunc(opnd)) --> ext(opnd) 3809 if (!isa<TruncInst>(Inst)) 3810 return false; 3811 3812 Value *OpndVal = Inst->getOperand(0); 3813 // Check if we can use this operand in the extension. 3814 // If the type is larger than the result type of the extension, we cannot. 3815 if (!OpndVal->getType()->isIntegerTy() || 3816 OpndVal->getType()->getIntegerBitWidth() > 3817 ConsideredExtType->getIntegerBitWidth()) 3818 return false; 3819 3820 // If the operand of the truncate is not an instruction, we will not have 3821 // any information on the dropped bits. 3822 // (Actually we could for constant but it is not worth the extra logic). 3823 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3824 if (!Opnd) 3825 return false; 3826 3827 // Check if the source of the type is narrow enough. 3828 // I.e., check that trunc just drops extended bits of the same kind of 3829 // the extension. 3830 // #1 get the type of the operand and check the kind of the extended bits. 3831 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3832 if (OpndType) 3833 ; 3834 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3835 OpndType = Opnd->getOperand(0)->getType(); 3836 else 3837 return false; 3838 3839 // #2 check that the truncate just drops extended bits. 3840 return Inst->getType()->getIntegerBitWidth() >= 3841 OpndType->getIntegerBitWidth(); 3842 } 3843 3844 TypePromotionHelper::Action TypePromotionHelper::getAction( 3845 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3846 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3847 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3848 "Unexpected instruction type"); 3849 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3850 Type *ExtTy = Ext->getType(); 3851 bool IsSExt = isa<SExtInst>(Ext); 3852 // If the operand of the extension is not an instruction, we cannot 3853 // get through. 3854 // If it, check we can get through. 3855 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3856 return nullptr; 3857 3858 // Do not promote if the operand has been added by codegenprepare. 3859 // Otherwise, it means we are undoing an optimization that is likely to be 3860 // redone, thus causing potential infinite loop. 3861 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3862 return nullptr; 3863 3864 // SExt or Trunc instructions. 3865 // Return the related handler. 3866 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3867 isa<ZExtInst>(ExtOpnd)) 3868 return promoteOperandForTruncAndAnyExt; 3869 3870 // Regular instruction. 3871 // Abort early if we will have to insert non-free instructions. 3872 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3873 return nullptr; 3874 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3875 } 3876 3877 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3878 Instruction *SExt, TypePromotionTransaction &TPT, 3879 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3880 SmallVectorImpl<Instruction *> *Exts, 3881 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3882 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3883 // get through it and this method should not be called. 3884 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3885 Value *ExtVal = SExt; 3886 bool HasMergedNonFreeExt = false; 3887 if (isa<ZExtInst>(SExtOpnd)) { 3888 // Replace s|zext(zext(opnd)) 3889 // => zext(opnd). 3890 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3891 Value *ZExt = 3892 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3893 TPT.replaceAllUsesWith(SExt, ZExt); 3894 TPT.eraseInstruction(SExt); 3895 ExtVal = ZExt; 3896 } else { 3897 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3898 // => z|sext(opnd). 3899 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3900 } 3901 CreatedInstsCost = 0; 3902 3903 // Remove dead code. 3904 if (SExtOpnd->use_empty()) 3905 TPT.eraseInstruction(SExtOpnd); 3906 3907 // Check if the extension is still needed. 3908 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3909 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3910 if (ExtInst) { 3911 if (Exts) 3912 Exts->push_back(ExtInst); 3913 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3914 } 3915 return ExtVal; 3916 } 3917 3918 // At this point we have: ext ty opnd to ty. 3919 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3920 Value *NextVal = ExtInst->getOperand(0); 3921 TPT.eraseInstruction(ExtInst, NextVal); 3922 return NextVal; 3923 } 3924 3925 Value *TypePromotionHelper::promoteOperandForOther( 3926 Instruction *Ext, TypePromotionTransaction &TPT, 3927 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3928 SmallVectorImpl<Instruction *> *Exts, 3929 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3930 bool IsSExt) { 3931 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3932 // get through it and this method should not be called. 3933 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3934 CreatedInstsCost = 0; 3935 if (!ExtOpnd->hasOneUse()) { 3936 // ExtOpnd will be promoted. 3937 // All its uses, but Ext, will need to use a truncated value of the 3938 // promoted version. 3939 // Create the truncate now. 3940 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3941 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3942 // Insert it just after the definition. 3943 ITrunc->moveAfter(ExtOpnd); 3944 if (Truncs) 3945 Truncs->push_back(ITrunc); 3946 } 3947 3948 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3949 // Restore the operand of Ext (which has been replaced by the previous call 3950 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3951 TPT.setOperand(Ext, 0, ExtOpnd); 3952 } 3953 3954 // Get through the Instruction: 3955 // 1. Update its type. 3956 // 2. Replace the uses of Ext by Inst. 3957 // 3. Extend each operand that needs to be extended. 3958 3959 // Remember the original type of the instruction before promotion. 3960 // This is useful to know that the high bits are sign extended bits. 3961 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3962 // Step #1. 3963 TPT.mutateType(ExtOpnd, Ext->getType()); 3964 // Step #2. 3965 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3966 // Step #3. 3967 Instruction *ExtForOpnd = Ext; 3968 3969 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3970 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3971 ++OpIdx) { 3972 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3973 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3974 !shouldExtOperand(ExtOpnd, OpIdx)) { 3975 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3976 continue; 3977 } 3978 // Check if we can statically extend the operand. 3979 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3980 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3981 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3982 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3983 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3984 : Cst->getValue().zext(BitWidth); 3985 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3986 continue; 3987 } 3988 // UndefValue are typed, so we have to statically sign extend them. 3989 if (isa<UndefValue>(Opnd)) { 3990 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3991 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3992 continue; 3993 } 3994 3995 // Otherwise we have to explicitly sign extend the operand. 3996 // Check if Ext was reused to extend an operand. 3997 if (!ExtForOpnd) { 3998 // If yes, create a new one. 3999 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4000 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4001 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4002 if (!isa<Instruction>(ValForExtOpnd)) { 4003 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4004 continue; 4005 } 4006 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4007 } 4008 if (Exts) 4009 Exts->push_back(ExtForOpnd); 4010 TPT.setOperand(ExtForOpnd, 0, Opnd); 4011 4012 // Move the sign extension before the insertion point. 4013 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4014 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4015 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4016 // If more sext are required, new instructions will have to be created. 4017 ExtForOpnd = nullptr; 4018 } 4019 if (ExtForOpnd == Ext) { 4020 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4021 TPT.eraseInstruction(Ext); 4022 } 4023 return ExtOpnd; 4024 } 4025 4026 /// Check whether or not promoting an instruction to a wider type is profitable. 4027 /// \p NewCost gives the cost of extension instructions created by the 4028 /// promotion. 4029 /// \p OldCost gives the cost of extension instructions before the promotion 4030 /// plus the number of instructions that have been 4031 /// matched in the addressing mode the promotion. 4032 /// \p PromotedOperand is the value that has been promoted. 4033 /// \return True if the promotion is profitable, false otherwise. 4034 bool AddressingModeMatcher::isPromotionProfitable( 4035 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4036 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4037 << '\n'); 4038 // The cost of the new extensions is greater than the cost of the 4039 // old extension plus what we folded. 4040 // This is not profitable. 4041 if (NewCost > OldCost) 4042 return false; 4043 if (NewCost < OldCost) 4044 return true; 4045 // The promotion is neutral but it may help folding the sign extension in 4046 // loads for instance. 4047 // Check that we did not create an illegal instruction. 4048 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4049 } 4050 4051 /// Given an instruction or constant expr, see if we can fold the operation 4052 /// into the addressing mode. If so, update the addressing mode and return 4053 /// true, otherwise return false without modifying AddrMode. 4054 /// If \p MovedAway is not NULL, it contains the information of whether or 4055 /// not AddrInst has to be folded into the addressing mode on success. 4056 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4057 /// because it has been moved away. 4058 /// Thus AddrInst must not be added in the matched instructions. 4059 /// This state can happen when AddrInst is a sext, since it may be moved away. 4060 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4061 /// not be referenced anymore. 4062 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4063 unsigned Depth, 4064 bool *MovedAway) { 4065 // Avoid exponential behavior on extremely deep expression trees. 4066 if (Depth >= 5) return false; 4067 4068 // By default, all matched instructions stay in place. 4069 if (MovedAway) 4070 *MovedAway = false; 4071 4072 switch (Opcode) { 4073 case Instruction::PtrToInt: 4074 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4075 return matchAddr(AddrInst->getOperand(0), Depth); 4076 case Instruction::IntToPtr: { 4077 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4078 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4079 // This inttoptr is a no-op if the integer type is pointer sized. 4080 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4081 return matchAddr(AddrInst->getOperand(0), Depth); 4082 return false; 4083 } 4084 case Instruction::BitCast: 4085 // BitCast is always a noop, and we can handle it as long as it is 4086 // int->int or pointer->pointer (we don't want int<->fp or something). 4087 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4088 // Don't touch identity bitcasts. These were probably put here by LSR, 4089 // and we don't want to mess around with them. Assume it knows what it 4090 // is doing. 4091 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4092 return matchAddr(AddrInst->getOperand(0), Depth); 4093 return false; 4094 case Instruction::AddrSpaceCast: { 4095 unsigned SrcAS 4096 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4097 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4098 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4099 return matchAddr(AddrInst->getOperand(0), Depth); 4100 return false; 4101 } 4102 case Instruction::Add: { 4103 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4104 ExtAddrMode BackupAddrMode = AddrMode; 4105 unsigned OldSize = AddrModeInsts.size(); 4106 // Start a transaction at this point. 4107 // The LHS may match but not the RHS. 4108 // Therefore, we need a higher level restoration point to undo partially 4109 // matched operation. 4110 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4111 TPT.getRestorationPoint(); 4112 4113 AddrMode.InBounds = false; 4114 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4115 matchAddr(AddrInst->getOperand(0), Depth+1)) 4116 return true; 4117 4118 // Restore the old addr mode info. 4119 AddrMode = BackupAddrMode; 4120 AddrModeInsts.resize(OldSize); 4121 TPT.rollback(LastKnownGood); 4122 4123 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4124 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4125 matchAddr(AddrInst->getOperand(1), Depth+1)) 4126 return true; 4127 4128 // Otherwise we definitely can't merge the ADD in. 4129 AddrMode = BackupAddrMode; 4130 AddrModeInsts.resize(OldSize); 4131 TPT.rollback(LastKnownGood); 4132 break; 4133 } 4134 //case Instruction::Or: 4135 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4136 //break; 4137 case Instruction::Mul: 4138 case Instruction::Shl: { 4139 // Can only handle X*C and X << C. 4140 AddrMode.InBounds = false; 4141 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4142 if (!RHS || RHS->getBitWidth() > 64) 4143 return false; 4144 int64_t Scale = RHS->getSExtValue(); 4145 if (Opcode == Instruction::Shl) 4146 Scale = 1LL << Scale; 4147 4148 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4149 } 4150 case Instruction::GetElementPtr: { 4151 // Scan the GEP. We check it if it contains constant offsets and at most 4152 // one variable offset. 4153 int VariableOperand = -1; 4154 unsigned VariableScale = 0; 4155 4156 int64_t ConstantOffset = 0; 4157 gep_type_iterator GTI = gep_type_begin(AddrInst); 4158 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4159 if (StructType *STy = GTI.getStructTypeOrNull()) { 4160 const StructLayout *SL = DL.getStructLayout(STy); 4161 unsigned Idx = 4162 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4163 ConstantOffset += SL->getElementOffset(Idx); 4164 } else { 4165 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4166 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4167 const APInt &CVal = CI->getValue(); 4168 if (CVal.getMinSignedBits() <= 64) { 4169 ConstantOffset += CVal.getSExtValue() * TypeSize; 4170 continue; 4171 } 4172 } 4173 if (TypeSize) { // Scales of zero don't do anything. 4174 // We only allow one variable index at the moment. 4175 if (VariableOperand != -1) 4176 return false; 4177 4178 // Remember the variable index. 4179 VariableOperand = i; 4180 VariableScale = TypeSize; 4181 } 4182 } 4183 } 4184 4185 // A common case is for the GEP to only do a constant offset. In this case, 4186 // just add it to the disp field and check validity. 4187 if (VariableOperand == -1) { 4188 AddrMode.BaseOffs += ConstantOffset; 4189 if (ConstantOffset == 0 || 4190 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4191 // Check to see if we can fold the base pointer in too. 4192 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4193 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4194 AddrMode.InBounds = false; 4195 return true; 4196 } 4197 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4198 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4199 ConstantOffset > 0) { 4200 // Record GEPs with non-zero offsets as candidates for splitting in the 4201 // event that the offset cannot fit into the r+i addressing mode. 4202 // Simple and common case that only one GEP is used in calculating the 4203 // address for the memory access. 4204 Value *Base = AddrInst->getOperand(0); 4205 auto *BaseI = dyn_cast<Instruction>(Base); 4206 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4207 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4208 (BaseI && !isa<CastInst>(BaseI) && 4209 !isa<GetElementPtrInst>(BaseI))) { 4210 // If the base is an instruction, make sure the GEP is not in the same 4211 // basic block as the base. If the base is an argument or global 4212 // value, make sure the GEP is not in the entry block. Otherwise, 4213 // instruction selection can undo the split. Also make sure the 4214 // parent block allows inserting non-PHI instructions before the 4215 // terminator. 