1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/IR/ValueMap.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 64 using namespace llvm; 65 using namespace llvm::PatternMatch; 66 67 #define DEBUG_TYPE "codegenprepare" 68 69 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 70 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 71 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 73 "sunken Cmps"); 74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 75 "of sunken Casts"); 76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 77 "computations were sunk"); 78 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 79 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 80 STATISTIC(NumAndsAdded, 81 "Number of and mask instructions added to form ext loads"); 82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 83 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 87 88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 90 STATISTIC(NumMemCmpGreaterThanMax, 91 "Number of memcmp calls with size greater than max size"); 92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 93 94 static cl::opt<bool> DisableBranchOpts( 95 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 96 cl::desc("Disable branch optimizations in CodeGenPrepare")); 97 98 static cl::opt<bool> 99 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 100 cl::desc("Disable GC optimizations in CodeGenPrepare")); 101 102 static cl::opt<bool> DisableSelectToBranch( 103 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 104 cl::desc("Disable select to branch conversion.")); 105 106 static cl::opt<bool> AddrSinkUsingGEPs( 107 "addr-sink-using-gep", cl::Hidden, cl::init(true), 108 cl::desc("Address sinking in CGP using GEPs.")); 109 110 static cl::opt<bool> EnableAndCmpSinking( 111 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 112 cl::desc("Enable sinkinig and/cmp into branches.")); 113 114 static cl::opt<bool> DisableStoreExtract( 115 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 116 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 117 118 static cl::opt<bool> StressStoreExtract( 119 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 120 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 121 122 static cl::opt<bool> DisableExtLdPromotion( 123 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 124 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 125 "CodeGenPrepare")); 126 127 static cl::opt<bool> StressExtLdPromotion( 128 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 129 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 130 "optimization in CodeGenPrepare")); 131 132 static cl::opt<bool> DisablePreheaderProtect( 133 "disable-preheader-prot", cl::Hidden, cl::init(false), 134 cl::desc("Disable protection against removing loop preheaders")); 135 136 static cl::opt<bool> ProfileGuidedSectionPrefix( 137 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 138 cl::desc("Use profile info to add section prefix for hot/cold functions")); 139 140 static cl::opt<unsigned> FreqRatioToSkipMerge( 141 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 142 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 143 "(frequency of destination block) is greater than this ratio")); 144 145 static cl::opt<bool> ForceSplitStore( 146 "force-split-store", cl::Hidden, cl::init(false), 147 cl::desc("Force store splitting no matter what the target query says.")); 148 149 static cl::opt<bool> 150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 151 cl::desc("Enable merging of redundant sexts when one is dominating" 152 " the other."), cl::init(true)); 153 154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 155 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 156 cl::desc("The number of loads per basic block for inline expansion of " 157 "memcmp that is only being compared against zero.")); 158 159 namespace { 160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 163 typedef SmallVector<Instruction *, 16> SExts; 164 typedef DenseMap<Value *, SExts> ValueToSExts; 165 class TypePromotionTransaction; 166 167 class CodeGenPrepare : public FunctionPass { 168 const TargetMachine *TM; 169 const TargetSubtargetInfo *SubtargetInfo; 170 const TargetLowering *TLI; 171 const TargetRegisterInfo *TRI; 172 const TargetTransformInfo *TTI; 173 const TargetLibraryInfo *TLInfo; 174 const LoopInfo *LI; 175 std::unique_ptr<BlockFrequencyInfo> BFI; 176 std::unique_ptr<BranchProbabilityInfo> BPI; 177 178 /// As we scan instructions optimizing them, this is the next instruction 179 /// to optimize. Transforms that can invalidate this should update it. 180 BasicBlock::iterator CurInstIterator; 181 182 /// Keeps track of non-local addresses that have been sunk into a block. 183 /// This allows us to avoid inserting duplicate code for blocks with 184 /// multiple load/stores of the same address. 185 ValueMap<Value*, Value*> SunkAddrs; 186 187 /// Keeps track of all instructions inserted for the current function. 188 SetOfInstrs InsertedInsts; 189 /// Keeps track of the type of the related instruction before their 190 /// promotion for the current function. 191 InstrToOrigTy PromotedInsts; 192 193 /// Keep track of instructions removed during promotion. 194 SetOfInstrs RemovedInsts; 195 196 /// Keep track of sext chains based on their initial value. 197 DenseMap<Value *, Instruction *> SeenChainsForSExt; 198 199 /// Keep track of SExt promoted. 200 ValueToSExts ValToSExtendedUses; 201 202 /// True if CFG is modified in any way. 203 bool ModifiedDT; 204 205 /// True if optimizing for size. 206 bool OptSize; 207 208 /// DataLayout for the Function being processed. 209 const DataLayout *DL; 210 211 public: 212 static char ID; // Pass identification, replacement for typeid 213 CodeGenPrepare() 214 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 215 DL(nullptr) { 216 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 217 } 218 bool runOnFunction(Function &F) override; 219 220 StringRef getPassName() const override { return "CodeGen Prepare"; } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 // FIXME: When we can selectively preserve passes, preserve the domtree. 224 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 225 AU.addRequired<TargetLibraryInfoWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.addRequired<LoopInfoWrapperPass>(); 228 } 229 230 private: 231 bool eliminateFallThrough(Function &F); 232 bool eliminateMostlyEmptyBlocks(Function &F); 233 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 234 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 235 void eliminateMostlyEmptyBlock(BasicBlock *BB); 236 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 237 bool isPreheader); 238 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 239 bool optimizeInst(Instruction *I, bool &ModifiedDT); 240 bool optimizeMemoryInst(Instruction *I, Value *Addr, 241 Type *AccessTy, unsigned AS); 242 bool optimizeInlineAsmInst(CallInst *CS); 243 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 244 bool optimizeExt(Instruction *&I); 245 bool optimizeExtUses(Instruction *I); 246 bool optimizeLoadExt(LoadInst *I); 247 bool optimizeSelectInst(SelectInst *SI); 248 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 249 bool optimizeSwitchInst(SwitchInst *CI); 250 bool optimizeExtractElementInst(Instruction *Inst); 251 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 252 bool placeDbgValues(Function &F); 253 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 254 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 255 bool tryToPromoteExts(TypePromotionTransaction &TPT, 256 const SmallVectorImpl<Instruction *> &Exts, 257 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 258 unsigned CreatedInstsCost = 0); 259 bool mergeSExts(Function &F); 260 bool performAddressTypePromotion( 261 Instruction *&Inst, 262 bool AllowPromotionWithoutCommonHeader, 263 bool HasPromoted, TypePromotionTransaction &TPT, 264 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 265 bool splitBranchCondition(Function &F); 266 bool simplifyOffsetableRelocate(Instruction &I); 267 bool splitIndirectCriticalEdges(Function &F); 268 }; 269 } 270 271 char CodeGenPrepare::ID = 0; 272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 273 "Optimize for code generation", false, false) 274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 276 "Optimize for code generation", false, false) 277 278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 279 280 bool CodeGenPrepare::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 284 DL = &F.getParent()->getDataLayout(); 285 286 bool EverMadeChange = false; 287 // Clear per function information. 288 InsertedInsts.clear(); 289 PromotedInsts.clear(); 290 BFI.reset(); 291 BPI.reset(); 292 293 ModifiedDT = false; 294 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 295 TM = &TPC->getTM<TargetMachine>(); 296 SubtargetInfo = TM->getSubtargetImpl(F); 297 TLI = SubtargetInfo->getTargetLowering(); 298 TRI = SubtargetInfo->getRegisterInfo(); 299 } 300 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 301 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 302 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 303 OptSize = F.optForSize(); 304 305 if (ProfileGuidedSectionPrefix) { 306 ProfileSummaryInfo *PSI = 307 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 308 if (PSI->isFunctionHotInCallGraph(&F)) 309 F.setSectionPrefix(".hot"); 310 else if (PSI->isFunctionColdInCallGraph(&F)) 311 F.setSectionPrefix(".unlikely"); 312 } 313 314 /// This optimization identifies DIV instructions that can be 315 /// profitably bypassed and carried out with a shorter, faster divide. 316 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 317 const DenseMap<unsigned int, unsigned int> &BypassWidths = 318 TLI->getBypassSlowDivWidths(); 319 BasicBlock* BB = &*F.begin(); 320 while (BB != nullptr) { 321 // bypassSlowDivision may create new BBs, but we don't want to reapply the 322 // optimization to those blocks. 323 BasicBlock* Next = BB->getNextNode(); 324 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 325 BB = Next; 326 } 327 } 328 329 // Eliminate blocks that contain only PHI nodes and an 330 // unconditional branch. 331 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 332 333 // llvm.dbg.value is far away from the value then iSel may not be able 334 // handle it properly. iSel will drop llvm.dbg.value if it can not 335 // find a node corresponding to the value. 336 EverMadeChange |= placeDbgValues(F); 337 338 if (!DisableBranchOpts) 339 EverMadeChange |= splitBranchCondition(F); 340 341 // Split some critical edges where one of the sources is an indirect branch, 342 // to help generate sane code for PHIs involving such edges. 343 EverMadeChange |= splitIndirectCriticalEdges(F); 344 345 bool MadeChange = true; 346 while (MadeChange) { 347 MadeChange = false; 348 SeenChainsForSExt.clear(); 349 ValToSExtendedUses.clear(); 350 RemovedInsts.clear(); 351 for (Function::iterator I = F.begin(); I != F.end(); ) { 352 BasicBlock *BB = &*I++; 353 bool ModifiedDTOnIteration = false; 354 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 355 356 // Restart BB iteration if the dominator tree of the Function was changed 357 if (ModifiedDTOnIteration) 358 break; 359 } 360 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 361 MadeChange |= mergeSExts(F); 362 363 // Really free removed instructions during promotion. 364 for (Instruction *I : RemovedInsts) 365 I->deleteValue(); 366 367 EverMadeChange |= MadeChange; 368 } 369 370 SunkAddrs.clear(); 371 372 if (!DisableBranchOpts) { 373 MadeChange = false; 374 SmallPtrSet<BasicBlock*, 8> WorkList; 375 for (BasicBlock &BB : F) { 376 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 377 MadeChange |= ConstantFoldTerminator(&BB, true); 378 if (!MadeChange) continue; 379 380 for (SmallVectorImpl<BasicBlock*>::iterator 381 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 382 if (pred_begin(*II) == pred_end(*II)) 383 WorkList.insert(*II); 384 } 385 386 // Delete the dead blocks and any of their dead successors. 387 MadeChange |= !WorkList.empty(); 388 while (!WorkList.empty()) { 389 BasicBlock *BB = *WorkList.begin(); 390 WorkList.erase(BB); 391 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 392 393 DeleteDeadBlock(BB); 394 395 for (SmallVectorImpl<BasicBlock*>::iterator 396 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 397 if (pred_begin(*II) == pred_end(*II)) 398 WorkList.insert(*II); 399 } 400 401 // Merge pairs of basic blocks with unconditional branches, connected by 402 // a single edge. 403 if (EverMadeChange || MadeChange) 404 MadeChange |= eliminateFallThrough(F); 405 406 EverMadeChange |= MadeChange; 407 } 408 409 if (!DisableGCOpts) { 410 SmallVector<Instruction *, 2> Statepoints; 411 for (BasicBlock &BB : F) 412 for (Instruction &I : BB) 413 if (isStatepoint(I)) 414 Statepoints.push_back(&I); 415 for (auto &I : Statepoints) 416 EverMadeChange |= simplifyOffsetableRelocate(*I); 417 } 418 419 return EverMadeChange; 420 } 421 422 /// Merge basic blocks which are connected by a single edge, where one of the 423 /// basic blocks has a single successor pointing to the other basic block, 424 /// which has a single predecessor. 425 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 426 bool Changed = false; 427 // Scan all of the blocks in the function, except for the entry block. 428 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 429 BasicBlock *BB = &*I++; 430 // If the destination block has a single pred, then this is a trivial 431 // edge, just collapse it. 432 BasicBlock *SinglePred = BB->getSinglePredecessor(); 433 434 // Don't merge if BB's address is taken. 435 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 436 437 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 438 if (Term && !Term->isConditional()) { 439 Changed = true; 440 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 441 // Remember if SinglePred was the entry block of the function. 442 // If so, we will need to move BB back to the entry position. 443 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 444 MergeBasicBlockIntoOnlyPred(BB, nullptr); 445 446 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 447 BB->moveBefore(&BB->getParent()->getEntryBlock()); 448 449 // We have erased a block. Update the iterator. 450 I = BB->getIterator(); 451 } 452 } 453 return Changed; 454 } 455 456 /// Find a destination block from BB if BB is mergeable empty block. 457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 458 // If this block doesn't end with an uncond branch, ignore it. 459 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 460 if (!BI || !BI->isUnconditional()) 461 return nullptr; 462 463 // If the instruction before the branch (skipping debug info) isn't a phi 464 // node, then other stuff is happening here. 465 BasicBlock::iterator BBI = BI->getIterator(); 466 if (BBI != BB->begin()) { 467 --BBI; 468 while (isa<DbgInfoIntrinsic>(BBI)) { 469 if (BBI == BB->begin()) 470 break; 471 --BBI; 472 } 473 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 474 return nullptr; 475 } 476 477 // Do not break infinite loops. 478 BasicBlock *DestBB = BI->getSuccessor(0); 479 if (DestBB == BB) 480 return nullptr; 481 482 if (!canMergeBlocks(BB, DestBB)) 483 DestBB = nullptr; 484 485 return DestBB; 486 } 487 488 // Return the unique indirectbr predecessor of a block. This may return null 489 // even if such a predecessor exists, if it's not useful for splitting. 490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 491 // predecessors of BB. 492 static BasicBlock * 493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 494 // If the block doesn't have any PHIs, we don't care about it, since there's 495 // no point in splitting it. 496 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 497 if (!PN) 498 return nullptr; 499 500 // Verify we have exactly one IBR predecessor. 501 // Conservatively bail out if one of the other predecessors is not a "regular" 502 // terminator (that is, not a switch or a br). 503 BasicBlock *IBB = nullptr; 504 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 505 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 506 TerminatorInst *PredTerm = PredBB->getTerminator(); 507 switch (PredTerm->getOpcode()) { 508 case Instruction::IndirectBr: 509 if (IBB) 510 return nullptr; 511 IBB = PredBB; 512 break; 513 case Instruction::Br: 514 case Instruction::Switch: 515 OtherPreds.push_back(PredBB); 516 continue; 517 default: 518 return nullptr; 519 } 520 } 521 522 return IBB; 523 } 524 525 // Split critical edges where the source of the edge is an indirectbr 526 // instruction. This isn't always possible, but we can handle some easy cases. 527 // This is useful because MI is unable to split such critical edges, 528 // which means it will not be able to sink instructions along those edges. 529 // This is especially painful for indirect branches with many successors, where 530 // we end up having to prepare all outgoing values in the origin block. 531 // 532 // Our normal algorithm for splitting critical edges requires us to update 533 // the outgoing edges of the edge origin block, but for an indirectbr this 534 // is hard, since it would require finding and updating the block addresses 535 // the indirect branch uses. But if a block only has a single indirectbr 536 // predecessor, with the others being regular branches, we can do it in a 537 // different way. 538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 539 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 541 // create the following structure: 542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 544 // Check whether the function has any indirectbrs, and collect which blocks 545 // they may jump to. Since most functions don't have indirect branches, 546 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 547 SmallSetVector<BasicBlock *, 16> Targets; 548 for (auto &BB : F) { 549 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 550 if (!IBI) 551 continue; 552 553 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 554 Targets.insert(IBI->getSuccessor(Succ)); 555 } 556 557 if (Targets.empty()) 558 return false; 559 560 bool Changed = false; 561 for (BasicBlock *Target : Targets) { 562 SmallVector<BasicBlock *, 16> OtherPreds; 563 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 564 // If we did not found an indirectbr, or the indirectbr is the only 565 // incoming edge, this isn't the kind of edge we're looking for. 566 if (!IBRPred || OtherPreds.empty()) 567 continue; 568 569 // Don't even think about ehpads/landingpads. 570 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 571 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 572 continue; 573 574 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 575 // It's possible Target was its own successor through an indirectbr. 576 // In this case, the indirectbr now comes from BodyBlock. 577 if (IBRPred == Target) 578 IBRPred = BodyBlock; 579 580 // At this point Target only has PHIs, and BodyBlock has the rest of the 581 // block's body. Create a copy of Target that will be used by the "direct" 582 // preds. 583 ValueToValueMapTy VMap; 584 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 585 586 for (BasicBlock *Pred : OtherPreds) { 587 // If the target is a loop to itself, then the terminator of the split 588 // block needs to be updated. 589 if (Pred == Target) 590 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 591 else 592 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 593 } 594 595 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 596 // they are clones, so the number of PHIs are the same. 597 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 598 // (b) Leave that as the only edge in the "Indirect" PHI. 599 // (c) Merge the two in the body block. 600 BasicBlock::iterator Indirect = Target->begin(), 601 End = Target->getFirstNonPHI()->getIterator(); 602 BasicBlock::iterator Direct = DirectSucc->begin(); 603 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 604 605 assert(&*End == Target->getTerminator() && 606 "Block was expected to only contain PHIs"); 607 608 while (Indirect != End) { 609 PHINode *DirPHI = cast<PHINode>(Direct); 610 PHINode *IndPHI = cast<PHINode>(Indirect); 611 612 // Now, clean up - the direct block shouldn't get the indirect value, 613 // and vice versa. 614 DirPHI->removeIncomingValue(IBRPred); 615 Direct++; 616 617 // Advance the pointer here, to avoid invalidation issues when the old 618 // PHI is erased. 619 Indirect++; 620 621 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 622 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 623 IBRPred); 624 625 // Create a PHI in the body block, to merge the direct and indirect 626 // predecessors. 627 PHINode *MergePHI = 628 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 629 MergePHI->addIncoming(NewIndPHI, Target); 630 MergePHI->addIncoming(DirPHI, DirectSucc); 631 632 IndPHI->replaceAllUsesWith(MergePHI); 633 IndPHI->eraseFromParent(); 634 } 635 636 Changed = true; 637 } 638 639 return Changed; 640 } 641 642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 644 /// edges in ways that are non-optimal for isel. Start by eliminating these 645 /// blocks so we can split them the way we want them. 646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 647 SmallPtrSet<BasicBlock *, 16> Preheaders; 648 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 649 while (!LoopList.empty()) { 650 Loop *L = LoopList.pop_back_val(); 651 LoopList.insert(LoopList.end(), L->begin(), L->end()); 652 if (BasicBlock *Preheader = L->getLoopPreheader()) 653 Preheaders.insert(Preheader); 654 } 655 656 bool MadeChange = false; 657 // Note that this intentionally skips the entry block. 658 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 659 BasicBlock *BB = &*I++; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Try to skip merging if the unique predecessor of BB is terminated by a 684 // switch or indirect branch instruction, and BB is used as an incoming block 685 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 686 // add COPY instructions in the predecessor of BB instead of BB (if it is not 687 // merged). Note that the critical edge created by merging such blocks wont be 688 // split in MachineSink because the jump table is not analyzable. By keeping 689 // such empty block (BB), ISel will place COPY instructions in BB, not in the 690 // predecessor of BB. 691 BasicBlock *Pred = BB->getUniquePredecessor(); 692 if (!Pred || 693 !(isa<SwitchInst>(Pred->getTerminator()) || 694 isa<IndirectBrInst>(Pred->getTerminator()))) 695 return true; 696 697 if (BB->getTerminator() != BB->getFirstNonPHI()) 698 return true; 699 700 // We use a simple cost heuristic which determine skipping merging is 701 // profitable if the cost of skipping merging is less than the cost of 702 // merging : Cost(skipping merging) < Cost(merging BB), where the 703 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 704 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 705 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 706 // Freq(Pred) / Freq(BB) > 2. 707 // Note that if there are multiple empty blocks sharing the same incoming 708 // value for the PHIs in the DestBB, we consider them together. In such 709 // case, Cost(merging BB) will be the sum of their frequencies. 710 711 if (!isa<PHINode>(DestBB->begin())) 712 return true; 713 714 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 715 716 // Find all other incoming blocks from which incoming values of all PHIs in 717 // DestBB are the same as the ones from BB. 718 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 719 ++PI) { 720 BasicBlock *DestBBPred = *PI; 721 if (DestBBPred == BB) 722 continue; 723 724 bool HasAllSameValue = true; 725 BasicBlock::const_iterator DestBBI = DestBB->begin(); 726 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 727 if (DestPN->getIncomingValueForBlock(BB) != 728 DestPN->getIncomingValueForBlock(DestBBPred)) { 729 HasAllSameValue = false; 730 break; 731 } 732 } 733 if (HasAllSameValue) 734 SameIncomingValueBBs.insert(DestBBPred); 735 } 736 737 // See if all BB's incoming values are same as the value from Pred. In this 738 // case, no reason to skip merging because COPYs are expected to be place in 739 // Pred already. 740 if (SameIncomingValueBBs.count(Pred)) 741 return true; 742 743 if (!BFI) { 744 Function &F = *BB->getParent(); 745 LoopInfo LI{DominatorTree(F)}; 746 BPI.reset(new BranchProbabilityInfo(F, LI)); 747 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 748 } 749 750 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 751 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 752 753 for (auto SameValueBB : SameIncomingValueBBs) 754 if (SameValueBB->getUniquePredecessor() == Pred && 755 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 756 BBFreq += BFI->getBlockFreq(SameValueBB); 757 758 return PredFreq.getFrequency() <= 759 BBFreq.getFrequency() * FreqRatioToSkipMerge; 760 } 761 762 /// Return true if we can merge BB into DestBB if there is a single 763 /// unconditional branch between them, and BB contains no other non-phi 764 /// instructions. 765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 766 const BasicBlock *DestBB) const { 767 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 768 // the successor. If there are more complex condition (e.g. preheaders), 769 // don't mess around with them. 770 BasicBlock::const_iterator BBI = BB->begin(); 771 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 772 for (const User *U : PN->users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 BBI = DestBB->begin(); 812 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 813 const Value *V1 = PN->getIncomingValueForBlock(Pred); 814 const Value *V2 = PN->getIncomingValueForBlock(BB); 815 816 // If V2 is a phi node in BB, look up what the mapped value will be. 817 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 818 if (V2PN->getParent() == BB) 819 V2 = V2PN->getIncomingValueForBlock(Pred); 820 821 // If there is a conflict, bail out. 822 if (V1 != V2) return false; 823 } 824 } 825 } 826 827 return true; 828 } 829 830 831 /// Eliminate a basic block that has only phi's and an unconditional branch in 832 /// it. 833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 834 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 835 BasicBlock *DestBB = BI->getSuccessor(0); 836 837 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 838 839 // If the destination block has a single pred, then this is a trivial edge, 840 // just collapse it. 841 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 842 if (SinglePred != DestBB) { 843 // Remember if SinglePred was the entry block of the function. If so, we 844 // will need to move BB back to the entry position. 845 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 846 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 847 848 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 849 BB->moveBefore(&BB->getParent()->getEntryBlock()); 850 851 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 852 return; 853 } 854 } 855 856 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 857 // to handle the new incoming edges it is about to have. 858 PHINode *PN; 859 for (BasicBlock::iterator BBI = DestBB->begin(); 860 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 861 // Remove the incoming value for BB, and remember it. 862 Value *InVal = PN->removeIncomingValue(BB, false); 863 864 // Two options: either the InVal is a phi node defined in BB or it is some 865 // value that dominates BB. 866 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 867 if (InValPhi && InValPhi->getParent() == BB) { 868 // Add all of the input values of the input PHI as inputs of this phi. 869 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 870 PN->addIncoming(InValPhi->getIncomingValue(i), 871 InValPhi->getIncomingBlock(i)); 872 } else { 873 // Otherwise, add one instance of the dominating value for each edge that 874 // we will be adding. 875 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 876 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 877 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 878 } else { 879 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 880 PN->addIncoming(InVal, *PI); 881 } 882 } 883 } 884 885 // The PHIs are now updated, change everything that refers to BB to use 886 // DestBB and remove BB. 887 BB->replaceAllUsesWith(DestBB); 888 BB->eraseFromParent(); 889 ++NumBlocksElim; 890 891 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 892 } 893 894 // Computes a map of base pointer relocation instructions to corresponding 895 // derived pointer relocation instructions given a vector of all relocate calls 896 static void computeBaseDerivedRelocateMap( 897 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 898 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 899 &RelocateInstMap) { 900 // Collect information in two maps: one primarily for locating the base object 901 // while filling the second map; the second map is the final structure holding 902 // a mapping between Base and corresponding Derived relocate calls 903 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 904 for (auto *ThisRelocate : AllRelocateCalls) { 905 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 906 ThisRelocate->getDerivedPtrIndex()); 907 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 908 } 909 for (auto &Item : RelocateIdxMap) { 910 std::pair<unsigned, unsigned> Key = Item.first; 911 if (Key.first == Key.second) 912 // Base relocation: nothing to insert 913 continue; 914 915 GCRelocateInst *I = Item.second; 916 auto BaseKey = std::make_pair(Key.first, Key.first); 917 918 // We're iterating over RelocateIdxMap so we cannot modify it. 919 auto MaybeBase = RelocateIdxMap.find(BaseKey); 920 if (MaybeBase == RelocateIdxMap.end()) 921 // TODO: We might want to insert a new base object relocate and gep off 922 // that, if there are enough derived object relocates. 