1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 476 F.setSectionPrefix(".hot"); 477 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 478 F.setSectionPrefix(".unlikely"); 479 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 480 PSI->isFunctionHotnessUnknown(F)) 481 F.setSectionPrefix(".unknown"); 482 } 483 484 /// This optimization identifies DIV instructions that can be 485 /// profitably bypassed and carried out with a shorter, faster divide. 486 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 487 const DenseMap<unsigned int, unsigned int> &BypassWidths = 488 TLI->getBypassSlowDivWidths(); 489 BasicBlock* BB = &*F.begin(); 490 while (BB != nullptr) { 491 // bypassSlowDivision may create new BBs, but we don't want to reapply the 492 // optimization to those blocks. 493 BasicBlock* Next = BB->getNextNode(); 494 // F.hasOptSize is already checked in the outer if statement. 495 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 496 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 497 BB = Next; 498 } 499 } 500 501 // Eliminate blocks that contain only PHI nodes and an 502 // unconditional branch. 503 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 504 505 bool ModifiedDT = false; 506 if (!DisableBranchOpts) 507 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 508 509 // Split some critical edges where one of the sources is an indirect branch, 510 // to help generate sane code for PHIs involving such edges. 511 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 512 513 bool MadeChange = true; 514 while (MadeChange) { 515 MadeChange = false; 516 DT.reset(); 517 for (Function::iterator I = F.begin(); I != F.end(); ) { 518 BasicBlock *BB = &*I++; 519 bool ModifiedDTOnIteration = false; 520 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 521 522 // Restart BB iteration if the dominator tree of the Function was changed 523 if (ModifiedDTOnIteration) 524 break; 525 } 526 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 527 MadeChange |= mergeSExts(F); 528 if (!LargeOffsetGEPMap.empty()) 529 MadeChange |= splitLargeGEPOffsets(); 530 MadeChange |= optimizePhiTypes(F); 531 532 if (MadeChange) 533 eliminateFallThrough(F); 534 535 // Really free removed instructions during promotion. 536 for (Instruction *I : RemovedInsts) 537 I->deleteValue(); 538 539 EverMadeChange |= MadeChange; 540 SeenChainsForSExt.clear(); 541 ValToSExtendedUses.clear(); 542 RemovedInsts.clear(); 543 LargeOffsetGEPMap.clear(); 544 LargeOffsetGEPID.clear(); 545 } 546 547 SunkAddrs.clear(); 548 549 if (!DisableBranchOpts) { 550 MadeChange = false; 551 // Use a set vector to get deterministic iteration order. The order the 552 // blocks are removed may affect whether or not PHI nodes in successors 553 // are removed. 554 SmallSetVector<BasicBlock*, 8> WorkList; 555 for (BasicBlock &BB : F) { 556 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 557 MadeChange |= ConstantFoldTerminator(&BB, true); 558 if (!MadeChange) continue; 559 560 for (SmallVectorImpl<BasicBlock*>::iterator 561 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 562 if (pred_begin(*II) == pred_end(*II)) 563 WorkList.insert(*II); 564 } 565 566 // Delete the dead blocks and any of their dead successors. 567 MadeChange |= !WorkList.empty(); 568 while (!WorkList.empty()) { 569 BasicBlock *BB = WorkList.pop_back_val(); 570 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 571 572 DeleteDeadBlock(BB); 573 574 for (SmallVectorImpl<BasicBlock*>::iterator 575 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 576 if (pred_begin(*II) == pred_end(*II)) 577 WorkList.insert(*II); 578 } 579 580 // Merge pairs of basic blocks with unconditional branches, connected by 581 // a single edge. 582 if (EverMadeChange || MadeChange) 583 MadeChange |= eliminateFallThrough(F); 584 585 EverMadeChange |= MadeChange; 586 } 587 588 if (!DisableGCOpts) { 589 SmallVector<GCStatepointInst *, 2> Statepoints; 590 for (BasicBlock &BB : F) 591 for (Instruction &I : BB) 592 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 593 Statepoints.push_back(SP); 594 for (auto &I : Statepoints) 595 EverMadeChange |= simplifyOffsetableRelocate(*I); 596 } 597 598 // Do this last to clean up use-before-def scenarios introduced by other 599 // preparatory transforms. 600 EverMadeChange |= placeDbgValues(F); 601 602 #ifndef NDEBUG 603 if (VerifyBFIUpdates) 604 verifyBFIUpdates(F); 605 #endif 606 607 return EverMadeChange; 608 } 609 610 /// An instruction is about to be deleted, so remove all references to it in our 611 /// GEP-tracking data strcutures. 612 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 613 LargeOffsetGEPMap.erase(V); 614 NewGEPBases.erase(V); 615 616 auto GEP = dyn_cast<GetElementPtrInst>(V); 617 if (!GEP) 618 return; 619 620 LargeOffsetGEPID.erase(GEP); 621 622 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 623 if (VecI == LargeOffsetGEPMap.end()) 624 return; 625 626 auto &GEPVector = VecI->second; 627 const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(), 628 [=](auto &Elt) { return Elt.first == GEP; }); 629 if (I == GEPVector.end()) 630 return; 631 632 GEPVector.erase(I); 633 if (GEPVector.empty()) 634 LargeOffsetGEPMap.erase(VecI); 635 } 636 637 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 638 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 639 DominatorTree NewDT(F); 640 LoopInfo NewLI(NewDT); 641 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 642 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 643 NewBFI.verifyMatch(*BFI); 644 } 645 646 /// Merge basic blocks which are connected by a single edge, where one of the 647 /// basic blocks has a single successor pointing to the other basic block, 648 /// which has a single predecessor. 649 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 650 bool Changed = false; 651 // Scan all of the blocks in the function, except for the entry block. 652 // Use a temporary array to avoid iterator being invalidated when 653 // deleting blocks. 654 SmallVector<WeakTrackingVH, 16> Blocks; 655 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 656 Blocks.push_back(&Block); 657 658 for (auto &Block : Blocks) { 659 auto *BB = cast_or_null<BasicBlock>(Block); 660 if (!BB) 661 continue; 662 // If the destination block has a single pred, then this is a trivial 663 // edge, just collapse it. 664 BasicBlock *SinglePred = BB->getSinglePredecessor(); 665 666 // Don't merge if BB's address is taken. 667 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 668 669 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 670 if (Term && !Term->isConditional()) { 671 Changed = true; 672 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 673 674 // Merge BB into SinglePred and delete it. 675 MergeBlockIntoPredecessor(BB); 676 } 677 } 678 return Changed; 679 } 680 681 /// Find a destination block from BB if BB is mergeable empty block. 682 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 683 // If this block doesn't end with an uncond branch, ignore it. 684 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 685 if (!BI || !BI->isUnconditional()) 686 return nullptr; 687 688 // If the instruction before the branch (skipping debug info) isn't a phi 689 // node, then other stuff is happening here. 690 BasicBlock::iterator BBI = BI->getIterator(); 691 if (BBI != BB->begin()) { 692 --BBI; 693 while (isa<DbgInfoIntrinsic>(BBI)) { 694 if (BBI == BB->begin()) 695 break; 696 --BBI; 697 } 698 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 699 return nullptr; 700 } 701 702 // Do not break infinite loops. 703 BasicBlock *DestBB = BI->getSuccessor(0); 704 if (DestBB == BB) 705 return nullptr; 706 707 if (!canMergeBlocks(BB, DestBB)) 708 DestBB = nullptr; 709 710 return DestBB; 711 } 712 713 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 714 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 715 /// edges in ways that are non-optimal for isel. Start by eliminating these 716 /// blocks so we can split them the way we want them. 717 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 718 SmallPtrSet<BasicBlock *, 16> Preheaders; 719 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 720 while (!LoopList.empty()) { 721 Loop *L = LoopList.pop_back_val(); 722 LoopList.insert(LoopList.end(), L->begin(), L->end()); 723 if (BasicBlock *Preheader = L->getLoopPreheader()) 724 Preheaders.insert(Preheader); 725 } 726 727 bool MadeChange = false; 728 // Copy blocks into a temporary array to avoid iterator invalidation issues 729 // as we remove them. 730 // Note that this intentionally skips the entry block. 731 SmallVector<WeakTrackingVH, 16> Blocks; 732 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 733 Blocks.push_back(&Block); 734 735 for (auto &Block : Blocks) { 736 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 737 if (!BB) 738 continue; 739 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 740 if (!DestBB || 741 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 742 continue; 743 744 eliminateMostlyEmptyBlock(BB); 745 MadeChange = true; 746 } 747 return MadeChange; 748 } 749 750 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 751 BasicBlock *DestBB, 752 bool isPreheader) { 753 // Do not delete loop preheaders if doing so would create a critical edge. 754 // Loop preheaders can be good locations to spill registers. If the 755 // preheader is deleted and we create a critical edge, registers may be 756 // spilled in the loop body instead. 757 if (!DisablePreheaderProtect && isPreheader && 758 !(BB->getSinglePredecessor() && 759 BB->getSinglePredecessor()->getSingleSuccessor())) 760 return false; 761 762 // Skip merging if the block's successor is also a successor to any callbr 763 // that leads to this block. 764 // FIXME: Is this really needed? Is this a correctness issue? 765 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 766 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 767 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 768 if (DestBB == CBI->getSuccessor(i)) 769 return false; 770 } 771 772 // Try to skip merging if the unique predecessor of BB is terminated by a 773 // switch or indirect branch instruction, and BB is used as an incoming block 774 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 775 // add COPY instructions in the predecessor of BB instead of BB (if it is not 776 // merged). Note that the critical edge created by merging such blocks wont be 777 // split in MachineSink because the jump table is not analyzable. By keeping 778 // such empty block (BB), ISel will place COPY instructions in BB, not in the 779 // predecessor of BB. 780 BasicBlock *Pred = BB->getUniquePredecessor(); 781 if (!Pred || 782 !(isa<SwitchInst>(Pred->getTerminator()) || 783 isa<IndirectBrInst>(Pred->getTerminator()))) 784 return true; 785 786 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 787 return true; 788 789 // We use a simple cost heuristic which determine skipping merging is 790 // profitable if the cost of skipping merging is less than the cost of 791 // merging : Cost(skipping merging) < Cost(merging BB), where the 792 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 793 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 794 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 795 // Freq(Pred) / Freq(BB) > 2. 796 // Note that if there are multiple empty blocks sharing the same incoming 797 // value for the PHIs in the DestBB, we consider them together. In such 798 // case, Cost(merging BB) will be the sum of their frequencies. 799 800 if (!isa<PHINode>(DestBB->begin())) 801 return true; 802 803 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 804 805 // Find all other incoming blocks from which incoming values of all PHIs in 806 // DestBB are the same as the ones from BB. 807 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 808 ++PI) { 809 BasicBlock *DestBBPred = *PI; 810 if (DestBBPred == BB) 811 continue; 812 813 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 814 return DestPN.getIncomingValueForBlock(BB) == 815 DestPN.getIncomingValueForBlock(DestBBPred); 816 })) 817 SameIncomingValueBBs.insert(DestBBPred); 818 } 819 820 // See if all BB's incoming values are same as the value from Pred. In this 821 // case, no reason to skip merging because COPYs are expected to be place in 822 // Pred already. 823 if (SameIncomingValueBBs.count(Pred)) 824 return true; 825 826 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 827 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 828 829 for (auto *SameValueBB : SameIncomingValueBBs) 830 if (SameValueBB->getUniquePredecessor() == Pred && 831 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 832 BBFreq += BFI->getBlockFreq(SameValueBB); 833 834 return PredFreq.getFrequency() <= 835 BBFreq.getFrequency() * FreqRatioToSkipMerge; 836 } 837 838 /// Return true if we can merge BB into DestBB if there is a single 839 /// unconditional branch between them, and BB contains no other non-phi 840 /// instructions. 841 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 842 const BasicBlock *DestBB) const { 843 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 844 // the successor. If there are more complex condition (e.g. preheaders), 845 // don't mess around with them. 846 for (const PHINode &PN : BB->phis()) { 847 for (const User *U : PN.users()) { 848 const Instruction *UI = cast<Instruction>(U); 849 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 850 return false; 851 // If User is inside DestBB block and it is a PHINode then check 852 // incoming value. If incoming value is not from BB then this is 853 // a complex condition (e.g. preheaders) we want to avoid here. 854 if (UI->getParent() == DestBB) { 855 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 856 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 857 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 858 if (Insn && Insn->getParent() == BB && 859 Insn->getParent() != UPN->getIncomingBlock(I)) 860 return false; 861 } 862 } 863 } 864 } 865 866 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 867 // and DestBB may have conflicting incoming values for the block. If so, we 868 // can't merge the block. 869 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 870 if (!DestBBPN) return true; // no conflict. 871 872 // Collect the preds of BB. 873 SmallPtrSet<const BasicBlock*, 16> BBPreds; 874 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 875 // It is faster to get preds from a PHI than with pred_iterator. 876 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 877 BBPreds.insert(BBPN->getIncomingBlock(i)); 878 } else { 879 BBPreds.insert(pred_begin(BB), pred_end(BB)); 880 } 881 882 // Walk the preds of DestBB. 883 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 884 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 885 if (BBPreds.count(Pred)) { // Common predecessor? 886 for (const PHINode &PN : DestBB->phis()) { 887 const Value *V1 = PN.getIncomingValueForBlock(Pred); 888 const Value *V2 = PN.getIncomingValueForBlock(BB); 889 890 // If V2 is a phi node in BB, look up what the mapped value will be. 891 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 892 if (V2PN->getParent() == BB) 893 V2 = V2PN->getIncomingValueForBlock(Pred); 894 895 // If there is a conflict, bail out. 896 if (V1 != V2) return false; 897 } 898 } 899 } 900 901 return true; 902 } 903 904 /// Eliminate a basic block that has only phi's and an unconditional branch in 905 /// it. 906 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 907 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 908 BasicBlock *DestBB = BI->getSuccessor(0); 909 910 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 911 << *BB << *DestBB); 912 913 // If the destination block has a single pred, then this is a trivial edge, 914 // just collapse it. 915 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 916 if (SinglePred != DestBB) { 917 assert(SinglePred == BB && 918 "Single predecessor not the same as predecessor"); 919 // Merge DestBB into SinglePred/BB and delete it. 920 MergeBlockIntoPredecessor(DestBB); 921 // Note: BB(=SinglePred) will not be deleted on this path. 922 // DestBB(=its single successor) is the one that was deleted. 923 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 924 return; 925 } 926 } 927 928 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 929 // to handle the new incoming edges it is about to have. 930 for (PHINode &PN : DestBB->phis()) { 931 // Remove the incoming value for BB, and remember it. 932 Value *InVal = PN.removeIncomingValue(BB, false); 933 934 // Two options: either the InVal is a phi node defined in BB or it is some 935 // value that dominates BB. 936 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 937 if (InValPhi && InValPhi->getParent() == BB) { 938 // Add all of the input values of the input PHI as inputs of this phi. 939 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 940 PN.addIncoming(InValPhi->getIncomingValue(i), 941 InValPhi->getIncomingBlock(i)); 942 } else { 943 // Otherwise, add one instance of the dominating value for each edge that 944 // we will be adding. 