4216 BasicBlock *Parent = 4217 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4218 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4219 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4220 } 4221 } 4222 AddrMode.BaseOffs -= ConstantOffset; 4223 return false; 4224 } 4225 4226 // Save the valid addressing mode in case we can't match. 4227 ExtAddrMode BackupAddrMode = AddrMode; 4228 unsigned OldSize = AddrModeInsts.size(); 4229 4230 // See if the scale and offset amount is valid for this target. 4231 AddrMode.BaseOffs += ConstantOffset; 4232 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4233 AddrMode.InBounds = false; 4234 4235 // Match the base operand of the GEP. 4236 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4237 // If it couldn't be matched, just stuff the value in a register. 4238 if (AddrMode.HasBaseReg) { 4239 AddrMode = BackupAddrMode; 4240 AddrModeInsts.resize(OldSize); 4241 return false; 4242 } 4243 AddrMode.HasBaseReg = true; 4244 AddrMode.BaseReg = AddrInst->getOperand(0); 4245 } 4246 4247 // Match the remaining variable portion of the GEP. 4248 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4249 Depth)) { 4250 // If it couldn't be matched, try stuffing the base into a register 4251 // instead of matching it, and retrying the match of the scale. 4252 AddrMode = BackupAddrMode; 4253 AddrModeInsts.resize(OldSize); 4254 if (AddrMode.HasBaseReg) 4255 return false; 4256 AddrMode.HasBaseReg = true; 4257 AddrMode.BaseReg = AddrInst->getOperand(0); 4258 AddrMode.BaseOffs += ConstantOffset; 4259 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4260 VariableScale, Depth)) { 4261 // If even that didn't work, bail. 4262 AddrMode = BackupAddrMode; 4263 AddrModeInsts.resize(OldSize); 4264 return false; 4265 } 4266 } 4267 4268 return true; 4269 } 4270 case Instruction::SExt: 4271 case Instruction::ZExt: { 4272 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4273 if (!Ext) 4274 return false; 4275 4276 // Try to move this ext out of the way of the addressing mode. 4277 // Ask for a method for doing so. 4278 TypePromotionHelper::Action TPH = 4279 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4280 if (!TPH) 4281 return false; 4282 4283 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4284 TPT.getRestorationPoint(); 4285 unsigned CreatedInstsCost = 0; 4286 unsigned ExtCost = !TLI.isExtFree(Ext); 4287 Value *PromotedOperand = 4288 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4289 // SExt has been moved away. 4290 // Thus either it will be rematched later in the recursive calls or it is 4291 // gone. Anyway, we must not fold it into the addressing mode at this point. 4292 // E.g., 4293 // op = add opnd, 1 4294 // idx = ext op 4295 // addr = gep base, idx 4296 // is now: 4297 // promotedOpnd = ext opnd <- no match here 4298 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4299 // addr = gep base, op <- match 4300 if (MovedAway) 4301 *MovedAway = true; 4302 4303 assert(PromotedOperand && 4304 "TypePromotionHelper should have filtered out those cases"); 4305 4306 ExtAddrMode BackupAddrMode = AddrMode; 4307 unsigned OldSize = AddrModeInsts.size(); 4308 4309 if (!matchAddr(PromotedOperand, Depth) || 4310 // The total of the new cost is equal to the cost of the created 4311 // instructions. 4312 // The total of the old cost is equal to the cost of the extension plus 4313 // what we have saved in the addressing mode. 4314 !isPromotionProfitable(CreatedInstsCost, 4315 ExtCost + (AddrModeInsts.size() - OldSize), 4316 PromotedOperand)) { 4317 AddrMode = BackupAddrMode; 4318 AddrModeInsts.resize(OldSize); 4319 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4320 TPT.rollback(LastKnownGood); 4321 return false; 4322 } 4323 return true; 4324 } 4325 } 4326 return false; 4327 } 4328 4329 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4330 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4331 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4332 /// for the target. 4333 /// 4334 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4335 // Start a transaction at this point that we will rollback if the matching 4336 // fails. 4337 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4338 TPT.getRestorationPoint(); 4339 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4340 // Fold in immediates if legal for the target. 4341 AddrMode.BaseOffs += CI->getSExtValue(); 4342 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4343 return true; 4344 AddrMode.BaseOffs -= CI->getSExtValue(); 4345 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4346 // If this is a global variable, try to fold it into the addressing mode. 4347 if (!AddrMode.BaseGV) { 4348 AddrMode.BaseGV = GV; 4349 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4350 return true; 4351 AddrMode.BaseGV = nullptr; 4352 } 4353 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4354 ExtAddrMode BackupAddrMode = AddrMode; 4355 unsigned OldSize = AddrModeInsts.size(); 4356 4357 // Check to see if it is possible to fold this operation. 4358 bool MovedAway = false; 4359 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4360 // This instruction may have been moved away. If so, there is nothing 4361 // to check here. 4362 if (MovedAway) 4363 return true; 4364 // Okay, it's possible to fold this. Check to see if it is actually 4365 // *profitable* to do so. We use a simple cost model to avoid increasing 4366 // register pressure too much. 4367 if (I->hasOneUse() || 4368 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4369 AddrModeInsts.push_back(I); 4370 return true; 4371 } 4372 4373 // It isn't profitable to do this, roll back. 4374 //cerr << "NOT FOLDING: " << *I; 4375 AddrMode = BackupAddrMode; 4376 AddrModeInsts.resize(OldSize); 4377 TPT.rollback(LastKnownGood); 4378 } 4379 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4380 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4381 return true; 4382 TPT.rollback(LastKnownGood); 4383 } else if (isa<ConstantPointerNull>(Addr)) { 4384 // Null pointer gets folded without affecting the addressing mode. 4385 return true; 4386 } 4387 4388 // Worse case, the target should support [reg] addressing modes. :) 4389 if (!AddrMode.HasBaseReg) { 4390 AddrMode.HasBaseReg = true; 4391 AddrMode.BaseReg = Addr; 4392 // Still check for legality in case the target supports [imm] but not [i+r]. 4393 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4394 return true; 4395 AddrMode.HasBaseReg = false; 4396 AddrMode.BaseReg = nullptr; 4397 } 4398 4399 // If the base register is already taken, see if we can do [r+r]. 4400 if (AddrMode.Scale == 0) { 4401 AddrMode.Scale = 1; 4402 AddrMode.ScaledReg = Addr; 4403 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4404 return true; 4405 AddrMode.Scale = 0; 4406 AddrMode.ScaledReg = nullptr; 4407 } 4408 // Couldn't match. 4409 TPT.rollback(LastKnownGood); 4410 return false; 4411 } 4412 4413 /// Check to see if all uses of OpVal by the specified inline asm call are due 4414 /// to memory operands. If so, return true, otherwise return false. 4415 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4416 const TargetLowering &TLI, 4417 const TargetRegisterInfo &TRI) { 4418 const Function *F = CI->getFunction(); 4419 TargetLowering::AsmOperandInfoVector TargetConstraints = 4420 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4421 ImmutableCallSite(CI)); 4422 4423 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4424 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4425 4426 // Compute the constraint code and ConstraintType to use. 4427 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4428 4429 // If this asm operand is our Value*, and if it isn't an indirect memory 4430 // operand, we can't fold it! 4431 if (OpInfo.CallOperandVal == OpVal && 4432 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4433 !OpInfo.isIndirect)) 4434 return false; 4435 } 4436 4437 return true; 4438 } 4439 4440 // Max number of memory uses to look at before aborting the search to conserve 4441 // compile time. 4442 static constexpr int MaxMemoryUsesToScan = 20; 4443 4444 /// Recursively walk all the uses of I until we find a memory use. 4445 /// If we find an obviously non-foldable instruction, return true. 4446 /// Add the ultimately found memory instructions to MemoryUses. 4447 static bool FindAllMemoryUses( 4448 Instruction *I, 4449 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4450 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4451 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4452 // If we already considered this instruction, we're done. 4453 if (!ConsideredInsts.insert(I).second) 4454 return false; 4455 4456 // If this is an obviously unfoldable instruction, bail out. 4457 if (!MightBeFoldableInst(I)) 4458 return true; 4459 4460 const bool OptSize = I->getFunction()->hasOptSize(); 4461 4462 // Loop over all the uses, recursively processing them. 4463 for (Use &U : I->uses()) { 4464 // Conservatively return true if we're seeing a large number or a deep chain 4465 // of users. This avoids excessive compilation times in pathological cases. 4466 if (SeenInsts++ >= MaxMemoryUsesToScan) 4467 return true; 4468 4469 Instruction *UserI = cast<Instruction>(U.getUser()); 4470 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4471 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4472 continue; 4473 } 4474 4475 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4476 unsigned opNo = U.getOperandNo(); 4477 if (opNo != StoreInst::getPointerOperandIndex()) 4478 return true; // Storing addr, not into addr. 4479 MemoryUses.push_back(std::make_pair(SI, opNo)); 4480 continue; 4481 } 4482 4483 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4484 unsigned opNo = U.getOperandNo(); 4485 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4486 return true; // Storing addr, not into addr. 4487 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4488 continue; 4489 } 4490 4491 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4492 unsigned opNo = U.getOperandNo(); 4493 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4494 return true; // Storing addr, not into addr. 4495 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4496 continue; 4497 } 4498 4499 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4500 // If this is a cold call, we can sink the addressing calculation into 4501 // the cold path. See optimizeCallInst 4502 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4503 continue; 4504 4505 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4506 if (!IA) return true; 4507 4508 // If this is a memory operand, we're cool, otherwise bail out. 4509 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4510 return true; 4511 continue; 4512 } 4513 4514 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4515 SeenInsts)) 4516 return true; 4517 } 4518 4519 return false; 4520 } 4521 4522 /// Return true if Val is already known to be live at the use site that we're 4523 /// folding it into. If so, there is no cost to include it in the addressing 4524 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4525 /// instruction already. 4526 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4527 Value *KnownLive2) { 4528 // If Val is either of the known-live values, we know it is live! 4529 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4530 return true; 4531 4532 // All values other than instructions and arguments (e.g. constants) are live. 4533 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4534 4535 // If Val is a constant sized alloca in the entry block, it is live, this is 4536 // true because it is just a reference to the stack/frame pointer, which is 4537 // live for the whole function. 4538 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4539 if (AI->isStaticAlloca()) 4540 return true; 4541 4542 // Check to see if this value is already used in the memory instruction's 4543 // block. If so, it's already live into the block at the very least, so we 4544 // can reasonably fold it. 4545 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4546 } 4547 4548 /// It is possible for the addressing mode of the machine to fold the specified 4549 /// instruction into a load or store that ultimately uses it. 4550 /// However, the specified instruction has multiple uses. 4551 /// Given this, it may actually increase register pressure to fold it 4552 /// into the load. For example, consider this code: 4553 /// 4554 /// X = ... 4555 /// Y = X+1 4556 /// use(Y) -> nonload/store 4557 /// Z = Y+1 4558 /// load Z 4559 /// 4560 /// In this case, Y has multiple uses, and can be folded into the load of Z 4561 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4562 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4563 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4564 /// number of computations either. 4565 /// 4566 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4567 /// X was live across 'load Z' for other reasons, we actually *would* want to 4568 /// fold the addressing mode in the Z case. This would make Y die earlier. 4569 bool AddressingModeMatcher:: 4570 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4571 ExtAddrMode &AMAfter) { 4572 if (IgnoreProfitability) return true; 4573 4574 // AMBefore is the addressing mode before this instruction was folded into it, 4575 // and AMAfter is the addressing mode after the instruction was folded. Get 4576 // the set of registers referenced by AMAfter and subtract out those 4577 // referenced by AMBefore: this is the set of values which folding in this 4578 // address extends the lifetime of. 4579 // 4580 // Note that there are only two potential values being referenced here, 4581 // BaseReg and ScaleReg (global addresses are always available, as are any 4582 // folded immediates). 4583 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4584 4585 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4586 // lifetime wasn't extended by adding this instruction. 4587 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4588 BaseReg = nullptr; 4589 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4590 ScaledReg = nullptr; 4591 4592 // If folding this instruction (and it's subexprs) didn't extend any live 4593 // ranges, we're ok with it. 4594 if (!BaseReg && !ScaledReg) 4595 return true; 4596 4597 // If all uses of this instruction can have the address mode sunk into them, 4598 // we can remove the addressing mode and effectively trade one live register 4599 // for another (at worst.) In this context, folding an addressing mode into 4600 // the use is just a particularly nice way of sinking it. 4601 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4602 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4603 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4604 return false; // Has a non-memory, non-foldable use! 4605 4606 // Now that we know that all uses of this instruction are part of a chain of 4607 // computation involving only operations that could theoretically be folded 4608 // into a memory use, loop over each of these memory operation uses and see 4609 // if they could *actually* fold the instruction. The assumption is that 4610 // addressing modes are cheap and that duplicating the computation involved 4611 // many times is worthwhile, even on a fastpath. For sinking candidates 4612 // (i.e. cold call sites), this serves as a way to prevent excessive code 4613 // growth since most architectures have some reasonable small and fast way to 4614 // compute an effective address. (i.e LEA on x86) 4615 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4616 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4617 Instruction *User = MemoryUses[i].first; 4618 unsigned OpNo = MemoryUses[i].second; 4619 4620 // Get the access type of this use. If the use isn't a pointer, we don't 4621 // know what it accesses. 4622 Value *Address = User->getOperand(OpNo); 4623 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4624 if (!AddrTy) 4625 return false; 4626 Type *AddressAccessTy = AddrTy->getElementType(); 4627 unsigned AS = AddrTy->getAddressSpace(); 4628 4629 // Do a match against the root of this address, ignoring profitability. This 4630 // will tell us if the addressing mode for the memory operation will 4631 // *actually* cover the shared instruction. 