923 continue; 924 925 RelocateInstMap[MaybeBase->second].push_back(I); 926 } 927 } 928 929 // Accepts a GEP and extracts the operands into a vector provided they're all 930 // small integer constants 931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 932 SmallVectorImpl<Value *> &OffsetV) { 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 934 // Only accept small constant integer operands 935 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 936 if (!Op || Op->getZExtValue() > 20) 937 return false; 938 } 939 940 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 941 OffsetV.push_back(GEP->getOperand(i)); 942 return true; 943 } 944 945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 946 // replace, computes a replacement, and affects it. 947 static bool 948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 949 const SmallVectorImpl<GCRelocateInst *> &Targets) { 950 bool MadeChange = false; 951 // We must ensure the relocation of derived pointer is defined after 952 // relocation of base pointer. If we find a relocation corresponding to base 953 // defined earlier than relocation of base then we move relocation of base 954 // right before found relocation. We consider only relocation in the same 955 // basic block as relocation of base. Relocations from other basic block will 956 // be skipped by optimization and we do not care about them. 957 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 958 &*R != RelocatedBase; ++R) 959 if (auto RI = dyn_cast<GCRelocateInst>(R)) 960 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 961 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 962 RelocatedBase->moveBefore(RI); 963 break; 964 } 965 966 for (GCRelocateInst *ToReplace : Targets) { 967 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 968 "Not relocating a derived object of the original base object"); 969 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 970 // A duplicate relocate call. TODO: coalesce duplicates. 971 continue; 972 } 973 974 if (RelocatedBase->getParent() != ToReplace->getParent()) { 975 // Base and derived relocates are in different basic blocks. 976 // In this case transform is only valid when base dominates derived 977 // relocate. However it would be too expensive to check dominance 978 // for each such relocate, so we skip the whole transformation. 979 continue; 980 } 981 982 Value *Base = ToReplace->getBasePtr(); 983 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 984 if (!Derived || Derived->getPointerOperand() != Base) 985 continue; 986 987 SmallVector<Value *, 2> OffsetV; 988 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 989 continue; 990 991 // Create a Builder and replace the target callsite with a gep 992 assert(RelocatedBase->getNextNode() && 993 "Should always have one since it's not a terminator"); 994 995 // Insert after RelocatedBase 996 IRBuilder<> Builder(RelocatedBase->getNextNode()); 997 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 998 999 // If gc_relocate does not match the actual type, cast it to the right type. 1000 // In theory, there must be a bitcast after gc_relocate if the type does not 1001 // match, and we should reuse it to get the derived pointer. But it could be 1002 // cases like this: 1003 // bb1: 1004 // ... 1005 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1006 // br label %merge 1007 // 1008 // bb2: 1009 // ... 1010 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1011 // br label %merge 1012 // 1013 // merge: 1014 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1015 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1016 // 1017 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1018 // no matter there is already one or not. In this way, we can handle all cases, and 1019 // the extra bitcast should be optimized away in later passes. 1020 Value *ActualRelocatedBase = RelocatedBase; 1021 if (RelocatedBase->getType() != Base->getType()) { 1022 ActualRelocatedBase = 1023 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1024 } 1025 Value *Replacement = Builder.CreateGEP( 1026 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1027 Replacement->takeName(ToReplace); 1028 // If the newly generated derived pointer's type does not match the original derived 1029 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1030 Value *ActualReplacement = Replacement; 1031 if (Replacement->getType() != ToReplace->getType()) { 1032 ActualReplacement = 1033 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1034 } 1035 ToReplace->replaceAllUsesWith(ActualReplacement); 1036 ToReplace->eraseFromParent(); 1037 1038 MadeChange = true; 1039 } 1040 return MadeChange; 1041 } 1042 1043 // Turns this: 1044 // 1045 // %base = ... 1046 // %ptr = gep %base + 15 1047 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1048 // %base' = relocate(%tok, i32 4, i32 4) 1049 // %ptr' = relocate(%tok, i32 4, i32 5) 1050 // %val = load %ptr' 1051 // 1052 // into this: 1053 // 1054 // %base = ... 1055 // %ptr = gep %base + 15 1056 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1057 // %base' = gc.relocate(%tok, i32 4, i32 4) 1058 // %ptr' = gep %base' + 15 1059 // %val = load %ptr' 1060 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1061 bool MadeChange = false; 1062 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1063 1064 for (auto *U : I.users()) 1065 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1066 // Collect all the relocate calls associated with a statepoint 1067 AllRelocateCalls.push_back(Relocate); 1068 1069 // We need atleast one base pointer relocation + one derived pointer 1070 // relocation to mangle 1071 if (AllRelocateCalls.size() < 2) 1072 return false; 1073 1074 // RelocateInstMap is a mapping from the base relocate instruction to the 1075 // corresponding derived relocate instructions 1076 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1077 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1078 if (RelocateInstMap.empty()) 1079 return false; 1080 1081 for (auto &Item : RelocateInstMap) 1082 // Item.first is the RelocatedBase to offset against 1083 // Item.second is the vector of Targets to replace 1084 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1085 return MadeChange; 1086 } 1087 1088 /// SinkCast - Sink the specified cast instruction into its user blocks 1089 static bool SinkCast(CastInst *CI) { 1090 BasicBlock *DefBB = CI->getParent(); 1091 1092 /// InsertedCasts - Only insert a cast in each block once. 1093 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1094 1095 bool MadeChange = false; 1096 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1097 UI != E; ) { 1098 Use &TheUse = UI.getUse(); 1099 Instruction *User = cast<Instruction>(*UI); 1100 1101 // Figure out which BB this cast is used in. For PHI's this is the 1102 // appropriate predecessor block. 1103 BasicBlock *UserBB = User->getParent(); 1104 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1105 UserBB = PN->getIncomingBlock(TheUse); 1106 } 1107 1108 // Preincrement use iterator so we don't invalidate it. 1109 ++UI; 1110 1111 // The first insertion point of a block containing an EH pad is after the 1112 // pad. If the pad is the user, we cannot sink the cast past the pad. 1113 if (User->isEHPad()) 1114 continue; 1115 1116 // If the block selected to receive the cast is an EH pad that does not 1117 // allow non-PHI instructions before the terminator, we can't sink the 1118 // cast. 1119 if (UserBB->getTerminator()->isEHPad()) 1120 continue; 1121 1122 // If this user is in the same block as the cast, don't change the cast. 1123 if (UserBB == DefBB) continue; 1124 1125 // If we have already inserted a cast into this block, use it. 1126 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1127 1128 if (!InsertedCast) { 1129 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1130 assert(InsertPt != UserBB->end()); 1131 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1132 CI->getType(), "", &*InsertPt); 1133 } 1134 1135 // Replace a use of the cast with a use of the new cast. 1136 TheUse = InsertedCast; 1137 MadeChange = true; 1138 ++NumCastUses; 1139 } 1140 1141 // If we removed all uses, nuke the cast. 1142 if (CI->use_empty()) { 1143 CI->eraseFromParent(); 1144 MadeChange = true; 1145 } 1146 1147 return MadeChange; 1148 } 1149 1150 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1151 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1152 /// reduce the number of virtual registers that must be created and coalesced. 1153 /// 1154 /// Return true if any changes are made. 1155 /// 1156 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1157 const DataLayout &DL) { 1158 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1159 // than sinking only nop casts, but is helpful on some platforms. 1160 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1161 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1162 ASC->getDestAddressSpace())) 1163 return false; 1164 } 1165 1166 // If this is a noop copy, 1167 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1168 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1169 1170 // This is an fp<->int conversion? 1171 if (SrcVT.isInteger() != DstVT.isInteger()) 1172 return false; 1173 1174 // If this is an extension, it will be a zero or sign extension, which 1175 // isn't a noop. 1176 if (SrcVT.bitsLT(DstVT)) return false; 1177 1178 // If these values will be promoted, find out what they will be promoted 1179 // to. This helps us consider truncates on PPC as noop copies when they 1180 // are. 1181 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1182 TargetLowering::TypePromoteInteger) 1183 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1184 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1185 TargetLowering::TypePromoteInteger) 1186 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1187 1188 // If, after promotion, these are the same types, this is a noop copy. 1189 if (SrcVT != DstVT) 1190 return false; 1191 1192 return SinkCast(CI); 1193 } 1194 1195 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1196 /// possible. 1197 /// 1198 /// Return true if any changes were made. 1199 static bool CombineUAddWithOverflow(CmpInst *CI) { 1200 Value *A, *B; 1201 Instruction *AddI; 1202 if (!match(CI, 1203 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1204 return false; 1205 1206 Type *Ty = AddI->getType(); 1207 if (!isa<IntegerType>(Ty)) 1208 return false; 1209 1210 // We don't want to move around uses of condition values this late, so we we 1211 // check if it is legal to create the call to the intrinsic in the basic 1212 // block containing the icmp: 1213 1214 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1215 return false; 1216 1217 #ifndef NDEBUG 1218 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1219 // for now: 1220 if (AddI->hasOneUse()) 1221 assert(*AddI->user_begin() == CI && "expected!"); 1222 #endif 1223 1224 Module *M = CI->getModule(); 1225 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1226 1227 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1228 1229 auto *UAddWithOverflow = 1230 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1231 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1232 auto *Overflow = 1233 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1234 1235 CI->replaceAllUsesWith(Overflow); 1236 AddI->replaceAllUsesWith(UAdd); 1237 CI->eraseFromParent(); 1238 AddI->eraseFromParent(); 1239 return true; 1240 } 1241 1242 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1243 /// registers that must be created and coalesced. This is a clear win except on 1244 /// targets with multiple condition code registers (PowerPC), where it might 1245 /// lose; some adjustment may be wanted there. 1246 /// 1247 /// Return true if any changes are made. 1248 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1249 BasicBlock *DefBB = CI->getParent(); 1250 1251 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1252 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1253 return false; 1254 1255 // Only insert a cmp in each block once. 1256 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1257 1258 bool MadeChange = false; 1259 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1260 UI != E; ) { 1261 Use &TheUse = UI.getUse(); 1262 Instruction *User = cast<Instruction>(*UI); 1263 1264 // Preincrement use iterator so we don't invalidate it. 1265 ++UI; 1266 1267 // Don't bother for PHI nodes. 1268 if (isa<PHINode>(User)) 1269 continue; 1270 1271 // Figure out which BB this cmp is used in. 1272 BasicBlock *UserBB = User->getParent(); 1273 1274 // If this user is in the same block as the cmp, don't change the cmp. 1275 if (UserBB == DefBB) continue; 1276 1277 // If we have already inserted a cmp into this block, use it. 1278 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1279 1280 if (!InsertedCmp) { 1281 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1282 assert(InsertPt != UserBB->end()); 1283 InsertedCmp = 1284 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1285 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1286 // Propagate the debug info. 1287 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1288 } 1289 1290 // Replace a use of the cmp with a use of the new cmp. 1291 TheUse = InsertedCmp; 1292 MadeChange = true; 1293 ++NumCmpUses; 1294 } 1295 1296 // If we removed all uses, nuke the cmp. 1297 if (CI->use_empty()) { 1298 CI->eraseFromParent(); 1299 MadeChange = true; 1300 } 1301 1302 return MadeChange; 1303 } 1304 1305 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1306 if (SinkCmpExpression(CI, TLI)) 1307 return true; 1308 1309 if (CombineUAddWithOverflow(CI)) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1316 /// used in a compare to allow isel to generate better code for targets where 1317 /// this operation can be combined. 1318 /// 1319 /// Return true if any changes are made. 1320 static bool sinkAndCmp0Expression(Instruction *AndI, 1321 const TargetLowering &TLI, 1322 SetOfInstrs &InsertedInsts) { 1323 // Double-check that we're not trying to optimize an instruction that was 1324 // already optimized by some other part of this pass. 1325 assert(!InsertedInsts.count(AndI) && 1326 "Attempting to optimize already optimized and instruction"); 1327 (void) InsertedInsts; 1328 1329 // Nothing to do for single use in same basic block. 1330 if (AndI->hasOneUse() && 1331 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1332 return false; 1333 1334 // Try to avoid cases where sinking/duplicating is likely to increase register 1335 // pressure. 1336 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1337 !isa<ConstantInt>(AndI->getOperand(1)) && 1338 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1339 return false; 1340 1341 for (auto *U : AndI->users()) { 1342 Instruction *User = cast<Instruction>(U); 1343 1344 // Only sink for and mask feeding icmp with 0. 1345 if (!isa<ICmpInst>(User)) 1346 return false; 1347 1348 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1349 if (!CmpC || !CmpC->isZero()) 1350 return false; 1351 } 1352 1353 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1354 return false; 1355 1356 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1357 DEBUG(AndI->getParent()->dump()); 1358 1359 // Push the 'and' into the same block as the icmp 0. There should only be 1360 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1361 // others, so we don't need to keep track of which BBs we insert into. 1362 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1363 UI != E; ) { 1364 Use &TheUse = UI.getUse(); 1365 Instruction *User = cast<Instruction>(*UI); 1366 1367 // Preincrement use iterator so we don't invalidate it. 1368 ++UI; 1369 1370 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1371 1372 // Keep the 'and' in the same place if the use is already in the same block. 1373 Instruction *InsertPt = 1374 User->getParent() == AndI->getParent() ? AndI : User; 1375 Instruction *InsertedAnd = 1376 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1377 AndI->getOperand(1), "", InsertPt); 1378 // Propagate the debug info. 1379 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1380 1381 // Replace a use of the 'and' with a use of the new 'and'. 1382 TheUse = InsertedAnd; 1383 ++NumAndUses; 1384 DEBUG(User->getParent()->dump()); 1385 } 1386 1387 // We removed all uses, nuke the and. 1388 AndI->eraseFromParent(); 1389 return true; 1390 } 1391 1392 /// Check if the candidates could be combined with a shift instruction, which 1393 /// includes: 1394 /// 1. Truncate instruction 1395 /// 2. And instruction and the imm is a mask of the low bits: 1396 /// imm & (imm+1) == 0 1397 static bool isExtractBitsCandidateUse(Instruction *User) { 1398 if (!isa<TruncInst>(User)) { 1399 if (User->getOpcode() != Instruction::And || 1400 !isa<ConstantInt>(User->getOperand(1))) 1401 return false; 1402 1403 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1404 1405 if ((Cimm & (Cimm + 1)).getBoolValue()) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 /// Sink both shift and truncate instruction to the use of truncate's BB. 1412 static bool 1413 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1414 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1415 const TargetLowering &TLI, const DataLayout &DL) { 1416 BasicBlock *UserBB = User->getParent(); 1417 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1418 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1419 bool MadeChange = false; 1420 1421 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1422 TruncE = TruncI->user_end(); 1423 TruncUI != TruncE;) { 1424 1425 Use &TruncTheUse = TruncUI.getUse(); 1426 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1427 // Preincrement use iterator so we don't invalidate it. 1428 1429 ++TruncUI; 1430 1431 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1432 if (!ISDOpcode) 1433 continue; 1434 1435 // If the use is actually a legal node, there will not be an 1436 // implicit truncate. 1437 // FIXME: always querying the result type is just an 1438 // approximation; some nodes' legality is determined by the 1439 // operand or other means. There's no good way to find out though. 1440 if (TLI.isOperationLegalOrCustom( 1441 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1442 continue; 1443 1444 // Don't bother for PHI nodes. 1445 if (isa<PHINode>(TruncUser)) 1446 continue; 1447 1448 BasicBlock *TruncUserBB = TruncUser->getParent(); 1449 1450 if (UserBB == TruncUserBB) 1451 continue; 1452 1453 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1454 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1455 1456 if (!InsertedShift && !InsertedTrunc) { 1457 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1458 assert(InsertPt != TruncUserBB->end()); 1459 // Sink the shift 1460 if (ShiftI->getOpcode() == Instruction::AShr) 1461 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1462 "", &*InsertPt); 1463 else 1464 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1465 "", &*InsertPt); 1466 1467 // Sink the trunc 1468 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1469 TruncInsertPt++; 1470 assert(TruncInsertPt != TruncUserBB->end()); 1471 1472 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1473 TruncI->getType(), "", &*TruncInsertPt); 1474 1475 MadeChange = true; 1476 1477 TruncTheUse = InsertedTrunc; 1478 } 1479 } 1480 return MadeChange; 1481 } 1482 1483 /// Sink the shift *right* instruction into user blocks if the uses could 1484 /// potentially be combined with this shift instruction and generate BitExtract 1485 /// instruction. It will only be applied if the architecture supports BitExtract 1486 /// instruction. Here is an example: 1487 /// BB1: 1488 /// %x.extract.shift = lshr i64 %arg1, 32 1489 /// BB2: 1490 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1491 /// ==> 1492 /// 1493 /// BB2: 1494 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1495 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1496 /// 1497 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1498 /// instruction. 1499 /// Return true if any changes are made. 1500 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1501 const TargetLowering &TLI, 1502 const DataLayout &DL) { 1503 BasicBlock *DefBB = ShiftI->getParent(); 1504 1505 /// Only insert instructions in each block once. 1506 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1507 1508 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1509 1510 bool MadeChange = false; 1511 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1512 UI != E;) { 1513 Use &TheUse = UI.getUse(); 1514 Instruction *User = cast<Instruction>(*UI); 1515 // Preincrement use iterator so we don't invalidate it. 1516 ++UI; 1517 1518 // Don't bother for PHI nodes. 1519 if (isa<PHINode>(User)) 1520 continue; 1521 1522 if (!isExtractBitsCandidateUse(User)) 1523 continue; 1524 1525 BasicBlock *UserBB = User->getParent(); 1526 1527 if (UserBB == DefBB) { 1528 // If the shift and truncate instruction are in the same BB. The use of 1529 // the truncate(TruncUse) may still introduce another truncate if not 1530 // legal. In this case, we would like to sink both shift and truncate 1531 // instruction to the BB of TruncUse. 1532 // for example: 1533 // BB1: 1534 // i64 shift.result = lshr i64 opnd, imm 1535 // trunc.result = trunc shift.result to i16 1536 // 1537 // BB2: 1538 // ----> We will have an implicit truncate here if the architecture does 1539 // not have i16 compare. 1540 // cmp i16 trunc.result, opnd2 1541 // 1542 if (isa<TruncInst>(User) && shiftIsLegal 1543 // If the type of the truncate is legal, no trucate will be 1544 // introduced in other basic blocks. 1545 && 1546 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1547 MadeChange = 1548 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1549 1550 continue; 1551 } 1552 // If we have already inserted a shift into this block, use it. 1553 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1554 1555 if (!InsertedShift) { 1556 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1557 assert(InsertPt != UserBB->end()); 1558 1559 if (ShiftI->getOpcode() == Instruction::AShr) 1560 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1561 "", &*InsertPt); 1562 else 1563 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1564 "", &*InsertPt); 1565 1566 MadeChange = true; 1567 } 1568 1569 // Replace a use of the shift with a use of the new shift. 1570 TheUse = InsertedShift; 1571 } 1572 1573 // If we removed all uses, nuke the shift. 1574 if (ShiftI->use_empty()) 1575 ShiftI->eraseFromParent(); 1576 1577 return MadeChange; 1578 } 1579 1580 /// If counting leading or trailing zeros is an expensive operation and a zero 1581 /// input is defined, add a check for zero to avoid calling the intrinsic. 1582 /// 1583 /// We want to transform: 1584 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1585 /// 1586 /// into: 1587 /// entry: 1588 /// %cmpz = icmp eq i64 %A, 0 1589 /// br i1 %cmpz, label %cond.end, label %cond.false 1590 /// cond.false: 1591 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1592 /// br label %cond.end 1593 /// cond.end: 1594 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1595 /// 1596 /// If the transform is performed, return true and set ModifiedDT to true. 1597 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1598 const TargetLowering *TLI, 1599 const DataLayout *DL, 1600 bool &ModifiedDT) { 1601 if (!TLI || !DL) 1602 return false; 1603 1604 // If a zero input is undefined, it doesn't make sense to despeculate that. 1605 if (match(CountZeros->getOperand(1), m_One())) 1606 return false; 1607 1608 // If it's cheap to speculate, there's nothing to do. 1609 auto IntrinsicID = CountZeros->getIntrinsicID(); 1610 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1611 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1612 return false; 1613 1614 // Only handle legal scalar cases. Anything else requires too much work. 1615 Type *Ty = CountZeros->getType(); 1616 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1617 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1618 return false; 1619 1620 // The intrinsic will be sunk behind a compare against zero and branch. 1621 BasicBlock *StartBlock = CountZeros->getParent(); 1622 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1623 1624 // Create another block after the count zero intrinsic. A PHI will be added 1625 // in this block to select the result of the intrinsic or the bit-width 1626 // constant if the input to the intrinsic is zero. 1627 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1628 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1629 1630 // Set up a builder to create a compare, conditional branch, and PHI. 1631 IRBuilder<> Builder(CountZeros->getContext()); 1632 Builder.SetInsertPoint(StartBlock->getTerminator()); 1633 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1634 1635 // Replace the unconditional branch that was created by the first split with 1636 // a compare against zero and a conditional branch. 1637 Value *Zero = Constant::getNullValue(Ty); 1638 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1639 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1640 StartBlock->getTerminator()->eraseFromParent(); 1641 1642 // Create a PHI in the end block to select either the output of the intrinsic 1643 // or the bit width of the operand. 1644 Builder.SetInsertPoint(&EndBlock->front()); 1645 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1646 CountZeros->replaceAllUsesWith(PN); 1647 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1648 PN->addIncoming(BitWidth, StartBlock); 1649 PN->addIncoming(CountZeros, CallBlock); 1650 1651 // We are explicitly handling the zero case, so we can set the intrinsic's 1652 // undefined zero argument to 'true'. This will also prevent reprocessing the 1653 // intrinsic; we only despeculate when a zero input is defined. 1654 CountZeros->setArgOperand(1, Builder.getTrue()); 1655 ModifiedDT = true; 1656 return true; 1657 } 1658 1659 namespace { 1660 // This class provides helper functions to expand a memcmp library call into an 1661 // inline expansion. 1662 class MemCmpExpansion { 1663 struct ResultBlock { 1664 BasicBlock *BB; 1665 PHINode *PhiSrc1; 1666 PHINode *PhiSrc2; 1667 ResultBlock(); 1668 }; 1669 1670 CallInst *CI; 1671 ResultBlock ResBlock; 1672 unsigned MaxLoadSize; 1673 unsigned NumBlocks; 1674 unsigned NumBlocksNonOneByte; 1675 unsigned NumLoadsPerBlock; 1676 std::vector<BasicBlock *> LoadCmpBlocks; 1677 BasicBlock *EndBlock; 1678 PHINode *PhiRes; 1679 bool IsUsedForZeroCmp; 1680 const DataLayout &DL; 1681 IRBuilder<> Builder; 1682 1683 unsigned calculateNumBlocks(unsigned Size); 1684 void createLoadCmpBlocks(); 1685 void createResultBlock(); 1686 void setupResultBlockPHINodes(); 1687 void setupEndBlockPHINodes(); 1688 void emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1689 unsigned GEPIndex); 1690 Value *getCompareLoadPairs(unsigned Index, unsigned Size, 1691 unsigned &NumBytesProcessed); 1692 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1693 unsigned &NumBytesProcessed); 1694 void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex); 1695 void emitMemCmpResultBlock(); 1696 Value *getMemCmpExpansionZeroCase(unsigned Size); 1697 Value *getMemCmpEqZeroOneBlock(unsigned Size); 1698 Value *getMemCmpOneBlock(unsigned Size); 1699 unsigned getLoadSize(unsigned Size); 1700 unsigned getNumLoads(unsigned Size); 1701 1702 public: 1703 MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize, 1704 unsigned NumLoadsPerBlock, const DataLayout &DL); 1705 Value *getMemCmpExpansion(uint64_t Size); 1706 }; 1707 } // namespace 1708 1709 MemCmpExpansion::ResultBlock::ResultBlock() 1710 : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {} 1711 1712 // Initialize the basic block structure required for expansion of memcmp call 1713 // with given maximum load size and memcmp size parameter. 1714 // This structure includes: 1715 // 1. A list of load compare blocks - LoadCmpBlocks. 1716 // 2. An EndBlock, split from original instruction point, which is the block to 1717 // return from. 1718 // 3. ResultBlock, block to branch to for early exit when a 1719 // LoadCmpBlock finds a difference. 1720 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size, 1721 unsigned MaxLoadSize, unsigned LoadsPerBlock, 1722 const DataLayout &TheDataLayout) 1723 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock), 1724 DL(TheDataLayout), Builder(CI) { 1725 1726 // A memcmp with zero-comparison with only one block of load and compare does 1727 // not need to set up any extra blocks. This case could be handled in the DAG, 1728 // but since we have all of the machinery to flexibly expand any memcpy here, 1729 // we choose to handle this case too to avoid fragmented lowering. 1730 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1731 NumBlocks = calculateNumBlocks(Size); 1732 if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) { 1733 BasicBlock *StartBlock = CI->getParent(); 1734 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1735 setupEndBlockPHINodes(); 1736 createResultBlock(); 1737 1738 // If return value of memcmp is not used in a zero equality, we need to 1739 // calculate which source was larger. The calculation requires the 1740 // two loaded source values of each load compare block. 1741 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1742 if (!IsUsedForZeroCmp) 1743 setupResultBlockPHINodes(); 1744 1745 // Create the number of required load compare basic blocks. 