945 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 946 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 947 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 948 } else { 949 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 950 PN.addIncoming(InVal, *PI); 951 } 952 } 953 } 954 955 // The PHIs are now updated, change everything that refers to BB to use 956 // DestBB and remove BB. 957 BB->replaceAllUsesWith(DestBB); 958 BB->eraseFromParent(); 959 ++NumBlocksElim; 960 961 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 962 } 963 964 // Computes a map of base pointer relocation instructions to corresponding 965 // derived pointer relocation instructions given a vector of all relocate calls 966 static void computeBaseDerivedRelocateMap( 967 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 968 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 969 &RelocateInstMap) { 970 // Collect information in two maps: one primarily for locating the base object 971 // while filling the second map; the second map is the final structure holding 972 // a mapping between Base and corresponding Derived relocate calls 973 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 974 for (auto *ThisRelocate : AllRelocateCalls) { 975 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 976 ThisRelocate->getDerivedPtrIndex()); 977 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 978 } 979 for (auto &Item : RelocateIdxMap) { 980 std::pair<unsigned, unsigned> Key = Item.first; 981 if (Key.first == Key.second) 982 // Base relocation: nothing to insert 983 continue; 984 985 GCRelocateInst *I = Item.second; 986 auto BaseKey = std::make_pair(Key.first, Key.first); 987 988 // We're iterating over RelocateIdxMap so we cannot modify it. 989 auto MaybeBase = RelocateIdxMap.find(BaseKey); 990 if (MaybeBase == RelocateIdxMap.end()) 991 // TODO: We might want to insert a new base object relocate and gep off 992 // that, if there are enough derived object relocates. 993 continue; 994 995 RelocateInstMap[MaybeBase->second].push_back(I); 996 } 997 } 998 999 // Accepts a GEP and extracts the operands into a vector provided they're all 1000 // small integer constants 1001 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1002 SmallVectorImpl<Value *> &OffsetV) { 1003 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1004 // Only accept small constant integer operands 1005 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1006 if (!Op || Op->getZExtValue() > 20) 1007 return false; 1008 } 1009 1010 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1011 OffsetV.push_back(GEP->getOperand(i)); 1012 return true; 1013 } 1014 1015 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1016 // replace, computes a replacement, and affects it. 1017 static bool 1018 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1019 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1020 bool MadeChange = false; 1021 // We must ensure the relocation of derived pointer is defined after 1022 // relocation of base pointer. If we find a relocation corresponding to base 1023 // defined earlier than relocation of base then we move relocation of base 1024 // right before found relocation. We consider only relocation in the same 1025 // basic block as relocation of base. Relocations from other basic block will 1026 // be skipped by optimization and we do not care about them. 1027 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1028 &*R != RelocatedBase; ++R) 1029 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1030 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1031 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1032 RelocatedBase->moveBefore(RI); 1033 break; 1034 } 1035 1036 for (GCRelocateInst *ToReplace : Targets) { 1037 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1038 "Not relocating a derived object of the original base object"); 1039 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1040 // A duplicate relocate call. TODO: coalesce duplicates. 1041 continue; 1042 } 1043 1044 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1045 // Base and derived relocates are in different basic blocks. 1046 // In this case transform is only valid when base dominates derived 1047 // relocate. However it would be too expensive to check dominance 1048 // for each such relocate, so we skip the whole transformation. 1049 continue; 1050 } 1051 1052 Value *Base = ToReplace->getBasePtr(); 1053 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1054 if (!Derived || Derived->getPointerOperand() != Base) 1055 continue; 1056 1057 SmallVector<Value *, 2> OffsetV; 1058 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1059 continue; 1060 1061 // Create a Builder and replace the target callsite with a gep 1062 assert(RelocatedBase->getNextNode() && 1063 "Should always have one since it's not a terminator"); 1064 1065 // Insert after RelocatedBase 1066 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1067 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1068 1069 // If gc_relocate does not match the actual type, cast it to the right type. 1070 // In theory, there must be a bitcast after gc_relocate if the type does not 1071 // match, and we should reuse it to get the derived pointer. But it could be 1072 // cases like this: 1073 // bb1: 1074 // ... 1075 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1076 // br label %merge 1077 // 1078 // bb2: 1079 // ... 1080 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1081 // br label %merge 1082 // 1083 // merge: 1084 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1085 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1086 // 1087 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1088 // no matter there is already one or not. In this way, we can handle all cases, and 1089 // the extra bitcast should be optimized away in later passes. 1090 Value *ActualRelocatedBase = RelocatedBase; 1091 if (RelocatedBase->getType() != Base->getType()) { 1092 ActualRelocatedBase = 1093 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1094 } 1095 Value *Replacement = Builder.CreateGEP( 1096 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1097 Replacement->takeName(ToReplace); 1098 // If the newly generated derived pointer's type does not match the original derived 1099 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1100 Value *ActualReplacement = Replacement; 1101 if (Replacement->getType() != ToReplace->getType()) { 1102 ActualReplacement = 1103 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1104 } 1105 ToReplace->replaceAllUsesWith(ActualReplacement); 1106 ToReplace->eraseFromParent(); 1107 1108 MadeChange = true; 1109 } 1110 return MadeChange; 1111 } 1112 1113 // Turns this: 1114 // 1115 // %base = ... 1116 // %ptr = gep %base + 15 1117 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1118 // %base' = relocate(%tok, i32 4, i32 4) 1119 // %ptr' = relocate(%tok, i32 4, i32 5) 1120 // %val = load %ptr' 1121 // 1122 // into this: 1123 // 1124 // %base = ... 1125 // %ptr = gep %base + 15 1126 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1127 // %base' = gc.relocate(%tok, i32 4, i32 4) 1128 // %ptr' = gep %base' + 15 1129 // %val = load %ptr' 1130 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1131 bool MadeChange = false; 1132 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1133 for (auto *U : I.users()) 1134 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1135 // Collect all the relocate calls associated with a statepoint 1136 AllRelocateCalls.push_back(Relocate); 1137 1138 // We need at least one base pointer relocation + one derived pointer 1139 // relocation to mangle 1140 if (AllRelocateCalls.size() < 2) 1141 return false; 1142 1143 // RelocateInstMap is a mapping from the base relocate instruction to the 1144 // corresponding derived relocate instructions 1145 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1146 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1147 if (RelocateInstMap.empty()) 1148 return false; 1149 1150 for (auto &Item : RelocateInstMap) 1151 // Item.first is the RelocatedBase to offset against 1152 // Item.second is the vector of Targets to replace 1153 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1154 return MadeChange; 1155 } 1156 1157 /// Sink the specified cast instruction into its user blocks. 1158 static bool SinkCast(CastInst *CI) { 1159 BasicBlock *DefBB = CI->getParent(); 1160 1161 /// InsertedCasts - Only insert a cast in each block once. 1162 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1163 1164 bool MadeChange = false; 1165 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1166 UI != E; ) { 1167 Use &TheUse = UI.getUse(); 1168 Instruction *User = cast<Instruction>(*UI); 1169 1170 // Figure out which BB this cast is used in. For PHI's this is the 1171 // appropriate predecessor block. 1172 BasicBlock *UserBB = User->getParent(); 1173 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1174 UserBB = PN->getIncomingBlock(TheUse); 1175 } 1176 1177 // Preincrement use iterator so we don't invalidate it. 1178 ++UI; 1179 1180 // The first insertion point of a block containing an EH pad is after the 1181 // pad. If the pad is the user, we cannot sink the cast past the pad. 1182 if (User->isEHPad()) 1183 continue; 1184 1185 // If the block selected to receive the cast is an EH pad that does not 1186 // allow non-PHI instructions before the terminator, we can't sink the 1187 // cast. 1188 if (UserBB->getTerminator()->isEHPad()) 1189 continue; 1190 1191 // If this user is in the same block as the cast, don't change the cast. 1192 if (UserBB == DefBB) continue; 1193 1194 // If we have already inserted a cast into this block, use it. 1195 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1196 1197 if (!InsertedCast) { 1198 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1199 assert(InsertPt != UserBB->end()); 1200 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1201 CI->getType(), "", &*InsertPt); 1202 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1203 } 1204 1205 // Replace a use of the cast with a use of the new cast. 1206 TheUse = InsertedCast; 1207 MadeChange = true; 1208 ++NumCastUses; 1209 } 1210 1211 // If we removed all uses, nuke the cast. 1212 if (CI->use_empty()) { 1213 salvageDebugInfo(*CI); 1214 CI->eraseFromParent(); 1215 MadeChange = true; 1216 } 1217 1218 return MadeChange; 1219 } 1220 1221 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1222 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1223 /// reduce the number of virtual registers that must be created and coalesced. 1224 /// 1225 /// Return true if any changes are made. 1226 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1227 const DataLayout &DL) { 1228 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1229 // than sinking only nop casts, but is helpful on some platforms. 1230 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1231 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1232 ASC->getDestAddressSpace())) 1233 return false; 1234 } 1235 1236 // If this is a noop copy, 1237 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1238 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1239 1240 // This is an fp<->int conversion? 1241 if (SrcVT.isInteger() != DstVT.isInteger()) 1242 return false; 1243 1244 // If this is an extension, it will be a zero or sign extension, which 1245 // isn't a noop. 1246 if (SrcVT.bitsLT(DstVT)) return false; 1247 1248 // If these values will be promoted, find out what they will be promoted 1249 // to. This helps us consider truncates on PPC as noop copies when they 1250 // are. 1251 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1252 TargetLowering::TypePromoteInteger) 1253 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1254 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1255 TargetLowering::TypePromoteInteger) 1256 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1257 1258 // If, after promotion, these are the same types, this is a noop copy. 1259 if (SrcVT != DstVT) 1260 return false; 1261 1262 return SinkCast(CI); 1263 } 1264 1265 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1266 Value *Arg0, Value *Arg1, 1267 CmpInst *Cmp, 1268 Intrinsic::ID IID) { 1269 if (BO->getParent() != Cmp->getParent()) { 1270 // We used to use a dominator tree here to allow multi-block optimization. 1271 // But that was problematic because: 1272 // 1. It could cause a perf regression by hoisting the math op into the 1273 // critical path. 1274 // 2. It could cause a perf regression by creating a value that was live 1275 // across multiple blocks and increasing register pressure. 1276 // 3. Use of a dominator tree could cause large compile-time regression. 1277 // This is because we recompute the DT on every change in the main CGP 1278 // run-loop. The recomputing is probably unnecessary in many cases, so if 1279 // that was fixed, using a DT here would be ok. 1280 return false; 1281 } 1282 1283 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1284 if (BO->getOpcode() == Instruction::Add && 1285 IID == Intrinsic::usub_with_overflow) { 1286 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1287 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1288 } 1289 1290 // Insert at the first instruction of the pair. 1291 Instruction *InsertPt = nullptr; 1292 for (Instruction &Iter : *Cmp->getParent()) { 1293 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1294 // the overflow intrinsic are defined. 1295 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1296 InsertPt = &Iter; 1297 break; 1298 } 1299 } 1300 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1301 1302 IRBuilder<> Builder(InsertPt); 1303 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1304 if (BO->getOpcode() != Instruction::Xor) { 1305 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1306 BO->replaceAllUsesWith(Math); 1307 } else 1308 assert(BO->hasOneUse() && 1309 "Patterns with XOr should use the BO only in the compare"); 1310 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1311 Cmp->replaceAllUsesWith(OV); 1312 Cmp->eraseFromParent(); 1313 BO->eraseFromParent(); 1314 return true; 1315 } 1316 1317 /// Match special-case patterns that check for unsigned add overflow. 1318 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1319 BinaryOperator *&Add) { 1320 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1321 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1322 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1323 1324 // We are not expecting non-canonical/degenerate code. Just bail out. 1325 if (isa<Constant>(A)) 1326 return false; 1327 1328 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1329 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1330 B = ConstantInt::get(B->getType(), 1); 1331 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1332 B = ConstantInt::get(B->getType(), -1); 1333 else 1334 return false; 1335 1336 // Check the users of the variable operand of the compare looking for an add 1337 // with the adjusted constant. 1338 for (User *U : A->users()) { 1339 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1340 Add = cast<BinaryOperator>(U); 1341 return true; 1342 } 1343 } 1344 return false; 1345 } 1346 1347 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1348 /// intrinsic. Return true if any changes were made. 1349 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1350 bool &ModifiedDT) { 1351 Value *A, *B; 1352 BinaryOperator *Add; 1353 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1354 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1355 return false; 1356 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1357 A = Add->getOperand(0); 1358 B = Add->getOperand(1); 1359 } 1360 1361 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1362 TLI->getValueType(*DL, Add->getType()), 1363 Add->hasNUsesOrMore(2))) 1364 return false; 1365 1366 // We don't want to move around uses of condition values this late, so we 1367 // check if it is legal to create the call to the intrinsic in the basic 1368 // block containing the icmp. 1369 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1370 return false; 1371 1372 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1373 Intrinsic::uadd_with_overflow)) 1374 return false; 1375 1376 // Reset callers - do not crash by iterating over a dead instruction. 1377 ModifiedDT = true; 1378 return true; 1379 } 1380 1381 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1382 bool &ModifiedDT) { 1383 // We are not expecting non-canonical/degenerate code. Just bail out. 1384 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1385 if (isa<Constant>(A) && isa<Constant>(B)) 1386 return false; 1387 1388 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1389 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1390 if (Pred == ICmpInst::ICMP_UGT) { 1391 std::swap(A, B); 1392 Pred = ICmpInst::ICMP_ULT; 1393 } 1394 // Convert special-case: (A == 0) is the same as (A u< 1). 1395 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1396 B = ConstantInt::get(B->getType(), 1); 1397 Pred = ICmpInst::ICMP_ULT; 1398 } 1399 // Convert special-case: (A != 0) is the same as (0 u< A). 