4632 ExtAddrMode Result; 4633 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4634 0); 4635 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4636 TPT.getRestorationPoint(); 4637 AddressingModeMatcher Matcher( 4638 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4639 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4640 Matcher.IgnoreProfitability = true; 4641 bool Success = Matcher.matchAddr(Address, 0); 4642 (void)Success; assert(Success && "Couldn't select *anything*?"); 4643 4644 // The match was to check the profitability, the changes made are not 4645 // part of the original matcher. Therefore, they should be dropped 4646 // otherwise the original matcher will not present the right state. 4647 TPT.rollback(LastKnownGood); 4648 4649 // If the match didn't cover I, then it won't be shared by it. 4650 if (!is_contained(MatchedAddrModeInsts, I)) 4651 return false; 4652 4653 MatchedAddrModeInsts.clear(); 4654 } 4655 4656 return true; 4657 } 4658 4659 /// Return true if the specified values are defined in a 4660 /// different basic block than BB. 4661 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4662 if (Instruction *I = dyn_cast<Instruction>(V)) 4663 return I->getParent() != BB; 4664 return false; 4665 } 4666 4667 /// Sink addressing mode computation immediate before MemoryInst if doing so 4668 /// can be done without increasing register pressure. The need for the 4669 /// register pressure constraint means this can end up being an all or nothing 4670 /// decision for all uses of the same addressing computation. 4671 /// 4672 /// Load and Store Instructions often have addressing modes that can do 4673 /// significant amounts of computation. As such, instruction selection will try 4674 /// to get the load or store to do as much computation as possible for the 4675 /// program. The problem is that isel can only see within a single block. As 4676 /// such, we sink as much legal addressing mode work into the block as possible. 4677 /// 4678 /// This method is used to optimize both load/store and inline asms with memory 4679 /// operands. It's also used to sink addressing computations feeding into cold 4680 /// call sites into their (cold) basic block. 4681 /// 4682 /// The motivation for handling sinking into cold blocks is that doing so can 4683 /// both enable other address mode sinking (by satisfying the register pressure 4684 /// constraint above), and reduce register pressure globally (by removing the 4685 /// addressing mode computation from the fast path entirely.). 4686 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4687 Type *AccessTy, unsigned AddrSpace) { 4688 Value *Repl = Addr; 4689 4690 // Try to collapse single-value PHI nodes. This is necessary to undo 4691 // unprofitable PRE transformations. 4692 SmallVector<Value*, 8> worklist; 4693 SmallPtrSet<Value*, 16> Visited; 4694 worklist.push_back(Addr); 4695 4696 // Use a worklist to iteratively look through PHI and select nodes, and 4697 // ensure that the addressing mode obtained from the non-PHI/select roots of 4698 // the graph are compatible. 4699 bool PhiOrSelectSeen = false; 4700 SmallVector<Instruction*, 16> AddrModeInsts; 4701 const SimplifyQuery SQ(*DL, TLInfo); 4702 AddressingModeCombiner AddrModes(SQ, Addr); 4703 TypePromotionTransaction TPT(RemovedInsts); 4704 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4705 TPT.getRestorationPoint(); 4706 while (!worklist.empty()) { 4707 Value *V = worklist.back(); 4708 worklist.pop_back(); 4709 4710 // We allow traversing cyclic Phi nodes. 4711 // In case of success after this loop we ensure that traversing through 4712 // Phi nodes ends up with all cases to compute address of the form 4713 // BaseGV + Base + Scale * Index + Offset 4714 // where Scale and Offset are constans and BaseGV, Base and Index 4715 // are exactly the same Values in all cases. 4716 // It means that BaseGV, Scale and Offset dominate our memory instruction 4717 // and have the same value as they had in address computation represented 4718 // as Phi. So we can safely sink address computation to memory instruction. 4719 if (!Visited.insert(V).second) 4720 continue; 4721 4722 // For a PHI node, push all of its incoming values. 4723 if (PHINode *P = dyn_cast<PHINode>(V)) { 4724 for (Value *IncValue : P->incoming_values()) 4725 worklist.push_back(IncValue); 4726 PhiOrSelectSeen = true; 4727 continue; 4728 } 4729 // Similar for select. 4730 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4731 worklist.push_back(SI->getFalseValue()); 4732 worklist.push_back(SI->getTrueValue()); 4733 PhiOrSelectSeen = true; 4734 continue; 4735 } 4736 4737 // For non-PHIs, determine the addressing mode being computed. Note that 4738 // the result may differ depending on what other uses our candidate 4739 // addressing instructions might have. 4740 AddrModeInsts.clear(); 4741 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4742 0); 4743 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4744 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4745 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4746 4747 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4748 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4749 !NewGEPBases.count(GEP)) { 4750 // If splitting the underlying data structure can reduce the offset of a 4751 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4752 // previously split data structures. 4753 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4754 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4755 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4756 } 4757 4758 NewAddrMode.OriginalValue = V; 4759 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4760 break; 4761 } 4762 4763 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4764 // or we have multiple but either couldn't combine them or combining them 4765 // wouldn't do anything useful, bail out now. 4766 if (!AddrModes.combineAddrModes()) { 4767 TPT.rollback(LastKnownGood); 4768 return false; 4769 } 4770 TPT.commit(); 4771 4772 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4773 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4774 4775 // If all the instructions matched are already in this BB, don't do anything. 4776 // If we saw a Phi node then it is not local definitely, and if we saw a select 4777 // then we want to push the address calculation past it even if it's already 4778 // in this BB. 4779 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4780 return IsNonLocalValue(V, MemoryInst->getParent()); 4781 })) { 4782 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4783 << "\n"); 4784 return false; 4785 } 4786 4787 // Insert this computation right after this user. Since our caller is 4788 // scanning from the top of the BB to the bottom, reuse of the expr are 4789 // guaranteed to happen later. 4790 IRBuilder<> Builder(MemoryInst); 4791 4792 // Now that we determined the addressing expression we want to use and know 4793 // that we have to sink it into this block. Check to see if we have already 4794 // done this for some other load/store instr in this block. If so, reuse 4795 // the computation. Before attempting reuse, check if the address is valid 4796 // as it may have been erased. 4797 4798 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4799 4800 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4801 if (SunkAddr) { 4802 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4803 << " for " << *MemoryInst << "\n"); 4804 if (SunkAddr->getType() != Addr->getType()) 4805 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4806 } else if (AddrSinkUsingGEPs || 4807 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4808 // By default, we use the GEP-based method when AA is used later. This 4809 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4810 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4811 << " for " << *MemoryInst << "\n"); 4812 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4813 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4814 4815 // First, find the pointer. 4816 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4817 ResultPtr = AddrMode.BaseReg; 4818 AddrMode.BaseReg = nullptr; 4819 } 4820 4821 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4822 // We can't add more than one pointer together, nor can we scale a 4823 // pointer (both of which seem meaningless). 4824 if (ResultPtr || AddrMode.Scale != 1) 4825 return false; 4826 4827 ResultPtr = AddrMode.ScaledReg; 4828 AddrMode.Scale = 0; 4829 } 4830 4831 // It is only safe to sign extend the BaseReg if we know that the math 4832 // required to create it did not overflow before we extend it. Since 4833 // the original IR value was tossed in favor of a constant back when 4834 // the AddrMode was created we need to bail out gracefully if widths 4835 // do not match instead of extending it. 4836 // 4837 // (See below for code to add the scale.) 4838 if (AddrMode.Scale) { 4839 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4840 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4841 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4842 return false; 4843 } 4844 4845 if (AddrMode.BaseGV) { 4846 if (ResultPtr) 4847 return false; 4848 4849 ResultPtr = AddrMode.BaseGV; 4850 } 4851 4852 // If the real base value actually came from an inttoptr, then the matcher 4853 // will look through it and provide only the integer value. In that case, 4854 // use it here. 4855 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4856 if (!ResultPtr && AddrMode.BaseReg) { 4857 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4858 "sunkaddr"); 4859 AddrMode.BaseReg = nullptr; 4860 } else if (!ResultPtr && AddrMode.Scale == 1) { 4861 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4862 "sunkaddr"); 4863 AddrMode.Scale = 0; 4864 } 4865 } 4866 4867 if (!ResultPtr && 4868 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4869 SunkAddr = Constant::getNullValue(Addr->getType()); 4870 } else if (!ResultPtr) { 4871 return false; 4872 } else { 4873 Type *I8PtrTy = 4874 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4875 Type *I8Ty = Builder.getInt8Ty(); 4876 4877 // Start with the base register. Do this first so that subsequent address 4878 // matching finds it last, which will prevent it from trying to match it 4879 // as the scaled value in case it happens to be a mul. That would be 4880 // problematic if we've sunk a different mul for the scale, because then 4881 // we'd end up sinking both muls. 4882 if (AddrMode.BaseReg) { 4883 Value *V = AddrMode.BaseReg; 4884 if (V->getType() != IntPtrTy) 4885 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4886 4887 ResultIndex = V; 4888 } 4889 4890 // Add the scale value. 4891 if (AddrMode.Scale) { 4892 Value *V = AddrMode.ScaledReg; 4893 if (V->getType() == IntPtrTy) { 4894 // done. 4895 } else { 4896 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4897 cast<IntegerType>(V->getType())->getBitWidth() && 4898 "We can't transform if ScaledReg is too narrow"); 4899 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4900 } 4901 4902 if (AddrMode.Scale != 1) 4903 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4904 "sunkaddr"); 4905 if (ResultIndex) 4906 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4907 else 4908 ResultIndex = V; 4909 } 4910 4911 // Add in the Base Offset if present. 4912 if (AddrMode.BaseOffs) { 4913 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4914 if (ResultIndex) { 4915 // We need to add this separately from the scale above to help with 4916 // SDAG consecutive load/store merging. 4917 if (ResultPtr->getType() != I8PtrTy) 4918 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4919 ResultPtr = 4920 AddrMode.InBounds 4921 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4922 "sunkaddr") 4923 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4924 } 4925 4926 ResultIndex = V; 4927 } 4928 4929 if (!ResultIndex) { 4930 SunkAddr = ResultPtr; 4931 } else { 4932 if (ResultPtr->getType() != I8PtrTy) 4933 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4934 SunkAddr = 4935 AddrMode.InBounds 4936 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4937 "sunkaddr") 4938 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4939 } 4940 4941 if (SunkAddr->getType() != Addr->getType()) 4942 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4943 } 4944 } else { 4945 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4946 // non-integral pointers, so in that case bail out now. 4947 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4948 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4949 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4950 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4951 if (DL->isNonIntegralPointerType(Addr->getType()) || 4952 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4953 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4954 (AddrMode.BaseGV && 4955 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4956 return false; 4957 4958 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4959 << " for " << *MemoryInst << "\n"); 4960 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4961 Value *Result = nullptr; 4962 4963 // Start with the base register. Do this first so that subsequent address 4964 // matching finds it last, which will prevent it from trying to match it 4965 // as the scaled value in case it happens to be a mul. That would be 4966 // problematic if we've sunk a different mul for the scale, because then 4967 // we'd end up sinking both muls. 4968 if (AddrMode.BaseReg) { 4969 Value *V = AddrMode.BaseReg; 4970 if (V->getType()->isPointerTy()) 4971 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4972 if (V->getType() != IntPtrTy) 4973 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4974 Result = V; 4975 } 4976 4977 // Add the scale value. 4978 if (AddrMode.Scale) { 4979 Value *V = AddrMode.ScaledReg; 4980 if (V->getType() == IntPtrTy) { 4981 // done. 4982 } else if (V->getType()->isPointerTy()) { 4983 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4984 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4985 cast<IntegerType>(V->getType())->getBitWidth()) { 4986 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4987 } else { 4988 // It is only safe to sign extend the BaseReg if we know that the math 4989 // required to create it did not overflow before we extend it. Since 4990 // the original IR value was tossed in favor of a constant back when 4991 // the AddrMode was created we need to bail out gracefully if widths 4992 // do not match instead of extending it. 4993 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4994 if (I && (Result != AddrMode.BaseReg)) 4995 I->eraseFromParent(); 4996 return false; 4997 } 4998 if (AddrMode.Scale != 1) 4999 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5000 "sunkaddr"); 5001 if (Result) 5002 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5003 else 5004 Result = V; 5005 } 5006 5007 // Add in the BaseGV if present. 5008 if (AddrMode.BaseGV) { 5009 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5010 if (Result) 5011 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5012 else 5013 Result = V; 5014 } 5015 5016 // Add in the Base Offset if present. 5017 if (AddrMode.BaseOffs) { 5018 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5019 if (Result) 5020 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5021 else 5022 Result = V; 5023 } 5024 5025 if (!Result) 5026 SunkAddr = Constant::getNullValue(Addr->getType()); 5027 else 5028 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5029 } 5030 5031 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5032 // Store the newly computed address into the cache. In the case we reused a 5033 // value, this should be idempotent. 5034 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5035 5036 // If we have no uses, recursively delete the value and all dead instructions 5037 // using it. 5038 if (Repl->use_empty()) { 5039 // This can cause recursive deletion, which can invalidate our iterator. 5040 // Use a WeakTrackingVH to hold onto it in case this happens. 5041 Value *CurValue = &*CurInstIterator; 5042 WeakTrackingVH IterHandle(CurValue); 5043 BasicBlock *BB = CurInstIterator->getParent(); 5044 5045 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5046 5047 if (IterHandle != CurValue) { 5048 // If the iterator instruction was recursively deleted, start over at the 5049 // start of the block. 5050 CurInstIterator = BB->begin(); 5051 SunkAddrs.clear(); 5052 } 5053 } 5054 ++NumMemoryInsts; 5055 return true; 5056 } 5057 5058 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5059 /// address computing into the block when possible / profitable. 