1746 createLoadCmpBlocks(); 1747 1748 // Update the terminator added by splitBasicBlock to branch to the first 1749 // LoadCmpBlock. 1750 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1751 } 1752 1753 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1754 } 1755 1756 void MemCmpExpansion::createLoadCmpBlocks() { 1757 for (unsigned i = 0; i < NumBlocks; i++) { 1758 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1759 EndBlock->getParent(), EndBlock); 1760 LoadCmpBlocks.push_back(BB); 1761 } 1762 } 1763 1764 void MemCmpExpansion::createResultBlock() { 1765 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1766 EndBlock->getParent(), EndBlock); 1767 } 1768 1769 // This function creates the IR instructions for loading and comparing 1 byte. 1770 // It loads 1 byte from each source of the memcmp parameters with the given 1771 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1772 // final phi node for selecting the memcmp result. 1773 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, 1774 unsigned GEPIndex) { 1775 Value *Source1 = CI->getArgOperand(0); 1776 Value *Source2 = CI->getArgOperand(1); 1777 1778 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1779 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1780 // Cast source to LoadSizeType*. 1781 if (Source1->getType() != LoadSizeType) 1782 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1783 if (Source2->getType() != LoadSizeType) 1784 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1785 1786 // Get the base address using the GEPIndex. 1787 if (GEPIndex != 0) { 1788 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1789 ConstantInt::get(LoadSizeType, GEPIndex)); 1790 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1791 ConstantInt::get(LoadSizeType, GEPIndex)); 1792 } 1793 1794 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1795 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1796 1797 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1798 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1799 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1800 1801 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1802 1803 if (Index < (LoadCmpBlocks.size() - 1)) { 1804 // Early exit branch if difference found to EndBlock. Otherwise, continue to 1805 // next LoadCmpBlock, 1806 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1807 ConstantInt::get(Diff->getType(), 0)); 1808 BranchInst *CmpBr = 1809 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1810 Builder.Insert(CmpBr); 1811 } else { 1812 // The last block has an unconditional branch to EndBlock. 1813 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1814 Builder.Insert(CmpBr); 1815 } 1816 } 1817 1818 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1819 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1820 } 1821 1822 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1823 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1824 } 1825 1826 /// Generate an equality comparison for one or more pairs of loaded values. 1827 /// This is used in the case where the memcmp() call is compared equal or not 1828 /// equal to zero. 1829 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size, 1830 unsigned &NumBytesProcessed) { 1831 std::vector<Value *> XorList, OrList; 1832 Value *Diff; 1833 1834 unsigned RemainingBytes = Size - NumBytesProcessed; 1835 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1836 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1837 1838 // For a single-block expansion, start inserting before the memcmp call. 1839 if (LoadCmpBlocks.empty()) 1840 Builder.SetInsertPoint(CI); 1841 else 1842 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1843 1844 Value *Cmp = nullptr; 1845 for (unsigned i = 0; i < NumLoads; ++i) { 1846 unsigned LoadSize = getLoadSize(RemainingBytes); 1847 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1848 NumBytesProcessed += LoadSize; 1849 RemainingBytes -= LoadSize; 1850 1851 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1852 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1853 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1854 1855 Value *Source1 = CI->getArgOperand(0); 1856 Value *Source2 = CI->getArgOperand(1); 1857 1858 // Cast source to LoadSizeType*. 1859 if (Source1->getType() != LoadSizeType) 1860 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1861 if (Source2->getType() != LoadSizeType) 1862 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1863 1864 // Get the base address using the GEPIndex. 1865 if (GEPIndex != 0) { 1866 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1867 ConstantInt::get(LoadSizeType, GEPIndex)); 1868 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1869 ConstantInt::get(LoadSizeType, GEPIndex)); 1870 } 1871 1872 // Get a constant or load a value for each source address. 1873 Value *LoadSrc1 = nullptr; 1874 if (auto *Source1C = dyn_cast<Constant>(Source1)) 1875 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 1876 if (!LoadSrc1) 1877 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1878 1879 Value *LoadSrc2 = nullptr; 1880 if (auto *Source2C = dyn_cast<Constant>(Source2)) 1881 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 1882 if (!LoadSrc2) 1883 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1884 1885 if (NumLoads != 1) { 1886 if (LoadSizeType != MaxLoadType) { 1887 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1888 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1889 } 1890 // If we have multiple loads per block, we need to generate a composite 1891 // comparison using xor+or. 1892 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1893 Diff = Builder.CreateZExt(Diff, MaxLoadType); 1894 XorList.push_back(Diff); 1895 } else { 1896 // If there's only one load per block, we just compare the loaded values. 1897 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 1898 } 1899 } 1900 1901 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1902 std::vector<Value *> OutList; 1903 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1904 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1905 OutList.push_back(Or); 1906 } 1907 if (InList.size() % 2 != 0) 1908 OutList.push_back(InList.back()); 1909 return OutList; 1910 }; 1911 1912 if (!Cmp) { 1913 // Pairwise OR the XOR results. 1914 OrList = pairWiseOr(XorList); 1915 1916 // Pairwise OR the OR results until one result left. 1917 while (OrList.size() != 1) { 1918 OrList = pairWiseOr(OrList); 1919 } 1920 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 1921 } 1922 1923 return Cmp; 1924 } 1925 1926 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1927 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1928 Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed); 1929 1930 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1931 ? EndBlock 1932 : LoadCmpBlocks[Index + 1]; 1933 // Early exit branch if difference found to ResultBlock. Otherwise, 1934 // continue to next LoadCmpBlock or EndBlock. 1935 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1936 Builder.Insert(CmpBr); 1937 1938 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1939 // since early exit to ResultBlock was not taken (no difference was found in 1940 // any of the bytes). 1941 if (Index == LoadCmpBlocks.size() - 1) { 1942 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1943 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1944 } 1945 } 1946 1947 // This function creates the IR intructions for loading and comparing using the 1948 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1949 // source of the memcmp parameters. It then does a subtract to see if there was 1950 // a difference in the loaded values. If a difference is found, it branches 1951 // with an early exit to the ResultBlock for calculating which source was 1952 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1953 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1954 // a special case through emitLoadCompareByteBlock. The special handling can 1955 // simply subtract the loaded values and add it to the result phi node. 1956 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1957 unsigned GEPIndex) { 1958 if (LoadSize == 1) { 1959 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 1960 return; 1961 } 1962 1963 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1964 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1965 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1966 1967 Value *Source1 = CI->getArgOperand(0); 1968 Value *Source2 = CI->getArgOperand(1); 1969 1970 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1971 // Cast source to LoadSizeType*. 1972 if (Source1->getType() != LoadSizeType) 1973 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1974 if (Source2->getType() != LoadSizeType) 1975 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1976 1977 // Get the base address using the GEPIndex. 1978 if (GEPIndex != 0) { 1979 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1980 ConstantInt::get(LoadSizeType, GEPIndex)); 1981 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1982 ConstantInt::get(LoadSizeType, GEPIndex)); 1983 } 1984 1985 // Load LoadSizeType from the base address. 1986 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1987 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1988 1989 if (DL.isLittleEndian()) { 1990 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 1991 Intrinsic::bswap, LoadSizeType); 1992 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 1993 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 1994 } 1995 1996 if (LoadSizeType != MaxLoadType) { 1997 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1998 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1999 } 2000 2001 // Add the loaded values to the phi nodes for calculating memcmp result only 2002 // if result is not used in a zero equality. 2003 if (!IsUsedForZeroCmp) { 2004 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 2005 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 2006 } 2007 2008 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 2009 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 2010 ? EndBlock 2011 : LoadCmpBlocks[Index + 1]; 2012 // Early exit branch if difference found to ResultBlock. Otherwise, continue 2013 // to next LoadCmpBlock or EndBlock. 2014 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 2015 Builder.Insert(CmpBr); 2016 2017 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 2018 // since early exit to ResultBlock was not taken (no difference was found in 2019 // any of the bytes). 2020 if (Index == LoadCmpBlocks.size() - 1) { 2021 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 2022 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 2023 } 2024 } 2025 2026 // This function populates the ResultBlock with a sequence to calculate the 2027 // memcmp result. It compares the two loaded source values and returns -1 if 2028 // src1 < src2 and 1 if src1 > src2. 2029 void MemCmpExpansion::emitMemCmpResultBlock() { 2030 // Special case: if memcmp result is used in a zero equality, result does not 2031 // need to be calculated and can simply return 1. 2032 if (IsUsedForZeroCmp) { 2033 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2034 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2035 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 2036 PhiRes->addIncoming(Res, ResBlock.BB); 2037 BranchInst *NewBr = BranchInst::Create(EndBlock); 2038 Builder.Insert(NewBr); 2039 return; 2040 } 2041 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2042 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2043 2044 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2045 ResBlock.PhiSrc2); 2046 2047 Value *Res = 2048 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2049 ConstantInt::get(Builder.getInt32Ty(), 1)); 2050 2051 BranchInst *NewBr = BranchInst::Create(EndBlock); 2052 Builder.Insert(NewBr); 2053 PhiRes->addIncoming(Res, ResBlock.BB); 2054 } 2055 2056 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2057 unsigned NumBlocks = 0; 2058 bool HaveOneByteLoad = false; 2059 unsigned RemainingSize = Size; 2060 unsigned LoadSize = MaxLoadSize; 2061 while (RemainingSize) { 2062 if (LoadSize == 1) 2063 HaveOneByteLoad = true; 2064 NumBlocks += RemainingSize / LoadSize; 2065 RemainingSize = RemainingSize % LoadSize; 2066 LoadSize = LoadSize / 2; 2067 } 2068 NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2069 2070 if (IsUsedForZeroCmp) 2071 NumBlocks = NumBlocks / NumLoadsPerBlock + 2072 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2073 2074 return NumBlocks; 2075 } 2076 2077 void MemCmpExpansion::setupResultBlockPHINodes() { 2078 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2079 Builder.SetInsertPoint(ResBlock.BB); 2080 ResBlock.PhiSrc1 = 2081 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2082 ResBlock.PhiSrc2 = 2083 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2084 } 2085 2086 void MemCmpExpansion::setupEndBlockPHINodes() { 2087 Builder.SetInsertPoint(&EndBlock->front()); 2088 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2089 } 2090 2091 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) { 2092 unsigned NumBytesProcessed = 0; 2093 // This loop populates each of the LoadCmpBlocks with the IR sequence to 2094 // handle multiple loads per block. 2095 for (unsigned i = 0; i < NumBlocks; ++i) 2096 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2097 2098 emitMemCmpResultBlock(); 2099 return PhiRes; 2100 } 2101 2102 /// A memcmp expansion that compares equality with 0 and only has one block of 2103 /// load and compare can bypass the compare, branch, and phi IR that is required 2104 /// in the general case. 2105 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) { 2106 unsigned NumBytesProcessed = 0; 2107 Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed); 2108 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 2109 } 2110 2111 /// A memcmp expansion that only has one block of load and compare can bypass 2112 /// the compare, branch, and phi IR that is required in the general case. 2113 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) { 2114 assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block"); 2115 2116 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 2117 Value *Source1 = CI->getArgOperand(0); 2118 Value *Source2 = CI->getArgOperand(1); 2119 2120 // Cast source to LoadSizeType*. 2121 if (Source1->getType() != LoadSizeType) 2122 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 2123 if (Source2->getType() != LoadSizeType) 2124 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 2125 2126 // Load LoadSizeType from the base address. 2127 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 2128 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 2129 2130 if (DL.isLittleEndian() && Size != 1) { 2131 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 2132 Intrinsic::bswap, LoadSizeType); 2133 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 2134 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 2135 } 2136 2137 if (Size < 4) { 2138 // The i8 and i16 cases don't need compares. We zext the loaded values and 2139 // subtract them to get the suitable negative, zero, or positive i32 result. 2140 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty()); 2141 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty()); 2142 return Builder.CreateSub(LoadSrc1, LoadSrc2); 2143 } 2144 2145 // The result of memcmp is negative, zero, or positive, so produce that by 2146 // subtracting 2 extended compare bits: sub (ugt, ult). 2147 // If a target prefers to use selects to get -1/0/1, they should be able 2148 // to transform this later. The inverse transform (going from selects to math) 2149 // may not be possible in the DAG because the selects got converted into 2150 // branches before we got there. 2151 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2); 2152 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 2153 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 2154 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 2155 return Builder.CreateSub(ZextUGT, ZextULT); 2156 } 2157 2158 // This function expands the memcmp call into an inline expansion and returns 2159 // the memcmp result. 2160 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) { 2161 if (IsUsedForZeroCmp) 2162 return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) : 2163 getMemCmpExpansionZeroCase(Size); 2164 2165 // TODO: Handle more than one load pair per block in getMemCmpOneBlock(). 2166 if (NumBlocks == 1 && NumLoadsPerBlock == 1) 2167 return getMemCmpOneBlock(Size); 2168 2169 // This loop calls emitLoadCompareBlock for comparing Size bytes of the two 2170 // memcmp sources. It starts with loading using the maximum load size set by 2171 // the target. It processes any remaining bytes using a load size which is the 2172 // next smallest power of 2. 2173 unsigned LoadSize = MaxLoadSize; 2174 unsigned NumBytesToBeProcessed = Size; 2175 unsigned Index = 0; 2176 while (NumBytesToBeProcessed) { 2177 // Calculate how many blocks we can create with the current load size. 2178 unsigned NumBlocks = NumBytesToBeProcessed / LoadSize; 2179 unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2180 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2181 2182 // For each NumBlocks, populate the instruction sequence for loading and 2183 // comparing LoadSize bytes. 2184 while (NumBlocks--) { 2185 emitLoadCompareBlock(Index, LoadSize, GEPIndex); 2186 Index++; 2187 GEPIndex++; 2188 } 2189 // Get the next LoadSize to use. 2190 LoadSize = LoadSize / 2; 2191 } 2192 2193 emitMemCmpResultBlock(); 2194 return PhiRes; 2195 } 2196 2197 // This function checks to see if an expansion of memcmp can be generated. 2198 // It checks for constant compare size that is less than the max inline size. 2199 // If an expansion cannot occur, returns false to leave as a library call. 2200 // Otherwise, the library call is replaced with a new IR instruction sequence. 2201 /// We want to transform: 2202 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2203 /// To: 2204 /// loadbb: 2205 /// %0 = bitcast i32* %buffer2 to i8* 2206 /// %1 = bitcast i32* %buffer1 to i8* 2207 /// %2 = bitcast i8* %1 to i64* 2208 /// %3 = bitcast i8* %0 to i64* 2209 /// %4 = load i64, i64* %2 2210 /// %5 = load i64, i64* %3 2211 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2212 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2213 /// %8 = sub i64 %6, %7 2214 /// %9 = icmp ne i64 %8, 0 2215 /// br i1 %9, label %res_block, label %loadbb1 2216 /// res_block: ; preds = %loadbb2, 2217 /// %loadbb1, %loadbb 2218 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2219 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2220 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2221 /// %11 = select i1 %10, i32 -1, i32 1 2222 /// br label %endblock 2223 /// loadbb1: ; preds = %loadbb 2224 /// %12 = bitcast i32* %buffer2 to i8* 2225 /// %13 = bitcast i32* %buffer1 to i8* 2226 /// %14 = bitcast i8* %13 to i32* 2227 /// %15 = bitcast i8* %12 to i32* 2228 /// %16 = getelementptr i32, i32* %14, i32 2 2229 /// %17 = getelementptr i32, i32* %15, i32 2 2230 /// %18 = load i32, i32* %16 2231 /// %19 = load i32, i32* %17 2232 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2233 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2234 /// %22 = zext i32 %20 to i64 2235 /// %23 = zext i32 %21 to i64 2236 /// %24 = sub i64 %22, %23 2237 /// %25 = icmp ne i64 %24, 0 2238 /// br i1 %25, label %res_block, label %loadbb2 2239 /// loadbb2: ; preds = %loadbb1 2240 /// %26 = bitcast i32* %buffer2 to i8* 2241 /// %27 = bitcast i32* %buffer1 to i8* 2242 /// %28 = bitcast i8* %27 to i16* 2243 /// %29 = bitcast i8* %26 to i16* 2244 /// %30 = getelementptr i16, i16* %28, i16 6 2245 /// %31 = getelementptr i16, i16* %29, i16 6 2246 /// %32 = load i16, i16* %30 2247 /// %33 = load i16, i16* %31 2248 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2249 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2250 /// %36 = zext i16 %34 to i64 2251 /// %37 = zext i16 %35 to i64 2252 /// %38 = sub i64 %36, %37 2253 /// %39 = icmp ne i64 %38, 0 2254 /// br i1 %39, label %res_block, label %loadbb3 2255 /// loadbb3: ; preds = %loadbb2 2256 /// %40 = bitcast i32* %buffer2 to i8* 2257 /// %41 = bitcast i32* %buffer1 to i8* 2258 /// %42 = getelementptr i8, i8* %41, i8 14 2259 /// %43 = getelementptr i8, i8* %40, i8 14 2260 /// %44 = load i8, i8* %42 2261 /// %45 = load i8, i8* %43 2262 /// %46 = zext i8 %44 to i32 2263 /// %47 = zext i8 %45 to i32 2264 /// %48 = sub i32 %46, %47 2265 /// br label %endblock 2266 /// endblock: ; preds = %res_block, 2267 /// %loadbb3 2268 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2269 /// ret i32 %phi.res 2270 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2271 const TargetLowering *TLI, const DataLayout *DL) { 2272 NumMemCmpCalls++; 2273 2274 // TTI call to check if target would like to expand memcmp. Also, get the 2275 // MaxLoadSize. 2276 unsigned MaxLoadSize; 2277 if (!TTI->expandMemCmp(CI, MaxLoadSize)) 2278 return false; 2279 2280 // Early exit from expansion if -Oz. 2281 if (CI->getFunction()->optForMinSize()) 2282 return false; 2283 2284 // Early exit from expansion if size is not a constant. 2285 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2286 if (!SizeCast) { 2287 NumMemCmpNotConstant++; 2288 return false; 2289 } 2290 2291 // Scale the max size down if the target can load more bytes than we need. 2292 uint64_t SizeVal = SizeCast->getZExtValue(); 2293 if (MaxLoadSize > SizeVal) 2294 MaxLoadSize = 1 << SizeCast->getValue().logBase2(); 2295 2296 // Calculate how many load pairs are needed for the constant size. 2297 unsigned NumLoads = 0; 2298 unsigned RemainingSize = SizeVal; 2299 unsigned LoadSize = MaxLoadSize; 2300 while (RemainingSize) { 2301 NumLoads += RemainingSize / LoadSize; 2302 RemainingSize = RemainingSize % LoadSize; 2303 LoadSize = LoadSize / 2; 2304 } 2305 2306 // Don't expand if this will require more loads than desired by the target. 2307 if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) { 2308 NumMemCmpGreaterThanMax++; 2309 return false; 2310 } 2311 2312 NumMemCmpInlined++; 2313 2314 // MemCmpHelper object creates and sets up basic blocks required for 2315 // expanding memcmp with size SizeVal. 2316 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2317 MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL); 2318 2319 Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal); 2320 2321 // Replace call with result of expansion and erase call. 2322 CI->replaceAllUsesWith(Res); 2323 CI->eraseFromParent(); 2324 2325 return true; 2326 } 2327 2328 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2329 BasicBlock *BB = CI->getParent(); 2330 2331 // Lower inline assembly if we can. 2332 // If we found an inline asm expession, and if the target knows how to 2333 // lower it to normal LLVM code, do so now. 2334 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2335 if (TLI->ExpandInlineAsm(CI)) { 2336 // Avoid invalidating the iterator. 2337 CurInstIterator = BB->begin(); 2338 // Avoid processing instructions out of order, which could cause 2339 // reuse before a value is defined. 2340 SunkAddrs.clear(); 2341 return true; 2342 } 2343 // Sink address computing for memory operands into the block. 2344 if (optimizeInlineAsmInst(CI)) 2345 return true; 2346 } 2347 2348 // Align the pointer arguments to this call if the target thinks it's a good 2349 // idea 2350 unsigned MinSize, PrefAlign; 2351 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2352 for (auto &Arg : CI->arg_operands()) { 2353 // We want to align both objects whose address is used directly and 2354 // objects whose address is used in casts and GEPs, though it only makes 2355 // sense for GEPs if the offset is a multiple of the desired alignment and 2356 // if size - offset meets the size threshold. 2357 if (!Arg->getType()->isPointerTy()) 2358 continue; 2359 APInt Offset(DL->getPointerSizeInBits( 2360 cast<PointerType>(Arg->getType())->getAddressSpace()), 2361 0); 2362 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2363 uint64_t Offset2 = Offset.getLimitedValue(); 2364 if ((Offset2 & (PrefAlign-1)) != 0) 2365 continue; 2366 AllocaInst *AI; 2367 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2368 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2369 AI->setAlignment(PrefAlign); 2370 // Global variables can only be aligned if they are defined in this 2371 // object (i.e. they are uniquely initialized in this object), and 2372 // over-aligning global variables that have an explicit section is 2373 // forbidden. 2374 GlobalVariable *GV; 2375 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2376 GV->getPointerAlignment(*DL) < PrefAlign && 2377 DL->getTypeAllocSize(GV->getValueType()) >= 2378 MinSize + Offset2) 2379 GV->setAlignment(PrefAlign); 2380 } 2381 // If this is a memcpy (or similar) then we may be able to improve the 2382 // alignment 2383 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2384 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2385 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2386 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2387 if (Align > MI->getAlignment()) 2388 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2389 } 2390 } 2391 2392 // If we have a cold call site, try to sink addressing computation into the 2393 // cold block. This interacts with our handling for loads and stores to 2394 // ensure that we can fold all uses of a potential addressing computation 2395 // into their uses. TODO: generalize this to work over profiling data 2396 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2397 for (auto &Arg : CI->arg_operands()) { 2398 if (!Arg->getType()->isPointerTy()) 2399 continue; 2400 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2401 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2402 } 2403 2404 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2405 if (II) { 2406 switch (II->getIntrinsicID()) { 2407 default: break; 2408 case Intrinsic::objectsize: { 2409 // Lower all uses of llvm.objectsize.* 2410 ConstantInt *RetVal = 2411 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2412 // Substituting this can cause recursive simplifications, which can 2413 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2414 // this 2415 // happens. 2416 Value *CurValue = &*CurInstIterator; 2417 WeakTrackingVH IterHandle(CurValue); 2418 2419 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2420 2421 // If the iterator instruction was recursively deleted, start over at the 2422 // start of the block. 2423 if (IterHandle != CurValue) { 2424 CurInstIterator = BB->begin(); 2425 SunkAddrs.clear(); 2426 } 2427 return true; 2428 } 2429 case Intrinsic::aarch64_stlxr: 2430 case Intrinsic::aarch64_stxr: { 2431 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2432 if (!ExtVal || !ExtVal->hasOneUse() || 2433 ExtVal->getParent() == CI->getParent()) 2434 return false; 2435 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2436 ExtVal->moveBefore(CI); 2437 // Mark this instruction as "inserted by CGP", so that other 2438 // optimizations don't touch it. 2439 InsertedInsts.insert(ExtVal); 2440 return true; 2441 } 2442 case Intrinsic::invariant_group_barrier: 2443 II->replaceAllUsesWith(II->getArgOperand(0)); 2444 II->eraseFromParent(); 2445 return true; 2446 2447 case Intrinsic::cttz: 2448 case Intrinsic::ctlz: 2449 // If counting zeros is expensive, try to avoid it. 2450 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2451 } 2452 2453 if (TLI) { 2454 SmallVector<Value*, 2> PtrOps; 2455 Type *AccessTy; 2456 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2457 while (!PtrOps.empty()) { 2458 Value *PtrVal = PtrOps.pop_back_val(); 2459 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2460 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2461 return true; 2462 } 2463 } 2464 } 2465 2466 // From here on out we're working with named functions. 2467 if (!CI->getCalledFunction()) return false; 2468 2469 // Lower all default uses of _chk calls. This is very similar 2470 // to what InstCombineCalls does, but here we are only lowering calls 2471 // to fortified library functions (e.g. __memcpy_chk) that have the default 2472 // "don't know" as the objectsize. Anything else should be left alone. 2473 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2474 if (Value *V = Simplifier.optimizeCall(CI)) { 2475 CI->replaceAllUsesWith(V); 2476 CI->eraseFromParent(); 2477 return true; 2478 } 2479 2480 LibFunc Func; 2481 if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) && 2482 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) { 2483 ModifiedDT = true; 2484 return true; 2485 } 2486 return false; 2487 } 2488 2489 /// Look for opportunities to duplicate return instructions to the predecessor 2490 /// to enable tail call optimizations. The case it is currently looking for is: 2491 /// @code 2492 /// bb0: 2493 /// %tmp0 = tail call i32 @f0() 2494 /// br label %return 2495 /// bb1: 2496 /// %tmp1 = tail call i32 @f1() 2497 /// br label %return 2498 /// bb2: 2499 /// %tmp2 = tail call i32 @f2() 2500 /// br label %return 2501 /// return: 2502 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2503 /// ret i32 %retval 2504 /// @endcode 2505 /// 2506 /// => 2507 /// 2508 /// @code 2509 /// bb0: 2510 /// %tmp0 = tail call i32 @f0() 2511 /// ret i32 %tmp0 2512 /// bb1: 2513 /// %tmp1 = tail call i32 @f1() 2514 /// ret i32 %tmp1 2515 /// bb2: 2516 /// %tmp2 = tail call i32 @f2() 2517 /// ret i32 %tmp2 2518 /// @endcode 2519 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2520 if (!TLI) 2521 return false; 2522 2523 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2524 if (!RetI) 2525 return false; 2526 2527 PHINode *PN = nullptr; 2528 BitCastInst *BCI = nullptr; 2529 Value *V = RetI->getReturnValue(); 2530 if (V) { 2531 BCI = dyn_cast<BitCastInst>(V); 2532 if (BCI) 2533 V = BCI->getOperand(0); 2534 2535 PN = dyn_cast<PHINode>(V); 2536 if (!PN) 2537 return false; 2538 } 2539 2540 if (PN && PN->getParent() != BB) 2541 return false; 2542 2543 // Make sure there are no instructions between the PHI and return, or that the 2544 // return is the first instruction in the block. 