1400 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1401 std::swap(A, B); 1402 Pred = ICmpInst::ICMP_ULT; 1403 } 1404 if (Pred != ICmpInst::ICMP_ULT) 1405 return false; 1406 1407 // Walk the users of a variable operand of a compare looking for a subtract or 1408 // add with that same operand. Also match the 2nd operand of the compare to 1409 // the add/sub, but that may be a negated constant operand of an add. 1410 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1411 BinaryOperator *Sub = nullptr; 1412 for (User *U : CmpVariableOperand->users()) { 1413 // A - B, A u< B --> usubo(A, B) 1414 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1415 Sub = cast<BinaryOperator>(U); 1416 break; 1417 } 1418 1419 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1420 const APInt *CmpC, *AddC; 1421 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1422 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1423 Sub = cast<BinaryOperator>(U); 1424 break; 1425 } 1426 } 1427 if (!Sub) 1428 return false; 1429 1430 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1431 TLI->getValueType(*DL, Sub->getType()), 1432 Sub->hasNUsesOrMore(2))) 1433 return false; 1434 1435 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1436 Cmp, Intrinsic::usub_with_overflow)) 1437 return false; 1438 1439 // Reset callers - do not crash by iterating over a dead instruction. 1440 ModifiedDT = true; 1441 return true; 1442 } 1443 1444 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1445 /// registers that must be created and coalesced. This is a clear win except on 1446 /// targets with multiple condition code registers (PowerPC), where it might 1447 /// lose; some adjustment may be wanted there. 1448 /// 1449 /// Return true if any changes are made. 1450 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1451 if (TLI.hasMultipleConditionRegisters()) 1452 return false; 1453 1454 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1455 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1456 return false; 1457 1458 // Only insert a cmp in each block once. 1459 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1460 1461 bool MadeChange = false; 1462 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1463 UI != E; ) { 1464 Use &TheUse = UI.getUse(); 1465 Instruction *User = cast<Instruction>(*UI); 1466 1467 // Preincrement use iterator so we don't invalidate it. 1468 ++UI; 1469 1470 // Don't bother for PHI nodes. 1471 if (isa<PHINode>(User)) 1472 continue; 1473 1474 // Figure out which BB this cmp is used in. 1475 BasicBlock *UserBB = User->getParent(); 1476 BasicBlock *DefBB = Cmp->getParent(); 1477 1478 // If this user is in the same block as the cmp, don't change the cmp. 1479 if (UserBB == DefBB) continue; 1480 1481 // If we have already inserted a cmp into this block, use it. 1482 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1483 1484 if (!InsertedCmp) { 1485 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1486 assert(InsertPt != UserBB->end()); 1487 InsertedCmp = 1488 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1489 Cmp->getOperand(0), Cmp->getOperand(1), "", 1490 &*InsertPt); 1491 // Propagate the debug info. 1492 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1493 } 1494 1495 // Replace a use of the cmp with a use of the new cmp. 1496 TheUse = InsertedCmp; 1497 MadeChange = true; 1498 ++NumCmpUses; 1499 } 1500 1501 // If we removed all uses, nuke the cmp. 1502 if (Cmp->use_empty()) { 1503 Cmp->eraseFromParent(); 1504 MadeChange = true; 1505 } 1506 1507 return MadeChange; 1508 } 1509 1510 /// For pattern like: 1511 /// 1512 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1513 /// ... 1514 /// DomBB: 1515 /// ... 1516 /// br DomCond, TrueBB, CmpBB 1517 /// CmpBB: (with DomBB being the single predecessor) 1518 /// ... 1519 /// Cmp = icmp eq CmpOp0, CmpOp1 1520 /// ... 1521 /// 1522 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1523 /// different from lowering of icmp eq (PowerPC). This function try to convert 1524 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1525 /// After that, DomCond and Cmp can use the same comparison so reduce one 1526 /// comparison. 1527 /// 1528 /// Return true if any changes are made. 1529 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1530 const TargetLowering &TLI) { 1531 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1532 return false; 1533 1534 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1535 if (Pred != ICmpInst::ICMP_EQ) 1536 return false; 1537 1538 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1539 // icmp slt/sgt would introduce more redundant LLVM IR. 1540 for (User *U : Cmp->users()) { 1541 if (isa<BranchInst>(U)) 1542 continue; 1543 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1544 continue; 1545 return false; 1546 } 1547 1548 // This is a cheap/incomplete check for dominance - just match a single 1549 // predecessor with a conditional branch. 1550 BasicBlock *CmpBB = Cmp->getParent(); 1551 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1552 if (!DomBB) 1553 return false; 1554 1555 // We want to ensure that the only way control gets to the comparison of 1556 // interest is that a less/greater than comparison on the same operands is 1557 // false. 1558 Value *DomCond; 1559 BasicBlock *TrueBB, *FalseBB; 1560 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1561 return false; 1562 if (CmpBB != FalseBB) 1563 return false; 1564 1565 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1566 ICmpInst::Predicate DomPred; 1567 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1568 return false; 1569 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1570 return false; 1571 1572 // Convert the equality comparison to the opposite of the dominating 1573 // comparison and swap the direction for all branch/select users. 1574 // We have conceptually converted: 1575 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1576 // to 1577 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1578 // And similarly for branches. 1579 for (User *U : Cmp->users()) { 1580 if (auto *BI = dyn_cast<BranchInst>(U)) { 1581 assert(BI->isConditional() && "Must be conditional"); 1582 BI->swapSuccessors(); 1583 continue; 1584 } 1585 if (auto *SI = dyn_cast<SelectInst>(U)) { 1586 // Swap operands 1587 SI->swapValues(); 1588 SI->swapProfMetadata(); 1589 continue; 1590 } 1591 llvm_unreachable("Must be a branch or a select"); 1592 } 1593 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1594 return true; 1595 } 1596 1597 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1598 if (sinkCmpExpression(Cmp, *TLI)) 1599 return true; 1600 1601 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1602 return true; 1603 1604 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1605 return true; 1606 1607 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1608 return true; 1609 1610 return false; 1611 } 1612 1613 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1614 /// used in a compare to allow isel to generate better code for targets where 1615 /// this operation can be combined. 1616 /// 1617 /// Return true if any changes are made. 1618 static bool sinkAndCmp0Expression(Instruction *AndI, 1619 const TargetLowering &TLI, 1620 SetOfInstrs &InsertedInsts) { 1621 // Double-check that we're not trying to optimize an instruction that was 1622 // already optimized by some other part of this pass. 1623 assert(!InsertedInsts.count(AndI) && 1624 "Attempting to optimize already optimized and instruction"); 1625 (void) InsertedInsts; 1626 1627 // Nothing to do for single use in same basic block. 1628 if (AndI->hasOneUse() && 1629 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1630 return false; 1631 1632 // Try to avoid cases where sinking/duplicating is likely to increase register 1633 // pressure. 1634 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1635 !isa<ConstantInt>(AndI->getOperand(1)) && 1636 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1637 return false; 1638 1639 for (auto *U : AndI->users()) { 1640 Instruction *User = cast<Instruction>(U); 1641 1642 // Only sink 'and' feeding icmp with 0. 1643 if (!isa<ICmpInst>(User)) 1644 return false; 1645 1646 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1647 if (!CmpC || !CmpC->isZero()) 1648 return false; 1649 } 1650 1651 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1652 return false; 1653 1654 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1655 LLVM_DEBUG(AndI->getParent()->dump()); 1656 1657 // Push the 'and' into the same block as the icmp 0. There should only be 1658 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1659 // others, so we don't need to keep track of which BBs we insert into. 1660 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1661 UI != E; ) { 1662 Use &TheUse = UI.getUse(); 1663 Instruction *User = cast<Instruction>(*UI); 1664 1665 // Preincrement use iterator so we don't invalidate it. 1666 ++UI; 1667 1668 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1669 1670 // Keep the 'and' in the same place if the use is already in the same block. 1671 Instruction *InsertPt = 1672 User->getParent() == AndI->getParent() ? AndI : User; 1673 Instruction *InsertedAnd = 1674 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1675 AndI->getOperand(1), "", InsertPt); 1676 // Propagate the debug info. 1677 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1678 1679 // Replace a use of the 'and' with a use of the new 'and'. 1680 TheUse = InsertedAnd; 1681 ++NumAndUses; 1682 LLVM_DEBUG(User->getParent()->dump()); 1683 } 1684 1685 // We removed all uses, nuke the and. 1686 AndI->eraseFromParent(); 1687 return true; 1688 } 1689 1690 /// Check if the candidates could be combined with a shift instruction, which 1691 /// includes: 1692 /// 1. Truncate instruction 1693 /// 2. And instruction and the imm is a mask of the low bits: 1694 /// imm & (imm+1) == 0 1695 static bool isExtractBitsCandidateUse(Instruction *User) { 1696 if (!isa<TruncInst>(User)) { 1697 if (User->getOpcode() != Instruction::And || 1698 !isa<ConstantInt>(User->getOperand(1))) 1699 return false; 1700 1701 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1702 1703 if ((Cimm & (Cimm + 1)).getBoolValue()) 1704 return false; 1705 } 1706 return true; 1707 } 1708 1709 /// Sink both shift and truncate instruction to the use of truncate's BB. 1710 static bool 1711 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1712 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1713 const TargetLowering &TLI, const DataLayout &DL) { 1714 BasicBlock *UserBB = User->getParent(); 1715 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1716 auto *TruncI = cast<TruncInst>(User); 1717 bool MadeChange = false; 1718 1719 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1720 TruncE = TruncI->user_end(); 1721 TruncUI != TruncE;) { 1722 1723 Use &TruncTheUse = TruncUI.getUse(); 1724 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1725 // Preincrement use iterator so we don't invalidate it. 1726 1727 ++TruncUI; 1728 1729 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1730 if (!ISDOpcode) 1731 continue; 1732 1733 // If the use is actually a legal node, there will not be an 1734 // implicit truncate. 1735 // FIXME: always querying the result type is just an 1736 // approximation; some nodes' legality is determined by the 1737 // operand or other means. There's no good way to find out though. 1738 if (TLI.isOperationLegalOrCustom( 1739 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1740 continue; 1741 1742 // Don't bother for PHI nodes. 1743 if (isa<PHINode>(TruncUser)) 1744 continue; 1745 1746 BasicBlock *TruncUserBB = TruncUser->getParent(); 1747 1748 if (UserBB == TruncUserBB) 1749 continue; 1750 1751 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1752 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1753 1754 if (!InsertedShift && !InsertedTrunc) { 1755 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1756 assert(InsertPt != TruncUserBB->end()); 1757 // Sink the shift 1758 if (ShiftI->getOpcode() == Instruction::AShr) 1759 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1760 "", &*InsertPt); 1761 else 1762 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1763 "", &*InsertPt); 1764 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1765 1766 // Sink the trunc 1767 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1768 TruncInsertPt++; 1769 assert(TruncInsertPt != TruncUserBB->end()); 1770 1771 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1772 TruncI->getType(), "", &*TruncInsertPt); 1773 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1774 1775 MadeChange = true; 1776 1777 TruncTheUse = InsertedTrunc; 1778 } 1779 } 1780 return MadeChange; 1781 } 1782 1783 /// Sink the shift *right* instruction into user blocks if the uses could 1784 /// potentially be combined with this shift instruction and generate BitExtract 1785 /// instruction. It will only be applied if the architecture supports BitExtract 1786 /// instruction. Here is an example: 1787 /// BB1: 1788 /// %x.extract.shift = lshr i64 %arg1, 32 1789 /// BB2: 1790 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1791 /// ==> 1792 /// 1793 /// BB2: 1794 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1795 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1796 /// 1797 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1798 /// instruction. 1799 /// Return true if any changes are made. 1800 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1801 const TargetLowering &TLI, 1802 const DataLayout &DL) { 1803 BasicBlock *DefBB = ShiftI->getParent(); 1804 1805 /// Only insert instructions in each block once. 1806 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1807 1808 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1809 1810 bool MadeChange = false; 1811 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1812 UI != E;) { 1813 Use &TheUse = UI.getUse(); 1814 Instruction *User = cast<Instruction>(*UI); 1815 // Preincrement use iterator so we don't invalidate it. 1816 ++UI; 1817 1818 // Don't bother for PHI nodes. 1819 if (isa<PHINode>(User)) 1820 continue; 1821 1822 if (!isExtractBitsCandidateUse(User)) 1823 continue; 1824 1825 BasicBlock *UserBB = User->getParent(); 1826 1827 if (UserBB == DefBB) { 1828 // If the shift and truncate instruction are in the same BB. The use of 1829 // the truncate(TruncUse) may still introduce another truncate if not 1830 // legal. In this case, we would like to sink both shift and truncate 1831 // instruction to the BB of TruncUse. 1832 // for example: 1833 // BB1: 1834 // i64 shift.result = lshr i64 opnd, imm 1835 // trunc.result = trunc shift.result to i16 1836 // 1837 // BB2: 1838 // ----> We will have an implicit truncate here if the architecture does 1839 // not have i16 compare. 1840 // cmp i16 trunc.result, opnd2 1841 // 1842 if (isa<TruncInst>(User) && shiftIsLegal 1843 // If the type of the truncate is legal, no truncate will be 1844 // introduced in other basic blocks. 1845 && 1846 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1847 MadeChange = 1848 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1849 1850 continue; 1851 } 1852 // If we have already inserted a shift into this block, use it. 1853 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1854 1855 if (!InsertedShift) { 1856 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1857 assert(InsertPt != UserBB->end()); 1858 1859 if (ShiftI->getOpcode() == Instruction::AShr) 1860 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1861 "", &*InsertPt); 1862 else 1863 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1864 "", &*InsertPt); 1865 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1866 1867 MadeChange = true; 1868 } 1869 1870 // Replace a use of the shift with a use of the new shift. 1871 TheUse = InsertedShift; 1872 } 1873 1874 // If we removed all uses, or there are none, nuke the shift. 1875 if (ShiftI->use_empty()) { 1876 salvageDebugInfo(*ShiftI); 1877 ShiftI->eraseFromParent(); 1878 MadeChange = true; 1879 } 1880 1881 return MadeChange; 1882 } 1883 1884 /// If counting leading or trailing zeros is an expensive operation and a zero 1885 /// input is defined, add a check for zero to avoid calling the intrinsic. 1886 /// 1887 /// We want to transform: 1888 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1889 /// 1890 /// into: 1891 /// entry: 1892 /// %cmpz = icmp eq i64 %A, 0 1893 /// br i1 %cmpz, label %cond.end, label %cond.false 1894 /// cond.false: 1895 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1896 /// br label %cond.end 1897 /// cond.end: 1898 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1899 /// 1900 /// If the transform is performed, return true and set ModifiedDT to true. 1901 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1902 const TargetLowering *TLI, 1903 const DataLayout *DL, 1904 bool &ModifiedDT) { 1905 // If a zero input is undefined, it doesn't make sense to despeculate that. 1906 if (match(CountZeros->getOperand(1), m_One())) 1907 return false; 1908 1909 // If it's cheap to speculate, there's nothing to do. 1910 auto IntrinsicID = CountZeros->getIntrinsicID(); 1911 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1912 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1913 return false; 1914 1915 // Only handle legal scalar cases. Anything else requires too much work. 1916 Type *Ty = CountZeros->getType(); 1917 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1918 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1919 return false; 1920 1921 // The intrinsic will be sunk behind a compare against zero and branch. 