5060 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5061 bool MadeChange = false; 5062 5063 const TargetRegisterInfo *TRI = 5064 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5065 TargetLowering::AsmOperandInfoVector TargetConstraints = 5066 TLI->ParseConstraints(*DL, TRI, CS); 5067 unsigned ArgNo = 0; 5068 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5069 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5070 5071 // Compute the constraint code and ConstraintType to use. 5072 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5073 5074 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5075 OpInfo.isIndirect) { 5076 Value *OpVal = CS->getArgOperand(ArgNo++); 5077 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5078 } else if (OpInfo.Type == InlineAsm::isInput) 5079 ArgNo++; 5080 } 5081 5082 return MadeChange; 5083 } 5084 5085 /// Check if all the uses of \p Val are equivalent (or free) zero or 5086 /// sign extensions. 5087 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5088 assert(!Val->use_empty() && "Input must have at least one use"); 5089 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5090 bool IsSExt = isa<SExtInst>(FirstUser); 5091 Type *ExtTy = FirstUser->getType(); 5092 for (const User *U : Val->users()) { 5093 const Instruction *UI = cast<Instruction>(U); 5094 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5095 return false; 5096 Type *CurTy = UI->getType(); 5097 // Same input and output types: Same instruction after CSE. 5098 if (CurTy == ExtTy) 5099 continue; 5100 5101 // If IsSExt is true, we are in this situation: 5102 // a = Val 5103 // b = sext ty1 a to ty2 5104 // c = sext ty1 a to ty3 5105 // Assuming ty2 is shorter than ty3, this could be turned into: 5106 // a = Val 5107 // b = sext ty1 a to ty2 5108 // c = sext ty2 b to ty3 5109 // However, the last sext is not free. 5110 if (IsSExt) 5111 return false; 5112 5113 // This is a ZExt, maybe this is free to extend from one type to another. 5114 // In that case, we would not account for a different use. 5115 Type *NarrowTy; 5116 Type *LargeTy; 5117 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5118 CurTy->getScalarType()->getIntegerBitWidth()) { 5119 NarrowTy = CurTy; 5120 LargeTy = ExtTy; 5121 } else { 5122 NarrowTy = ExtTy; 5123 LargeTy = CurTy; 5124 } 5125 5126 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5127 return false; 5128 } 5129 // All uses are the same or can be derived from one another for free. 5130 return true; 5131 } 5132 5133 /// Try to speculatively promote extensions in \p Exts and continue 5134 /// promoting through newly promoted operands recursively as far as doing so is 5135 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5136 /// When some promotion happened, \p TPT contains the proper state to revert 5137 /// them. 5138 /// 5139 /// \return true if some promotion happened, false otherwise. 5140 bool CodeGenPrepare::tryToPromoteExts( 5141 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5142 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5143 unsigned CreatedInstsCost) { 5144 bool Promoted = false; 5145 5146 // Iterate over all the extensions to try to promote them. 5147 for (auto I : Exts) { 5148 // Early check if we directly have ext(load). 5149 if (isa<LoadInst>(I->getOperand(0))) { 5150 ProfitablyMovedExts.push_back(I); 5151 continue; 5152 } 5153 5154 // Check whether or not we want to do any promotion. The reason we have 5155 // this check inside the for loop is to catch the case where an extension 5156 // is directly fed by a load because in such case the extension can be moved 5157 // up without any promotion on its operands. 5158 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5159 return false; 5160 5161 // Get the action to perform the promotion. 5162 TypePromotionHelper::Action TPH = 5163 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5164 // Check if we can promote. 5165 if (!TPH) { 5166 // Save the current extension as we cannot move up through its operand. 5167 ProfitablyMovedExts.push_back(I); 5168 continue; 5169 } 5170 5171 // Save the current state. 5172 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5173 TPT.getRestorationPoint(); 5174 SmallVector<Instruction *, 4> NewExts; 5175 unsigned NewCreatedInstsCost = 0; 5176 unsigned ExtCost = !TLI->isExtFree(I); 5177 // Promote. 5178 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5179 &NewExts, nullptr, *TLI); 5180 assert(PromotedVal && 5181 "TypePromotionHelper should have filtered out those cases"); 5182 5183 // We would be able to merge only one extension in a load. 5184 // Therefore, if we have more than 1 new extension we heuristically 5185 // cut this search path, because it means we degrade the code quality. 5186 // With exactly 2, the transformation is neutral, because we will merge 5187 // one extension but leave one. However, we optimistically keep going, 5188 // because the new extension may be removed too. 5189 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5190 // FIXME: It would be possible to propagate a negative value instead of 5191 // conservatively ceiling it to 0. 5192 TotalCreatedInstsCost = 5193 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5194 if (!StressExtLdPromotion && 5195 (TotalCreatedInstsCost > 1 || 5196 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5197 // This promotion is not profitable, rollback to the previous state, and 5198 // save the current extension in ProfitablyMovedExts as the latest 5199 // speculative promotion turned out to be unprofitable. 5200 TPT.rollback(LastKnownGood); 5201 ProfitablyMovedExts.push_back(I); 5202 continue; 5203 } 5204 // Continue promoting NewExts as far as doing so is profitable. 5205 SmallVector<Instruction *, 2> NewlyMovedExts; 5206 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5207 bool NewPromoted = false; 5208 for (auto ExtInst : NewlyMovedExts) { 5209 Instruction *MovedExt = cast<Instruction>(ExtInst); 5210 Value *ExtOperand = MovedExt->getOperand(0); 5211 // If we have reached to a load, we need this extra profitability check 5212 // as it could potentially be merged into an ext(load). 5213 if (isa<LoadInst>(ExtOperand) && 5214 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5215 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5216 continue; 5217 5218 ProfitablyMovedExts.push_back(MovedExt); 5219 NewPromoted = true; 5220 } 5221 5222 // If none of speculative promotions for NewExts is profitable, rollback 5223 // and save the current extension (I) as the last profitable extension. 5224 if (!NewPromoted) { 5225 TPT.rollback(LastKnownGood); 5226 ProfitablyMovedExts.push_back(I); 5227 continue; 5228 } 5229 // The promotion is profitable. 5230 Promoted = true; 5231 } 5232 return Promoted; 5233 } 5234 5235 /// Merging redundant sexts when one is dominating the other. 5236 bool CodeGenPrepare::mergeSExts(Function &F) { 5237 bool Changed = false; 5238 for (auto &Entry : ValToSExtendedUses) { 5239 SExts &Insts = Entry.second; 5240 SExts CurPts; 5241 for (Instruction *Inst : Insts) { 5242 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5243 Inst->getOperand(0) != Entry.first) 5244 continue; 5245 bool inserted = false; 5246 for (auto &Pt : CurPts) { 5247 if (getDT(F).dominates(Inst, Pt)) { 5248 Pt->replaceAllUsesWith(Inst); 5249 RemovedInsts.insert(Pt); 5250 Pt->removeFromParent(); 5251 Pt = Inst; 5252 inserted = true; 5253 Changed = true; 5254 break; 5255 } 5256 if (!getDT(F).dominates(Pt, Inst)) 5257 // Give up if we need to merge in a common dominator as the 5258 // experiments show it is not profitable. 5259 continue; 5260 Inst->replaceAllUsesWith(Pt); 5261 RemovedInsts.insert(Inst); 5262 Inst->removeFromParent(); 5263 inserted = true; 5264 Changed = true; 5265 break; 5266 } 5267 if (!inserted) 5268 CurPts.push_back(Inst); 5269 } 5270 } 5271 return Changed; 5272 } 5273 5274 // Spliting large data structures so that the GEPs accessing them can have 5275 // smaller offsets so that they can be sunk to the same blocks as their users. 5276 // For example, a large struct starting from %base is splitted into two parts 5277 // where the second part starts from %new_base. 5278 // 5279 // Before: 5280 // BB0: 5281 // %base = 5282 // 5283 // BB1: 5284 // %gep0 = gep %base, off0 5285 // %gep1 = gep %base, off1 5286 // %gep2 = gep %base, off2 5287 // 5288 // BB2: 5289 // %load1 = load %gep0 5290 // %load2 = load %gep1 5291 // %load3 = load %gep2 5292 // 5293 // After: 5294 // BB0: 5295 // %base = 5296 // %new_base = gep %base, off0 5297 // 5298 // BB1: 5299 // %new_gep0 = %new_base 5300 // %new_gep1 = gep %new_base, off1 - off0 5301 // %new_gep2 = gep %new_base, off2 - off0 5302 // 5303 // BB2: 5304 // %load1 = load i32, i32* %new_gep0 5305 // %load2 = load i32, i32* %new_gep1 5306 // %load3 = load i32, i32* %new_gep2 5307 // 5308 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5309 // their offsets are smaller enough to fit into the addressing mode. 5310 bool CodeGenPrepare::splitLargeGEPOffsets() { 5311 bool Changed = false; 5312 for (auto &Entry : LargeOffsetGEPMap) { 5313 Value *OldBase = Entry.first; 5314 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5315 &LargeOffsetGEPs = Entry.second; 5316 auto compareGEPOffset = 5317 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5318 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5319 if (LHS.first == RHS.first) 5320 return false; 5321 if (LHS.second != RHS.second) 5322 return LHS.second < RHS.second; 5323 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5324 }; 5325 // Sorting all the GEPs of the same data structures based on the offsets. 5326 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5327 LargeOffsetGEPs.erase( 5328 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5329 LargeOffsetGEPs.end()); 5330 // Skip if all the GEPs have the same offsets. 5331 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5332 continue; 5333 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5334 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5335 Value *NewBaseGEP = nullptr; 5336 5337 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5338 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5339 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5340 int64_t Offset = LargeOffsetGEP->second; 5341 if (Offset != BaseOffset) { 5342 TargetLowering::AddrMode AddrMode; 5343 AddrMode.BaseOffs = Offset - BaseOffset; 5344 // The result type of the GEP might not be the type of the memory 5345 // access. 5346 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5347 GEP->getResultElementType(), 5348 GEP->getAddressSpace())) { 5349 // We need to create a new base if the offset to the current base is 5350 // too large to fit into the addressing mode. So, a very large struct 5351 // may be splitted into several parts. 5352 BaseGEP = GEP; 5353 BaseOffset = Offset; 5354 NewBaseGEP = nullptr; 5355 } 5356 } 5357 5358 // Generate a new GEP to replace the current one. 5359 LLVMContext &Ctx = GEP->getContext(); 5360 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5361 Type *I8PtrTy = 5362 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5363 Type *I8Ty = Type::getInt8Ty(Ctx); 5364 5365 if (!NewBaseGEP) { 5366 // Create a new base if we don't have one yet. Find the insertion 5367 // pointer for the new base first. 5368 BasicBlock::iterator NewBaseInsertPt; 5369 BasicBlock *NewBaseInsertBB; 5370 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5371 // If the base of the struct is an instruction, the new base will be 5372 // inserted close to it. 5373 NewBaseInsertBB = BaseI->getParent(); 5374 if (isa<PHINode>(BaseI)) 5375 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5376 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5377 NewBaseInsertBB = 5378 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5379 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5380 } else 5381 NewBaseInsertPt = std::next(BaseI->getIterator()); 5382 } else { 5383 // If the current base is an argument or global value, the new base 5384 // will be inserted to the entry block. 5385 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5386 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5387 } 5388 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5389 // Create a new base. 5390 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5391 NewBaseGEP = OldBase; 5392 if (NewBaseGEP->getType() != I8PtrTy) 5393 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5394 NewBaseGEP = 5395 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5396 NewGEPBases.insert(NewBaseGEP); 5397 } 5398 5399 IRBuilder<> Builder(GEP); 5400 Value *NewGEP = NewBaseGEP; 5401 if (Offset == BaseOffset) { 5402 if (GEP->getType() != I8PtrTy) 5403 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5404 } else { 5405 // Calculate the new offset for the new GEP. 5406 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5407 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5408 5409 if (GEP->getType() != I8PtrTy) 5410 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5411 } 5412 GEP->replaceAllUsesWith(NewGEP); 5413 LargeOffsetGEPID.erase(GEP); 5414 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5415 GEP->eraseFromParent(); 5416 Changed = true; 5417 } 5418 } 5419 return Changed; 5420 } 5421 5422 /// Return true, if an ext(load) can be formed from an extension in 5423 /// \p MovedExts. 5424 bool CodeGenPrepare::canFormExtLd( 5425 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5426 Instruction *&Inst, bool HasPromoted) { 5427 for (auto *MovedExtInst : MovedExts) { 5428 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5429 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5430 Inst = MovedExtInst; 5431 break; 5432 } 5433 } 5434 if (!LI) 5435 return false; 5436 5437 // If they're already in the same block, there's nothing to do. 5438 // Make the cheap checks first if we did not promote. 5439 // If we promoted, we need to check if it is indeed profitable. 5440 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5441 return false; 5442 5443 return TLI->isExtLoad(LI, Inst, *DL); 5444 } 5445 5446 /// Move a zext or sext fed by a load into the same basic block as the load, 5447 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5448 /// extend into the load. 5449 /// 5450 /// E.g., 5451 /// \code 5452 /// %ld = load i32* %addr 5453 /// %add = add nuw i32 %ld, 4 5454 /// %zext = zext i32 %add to i64 5455 // \endcode 5456 /// => 5457 /// \code 5458 /// %ld = load i32* %addr 5459 /// %zext = zext i32 %ld to i64 5460 /// %add = add nuw i64 %zext, 4 5461 /// \encode 5462 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5463 /// allow us to match zext(load i32*) to i64. 5464 /// 5465 /// Also, try to promote the computations used to obtain a sign extended 5466 /// value used into memory accesses. 5467 /// E.g., 5468 /// \code 5469 /// a = add nsw i32 b, 3 5470 /// d = sext i32 a to i64 5471 /// e = getelementptr ..., i64 d 5472 /// \endcode 5473 /// => 5474 /// \code 5475 /// f = sext i32 b to i64 5476 /// a = add nsw i64 f, 3 5477 /// e = getelementptr ..., i64 a 5478 /// \endcode 5479 /// 5480 /// \p Inst[in/out] the extension may be modified during the process if some 5481 /// promotions apply. 5482 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5483 // ExtLoad formation and address type promotion infrastructure requires TLI to 5484 // be effective. 5485 if (!TLI) 5486 return false; 5487 5488 bool AllowPromotionWithoutCommonHeader = false; 5489 /// See if it is an interesting sext operations for the address type 5490 /// promotion before trying to promote it, e.g., the ones with the right 5491 /// type and used in memory accesses. 5492 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5493 *Inst, AllowPromotionWithoutCommonHeader); 5494 TypePromotionTransaction TPT(RemovedInsts); 5495 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5496 TPT.getRestorationPoint(); 5497 SmallVector<Instruction *, 1> Exts; 5498 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5499 Exts.push_back(Inst); 5500 5501 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5502 5503 // Look for a load being extended. 