2545 if (PN) { 2546 BasicBlock::iterator BI = BB->begin(); 2547 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2548 if (&*BI == BCI) 2549 // Also skip over the bitcast. 2550 ++BI; 2551 if (&*BI != RetI) 2552 return false; 2553 } else { 2554 BasicBlock::iterator BI = BB->begin(); 2555 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2556 if (&*BI != RetI) 2557 return false; 2558 } 2559 2560 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2561 /// call. 2562 const Function *F = BB->getParent(); 2563 SmallVector<CallInst*, 4> TailCalls; 2564 if (PN) { 2565 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2566 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2567 // Make sure the phi value is indeed produced by the tail call. 2568 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2569 TLI->mayBeEmittedAsTailCall(CI) && 2570 attributesPermitTailCall(F, CI, RetI, *TLI)) 2571 TailCalls.push_back(CI); 2572 } 2573 } else { 2574 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2575 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2576 if (!VisitedBBs.insert(*PI).second) 2577 continue; 2578 2579 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2580 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2581 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2582 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2583 if (RI == RE) 2584 continue; 2585 2586 CallInst *CI = dyn_cast<CallInst>(&*RI); 2587 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2588 attributesPermitTailCall(F, CI, RetI, *TLI)) 2589 TailCalls.push_back(CI); 2590 } 2591 } 2592 2593 bool Changed = false; 2594 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2595 CallInst *CI = TailCalls[i]; 2596 CallSite CS(CI); 2597 2598 // Conservatively require the attributes of the call to match those of the 2599 // return. Ignore noalias because it doesn't affect the call sequence. 2600 AttributeList CalleeAttrs = CS.getAttributes(); 2601 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2602 .removeAttribute(Attribute::NoAlias) != 2603 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2604 .removeAttribute(Attribute::NoAlias)) 2605 continue; 2606 2607 // Make sure the call instruction is followed by an unconditional branch to 2608 // the return block. 2609 BasicBlock *CallBB = CI->getParent(); 2610 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2611 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2612 continue; 2613 2614 // Duplicate the return into CallBB. 2615 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2616 ModifiedDT = Changed = true; 2617 ++NumRetsDup; 2618 } 2619 2620 // If we eliminated all predecessors of the block, delete the block now. 2621 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2622 BB->eraseFromParent(); 2623 2624 return Changed; 2625 } 2626 2627 //===----------------------------------------------------------------------===// 2628 // Memory Optimization 2629 //===----------------------------------------------------------------------===// 2630 2631 namespace { 2632 2633 /// This is an extended version of TargetLowering::AddrMode 2634 /// which holds actual Value*'s for register values. 2635 struct ExtAddrMode : public TargetLowering::AddrMode { 2636 Value *BaseReg; 2637 Value *ScaledReg; 2638 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2639 void print(raw_ostream &OS) const; 2640 void dump() const; 2641 2642 bool operator==(const ExtAddrMode& O) const { 2643 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2644 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2645 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2646 } 2647 }; 2648 2649 #ifndef NDEBUG 2650 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2651 AM.print(OS); 2652 return OS; 2653 } 2654 #endif 2655 2656 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2657 void ExtAddrMode::print(raw_ostream &OS) const { 2658 bool NeedPlus = false; 2659 OS << "["; 2660 if (BaseGV) { 2661 OS << (NeedPlus ? " + " : "") 2662 << "GV:"; 2663 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2664 NeedPlus = true; 2665 } 2666 2667 if (BaseOffs) { 2668 OS << (NeedPlus ? " + " : "") 2669 << BaseOffs; 2670 NeedPlus = true; 2671 } 2672 2673 if (BaseReg) { 2674 OS << (NeedPlus ? " + " : "") 2675 << "Base:"; 2676 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2677 NeedPlus = true; 2678 } 2679 if (Scale) { 2680 OS << (NeedPlus ? " + " : "") 2681 << Scale << "*"; 2682 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2683 } 2684 2685 OS << ']'; 2686 } 2687 2688 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2689 print(dbgs()); 2690 dbgs() << '\n'; 2691 } 2692 #endif 2693 2694 /// \brief This class provides transaction based operation on the IR. 2695 /// Every change made through this class is recorded in the internal state and 2696 /// can be undone (rollback) until commit is called. 2697 class TypePromotionTransaction { 2698 2699 /// \brief This represents the common interface of the individual transaction. 2700 /// Each class implements the logic for doing one specific modification on 2701 /// the IR via the TypePromotionTransaction. 2702 class TypePromotionAction { 2703 protected: 2704 /// The Instruction modified. 2705 Instruction *Inst; 2706 2707 public: 2708 /// \brief Constructor of the action. 2709 /// The constructor performs the related action on the IR. 2710 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2711 2712 virtual ~TypePromotionAction() {} 2713 2714 /// \brief Undo the modification done by this action. 2715 /// When this method is called, the IR must be in the same state as it was 2716 /// before this action was applied. 2717 /// \pre Undoing the action works if and only if the IR is in the exact same 2718 /// state as it was directly after this action was applied. 2719 virtual void undo() = 0; 2720 2721 /// \brief Advocate every change made by this action. 2722 /// When the results on the IR of the action are to be kept, it is important 2723 /// to call this function, otherwise hidden information may be kept forever. 2724 virtual void commit() { 2725 // Nothing to be done, this action is not doing anything. 2726 } 2727 }; 2728 2729 /// \brief Utility to remember the position of an instruction. 2730 class InsertionHandler { 2731 /// Position of an instruction. 2732 /// Either an instruction: 2733 /// - Is the first in a basic block: BB is used. 2734 /// - Has a previous instructon: PrevInst is used. 2735 union { 2736 Instruction *PrevInst; 2737 BasicBlock *BB; 2738 } Point; 2739 /// Remember whether or not the instruction had a previous instruction. 2740 bool HasPrevInstruction; 2741 2742 public: 2743 /// \brief Record the position of \p Inst. 2744 InsertionHandler(Instruction *Inst) { 2745 BasicBlock::iterator It = Inst->getIterator(); 2746 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2747 if (HasPrevInstruction) 2748 Point.PrevInst = &*--It; 2749 else 2750 Point.BB = Inst->getParent(); 2751 } 2752 2753 /// \brief Insert \p Inst at the recorded position. 2754 void insert(Instruction *Inst) { 2755 if (HasPrevInstruction) { 2756 if (Inst->getParent()) 2757 Inst->removeFromParent(); 2758 Inst->insertAfter(Point.PrevInst); 2759 } else { 2760 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2761 if (Inst->getParent()) 2762 Inst->moveBefore(Position); 2763 else 2764 Inst->insertBefore(Position); 2765 } 2766 } 2767 }; 2768 2769 /// \brief Move an instruction before another. 2770 class InstructionMoveBefore : public TypePromotionAction { 2771 /// Original position of the instruction. 2772 InsertionHandler Position; 2773 2774 public: 2775 /// \brief Move \p Inst before \p Before. 2776 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2777 : TypePromotionAction(Inst), Position(Inst) { 2778 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2779 Inst->moveBefore(Before); 2780 } 2781 2782 /// \brief Move the instruction back to its original position. 2783 void undo() override { 2784 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2785 Position.insert(Inst); 2786 } 2787 }; 2788 2789 /// \brief Set the operand of an instruction with a new value. 2790 class OperandSetter : public TypePromotionAction { 2791 /// Original operand of the instruction. 2792 Value *Origin; 2793 /// Index of the modified instruction. 2794 unsigned Idx; 2795 2796 public: 2797 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2798 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2799 : TypePromotionAction(Inst), Idx(Idx) { 2800 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2801 << "for:" << *Inst << "\n" 2802 << "with:" << *NewVal << "\n"); 2803 Origin = Inst->getOperand(Idx); 2804 Inst->setOperand(Idx, NewVal); 2805 } 2806 2807 /// \brief Restore the original value of the instruction. 2808 void undo() override { 2809 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2810 << "for: " << *Inst << "\n" 2811 << "with: " << *Origin << "\n"); 2812 Inst->setOperand(Idx, Origin); 2813 } 2814 }; 2815 2816 /// \brief Hide the operands of an instruction. 2817 /// Do as if this instruction was not using any of its operands. 2818 class OperandsHider : public TypePromotionAction { 2819 /// The list of original operands. 2820 SmallVector<Value *, 4> OriginalValues; 2821 2822 public: 2823 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2824 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2825 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2826 unsigned NumOpnds = Inst->getNumOperands(); 2827 OriginalValues.reserve(NumOpnds); 2828 for (unsigned It = 0; It < NumOpnds; ++It) { 2829 // Save the current operand. 2830 Value *Val = Inst->getOperand(It); 2831 OriginalValues.push_back(Val); 2832 // Set a dummy one. 2833 // We could use OperandSetter here, but that would imply an overhead 2834 // that we are not willing to pay. 2835 Inst->setOperand(It, UndefValue::get(Val->getType())); 2836 } 2837 } 2838 2839 /// \brief Restore the original list of uses. 2840 void undo() override { 2841 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2842 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2843 Inst->setOperand(It, OriginalValues[It]); 2844 } 2845 }; 2846 2847 /// \brief Build a truncate instruction. 2848 class TruncBuilder : public TypePromotionAction { 2849 Value *Val; 2850 public: 2851 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2852 /// result. 2853 /// trunc Opnd to Ty. 2854 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2855 IRBuilder<> Builder(Opnd); 2856 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2857 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2858 } 2859 2860 /// \brief Get the built value. 2861 Value *getBuiltValue() { return Val; } 2862 2863 /// \brief Remove the built instruction. 2864 void undo() override { 2865 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2866 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2867 IVal->eraseFromParent(); 2868 } 2869 }; 2870 2871 /// \brief Build a sign extension instruction. 2872 class SExtBuilder : public TypePromotionAction { 2873 Value *Val; 2874 public: 2875 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2876 /// result. 2877 /// sext Opnd to Ty. 2878 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2879 : TypePromotionAction(InsertPt) { 2880 IRBuilder<> Builder(InsertPt); 2881 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2882 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2883 } 2884 2885 /// \brief Get the built value. 2886 Value *getBuiltValue() { return Val; } 2887 2888 /// \brief Remove the built instruction. 2889 void undo() override { 2890 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2891 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2892 IVal->eraseFromParent(); 2893 } 2894 }; 2895 2896 /// \brief Build a zero extension instruction. 2897 class ZExtBuilder : public TypePromotionAction { 2898 Value *Val; 2899 public: 2900 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2901 /// result. 2902 /// zext Opnd to Ty. 2903 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2904 : TypePromotionAction(InsertPt) { 2905 IRBuilder<> Builder(InsertPt); 2906 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2907 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2908 } 2909 2910 /// \brief Get the built value. 2911 Value *getBuiltValue() { return Val; } 2912 2913 /// \brief Remove the built instruction. 2914 void undo() override { 2915 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2916 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2917 IVal->eraseFromParent(); 2918 } 2919 }; 2920 2921 /// \brief Mutate an instruction to another type. 2922 class TypeMutator : public TypePromotionAction { 2923 /// Record the original type. 2924 Type *OrigTy; 2925 2926 public: 2927 /// \brief Mutate the type of \p Inst into \p NewTy. 2928 TypeMutator(Instruction *Inst, Type *NewTy) 2929 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2930 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2931 << "\n"); 2932 Inst->mutateType(NewTy); 2933 } 2934 2935 /// \brief Mutate the instruction back to its original type. 2936 void undo() override { 2937 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2938 << "\n"); 2939 Inst->mutateType(OrigTy); 2940 } 2941 }; 2942 2943 /// \brief Replace the uses of an instruction by another instruction. 2944 class UsesReplacer : public TypePromotionAction { 2945 /// Helper structure to keep track of the replaced uses. 2946 struct InstructionAndIdx { 2947 /// The instruction using the instruction. 2948 Instruction *Inst; 2949 /// The index where this instruction is used for Inst. 2950 unsigned Idx; 2951 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2952 : Inst(Inst), Idx(Idx) {} 2953 }; 2954 2955 /// Keep track of the original uses (pair Instruction, Index). 2956 SmallVector<InstructionAndIdx, 4> OriginalUses; 2957 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2958 2959 public: 2960 /// \brief Replace all the use of \p Inst by \p New. 2961 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2962 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2963 << "\n"); 2964 // Record the original uses. 2965 for (Use &U : Inst->uses()) { 2966 Instruction *UserI = cast<Instruction>(U.getUser()); 2967 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2968 } 2969 // Now, we can replace the uses. 2970 Inst->replaceAllUsesWith(New); 2971 } 2972 2973 /// \brief Reassign the original uses of Inst to Inst. 2974 void undo() override { 2975 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2976 for (use_iterator UseIt = OriginalUses.begin(), 2977 EndIt = OriginalUses.end(); 2978 UseIt != EndIt; ++UseIt) { 2979 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2980 } 2981 } 2982 }; 2983 2984 /// \brief Remove an instruction from the IR. 2985 class InstructionRemover : public TypePromotionAction { 2986 /// Original position of the instruction. 2987 InsertionHandler Inserter; 2988 /// Helper structure to hide all the link to the instruction. In other 2989 /// words, this helps to do as if the instruction was removed. 2990 OperandsHider Hider; 2991 /// Keep track of the uses replaced, if any. 2992 UsesReplacer *Replacer; 2993 /// Keep track of instructions removed. 2994 SetOfInstrs &RemovedInsts; 2995 2996 public: 2997 /// \brief Remove all reference of \p Inst and optinally replace all its 2998 /// uses with New. 2999 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3000 /// \pre If !Inst->use_empty(), then New != nullptr 3001 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3002 Value *New = nullptr) 3003 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3004 Replacer(nullptr), RemovedInsts(RemovedInsts) { 3005 if (New) 3006 Replacer = new UsesReplacer(Inst, New); 3007 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3008 RemovedInsts.insert(Inst); 3009 /// The instructions removed here will be freed after completing 3010 /// optimizeBlock() for all blocks as we need to keep track of the 3011 /// removed instructions during promotion. 3012 Inst->removeFromParent(); 3013 } 3014 3015 ~InstructionRemover() override { delete Replacer; } 3016 3017 /// \brief Resurrect the instruction and reassign it to the proper uses if 3018 /// new value was provided when build this action. 3019 void undo() override { 3020 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3021 Inserter.insert(Inst); 3022 if (Replacer) 3023 Replacer->undo(); 3024 Hider.undo(); 3025 RemovedInsts.erase(Inst); 3026 } 3027 }; 3028 3029 public: 3030 /// Restoration point. 3031 /// The restoration point is a pointer to an action instead of an iterator 3032 /// because the iterator may be invalidated but not the pointer. 3033 typedef const TypePromotionAction *ConstRestorationPt; 3034 3035 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3036 : RemovedInsts(RemovedInsts) {} 3037 3038 /// Advocate every changes made in that transaction. 3039 void commit(); 3040 /// Undo all the changes made after the given point. 3041 void rollback(ConstRestorationPt Point); 3042 /// Get the current restoration point. 3043 ConstRestorationPt getRestorationPoint() const; 3044 3045 /// \name API for IR modification with state keeping to support rollback. 3046 /// @{ 3047 /// Same as Instruction::setOperand. 3048 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3049 /// Same as Instruction::eraseFromParent. 3050 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3051 /// Same as Value::replaceAllUsesWith. 3052 void replaceAllUsesWith(Instruction *Inst, Value *New); 3053 /// Same as Value::mutateType. 3054 void mutateType(Instruction *Inst, Type *NewTy); 3055 /// Same as IRBuilder::createTrunc. 3056 Value *createTrunc(Instruction *Opnd, Type *Ty); 3057 /// Same as IRBuilder::createSExt. 3058 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3059 /// Same as IRBuilder::createZExt. 3060 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3061 /// Same as Instruction::moveBefore. 3062 void moveBefore(Instruction *Inst, Instruction *Before); 3063 /// @} 3064 3065 private: 3066 /// The ordered list of actions made so far. 3067 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3068 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 3069 SetOfInstrs &RemovedInsts; 3070 }; 3071 3072 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3073 Value *NewVal) { 3074 Actions.push_back( 3075 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 3076 } 3077 3078 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3079 Value *NewVal) { 3080 Actions.push_back( 3081 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 3082 RemovedInsts, NewVal)); 3083 } 3084 3085 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3086 Value *New) { 3087 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3088 } 3089 3090 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3091 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3092 } 3093 3094 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3095 Type *Ty) { 3096 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3097 Value *Val = Ptr->getBuiltValue(); 3098 Actions.push_back(std::move(Ptr)); 3099 return Val; 3100 } 3101 3102 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3103 Value *Opnd, Type *Ty) { 3104 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3105 Value *Val = Ptr->getBuiltValue(); 3106 Actions.push_back(std::move(Ptr)); 3107 return Val; 3108 } 3109 3110 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3111 Value *Opnd, Type *Ty) { 3112 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3113 Value *Val = Ptr->getBuiltValue(); 3114 Actions.push_back(std::move(Ptr)); 3115 return Val; 3116 } 3117 3118 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3119 Instruction *Before) { 3120 Actions.push_back( 3121 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 3122 } 3123 3124 TypePromotionTransaction::ConstRestorationPt 3125 TypePromotionTransaction::getRestorationPoint() const { 3126 return !Actions.empty() ? Actions.back().get() : nullptr; 3127 } 3128 3129 void TypePromotionTransaction::commit() { 3130 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3131 ++It) 3132 (*It)->commit(); 3133 Actions.clear(); 3134 } 3135 3136 void TypePromotionTransaction::rollback( 3137 TypePromotionTransaction::ConstRestorationPt Point) { 3138 while (!Actions.empty() && Point != Actions.back().get()) { 3139 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3140 Curr->undo(); 3141 } 3142 } 3143 3144 /// \brief A helper class for matching addressing modes. 3145 /// 3146 /// This encapsulates the logic for matching the target-legal addressing modes. 3147 class AddressingModeMatcher { 3148 SmallVectorImpl<Instruction*> &AddrModeInsts; 3149 const TargetLowering &TLI; 3150 const TargetRegisterInfo &TRI; 3151 const DataLayout &DL; 3152 3153 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3154 /// the memory instruction that we're computing this address for. 3155 Type *AccessTy; 3156 unsigned AddrSpace; 3157 Instruction *MemoryInst; 3158 3159 /// This is the addressing mode that we're building up. This is 3160 /// part of the return value of this addressing mode matching stuff. 3161 ExtAddrMode &AddrMode; 3162 3163 /// The instructions inserted by other CodeGenPrepare optimizations. 3164 const SetOfInstrs &InsertedInsts; 3165 /// A map from the instructions to their type before promotion. 3166 InstrToOrigTy &PromotedInsts; 3167 /// The ongoing transaction where every action should be registered. 3168 TypePromotionTransaction &TPT; 3169 3170 /// This is set to true when we should not do profitability checks. 3171 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3172 bool IgnoreProfitability; 3173 3174 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3175 const TargetLowering &TLI, 3176 const TargetRegisterInfo &TRI, 3177 Type *AT, unsigned AS, 3178 Instruction *MI, ExtAddrMode &AM, 3179 const SetOfInstrs &InsertedInsts, 3180 InstrToOrigTy &PromotedInsts, 3181 TypePromotionTransaction &TPT) 3182 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3183 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3184 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3185 PromotedInsts(PromotedInsts), TPT(TPT) { 3186 IgnoreProfitability = false; 3187 } 3188 public: 3189 3190 /// Find the maximal addressing mode that a load/store of V can fold, 3191 /// give an access type of AccessTy. This returns a list of involved 3192 /// instructions in AddrModeInsts. 3193 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3194 /// optimizations. 3195 /// \p PromotedInsts maps the instructions to their type before promotion. 3196 /// \p The ongoing transaction where every action should be registered. 3197 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3198 Instruction *MemoryInst, 3199 SmallVectorImpl<Instruction*> &AddrModeInsts, 3200 const TargetLowering &TLI, 3201 const TargetRegisterInfo &TRI, 3202 const SetOfInstrs &InsertedInsts, 3203 InstrToOrigTy &PromotedInsts, 3204 TypePromotionTransaction &TPT) { 3205 ExtAddrMode Result; 3206 3207 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3208 AccessTy, AS, 3209 MemoryInst, Result, InsertedInsts, 3210 PromotedInsts, TPT).matchAddr(V, 0); 3211 (void)Success; assert(Success && "Couldn't select *anything*?"); 3212 return Result; 3213 } 3214 private: 3215 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3216 bool matchAddr(Value *V, unsigned Depth); 3217 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3218 bool *MovedAway = nullptr); 3219 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3220 ExtAddrMode &AMBefore, 3221 ExtAddrMode &AMAfter); 3222 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3223 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3224 Value *PromotedOperand) const; 3225 }; 3226 3227 /// Try adding ScaleReg*Scale to the current addressing mode. 3228 /// Return true and update AddrMode if this addr mode is legal for the target, 3229 /// false if not. 3230 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3231 unsigned Depth) { 3232 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3233 // mode. Just process that directly. 3234 if (Scale == 1) 3235 return matchAddr(ScaleReg, Depth); 3236 3237 // If the scale is 0, it takes nothing to add this. 3238 if (Scale == 0) 3239 return true; 3240 3241 // If we already have a scale of this value, we can add to it, otherwise, we 3242 // need an available scale field. 3243 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3244 return false; 3245 3246 ExtAddrMode TestAddrMode = AddrMode; 3247 3248 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3249 // [A+B + A*7] -> [B+A*8]. 3250 TestAddrMode.Scale += Scale; 3251 TestAddrMode.ScaledReg = ScaleReg; 3252 3253 // If the new address isn't legal, bail out. 3254 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3255 return false; 3256 3257 // It was legal, so commit it. 3258 AddrMode = TestAddrMode; 3259 3260 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3261 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3262 // X*Scale + C*Scale to addr mode. 3263 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3264 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3265 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3266 TestAddrMode.ScaledReg = AddLHS; 3267 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3268 3269 // If this addressing mode is legal, commit it and remember that we folded 3270 // this instruction. 3271 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3272 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3273 AddrMode = TestAddrMode; 3274 return true; 3275 } 3276 } 3277 3278 // Otherwise, not (x+c)*scale, just return what we have. 3279 return true; 3280 } 3281 3282 /// This is a little filter, which returns true if an addressing computation 3283 /// involving I might be folded into a load/store accessing it. 3284 /// This doesn't need to be perfect, but needs to accept at least 3285 /// the set of instructions that MatchOperationAddr can. 3286 static bool MightBeFoldableInst(Instruction *I) { 3287 switch (I->getOpcode()) { 3288 case Instruction::BitCast: 3289 case Instruction::AddrSpaceCast: 3290 // Don't touch identity bitcasts. 3291 if (I->getType() == I->getOperand(0)->getType()) 3292 return false; 3293 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3294 case Instruction::PtrToInt: 3295 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3296 return true; 3297 case Instruction::IntToPtr: 3298 // We know the input is intptr_t, so this is foldable. 3299 return true; 3300 case Instruction::Add: 3301 return true; 3302 case Instruction::Mul: 3303 case Instruction::Shl: 3304 // Can only handle X*C and X << C. 3305 return isa<ConstantInt>(I->getOperand(1)); 3306 case Instruction::GetElementPtr: 3307 return true; 3308 default: 3309 return false; 3310 } 3311 } 3312 3313 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3314 /// \note \p Val is assumed to be the product of some type promotion. 3315 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3316 /// to be legal, as the non-promoted value would have had the same state. 3317 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3318 const DataLayout &DL, Value *Val) { 3319 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3320 if (!PromotedInst) 3321 return false; 3322 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3323 // If the ISDOpcode is undefined, it was undefined before the promotion. 3324 if (!ISDOpcode) 3325 return true; 3326 // Otherwise, check if the promoted instruction is legal or not. 3327 return TLI.isOperationLegalOrCustom( 3328 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3329 } 3330 3331 /// \brief Hepler class to perform type promotion. 3332 class TypePromotionHelper { 3333 /// \brief Utility function to check whether or not a sign or zero extension 3334 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3335 /// either using the operands of \p Inst or promoting \p Inst. 3336 /// The type of the extension is defined by \p IsSExt. 3337 /// In other words, check if: 3338 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3339 /// #1 Promotion applies: 3340 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3341 /// #2 Operand reuses: 3342 /// ext opnd1 to ConsideredExtType. 3343 /// \p PromotedInsts maps the instructions to their type before promotion. 3344 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3345 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3346 3347 /// \brief Utility function to determine if \p OpIdx should be promoted when 3348 /// promoting \p Inst. 3349 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3350 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3351 } 3352 3353 /// \brief Utility function to promote the operand of \p Ext when this 3354 /// operand is a promotable trunc or sext or zext. 3355 /// \p PromotedInsts maps the instructions to their type before promotion. 3356 /// \p CreatedInstsCost[out] contains the cost of all instructions 3357 /// created to promote the operand of Ext. 3358 /// Newly added extensions are inserted in \p Exts. 3359 /// Newly added truncates are inserted in \p Truncs. 3360 /// Should never be called directly. 