1922 BasicBlock *StartBlock = CountZeros->getParent(); 1923 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1924 1925 // Create another block after the count zero intrinsic. A PHI will be added 1926 // in this block to select the result of the intrinsic or the bit-width 1927 // constant if the input to the intrinsic is zero. 1928 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1929 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1930 1931 // Set up a builder to create a compare, conditional branch, and PHI. 1932 IRBuilder<> Builder(CountZeros->getContext()); 1933 Builder.SetInsertPoint(StartBlock->getTerminator()); 1934 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1935 1936 // Replace the unconditional branch that was created by the first split with 1937 // a compare against zero and a conditional branch. 1938 Value *Zero = Constant::getNullValue(Ty); 1939 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1940 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1941 StartBlock->getTerminator()->eraseFromParent(); 1942 1943 // Create a PHI in the end block to select either the output of the intrinsic 1944 // or the bit width of the operand. 1945 Builder.SetInsertPoint(&EndBlock->front()); 1946 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1947 CountZeros->replaceAllUsesWith(PN); 1948 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1949 PN->addIncoming(BitWidth, StartBlock); 1950 PN->addIncoming(CountZeros, CallBlock); 1951 1952 // We are explicitly handling the zero case, so we can set the intrinsic's 1953 // undefined zero argument to 'true'. This will also prevent reprocessing the 1954 // intrinsic; we only despeculate when a zero input is defined. 1955 CountZeros->setArgOperand(1, Builder.getTrue()); 1956 ModifiedDT = true; 1957 return true; 1958 } 1959 1960 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1961 BasicBlock *BB = CI->getParent(); 1962 1963 // Lower inline assembly if we can. 1964 // If we found an inline asm expession, and if the target knows how to 1965 // lower it to normal LLVM code, do so now. 1966 if (CI->isInlineAsm()) { 1967 if (TLI->ExpandInlineAsm(CI)) { 1968 // Avoid invalidating the iterator. 1969 CurInstIterator = BB->begin(); 1970 // Avoid processing instructions out of order, which could cause 1971 // reuse before a value is defined. 1972 SunkAddrs.clear(); 1973 return true; 1974 } 1975 // Sink address computing for memory operands into the block. 1976 if (optimizeInlineAsmInst(CI)) 1977 return true; 1978 } 1979 1980 // Align the pointer arguments to this call if the target thinks it's a good 1981 // idea 1982 unsigned MinSize, PrefAlign; 1983 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1984 for (auto &Arg : CI->arg_operands()) { 1985 // We want to align both objects whose address is used directly and 1986 // objects whose address is used in casts and GEPs, though it only makes 1987 // sense for GEPs if the offset is a multiple of the desired alignment and 1988 // if size - offset meets the size threshold. 1989 if (!Arg->getType()->isPointerTy()) 1990 continue; 1991 APInt Offset(DL->getIndexSizeInBits( 1992 cast<PointerType>(Arg->getType())->getAddressSpace()), 1993 0); 1994 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1995 uint64_t Offset2 = Offset.getLimitedValue(); 1996 if ((Offset2 & (PrefAlign-1)) != 0) 1997 continue; 1998 AllocaInst *AI; 1999 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2000 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2001 AI->setAlignment(Align(PrefAlign)); 2002 // Global variables can only be aligned if they are defined in this 2003 // object (i.e. they are uniquely initialized in this object), and 2004 // over-aligning global variables that have an explicit section is 2005 // forbidden. 2006 GlobalVariable *GV; 2007 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2008 GV->getPointerAlignment(*DL) < PrefAlign && 2009 DL->getTypeAllocSize(GV->getValueType()) >= 2010 MinSize + Offset2) 2011 GV->setAlignment(MaybeAlign(PrefAlign)); 2012 } 2013 // If this is a memcpy (or similar) then we may be able to improve the 2014 // alignment 2015 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2016 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2017 MaybeAlign MIDestAlign = MI->getDestAlign(); 2018 if (!MIDestAlign || DestAlign > *MIDestAlign) 2019 MI->setDestAlignment(DestAlign); 2020 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2021 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2022 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2023 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2024 MTI->setSourceAlignment(SrcAlign); 2025 } 2026 } 2027 } 2028 2029 // If we have a cold call site, try to sink addressing computation into the 2030 // cold block. This interacts with our handling for loads and stores to 2031 // ensure that we can fold all uses of a potential addressing computation 2032 // into their uses. TODO: generalize this to work over profiling data 2033 if (CI->hasFnAttr(Attribute::Cold) && 2034 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2035 for (auto &Arg : CI->arg_operands()) { 2036 if (!Arg->getType()->isPointerTy()) 2037 continue; 2038 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2039 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2040 } 2041 2042 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2043 if (II) { 2044 switch (II->getIntrinsicID()) { 2045 default: break; 2046 case Intrinsic::assume: { 2047 Value *Operand = II->getOperand(0); 2048 II->eraseFromParent(); 2049 // Prune the operand, it's most likely dead. 2050 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2051 RecursivelyDeleteTriviallyDeadInstructions( 2052 Operand, TLInfo, nullptr, 2053 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2054 }); 2055 return true; 2056 } 2057 2058 case Intrinsic::experimental_widenable_condition: { 2059 // Give up on future widening oppurtunties so that we can fold away dead 2060 // paths and merge blocks before going into block-local instruction 2061 // selection. 2062 if (II->use_empty()) { 2063 II->eraseFromParent(); 2064 return true; 2065 } 2066 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2067 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2068 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2069 }); 2070 return true; 2071 } 2072 case Intrinsic::objectsize: 2073 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2074 case Intrinsic::is_constant: 2075 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2076 case Intrinsic::aarch64_stlxr: 2077 case Intrinsic::aarch64_stxr: { 2078 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2079 if (!ExtVal || !ExtVal->hasOneUse() || 2080 ExtVal->getParent() == CI->getParent()) 2081 return false; 2082 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2083 ExtVal->moveBefore(CI); 2084 // Mark this instruction as "inserted by CGP", so that other 2085 // optimizations don't touch it. 2086 InsertedInsts.insert(ExtVal); 2087 return true; 2088 } 2089 2090 case Intrinsic::launder_invariant_group: 2091 case Intrinsic::strip_invariant_group: { 2092 Value *ArgVal = II->getArgOperand(0); 2093 auto it = LargeOffsetGEPMap.find(II); 2094 if (it != LargeOffsetGEPMap.end()) { 2095 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2096 // Make sure not to have to deal with iterator invalidation 2097 // after possibly adding ArgVal to LargeOffsetGEPMap. 2098 auto GEPs = std::move(it->second); 2099 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2100 LargeOffsetGEPMap.erase(II); 2101 } 2102 2103 II->replaceAllUsesWith(ArgVal); 2104 II->eraseFromParent(); 2105 return true; 2106 } 2107 case Intrinsic::cttz: 2108 case Intrinsic::ctlz: 2109 // If counting zeros is expensive, try to avoid it. 2110 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2111 case Intrinsic::fshl: 2112 case Intrinsic::fshr: 2113 return optimizeFunnelShift(II); 2114 case Intrinsic::dbg_value: 2115 return fixupDbgValue(II); 2116 case Intrinsic::vscale: { 2117 // If datalayout has no special restrictions on vector data layout, 2118 // replace `llvm.vscale` by an equivalent constant expression 2119 // to benefit from cheap constant propagation. 2120 Type *ScalableVectorTy = 2121 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2122 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2123 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2124 auto *One = ConstantInt::getSigned(II->getType(), 1); 2125 auto *CGep = 2126 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2127 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2128 II->eraseFromParent(); 2129 return true; 2130 } 2131 break; 2132 } 2133 case Intrinsic::masked_gather: 2134 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2135 case Intrinsic::masked_scatter: 2136 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2137 } 2138 2139 SmallVector<Value *, 2> PtrOps; 2140 Type *AccessTy; 2141 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2142 while (!PtrOps.empty()) { 2143 Value *PtrVal = PtrOps.pop_back_val(); 2144 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2145 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2146 return true; 2147 } 2148 } 2149 2150 // From here on out we're working with named functions. 2151 if (!CI->getCalledFunction()) return false; 2152 2153 // Lower all default uses of _chk calls. This is very similar 2154 // to what InstCombineCalls does, but here we are only lowering calls 2155 // to fortified library functions (e.g. __memcpy_chk) that have the default 2156 // "don't know" as the objectsize. Anything else should be left alone. 2157 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2158 IRBuilder<> Builder(CI); 2159 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2160 CI->replaceAllUsesWith(V); 2161 CI->eraseFromParent(); 2162 return true; 2163 } 2164 2165 return false; 2166 } 2167 2168 /// Look for opportunities to duplicate return instructions to the predecessor 2169 /// to enable tail call optimizations. The case it is currently looking for is: 2170 /// @code 2171 /// bb0: 2172 /// %tmp0 = tail call i32 @f0() 2173 /// br label %return 2174 /// bb1: 2175 /// %tmp1 = tail call i32 @f1() 2176 /// br label %return 2177 /// bb2: 2178 /// %tmp2 = tail call i32 @f2() 2179 /// br label %return 2180 /// return: 2181 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2182 /// ret i32 %retval 2183 /// @endcode 2184 /// 2185 /// => 2186 /// 2187 /// @code 2188 /// bb0: 2189 /// %tmp0 = tail call i32 @f0() 2190 /// ret i32 %tmp0 2191 /// bb1: 2192 /// %tmp1 = tail call i32 @f1() 2193 /// ret i32 %tmp1 2194 /// bb2: 2195 /// %tmp2 = tail call i32 @f2() 2196 /// ret i32 %tmp2 2197 /// @endcode 2198 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2199 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2200 if (!RetI) 2201 return false; 2202 2203 PHINode *PN = nullptr; 2204 ExtractValueInst *EVI = nullptr; 2205 BitCastInst *BCI = nullptr; 2206 Value *V = RetI->getReturnValue(); 2207 if (V) { 2208 BCI = dyn_cast<BitCastInst>(V); 2209 if (BCI) 2210 V = BCI->getOperand(0); 2211 2212 EVI = dyn_cast<ExtractValueInst>(V); 2213 if (EVI) { 2214 V = EVI->getOperand(0); 2215 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2216 [](unsigned idx) { return idx == 0; })) 2217 return false; 2218 } 2219 2220 PN = dyn_cast<PHINode>(V); 2221 if (!PN) 2222 return false; 2223 } 2224 2225 if (PN && PN->getParent() != BB) 2226 return false; 2227 2228 // Make sure there are no instructions between the PHI and return, or that the 2229 // return is the first instruction in the block. 2230 if (PN) { 2231 BasicBlock::iterator BI = BB->begin(); 2232 // Skip over debug and the bitcast. 2233 do { 2234 ++BI; 2235 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2236 if (&*BI != RetI) 2237 return false; 2238 } else { 2239 BasicBlock::iterator BI = BB->begin(); 2240 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2241 if (&*BI != RetI) 2242 return false; 2243 } 2244 2245 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2246 /// call. 2247 const Function *F = BB->getParent(); 2248 SmallVector<BasicBlock*, 4> TailCallBBs; 2249 if (PN) { 2250 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2251 // Look through bitcasts. 2252 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2253 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2254 BasicBlock *PredBB = PN->getIncomingBlock(I); 2255 // Make sure the phi value is indeed produced by the tail call. 2256 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2257 TLI->mayBeEmittedAsTailCall(CI) && 2258 attributesPermitTailCall(F, CI, RetI, *TLI)) 2259 TailCallBBs.push_back(PredBB); 2260 } 2261 } else { 2262 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2263 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2264 if (!VisitedBBs.insert(*PI).second) 2265 continue; 2266 2267 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2268 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2269 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2270 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2271 if (RI == RE) 2272 continue; 2273 2274 CallInst *CI = dyn_cast<CallInst>(&*RI); 2275 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2276 attributesPermitTailCall(F, CI, RetI, *TLI)) 2277 TailCallBBs.push_back(*PI); 2278 } 2279 } 2280 2281 bool Changed = false; 2282 for (auto const &TailCallBB : TailCallBBs) { 2283 // Make sure the call instruction is followed by an unconditional branch to 2284 // the return block. 2285 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2286 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2287 continue; 2288 2289 // Duplicate the return into TailCallBB. 2290 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2291 assert(!VerifyBFIUpdates || 2292 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2293 BFI->setBlockFreq( 2294 BB, 2295 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2296 ModifiedDT = Changed = true; 2297 ++NumRetsDup; 2298 } 2299 2300 // If we eliminated all predecessors of the block, delete the block now. 2301 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2302 BB->eraseFromParent(); 2303 2304 return Changed; 2305 } 2306 2307 //===----------------------------------------------------------------------===// 2308 // Memory Optimization 2309 //===----------------------------------------------------------------------===// 2310 2311 namespace { 2312 2313 /// This is an extended version of TargetLowering::AddrMode 2314 /// which holds actual Value*'s for register values. 2315 struct ExtAddrMode : public TargetLowering::AddrMode { 2316 Value *BaseReg = nullptr; 2317 Value *ScaledReg = nullptr; 2318 Value *OriginalValue = nullptr; 2319 bool InBounds = true; 2320 2321 enum FieldName { 2322 NoField = 0x00, 2323 BaseRegField = 0x01, 2324 BaseGVField = 0x02, 2325 BaseOffsField = 0x04, 2326 ScaledRegField = 0x08, 2327 ScaleField = 0x10, 2328 MultipleFields = 0xff 2329 }; 2330 2331 2332 ExtAddrMode() = default; 2333 2334 void print(raw_ostream &OS) const; 2335 void dump() const; 2336 2337 FieldName compare(const ExtAddrMode &other) { 2338 // First check that the types are the same on each field, as differing types 2339 // is something we can't cope with later on. 2340 if (BaseReg && other.BaseReg && 2341 BaseReg->getType() != other.BaseReg->getType()) 2342 return MultipleFields; 2343 if (BaseGV && other.BaseGV && 2344 BaseGV->getType() != other.BaseGV->getType()) 2345 return MultipleFields; 2346 if (ScaledReg && other.ScaledReg && 2347 ScaledReg->getType() != other.ScaledReg->getType()) 2348 return MultipleFields; 2349 2350 // Conservatively reject 'inbounds' mismatches. 2351 if (InBounds != other.InBounds) 2352 return MultipleFields; 2353 2354 // Check each field to see if it differs. 2355 unsigned Result = NoField; 2356 if (BaseReg != other.BaseReg) 2357 Result |= BaseRegField; 2358 if (BaseGV != other.BaseGV) 2359 Result |= BaseGVField; 2360 if (BaseOffs != other.BaseOffs) 2361 Result |= BaseOffsField; 2362 if (ScaledReg != other.ScaledReg) 2363 Result |= ScaledRegField; 2364 // Don't count 0 as being a different scale, because that actually means 2365 // unscaled (which will already be counted by having no ScaledReg). 2366 if (Scale && other.Scale && Scale != other.Scale) 2367 Result |= ScaleField; 2368 2369 if (countPopulation(Result) > 1) 2370 return MultipleFields; 2371 else 2372 return static_cast<FieldName>(Result); 2373 } 2374 2375 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2376 // with no offset. 2377 bool isTrivial() { 2378 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2379 // trivial if at most one of these terms is nonzero, except that BaseGV and 2380 // BaseReg both being zero actually means a null pointer value, which we 2381 // consider to be 'non-zero' here. 2382 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2383 } 2384 2385 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2386 switch (Field) { 2387 default: 2388 return nullptr; 2389 case BaseRegField: 2390 return BaseReg; 2391 case BaseGVField: 2392 return BaseGV; 2393 case ScaledRegField: 2394 return ScaledReg; 2395 case BaseOffsField: 2396 return ConstantInt::get(IntPtrTy, BaseOffs); 2397 } 2398 } 2399 2400 void SetCombinedField(FieldName Field, Value *V, 2401 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2402 switch (Field) { 2403 default: 2404 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2405 break; 2406 case ExtAddrMode::BaseRegField: 2407 BaseReg = V; 2408 break; 2409 case ExtAddrMode::BaseGVField: 2410 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2411 // in the BaseReg field. 