5504 LoadInst *LI = nullptr; 5505 Instruction *ExtFedByLoad; 5506 5507 // Try to promote a chain of computation if it allows to form an extended 5508 // load. 5509 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5510 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5511 TPT.commit(); 5512 // Move the extend into the same block as the load 5513 ExtFedByLoad->moveAfter(LI); 5514 // CGP does not check if the zext would be speculatively executed when moved 5515 // to the same basic block as the load. Preserving its original location 5516 // would pessimize the debugging experience, as well as negatively impact 5517 // the quality of sample pgo. We don't want to use "line 0" as that has a 5518 // size cost in the line-table section and logically the zext can be seen as 5519 // part of the load. Therefore we conservatively reuse the same debug 5520 // location for the load and the zext. 5521 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5522 ++NumExtsMoved; 5523 Inst = ExtFedByLoad; 5524 return true; 5525 } 5526 5527 // Continue promoting SExts if known as considerable depending on targets. 5528 if (ATPConsiderable && 5529 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5530 HasPromoted, TPT, SpeculativelyMovedExts)) 5531 return true; 5532 5533 TPT.rollback(LastKnownGood); 5534 return false; 5535 } 5536 5537 // Perform address type promotion if doing so is profitable. 5538 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5539 // instructions that sign extended the same initial value. However, if 5540 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5541 // extension is just profitable. 5542 bool CodeGenPrepare::performAddressTypePromotion( 5543 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5544 bool HasPromoted, TypePromotionTransaction &TPT, 5545 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5546 bool Promoted = false; 5547 SmallPtrSet<Instruction *, 1> UnhandledExts; 5548 bool AllSeenFirst = true; 5549 for (auto I : SpeculativelyMovedExts) { 5550 Value *HeadOfChain = I->getOperand(0); 5551 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5552 SeenChainsForSExt.find(HeadOfChain); 5553 // If there is an unhandled SExt which has the same header, try to promote 5554 // it as well. 5555 if (AlreadySeen != SeenChainsForSExt.end()) { 5556 if (AlreadySeen->second != nullptr) 5557 UnhandledExts.insert(AlreadySeen->second); 5558 AllSeenFirst = false; 5559 } 5560 } 5561 5562 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5563 SpeculativelyMovedExts.size() == 1)) { 5564 TPT.commit(); 5565 if (HasPromoted) 5566 Promoted = true; 5567 for (auto I : SpeculativelyMovedExts) { 5568 Value *HeadOfChain = I->getOperand(0); 5569 SeenChainsForSExt[HeadOfChain] = nullptr; 5570 ValToSExtendedUses[HeadOfChain].push_back(I); 5571 } 5572 // Update Inst as promotion happen. 5573 Inst = SpeculativelyMovedExts.pop_back_val(); 5574 } else { 5575 // This is the first chain visited from the header, keep the current chain 5576 // as unhandled. Defer to promote this until we encounter another SExt 5577 // chain derived from the same header. 5578 for (auto I : SpeculativelyMovedExts) { 5579 Value *HeadOfChain = I->getOperand(0); 5580 SeenChainsForSExt[HeadOfChain] = Inst; 5581 } 5582 return false; 5583 } 5584 5585 if (!AllSeenFirst && !UnhandledExts.empty()) 5586 for (auto VisitedSExt : UnhandledExts) { 5587 if (RemovedInsts.count(VisitedSExt)) 5588 continue; 5589 TypePromotionTransaction TPT(RemovedInsts); 5590 SmallVector<Instruction *, 1> Exts; 5591 SmallVector<Instruction *, 2> Chains; 5592 Exts.push_back(VisitedSExt); 5593 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5594 TPT.commit(); 5595 if (HasPromoted) 5596 Promoted = true; 5597 for (auto I : Chains) { 5598 Value *HeadOfChain = I->getOperand(0); 5599 // Mark this as handled. 5600 SeenChainsForSExt[HeadOfChain] = nullptr; 5601 ValToSExtendedUses[HeadOfChain].push_back(I); 5602 } 5603 } 5604 return Promoted; 5605 } 5606 5607 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5608 BasicBlock *DefBB = I->getParent(); 5609 5610 // If the result of a {s|z}ext and its source are both live out, rewrite all 5611 // other uses of the source with result of extension. 5612 Value *Src = I->getOperand(0); 5613 if (Src->hasOneUse()) 5614 return false; 5615 5616 // Only do this xform if truncating is free. 5617 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5618 return false; 5619 5620 // Only safe to perform the optimization if the source is also defined in 5621 // this block. 5622 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5623 return false; 5624 5625 bool DefIsLiveOut = false; 5626 for (User *U : I->users()) { 5627 Instruction *UI = cast<Instruction>(U); 5628 5629 // Figure out which BB this ext is used in. 5630 BasicBlock *UserBB = UI->getParent(); 5631 if (UserBB == DefBB) continue; 5632 DefIsLiveOut = true; 5633 break; 5634 } 5635 if (!DefIsLiveOut) 5636 return false; 5637 5638 // Make sure none of the uses are PHI nodes. 5639 for (User *U : Src->users()) { 5640 Instruction *UI = cast<Instruction>(U); 5641 BasicBlock *UserBB = UI->getParent(); 5642 if (UserBB == DefBB) continue; 5643 // Be conservative. We don't want this xform to end up introducing 5644 // reloads just before load / store instructions. 5645 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5646 return false; 5647 } 5648 5649 // InsertedTruncs - Only insert one trunc in each block once. 5650 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5651 5652 bool MadeChange = false; 5653 for (Use &U : Src->uses()) { 5654 Instruction *User = cast<Instruction>(U.getUser()); 5655 5656 // Figure out which BB this ext is used in. 5657 BasicBlock *UserBB = User->getParent(); 5658 if (UserBB == DefBB) continue; 5659 5660 // Both src and def are live in this block. Rewrite the use. 5661 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5662 5663 if (!InsertedTrunc) { 5664 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5665 assert(InsertPt != UserBB->end()); 5666 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5667 InsertedInsts.insert(InsertedTrunc); 5668 } 5669 5670 // Replace a use of the {s|z}ext source with a use of the result. 5671 U = InsertedTrunc; 5672 ++NumExtUses; 5673 MadeChange = true; 5674 } 5675 5676 return MadeChange; 5677 } 5678 5679 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5680 // just after the load if the target can fold this into one extload instruction, 5681 // with the hope of eliminating some of the other later "and" instructions using 5682 // the loaded value. "and"s that are made trivially redundant by the insertion 5683 // of the new "and" are removed by this function, while others (e.g. those whose 5684 // path from the load goes through a phi) are left for isel to potentially 5685 // remove. 5686 // 5687 // For example: 5688 // 5689 // b0: 5690 // x = load i32 5691 // ... 5692 // b1: 5693 // y = and x, 0xff 5694 // z = use y 5695 // 5696 // becomes: 5697 // 5698 // b0: 5699 // x = load i32 5700 // x' = and x, 0xff 5701 // ... 5702 // b1: 5703 // z = use x' 5704 // 5705 // whereas: 5706 // 5707 // b0: 5708 // x1 = load i32 5709 // ... 5710 // b1: 5711 // x2 = load i32 5712 // ... 5713 // b2: 5714 // x = phi x1, x2 5715 // y = and x, 0xff 5716 // 5717 // becomes (after a call to optimizeLoadExt for each load): 5718 // 5719 // b0: 5720 // x1 = load i32 5721 // x1' = and x1, 0xff 5722 // ... 5723 // b1: 5724 // x2 = load i32 5725 // x2' = and x2, 0xff 5726 // ... 5727 // b2: 5728 // x = phi x1', x2' 5729 // y = and x, 0xff 5730 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5731 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5732 return false; 5733 5734 // Skip loads we've already transformed. 5735 if (Load->hasOneUse() && 5736 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5737 return false; 5738 5739 // Look at all uses of Load, looking through phis, to determine how many bits 5740 // of the loaded value are needed. 5741 SmallVector<Instruction *, 8> WorkList; 5742 SmallPtrSet<Instruction *, 16> Visited; 5743 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5744 for (auto *U : Load->users()) 5745 WorkList.push_back(cast<Instruction>(U)); 5746 5747 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5748 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5749 APInt DemandBits(BitWidth, 0); 5750 APInt WidestAndBits(BitWidth, 0); 5751 5752 while (!WorkList.empty()) { 5753 Instruction *I = WorkList.back(); 5754 WorkList.pop_back(); 5755 5756 // Break use-def graph loops. 5757 if (!Visited.insert(I).second) 5758 continue; 5759 5760 // For a PHI node, push all of its users. 5761 if (auto *Phi = dyn_cast<PHINode>(I)) { 5762 for (auto *U : Phi->users()) 5763 WorkList.push_back(cast<Instruction>(U)); 5764 continue; 5765 } 5766 5767 switch (I->getOpcode()) { 5768 case Instruction::And: { 5769 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5770 if (!AndC) 5771 return false; 5772 APInt AndBits = AndC->getValue(); 5773 DemandBits |= AndBits; 5774 // Keep track of the widest and mask we see. 5775 if (AndBits.ugt(WidestAndBits)) 5776 WidestAndBits = AndBits; 5777 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5778 AndsToMaybeRemove.push_back(I); 5779 break; 5780 } 5781 5782 case Instruction::Shl: { 5783 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5784 if (!ShlC) 5785 return false; 5786 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5787 DemandBits.setLowBits(BitWidth - ShiftAmt); 5788 break; 5789 } 5790 5791 case Instruction::Trunc: { 5792 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5793 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5794 DemandBits.setLowBits(TruncBitWidth); 5795 break; 5796 } 5797 5798 default: 5799 return false; 5800 } 5801 } 5802 5803 uint32_t ActiveBits = DemandBits.getActiveBits(); 5804 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5805 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5806 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5807 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5808 // followed by an AND. 5809 // TODO: Look into removing this restriction by fixing backends to either 5810 // return false for isLoadExtLegal for i1 or have them select this pattern to 5811 // a single instruction. 5812 // 5813 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5814 // mask, since these are the only ands that will be removed by isel. 5815 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5816 WidestAndBits != DemandBits) 5817 return false; 5818 5819 LLVMContext &Ctx = Load->getType()->getContext(); 5820 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5821 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5822 5823 // Reject cases that won't be matched as extloads. 5824 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5825 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5826 return false; 5827 5828 IRBuilder<> Builder(Load->getNextNode()); 5829 auto *NewAnd = dyn_cast<Instruction>( 5830 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5831 // Mark this instruction as "inserted by CGP", so that other 5832 // optimizations don't touch it. 5833 InsertedInsts.insert(NewAnd); 5834 5835 // Replace all uses of load with new and (except for the use of load in the 5836 // new and itself). 5837 Load->replaceAllUsesWith(NewAnd); 5838 NewAnd->setOperand(0, Load); 5839 5840 // Remove any and instructions that are now redundant. 5841 for (auto *And : AndsToMaybeRemove) 5842 // Check that the and mask is the same as the one we decided to put on the 5843 // new and. 5844 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5845 And->replaceAllUsesWith(NewAnd); 5846 if (&*CurInstIterator == And) 5847 CurInstIterator = std::next(And->getIterator()); 5848 And->eraseFromParent(); 5849 ++NumAndUses; 5850 } 5851 5852 ++NumAndsAdded; 5853 return true; 5854 } 5855 5856 /// Check if V (an operand of a select instruction) is an expensive instruction 5857 /// that is only used once. 5858 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5859 auto *I = dyn_cast<Instruction>(V); 5860 // If it's safe to speculatively execute, then it should not have side 5861 // effects; therefore, it's safe to sink and possibly *not* execute. 5862 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5863 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5864 } 5865 5866 /// Returns true if a SelectInst should be turned into an explicit branch. 5867 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5868 const TargetLowering *TLI, 5869 SelectInst *SI) { 5870 // If even a predictable select is cheap, then a branch can't be cheaper. 5871 if (!TLI->isPredictableSelectExpensive()) 5872 return false; 5873 5874 // FIXME: This should use the same heuristics as IfConversion to determine 5875 // whether a select is better represented as a branch. 5876 5877 // If metadata tells us that the select condition is obviously predictable, 5878 // then we want to replace the select with a branch. 5879 uint64_t TrueWeight, FalseWeight; 5880 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5881 uint64_t Max = std::max(TrueWeight, FalseWeight); 5882 uint64_t Sum = TrueWeight + FalseWeight; 5883 if (Sum != 0) { 5884 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5885 if (Probability > TLI->getPredictableBranchThreshold()) 5886 return true; 5887 } 5888 } 5889 5890 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5891 5892 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5893 // comparison condition. If the compare has more than one use, there's 5894 // probably another cmov or setcc around, so it's not worth emitting a branch. 5895 if (!Cmp || !Cmp->hasOneUse()) 5896 return false; 5897 5898 // If either operand of the select is expensive and only needed on one side 5899 // of the select, we should form a branch. 5900 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5901 sinkSelectOperand(TTI, SI->getFalseValue())) 5902 return true; 5903 5904 return false; 5905 } 5906 5907 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5908 /// false value of \p SI. If the true/false value of \p SI is defined by any 5909 /// select instructions in \p Selects, look through the defining select 5910 /// instruction until the true/false value is not defined in \p Selects. 5911 static Value *getTrueOrFalseValue( 5912 SelectInst *SI, bool isTrue, 5913 const SmallPtrSet<const Instruction *, 2> &Selects) { 5914 Value *V; 5915 5916 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5917 DefSI = dyn_cast<SelectInst>(V)) { 5918 assert(DefSI->getCondition() == SI->getCondition() && 5919 "The condition of DefSI does not match with SI"); 5920 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5921 } 5922 return V; 5923 } 5924 5925 /// If we have a SelectInst that will likely profit from branch prediction, 5926 /// turn it into a branch. 5927 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5928 // If branch conversion isn't desirable, exit early. 5929 if (DisableSelectToBranch || OptSize || !TLI) 5930 return false; 5931 5932 // Find all consecutive select instructions that share the same condition. 5933 SmallVector<SelectInst *, 2> ASI; 5934 ASI.push_back(SI); 5935 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5936 It != SI->getParent()->end(); ++It) { 5937 SelectInst *I = dyn_cast<SelectInst>(&*It); 5938 if (I && SI->getCondition() == I->getCondition()) { 5939 ASI.push_back(I); 5940 } else { 5941 break; 5942 } 5943 } 5944 5945 SelectInst *LastSI = ASI.back(); 5946 // Increment the current iterator to skip all the rest of select instructions 5947 // because they will be either "not lowered" or "all lowered" to branch. 5948 CurInstIterator = std::next(LastSI->getIterator()); 5949 5950 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5951 5952 // Can we convert the 'select' to CF ? 5953 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5954 return false; 5955 5956 TargetLowering::SelectSupportKind SelectKind; 5957 if (VectorCond) 5958 SelectKind = TargetLowering::VectorMaskSelect; 5959 else if (SI->getType()->isVectorTy()) 5960 SelectKind = TargetLowering::ScalarCondVectorVal; 5961 else 5962 SelectKind = TargetLowering::ScalarValSelect; 5963 5964 if (TLI->isSelectSupported(SelectKind) && 5965 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5966 return false; 5967 5968 // The DominatorTree needs to be rebuilt by any consumers after this 5969 // transformation. We simply reset here rather than setting the ModifiedDT 5970 // flag to avoid restarting the function walk in runOnFunction for each 5971 // select optimized. 5972 DT.reset(); 5973 5974 // Transform a sequence like this: 5975 // start: 5976 // %cmp = cmp uge i32 %a, %b 5977 // %sel = select i1 %cmp, i32 %c, i32 %d 5978 // 5979 // Into: 5980 // start: 5981 // %cmp = cmp uge i32 %a, %b 5982 // br i1 %cmp, label %select.true, label %select.false 5983 // select.true: 5984 // br label %select.end 5985 // select.false: 5986 // br label %select.end 5987 // select.end: 5988 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5989 // 5990 // In addition, we may sink instructions that produce %c or %d from 5991 // the entry block into the destination(s) of the new branch. 