3361 /// \return The promoted value which is used instead of Ext. 3362 static Value *promoteOperandForTruncAndAnyExt( 3363 Instruction *Ext, TypePromotionTransaction &TPT, 3364 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3365 SmallVectorImpl<Instruction *> *Exts, 3366 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3367 3368 /// \brief Utility function to promote the operand of \p Ext when this 3369 /// operand is promotable and is not a supported trunc or sext. 3370 /// \p PromotedInsts maps the instructions to their type before promotion. 3371 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3372 /// created to promote the operand of Ext. 3373 /// Newly added extensions are inserted in \p Exts. 3374 /// Newly added truncates are inserted in \p Truncs. 3375 /// Should never be called directly. 3376 /// \return The promoted value which is used instead of Ext. 3377 static Value *promoteOperandForOther(Instruction *Ext, 3378 TypePromotionTransaction &TPT, 3379 InstrToOrigTy &PromotedInsts, 3380 unsigned &CreatedInstsCost, 3381 SmallVectorImpl<Instruction *> *Exts, 3382 SmallVectorImpl<Instruction *> *Truncs, 3383 const TargetLowering &TLI, bool IsSExt); 3384 3385 /// \see promoteOperandForOther. 3386 static Value *signExtendOperandForOther( 3387 Instruction *Ext, TypePromotionTransaction &TPT, 3388 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3389 SmallVectorImpl<Instruction *> *Exts, 3390 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3391 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3392 Exts, Truncs, TLI, true); 3393 } 3394 3395 /// \see promoteOperandForOther. 3396 static Value *zeroExtendOperandForOther( 3397 Instruction *Ext, TypePromotionTransaction &TPT, 3398 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3399 SmallVectorImpl<Instruction *> *Exts, 3400 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3401 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3402 Exts, Truncs, TLI, false); 3403 } 3404 3405 public: 3406 /// Type for the utility function that promotes the operand of Ext. 3407 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3408 InstrToOrigTy &PromotedInsts, 3409 unsigned &CreatedInstsCost, 3410 SmallVectorImpl<Instruction *> *Exts, 3411 SmallVectorImpl<Instruction *> *Truncs, 3412 const TargetLowering &TLI); 3413 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3414 /// action to promote the operand of \p Ext instead of using Ext. 3415 /// \return NULL if no promotable action is possible with the current 3416 /// sign extension. 3417 /// \p InsertedInsts keeps track of all the instructions inserted by the 3418 /// other CodeGenPrepare optimizations. This information is important 3419 /// because we do not want to promote these instructions as CodeGenPrepare 3420 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3421 /// \p PromotedInsts maps the instructions to their type before promotion. 3422 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3423 const TargetLowering &TLI, 3424 const InstrToOrigTy &PromotedInsts); 3425 }; 3426 3427 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3428 Type *ConsideredExtType, 3429 const InstrToOrigTy &PromotedInsts, 3430 bool IsSExt) { 3431 // The promotion helper does not know how to deal with vector types yet. 3432 // To be able to fix that, we would need to fix the places where we 3433 // statically extend, e.g., constants and such. 3434 if (Inst->getType()->isVectorTy()) 3435 return false; 3436 3437 // We can always get through zext. 3438 if (isa<ZExtInst>(Inst)) 3439 return true; 3440 3441 // sext(sext) is ok too. 3442 if (IsSExt && isa<SExtInst>(Inst)) 3443 return true; 3444 3445 // We can get through binary operator, if it is legal. In other words, the 3446 // binary operator must have a nuw or nsw flag. 3447 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3448 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3449 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3450 (IsSExt && BinOp->hasNoSignedWrap()))) 3451 return true; 3452 3453 // Check if we can do the following simplification. 3454 // ext(trunc(opnd)) --> ext(opnd) 3455 if (!isa<TruncInst>(Inst)) 3456 return false; 3457 3458 Value *OpndVal = Inst->getOperand(0); 3459 // Check if we can use this operand in the extension. 3460 // If the type is larger than the result type of the extension, we cannot. 3461 if (!OpndVal->getType()->isIntegerTy() || 3462 OpndVal->getType()->getIntegerBitWidth() > 3463 ConsideredExtType->getIntegerBitWidth()) 3464 return false; 3465 3466 // If the operand of the truncate is not an instruction, we will not have 3467 // any information on the dropped bits. 3468 // (Actually we could for constant but it is not worth the extra logic). 3469 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3470 if (!Opnd) 3471 return false; 3472 3473 // Check if the source of the type is narrow enough. 3474 // I.e., check that trunc just drops extended bits of the same kind of 3475 // the extension. 3476 // #1 get the type of the operand and check the kind of the extended bits. 3477 const Type *OpndType; 3478 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3479 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3480 OpndType = It->second.getPointer(); 3481 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3482 OpndType = Opnd->getOperand(0)->getType(); 3483 else 3484 return false; 3485 3486 // #2 check that the truncate just drops extended bits. 3487 return Inst->getType()->getIntegerBitWidth() >= 3488 OpndType->getIntegerBitWidth(); 3489 } 3490 3491 TypePromotionHelper::Action TypePromotionHelper::getAction( 3492 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3493 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3494 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3495 "Unexpected instruction type"); 3496 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3497 Type *ExtTy = Ext->getType(); 3498 bool IsSExt = isa<SExtInst>(Ext); 3499 // If the operand of the extension is not an instruction, we cannot 3500 // get through. 3501 // If it, check we can get through. 3502 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3503 return nullptr; 3504 3505 // Do not promote if the operand has been added by codegenprepare. 3506 // Otherwise, it means we are undoing an optimization that is likely to be 3507 // redone, thus causing potential infinite loop. 3508 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3509 return nullptr; 3510 3511 // SExt or Trunc instructions. 3512 // Return the related handler. 3513 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3514 isa<ZExtInst>(ExtOpnd)) 3515 return promoteOperandForTruncAndAnyExt; 3516 3517 // Regular instruction. 3518 // Abort early if we will have to insert non-free instructions. 3519 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3520 return nullptr; 3521 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3522 } 3523 3524 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3525 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3526 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3527 SmallVectorImpl<Instruction *> *Exts, 3528 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3529 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3530 // get through it and this method should not be called. 3531 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3532 Value *ExtVal = SExt; 3533 bool HasMergedNonFreeExt = false; 3534 if (isa<ZExtInst>(SExtOpnd)) { 3535 // Replace s|zext(zext(opnd)) 3536 // => zext(opnd). 3537 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3538 Value *ZExt = 3539 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3540 TPT.replaceAllUsesWith(SExt, ZExt); 3541 TPT.eraseInstruction(SExt); 3542 ExtVal = ZExt; 3543 } else { 3544 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3545 // => z|sext(opnd). 3546 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3547 } 3548 CreatedInstsCost = 0; 3549 3550 // Remove dead code. 3551 if (SExtOpnd->use_empty()) 3552 TPT.eraseInstruction(SExtOpnd); 3553 3554 // Check if the extension is still needed. 3555 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3556 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3557 if (ExtInst) { 3558 if (Exts) 3559 Exts->push_back(ExtInst); 3560 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3561 } 3562 return ExtVal; 3563 } 3564 3565 // At this point we have: ext ty opnd to ty. 3566 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3567 Value *NextVal = ExtInst->getOperand(0); 3568 TPT.eraseInstruction(ExtInst, NextVal); 3569 return NextVal; 3570 } 3571 3572 Value *TypePromotionHelper::promoteOperandForOther( 3573 Instruction *Ext, TypePromotionTransaction &TPT, 3574 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3575 SmallVectorImpl<Instruction *> *Exts, 3576 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3577 bool IsSExt) { 3578 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3579 // get through it and this method should not be called. 3580 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3581 CreatedInstsCost = 0; 3582 if (!ExtOpnd->hasOneUse()) { 3583 // ExtOpnd will be promoted. 3584 // All its uses, but Ext, will need to use a truncated value of the 3585 // promoted version. 3586 // Create the truncate now. 3587 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3588 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3589 ITrunc->removeFromParent(); 3590 // Insert it just after the definition. 3591 ITrunc->insertAfter(ExtOpnd); 3592 if (Truncs) 3593 Truncs->push_back(ITrunc); 3594 } 3595 3596 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3597 // Restore the operand of Ext (which has been replaced by the previous call 3598 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3599 TPT.setOperand(Ext, 0, ExtOpnd); 3600 } 3601 3602 // Get through the Instruction: 3603 // 1. Update its type. 3604 // 2. Replace the uses of Ext by Inst. 3605 // 3. Extend each operand that needs to be extended. 3606 3607 // Remember the original type of the instruction before promotion. 3608 // This is useful to know that the high bits are sign extended bits. 3609 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3610 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3611 // Step #1. 3612 TPT.mutateType(ExtOpnd, Ext->getType()); 3613 // Step #2. 3614 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3615 // Step #3. 3616 Instruction *ExtForOpnd = Ext; 3617 3618 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3619 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3620 ++OpIdx) { 3621 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3622 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3623 !shouldExtOperand(ExtOpnd, OpIdx)) { 3624 DEBUG(dbgs() << "No need to propagate\n"); 3625 continue; 3626 } 3627 // Check if we can statically extend the operand. 3628 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3629 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3630 DEBUG(dbgs() << "Statically extend\n"); 3631 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3632 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3633 : Cst->getValue().zext(BitWidth); 3634 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3635 continue; 3636 } 3637 // UndefValue are typed, so we have to statically sign extend them. 3638 if (isa<UndefValue>(Opnd)) { 3639 DEBUG(dbgs() << "Statically extend\n"); 3640 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3641 continue; 3642 } 3643 3644 // Otherwise we have to explicity sign extend the operand. 3645 // Check if Ext was reused to extend an operand. 3646 if (!ExtForOpnd) { 3647 // If yes, create a new one. 3648 DEBUG(dbgs() << "More operands to ext\n"); 3649 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3650 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3651 if (!isa<Instruction>(ValForExtOpnd)) { 3652 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3653 continue; 3654 } 3655 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3656 } 3657 if (Exts) 3658 Exts->push_back(ExtForOpnd); 3659 TPT.setOperand(ExtForOpnd, 0, Opnd); 3660 3661 // Move the sign extension before the insertion point. 3662 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3663 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3664 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3665 // If more sext are required, new instructions will have to be created. 3666 ExtForOpnd = nullptr; 3667 } 3668 if (ExtForOpnd == Ext) { 3669 DEBUG(dbgs() << "Extension is useless now\n"); 3670 TPT.eraseInstruction(Ext); 3671 } 3672 return ExtOpnd; 3673 } 3674 3675 /// Check whether or not promoting an instruction to a wider type is profitable. 3676 /// \p NewCost gives the cost of extension instructions created by the 3677 /// promotion. 3678 /// \p OldCost gives the cost of extension instructions before the promotion 3679 /// plus the number of instructions that have been 3680 /// matched in the addressing mode the promotion. 3681 /// \p PromotedOperand is the value that has been promoted. 3682 /// \return True if the promotion is profitable, false otherwise. 3683 bool AddressingModeMatcher::isPromotionProfitable( 3684 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3685 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3686 // The cost of the new extensions is greater than the cost of the 3687 // old extension plus what we folded. 3688 // This is not profitable. 3689 if (NewCost > OldCost) 3690 return false; 3691 if (NewCost < OldCost) 3692 return true; 3693 // The promotion is neutral but it may help folding the sign extension in 3694 // loads for instance. 3695 // Check that we did not create an illegal instruction. 3696 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3697 } 3698 3699 /// Given an instruction or constant expr, see if we can fold the operation 3700 /// into the addressing mode. If so, update the addressing mode and return 3701 /// true, otherwise return false without modifying AddrMode. 3702 /// If \p MovedAway is not NULL, it contains the information of whether or 3703 /// not AddrInst has to be folded into the addressing mode on success. 3704 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3705 /// because it has been moved away. 3706 /// Thus AddrInst must not be added in the matched instructions. 3707 /// This state can happen when AddrInst is a sext, since it may be moved away. 3708 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3709 /// not be referenced anymore. 3710 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3711 unsigned Depth, 3712 bool *MovedAway) { 3713 // Avoid exponential behavior on extremely deep expression trees. 3714 if (Depth >= 5) return false; 3715 3716 // By default, all matched instructions stay in place. 3717 if (MovedAway) 3718 *MovedAway = false; 3719 3720 switch (Opcode) { 3721 case Instruction::PtrToInt: 3722 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3723 return matchAddr(AddrInst->getOperand(0), Depth); 3724 case Instruction::IntToPtr: { 3725 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3726 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3727 // This inttoptr is a no-op if the integer type is pointer sized. 3728 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3729 return matchAddr(AddrInst->getOperand(0), Depth); 3730 return false; 3731 } 3732 case Instruction::BitCast: 3733 // BitCast is always a noop, and we can handle it as long as it is 3734 // int->int or pointer->pointer (we don't want int<->fp or something). 3735 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3736 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3737 // Don't touch identity bitcasts. These were probably put here by LSR, 3738 // and we don't want to mess around with them. Assume it knows what it 3739 // is doing. 3740 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3741 return matchAddr(AddrInst->getOperand(0), Depth); 3742 return false; 3743 case Instruction::AddrSpaceCast: { 3744 unsigned SrcAS 3745 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3746 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3747 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3748 return matchAddr(AddrInst->getOperand(0), Depth); 3749 return false; 3750 } 3751 case Instruction::Add: { 3752 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3753 ExtAddrMode BackupAddrMode = AddrMode; 3754 unsigned OldSize = AddrModeInsts.size(); 3755 // Start a transaction at this point. 3756 // The LHS may match but not the RHS. 3757 // Therefore, we need a higher level restoration point to undo partially 3758 // matched operation. 3759 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3760 TPT.getRestorationPoint(); 3761 3762 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3763 matchAddr(AddrInst->getOperand(0), Depth+1)) 3764 return true; 3765 3766 // Restore the old addr mode info. 3767 AddrMode = BackupAddrMode; 3768 AddrModeInsts.resize(OldSize); 3769 TPT.rollback(LastKnownGood); 3770 3771 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3772 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3773 matchAddr(AddrInst->getOperand(1), Depth+1)) 3774 return true; 3775 3776 // Otherwise we definitely can't merge the ADD in. 3777 AddrMode = BackupAddrMode; 3778 AddrModeInsts.resize(OldSize); 3779 TPT.rollback(LastKnownGood); 3780 break; 3781 } 3782 //case Instruction::Or: 3783 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3784 //break; 3785 case Instruction::Mul: 3786 case Instruction::Shl: { 3787 // Can only handle X*C and X << C. 3788 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3789 if (!RHS) 3790 return false; 3791 int64_t Scale = RHS->getSExtValue(); 3792 if (Opcode == Instruction::Shl) 3793 Scale = 1LL << Scale; 3794 3795 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3796 } 3797 case Instruction::GetElementPtr: { 3798 // Scan the GEP. We check it if it contains constant offsets and at most 3799 // one variable offset. 3800 int VariableOperand = -1; 3801 unsigned VariableScale = 0; 3802 3803 int64_t ConstantOffset = 0; 3804 gep_type_iterator GTI = gep_type_begin(AddrInst); 3805 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3806 if (StructType *STy = GTI.getStructTypeOrNull()) { 3807 const StructLayout *SL = DL.getStructLayout(STy); 3808 unsigned Idx = 3809 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3810 ConstantOffset += SL->getElementOffset(Idx); 3811 } else { 3812 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3813 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3814 ConstantOffset += CI->getSExtValue()*TypeSize; 3815 } else if (TypeSize) { // Scales of zero don't do anything. 3816 // We only allow one variable index at the moment. 3817 if (VariableOperand != -1) 3818 return false; 3819 3820 // Remember the variable index. 3821 VariableOperand = i; 3822 VariableScale = TypeSize; 3823 } 3824 } 3825 } 3826 3827 // A common case is for the GEP to only do a constant offset. In this case, 3828 // just add it to the disp field and check validity. 3829 if (VariableOperand == -1) { 3830 AddrMode.BaseOffs += ConstantOffset; 3831 if (ConstantOffset == 0 || 3832 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3833 // Check to see if we can fold the base pointer in too. 3834 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3835 return true; 3836 } 3837 AddrMode.BaseOffs -= ConstantOffset; 3838 return false; 3839 } 3840 3841 // Save the valid addressing mode in case we can't match. 3842 ExtAddrMode BackupAddrMode = AddrMode; 3843 unsigned OldSize = AddrModeInsts.size(); 3844 3845 // See if the scale and offset amount is valid for this target. 3846 AddrMode.BaseOffs += ConstantOffset; 3847 3848 // Match the base operand of the GEP. 3849 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3850 // If it couldn't be matched, just stuff the value in a register. 3851 if (AddrMode.HasBaseReg) { 3852 AddrMode = BackupAddrMode; 3853 AddrModeInsts.resize(OldSize); 3854 return false; 3855 } 3856 AddrMode.HasBaseReg = true; 3857 AddrMode.BaseReg = AddrInst->getOperand(0); 3858 } 3859 3860 // Match the remaining variable portion of the GEP. 3861 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3862 Depth)) { 3863 // If it couldn't be matched, try stuffing the base into a register 3864 // instead of matching it, and retrying the match of the scale. 3865 AddrMode = BackupAddrMode; 3866 AddrModeInsts.resize(OldSize); 3867 if (AddrMode.HasBaseReg) 3868 return false; 3869 AddrMode.HasBaseReg = true; 3870 AddrMode.BaseReg = AddrInst->getOperand(0); 3871 AddrMode.BaseOffs += ConstantOffset; 3872 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3873 VariableScale, Depth)) { 3874 // If even that didn't work, bail. 3875 AddrMode = BackupAddrMode; 3876 AddrModeInsts.resize(OldSize); 3877 return false; 3878 } 3879 } 3880 3881 return true; 3882 } 3883 case Instruction::SExt: 3884 case Instruction::ZExt: { 3885 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3886 if (!Ext) 3887 return false; 3888 3889 // Try to move this ext out of the way of the addressing mode. 3890 // Ask for a method for doing so. 3891 TypePromotionHelper::Action TPH = 3892 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3893 if (!TPH) 3894 return false; 3895 3896 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3897 TPT.getRestorationPoint(); 3898 unsigned CreatedInstsCost = 0; 3899 unsigned ExtCost = !TLI.isExtFree(Ext); 3900 Value *PromotedOperand = 3901 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3902 // SExt has been moved away. 3903 // Thus either it will be rematched later in the recursive calls or it is 3904 // gone. Anyway, we must not fold it into the addressing mode at this point. 3905 // E.g., 3906 // op = add opnd, 1 3907 // idx = ext op 3908 // addr = gep base, idx 3909 // is now: 3910 // promotedOpnd = ext opnd <- no match here 3911 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3912 // addr = gep base, op <- match 3913 if (MovedAway) 3914 *MovedAway = true; 3915 3916 assert(PromotedOperand && 3917 "TypePromotionHelper should have filtered out those cases"); 3918 3919 ExtAddrMode BackupAddrMode = AddrMode; 3920 unsigned OldSize = AddrModeInsts.size(); 3921 3922 if (!matchAddr(PromotedOperand, Depth) || 3923 // The total of the new cost is equal to the cost of the created 3924 // instructions. 3925 // The total of the old cost is equal to the cost of the extension plus 3926 // what we have saved in the addressing mode. 3927 !isPromotionProfitable(CreatedInstsCost, 3928 ExtCost + (AddrModeInsts.size() - OldSize), 3929 PromotedOperand)) { 3930 AddrMode = BackupAddrMode; 3931 AddrModeInsts.resize(OldSize); 3932 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3933 TPT.rollback(LastKnownGood); 3934 return false; 3935 } 3936 return true; 3937 } 3938 } 3939 return false; 3940 } 3941 3942 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3943 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3944 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3945 /// for the target. 3946 /// 3947 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3948 // Start a transaction at this point that we will rollback if the matching 3949 // fails. 3950 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3951 TPT.getRestorationPoint(); 3952 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3953 // Fold in immediates if legal for the target. 3954 AddrMode.BaseOffs += CI->getSExtValue(); 3955 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3956 return true; 3957 AddrMode.BaseOffs -= CI->getSExtValue(); 3958 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3959 // If this is a global variable, try to fold it into the addressing mode. 3960 if (!AddrMode.BaseGV) { 3961 AddrMode.BaseGV = GV; 3962 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3963 return true; 3964 AddrMode.BaseGV = nullptr; 3965 } 3966 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3967 ExtAddrMode BackupAddrMode = AddrMode; 3968 unsigned OldSize = AddrModeInsts.size(); 3969 3970 // Check to see if it is possible to fold this operation. 3971 bool MovedAway = false; 3972 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3973 // This instruction may have been moved away. If so, there is nothing 3974 // to check here. 3975 if (MovedAway) 3976 return true; 3977 // Okay, it's possible to fold this. Check to see if it is actually 3978 // *profitable* to do so. We use a simple cost model to avoid increasing 3979 // register pressure too much. 3980 if (I->hasOneUse() || 3981 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3982 AddrModeInsts.push_back(I); 3983 return true; 3984 } 3985 3986 // It isn't profitable to do this, roll back. 3987 //cerr << "NOT FOLDING: " << *I; 3988 AddrMode = BackupAddrMode; 3989 AddrModeInsts.resize(OldSize); 3990 TPT.rollback(LastKnownGood); 3991 } 3992 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3993 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3994 return true; 3995 TPT.rollback(LastKnownGood); 3996 } else if (isa<ConstantPointerNull>(Addr)) { 3997 // Null pointer gets folded without affecting the addressing mode. 3998 return true; 3999 } 4000 4001 // Worse case, the target should support [reg] addressing modes. :) 4002 if (!AddrMode.HasBaseReg) { 4003 AddrMode.HasBaseReg = true; 4004 AddrMode.BaseReg = Addr; 4005 // Still check for legality in case the target supports [imm] but not [i+r]. 4006 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4007 return true; 4008 AddrMode.HasBaseReg = false; 4009 AddrMode.BaseReg = nullptr; 4010 } 4011 4012 // If the base register is already taken, see if we can do [r+r]. 4013 if (AddrMode.Scale == 0) { 4014 AddrMode.Scale = 1; 4015 AddrMode.ScaledReg = Addr; 4016 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4017 return true; 4018 AddrMode.Scale = 0; 4019 AddrMode.ScaledReg = nullptr; 4020 } 4021 // Couldn't match. 4022 TPT.rollback(LastKnownGood); 4023 return false; 4024 } 4025 4026 /// Check to see if all uses of OpVal by the specified inline asm call are due 4027 /// to memory operands. If so, return true, otherwise return false. 4028 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4029 const TargetLowering &TLI, 4030 const TargetRegisterInfo &TRI) { 4031 const Function *F = CI->getFunction(); 4032 TargetLowering::AsmOperandInfoVector TargetConstraints = 4033 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4034 ImmutableCallSite(CI)); 4035 4036 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4037 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4038 4039 // Compute the constraint code and ConstraintType to use. 4040 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4041 4042 // If this asm operand is our Value*, and if it isn't an indirect memory 4043 // operand, we can't fold it! 4044 if (OpInfo.CallOperandVal == OpVal && 4045 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4046 !OpInfo.isIndirect)) 4047 return false; 4048 } 4049 4050 return true; 4051 } 4052 4053 // Max number of memory uses to look at before aborting the search to conserve 4054 // compile time. 4055 static constexpr int MaxMemoryUsesToScan = 20; 4056 4057 /// Recursively walk all the uses of I until we find a memory use. 4058 /// If we find an obviously non-foldable instruction, return true. 4059 /// Add the ultimately found memory instructions to MemoryUses. 4060 static bool FindAllMemoryUses( 4061 Instruction *I, 4062 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4063 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4064 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4065 // If we already considered this instruction, we're done. 4066 if (!ConsideredInsts.insert(I).second) 4067 return false; 4068 4069 // If this is an obviously unfoldable instruction, bail out. 4070 if (!MightBeFoldableInst(I)) 4071 return true; 4072 4073 const bool OptSize = I->getFunction()->optForSize(); 4074 4075 // Loop over all the uses, recursively processing them. 4076 for (Use &U : I->uses()) { 4077 // Conservatively return true if we're seeing a large number or a deep chain 4078 // of users. This avoids excessive compilation times in pathological cases. 4079 if (SeenInsts++ >= MaxMemoryUsesToScan) 4080 return true; 4081 4082 Instruction *UserI = cast<Instruction>(U.getUser()); 4083 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4084 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4085 continue; 4086 } 4087 4088 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4089 unsigned opNo = U.getOperandNo(); 4090 if (opNo != StoreInst::getPointerOperandIndex()) 4091 return true; // Storing addr, not into addr. 4092 MemoryUses.push_back(std::make_pair(SI, opNo)); 4093 continue; 4094 } 4095 4096 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4097 unsigned opNo = U.getOperandNo(); 4098 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4099 return true; // Storing addr, not into addr. 4100 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4101 continue; 4102 } 4103 4104 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4105 unsigned opNo = U.getOperandNo(); 4106 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4107 return true; // Storing addr, not into addr. 4108 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4109 continue; 4110 } 4111 4112 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4113 // If this is a cold call, we can sink the addressing calculation into 4114 // the cold path. See optimizeCallInst 4115 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4116 continue; 4117 4118 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4119 if (!IA) return true; 4120 4121 // If this is a memory operand, we're cool, otherwise bail out. 4122 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4123 return true; 4124 continue; 4125 } 4126 4127 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4128 SeenInsts)) 4129 return true; 4130 } 4131 4132 return false; 4133 } 4134 4135 /// Return true if Val is already known to be live at the use site that we're 4136 /// folding it into. If so, there is no cost to include it in the addressing 4137 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4138 /// instruction already. 