2412 assert(BaseReg == nullptr); 2413 BaseReg = V; 2414 BaseGV = nullptr; 2415 break; 2416 case ExtAddrMode::ScaledRegField: 2417 ScaledReg = V; 2418 // If we have a mix of scaled and unscaled addrmodes then we want scale 2419 // to be the scale and not zero. 2420 if (!Scale) 2421 for (const ExtAddrMode &AM : AddrModes) 2422 if (AM.Scale) { 2423 Scale = AM.Scale; 2424 break; 2425 } 2426 break; 2427 case ExtAddrMode::BaseOffsField: 2428 // The offset is no longer a constant, so it goes in ScaledReg with a 2429 // scale of 1. 2430 assert(ScaledReg == nullptr); 2431 ScaledReg = V; 2432 Scale = 1; 2433 BaseOffs = 0; 2434 break; 2435 } 2436 } 2437 }; 2438 2439 } // end anonymous namespace 2440 2441 #ifndef NDEBUG 2442 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2443 AM.print(OS); 2444 return OS; 2445 } 2446 #endif 2447 2448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2449 void ExtAddrMode::print(raw_ostream &OS) const { 2450 bool NeedPlus = false; 2451 OS << "["; 2452 if (InBounds) 2453 OS << "inbounds "; 2454 if (BaseGV) { 2455 OS << (NeedPlus ? " + " : "") 2456 << "GV:"; 2457 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2458 NeedPlus = true; 2459 } 2460 2461 if (BaseOffs) { 2462 OS << (NeedPlus ? " + " : "") 2463 << BaseOffs; 2464 NeedPlus = true; 2465 } 2466 2467 if (BaseReg) { 2468 OS << (NeedPlus ? " + " : "") 2469 << "Base:"; 2470 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2471 NeedPlus = true; 2472 } 2473 if (Scale) { 2474 OS << (NeedPlus ? " + " : "") 2475 << Scale << "*"; 2476 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2477 } 2478 2479 OS << ']'; 2480 } 2481 2482 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2483 print(dbgs()); 2484 dbgs() << '\n'; 2485 } 2486 #endif 2487 2488 namespace { 2489 2490 /// This class provides transaction based operation on the IR. 2491 /// Every change made through this class is recorded in the internal state and 2492 /// can be undone (rollback) until commit is called. 2493 /// CGP does not check if instructions could be speculatively executed when 2494 /// moved. Preserving the original location would pessimize the debugging 2495 /// experience, as well as negatively impact the quality of sample PGO. 2496 class TypePromotionTransaction { 2497 /// This represents the common interface of the individual transaction. 2498 /// Each class implements the logic for doing one specific modification on 2499 /// the IR via the TypePromotionTransaction. 2500 class TypePromotionAction { 2501 protected: 2502 /// The Instruction modified. 2503 Instruction *Inst; 2504 2505 public: 2506 /// Constructor of the action. 2507 /// The constructor performs the related action on the IR. 2508 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2509 2510 virtual ~TypePromotionAction() = default; 2511 2512 /// Undo the modification done by this action. 2513 /// When this method is called, the IR must be in the same state as it was 2514 /// before this action was applied. 2515 /// \pre Undoing the action works if and only if the IR is in the exact same 2516 /// state as it was directly after this action was applied. 2517 virtual void undo() = 0; 2518 2519 /// Advocate every change made by this action. 2520 /// When the results on the IR of the action are to be kept, it is important 2521 /// to call this function, otherwise hidden information may be kept forever. 2522 virtual void commit() { 2523 // Nothing to be done, this action is not doing anything. 2524 } 2525 }; 2526 2527 /// Utility to remember the position of an instruction. 2528 class InsertionHandler { 2529 /// Position of an instruction. 2530 /// Either an instruction: 2531 /// - Is the first in a basic block: BB is used. 2532 /// - Has a previous instruction: PrevInst is used. 2533 union { 2534 Instruction *PrevInst; 2535 BasicBlock *BB; 2536 } Point; 2537 2538 /// Remember whether or not the instruction had a previous instruction. 2539 bool HasPrevInstruction; 2540 2541 public: 2542 /// Record the position of \p Inst. 2543 InsertionHandler(Instruction *Inst) { 2544 BasicBlock::iterator It = Inst->getIterator(); 2545 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2546 if (HasPrevInstruction) 2547 Point.PrevInst = &*--It; 2548 else 2549 Point.BB = Inst->getParent(); 2550 } 2551 2552 /// Insert \p Inst at the recorded position. 2553 void insert(Instruction *Inst) { 2554 if (HasPrevInstruction) { 2555 if (Inst->getParent()) 2556 Inst->removeFromParent(); 2557 Inst->insertAfter(Point.PrevInst); 2558 } else { 2559 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2560 if (Inst->getParent()) 2561 Inst->moveBefore(Position); 2562 else 2563 Inst->insertBefore(Position); 2564 } 2565 } 2566 }; 2567 2568 /// Move an instruction before another. 2569 class InstructionMoveBefore : public TypePromotionAction { 2570 /// Original position of the instruction. 2571 InsertionHandler Position; 2572 2573 public: 2574 /// Move \p Inst before \p Before. 2575 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2576 : TypePromotionAction(Inst), Position(Inst) { 2577 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2578 << "\n"); 2579 Inst->moveBefore(Before); 2580 } 2581 2582 /// Move the instruction back to its original position. 2583 void undo() override { 2584 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2585 Position.insert(Inst); 2586 } 2587 }; 2588 2589 /// Set the operand of an instruction with a new value. 2590 class OperandSetter : public TypePromotionAction { 2591 /// Original operand of the instruction. 2592 Value *Origin; 2593 2594 /// Index of the modified instruction. 2595 unsigned Idx; 2596 2597 public: 2598 /// Set \p Idx operand of \p Inst with \p NewVal. 2599 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2600 : TypePromotionAction(Inst), Idx(Idx) { 2601 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2602 << "for:" << *Inst << "\n" 2603 << "with:" << *NewVal << "\n"); 2604 Origin = Inst->getOperand(Idx); 2605 Inst->setOperand(Idx, NewVal); 2606 } 2607 2608 /// Restore the original value of the instruction. 2609 void undo() override { 2610 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2611 << "for: " << *Inst << "\n" 2612 << "with: " << *Origin << "\n"); 2613 Inst->setOperand(Idx, Origin); 2614 } 2615 }; 2616 2617 /// Hide the operands of an instruction. 2618 /// Do as if this instruction was not using any of its operands. 2619 class OperandsHider : public TypePromotionAction { 2620 /// The list of original operands. 2621 SmallVector<Value *, 4> OriginalValues; 2622 2623 public: 2624 /// Remove \p Inst from the uses of the operands of \p Inst. 2625 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2626 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2627 unsigned NumOpnds = Inst->getNumOperands(); 2628 OriginalValues.reserve(NumOpnds); 2629 for (unsigned It = 0; It < NumOpnds; ++It) { 2630 // Save the current operand. 2631 Value *Val = Inst->getOperand(It); 2632 OriginalValues.push_back(Val); 2633 // Set a dummy one. 2634 // We could use OperandSetter here, but that would imply an overhead 2635 // that we are not willing to pay. 2636 Inst->setOperand(It, UndefValue::get(Val->getType())); 2637 } 2638 } 2639 2640 /// Restore the original list of uses. 2641 void undo() override { 2642 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2643 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2644 Inst->setOperand(It, OriginalValues[It]); 2645 } 2646 }; 2647 2648 /// Build a truncate instruction. 2649 class TruncBuilder : public TypePromotionAction { 2650 Value *Val; 2651 2652 public: 2653 /// Build a truncate instruction of \p Opnd producing a \p Ty 2654 /// result. 2655 /// trunc Opnd to Ty. 2656 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2657 IRBuilder<> Builder(Opnd); 2658 Builder.SetCurrentDebugLocation(DebugLoc()); 2659 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2660 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2661 } 2662 2663 /// Get the built value. 2664 Value *getBuiltValue() { return Val; } 2665 2666 /// Remove the built instruction. 2667 void undo() override { 2668 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2669 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2670 IVal->eraseFromParent(); 2671 } 2672 }; 2673 2674 /// Build a sign extension instruction. 2675 class SExtBuilder : public TypePromotionAction { 2676 Value *Val; 2677 2678 public: 2679 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2680 /// result. 2681 /// sext Opnd to Ty. 2682 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2683 : TypePromotionAction(InsertPt) { 2684 IRBuilder<> Builder(InsertPt); 2685 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2686 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2687 } 2688 2689 /// Get the built value. 2690 Value *getBuiltValue() { return Val; } 2691 2692 /// Remove the built instruction. 2693 void undo() override { 2694 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2695 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2696 IVal->eraseFromParent(); 2697 } 2698 }; 2699 2700 /// Build a zero extension instruction. 2701 class ZExtBuilder : public TypePromotionAction { 2702 Value *Val; 2703 2704 public: 2705 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2706 /// result. 2707 /// zext Opnd to Ty. 2708 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2709 : TypePromotionAction(InsertPt) { 2710 IRBuilder<> Builder(InsertPt); 2711 Builder.SetCurrentDebugLocation(DebugLoc()); 2712 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2713 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2714 } 2715 2716 /// Get the built value. 2717 Value *getBuiltValue() { return Val; } 2718 2719 /// Remove the built instruction. 2720 void undo() override { 2721 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2722 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2723 IVal->eraseFromParent(); 2724 } 2725 }; 2726 2727 /// Mutate an instruction to another type. 2728 class TypeMutator : public TypePromotionAction { 2729 /// Record the original type. 2730 Type *OrigTy; 2731 2732 public: 2733 /// Mutate the type of \p Inst into \p NewTy. 2734 TypeMutator(Instruction *Inst, Type *NewTy) 2735 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2736 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2737 << "\n"); 2738 Inst->mutateType(NewTy); 2739 } 2740 2741 /// Mutate the instruction back to its original type. 2742 void undo() override { 2743 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2744 << "\n"); 2745 Inst->mutateType(OrigTy); 2746 } 2747 }; 2748 2749 /// Replace the uses of an instruction by another instruction. 2750 class UsesReplacer : public TypePromotionAction { 2751 /// Helper structure to keep track of the replaced uses. 2752 struct InstructionAndIdx { 2753 /// The instruction using the instruction. 2754 Instruction *Inst; 2755 2756 /// The index where this instruction is used for Inst. 2757 unsigned Idx; 2758 2759 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2760 : Inst(Inst), Idx(Idx) {} 2761 }; 2762 2763 /// Keep track of the original uses (pair Instruction, Index). 2764 SmallVector<InstructionAndIdx, 4> OriginalUses; 2765 /// Keep track of the debug users. 2766 SmallVector<DbgValueInst *, 1> DbgValues; 2767 2768 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2769 2770 public: 2771 /// Replace all the use of \p Inst by \p New. 2772 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2773 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2774 << "\n"); 2775 // Record the original uses. 2776 for (Use &U : Inst->uses()) { 2777 Instruction *UserI = cast<Instruction>(U.getUser()); 2778 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2779 } 2780 // Record the debug uses separately. They are not in the instruction's 2781 // use list, but they are replaced by RAUW. 2782 findDbgValues(DbgValues, Inst); 2783 2784 // Now, we can replace the uses. 2785 Inst->replaceAllUsesWith(New); 2786 } 2787 2788 /// Reassign the original uses of Inst to Inst. 2789 void undo() override { 2790 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2791 for (use_iterator UseIt = OriginalUses.begin(), 2792 EndIt = OriginalUses.end(); 2793 UseIt != EndIt; ++UseIt) { 2794 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2795 } 2796 // RAUW has replaced all original uses with references to the new value, 2797 // including the debug uses. Since we are undoing the replacements, 2798 // the original debug uses must also be reinstated to maintain the 2799 // correctness and utility of debug value instructions. 2800 for (auto *DVI: DbgValues) { 2801 LLVMContext &Ctx = Inst->getType()->getContext(); 2802 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2803 DVI->setOperand(0, MV); 2804 } 2805 } 2806 }; 2807 2808 /// Remove an instruction from the IR. 2809 class InstructionRemover : public TypePromotionAction { 2810 /// Original position of the instruction. 2811 InsertionHandler Inserter; 2812 2813 /// Helper structure to hide all the link to the instruction. In other 2814 /// words, this helps to do as if the instruction was removed. 2815 OperandsHider Hider; 2816 2817 /// Keep track of the uses replaced, if any. 2818 UsesReplacer *Replacer = nullptr; 2819 2820 /// Keep track of instructions removed. 2821 SetOfInstrs &RemovedInsts; 2822 2823 public: 2824 /// Remove all reference of \p Inst and optionally replace all its 2825 /// uses with New. 2826 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2827 /// \pre If !Inst->use_empty(), then New != nullptr 2828 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2829 Value *New = nullptr) 2830 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2831 RemovedInsts(RemovedInsts) { 2832 if (New) 2833 Replacer = new UsesReplacer(Inst, New); 2834 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2835 RemovedInsts.insert(Inst); 2836 /// The instructions removed here will be freed after completing 2837 /// optimizeBlock() for all blocks as we need to keep track of the 2838 /// removed instructions during promotion. 2839 Inst->removeFromParent(); 2840 } 2841 2842 ~InstructionRemover() override { delete Replacer; } 2843 2844 /// Resurrect the instruction and reassign it to the proper uses if 2845 /// new value was provided when build this action. 2846 void undo() override { 2847 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2848 Inserter.insert(Inst); 2849 if (Replacer) 2850 Replacer->undo(); 2851 Hider.undo(); 2852 RemovedInsts.erase(Inst); 2853 } 2854 }; 2855 2856 public: 2857 /// Restoration point. 2858 /// The restoration point is a pointer to an action instead of an iterator 2859 /// because the iterator may be invalidated but not the pointer. 2860 using ConstRestorationPt = const TypePromotionAction *; 2861 2862 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2863 : RemovedInsts(RemovedInsts) {} 2864 2865 /// Advocate every changes made in that transaction. Return true if any change 2866 /// happen. 2867 bool commit(); 2868 2869 /// Undo all the changes made after the given point. 2870 void rollback(ConstRestorationPt Point); 2871 2872 /// Get the current restoration point. 2873 ConstRestorationPt getRestorationPoint() const; 2874 2875 /// \name API for IR modification with state keeping to support rollback. 2876 /// @{ 2877 /// Same as Instruction::setOperand. 2878 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2879 2880 /// Same as Instruction::eraseFromParent. 2881 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2882 2883 /// Same as Value::replaceAllUsesWith. 2884 void replaceAllUsesWith(Instruction *Inst, Value *New); 2885 2886 /// Same as Value::mutateType. 2887 void mutateType(Instruction *Inst, Type *NewTy); 2888 2889 /// Same as IRBuilder::createTrunc. 2890 Value *createTrunc(Instruction *Opnd, Type *Ty); 2891 2892 /// Same as IRBuilder::createSExt. 2893 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2894 2895 /// Same as IRBuilder::createZExt. 2896 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2897 2898 /// Same as Instruction::moveBefore. 