5992 // If the true or false blocks do not contain a sunken instruction, that 5993 // block and its branch may be optimized away. In that case, one side of the 5994 // first branch will point directly to select.end, and the corresponding PHI 5995 // predecessor block will be the start block. 5996 5997 // First, we split the block containing the select into 2 blocks. 5998 BasicBlock *StartBlock = SI->getParent(); 5999 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6000 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6001 6002 // Delete the unconditional branch that was just created by the split. 6003 StartBlock->getTerminator()->eraseFromParent(); 6004 6005 // These are the new basic blocks for the conditional branch. 6006 // At least one will become an actual new basic block. 6007 BasicBlock *TrueBlock = nullptr; 6008 BasicBlock *FalseBlock = nullptr; 6009 BranchInst *TrueBranch = nullptr; 6010 BranchInst *FalseBranch = nullptr; 6011 6012 // Sink expensive instructions into the conditional blocks to avoid executing 6013 // them speculatively. 6014 for (SelectInst *SI : ASI) { 6015 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6016 if (TrueBlock == nullptr) { 6017 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6018 EndBlock->getParent(), EndBlock); 6019 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6020 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6021 } 6022 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6023 TrueInst->moveBefore(TrueBranch); 6024 } 6025 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6026 if (FalseBlock == nullptr) { 6027 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6028 EndBlock->getParent(), EndBlock); 6029 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6030 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6031 } 6032 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6033 FalseInst->moveBefore(FalseBranch); 6034 } 6035 } 6036 6037 // If there was nothing to sink, then arbitrarily choose the 'false' side 6038 // for a new input value to the PHI. 6039 if (TrueBlock == FalseBlock) { 6040 assert(TrueBlock == nullptr && 6041 "Unexpected basic block transform while optimizing select"); 6042 6043 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6044 EndBlock->getParent(), EndBlock); 6045 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6046 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6047 } 6048 6049 // Insert the real conditional branch based on the original condition. 6050 // If we did not create a new block for one of the 'true' or 'false' paths 6051 // of the condition, it means that side of the branch goes to the end block 6052 // directly and the path originates from the start block from the point of 6053 // view of the new PHI. 6054 BasicBlock *TT, *FT; 6055 if (TrueBlock == nullptr) { 6056 TT = EndBlock; 6057 FT = FalseBlock; 6058 TrueBlock = StartBlock; 6059 } else if (FalseBlock == nullptr) { 6060 TT = TrueBlock; 6061 FT = EndBlock; 6062 FalseBlock = StartBlock; 6063 } else { 6064 TT = TrueBlock; 6065 FT = FalseBlock; 6066 } 6067 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6068 6069 SmallPtrSet<const Instruction *, 2> INS; 6070 INS.insert(ASI.begin(), ASI.end()); 6071 // Use reverse iterator because later select may use the value of the 6072 // earlier select, and we need to propagate value through earlier select 6073 // to get the PHI operand. 6074 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6075 SelectInst *SI = *It; 6076 // The select itself is replaced with a PHI Node. 6077 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6078 PN->takeName(SI); 6079 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6080 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6081 PN->setDebugLoc(SI->getDebugLoc()); 6082 6083 SI->replaceAllUsesWith(PN); 6084 SI->eraseFromParent(); 6085 INS.erase(SI); 6086 ++NumSelectsExpanded; 6087 } 6088 6089 // Instruct OptimizeBlock to skip to the next block. 6090 CurInstIterator = StartBlock->end(); 6091 return true; 6092 } 6093 6094 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6095 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6096 int SplatElem = -1; 6097 for (unsigned i = 0; i < Mask.size(); ++i) { 6098 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6099 return false; 6100 SplatElem = Mask[i]; 6101 } 6102 6103 return true; 6104 } 6105 6106 /// Some targets have expensive vector shifts if the lanes aren't all the same 6107 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6108 /// it's often worth sinking a shufflevector splat down to its use so that 6109 /// codegen can spot all lanes are identical. 6110 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6111 BasicBlock *DefBB = SVI->getParent(); 6112 6113 // Only do this xform if variable vector shifts are particularly expensive. 6114 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6115 return false; 6116 6117 // We only expect better codegen by sinking a shuffle if we can recognise a 6118 // constant splat. 6119 if (!isBroadcastShuffle(SVI)) 6120 return false; 6121 6122 // InsertedShuffles - Only insert a shuffle in each block once. 6123 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6124 6125 bool MadeChange = false; 6126 for (User *U : SVI->users()) { 6127 Instruction *UI = cast<Instruction>(U); 6128 6129 // Figure out which BB this ext is used in. 6130 BasicBlock *UserBB = UI->getParent(); 6131 if (UserBB == DefBB) continue; 6132 6133 // For now only apply this when the splat is used by a shift instruction. 6134 if (!UI->isShift()) continue; 6135 6136 // Everything checks out, sink the shuffle if the user's block doesn't 6137 // already have a copy. 6138 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6139 6140 if (!InsertedShuffle) { 6141 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6142 assert(InsertPt != UserBB->end()); 6143 InsertedShuffle = 6144 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6145 SVI->getOperand(2), "", &*InsertPt); 6146 } 6147 6148 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6149 MadeChange = true; 6150 } 6151 6152 // If we removed all uses, nuke the shuffle. 6153 if (SVI->use_empty()) { 6154 SVI->eraseFromParent(); 6155 MadeChange = true; 6156 } 6157 6158 return MadeChange; 6159 } 6160 6161 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6162 // If the operands of I can be folded into a target instruction together with 6163 // I, duplicate and sink them. 6164 SmallVector<Use *, 4> OpsToSink; 6165 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6166 return false; 6167 6168 // OpsToSink can contain multiple uses in a use chain (e.g. 6169 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6170 // uses must come first, which means they are sunk first, temporarily creating 6171 // invalid IR. This will be fixed once their dominated users are sunk and 6172 // updated. 6173 BasicBlock *TargetBB = I->getParent(); 6174 bool Changed = false; 6175 SmallVector<Use *, 4> ToReplace; 6176 for (Use *U : OpsToSink) { 6177 auto *UI = cast<Instruction>(U->get()); 6178 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6179 continue; 6180 ToReplace.push_back(U); 6181 } 6182 6183 SmallPtrSet<Instruction *, 4> MaybeDead; 6184 for (Use *U : ToReplace) { 6185 auto *UI = cast<Instruction>(U->get()); 6186 Instruction *NI = UI->clone(); 6187 MaybeDead.insert(UI); 6188 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6189 NI->insertBefore(I); 6190 InsertedInsts.insert(NI); 6191 U->set(NI); 6192 Changed = true; 6193 } 6194 6195 // Remove instructions that are dead after sinking. 6196 for (auto *I : MaybeDead) 6197 if (!I->hasNUsesOrMore(1)) 6198 I->eraseFromParent(); 6199 6200 return Changed; 6201 } 6202 6203 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6204 if (!TLI || !DL) 6205 return false; 6206 6207 Value *Cond = SI->getCondition(); 6208 Type *OldType = Cond->getType(); 6209 LLVMContext &Context = Cond->getContext(); 6210 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6211 unsigned RegWidth = RegType.getSizeInBits(); 6212 6213 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6214 return false; 6215 6216 // If the register width is greater than the type width, expand the condition 6217 // of the switch instruction and each case constant to the width of the 6218 // register. By widening the type of the switch condition, subsequent 6219 // comparisons (for case comparisons) will not need to be extended to the 6220 // preferred register width, so we will potentially eliminate N-1 extends, 6221 // where N is the number of cases in the switch. 6222 auto *NewType = Type::getIntNTy(Context, RegWidth); 6223 6224 // Zero-extend the switch condition and case constants unless the switch 6225 // condition is a function argument that is already being sign-extended. 6226 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6227 // everything instead. 6228 Instruction::CastOps ExtType = Instruction::ZExt; 6229 if (auto *Arg = dyn_cast<Argument>(Cond)) 6230 if (Arg->hasSExtAttr()) 6231 ExtType = Instruction::SExt; 6232 6233 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6234 ExtInst->insertBefore(SI); 6235 ExtInst->setDebugLoc(SI->getDebugLoc()); 6236 SI->setCondition(ExtInst); 6237 for (auto Case : SI->cases()) { 6238 APInt NarrowConst = Case.getCaseValue()->getValue(); 6239 APInt WideConst = (ExtType == Instruction::ZExt) ? 6240 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6241 Case.setValue(ConstantInt::get(Context, WideConst)); 6242 } 6243 6244 return true; 6245 } 6246 6247 6248 namespace { 6249 6250 /// Helper class to promote a scalar operation to a vector one. 6251 /// This class is used to move downward extractelement transition. 6252 /// E.g., 6253 /// a = vector_op <2 x i32> 6254 /// b = extractelement <2 x i32> a, i32 0 6255 /// c = scalar_op b 6256 /// store c 6257 /// 6258 /// => 6259 /// a = vector_op <2 x i32> 6260 /// c = vector_op a (equivalent to scalar_op on the related lane) 6261 /// * d = extractelement <2 x i32> c, i32 0 6262 /// * store d 6263 /// Assuming both extractelement and store can be combine, we get rid of the 6264 /// transition. 6265 class VectorPromoteHelper { 6266 /// DataLayout associated with the current module. 6267 const DataLayout &DL; 6268 6269 /// Used to perform some checks on the legality of vector operations. 6270 const TargetLowering &TLI; 6271 6272 /// Used to estimated the cost of the promoted chain. 6273 const TargetTransformInfo &TTI; 6274 6275 /// The transition being moved downwards. 6276 Instruction *Transition; 6277 6278 /// The sequence of instructions to be promoted. 6279 SmallVector<Instruction *, 4> InstsToBePromoted; 6280 6281 /// Cost of combining a store and an extract. 6282 unsigned StoreExtractCombineCost; 6283 6284 /// Instruction that will be combined with the transition. 6285 Instruction *CombineInst = nullptr; 6286 6287 /// The instruction that represents the current end of the transition. 6288 /// Since we are faking the promotion until we reach the end of the chain 6289 /// of computation, we need a way to get the current end of the transition. 6290 Instruction *getEndOfTransition() const { 6291 if (InstsToBePromoted.empty()) 6292 return Transition; 6293 return InstsToBePromoted.back(); 6294 } 6295 6296 /// Return the index of the original value in the transition. 6297 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6298 /// c, is at index 0. 6299 unsigned getTransitionOriginalValueIdx() const { 6300 assert(isa<ExtractElementInst>(Transition) && 6301 "Other kind of transitions are not supported yet"); 6302 return 0; 6303 } 6304 6305 /// Return the index of the index in the transition. 6306 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6307 /// is at index 1. 6308 unsigned getTransitionIdx() const { 6309 assert(isa<ExtractElementInst>(Transition) && 6310 "Other kind of transitions are not supported yet"); 6311 return 1; 6312 } 6313 6314 /// Get the type of the transition. 6315 /// This is the type of the original value. 6316 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6317 /// transition is <2 x i32>. 6318 Type *getTransitionType() const { 6319 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6320 } 6321 6322 /// Promote \p ToBePromoted by moving \p Def downward through. 6323 /// I.e., we have the following sequence: 6324 /// Def = Transition <ty1> a to <ty2> 6325 /// b = ToBePromoted <ty2> Def, ... 6326 /// => 6327 /// b = ToBePromoted <ty1> a, ... 6328 /// Def = Transition <ty1> ToBePromoted to <ty2> 6329 void promoteImpl(Instruction *ToBePromoted); 6330 6331 /// Check whether or not it is profitable to promote all the 6332 /// instructions enqueued to be promoted. 6333 bool isProfitableToPromote() { 6334 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6335 unsigned Index = isa<ConstantInt>(ValIdx) 6336 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6337 : -1; 6338 Type *PromotedType = getTransitionType(); 6339 6340 StoreInst *ST = cast<StoreInst>(CombineInst); 6341 unsigned AS = ST->getPointerAddressSpace(); 6342 unsigned Align = ST->getAlignment(); 6343 // Check if this store is supported. 6344 if (!TLI.allowsMisalignedMemoryAccesses( 6345 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6346 Align)) { 6347 // If this is not supported, there is no way we can combine 6348 // the extract with the store. 6349 return false; 6350 } 6351 6352 // The scalar chain of computation has to pay for the transition 6353 // scalar to vector. 6354 // The vector chain has to account for the combining cost. 6355 uint64_t ScalarCost = 6356 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6357 uint64_t VectorCost = StoreExtractCombineCost; 6358 for (const auto &Inst : InstsToBePromoted) { 6359 // Compute the cost. 6360 // By construction, all instructions being promoted are arithmetic ones. 6361 // Moreover, one argument is a constant that can be viewed as a splat 6362 // constant. 6363 Value *Arg0 = Inst->getOperand(0); 6364 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6365 isa<ConstantFP>(Arg0); 6366 TargetTransformInfo::OperandValueKind Arg0OVK = 6367 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6368 : TargetTransformInfo::OK_AnyValue; 6369 TargetTransformInfo::OperandValueKind Arg1OVK = 6370 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6371 : TargetTransformInfo::OK_AnyValue; 6372 ScalarCost += TTI.getArithmeticInstrCost( 6373 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6374 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6375 Arg0OVK, Arg1OVK); 6376 } 6377 LLVM_DEBUG( 6378 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6379 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6380 return ScalarCost > VectorCost; 6381 } 6382 6383 /// Generate a constant vector with \p Val with the same 6384 /// number of elements as the transition. 6385 /// \p UseSplat defines whether or not \p Val should be replicated 6386 /// across the whole vector. 6387 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6388 /// otherwise we generate a vector with as many undef as possible: 6389 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6390 /// used at the index of the extract. 6391 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6392 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6393 if (!UseSplat) { 6394 // If we cannot determine where the constant must be, we have to 6395 // use a splat constant. 6396 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6397 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6398 ExtractIdx = CstVal->getSExtValue(); 6399 else 6400 UseSplat = true; 6401 } 6402 6403 unsigned End = getTransitionType()->getVectorNumElements(); 6404 if (UseSplat) 6405 return ConstantVector::getSplat(End, Val); 6406 6407 SmallVector<Constant *, 4> ConstVec; 6408 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6409 for (unsigned Idx = 0; Idx != End; ++Idx) { 6410 if (Idx == ExtractIdx) 6411 ConstVec.push_back(Val); 6412 else 6413 ConstVec.push_back(UndefVal); 6414 } 6415 return ConstantVector::get(ConstVec); 6416 } 6417 6418 /// Check if promoting to a vector type an operand at \p OperandIdx 6419 /// in \p Use can trigger undefined behavior. 6420 static bool canCauseUndefinedBehavior(const Instruction *Use, 6421 unsigned OperandIdx) { 6422 // This is not safe to introduce undef when the operand is on 6423 // the right hand side of a division-like instruction. 