4139 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4140 Value *KnownLive2) { 4141 // If Val is either of the known-live values, we know it is live! 4142 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4143 return true; 4144 4145 // All values other than instructions and arguments (e.g. constants) are live. 4146 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4147 4148 // If Val is a constant sized alloca in the entry block, it is live, this is 4149 // true because it is just a reference to the stack/frame pointer, which is 4150 // live for the whole function. 4151 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4152 if (AI->isStaticAlloca()) 4153 return true; 4154 4155 // Check to see if this value is already used in the memory instruction's 4156 // block. If so, it's already live into the block at the very least, so we 4157 // can reasonably fold it. 4158 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4159 } 4160 4161 /// It is possible for the addressing mode of the machine to fold the specified 4162 /// instruction into a load or store that ultimately uses it. 4163 /// However, the specified instruction has multiple uses. 4164 /// Given this, it may actually increase register pressure to fold it 4165 /// into the load. For example, consider this code: 4166 /// 4167 /// X = ... 4168 /// Y = X+1 4169 /// use(Y) -> nonload/store 4170 /// Z = Y+1 4171 /// load Z 4172 /// 4173 /// In this case, Y has multiple uses, and can be folded into the load of Z 4174 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4175 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4176 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4177 /// number of computations either. 4178 /// 4179 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4180 /// X was live across 'load Z' for other reasons, we actually *would* want to 4181 /// fold the addressing mode in the Z case. This would make Y die earlier. 4182 bool AddressingModeMatcher:: 4183 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4184 ExtAddrMode &AMAfter) { 4185 if (IgnoreProfitability) return true; 4186 4187 // AMBefore is the addressing mode before this instruction was folded into it, 4188 // and AMAfter is the addressing mode after the instruction was folded. Get 4189 // the set of registers referenced by AMAfter and subtract out those 4190 // referenced by AMBefore: this is the set of values which folding in this 4191 // address extends the lifetime of. 4192 // 4193 // Note that there are only two potential values being referenced here, 4194 // BaseReg and ScaleReg (global addresses are always available, as are any 4195 // folded immediates). 4196 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4197 4198 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4199 // lifetime wasn't extended by adding this instruction. 4200 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4201 BaseReg = nullptr; 4202 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4203 ScaledReg = nullptr; 4204 4205 // If folding this instruction (and it's subexprs) didn't extend any live 4206 // ranges, we're ok with it. 4207 if (!BaseReg && !ScaledReg) 4208 return true; 4209 4210 // If all uses of this instruction can have the address mode sunk into them, 4211 // we can remove the addressing mode and effectively trade one live register 4212 // for another (at worst.) In this context, folding an addressing mode into 4213 // the use is just a particularly nice way of sinking it. 4214 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4215 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4216 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4217 return false; // Has a non-memory, non-foldable use! 4218 4219 // Now that we know that all uses of this instruction are part of a chain of 4220 // computation involving only operations that could theoretically be folded 4221 // into a memory use, loop over each of these memory operation uses and see 4222 // if they could *actually* fold the instruction. The assumption is that 4223 // addressing modes are cheap and that duplicating the computation involved 4224 // many times is worthwhile, even on a fastpath. For sinking candidates 4225 // (i.e. cold call sites), this serves as a way to prevent excessive code 4226 // growth since most architectures have some reasonable small and fast way to 4227 // compute an effective address. (i.e LEA on x86) 4228 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4229 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4230 Instruction *User = MemoryUses[i].first; 4231 unsigned OpNo = MemoryUses[i].second; 4232 4233 // Get the access type of this use. If the use isn't a pointer, we don't 4234 // know what it accesses. 4235 Value *Address = User->getOperand(OpNo); 4236 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4237 if (!AddrTy) 4238 return false; 4239 Type *AddressAccessTy = AddrTy->getElementType(); 4240 unsigned AS = AddrTy->getAddressSpace(); 4241 4242 // Do a match against the root of this address, ignoring profitability. This 4243 // will tell us if the addressing mode for the memory operation will 4244 // *actually* cover the shared instruction. 4245 ExtAddrMode Result; 4246 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4247 TPT.getRestorationPoint(); 4248 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4249 AddressAccessTy, AS, 4250 MemoryInst, Result, InsertedInsts, 4251 PromotedInsts, TPT); 4252 Matcher.IgnoreProfitability = true; 4253 bool Success = Matcher.matchAddr(Address, 0); 4254 (void)Success; assert(Success && "Couldn't select *anything*?"); 4255 4256 // The match was to check the profitability, the changes made are not 4257 // part of the original matcher. Therefore, they should be dropped 4258 // otherwise the original matcher will not present the right state. 4259 TPT.rollback(LastKnownGood); 4260 4261 // If the match didn't cover I, then it won't be shared by it. 4262 if (!is_contained(MatchedAddrModeInsts, I)) 4263 return false; 4264 4265 MatchedAddrModeInsts.clear(); 4266 } 4267 4268 return true; 4269 } 4270 4271 } // end anonymous namespace 4272 4273 /// Return true if the specified values are defined in a 4274 /// different basic block than BB. 4275 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4276 if (Instruction *I = dyn_cast<Instruction>(V)) 4277 return I->getParent() != BB; 4278 return false; 4279 } 4280 4281 /// Sink addressing mode computation immediate before MemoryInst if doing so 4282 /// can be done without increasing register pressure. The need for the 4283 /// register pressure constraint means this can end up being an all or nothing 4284 /// decision for all uses of the same addressing computation. 4285 /// 4286 /// Load and Store Instructions often have addressing modes that can do 4287 /// significant amounts of computation. As such, instruction selection will try 4288 /// to get the load or store to do as much computation as possible for the 4289 /// program. The problem is that isel can only see within a single block. As 4290 /// such, we sink as much legal addressing mode work into the block as possible. 4291 /// 4292 /// This method is used to optimize both load/store and inline asms with memory 4293 /// operands. It's also used to sink addressing computations feeding into cold 4294 /// call sites into their (cold) basic block. 4295 /// 4296 /// The motivation for handling sinking into cold blocks is that doing so can 4297 /// both enable other address mode sinking (by satisfying the register pressure 4298 /// constraint above), and reduce register pressure globally (by removing the 4299 /// addressing mode computation from the fast path entirely.). 4300 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4301 Type *AccessTy, unsigned AddrSpace) { 4302 Value *Repl = Addr; 4303 4304 // Try to collapse single-value PHI nodes. This is necessary to undo 4305 // unprofitable PRE transformations. 4306 SmallVector<Value*, 8> worklist; 4307 SmallPtrSet<Value*, 16> Visited; 4308 worklist.push_back(Addr); 4309 4310 // Use a worklist to iteratively look through PHI nodes, and ensure that 4311 // the addressing mode obtained from the non-PHI roots of the graph 4312 // are equivalent. 4313 bool AddrModeFound = false; 4314 bool PhiSeen = false; 4315 SmallVector<Instruction*, 16> AddrModeInsts; 4316 ExtAddrMode AddrMode; 4317 TypePromotionTransaction TPT(RemovedInsts); 4318 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4319 TPT.getRestorationPoint(); 4320 while (!worklist.empty()) { 4321 Value *V = worklist.back(); 4322 worklist.pop_back(); 4323 4324 // We allow traversing cyclic Phi nodes. 4325 // In case of success after this loop we ensure that traversing through 4326 // Phi nodes ends up with all cases to compute address of the form 4327 // BaseGV + Base + Scale * Index + Offset 4328 // where Scale and Offset are constans and BaseGV, Base and Index 4329 // are exactly the same Values in all cases. 4330 // It means that BaseGV, Scale and Offset dominate our memory instruction 4331 // and have the same value as they had in address computation represented 4332 // as Phi. So we can safely sink address computation to memory instruction. 4333 if (!Visited.insert(V).second) 4334 continue; 4335 4336 // For a PHI node, push all of its incoming values. 4337 if (PHINode *P = dyn_cast<PHINode>(V)) { 4338 for (Value *IncValue : P->incoming_values()) 4339 worklist.push_back(IncValue); 4340 PhiSeen = true; 4341 continue; 4342 } 4343 4344 // For non-PHIs, determine the addressing mode being computed. Note that 4345 // the result may differ depending on what other uses our candidate 4346 // addressing instructions might have. 4347 AddrModeInsts.clear(); 4348 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4349 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4350 InsertedInsts, PromotedInsts, TPT); 4351 4352 if (!AddrModeFound) { 4353 AddrModeFound = true; 4354 AddrMode = NewAddrMode; 4355 continue; 4356 } 4357 if (NewAddrMode == AddrMode) 4358 continue; 4359 4360 AddrModeFound = false; 4361 break; 4362 } 4363 4364 // If the addressing mode couldn't be determined, or if multiple different 4365 // ones were determined, bail out now. 4366 if (!AddrModeFound) { 4367 TPT.rollback(LastKnownGood); 4368 return false; 4369 } 4370 TPT.commit(); 4371 4372 // If all the instructions matched are already in this BB, don't do anything. 4373 // If we saw Phi node then it is not local definitely. 4374 if (!PhiSeen && none_of(AddrModeInsts, [&](Value *V) { 4375 return IsNonLocalValue(V, MemoryInst->getParent()); 4376 })) { 4377 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4378 return false; 4379 } 4380 4381 // Insert this computation right after this user. Since our caller is 4382 // scanning from the top of the BB to the bottom, reuse of the expr are 4383 // guaranteed to happen later. 4384 IRBuilder<> Builder(MemoryInst); 4385 4386 // Now that we determined the addressing expression we want to use and know 4387 // that we have to sink it into this block. Check to see if we have already 4388 // done this for some other load/store instr in this block. If so, reuse the 4389 // computation. 4390 Value *&SunkAddr = SunkAddrs[Addr]; 4391 if (SunkAddr) { 4392 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4393 << *MemoryInst << "\n"); 4394 if (SunkAddr->getType() != Addr->getType()) 4395 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4396 } else if (AddrSinkUsingGEPs || 4397 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4398 SubtargetInfo->useAA())) { 4399 // By default, we use the GEP-based method when AA is used later. This 4400 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4401 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4402 << *MemoryInst << "\n"); 4403 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4404 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4405 4406 // First, find the pointer. 4407 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4408 ResultPtr = AddrMode.BaseReg; 4409 AddrMode.BaseReg = nullptr; 4410 } 4411 4412 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4413 // We can't add more than one pointer together, nor can we scale a 4414 // pointer (both of which seem meaningless). 4415 if (ResultPtr || AddrMode.Scale != 1) 4416 return false; 4417 4418 ResultPtr = AddrMode.ScaledReg; 4419 AddrMode.Scale = 0; 4420 } 4421 4422 // It is only safe to sign extend the BaseReg if we know that the math 4423 // required to create it did not overflow before we extend it. Since 4424 // the original IR value was tossed in favor of a constant back when 4425 // the AddrMode was created we need to bail out gracefully if widths 4426 // do not match instead of extending it. 4427 // 4428 // (See below for code to add the scale.) 4429 if (AddrMode.Scale) { 4430 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4431 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4432 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4433 return false; 4434 } 4435 4436 if (AddrMode.BaseGV) { 4437 if (ResultPtr) 4438 return false; 4439 4440 ResultPtr = AddrMode.BaseGV; 4441 } 4442 4443 // If the real base value actually came from an inttoptr, then the matcher 4444 // will look through it and provide only the integer value. In that case, 4445 // use it here. 4446 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4447 if (!ResultPtr && AddrMode.BaseReg) { 4448 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4449 "sunkaddr"); 4450 AddrMode.BaseReg = nullptr; 4451 } else if (!ResultPtr && AddrMode.Scale == 1) { 4452 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4453 "sunkaddr"); 4454 AddrMode.Scale = 0; 4455 } 4456 } 4457 4458 if (!ResultPtr && 4459 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4460 SunkAddr = Constant::getNullValue(Addr->getType()); 4461 } else if (!ResultPtr) { 4462 return false; 4463 } else { 4464 Type *I8PtrTy = 4465 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4466 Type *I8Ty = Builder.getInt8Ty(); 4467 4468 // Start with the base register. Do this first so that subsequent address 4469 // matching finds it last, which will prevent it from trying to match it 4470 // as the scaled value in case it happens to be a mul. That would be 4471 // problematic if we've sunk a different mul for the scale, because then 4472 // we'd end up sinking both muls. 4473 if (AddrMode.BaseReg) { 4474 Value *V = AddrMode.BaseReg; 4475 if (V->getType() != IntPtrTy) 4476 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4477 4478 ResultIndex = V; 4479 } 4480 4481 // Add the scale value. 4482 if (AddrMode.Scale) { 4483 Value *V = AddrMode.ScaledReg; 4484 if (V->getType() == IntPtrTy) { 4485 // done. 4486 } else { 4487 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4488 cast<IntegerType>(V->getType())->getBitWidth() && 4489 "We can't transform if ScaledReg is too narrow"); 4490 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4491 } 4492 4493 if (AddrMode.Scale != 1) 4494 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4495 "sunkaddr"); 4496 if (ResultIndex) 4497 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4498 else 4499 ResultIndex = V; 4500 } 4501 4502 // Add in the Base Offset if present. 4503 if (AddrMode.BaseOffs) { 4504 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4505 if (ResultIndex) { 4506 // We need to add this separately from the scale above to help with 4507 // SDAG consecutive load/store merging. 4508 if (ResultPtr->getType() != I8PtrTy) 4509 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4510 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4511 } 4512 4513 ResultIndex = V; 4514 } 4515 4516 if (!ResultIndex) { 4517 SunkAddr = ResultPtr; 4518 } else { 4519 if (ResultPtr->getType() != I8PtrTy) 4520 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4521 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4522 } 4523 4524 if (SunkAddr->getType() != Addr->getType()) 4525 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4526 } 4527 } else { 4528 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4529 // non-integral pointers, so in that case bail out now. 4530 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4531 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4532 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4533 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4534 if (DL->isNonIntegralPointerType(Addr->getType()) || 4535 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4536 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4537 (AddrMode.BaseGV && 4538 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4539 return false; 4540 4541 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4542 << *MemoryInst << "\n"); 4543 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4544 Value *Result = nullptr; 4545 4546 // Start with the base register. Do this first so that subsequent address 4547 // matching finds it last, which will prevent it from trying to match it 4548 // as the scaled value in case it happens to be a mul. That would be 4549 // problematic if we've sunk a different mul for the scale, because then 4550 // we'd end up sinking both muls. 4551 if (AddrMode.BaseReg) { 4552 Value *V = AddrMode.BaseReg; 4553 if (V->getType()->isPointerTy()) 4554 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4555 if (V->getType() != IntPtrTy) 4556 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4557 Result = V; 4558 } 4559 4560 // Add the scale value. 4561 if (AddrMode.Scale) { 4562 Value *V = AddrMode.ScaledReg; 4563 if (V->getType() == IntPtrTy) { 4564 // done. 4565 } else if (V->getType()->isPointerTy()) { 4566 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4567 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4568 cast<IntegerType>(V->getType())->getBitWidth()) { 4569 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4570 } else { 4571 // It is only safe to sign extend the BaseReg if we know that the math 4572 // required to create it did not overflow before we extend it. Since 4573 // the original IR value was tossed in favor of a constant back when 4574 // the AddrMode was created we need to bail out gracefully if widths 4575 // do not match instead of extending it. 4576 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4577 if (I && (Result != AddrMode.BaseReg)) 4578 I->eraseFromParent(); 4579 return false; 4580 } 4581 if (AddrMode.Scale != 1) 4582 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4583 "sunkaddr"); 4584 if (Result) 4585 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4586 else 4587 Result = V; 4588 } 4589 4590 // Add in the BaseGV if present. 4591 if (AddrMode.BaseGV) { 4592 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4593 if (Result) 4594 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4595 else 4596 Result = V; 4597 } 4598 4599 // Add in the Base Offset if present. 4600 if (AddrMode.BaseOffs) { 4601 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4602 if (Result) 4603 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4604 else 4605 Result = V; 4606 } 4607 4608 if (!Result) 4609 SunkAddr = Constant::getNullValue(Addr->getType()); 4610 else 4611 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4612 } 4613 4614 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4615 4616 // If we have no uses, recursively delete the value and all dead instructions 4617 // using it. 4618 if (Repl->use_empty()) { 4619 // This can cause recursive deletion, which can invalidate our iterator. 4620 // Use a WeakTrackingVH to hold onto it in case this happens. 4621 Value *CurValue = &*CurInstIterator; 4622 WeakTrackingVH IterHandle(CurValue); 4623 BasicBlock *BB = CurInstIterator->getParent(); 4624 4625 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4626 4627 if (IterHandle != CurValue) { 4628 // If the iterator instruction was recursively deleted, start over at the 4629 // start of the block. 4630 CurInstIterator = BB->begin(); 4631 SunkAddrs.clear(); 4632 } 4633 } 4634 ++NumMemoryInsts; 4635 return true; 4636 } 4637 4638 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4639 /// address computing into the block when possible / profitable. 4640 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4641 bool MadeChange = false; 4642 4643 const TargetRegisterInfo *TRI = 4644 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4645 TargetLowering::AsmOperandInfoVector TargetConstraints = 4646 TLI->ParseConstraints(*DL, TRI, CS); 4647 unsigned ArgNo = 0; 4648 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4649 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4650 4651 // Compute the constraint code and ConstraintType to use. 4652 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4653 4654 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4655 OpInfo.isIndirect) { 4656 Value *OpVal = CS->getArgOperand(ArgNo++); 4657 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4658 } else if (OpInfo.Type == InlineAsm::isInput) 4659 ArgNo++; 4660 } 4661 4662 return MadeChange; 4663 } 4664 4665 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4666 /// sign extensions. 4667 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4668 assert(!Val->use_empty() && "Input must have at least one use"); 4669 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4670 bool IsSExt = isa<SExtInst>(FirstUser); 4671 Type *ExtTy = FirstUser->getType(); 4672 for (const User *U : Val->users()) { 4673 const Instruction *UI = cast<Instruction>(U); 4674 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4675 return false; 4676 Type *CurTy = UI->getType(); 4677 // Same input and output types: Same instruction after CSE. 4678 if (CurTy == ExtTy) 4679 continue; 4680 4681 // If IsSExt is true, we are in this situation: 4682 // a = Val 4683 // b = sext ty1 a to ty2 4684 // c = sext ty1 a to ty3 4685 // Assuming ty2 is shorter than ty3, this could be turned into: 4686 // a = Val 4687 // b = sext ty1 a to ty2 4688 // c = sext ty2 b to ty3 4689 // However, the last sext is not free. 4690 if (IsSExt) 4691 return false; 4692 4693 // This is a ZExt, maybe this is free to extend from one type to another. 4694 // In that case, we would not account for a different use. 4695 Type *NarrowTy; 4696 Type *LargeTy; 4697 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4698 CurTy->getScalarType()->getIntegerBitWidth()) { 4699 NarrowTy = CurTy; 4700 LargeTy = ExtTy; 4701 } else { 4702 NarrowTy = ExtTy; 4703 LargeTy = CurTy; 4704 } 4705 4706 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4707 return false; 4708 } 4709 // All uses are the same or can be derived from one another for free. 4710 return true; 4711 } 4712 4713 /// \brief Try to speculatively promote extensions in \p Exts and continue 4714 /// promoting through newly promoted operands recursively as far as doing so is 4715 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4716 /// When some promotion happened, \p TPT contains the proper state to revert 4717 /// them. 4718 /// 4719 /// \return true if some promotion happened, false otherwise. 4720 bool CodeGenPrepare::tryToPromoteExts( 4721 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4722 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4723 unsigned CreatedInstsCost) { 4724 bool Promoted = false; 4725 4726 // Iterate over all the extensions to try to promote them. 4727 for (auto I : Exts) { 4728 // Early check if we directly have ext(load). 4729 if (isa<LoadInst>(I->getOperand(0))) { 4730 ProfitablyMovedExts.push_back(I); 4731 continue; 4732 } 4733 4734 // Check whether or not we want to do any promotion. The reason we have 4735 // this check inside the for loop is to catch the case where an extension 4736 // is directly fed by a load because in such case the extension can be moved 4737 // up without any promotion on its operands. 4738 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4739 return false; 4740 4741 // Get the action to perform the promotion. 4742 TypePromotionHelper::Action TPH = 4743 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4744 // Check if we can promote. 4745 if (!TPH) { 4746 // Save the current extension as we cannot move up through its operand. 4747 ProfitablyMovedExts.push_back(I); 4748 continue; 4749 } 4750 4751 // Save the current state. 4752 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4753 TPT.getRestorationPoint(); 4754 SmallVector<Instruction *, 4> NewExts; 4755 unsigned NewCreatedInstsCost = 0; 4756 unsigned ExtCost = !TLI->isExtFree(I); 4757 // Promote. 4758 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4759 &NewExts, nullptr, *TLI); 4760 assert(PromotedVal && 4761 "TypePromotionHelper should have filtered out those cases"); 4762 4763 // We would be able to merge only one extension in a load. 4764 // Therefore, if we have more than 1 new extension we heuristically 4765 // cut this search path, because it means we degrade the code quality. 4766 // With exactly 2, the transformation is neutral, because we will merge 4767 // one extension but leave one. However, we optimistically keep going, 4768 // because the new extension may be removed too. 4769 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4770 // FIXME: It would be possible to propagate a negative value instead of 4771 // conservatively ceiling it to 0. 4772 TotalCreatedInstsCost = 4773 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4774 if (!StressExtLdPromotion && 4775 (TotalCreatedInstsCost > 1 || 4776 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4777 // This promotion is not profitable, rollback to the previous state, and 4778 // save the current extension in ProfitablyMovedExts as the latest 4779 // speculative promotion turned out to be unprofitable. 4780 TPT.rollback(LastKnownGood); 4781 ProfitablyMovedExts.push_back(I); 4782 continue; 4783 } 4784 // Continue promoting NewExts as far as doing so is profitable. 4785 SmallVector<Instruction *, 2> NewlyMovedExts; 4786 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4787 bool NewPromoted = false; 4788 for (auto ExtInst : NewlyMovedExts) { 4789 Instruction *MovedExt = cast<Instruction>(ExtInst); 4790 Value *ExtOperand = MovedExt->getOperand(0); 4791 // If we have reached to a load, we need this extra profitability check 4792 // as it could potentially be merged into an ext(load). 4793 if (isa<LoadInst>(ExtOperand) && 4794 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4795 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4796 continue; 4797 4798 ProfitablyMovedExts.push_back(MovedExt); 4799 NewPromoted = true; 4800 } 4801 4802 // If none of speculative promotions for NewExts is profitable, rollback 4803 // and save the current extension (I) as the last profitable extension. 4804 if (!NewPromoted) { 4805 TPT.rollback(LastKnownGood); 4806 ProfitablyMovedExts.push_back(I); 4807 continue; 4808 } 4809 // The promotion is profitable. 4810 Promoted = true; 4811 } 4812 return Promoted; 4813 } 4814 4815 /// Merging redundant sexts when one is dominating the other. 4816 bool CodeGenPrepare::mergeSExts(Function &F) { 4817 DominatorTree DT(F); 4818 bool Changed = false; 4819 for (auto &Entry : ValToSExtendedUses) { 4820 SExts &Insts = Entry.second; 4821 SExts CurPts; 4822 for (Instruction *Inst : Insts) { 4823 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4824 Inst->getOperand(0) != Entry.first) 4825 continue; 4826 bool inserted = false; 4827 for (auto &Pt : CurPts) { 4828 if (DT.dominates(Inst, Pt)) { 4829 Pt->replaceAllUsesWith(Inst); 4830 RemovedInsts.insert(Pt); 4831 Pt->removeFromParent(); 4832 Pt = Inst; 4833 inserted = true; 4834 Changed = true; 4835 break; 4836 } 4837 if (!DT.dominates(Pt, Inst)) 4838 // Give up if we need to merge in a common dominator as the 4839 // expermients show it is not profitable. 4840 continue; 4841 Inst->replaceAllUsesWith(Pt); 4842 RemovedInsts.insert(Inst); 4843 Inst->removeFromParent(); 4844 inserted = true; 4845 Changed = true; 4846 break; 4847 } 4848 if (!inserted) 4849 CurPts.push_back(Inst); 4850 } 4851 } 4852 return Changed; 4853 } 4854 4855 /// Return true, if an ext(load) can be formed from an extension in 4856 /// \p MovedExts. 4857 bool CodeGenPrepare::canFormExtLd( 4858 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4859 Instruction *&Inst, bool HasPromoted) { 4860 for (auto *MovedExtInst : MovedExts) { 4861 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4862 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4863 Inst = MovedExtInst; 4864 break; 4865 } 4866 } 4867 if (!LI) 4868 return false; 4869 4870 // If they're already in the same block, there's nothing to do. 4871 // Make the cheap checks first if we did not promote. 4872 // If we promoted, we need to check if it is indeed profitable. 4873 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4874 return false; 4875 4876 return TLI->isExtLoad(LI, Inst, *DL); 4877 } 4878 4879 /// Move a zext or sext fed by a load into the same basic block as the load, 4880 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4881 /// extend into the load. 4882 /// 4883 /// E.g., 4884 /// \code 4885 /// %ld = load i32* %addr 4886 /// %add = add nuw i32 %ld, 4 4887 /// %zext = zext i32 %add to i64 4888 // \endcode 4889 /// => 4890 /// \code 4891 /// %ld = load i32* %addr 4892 /// %zext = zext i32 %ld to i64 4893 /// %add = add nuw i64 %zext, 4 4894 /// \encode 4895 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4896 /// allow us to match zext(load i32*) to i64. 4897 /// 4898 /// Also, try to promote the computations used to obtain a sign extended 4899 /// value used into memory accesses. 