2899 void moveBefore(Instruction *Inst, Instruction *Before); 2900 /// @} 2901 2902 private: 2903 /// The ordered list of actions made so far. 2904 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2905 2906 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2907 2908 SetOfInstrs &RemovedInsts; 2909 }; 2910 2911 } // end anonymous namespace 2912 2913 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2914 Value *NewVal) { 2915 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2916 Inst, Idx, NewVal)); 2917 } 2918 2919 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2920 Value *NewVal) { 2921 Actions.push_back( 2922 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2923 Inst, RemovedInsts, NewVal)); 2924 } 2925 2926 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2927 Value *New) { 2928 Actions.push_back( 2929 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2930 } 2931 2932 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2933 Actions.push_back( 2934 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2935 } 2936 2937 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2938 Type *Ty) { 2939 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2940 Value *Val = Ptr->getBuiltValue(); 2941 Actions.push_back(std::move(Ptr)); 2942 return Val; 2943 } 2944 2945 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2946 Value *Opnd, Type *Ty) { 2947 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2948 Value *Val = Ptr->getBuiltValue(); 2949 Actions.push_back(std::move(Ptr)); 2950 return Val; 2951 } 2952 2953 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2954 Value *Opnd, Type *Ty) { 2955 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2956 Value *Val = Ptr->getBuiltValue(); 2957 Actions.push_back(std::move(Ptr)); 2958 return Val; 2959 } 2960 2961 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2962 Instruction *Before) { 2963 Actions.push_back( 2964 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2965 Inst, Before)); 2966 } 2967 2968 TypePromotionTransaction::ConstRestorationPt 2969 TypePromotionTransaction::getRestorationPoint() const { 2970 return !Actions.empty() ? Actions.back().get() : nullptr; 2971 } 2972 2973 bool TypePromotionTransaction::commit() { 2974 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2975 ++It) 2976 (*It)->commit(); 2977 bool Modified = !Actions.empty(); 2978 Actions.clear(); 2979 return Modified; 2980 } 2981 2982 void TypePromotionTransaction::rollback( 2983 TypePromotionTransaction::ConstRestorationPt Point) { 2984 while (!Actions.empty() && Point != Actions.back().get()) { 2985 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2986 Curr->undo(); 2987 } 2988 } 2989 2990 namespace { 2991 2992 /// A helper class for matching addressing modes. 2993 /// 2994 /// This encapsulates the logic for matching the target-legal addressing modes. 2995 class AddressingModeMatcher { 2996 SmallVectorImpl<Instruction*> &AddrModeInsts; 2997 const TargetLowering &TLI; 2998 const TargetRegisterInfo &TRI; 2999 const DataLayout &DL; 3000 3001 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3002 /// the memory instruction that we're computing this address for. 3003 Type *AccessTy; 3004 unsigned AddrSpace; 3005 Instruction *MemoryInst; 3006 3007 /// This is the addressing mode that we're building up. This is 3008 /// part of the return value of this addressing mode matching stuff. 3009 ExtAddrMode &AddrMode; 3010 3011 /// The instructions inserted by other CodeGenPrepare optimizations. 3012 const SetOfInstrs &InsertedInsts; 3013 3014 /// A map from the instructions to their type before promotion. 3015 InstrToOrigTy &PromotedInsts; 3016 3017 /// The ongoing transaction where every action should be registered. 3018 TypePromotionTransaction &TPT; 3019 3020 // A GEP which has too large offset to be folded into the addressing mode. 3021 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3022 3023 /// This is set to true when we should not do profitability checks. 3024 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3025 bool IgnoreProfitability; 3026 3027 /// True if we are optimizing for size. 3028 bool OptSize; 3029 3030 ProfileSummaryInfo *PSI; 3031 BlockFrequencyInfo *BFI; 3032 3033 AddressingModeMatcher( 3034 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3035 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3036 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3037 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3038 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3039 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3040 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3041 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3042 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3043 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3044 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3045 IgnoreProfitability = false; 3046 } 3047 3048 public: 3049 /// Find the maximal addressing mode that a load/store of V can fold, 3050 /// give an access type of AccessTy. This returns a list of involved 3051 /// instructions in AddrModeInsts. 3052 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3053 /// optimizations. 3054 /// \p PromotedInsts maps the instructions to their type before promotion. 3055 /// \p The ongoing transaction where every action should be registered. 3056 static ExtAddrMode 3057 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3058 SmallVectorImpl<Instruction *> &AddrModeInsts, 3059 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3060 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3061 TypePromotionTransaction &TPT, 3062 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3063 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3064 ExtAddrMode Result; 3065 3066 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3067 MemoryInst, Result, InsertedInsts, 3068 PromotedInsts, TPT, LargeOffsetGEP, 3069 OptSize, PSI, BFI) 3070 .matchAddr(V, 0); 3071 (void)Success; assert(Success && "Couldn't select *anything*?"); 3072 return Result; 3073 } 3074 3075 private: 3076 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3077 bool matchAddr(Value *Addr, unsigned Depth); 3078 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3079 bool *MovedAway = nullptr); 3080 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3081 ExtAddrMode &AMBefore, 3082 ExtAddrMode &AMAfter); 3083 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3084 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3085 Value *PromotedOperand) const; 3086 }; 3087 3088 class PhiNodeSet; 3089 3090 /// An iterator for PhiNodeSet. 3091 class PhiNodeSetIterator { 3092 PhiNodeSet * const Set; 3093 size_t CurrentIndex = 0; 3094 3095 public: 3096 /// The constructor. Start should point to either a valid element, or be equal 3097 /// to the size of the underlying SmallVector of the PhiNodeSet. 3098 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3099 PHINode * operator*() const; 3100 PhiNodeSetIterator& operator++(); 3101 bool operator==(const PhiNodeSetIterator &RHS) const; 3102 bool operator!=(const PhiNodeSetIterator &RHS) const; 3103 }; 3104 3105 /// Keeps a set of PHINodes. 3106 /// 3107 /// This is a minimal set implementation for a specific use case: 3108 /// It is very fast when there are very few elements, but also provides good 3109 /// performance when there are many. It is similar to SmallPtrSet, but also 3110 /// provides iteration by insertion order, which is deterministic and stable 3111 /// across runs. It is also similar to SmallSetVector, but provides removing 3112 /// elements in O(1) time. This is achieved by not actually removing the element 3113 /// from the underlying vector, so comes at the cost of using more memory, but 3114 /// that is fine, since PhiNodeSets are used as short lived objects. 3115 class PhiNodeSet { 3116 friend class PhiNodeSetIterator; 3117 3118 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3119 using iterator = PhiNodeSetIterator; 3120 3121 /// Keeps the elements in the order of their insertion in the underlying 3122 /// vector. To achieve constant time removal, it never deletes any element. 3123 SmallVector<PHINode *, 32> NodeList; 3124 3125 /// Keeps the elements in the underlying set implementation. This (and not the 3126 /// NodeList defined above) is the source of truth on whether an element 3127 /// is actually in the collection. 3128 MapType NodeMap; 3129 3130 /// Points to the first valid (not deleted) element when the set is not empty 3131 /// and the value is not zero. Equals to the size of the underlying vector 3132 /// when the set is empty. When the value is 0, as in the beginning, the 3133 /// first element may or may not be valid. 3134 size_t FirstValidElement = 0; 3135 3136 public: 3137 /// Inserts a new element to the collection. 3138 /// \returns true if the element is actually added, i.e. was not in the 3139 /// collection before the operation. 3140 bool insert(PHINode *Ptr) { 3141 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3142 NodeList.push_back(Ptr); 3143 return true; 3144 } 3145 return false; 3146 } 3147 3148 /// Removes the element from the collection. 3149 /// \returns whether the element is actually removed, i.e. was in the 3150 /// collection before the operation. 3151 bool erase(PHINode *Ptr) { 3152 auto it = NodeMap.find(Ptr); 3153 if (it != NodeMap.end()) { 3154 NodeMap.erase(Ptr); 3155 SkipRemovedElements(FirstValidElement); 3156 return true; 3157 } 3158 return false; 3159 } 3160 3161 /// Removes all elements and clears the collection. 3162 void clear() { 3163 NodeMap.clear(); 3164 NodeList.clear(); 3165 FirstValidElement = 0; 3166 } 3167 3168 /// \returns an iterator that will iterate the elements in the order of 3169 /// insertion. 3170 iterator begin() { 3171 if (FirstValidElement == 0) 3172 SkipRemovedElements(FirstValidElement); 3173 return PhiNodeSetIterator(this, FirstValidElement); 3174 } 3175 3176 /// \returns an iterator that points to the end of the collection. 3177 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3178 3179 /// Returns the number of elements in the collection. 3180 size_t size() const { 3181 return NodeMap.size(); 3182 } 3183 3184 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3185 size_t count(PHINode *Ptr) const { 3186 return NodeMap.count(Ptr); 3187 } 3188 3189 private: 3190 /// Updates the CurrentIndex so that it will point to a valid element. 3191 /// 3192 /// If the element of NodeList at CurrentIndex is valid, it does not 3193 /// change it. If there are no more valid elements, it updates CurrentIndex 3194 /// to point to the end of the NodeList. 3195 void SkipRemovedElements(size_t &CurrentIndex) { 3196 while (CurrentIndex < NodeList.size()) { 3197 auto it = NodeMap.find(NodeList[CurrentIndex]); 3198 // If the element has been deleted and added again later, NodeMap will 3199 // point to a different index, so CurrentIndex will still be invalid. 3200 if (it != NodeMap.end() && it->second == CurrentIndex) 3201 break; 3202 ++CurrentIndex; 3203 } 3204 } 3205 }; 3206 3207 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3208 : Set(Set), CurrentIndex(Start) {} 3209 3210 PHINode * PhiNodeSetIterator::operator*() const { 3211 assert(CurrentIndex < Set->NodeList.size() && 3212 "PhiNodeSet access out of range"); 3213 return Set->NodeList[CurrentIndex]; 3214 } 3215 3216 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3217 assert(CurrentIndex < Set->NodeList.size() && 3218 "PhiNodeSet access out of range"); 3219 ++CurrentIndex; 3220 Set->SkipRemovedElements(CurrentIndex); 3221 return *this; 3222 } 3223 3224 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3225 return CurrentIndex == RHS.CurrentIndex; 3226 } 3227 3228 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3229 return !((*this) == RHS); 3230 } 3231 3232 /// Keep track of simplification of Phi nodes. 3233 /// Accept the set of all phi nodes and erase phi node from this set 3234 /// if it is simplified. 3235 class SimplificationTracker { 3236 DenseMap<Value *, Value *> Storage; 3237 const SimplifyQuery &SQ; 3238 // Tracks newly created Phi nodes. The elements are iterated by insertion 3239 // order. 3240 PhiNodeSet AllPhiNodes; 3241 // Tracks newly created Select nodes. 3242 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3243 3244 public: 3245 SimplificationTracker(const SimplifyQuery &sq) 3246 : SQ(sq) {} 3247 3248 Value *Get(Value *V) { 3249 do { 3250 auto SV = Storage.find(V); 3251 if (SV == Storage.end()) 3252 return V; 3253 V = SV->second; 3254 } while (true); 3255 } 3256 3257 Value *Simplify(Value *Val) { 3258 SmallVector<Value *, 32> WorkList; 3259 SmallPtrSet<Value *, 32> Visited; 3260 WorkList.push_back(Val); 3261 while (!WorkList.empty()) { 3262 auto *P = WorkList.pop_back_val(); 3263 if (!Visited.insert(P).second) 3264 continue; 3265 if (auto *PI = dyn_cast<Instruction>(P)) 3266 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3267 for (auto *U : PI->users()) 3268 WorkList.push_back(cast<Value>(U)); 3269 Put(PI, V); 3270 PI->replaceAllUsesWith(V); 3271 if (auto *PHI = dyn_cast<PHINode>(PI)) 3272 AllPhiNodes.erase(PHI); 3273 if (auto *Select = dyn_cast<SelectInst>(PI)) 3274 AllSelectNodes.erase(Select); 3275 PI->eraseFromParent(); 3276 } 3277 } 3278 return Get(Val); 3279 } 3280 3281 void Put(Value *From, Value *To) { 3282 Storage.insert({ From, To }); 3283 } 3284 3285 void ReplacePhi(PHINode *From, PHINode *To) { 3286 Value* OldReplacement = Get(From); 3287 while (OldReplacement != From) { 3288 From = To; 3289 To = dyn_cast<PHINode>(OldReplacement); 3290 OldReplacement = Get(From); 3291 } 3292 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3293 Put(From, To); 3294 From->replaceAllUsesWith(To); 3295 AllPhiNodes.erase(From); 3296 From->eraseFromParent(); 3297 } 3298 3299 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3300 3301 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3302 3303 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3304 3305 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3306 3307 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3308 3309 void destroyNewNodes(Type *CommonType) { 3310 // For safe erasing, replace the uses with dummy value first. 3311 auto *Dummy = UndefValue::get(CommonType); 3312 for (auto *I : AllPhiNodes) { 3313 I->replaceAllUsesWith(Dummy); 3314 I->eraseFromParent(); 3315 } 3316 AllPhiNodes.clear(); 3317 for (auto *I : AllSelectNodes) { 3318 I->replaceAllUsesWith(Dummy); 3319 I->eraseFromParent(); 3320 } 3321 AllSelectNodes.clear(); 3322 } 3323 }; 3324 3325 /// A helper class for combining addressing modes. 3326 class AddressingModeCombiner { 3327 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3328 typedef std::pair<PHINode *, PHINode *> PHIPair; 3329 3330 private: 3331 /// The addressing modes we've collected. 3332 SmallVector<ExtAddrMode, 16> AddrModes; 3333 3334 /// The field in which the AddrModes differ, when we have more than one. 3335 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3336 3337 /// Are the AddrModes that we have all just equal to their original values? 3338 bool AllAddrModesTrivial = true; 3339 3340 /// Common Type for all different fields in addressing modes. 3341 Type *CommonType; 3342 3343 /// SimplifyQuery for simplifyInstruction utility. 3344 const SimplifyQuery &SQ; 3345 3346 /// Original Address. 3347 Value *Original; 3348 3349 public: 3350 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3351 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3352 3353 /// Get the combined AddrMode 3354 const ExtAddrMode &getAddrMode() const { 3355 return AddrModes[0]; 3356 } 3357 3358 /// Add a new AddrMode if it's compatible with the AddrModes we already 3359 /// have. 3360 /// \return True iff we succeeded in doing so. 3361 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3362 // Take note of if we have any non-trivial AddrModes, as we need to detect 3363 // when all AddrModes are trivial as then we would introduce a phi or select 3364 // which just duplicates what's already there. 3365 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3366 3367 // If this is the first addrmode then everything is fine. 3368 if (AddrModes.empty()) { 3369 AddrModes.emplace_back(NewAddrMode); 3370 return true; 3371 } 3372 3373 // Figure out how different this is from the other address modes, which we 3374 // can do just by comparing against the first one given that we only care 3375 // about the cumulative difference. 3376 ExtAddrMode::FieldName ThisDifferentField = 3377 AddrModes[0].compare(NewAddrMode); 3378 if (DifferentField == ExtAddrMode::NoField) 3379 DifferentField = ThisDifferentField; 3380 else if (DifferentField != ThisDifferentField) 3381 DifferentField = ExtAddrMode::MultipleFields; 3382 3383 // If NewAddrMode differs in more than one dimension we cannot handle it. 3384 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3385 3386 // If Scale Field is different then we reject. 3387 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3388 3389 // We also must reject the case when base offset is different and 3390 // scale reg is not null, we cannot handle this case due to merge of 3391 // different offsets will be used as ScaleReg. 3392 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3393 !NewAddrMode.ScaledReg); 3394 3395 // We also must reject the case when GV is different and BaseReg installed 3396 // due to we want to use base reg as a merge of GV values. 3397 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3398 !NewAddrMode.HasBaseReg); 3399 3400 // Even if NewAddMode is the same we still need to collect it due to 3401 // original value is different. And later we will need all original values 3402 // as anchors during finding the common Phi node. 3403 if (CanHandle) 3404 AddrModes.emplace_back(NewAddrMode); 3405 else 3406 AddrModes.clear(); 3407 3408 return CanHandle; 3409 } 3410 3411 /// Combine the addressing modes we've collected into a single 3412 /// addressing mode. 3413 /// \return True iff we successfully combined them or we only had one so 3414 /// didn't need to combine them anyway. 3415 bool combineAddrModes() { 3416 // If we have no AddrModes then they can't be combined. 