6424 if (OperandIdx != 1) 6425 return false; 6426 switch (Use->getOpcode()) { 6427 default: 6428 return false; 6429 case Instruction::SDiv: 6430 case Instruction::UDiv: 6431 case Instruction::SRem: 6432 case Instruction::URem: 6433 return true; 6434 case Instruction::FDiv: 6435 case Instruction::FRem: 6436 return !Use->hasNoNaNs(); 6437 } 6438 llvm_unreachable(nullptr); 6439 } 6440 6441 public: 6442 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6443 const TargetTransformInfo &TTI, Instruction *Transition, 6444 unsigned CombineCost) 6445 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6446 StoreExtractCombineCost(CombineCost) { 6447 assert(Transition && "Do not know how to promote null"); 6448 } 6449 6450 /// Check if we can promote \p ToBePromoted to \p Type. 6451 bool canPromote(const Instruction *ToBePromoted) const { 6452 // We could support CastInst too. 6453 return isa<BinaryOperator>(ToBePromoted); 6454 } 6455 6456 /// Check if it is profitable to promote \p ToBePromoted 6457 /// by moving downward the transition through. 6458 bool shouldPromote(const Instruction *ToBePromoted) const { 6459 // Promote only if all the operands can be statically expanded. 6460 // Indeed, we do not want to introduce any new kind of transitions. 6461 for (const Use &U : ToBePromoted->operands()) { 6462 const Value *Val = U.get(); 6463 if (Val == getEndOfTransition()) { 6464 // If the use is a division and the transition is on the rhs, 6465 // we cannot promote the operation, otherwise we may create a 6466 // division by zero. 6467 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6468 return false; 6469 continue; 6470 } 6471 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6472 !isa<ConstantFP>(Val)) 6473 return false; 6474 } 6475 // Check that the resulting operation is legal. 6476 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6477 if (!ISDOpcode) 6478 return false; 6479 return StressStoreExtract || 6480 TLI.isOperationLegalOrCustom( 6481 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6482 } 6483 6484 /// Check whether or not \p Use can be combined 6485 /// with the transition. 6486 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6487 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6488 6489 /// Record \p ToBePromoted as part of the chain to be promoted. 6490 void enqueueForPromotion(Instruction *ToBePromoted) { 6491 InstsToBePromoted.push_back(ToBePromoted); 6492 } 6493 6494 /// Set the instruction that will be combined with the transition. 6495 void recordCombineInstruction(Instruction *ToBeCombined) { 6496 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6497 CombineInst = ToBeCombined; 6498 } 6499 6500 /// Promote all the instructions enqueued for promotion if it is 6501 /// is profitable. 6502 /// \return True if the promotion happened, false otherwise. 6503 bool promote() { 6504 // Check if there is something to promote. 6505 // Right now, if we do not have anything to combine with, 6506 // we assume the promotion is not profitable. 6507 if (InstsToBePromoted.empty() || !CombineInst) 6508 return false; 6509 6510 // Check cost. 6511 if (!StressStoreExtract && !isProfitableToPromote()) 6512 return false; 6513 6514 // Promote. 6515 for (auto &ToBePromoted : InstsToBePromoted) 6516 promoteImpl(ToBePromoted); 6517 InstsToBePromoted.clear(); 6518 return true; 6519 } 6520 }; 6521 6522 } // end anonymous namespace 6523 6524 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6525 // At this point, we know that all the operands of ToBePromoted but Def 6526 // can be statically promoted. 6527 // For Def, we need to use its parameter in ToBePromoted: 6528 // b = ToBePromoted ty1 a 6529 // Def = Transition ty1 b to ty2 6530 // Move the transition down. 6531 // 1. Replace all uses of the promoted operation by the transition. 6532 // = ... b => = ... Def. 6533 assert(ToBePromoted->getType() == Transition->getType() && 6534 "The type of the result of the transition does not match " 6535 "the final type"); 6536 ToBePromoted->replaceAllUsesWith(Transition); 6537 // 2. Update the type of the uses. 6538 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6539 Type *TransitionTy = getTransitionType(); 6540 ToBePromoted->mutateType(TransitionTy); 6541 // 3. Update all the operands of the promoted operation with promoted 6542 // operands. 6543 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6544 for (Use &U : ToBePromoted->operands()) { 6545 Value *Val = U.get(); 6546 Value *NewVal = nullptr; 6547 if (Val == Transition) 6548 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6549 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6550 isa<ConstantFP>(Val)) { 6551 // Use a splat constant if it is not safe to use undef. 6552 NewVal = getConstantVector( 6553 cast<Constant>(Val), 6554 isa<UndefValue>(Val) || 6555 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6556 } else 6557 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6558 "this?"); 6559 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6560 } 6561 Transition->moveAfter(ToBePromoted); 6562 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6563 } 6564 6565 /// Some targets can do store(extractelement) with one instruction. 6566 /// Try to push the extractelement towards the stores when the target 6567 /// has this feature and this is profitable. 6568 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6569 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6570 if (DisableStoreExtract || !TLI || 6571 (!StressStoreExtract && 6572 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6573 Inst->getOperand(1), CombineCost))) 6574 return false; 6575 6576 // At this point we know that Inst is a vector to scalar transition. 6577 // Try to move it down the def-use chain, until: 6578 // - We can combine the transition with its single use 6579 // => we got rid of the transition. 6580 // - We escape the current basic block 6581 // => we would need to check that we are moving it at a cheaper place and 6582 // we do not do that for now. 6583 BasicBlock *Parent = Inst->getParent(); 6584 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6585 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6586 // If the transition has more than one use, assume this is not going to be 6587 // beneficial. 6588 while (Inst->hasOneUse()) { 6589 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6590 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6591 6592 if (ToBePromoted->getParent() != Parent) { 6593 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6594 << ToBePromoted->getParent()->getName() 6595 << ") than the transition (" << Parent->getName() 6596 << ").\n"); 6597 return false; 6598 } 6599 6600 if (VPH.canCombine(ToBePromoted)) { 6601 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6602 << "will be combined with: " << *ToBePromoted << '\n'); 6603 VPH.recordCombineInstruction(ToBePromoted); 6604 bool Changed = VPH.promote(); 6605 NumStoreExtractExposed += Changed; 6606 return Changed; 6607 } 6608 6609 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6610 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6611 return false; 6612 6613 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6614 6615 VPH.enqueueForPromotion(ToBePromoted); 6616 Inst = ToBePromoted; 6617 } 6618 return false; 6619 } 6620 6621 /// For the instruction sequence of store below, F and I values 6622 /// are bundled together as an i64 value before being stored into memory. 6623 /// Sometimes it is more efficient to generate separate stores for F and I, 6624 /// which can remove the bitwise instructions or sink them to colder places. 6625 /// 6626 /// (store (or (zext (bitcast F to i32) to i64), 6627 /// (shl (zext I to i64), 32)), addr) --> 6628 /// (store F, addr) and (store I, addr+4) 6629 /// 6630 /// Similarly, splitting for other merged store can also be beneficial, like: 6631 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6632 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6633 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6634 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6635 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6636 /// 6637 /// We allow each target to determine specifically which kind of splitting is 6638 /// supported. 6639 /// 6640 /// The store patterns are commonly seen from the simple code snippet below 6641 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6642 /// void goo(const std::pair<int, float> &); 6643 /// hoo() { 6644 /// ... 6645 /// goo(std::make_pair(tmp, ftmp)); 6646 /// ... 6647 /// } 6648 /// 6649 /// Although we already have similar splitting in DAG Combine, we duplicate 6650 /// it in CodeGenPrepare to catch the case in which pattern is across 6651 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6652 /// during code expansion. 6653 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6654 const TargetLowering &TLI) { 6655 // Handle simple but common cases only. 6656 Type *StoreType = SI.getValueOperand()->getType(); 6657 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6658 DL.getTypeSizeInBits(StoreType) == 0) 6659 return false; 6660 6661 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6662 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6663 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6664 DL.getTypeSizeInBits(SplitStoreType)) 6665 return false; 6666 6667 // Match the following patterns: 6668 // (store (or (zext LValue to i64), 6669 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6670 // or 6671 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6672 // (zext LValue to i64), 6673 // Expect both operands of OR and the first operand of SHL have only 6674 // one use. 6675 Value *LValue, *HValue; 6676 if (!match(SI.getValueOperand(), 6677 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6678 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6679 m_SpecificInt(HalfValBitSize)))))) 6680 return false; 6681 6682 // Check LValue and HValue are int with size less or equal than 32. 6683 if (!LValue->getType()->isIntegerTy() || 6684 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6685 !HValue->getType()->isIntegerTy() || 6686 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6687 return false; 6688 6689 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6690 // as the input of target query. 6691 auto *LBC = dyn_cast<BitCastInst>(LValue); 6692 auto *HBC = dyn_cast<BitCastInst>(HValue); 6693 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6694 : EVT::getEVT(LValue->getType()); 6695 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6696 : EVT::getEVT(HValue->getType()); 6697 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6698 return false; 6699 6700 // Start to split store. 6701 IRBuilder<> Builder(SI.getContext()); 6702 Builder.SetInsertPoint(&SI); 6703 6704 // If LValue/HValue is a bitcast in another BB, create a new one in current 6705 // BB so it may be merged with the splitted stores by dag combiner. 6706 if (LBC && LBC->getParent() != SI.getParent()) 6707 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6708 if (HBC && HBC->getParent() != SI.getParent()) 6709 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6710 6711 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6712 auto CreateSplitStore = [&](Value *V, bool Upper) { 6713 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6714 Value *Addr = Builder.CreateBitCast( 6715 SI.getOperand(1), 6716 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6717 if ((IsLE && Upper) || (!IsLE && !Upper)) 6718 Addr = Builder.CreateGEP( 6719 SplitStoreType, Addr, 6720 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6721 Builder.CreateAlignedStore( 6722 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6723 }; 6724 6725 CreateSplitStore(LValue, false); 6726 CreateSplitStore(HValue, true); 6727 6728 // Delete the old store. 6729 SI.eraseFromParent(); 6730 return true; 6731 } 6732 6733 // Return true if the GEP has two operands, the first operand is of a sequential 6734 // type, and the second operand is a constant. 6735 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6736 gep_type_iterator I = gep_type_begin(*GEP); 6737 return GEP->getNumOperands() == 2 && 6738 I.isSequential() && 6739 isa<ConstantInt>(GEP->getOperand(1)); 6740 } 6741 6742 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6743 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6744 // reducing liveness interference across those edges benefits global register 6745 // allocation. Currently handles only certain cases. 6746 // 6747 // For example, unmerge %GEPI and %UGEPI as below. 6748 // 6749 // ---------- BEFORE ---------- 6750 // SrcBlock: 6751 // ... 6752 // %GEPIOp = ... 6753 // ... 6754 // %GEPI = gep %GEPIOp, Idx 6755 // ... 6756 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6757 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6758 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6759 // %UGEPI) 6760 // 6761 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6762 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6763 // ... 6764 // 6765 // DstBi: 6766 // ... 6767 // %UGEPI = gep %GEPIOp, UIdx 6768 // ... 6769 // --------------------------- 6770 // 6771 // ---------- AFTER ---------- 6772 // SrcBlock: 6773 // ... (same as above) 6774 // (* %GEPI is still alive on the indirectbr edges) 6775 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6776 // unmerging) 6777 // ... 6778 // 6779 // DstBi: 6780 // ... 6781 // %UGEPI = gep %GEPI, (UIdx-Idx) 6782 // ... 6783 // --------------------------- 6784 // 6785 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6786 // no longer alive on them. 6787 // 6788 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6789 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6790 // not to disable further simplications and optimizations as a result of GEP 6791 // merging. 6792 // 6793 // Note this unmerging may increase the length of the data flow critical path 6794 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6795 // between the register pressure and the length of data-flow critical 6796 // path. Restricting this to the uncommon IndirectBr case would minimize the 6797 // impact of potentially longer critical path, if any, and the impact on compile 6798 // time. 6799 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6800 const TargetTransformInfo *TTI) { 6801 BasicBlock *SrcBlock = GEPI->getParent(); 6802 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6803 // (non-IndirectBr) cases exit early here. 6804 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6805 return false; 6806 // Check that GEPI is a simple gep with a single constant index. 6807 if (!GEPSequentialConstIndexed(GEPI)) 6808 return false; 6809 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6810 // Check that GEPI is a cheap one. 6811 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6812 > TargetTransformInfo::TCC_Basic) 6813 return false; 6814 Value *GEPIOp = GEPI->getOperand(0); 6815 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6816 if (!isa<Instruction>(GEPIOp)) 6817 return false; 6818 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6819 if (GEPIOpI->getParent() != SrcBlock) 6820 return false; 6821 // Check that GEP is used outside the block, meaning it's alive on the 6822 // IndirectBr edge(s). 6823 if (find_if(GEPI->users(), [&](User *Usr) { 6824 if (auto *I = dyn_cast<Instruction>(Usr)) { 6825 if (I->getParent() != SrcBlock) { 6826 return true; 6827 } 6828 } 6829 return false; 6830 }) == GEPI->users().end()) 6831 return false; 6832 // The second elements of the GEP chains to be unmerged. 6833 std::vector<GetElementPtrInst *> UGEPIs; 6834 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6835 // on IndirectBr edges. 6836 for (User *Usr : GEPIOp->users()) { 6837 if (Usr == GEPI) continue; 6838 // Check if Usr is an Instruction. If not, give up. 6839 if (!isa<Instruction>(Usr)) 6840 return false; 6841 auto *UI = cast<Instruction>(Usr); 6842 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6843 if (UI->getParent() == SrcBlock) 6844 continue; 6845 // Check if Usr is a GEP. If not, give up. 6846 if (!isa<GetElementPtrInst>(Usr)) 6847 return false; 6848 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6849 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6850 // the pointer operand to it. If so, record it in the vector. If not, give 6851 // up. 6852 if (!GEPSequentialConstIndexed(UGEPI)) 6853 return false; 6854 if (UGEPI->getOperand(0) != GEPIOp) 6855 return false; 6856 if (GEPIIdx->getType() != 6857 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6858 return false; 6859 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6860 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6861 > TargetTransformInfo::TCC_Basic) 6862 return false; 6863 UGEPIs.push_back(UGEPI); 6864 } 6865 if (UGEPIs.size() == 0) 6866 return false; 6867 // Check the materializing cost of (Uidx-Idx). 