4900 /// E.g., 4901 /// \code 4902 /// a = add nsw i32 b, 3 4903 /// d = sext i32 a to i64 4904 /// e = getelementptr ..., i64 d 4905 /// \endcode 4906 /// => 4907 /// \code 4908 /// f = sext i32 b to i64 4909 /// a = add nsw i64 f, 3 4910 /// e = getelementptr ..., i64 a 4911 /// \endcode 4912 /// 4913 /// \p Inst[in/out] the extension may be modified during the process if some 4914 /// promotions apply. 4915 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4916 // ExtLoad formation and address type promotion infrastructure requires TLI to 4917 // be effective. 4918 if (!TLI) 4919 return false; 4920 4921 bool AllowPromotionWithoutCommonHeader = false; 4922 /// See if it is an interesting sext operations for the address type 4923 /// promotion before trying to promote it, e.g., the ones with the right 4924 /// type and used in memory accesses. 4925 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4926 *Inst, AllowPromotionWithoutCommonHeader); 4927 TypePromotionTransaction TPT(RemovedInsts); 4928 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4929 TPT.getRestorationPoint(); 4930 SmallVector<Instruction *, 1> Exts; 4931 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4932 Exts.push_back(Inst); 4933 4934 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4935 4936 // Look for a load being extended. 4937 LoadInst *LI = nullptr; 4938 Instruction *ExtFedByLoad; 4939 4940 // Try to promote a chain of computation if it allows to form an extended 4941 // load. 4942 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4943 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4944 TPT.commit(); 4945 // Move the extend into the same block as the load 4946 ExtFedByLoad->removeFromParent(); 4947 ExtFedByLoad->insertAfter(LI); 4948 // CGP does not check if the zext would be speculatively executed when moved 4949 // to the same basic block as the load. Preserving its original location 4950 // would pessimize the debugging experience, as well as negatively impact 4951 // the quality of sample pgo. We don't want to use "line 0" as that has a 4952 // size cost in the line-table section and logically the zext can be seen as 4953 // part of the load. Therefore we conservatively reuse the same debug 4954 // location for the load and the zext. 4955 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4956 ++NumExtsMoved; 4957 Inst = ExtFedByLoad; 4958 return true; 4959 } 4960 4961 // Continue promoting SExts if known as considerable depending on targets. 4962 if (ATPConsiderable && 4963 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4964 HasPromoted, TPT, SpeculativelyMovedExts)) 4965 return true; 4966 4967 TPT.rollback(LastKnownGood); 4968 return false; 4969 } 4970 4971 // Perform address type promotion if doing so is profitable. 4972 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4973 // instructions that sign extended the same initial value. However, if 4974 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4975 // extension is just profitable. 4976 bool CodeGenPrepare::performAddressTypePromotion( 4977 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4978 bool HasPromoted, TypePromotionTransaction &TPT, 4979 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4980 bool Promoted = false; 4981 SmallPtrSet<Instruction *, 1> UnhandledExts; 4982 bool AllSeenFirst = true; 4983 for (auto I : SpeculativelyMovedExts) { 4984 Value *HeadOfChain = I->getOperand(0); 4985 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4986 SeenChainsForSExt.find(HeadOfChain); 4987 // If there is an unhandled SExt which has the same header, try to promote 4988 // it as well. 4989 if (AlreadySeen != SeenChainsForSExt.end()) { 4990 if (AlreadySeen->second != nullptr) 4991 UnhandledExts.insert(AlreadySeen->second); 4992 AllSeenFirst = false; 4993 } 4994 } 4995 4996 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4997 SpeculativelyMovedExts.size() == 1)) { 4998 TPT.commit(); 4999 if (HasPromoted) 5000 Promoted = true; 5001 for (auto I : SpeculativelyMovedExts) { 5002 Value *HeadOfChain = I->getOperand(0); 5003 SeenChainsForSExt[HeadOfChain] = nullptr; 5004 ValToSExtendedUses[HeadOfChain].push_back(I); 5005 } 5006 // Update Inst as promotion happen. 5007 Inst = SpeculativelyMovedExts.pop_back_val(); 5008 } else { 5009 // This is the first chain visited from the header, keep the current chain 5010 // as unhandled. Defer to promote this until we encounter another SExt 5011 // chain derived from the same header. 5012 for (auto I : SpeculativelyMovedExts) { 5013 Value *HeadOfChain = I->getOperand(0); 5014 SeenChainsForSExt[HeadOfChain] = Inst; 5015 } 5016 return false; 5017 } 5018 5019 if (!AllSeenFirst && !UnhandledExts.empty()) 5020 for (auto VisitedSExt : UnhandledExts) { 5021 if (RemovedInsts.count(VisitedSExt)) 5022 continue; 5023 TypePromotionTransaction TPT(RemovedInsts); 5024 SmallVector<Instruction *, 1> Exts; 5025 SmallVector<Instruction *, 2> Chains; 5026 Exts.push_back(VisitedSExt); 5027 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5028 TPT.commit(); 5029 if (HasPromoted) 5030 Promoted = true; 5031 for (auto I : Chains) { 5032 Value *HeadOfChain = I->getOperand(0); 5033 // Mark this as handled. 5034 SeenChainsForSExt[HeadOfChain] = nullptr; 5035 ValToSExtendedUses[HeadOfChain].push_back(I); 5036 } 5037 } 5038 return Promoted; 5039 } 5040 5041 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5042 BasicBlock *DefBB = I->getParent(); 5043 5044 // If the result of a {s|z}ext and its source are both live out, rewrite all 5045 // other uses of the source with result of extension. 5046 Value *Src = I->getOperand(0); 5047 if (Src->hasOneUse()) 5048 return false; 5049 5050 // Only do this xform if truncating is free. 5051 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5052 return false; 5053 5054 // Only safe to perform the optimization if the source is also defined in 5055 // this block. 5056 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5057 return false; 5058 5059 bool DefIsLiveOut = false; 5060 for (User *U : I->users()) { 5061 Instruction *UI = cast<Instruction>(U); 5062 5063 // Figure out which BB this ext is used in. 5064 BasicBlock *UserBB = UI->getParent(); 5065 if (UserBB == DefBB) continue; 5066 DefIsLiveOut = true; 5067 break; 5068 } 5069 if (!DefIsLiveOut) 5070 return false; 5071 5072 // Make sure none of the uses are PHI nodes. 5073 for (User *U : Src->users()) { 5074 Instruction *UI = cast<Instruction>(U); 5075 BasicBlock *UserBB = UI->getParent(); 5076 if (UserBB == DefBB) continue; 5077 // Be conservative. We don't want this xform to end up introducing 5078 // reloads just before load / store instructions. 5079 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5080 return false; 5081 } 5082 5083 // InsertedTruncs - Only insert one trunc in each block once. 5084 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5085 5086 bool MadeChange = false; 5087 for (Use &U : Src->uses()) { 5088 Instruction *User = cast<Instruction>(U.getUser()); 5089 5090 // Figure out which BB this ext is used in. 5091 BasicBlock *UserBB = User->getParent(); 5092 if (UserBB == DefBB) continue; 5093 5094 // Both src and def are live in this block. Rewrite the use. 5095 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5096 5097 if (!InsertedTrunc) { 5098 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5099 assert(InsertPt != UserBB->end()); 5100 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5101 InsertedInsts.insert(InsertedTrunc); 5102 } 5103 5104 // Replace a use of the {s|z}ext source with a use of the result. 5105 U = InsertedTrunc; 5106 ++NumExtUses; 5107 MadeChange = true; 5108 } 5109 5110 return MadeChange; 5111 } 5112 5113 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5114 // just after the load if the target can fold this into one extload instruction, 5115 // with the hope of eliminating some of the other later "and" instructions using 5116 // the loaded value. "and"s that are made trivially redundant by the insertion 5117 // of the new "and" are removed by this function, while others (e.g. those whose 5118 // path from the load goes through a phi) are left for isel to potentially 5119 // remove. 5120 // 5121 // For example: 5122 // 5123 // b0: 5124 // x = load i32 5125 // ... 5126 // b1: 5127 // y = and x, 0xff 5128 // z = use y 5129 // 5130 // becomes: 5131 // 5132 // b0: 5133 // x = load i32 5134 // x' = and x, 0xff 5135 // ... 5136 // b1: 5137 // z = use x' 5138 // 5139 // whereas: 5140 // 5141 // b0: 5142 // x1 = load i32 5143 // ... 5144 // b1: 5145 // x2 = load i32 5146 // ... 5147 // b2: 5148 // x = phi x1, x2 5149 // y = and x, 0xff 5150 // 5151 // becomes (after a call to optimizeLoadExt for each load): 5152 // 5153 // b0: 5154 // x1 = load i32 5155 // x1' = and x1, 0xff 5156 // ... 5157 // b1: 5158 // x2 = load i32 5159 // x2' = and x2, 0xff 5160 // ... 5161 // b2: 5162 // x = phi x1', x2' 5163 // y = and x, 0xff 5164 // 5165 5166 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5167 5168 if (!Load->isSimple() || 5169 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5170 return false; 5171 5172 // Skip loads we've already transformed. 5173 if (Load->hasOneUse() && 5174 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5175 return false; 5176 5177 // Look at all uses of Load, looking through phis, to determine how many bits 5178 // of the loaded value are needed. 5179 SmallVector<Instruction *, 8> WorkList; 5180 SmallPtrSet<Instruction *, 16> Visited; 5181 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5182 for (auto *U : Load->users()) 5183 WorkList.push_back(cast<Instruction>(U)); 5184 5185 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5186 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5187 APInt DemandBits(BitWidth, 0); 5188 APInt WidestAndBits(BitWidth, 0); 5189 5190 while (!WorkList.empty()) { 5191 Instruction *I = WorkList.back(); 5192 WorkList.pop_back(); 5193 5194 // Break use-def graph loops. 5195 if (!Visited.insert(I).second) 5196 continue; 5197 5198 // For a PHI node, push all of its users. 5199 if (auto *Phi = dyn_cast<PHINode>(I)) { 5200 for (auto *U : Phi->users()) 5201 WorkList.push_back(cast<Instruction>(U)); 5202 continue; 5203 } 5204 5205 switch (I->getOpcode()) { 5206 case llvm::Instruction::And: { 5207 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5208 if (!AndC) 5209 return false; 5210 APInt AndBits = AndC->getValue(); 5211 DemandBits |= AndBits; 5212 // Keep track of the widest and mask we see. 5213 if (AndBits.ugt(WidestAndBits)) 5214 WidestAndBits = AndBits; 5215 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5216 AndsToMaybeRemove.push_back(I); 5217 break; 5218 } 5219 5220 case llvm::Instruction::Shl: { 5221 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5222 if (!ShlC) 5223 return false; 5224 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5225 DemandBits.setLowBits(BitWidth - ShiftAmt); 5226 break; 5227 } 5228 5229 case llvm::Instruction::Trunc: { 5230 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5231 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5232 DemandBits.setLowBits(TruncBitWidth); 5233 break; 5234 } 5235 5236 default: 5237 return false; 5238 } 5239 } 5240 5241 uint32_t ActiveBits = DemandBits.getActiveBits(); 5242 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5243 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5244 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5245 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5246 // followed by an AND. 5247 // TODO: Look into removing this restriction by fixing backends to either 5248 // return false for isLoadExtLegal for i1 or have them select this pattern to 5249 // a single instruction. 5250 // 5251 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5252 // mask, since these are the only ands that will be removed by isel. 5253 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5254 WidestAndBits != DemandBits) 5255 return false; 5256 5257 LLVMContext &Ctx = Load->getType()->getContext(); 5258 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5259 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5260 5261 // Reject cases that won't be matched as extloads. 5262 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5263 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5264 return false; 5265 5266 IRBuilder<> Builder(Load->getNextNode()); 5267 auto *NewAnd = dyn_cast<Instruction>( 5268 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5269 // Mark this instruction as "inserted by CGP", so that other 5270 // optimizations don't touch it. 5271 InsertedInsts.insert(NewAnd); 5272 5273 // Replace all uses of load with new and (except for the use of load in the 5274 // new and itself). 5275 Load->replaceAllUsesWith(NewAnd); 5276 NewAnd->setOperand(0, Load); 5277 5278 // Remove any and instructions that are now redundant. 5279 for (auto *And : AndsToMaybeRemove) 5280 // Check that the and mask is the same as the one we decided to put on the 5281 // new and. 5282 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5283 And->replaceAllUsesWith(NewAnd); 5284 if (&*CurInstIterator == And) 5285 CurInstIterator = std::next(And->getIterator()); 5286 And->eraseFromParent(); 5287 ++NumAndUses; 5288 } 5289 5290 ++NumAndsAdded; 5291 return true; 5292 } 5293 5294 /// Check if V (an operand of a select instruction) is an expensive instruction 5295 /// that is only used once. 5296 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5297 auto *I = dyn_cast<Instruction>(V); 5298 // If it's safe to speculatively execute, then it should not have side 5299 // effects; therefore, it's safe to sink and possibly *not* execute. 5300 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5301 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5302 } 5303 5304 /// Returns true if a SelectInst should be turned into an explicit branch. 5305 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5306 const TargetLowering *TLI, 5307 SelectInst *SI) { 5308 // If even a predictable select is cheap, then a branch can't be cheaper. 5309 if (!TLI->isPredictableSelectExpensive()) 5310 return false; 5311 5312 // FIXME: This should use the same heuristics as IfConversion to determine 5313 // whether a select is better represented as a branch. 5314 5315 // If metadata tells us that the select condition is obviously predictable, 5316 // then we want to replace the select with a branch. 5317 uint64_t TrueWeight, FalseWeight; 5318 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5319 uint64_t Max = std::max(TrueWeight, FalseWeight); 5320 uint64_t Sum = TrueWeight + FalseWeight; 5321 if (Sum != 0) { 5322 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5323 if (Probability > TLI->getPredictableBranchThreshold()) 5324 return true; 5325 } 5326 } 5327 5328 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5329 5330 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5331 // comparison condition. If the compare has more than one use, there's 5332 // probably another cmov or setcc around, so it's not worth emitting a branch. 5333 if (!Cmp || !Cmp->hasOneUse()) 5334 return false; 5335 5336 // If either operand of the select is expensive and only needed on one side 5337 // of the select, we should form a branch. 5338 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5339 sinkSelectOperand(TTI, SI->getFalseValue())) 5340 return true; 5341 5342 return false; 5343 } 5344 5345 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5346 /// false value of \p SI. If the true/false value of \p SI is defined by any 5347 /// select instructions in \p Selects, look through the defining select 5348 /// instruction until the true/false value is not defined in \p Selects. 5349 static Value *getTrueOrFalseValue( 5350 SelectInst *SI, bool isTrue, 5351 const SmallPtrSet<const Instruction *, 2> &Selects) { 5352 Value *V; 5353 5354 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5355 DefSI = dyn_cast<SelectInst>(V)) { 5356 assert(DefSI->getCondition() == SI->getCondition() && 5357 "The condition of DefSI does not match with SI"); 5358 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5359 } 5360 return V; 5361 } 5362 5363 /// If we have a SelectInst that will likely profit from branch prediction, 5364 /// turn it into a branch. 5365 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5366 // Find all consecutive select instructions that share the same condition. 5367 SmallVector<SelectInst *, 2> ASI; 5368 ASI.push_back(SI); 5369 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5370 It != SI->getParent()->end(); ++It) { 5371 SelectInst *I = dyn_cast<SelectInst>(&*It); 5372 if (I && SI->getCondition() == I->getCondition()) { 5373 ASI.push_back(I); 5374 } else { 5375 break; 5376 } 5377 } 5378 5379 SelectInst *LastSI = ASI.back(); 5380 // Increment the current iterator to skip all the rest of select instructions 5381 // because they will be either "not lowered" or "all lowered" to branch. 5382 CurInstIterator = std::next(LastSI->getIterator()); 5383 5384 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5385 5386 // Can we convert the 'select' to CF ? 5387 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5388 SI->getMetadata(LLVMContext::MD_unpredictable)) 5389 return false; 5390 5391 TargetLowering::SelectSupportKind SelectKind; 5392 if (VectorCond) 5393 SelectKind = TargetLowering::VectorMaskSelect; 5394 else if (SI->getType()->isVectorTy()) 5395 SelectKind = TargetLowering::ScalarCondVectorVal; 5396 else 5397 SelectKind = TargetLowering::ScalarValSelect; 5398 5399 if (TLI->isSelectSupported(SelectKind) && 5400 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5401 return false; 5402 5403 ModifiedDT = true; 5404 5405 // Transform a sequence like this: 5406 // start: 5407 // %cmp = cmp uge i32 %a, %b 5408 // %sel = select i1 %cmp, i32 %c, i32 %d 5409 // 5410 // Into: 5411 // start: 5412 // %cmp = cmp uge i32 %a, %b 5413 // br i1 %cmp, label %select.true, label %select.false 5414 // select.true: 5415 // br label %select.end 5416 // select.false: 5417 // br label %select.end 5418 // select.end: 5419 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5420 // 5421 // In addition, we may sink instructions that produce %c or %d from 5422 // the entry block into the destination(s) of the new branch. 5423 // If the true or false blocks do not contain a sunken instruction, that 5424 // block and its branch may be optimized away. In that case, one side of the 5425 // first branch will point directly to select.end, and the corresponding PHI 5426 // predecessor block will be the start block. 5427 5428 // First, we split the block containing the select into 2 blocks. 5429 BasicBlock *StartBlock = SI->getParent(); 5430 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5431 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5432 5433 // Delete the unconditional branch that was just created by the split. 5434 StartBlock->getTerminator()->eraseFromParent(); 5435 5436 // These are the new basic blocks for the conditional branch. 5437 // At least one will become an actual new basic block. 5438 BasicBlock *TrueBlock = nullptr; 5439 BasicBlock *FalseBlock = nullptr; 5440 BranchInst *TrueBranch = nullptr; 5441 BranchInst *FalseBranch = nullptr; 5442 5443 // Sink expensive instructions into the conditional blocks to avoid executing 5444 // them speculatively. 5445 for (SelectInst *SI : ASI) { 5446 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5447 if (TrueBlock == nullptr) { 5448 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5449 EndBlock->getParent(), EndBlock); 5450 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5451 } 5452 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5453 TrueInst->moveBefore(TrueBranch); 5454 } 5455 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5456 if (FalseBlock == nullptr) { 5457 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5458 EndBlock->getParent(), EndBlock); 5459 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5460 } 5461 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5462 FalseInst->moveBefore(FalseBranch); 5463 } 5464 } 5465 5466 // If there was nothing to sink, then arbitrarily choose the 'false' side 5467 // for a new input value to the PHI. 5468 if (TrueBlock == FalseBlock) { 5469 assert(TrueBlock == nullptr && 5470 "Unexpected basic block transform while optimizing select"); 5471 5472 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5473 EndBlock->getParent(), EndBlock); 5474 BranchInst::Create(EndBlock, FalseBlock); 5475 } 5476 5477 // Insert the real conditional branch based on the original condition. 5478 // If we did not create a new block for one of the 'true' or 'false' paths 5479 // of the condition, it means that side of the branch goes to the end block 5480 // directly and the path originates from the start block from the point of 5481 // view of the new PHI. 5482 BasicBlock *TT, *FT; 5483 if (TrueBlock == nullptr) { 5484 TT = EndBlock; 5485 FT = FalseBlock; 5486 TrueBlock = StartBlock; 5487 } else if (FalseBlock == nullptr) { 5488 TT = TrueBlock; 5489 FT = EndBlock; 5490 FalseBlock = StartBlock; 5491 } else { 5492 TT = TrueBlock; 5493 FT = FalseBlock; 5494 } 5495 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5496 5497 SmallPtrSet<const Instruction *, 2> INS; 5498 INS.insert(ASI.begin(), ASI.end()); 5499 // Use reverse iterator because later select may use the value of the 5500 // earlier select, and we need to propagate value through earlier select 5501 // to get the PHI operand. 5502 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5503 SelectInst *SI = *It; 5504 // The select itself is replaced with a PHI Node. 5505 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5506 PN->takeName(SI); 5507 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5508 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5509 5510 SI->replaceAllUsesWith(PN); 5511 SI->eraseFromParent(); 5512 INS.erase(SI); 5513 ++NumSelectsExpanded; 5514 } 5515 5516 // Instruct OptimizeBlock to skip to the next block. 5517 CurInstIterator = StartBlock->end(); 5518 return true; 5519 } 5520 5521 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5522 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5523 int SplatElem = -1; 5524 for (unsigned i = 0; i < Mask.size(); ++i) { 5525 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5526 return false; 5527 SplatElem = Mask[i]; 5528 } 5529 5530 return true; 5531 } 5532 5533 /// Some targets have expensive vector shifts if the lanes aren't all the same 5534 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5535 /// it's often worth sinking a shufflevector splat down to its use so that 5536 /// codegen can spot all lanes are identical. 5537 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5538 BasicBlock *DefBB = SVI->getParent(); 5539 5540 // Only do this xform if variable vector shifts are particularly expensive. 5541 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5542 return false; 5543 5544 // We only expect better codegen by sinking a shuffle if we can recognise a 5545 // constant splat. 5546 if (!isBroadcastShuffle(SVI)) 5547 return false; 5548 5549 // InsertedShuffles - Only insert a shuffle in each block once. 5550 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5551 5552 bool MadeChange = false; 5553 for (User *U : SVI->users()) { 5554 Instruction *UI = cast<Instruction>(U); 5555 5556 // Figure out which BB this ext is used in. 5557 BasicBlock *UserBB = UI->getParent(); 5558 if (UserBB == DefBB) continue; 5559 5560 // For now only apply this when the splat is used by a shift instruction. 5561 if (!UI->isShift()) continue; 5562 5563 // Everything checks out, sink the shuffle if the user's block doesn't 5564 // already have a copy. 5565 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5566 5567 if (!InsertedShuffle) { 5568 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5569 assert(InsertPt != UserBB->end()); 5570 InsertedShuffle = 5571 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5572 SVI->getOperand(2), "", &*InsertPt); 5573 } 5574 5575 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5576 MadeChange = true; 5577 } 5578 5579 // If we removed all uses, nuke the shuffle. 5580 if (SVI->use_empty()) { 5581 SVI->eraseFromParent(); 5582 MadeChange = true; 5583 } 5584 5585 return MadeChange; 5586 } 5587 5588 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5589 if (!TLI || !DL) 5590 return false; 5591 5592 Value *Cond = SI->getCondition(); 5593 Type *OldType = Cond->getType(); 5594 LLVMContext &Context = Cond->getContext(); 5595 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5596 unsigned RegWidth = RegType.getSizeInBits(); 5597 5598 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5599 return false; 5600 5601 // If the register width is greater than the type width, expand the condition 5602 // of the switch instruction and each case constant to the width of the 5603 // register. By widening the type of the switch condition, subsequent 5604 // comparisons (for case comparisons) will not need to be extended to the 5605 // preferred register width, so we will potentially eliminate N-1 extends, 5606 // where N is the number of cases in the switch. 5607 auto *NewType = Type::getIntNTy(Context, RegWidth); 5608 5609 // Zero-extend the switch condition and case constants unless the switch 5610 // condition is a function argument that is already being sign-extended. 5611 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5612 // everything instead. 5613 Instruction::CastOps ExtType = Instruction::ZExt; 5614 if (auto *Arg = dyn_cast<Argument>(Cond)) 5615 if (Arg->hasSExtAttr()) 5616 ExtType = Instruction::SExt; 5617 5618 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5619 ExtInst->insertBefore(SI); 5620 SI->setCondition(ExtInst); 5621 for (auto Case : SI->cases()) { 5622 APInt NarrowConst = Case.getCaseValue()->getValue(); 5623 APInt WideConst = (ExtType == Instruction::ZExt) ? 5624 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5625 Case.setValue(ConstantInt::get(Context, WideConst)); 5626 } 5627 5628 return true; 5629 } 5630 5631 5632 namespace { 5633 /// \brief Helper class to promote a scalar operation to a vector one. 5634 /// This class is used to move downward extractelement transition. 5635 /// E.g., 5636 /// a = vector_op <2 x i32> 5637 /// b = extractelement <2 x i32> a, i32 0 5638 /// c = scalar_op b 5639 /// store c 5640 /// 5641 /// => 5642 /// a = vector_op <2 x i32> 5643 /// c = vector_op a (equivalent to scalar_op on the related lane) 5644 /// * d = extractelement <2 x i32> c, i32 0 5645 /// * store d 5646 /// Assuming both extractelement and store can be combine, we get rid of the 5647 /// transition. 5648 class VectorPromoteHelper { 5649 /// DataLayout associated with the current module. 5650 const DataLayout &DL; 5651 5652 /// Used to perform some checks on the legality of vector operations. 5653 const TargetLowering &TLI; 5654 5655 /// Used to estimated the cost of the promoted chain. 5656 const TargetTransformInfo &TTI; 5657 5658 /// The transition being moved downwards. 5659 Instruction *Transition; 5660 /// The sequence of instructions to be promoted. 5661 SmallVector<Instruction *, 4> InstsToBePromoted; 5662 /// Cost of combining a store and an extract. 5663 unsigned StoreExtractCombineCost; 5664 /// Instruction that will be combined with the transition. 5665 Instruction *CombineInst; 5666 5667 /// \brief The instruction that represents the current end of the transition. 5668 /// Since we are faking the promotion until we reach the end of the chain 5669 /// of computation, we need a way to get the current end of the transition. 5670 Instruction *getEndOfTransition() const { 5671 if (InstsToBePromoted.empty()) 5672 return Transition; 5673 return InstsToBePromoted.back(); 5674 } 5675 5676 /// \brief Return the index of the original value in the transition. 5677 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5678 /// c, is at index 0. 5679 unsigned getTransitionOriginalValueIdx() const { 5680 assert(isa<ExtractElementInst>(Transition) && 5681 "Other kind of transitions are not supported yet"); 5682 return 0; 5683 } 5684 5685 /// \brief Return the index of the index in the transition. 5686 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5687 /// is at index 1. 5688 unsigned getTransitionIdx() const { 5689 assert(isa<ExtractElementInst>(Transition) && 5690 "Other kind of transitions are not supported yet"); 5691 return 1; 5692 } 5693 5694 /// \brief Get the type of the transition. 5695 /// This is the type of the original value. 5696 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5697 /// transition is <2 x i32>. 5698 Type *getTransitionType() const { 5699 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5700 } 5701 5702 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5703 /// I.e., we have the following sequence: 5704 /// Def = Transition <ty1> a to <ty2> 5705 /// b = ToBePromoted <ty2> Def, ... 5706 /// => 5707 /// b = ToBePromoted <ty1> a, ... 5708 /// Def = Transition <ty1> ToBePromoted to <ty2> 5709 void promoteImpl(Instruction *ToBePromoted); 5710 5711 /// \brief Check whether or not it is profitable to promote all the 5712 /// instructions enqueued to be promoted. 5713 bool isProfitableToPromote() { 5714 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5715 unsigned Index = isa<ConstantInt>(ValIdx) 5716 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5717 : -1; 5718 Type *PromotedType = getTransitionType(); 5719 5720 StoreInst *ST = cast<StoreInst>(CombineInst); 5721 unsigned AS = ST->getPointerAddressSpace(); 5722 unsigned Align = ST->getAlignment(); 5723 // Check if this store is supported. 5724 if (!TLI.allowsMisalignedMemoryAccesses( 5725 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5726 Align)) { 5727 // If this is not supported, there is no way we can combine 5728 // the extract with the store. 