3417 if (AddrModes.size() == 0) 3418 return false; 3419 3420 // A single AddrMode can trivially be combined. 3421 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3422 return true; 3423 3424 // If the AddrModes we collected are all just equal to the value they are 3425 // derived from then combining them wouldn't do anything useful. 3426 if (AllAddrModesTrivial) 3427 return false; 3428 3429 if (!addrModeCombiningAllowed()) 3430 return false; 3431 3432 // Build a map between <original value, basic block where we saw it> to 3433 // value of base register. 3434 // Bail out if there is no common type. 3435 FoldAddrToValueMapping Map; 3436 if (!initializeMap(Map)) 3437 return false; 3438 3439 Value *CommonValue = findCommon(Map); 3440 if (CommonValue) 3441 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3442 return CommonValue != nullptr; 3443 } 3444 3445 private: 3446 /// Initialize Map with anchor values. For address seen 3447 /// we set the value of different field saw in this address. 3448 /// At the same time we find a common type for different field we will 3449 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3450 /// Return false if there is no common type found. 3451 bool initializeMap(FoldAddrToValueMapping &Map) { 3452 // Keep track of keys where the value is null. We will need to replace it 3453 // with constant null when we know the common type. 3454 SmallVector<Value *, 2> NullValue; 3455 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3456 for (auto &AM : AddrModes) { 3457 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3458 if (DV) { 3459 auto *Type = DV->getType(); 3460 if (CommonType && CommonType != Type) 3461 return false; 3462 CommonType = Type; 3463 Map[AM.OriginalValue] = DV; 3464 } else { 3465 NullValue.push_back(AM.OriginalValue); 3466 } 3467 } 3468 assert(CommonType && "At least one non-null value must be!"); 3469 for (auto *V : NullValue) 3470 Map[V] = Constant::getNullValue(CommonType); 3471 return true; 3472 } 3473 3474 /// We have mapping between value A and other value B where B was a field in 3475 /// addressing mode represented by A. Also we have an original value C 3476 /// representing an address we start with. Traversing from C through phi and 3477 /// selects we ended up with A's in a map. This utility function tries to find 3478 /// a value V which is a field in addressing mode C and traversing through phi 3479 /// nodes and selects we will end up in corresponded values B in a map. 3480 /// The utility will create a new Phi/Selects if needed. 3481 // The simple example looks as follows: 3482 // BB1: 3483 // p1 = b1 + 40 3484 // br cond BB2, BB3 3485 // BB2: 3486 // p2 = b2 + 40 3487 // br BB3 3488 // BB3: 3489 // p = phi [p1, BB1], [p2, BB2] 3490 // v = load p 3491 // Map is 3492 // p1 -> b1 3493 // p2 -> b2 3494 // Request is 3495 // p -> ? 3496 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3497 Value *findCommon(FoldAddrToValueMapping &Map) { 3498 // Tracks the simplification of newly created phi nodes. The reason we use 3499 // this mapping is because we will add new created Phi nodes in AddrToBase. 3500 // Simplification of Phi nodes is recursive, so some Phi node may 3501 // be simplified after we added it to AddrToBase. In reality this 3502 // simplification is possible only if original phi/selects were not 3503 // simplified yet. 3504 // Using this mapping we can find the current value in AddrToBase. 3505 SimplificationTracker ST(SQ); 3506 3507 // First step, DFS to create PHI nodes for all intermediate blocks. 3508 // Also fill traverse order for the second step. 3509 SmallVector<Value *, 32> TraverseOrder; 3510 InsertPlaceholders(Map, TraverseOrder, ST); 3511 3512 // Second Step, fill new nodes by merged values and simplify if possible. 3513 FillPlaceholders(Map, TraverseOrder, ST); 3514 3515 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3516 ST.destroyNewNodes(CommonType); 3517 return nullptr; 3518 } 3519 3520 // Now we'd like to match New Phi nodes to existed ones. 3521 unsigned PhiNotMatchedCount = 0; 3522 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3523 ST.destroyNewNodes(CommonType); 3524 return nullptr; 3525 } 3526 3527 auto *Result = ST.Get(Map.find(Original)->second); 3528 if (Result) { 3529 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3530 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3531 } 3532 return Result; 3533 } 3534 3535 /// Try to match PHI node to Candidate. 3536 /// Matcher tracks the matched Phi nodes. 3537 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3538 SmallSetVector<PHIPair, 8> &Matcher, 3539 PhiNodeSet &PhiNodesToMatch) { 3540 SmallVector<PHIPair, 8> WorkList; 3541 Matcher.insert({ PHI, Candidate }); 3542 SmallSet<PHINode *, 8> MatchedPHIs; 3543 MatchedPHIs.insert(PHI); 3544 WorkList.push_back({ PHI, Candidate }); 3545 SmallSet<PHIPair, 8> Visited; 3546 while (!WorkList.empty()) { 3547 auto Item = WorkList.pop_back_val(); 3548 if (!Visited.insert(Item).second) 3549 continue; 3550 // We iterate over all incoming values to Phi to compare them. 3551 // If values are different and both of them Phi and the first one is a 3552 // Phi we added (subject to match) and both of them is in the same basic 3553 // block then we can match our pair if values match. So we state that 3554 // these values match and add it to work list to verify that. 3555 for (auto B : Item.first->blocks()) { 3556 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3557 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3558 if (FirstValue == SecondValue) 3559 continue; 3560 3561 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3562 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3563 3564 // One of them is not Phi or 3565 // The first one is not Phi node from the set we'd like to match or 3566 // Phi nodes from different basic blocks then 3567 // we will not be able to match. 3568 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3569 FirstPhi->getParent() != SecondPhi->getParent()) 3570 return false; 3571 3572 // If we already matched them then continue. 3573 if (Matcher.count({ FirstPhi, SecondPhi })) 3574 continue; 3575 // So the values are different and does not match. So we need them to 3576 // match. (But we register no more than one match per PHI node, so that 3577 // we won't later try to replace them twice.) 3578 if (MatchedPHIs.insert(FirstPhi).second) 3579 Matcher.insert({ FirstPhi, SecondPhi }); 3580 // But me must check it. 3581 WorkList.push_back({ FirstPhi, SecondPhi }); 3582 } 3583 } 3584 return true; 3585 } 3586 3587 /// For the given set of PHI nodes (in the SimplificationTracker) try 3588 /// to find their equivalents. 3589 /// Returns false if this matching fails and creation of new Phi is disabled. 3590 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3591 unsigned &PhiNotMatchedCount) { 3592 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3593 // order, so the replacements (ReplacePhi) are also done in a deterministic 3594 // order. 3595 SmallSetVector<PHIPair, 8> Matched; 3596 SmallPtrSet<PHINode *, 8> WillNotMatch; 3597 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3598 while (PhiNodesToMatch.size()) { 3599 PHINode *PHI = *PhiNodesToMatch.begin(); 3600 3601 // Add us, if no Phi nodes in the basic block we do not match. 3602 WillNotMatch.clear(); 3603 WillNotMatch.insert(PHI); 3604 3605 // Traverse all Phis until we found equivalent or fail to do that. 3606 bool IsMatched = false; 3607 for (auto &P : PHI->getParent()->phis()) { 3608 if (&P == PHI) 3609 continue; 3610 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3611 break; 3612 // If it does not match, collect all Phi nodes from matcher. 3613 // if we end up with no match, them all these Phi nodes will not match 3614 // later. 3615 for (auto M : Matched) 3616 WillNotMatch.insert(M.first); 3617 Matched.clear(); 3618 } 3619 if (IsMatched) { 3620 // Replace all matched values and erase them. 3621 for (auto MV : Matched) 3622 ST.ReplacePhi(MV.first, MV.second); 3623 Matched.clear(); 3624 continue; 3625 } 3626 // If we are not allowed to create new nodes then bail out. 3627 if (!AllowNewPhiNodes) 3628 return false; 3629 // Just remove all seen values in matcher. They will not match anything. 3630 PhiNotMatchedCount += WillNotMatch.size(); 3631 for (auto *P : WillNotMatch) 3632 PhiNodesToMatch.erase(P); 3633 } 3634 return true; 3635 } 3636 /// Fill the placeholders with values from predecessors and simplify them. 3637 void FillPlaceholders(FoldAddrToValueMapping &Map, 3638 SmallVectorImpl<Value *> &TraverseOrder, 3639 SimplificationTracker &ST) { 3640 while (!TraverseOrder.empty()) { 3641 Value *Current = TraverseOrder.pop_back_val(); 3642 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3643 Value *V = Map[Current]; 3644 3645 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3646 // CurrentValue also must be Select. 3647 auto *CurrentSelect = cast<SelectInst>(Current); 3648 auto *TrueValue = CurrentSelect->getTrueValue(); 3649 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3650 Select->setTrueValue(ST.Get(Map[TrueValue])); 3651 auto *FalseValue = CurrentSelect->getFalseValue(); 3652 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3653 Select->setFalseValue(ST.Get(Map[FalseValue])); 3654 } else { 3655 // Must be a Phi node then. 3656 auto *PHI = cast<PHINode>(V); 3657 // Fill the Phi node with values from predecessors. 3658 for (auto *B : predecessors(PHI->getParent())) { 3659 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3660 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3661 PHI->addIncoming(ST.Get(Map[PV]), B); 3662 } 3663 } 3664 Map[Current] = ST.Simplify(V); 3665 } 3666 } 3667 3668 /// Starting from original value recursively iterates over def-use chain up to 3669 /// known ending values represented in a map. For each traversed phi/select 3670 /// inserts a placeholder Phi or Select. 3671 /// Reports all new created Phi/Select nodes by adding them to set. 3672 /// Also reports and order in what values have been traversed. 3673 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3674 SmallVectorImpl<Value *> &TraverseOrder, 3675 SimplificationTracker &ST) { 3676 SmallVector<Value *, 32> Worklist; 3677 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3678 "Address must be a Phi or Select node"); 3679 auto *Dummy = UndefValue::get(CommonType); 3680 Worklist.push_back(Original); 3681 while (!Worklist.empty()) { 3682 Value *Current = Worklist.pop_back_val(); 3683 // if it is already visited or it is an ending value then skip it. 3684 if (Map.find(Current) != Map.end()) 3685 continue; 3686 TraverseOrder.push_back(Current); 3687 3688 // CurrentValue must be a Phi node or select. All others must be covered 3689 // by anchors. 3690 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3691 // Is it OK to get metadata from OrigSelect?! 3692 // Create a Select placeholder with dummy value. 3693 SelectInst *Select = SelectInst::Create( 3694 CurrentSelect->getCondition(), Dummy, Dummy, 3695 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3696 Map[Current] = Select; 3697 ST.insertNewSelect(Select); 3698 // We are interested in True and False values. 3699 Worklist.push_back(CurrentSelect->getTrueValue()); 3700 Worklist.push_back(CurrentSelect->getFalseValue()); 3701 } else { 3702 // It must be a Phi node then. 3703 PHINode *CurrentPhi = cast<PHINode>(Current); 3704 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3705 PHINode *PHI = 3706 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3707 Map[Current] = PHI; 3708 ST.insertNewPhi(PHI); 3709 for (Value *P : CurrentPhi->incoming_values()) 3710 Worklist.push_back(P); 3711 } 3712 } 3713 } 3714 3715 bool addrModeCombiningAllowed() { 3716 if (DisableComplexAddrModes) 3717 return false; 3718 switch (DifferentField) { 3719 default: 3720 return false; 3721 case ExtAddrMode::BaseRegField: 3722 return AddrSinkCombineBaseReg; 3723 case ExtAddrMode::BaseGVField: 3724 return AddrSinkCombineBaseGV; 3725 case ExtAddrMode::BaseOffsField: 3726 return AddrSinkCombineBaseOffs; 3727 case ExtAddrMode::ScaledRegField: 3728 return AddrSinkCombineScaledReg; 3729 } 3730 } 3731 }; 3732 } // end anonymous namespace 3733 3734 /// Try adding ScaleReg*Scale to the current addressing mode. 3735 /// Return true and update AddrMode if this addr mode is legal for the target, 3736 /// false if not. 3737 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3738 unsigned Depth) { 3739 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3740 // mode. Just process that directly. 3741 if (Scale == 1) 3742 return matchAddr(ScaleReg, Depth); 3743 3744 // If the scale is 0, it takes nothing to add this. 3745 if (Scale == 0) 3746 return true; 3747 3748 // If we already have a scale of this value, we can add to it, otherwise, we 3749 // need an available scale field. 3750 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3751 return false; 3752 3753 ExtAddrMode TestAddrMode = AddrMode; 3754 3755 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3756 // [A+B + A*7] -> [B+A*8]. 3757 TestAddrMode.Scale += Scale; 3758 TestAddrMode.ScaledReg = ScaleReg; 3759 3760 // If the new address isn't legal, bail out. 3761 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3762 return false; 3763 3764 // It was legal, so commit it. 3765 AddrMode = TestAddrMode; 3766 3767 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3768 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3769 // X*Scale + C*Scale to addr mode. 3770 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3771 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3772 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3773 CI->getValue().isSignedIntN(64)) { 3774 TestAddrMode.InBounds = false; 3775 TestAddrMode.ScaledReg = AddLHS; 3776 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3777 3778 // If this addressing mode is legal, commit it and remember that we folded 3779 // this instruction. 3780 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3781 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3782 AddrMode = TestAddrMode; 3783 return true; 3784 } 3785 } 3786 3787 // Otherwise, not (x+c)*scale, just return what we have. 3788 return true; 3789 } 3790 3791 /// This is a little filter, which returns true if an addressing computation 3792 /// involving I might be folded into a load/store accessing it. 3793 /// This doesn't need to be perfect, but needs to accept at least 3794 /// the set of instructions that MatchOperationAddr can. 3795 static bool MightBeFoldableInst(Instruction *I) { 3796 switch (I->getOpcode()) { 3797 case Instruction::BitCast: 3798 case Instruction::AddrSpaceCast: 3799 // Don't touch identity bitcasts. 3800 if (I->getType() == I->getOperand(0)->getType()) 3801 return false; 3802 return I->getType()->isIntOrPtrTy(); 3803 case Instruction::PtrToInt: 3804 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3805 return true; 3806 case Instruction::IntToPtr: 3807 // We know the input is intptr_t, so this is foldable. 3808 return true; 3809 case Instruction::Add: 3810 return true; 3811 case Instruction::Mul: 3812 case Instruction::Shl: 3813 // Can only handle X*C and X << C. 3814 return isa<ConstantInt>(I->getOperand(1)); 3815 case Instruction::GetElementPtr: 3816 return true; 3817 default: 3818 return false; 3819 } 3820 } 3821 3822 /// Check whether or not \p Val is a legal instruction for \p TLI. 3823 /// \note \p Val is assumed to be the product of some type promotion. 3824 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3825 /// to be legal, as the non-promoted value would have had the same state. 3826 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3827 const DataLayout &DL, Value *Val) { 3828 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3829 if (!PromotedInst) 3830 return false; 3831 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3832 // If the ISDOpcode is undefined, it was undefined before the promotion. 3833 if (!ISDOpcode) 3834 return true; 3835 // Otherwise, check if the promoted instruction is legal or not. 3836 return TLI.isOperationLegalOrCustom( 3837 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3838 } 3839 3840 namespace { 3841 3842 /// Hepler class to perform type promotion. 3843 class TypePromotionHelper { 3844 /// Utility function to add a promoted instruction \p ExtOpnd to 3845 /// \p PromotedInsts and record the type of extension we have seen. 3846 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3847 Instruction *ExtOpnd, 3848 bool IsSExt) { 3849 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3850 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3851 if (It != PromotedInsts.end()) { 3852 // If the new extension is same as original, the information in 3853 // PromotedInsts[ExtOpnd] is still correct. 3854 if (It->second.getInt() == ExtTy) 3855 return; 3856 3857 // Now the new extension is different from old extension, we make 3858 // the type information invalid by setting extension type to 3859 // BothExtension. 