6868 for (GetElementPtrInst *UGEPI : UGEPIs) { 6869 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6870 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6871 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6872 if (ImmCost > TargetTransformInfo::TCC_Basic) 6873 return false; 6874 } 6875 // Now unmerge between GEPI and UGEPIs. 6876 for (GetElementPtrInst *UGEPI : UGEPIs) { 6877 UGEPI->setOperand(0, GEPI); 6878 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6879 Constant *NewUGEPIIdx = 6880 ConstantInt::get(GEPIIdx->getType(), 6881 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6882 UGEPI->setOperand(1, NewUGEPIIdx); 6883 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6884 // inbounds to avoid UB. 6885 if (!GEPI->isInBounds()) { 6886 UGEPI->setIsInBounds(false); 6887 } 6888 } 6889 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6890 // alive on IndirectBr edges). 6891 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6892 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6893 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6894 return true; 6895 } 6896 6897 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6898 // Bail out if we inserted the instruction to prevent optimizations from 6899 // stepping on each other's toes. 6900 if (InsertedInsts.count(I)) 6901 return false; 6902 6903 // TODO: Move into the switch on opcode below here. 6904 if (PHINode *P = dyn_cast<PHINode>(I)) { 6905 // It is possible for very late stage optimizations (such as SimplifyCFG) 6906 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6907 // trivial PHI, go ahead and zap it here. 6908 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6909 LargeOffsetGEPMap.erase(P); 6910 P->replaceAllUsesWith(V); 6911 P->eraseFromParent(); 6912 ++NumPHIsElim; 6913 return true; 6914 } 6915 return false; 6916 } 6917 6918 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6919 // If the source of the cast is a constant, then this should have 6920 // already been constant folded. The only reason NOT to constant fold 6921 // it is if something (e.g. LSR) was careful to place the constant 6922 // evaluation in a block other than then one that uses it (e.g. to hoist 6923 // the address of globals out of a loop). If this is the case, we don't 6924 // want to forward-subst the cast. 6925 if (isa<Constant>(CI->getOperand(0))) 6926 return false; 6927 6928 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6929 return true; 6930 6931 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6932 /// Sink a zext or sext into its user blocks if the target type doesn't 6933 /// fit in one register 6934 if (TLI && 6935 TLI->getTypeAction(CI->getContext(), 6936 TLI->getValueType(*DL, CI->getType())) == 6937 TargetLowering::TypeExpandInteger) { 6938 return SinkCast(CI); 6939 } else { 6940 bool MadeChange = optimizeExt(I); 6941 return MadeChange | optimizeExtUses(I); 6942 } 6943 } 6944 return false; 6945 } 6946 6947 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6948 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6949 return true; 6950 6951 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6952 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6953 if (TLI) { 6954 bool Modified = optimizeLoadExt(LI); 6955 unsigned AS = LI->getPointerAddressSpace(); 6956 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6957 return Modified; 6958 } 6959 return false; 6960 } 6961 6962 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6963 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6964 return true; 6965 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6966 if (TLI) { 6967 unsigned AS = SI->getPointerAddressSpace(); 6968 return optimizeMemoryInst(I, SI->getOperand(1), 6969 SI->getOperand(0)->getType(), AS); 6970 } 6971 return false; 6972 } 6973 6974 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6975 unsigned AS = RMW->getPointerAddressSpace(); 6976 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6977 RMW->getType(), AS); 6978 } 6979 6980 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6981 unsigned AS = CmpX->getPointerAddressSpace(); 6982 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6983 CmpX->getCompareOperand()->getType(), AS); 6984 } 6985 6986 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6987 6988 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6989 EnableAndCmpSinking && TLI) 6990 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6991 6992 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6993 BinOp->getOpcode() == Instruction::LShr)) { 6994 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6995 if (TLI && CI && TLI->hasExtractBitsInsn()) 6996 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6997 6998 return false; 6999 } 7000 7001 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7002 if (GEPI->hasAllZeroIndices()) { 7003 /// The GEP operand must be a pointer, so must its result -> BitCast 7004 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7005 GEPI->getName(), GEPI); 7006 NC->setDebugLoc(GEPI->getDebugLoc()); 7007 GEPI->replaceAllUsesWith(NC); 7008 GEPI->eraseFromParent(); 7009 ++NumGEPsElim; 7010 optimizeInst(NC, ModifiedDT); 7011 return true; 7012 } 7013 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7014 return true; 7015 } 7016 return false; 7017 } 7018 7019 if (tryToSinkFreeOperands(I)) 7020 return true; 7021 7022 switch (I->getOpcode()) { 7023 case Instruction::Call: 7024 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7025 case Instruction::Select: 7026 return optimizeSelectInst(cast<SelectInst>(I)); 7027 case Instruction::ShuffleVector: 7028 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7029 case Instruction::Switch: 7030 return optimizeSwitchInst(cast<SwitchInst>(I)); 7031 case Instruction::ExtractElement: 7032 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7033 } 7034 7035 return false; 7036 } 7037 7038 /// Given an OR instruction, check to see if this is a bitreverse 7039 /// idiom. If so, insert the new intrinsic and return true. 7040 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7041 const TargetLowering &TLI) { 7042 if (!I.getType()->isIntegerTy() || 7043 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7044 TLI.getValueType(DL, I.getType(), true))) 7045 return false; 7046 7047 SmallVector<Instruction*, 4> Insts; 7048 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7049 return false; 7050 Instruction *LastInst = Insts.back(); 7051 I.replaceAllUsesWith(LastInst); 7052 RecursivelyDeleteTriviallyDeadInstructions(&I); 7053 return true; 7054 } 7055 7056 // In this pass we look for GEP and cast instructions that are used 7057 // across basic blocks and rewrite them to improve basic-block-at-a-time 7058 // selection. 7059 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7060 SunkAddrs.clear(); 7061 bool MadeChange = false; 7062 7063 CurInstIterator = BB.begin(); 7064 while (CurInstIterator != BB.end()) { 7065 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7066 if (ModifiedDT) 7067 return true; 7068 } 7069 7070 bool MadeBitReverse = true; 7071 while (TLI && MadeBitReverse) { 7072 MadeBitReverse = false; 7073 for (auto &I : reverse(BB)) { 7074 if (makeBitReverse(I, *DL, *TLI)) { 7075 MadeBitReverse = MadeChange = true; 7076 ModifiedDT = true; 7077 break; 7078 } 7079 } 7080 } 7081 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7082 7083 return MadeChange; 7084 } 7085 7086 // llvm.dbg.value is far away from the value then iSel may not be able 7087 // handle it properly. iSel will drop llvm.dbg.value if it can not 7088 // find a node corresponding to the value. 7089 bool CodeGenPrepare::placeDbgValues(Function &F) { 7090 bool MadeChange = false; 7091 for (BasicBlock &BB : F) { 7092 Instruction *PrevNonDbgInst = nullptr; 7093 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7094 Instruction *Insn = &*BI++; 7095 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7096 // Leave dbg.values that refer to an alloca alone. These 7097 // intrinsics describe the address of a variable (= the alloca) 7098 // being taken. They should not be moved next to the alloca 7099 // (and to the beginning of the scope), but rather stay close to 7100 // where said address is used. 7101 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7102 PrevNonDbgInst = Insn; 7103 continue; 7104 } 7105 7106 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7107 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7108 // If VI is a phi in a block with an EHPad terminator, we can't insert 7109 // after it. 7110 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7111 continue; 7112 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7113 << *DVI << ' ' << *VI); 7114 DVI->removeFromParent(); 7115 if (isa<PHINode>(VI)) 7116 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7117 else 7118 DVI->insertAfter(VI); 7119 MadeChange = true; 7120 ++NumDbgValueMoved; 7121 } 7122 } 7123 } 7124 return MadeChange; 7125 } 7126 7127 /// Scale down both weights to fit into uint32_t. 7128 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7129 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7130 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7131 NewTrue = NewTrue / Scale; 7132 NewFalse = NewFalse / Scale; 7133 } 7134 7135 /// Some targets prefer to split a conditional branch like: 7136 /// \code 7137 /// %0 = icmp ne i32 %a, 0 7138 /// %1 = icmp ne i32 %b, 0 7139 /// %or.cond = or i1 %0, %1 7140 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7141 /// \endcode 7142 /// into multiple branch instructions like: 7143 /// \code 7144 /// bb1: 7145 /// %0 = icmp ne i32 %a, 0 7146 /// br i1 %0, label %TrueBB, label %bb2 7147 /// bb2: 7148 /// %1 = icmp ne i32 %b, 0 7149 /// br i1 %1, label %TrueBB, label %FalseBB 7150 /// \endcode 7151 /// This usually allows instruction selection to do even further optimizations 7152 /// and combine the compare with the branch instruction. Currently this is 7153 /// applied for targets which have "cheap" jump instructions. 7154 /// 7155 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7156 /// 7157 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7158 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7159 return false; 7160 7161 bool MadeChange = false; 7162 for (auto &BB : F) { 7163 // Does this BB end with the following? 7164 // %cond1 = icmp|fcmp|binary instruction ... 7165 // %cond2 = icmp|fcmp|binary instruction ... 7166 // %cond.or = or|and i1 %cond1, cond2 7167 // br i1 %cond.or label %dest1, label %dest2" 7168 BinaryOperator *LogicOp; 7169 BasicBlock *TBB, *FBB; 7170 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7171 continue; 7172 7173 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7174 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7175 continue; 7176 7177 unsigned Opc; 7178 Value *Cond1, *Cond2; 7179 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7180 m_OneUse(m_Value(Cond2))))) 7181 Opc = Instruction::And; 7182 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7183 m_OneUse(m_Value(Cond2))))) 7184 Opc = Instruction::Or; 7185 else 7186 continue; 7187 7188 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7189 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7190 continue; 7191 7192 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7193 7194 // Create a new BB. 7195 auto TmpBB = 7196 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7197 BB.getParent(), BB.getNextNode()); 7198 7199 // Update original basic block by using the first condition directly by the 7200 // branch instruction and removing the no longer needed and/or instruction. 7201 Br1->setCondition(Cond1); 7202 LogicOp->eraseFromParent(); 7203 7204 // Depending on the condition we have to either replace the true or the 7205 // false successor of the original branch instruction. 7206 if (Opc == Instruction::And) 7207 Br1->setSuccessor(0, TmpBB); 7208 else 7209 Br1->setSuccessor(1, TmpBB); 7210 7211 // Fill in the new basic block. 7212 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7213 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7214 I->removeFromParent(); 7215 I->insertBefore(Br2); 7216 } 7217 7218 // Update PHI nodes in both successors. The original BB needs to be 7219 // replaced in one successor's PHI nodes, because the branch comes now from 7220 // the newly generated BB (NewBB). In the other successor we need to add one 7221 // incoming edge to the PHI nodes, because both branch instructions target 7222 // now the same successor. Depending on the original branch condition 7223 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7224 // we perform the correct update for the PHI nodes. 7225 // This doesn't change the successor order of the just created branch 7226 // instruction (or any other instruction). 7227 if (Opc == Instruction::Or) 7228 std::swap(TBB, FBB); 7229 7230 // Replace the old BB with the new BB. 7231 for (PHINode &PN : TBB->phis()) { 7232 int i; 7233 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7234 PN.setIncomingBlock(i, TmpBB); 7235 } 7236 7237 // Add another incoming edge form the new BB. 7238 for (PHINode &PN : FBB->phis()) { 7239 auto *Val = PN.getIncomingValueForBlock(&BB); 7240 PN.addIncoming(Val, TmpBB); 7241 } 7242 7243 // Update the branch weights (from SelectionDAGBuilder:: 7244 // FindMergedConditions). 7245 if (Opc == Instruction::Or) { 7246 // Codegen X | Y as: 7247 // BB1: 7248 // jmp_if_X TBB 7249 // jmp TmpBB 7250 // TmpBB: 7251 // jmp_if_Y TBB 7252 // jmp FBB 7253 // 7254 7255 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7256 // The requirement is that 7257 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7258 // = TrueProb for original BB. 7259 // Assuming the original weights are A and B, one choice is to set BB1's 7260 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7261 // assumes that 7262 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7263 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7264 // TmpBB, but the math is more complicated. 7265 uint64_t TrueWeight, FalseWeight; 7266 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7267 uint64_t NewTrueWeight = TrueWeight; 7268 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7269 scaleWeights(NewTrueWeight, NewFalseWeight); 7270 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7271 .createBranchWeights(TrueWeight, FalseWeight)); 7272 7273 NewTrueWeight = TrueWeight; 7274 NewFalseWeight = 2 * FalseWeight; 7275 scaleWeights(NewTrueWeight, NewFalseWeight); 7276 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7277 .createBranchWeights(TrueWeight, FalseWeight)); 7278 } 7279 } else { 7280 // Codegen X & Y as: 7281 // BB1: 7282 // jmp_if_X TmpBB 7283 // jmp FBB 7284 // TmpBB: 7285 // jmp_if_Y TBB 7286 // jmp FBB 7287 // 7288 // This requires creation of TmpBB after CurBB. 7289 7290 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7291 // The requirement is that 7292 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7293 // = FalseProb for original BB. 7294 // Assuming the original weights are A and B, one choice is to set BB1's 7295 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7296 // assumes that 7297 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7298 uint64_t TrueWeight, FalseWeight; 7299 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7300 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7301 uint64_t NewFalseWeight = FalseWeight; 7302 scaleWeights(NewTrueWeight, NewFalseWeight); 7303 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7304 .createBranchWeights(TrueWeight, FalseWeight)); 7305 7306 NewTrueWeight = 2 * TrueWeight; 7307 NewFalseWeight = FalseWeight; 7308 scaleWeights(NewTrueWeight, NewFalseWeight); 7309 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7310 .createBranchWeights(TrueWeight, FalseWeight)); 7311 } 7312 } 7313 7314 ModifiedDT = true; 7315 MadeChange = true; 7316 7317 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7318 TmpBB->dump()); 7319 } 7320 return MadeChange; 7321 } 7322