5729 return false; 5730 } 5731 5732 // The scalar chain of computation has to pay for the transition 5733 // scalar to vector. 5734 // The vector chain has to account for the combining cost. 5735 uint64_t ScalarCost = 5736 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5737 uint64_t VectorCost = StoreExtractCombineCost; 5738 for (const auto &Inst : InstsToBePromoted) { 5739 // Compute the cost. 5740 // By construction, all instructions being promoted are arithmetic ones. 5741 // Moreover, one argument is a constant that can be viewed as a splat 5742 // constant. 5743 Value *Arg0 = Inst->getOperand(0); 5744 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5745 isa<ConstantFP>(Arg0); 5746 TargetTransformInfo::OperandValueKind Arg0OVK = 5747 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5748 : TargetTransformInfo::OK_AnyValue; 5749 TargetTransformInfo::OperandValueKind Arg1OVK = 5750 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5751 : TargetTransformInfo::OK_AnyValue; 5752 ScalarCost += TTI.getArithmeticInstrCost( 5753 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5754 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5755 Arg0OVK, Arg1OVK); 5756 } 5757 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5758 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5759 return ScalarCost > VectorCost; 5760 } 5761 5762 /// \brief Generate a constant vector with \p Val with the same 5763 /// number of elements as the transition. 5764 /// \p UseSplat defines whether or not \p Val should be replicated 5765 /// across the whole vector. 5766 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5767 /// otherwise we generate a vector with as many undef as possible: 5768 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5769 /// used at the index of the extract. 5770 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5771 unsigned ExtractIdx = UINT_MAX; 5772 if (!UseSplat) { 5773 // If we cannot determine where the constant must be, we have to 5774 // use a splat constant. 5775 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5776 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5777 ExtractIdx = CstVal->getSExtValue(); 5778 else 5779 UseSplat = true; 5780 } 5781 5782 unsigned End = getTransitionType()->getVectorNumElements(); 5783 if (UseSplat) 5784 return ConstantVector::getSplat(End, Val); 5785 5786 SmallVector<Constant *, 4> ConstVec; 5787 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5788 for (unsigned Idx = 0; Idx != End; ++Idx) { 5789 if (Idx == ExtractIdx) 5790 ConstVec.push_back(Val); 5791 else 5792 ConstVec.push_back(UndefVal); 5793 } 5794 return ConstantVector::get(ConstVec); 5795 } 5796 5797 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5798 /// in \p Use can trigger undefined behavior. 5799 static bool canCauseUndefinedBehavior(const Instruction *Use, 5800 unsigned OperandIdx) { 5801 // This is not safe to introduce undef when the operand is on 5802 // the right hand side of a division-like instruction. 5803 if (OperandIdx != 1) 5804 return false; 5805 switch (Use->getOpcode()) { 5806 default: 5807 return false; 5808 case Instruction::SDiv: 5809 case Instruction::UDiv: 5810 case Instruction::SRem: 5811 case Instruction::URem: 5812 return true; 5813 case Instruction::FDiv: 5814 case Instruction::FRem: 5815 return !Use->hasNoNaNs(); 5816 } 5817 llvm_unreachable(nullptr); 5818 } 5819 5820 public: 5821 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5822 const TargetTransformInfo &TTI, Instruction *Transition, 5823 unsigned CombineCost) 5824 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5825 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5826 assert(Transition && "Do not know how to promote null"); 5827 } 5828 5829 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5830 bool canPromote(const Instruction *ToBePromoted) const { 5831 // We could support CastInst too. 5832 return isa<BinaryOperator>(ToBePromoted); 5833 } 5834 5835 /// \brief Check if it is profitable to promote \p ToBePromoted 5836 /// by moving downward the transition through. 5837 bool shouldPromote(const Instruction *ToBePromoted) const { 5838 // Promote only if all the operands can be statically expanded. 5839 // Indeed, we do not want to introduce any new kind of transitions. 5840 for (const Use &U : ToBePromoted->operands()) { 5841 const Value *Val = U.get(); 5842 if (Val == getEndOfTransition()) { 5843 // If the use is a division and the transition is on the rhs, 5844 // we cannot promote the operation, otherwise we may create a 5845 // division by zero. 5846 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5847 return false; 5848 continue; 5849 } 5850 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5851 !isa<ConstantFP>(Val)) 5852 return false; 5853 } 5854 // Check that the resulting operation is legal. 5855 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5856 if (!ISDOpcode) 5857 return false; 5858 return StressStoreExtract || 5859 TLI.isOperationLegalOrCustom( 5860 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5861 } 5862 5863 /// \brief Check whether or not \p Use can be combined 5864 /// with the transition. 5865 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5866 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5867 5868 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5869 void enqueueForPromotion(Instruction *ToBePromoted) { 5870 InstsToBePromoted.push_back(ToBePromoted); 5871 } 5872 5873 /// \brief Set the instruction that will be combined with the transition. 5874 void recordCombineInstruction(Instruction *ToBeCombined) { 5875 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5876 CombineInst = ToBeCombined; 5877 } 5878 5879 /// \brief Promote all the instructions enqueued for promotion if it is 5880 /// is profitable. 5881 /// \return True if the promotion happened, false otherwise. 5882 bool promote() { 5883 // Check if there is something to promote. 5884 // Right now, if we do not have anything to combine with, 5885 // we assume the promotion is not profitable. 5886 if (InstsToBePromoted.empty() || !CombineInst) 5887 return false; 5888 5889 // Check cost. 5890 if (!StressStoreExtract && !isProfitableToPromote()) 5891 return false; 5892 5893 // Promote. 5894 for (auto &ToBePromoted : InstsToBePromoted) 5895 promoteImpl(ToBePromoted); 5896 InstsToBePromoted.clear(); 5897 return true; 5898 } 5899 }; 5900 } // End of anonymous namespace. 5901 5902 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5903 // At this point, we know that all the operands of ToBePromoted but Def 5904 // can be statically promoted. 5905 // For Def, we need to use its parameter in ToBePromoted: 5906 // b = ToBePromoted ty1 a 5907 // Def = Transition ty1 b to ty2 5908 // Move the transition down. 5909 // 1. Replace all uses of the promoted operation by the transition. 5910 // = ... b => = ... Def. 5911 assert(ToBePromoted->getType() == Transition->getType() && 5912 "The type of the result of the transition does not match " 5913 "the final type"); 5914 ToBePromoted->replaceAllUsesWith(Transition); 5915 // 2. Update the type of the uses. 5916 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5917 Type *TransitionTy = getTransitionType(); 5918 ToBePromoted->mutateType(TransitionTy); 5919 // 3. Update all the operands of the promoted operation with promoted 5920 // operands. 5921 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5922 for (Use &U : ToBePromoted->operands()) { 5923 Value *Val = U.get(); 5924 Value *NewVal = nullptr; 5925 if (Val == Transition) 5926 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5927 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5928 isa<ConstantFP>(Val)) { 5929 // Use a splat constant if it is not safe to use undef. 5930 NewVal = getConstantVector( 5931 cast<Constant>(Val), 5932 isa<UndefValue>(Val) || 5933 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5934 } else 5935 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5936 "this?"); 5937 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5938 } 5939 Transition->removeFromParent(); 5940 Transition->insertAfter(ToBePromoted); 5941 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5942 } 5943 5944 /// Some targets can do store(extractelement) with one instruction. 5945 /// Try to push the extractelement towards the stores when the target 5946 /// has this feature and this is profitable. 5947 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5948 unsigned CombineCost = UINT_MAX; 5949 if (DisableStoreExtract || !TLI || 5950 (!StressStoreExtract && 5951 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5952 Inst->getOperand(1), CombineCost))) 5953 return false; 5954 5955 // At this point we know that Inst is a vector to scalar transition. 5956 // Try to move it down the def-use chain, until: 5957 // - We can combine the transition with its single use 5958 // => we got rid of the transition. 5959 // - We escape the current basic block 5960 // => we would need to check that we are moving it at a cheaper place and 5961 // we do not do that for now. 5962 BasicBlock *Parent = Inst->getParent(); 5963 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5964 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5965 // If the transition has more than one use, assume this is not going to be 5966 // beneficial. 5967 while (Inst->hasOneUse()) { 5968 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5969 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5970 5971 if (ToBePromoted->getParent() != Parent) { 5972 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5973 << ToBePromoted->getParent()->getName() 5974 << ") than the transition (" << Parent->getName() << ").\n"); 5975 return false; 5976 } 5977 5978 if (VPH.canCombine(ToBePromoted)) { 5979 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5980 << "will be combined with: " << *ToBePromoted << '\n'); 5981 VPH.recordCombineInstruction(ToBePromoted); 5982 bool Changed = VPH.promote(); 5983 NumStoreExtractExposed += Changed; 5984 return Changed; 5985 } 5986 5987 DEBUG(dbgs() << "Try promoting.\n"); 5988 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5989 return false; 5990 5991 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5992 5993 VPH.enqueueForPromotion(ToBePromoted); 5994 Inst = ToBePromoted; 5995 } 5996 return false; 5997 } 5998 5999 /// For the instruction sequence of store below, F and I values 6000 /// are bundled together as an i64 value before being stored into memory. 6001 /// Sometimes it is more efficent to generate separate stores for F and I, 6002 /// which can remove the bitwise instructions or sink them to colder places. 6003 /// 6004 /// (store (or (zext (bitcast F to i32) to i64), 6005 /// (shl (zext I to i64), 32)), addr) --> 6006 /// (store F, addr) and (store I, addr+4) 6007 /// 6008 /// Similarly, splitting for other merged store can also be beneficial, like: 6009 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6010 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6011 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6012 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6013 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6014 /// 6015 /// We allow each target to determine specifically which kind of splitting is 6016 /// supported. 6017 /// 6018 /// The store patterns are commonly seen from the simple code snippet below 6019 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6020 /// void goo(const std::pair<int, float> &); 6021 /// hoo() { 6022 /// ... 6023 /// goo(std::make_pair(tmp, ftmp)); 6024 /// ... 6025 /// } 6026 /// 6027 /// Although we already have similar splitting in DAG Combine, we duplicate 6028 /// it in CodeGenPrepare to catch the case in which pattern is across 6029 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6030 /// during code expansion. 6031 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6032 const TargetLowering &TLI) { 6033 // Handle simple but common cases only. 6034 Type *StoreType = SI.getValueOperand()->getType(); 6035 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6036 DL.getTypeSizeInBits(StoreType) == 0) 6037 return false; 6038 6039 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6040 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6041 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6042 DL.getTypeSizeInBits(SplitStoreType)) 6043 return false; 6044 6045 // Match the following patterns: 6046 // (store (or (zext LValue to i64), 6047 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6048 // or 6049 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6050 // (zext LValue to i64), 6051 // Expect both operands of OR and the first operand of SHL have only 6052 // one use. 6053 Value *LValue, *HValue; 6054 if (!match(SI.getValueOperand(), 6055 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6056 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6057 m_SpecificInt(HalfValBitSize)))))) 6058 return false; 6059 6060 // Check LValue and HValue are int with size less or equal than 32. 6061 if (!LValue->getType()->isIntegerTy() || 6062 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6063 !HValue->getType()->isIntegerTy() || 6064 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6065 return false; 6066 6067 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6068 // as the input of target query. 6069 auto *LBC = dyn_cast<BitCastInst>(LValue); 6070 auto *HBC = dyn_cast<BitCastInst>(HValue); 6071 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6072 : EVT::getEVT(LValue->getType()); 6073 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6074 : EVT::getEVT(HValue->getType()); 6075 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6076 return false; 6077 6078 // Start to split store. 6079 IRBuilder<> Builder(SI.getContext()); 6080 Builder.SetInsertPoint(&SI); 6081 6082 // If LValue/HValue is a bitcast in another BB, create a new one in current 6083 // BB so it may be merged with the splitted stores by dag combiner. 6084 if (LBC && LBC->getParent() != SI.getParent()) 6085 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6086 if (HBC && HBC->getParent() != SI.getParent()) 6087 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6088 6089 auto CreateSplitStore = [&](Value *V, bool Upper) { 6090 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6091 Value *Addr = Builder.CreateBitCast( 6092 SI.getOperand(1), 6093 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6094 if (Upper) 6095 Addr = Builder.CreateGEP( 6096 SplitStoreType, Addr, 6097 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6098 Builder.CreateAlignedStore( 6099 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6100 }; 6101 6102 CreateSplitStore(LValue, false); 6103 CreateSplitStore(HValue, true); 6104 6105 // Delete the old store. 6106 SI.eraseFromParent(); 6107 return true; 6108 } 6109 6110 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6111 // Bail out if we inserted the instruction to prevent optimizations from 6112 // stepping on each other's toes. 6113 if (InsertedInsts.count(I)) 6114 return false; 6115 6116 if (PHINode *P = dyn_cast<PHINode>(I)) { 6117 // It is possible for very late stage optimizations (such as SimplifyCFG) 6118 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6119 // trivial PHI, go ahead and zap it here. 6120 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6121 P->replaceAllUsesWith(V); 6122 P->eraseFromParent(); 6123 ++NumPHIsElim; 6124 return true; 6125 } 6126 return false; 6127 } 6128 6129 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6130 // If the source of the cast is a constant, then this should have 6131 // already been constant folded. The only reason NOT to constant fold 6132 // it is if something (e.g. LSR) was careful to place the constant 6133 // evaluation in a block other than then one that uses it (e.g. to hoist 6134 // the address of globals out of a loop). If this is the case, we don't 6135 // want to forward-subst the cast. 6136 if (isa<Constant>(CI->getOperand(0))) 6137 return false; 6138 6139 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6140 return true; 6141 6142 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6143 /// Sink a zext or sext into its user blocks if the target type doesn't 6144 /// fit in one register 6145 if (TLI && 6146 TLI->getTypeAction(CI->getContext(), 6147 TLI->getValueType(*DL, CI->getType())) == 6148 TargetLowering::TypeExpandInteger) { 6149 return SinkCast(CI); 6150 } else { 6151 bool MadeChange = optimizeExt(I); 6152 return MadeChange | optimizeExtUses(I); 6153 } 6154 } 6155 return false; 6156 } 6157 6158 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6159 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6160 return OptimizeCmpExpression(CI, TLI); 6161 6162 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6163 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6164 if (TLI) { 6165 bool Modified = optimizeLoadExt(LI); 6166 unsigned AS = LI->getPointerAddressSpace(); 6167 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6168 return Modified; 6169 } 6170 return false; 6171 } 6172 6173 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6174 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6175 return true; 6176 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6177 if (TLI) { 6178 unsigned AS = SI->getPointerAddressSpace(); 6179 return optimizeMemoryInst(I, SI->getOperand(1), 6180 SI->getOperand(0)->getType(), AS); 6181 } 6182 return false; 6183 } 6184 6185 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6186 unsigned AS = RMW->getPointerAddressSpace(); 6187 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6188 RMW->getType(), AS); 6189 } 6190 6191 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6192 unsigned AS = CmpX->getPointerAddressSpace(); 6193 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6194 CmpX->getCompareOperand()->getType(), AS); 6195 } 6196 6197 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6198 6199 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6200 EnableAndCmpSinking && TLI) 6201 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6202 6203 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6204 BinOp->getOpcode() == Instruction::LShr)) { 6205 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6206 if (TLI && CI && TLI->hasExtractBitsInsn()) 6207 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6208 6209 return false; 6210 } 6211 6212 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6213 if (GEPI->hasAllZeroIndices()) { 6214 /// The GEP operand must be a pointer, so must its result -> BitCast 6215 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6216 GEPI->getName(), GEPI); 6217 GEPI->replaceAllUsesWith(NC); 6218 GEPI->eraseFromParent(); 6219 ++NumGEPsElim; 6220 optimizeInst(NC, ModifiedDT); 6221 return true; 6222 } 6223 return false; 6224 } 6225 6226 if (CallInst *CI = dyn_cast<CallInst>(I)) 6227 return optimizeCallInst(CI, ModifiedDT); 6228 6229 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6230 return optimizeSelectInst(SI); 6231 6232 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6233 return optimizeShuffleVectorInst(SVI); 6234 6235 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6236 return optimizeSwitchInst(Switch); 6237 6238 if (isa<ExtractElementInst>(I)) 6239 return optimizeExtractElementInst(I); 6240 6241 return false; 6242 } 6243 6244 /// Given an OR instruction, check to see if this is a bitreverse 6245 /// idiom. If so, insert the new intrinsic and return true. 6246 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6247 const TargetLowering &TLI) { 6248 if (!I.getType()->isIntegerTy() || 6249 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6250 TLI.getValueType(DL, I.getType(), true))) 6251 return false; 6252 6253 SmallVector<Instruction*, 4> Insts; 6254 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6255 return false; 6256 Instruction *LastInst = Insts.back(); 6257 I.replaceAllUsesWith(LastInst); 6258 RecursivelyDeleteTriviallyDeadInstructions(&I); 6259 return true; 6260 } 6261 6262 // In this pass we look for GEP and cast instructions that are used 6263 // across basic blocks and rewrite them to improve basic-block-at-a-time 6264 // selection. 6265 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6266 SunkAddrs.clear(); 6267 bool MadeChange = false; 6268 6269 CurInstIterator = BB.begin(); 6270 while (CurInstIterator != BB.end()) { 6271 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6272 if (ModifiedDT) 6273 return true; 6274 } 6275 6276 bool MadeBitReverse = true; 6277 while (TLI && MadeBitReverse) { 6278 MadeBitReverse = false; 6279 for (auto &I : reverse(BB)) { 6280 if (makeBitReverse(I, *DL, *TLI)) { 6281 MadeBitReverse = MadeChange = true; 6282 ModifiedDT = true; 6283 break; 6284 } 6285 } 6286 } 6287 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6288 6289 return MadeChange; 6290 } 6291 6292 // llvm.dbg.value is far away from the value then iSel may not be able 6293 // handle it properly. iSel will drop llvm.dbg.value if it can not 6294 // find a node corresponding to the value. 6295 bool CodeGenPrepare::placeDbgValues(Function &F) { 6296 bool MadeChange = false; 6297 for (BasicBlock &BB : F) { 6298 Instruction *PrevNonDbgInst = nullptr; 6299 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6300 Instruction *Insn = &*BI++; 6301 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6302 // Leave dbg.values that refer to an alloca alone. These 6303 // instrinsics describe the address of a variable (= the alloca) 6304 // being taken. They should not be moved next to the alloca 6305 // (and to the beginning of the scope), but rather stay close to 6306 // where said address is used. 6307 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6308 PrevNonDbgInst = Insn; 6309 continue; 6310 } 6311 6312 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6313 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6314 // If VI is a phi in a block with an EHPad terminator, we can't insert 6315 // after it. 6316 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6317 continue; 6318 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6319 DVI->removeFromParent(); 6320 if (isa<PHINode>(VI)) 6321 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6322 else 6323 DVI->insertAfter(VI); 6324 MadeChange = true; 6325 ++NumDbgValueMoved; 6326 } 6327 } 6328 } 6329 return MadeChange; 6330 } 6331 6332 /// \brief Scale down both weights to fit into uint32_t. 6333 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6334 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6335 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6336 NewTrue = NewTrue / Scale; 6337 NewFalse = NewFalse / Scale; 6338 } 6339 6340 /// \brief Some targets prefer to split a conditional branch like: 6341 /// \code 6342 /// %0 = icmp ne i32 %a, 0 6343 /// %1 = icmp ne i32 %b, 0 6344 /// %or.cond = or i1 %0, %1 6345 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6346 /// \endcode 6347 /// into multiple branch instructions like: 6348 /// \code 6349 /// bb1: 6350 /// %0 = icmp ne i32 %a, 0 6351 /// br i1 %0, label %TrueBB, label %bb2 6352 /// bb2: 6353 /// %1 = icmp ne i32 %b, 0 6354 /// br i1 %1, label %TrueBB, label %FalseBB 6355 /// \endcode 6356 /// This usually allows instruction selection to do even further optimizations 6357 /// and combine the compare with the branch instruction. Currently this is 6358 /// applied for targets which have "cheap" jump instructions. 6359 /// 6360 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6361 /// 6362 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6363 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6364 return false; 6365 6366 bool MadeChange = false; 6367 for (auto &BB : F) { 6368 // Does this BB end with the following? 6369 // %cond1 = icmp|fcmp|binary instruction ... 6370 // %cond2 = icmp|fcmp|binary instruction ... 6371 // %cond.or = or|and i1 %cond1, cond2 6372 // br i1 %cond.or label %dest1, label %dest2" 6373 BinaryOperator *LogicOp; 6374 BasicBlock *TBB, *FBB; 6375 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6376 continue; 6377 6378 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6379 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6380 continue; 6381 6382 unsigned Opc; 6383 Value *Cond1, *Cond2; 6384 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6385 m_OneUse(m_Value(Cond2))))) 6386 Opc = Instruction::And; 6387 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6388 m_OneUse(m_Value(Cond2))))) 6389 Opc = Instruction::Or; 6390 else 6391 continue; 6392 6393 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6394 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6395 continue; 6396 6397 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6398 6399 // Create a new BB. 6400 auto TmpBB = 6401 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6402 BB.getParent(), BB.getNextNode()); 6403 6404 // Update original basic block by using the first condition directly by the 6405 // branch instruction and removing the no longer needed and/or instruction. 6406 Br1->setCondition(Cond1); 6407 LogicOp->eraseFromParent(); 6408 6409 // Depending on the conditon we have to either replace the true or the false 6410 // successor of the original branch instruction. 6411 if (Opc == Instruction::And) 6412 Br1->setSuccessor(0, TmpBB); 6413 else 6414 Br1->setSuccessor(1, TmpBB); 6415 6416 // Fill in the new basic block. 6417 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6418 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6419 I->removeFromParent(); 6420 I->insertBefore(Br2); 6421 } 6422 6423 // Update PHI nodes in both successors. The original BB needs to be 6424 // replaced in one successor's PHI nodes, because the branch comes now from 6425 // the newly generated BB (NewBB). In the other successor we need to add one 6426 // incoming edge to the PHI nodes, because both branch instructions target 6427 // now the same successor. Depending on the original branch condition 6428 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6429 // we perform the correct update for the PHI nodes. 6430 // This doesn't change the successor order of the just created branch 6431 // instruction (or any other instruction). 6432 if (Opc == Instruction::Or) 6433 std::swap(TBB, FBB); 6434 6435 // Replace the old BB with the new BB. 6436 for (auto &I : *TBB) { 6437 PHINode *PN = dyn_cast<PHINode>(&I); 6438 if (!PN) 6439 break; 6440 int i; 6441 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6442 PN->setIncomingBlock(i, TmpBB); 6443 } 6444 6445 // Add another incoming edge form the new BB. 6446 for (auto &I : *FBB) { 6447 PHINode *PN = dyn_cast<PHINode>(&I); 6448 if (!PN) 6449 break; 6450 auto *Val = PN->getIncomingValueForBlock(&BB); 6451 PN->addIncoming(Val, TmpBB); 6452 } 6453 6454 // Update the branch weights (from SelectionDAGBuilder:: 6455 // FindMergedConditions). 6456 if (Opc == Instruction::Or) { 6457 // Codegen X | Y as: 6458 // BB1: 6459 // jmp_if_X TBB 6460 // jmp TmpBB 6461 // TmpBB: 6462 // jmp_if_Y TBB 6463 // jmp FBB 6464 // 6465 6466 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6467 // The requirement is that 6468 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6469 // = TrueProb for orignal BB. 6470 // Assuming the orignal weights are A and B, one choice is to set BB1's 6471 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6472 // assumes that 6473 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6474 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6475 // TmpBB, but the math is more complicated. 6476 uint64_t TrueWeight, FalseWeight; 6477 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6478 uint64_t NewTrueWeight = TrueWeight; 6479 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6480 scaleWeights(NewTrueWeight, NewFalseWeight); 6481 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6482 .createBranchWeights(TrueWeight, FalseWeight)); 6483 6484 NewTrueWeight = TrueWeight; 6485 NewFalseWeight = 2 * FalseWeight; 6486 scaleWeights(NewTrueWeight, NewFalseWeight); 6487 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6488 .createBranchWeights(TrueWeight, FalseWeight)); 6489 } 6490 } else { 6491 // Codegen X & Y as: 6492 // BB1: 6493 // jmp_if_X TmpBB 6494 // jmp FBB 6495 // TmpBB: 6496 // jmp_if_Y TBB 6497 // jmp FBB 6498 // 6499 // This requires creation of TmpBB after CurBB. 6500 6501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6502 // The requirement is that 6503 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6504 // = FalseProb for orignal BB. 6505 // Assuming the orignal weights are A and B, one choice is to set BB1's 6506 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6507 // assumes that 6508 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6509 uint64_t TrueWeight, FalseWeight; 6510 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6511 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6512 uint64_t NewFalseWeight = FalseWeight; 6513 scaleWeights(NewTrueWeight, NewFalseWeight); 6514 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6515 .createBranchWeights(TrueWeight, FalseWeight)); 6516 6517 NewTrueWeight = 2 * TrueWeight; 6518 NewFalseWeight = FalseWeight; 6519 scaleWeights(NewTrueWeight, NewFalseWeight); 6520 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6521 .createBranchWeights(TrueWeight, FalseWeight)); 6522 } 6523 } 6524 6525 // Note: No point in getting fancy here, since the DT info is never 6526 // available to CodeGenPrepare. 6527 ModifiedDT = true; 6528 6529 MadeChange = true; 6530 6531 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6532 TmpBB->dump()); 6533 } 6534 return MadeChange; 6535 } 6536