3860 ExtTy = BothExtension; 3861 } 3862 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3863 } 3864 3865 /// Utility function to query the original type of instruction \p Opnd 3866 /// with a matched extension type. If the extension doesn't match, we 3867 /// cannot use the information we had on the original type. 3868 /// BothExtension doesn't match any extension type. 3869 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3870 Instruction *Opnd, 3871 bool IsSExt) { 3872 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3873 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3874 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3875 return It->second.getPointer(); 3876 return nullptr; 3877 } 3878 3879 /// Utility function to check whether or not a sign or zero extension 3880 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3881 /// either using the operands of \p Inst or promoting \p Inst. 3882 /// The type of the extension is defined by \p IsSExt. 3883 /// In other words, check if: 3884 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3885 /// #1 Promotion applies: 3886 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3887 /// #2 Operand reuses: 3888 /// ext opnd1 to ConsideredExtType. 3889 /// \p PromotedInsts maps the instructions to their type before promotion. 3890 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3891 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3892 3893 /// Utility function to determine if \p OpIdx should be promoted when 3894 /// promoting \p Inst. 3895 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3896 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3897 } 3898 3899 /// Utility function to promote the operand of \p Ext when this 3900 /// operand is a promotable trunc or sext or zext. 3901 /// \p PromotedInsts maps the instructions to their type before promotion. 3902 /// \p CreatedInstsCost[out] contains the cost of all instructions 3903 /// created to promote the operand of Ext. 3904 /// Newly added extensions are inserted in \p Exts. 3905 /// Newly added truncates are inserted in \p Truncs. 3906 /// Should never be called directly. 3907 /// \return The promoted value which is used instead of Ext. 3908 static Value *promoteOperandForTruncAndAnyExt( 3909 Instruction *Ext, TypePromotionTransaction &TPT, 3910 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3911 SmallVectorImpl<Instruction *> *Exts, 3912 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3913 3914 /// Utility function to promote the operand of \p Ext when this 3915 /// operand is promotable and is not a supported trunc or sext. 3916 /// \p PromotedInsts maps the instructions to their type before promotion. 3917 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3918 /// created to promote the operand of Ext. 3919 /// Newly added extensions are inserted in \p Exts. 3920 /// Newly added truncates are inserted in \p Truncs. 3921 /// Should never be called directly. 3922 /// \return The promoted value which is used instead of Ext. 3923 static Value *promoteOperandForOther(Instruction *Ext, 3924 TypePromotionTransaction &TPT, 3925 InstrToOrigTy &PromotedInsts, 3926 unsigned &CreatedInstsCost, 3927 SmallVectorImpl<Instruction *> *Exts, 3928 SmallVectorImpl<Instruction *> *Truncs, 3929 const TargetLowering &TLI, bool IsSExt); 3930 3931 /// \see promoteOperandForOther. 3932 static Value *signExtendOperandForOther( 3933 Instruction *Ext, TypePromotionTransaction &TPT, 3934 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3935 SmallVectorImpl<Instruction *> *Exts, 3936 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3937 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3938 Exts, Truncs, TLI, true); 3939 } 3940 3941 /// \see promoteOperandForOther. 3942 static Value *zeroExtendOperandForOther( 3943 Instruction *Ext, TypePromotionTransaction &TPT, 3944 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3945 SmallVectorImpl<Instruction *> *Exts, 3946 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3947 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3948 Exts, Truncs, TLI, false); 3949 } 3950 3951 public: 3952 /// Type for the utility function that promotes the operand of Ext. 3953 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3954 InstrToOrigTy &PromotedInsts, 3955 unsigned &CreatedInstsCost, 3956 SmallVectorImpl<Instruction *> *Exts, 3957 SmallVectorImpl<Instruction *> *Truncs, 3958 const TargetLowering &TLI); 3959 3960 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3961 /// action to promote the operand of \p Ext instead of using Ext. 3962 /// \return NULL if no promotable action is possible with the current 3963 /// sign extension. 3964 /// \p InsertedInsts keeps track of all the instructions inserted by the 3965 /// other CodeGenPrepare optimizations. This information is important 3966 /// because we do not want to promote these instructions as CodeGenPrepare 3967 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3968 /// \p PromotedInsts maps the instructions to their type before promotion. 3969 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3970 const TargetLowering &TLI, 3971 const InstrToOrigTy &PromotedInsts); 3972 }; 3973 3974 } // end anonymous namespace 3975 3976 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3977 Type *ConsideredExtType, 3978 const InstrToOrigTy &PromotedInsts, 3979 bool IsSExt) { 3980 // The promotion helper does not know how to deal with vector types yet. 3981 // To be able to fix that, we would need to fix the places where we 3982 // statically extend, e.g., constants and such. 3983 if (Inst->getType()->isVectorTy()) 3984 return false; 3985 3986 // We can always get through zext. 3987 if (isa<ZExtInst>(Inst)) 3988 return true; 3989 3990 // sext(sext) is ok too. 3991 if (IsSExt && isa<SExtInst>(Inst)) 3992 return true; 3993 3994 // We can get through binary operator, if it is legal. In other words, the 3995 // binary operator must have a nuw or nsw flag. 3996 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3997 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 3998 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3999 (IsSExt && BinOp->hasNoSignedWrap()))) 4000 return true; 4001 4002 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4003 if ((Inst->getOpcode() == Instruction::And || 4004 Inst->getOpcode() == Instruction::Or)) 4005 return true; 4006 4007 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4008 if (Inst->getOpcode() == Instruction::Xor) { 4009 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4010 // Make sure it is not a NOT. 4011 if (Cst && !Cst->getValue().isAllOnesValue()) 4012 return true; 4013 } 4014 4015 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4016 // It may change a poisoned value into a regular value, like 4017 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4018 // poisoned value regular value 4019 // It should be OK since undef covers valid value. 4020 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4021 return true; 4022 4023 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4024 // It may change a poisoned value into a regular value, like 4025 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4026 // poisoned value regular value 4027 // It should be OK since undef covers valid value. 4028 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4029 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4030 if (ExtInst->hasOneUse()) { 4031 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4032 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4033 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4034 if (Cst && 4035 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4036 return true; 4037 } 4038 } 4039 } 4040 4041 // Check if we can do the following simplification. 4042 // ext(trunc(opnd)) --> ext(opnd) 4043 if (!isa<TruncInst>(Inst)) 4044 return false; 4045 4046 Value *OpndVal = Inst->getOperand(0); 4047 // Check if we can use this operand in the extension. 4048 // If the type is larger than the result type of the extension, we cannot. 4049 if (!OpndVal->getType()->isIntegerTy() || 4050 OpndVal->getType()->getIntegerBitWidth() > 4051 ConsideredExtType->getIntegerBitWidth()) 4052 return false; 4053 4054 // If the operand of the truncate is not an instruction, we will not have 4055 // any information on the dropped bits. 4056 // (Actually we could for constant but it is not worth the extra logic). 4057 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4058 if (!Opnd) 4059 return false; 4060 4061 // Check if the source of the type is narrow enough. 4062 // I.e., check that trunc just drops extended bits of the same kind of 4063 // the extension. 4064 // #1 get the type of the operand and check the kind of the extended bits. 4065 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4066 if (OpndType) 4067 ; 4068 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4069 OpndType = Opnd->getOperand(0)->getType(); 4070 else 4071 return false; 4072 4073 // #2 check that the truncate just drops extended bits. 4074 return Inst->getType()->getIntegerBitWidth() >= 4075 OpndType->getIntegerBitWidth(); 4076 } 4077 4078 TypePromotionHelper::Action TypePromotionHelper::getAction( 4079 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4080 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4081 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4082 "Unexpected instruction type"); 4083 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4084 Type *ExtTy = Ext->getType(); 4085 bool IsSExt = isa<SExtInst>(Ext); 4086 // If the operand of the extension is not an instruction, we cannot 4087 // get through. 4088 // If it, check we can get through. 4089 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4090 return nullptr; 4091 4092 // Do not promote if the operand has been added by codegenprepare. 4093 // Otherwise, it means we are undoing an optimization that is likely to be 4094 // redone, thus causing potential infinite loop. 4095 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4096 return nullptr; 4097 4098 // SExt or Trunc instructions. 4099 // Return the related handler. 4100 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4101 isa<ZExtInst>(ExtOpnd)) 4102 return promoteOperandForTruncAndAnyExt; 4103 4104 // Regular instruction. 4105 // Abort early if we will have to insert non-free instructions. 4106 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4107 return nullptr; 4108 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4109 } 4110 4111 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4112 Instruction *SExt, TypePromotionTransaction &TPT, 4113 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4114 SmallVectorImpl<Instruction *> *Exts, 4115 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4116 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4117 // get through it and this method should not be called. 4118 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4119 Value *ExtVal = SExt; 4120 bool HasMergedNonFreeExt = false; 4121 if (isa<ZExtInst>(SExtOpnd)) { 4122 // Replace s|zext(zext(opnd)) 4123 // => zext(opnd). 4124 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4125 Value *ZExt = 4126 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4127 TPT.replaceAllUsesWith(SExt, ZExt); 4128 TPT.eraseInstruction(SExt); 4129 ExtVal = ZExt; 4130 } else { 4131 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4132 // => z|sext(opnd). 4133 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4134 } 4135 CreatedInstsCost = 0; 4136 4137 // Remove dead code. 4138 if (SExtOpnd->use_empty()) 4139 TPT.eraseInstruction(SExtOpnd); 4140 4141 // Check if the extension is still needed. 4142 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4143 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4144 if (ExtInst) { 4145 if (Exts) 4146 Exts->push_back(ExtInst); 4147 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4148 } 4149 return ExtVal; 4150 } 4151 4152 // At this point we have: ext ty opnd to ty. 4153 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4154 Value *NextVal = ExtInst->getOperand(0); 4155 TPT.eraseInstruction(ExtInst, NextVal); 4156 return NextVal; 4157 } 4158 4159 Value *TypePromotionHelper::promoteOperandForOther( 4160 Instruction *Ext, TypePromotionTransaction &TPT, 4161 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4162 SmallVectorImpl<Instruction *> *Exts, 4163 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4164 bool IsSExt) { 4165 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4166 // get through it and this method should not be called. 4167 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4168 CreatedInstsCost = 0; 4169 if (!ExtOpnd->hasOneUse()) { 4170 // ExtOpnd will be promoted. 4171 // All its uses, but Ext, will need to use a truncated value of the 4172 // promoted version. 4173 // Create the truncate now. 4174 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4175 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4176 // Insert it just after the definition. 4177 ITrunc->moveAfter(ExtOpnd); 4178 if (Truncs) 4179 Truncs->push_back(ITrunc); 4180 } 4181 4182 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4183 // Restore the operand of Ext (which has been replaced by the previous call 4184 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4185 TPT.setOperand(Ext, 0, ExtOpnd); 4186 } 4187 4188 // Get through the Instruction: 4189 // 1. Update its type. 4190 // 2. Replace the uses of Ext by Inst. 4191 // 3. Extend each operand that needs to be extended. 4192 4193 // Remember the original type of the instruction before promotion. 4194 // This is useful to know that the high bits are sign extended bits. 4195 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4196 // Step #1. 4197 TPT.mutateType(ExtOpnd, Ext->getType()); 4198 // Step #2. 4199 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4200 // Step #3. 4201 Instruction *ExtForOpnd = Ext; 4202 4203 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4204 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4205 ++OpIdx) { 4206 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4207 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4208 !shouldExtOperand(ExtOpnd, OpIdx)) { 4209 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4210 continue; 4211 } 4212 // Check if we can statically extend the operand. 4213 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4214 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4215 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4216 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4217 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4218 : Cst->getValue().zext(BitWidth); 4219 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4220 continue; 4221 } 4222 // UndefValue are typed, so we have to statically sign extend them. 4223 if (isa<UndefValue>(Opnd)) { 4224 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4225 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4226 continue; 4227 } 4228 4229 // Otherwise we have to explicitly sign extend the operand. 4230 // Check if Ext was reused to extend an operand. 4231 if (!ExtForOpnd) { 4232 // If yes, create a new one. 4233 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4234 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4235 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4236 if (!isa<Instruction>(ValForExtOpnd)) { 4237 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4238 continue; 4239 } 4240 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4241 } 4242 if (Exts) 4243 Exts->push_back(ExtForOpnd); 4244 TPT.setOperand(ExtForOpnd, 0, Opnd); 4245 4246 // Move the sign extension before the insertion point. 4247 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4248 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4249 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4250 // If more sext are required, new instructions will have to be created. 4251 ExtForOpnd = nullptr; 4252 } 4253 if (ExtForOpnd == Ext) { 4254 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4255 TPT.eraseInstruction(Ext); 4256 } 4257 return ExtOpnd; 4258 } 4259 4260 /// Check whether or not promoting an instruction to a wider type is profitable. 4261 /// \p NewCost gives the cost of extension instructions created by the 4262 /// promotion. 4263 /// \p OldCost gives the cost of extension instructions before the promotion 4264 /// plus the number of instructions that have been 4265 /// matched in the addressing mode the promotion. 4266 /// \p PromotedOperand is the value that has been promoted. 4267 /// \return True if the promotion is profitable, false otherwise. 4268 bool AddressingModeMatcher::isPromotionProfitable( 4269 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4270 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4271 << '\n'); 4272 // The cost of the new extensions is greater than the cost of the 4273 // old extension plus what we folded. 4274 // This is not profitable. 4275 if (NewCost > OldCost) 4276 return false; 4277 if (NewCost < OldCost) 4278 return true; 4279 // The promotion is neutral but it may help folding the sign extension in 4280 // loads for instance. 4281 // Check that we did not create an illegal instruction. 4282 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4283 } 4284 4285 /// Given an instruction or constant expr, see if we can fold the operation 4286 /// into the addressing mode. If so, update the addressing mode and return 4287 /// true, otherwise return false without modifying AddrMode. 4288 /// If \p MovedAway is not NULL, it contains the information of whether or 4289 /// not AddrInst has to be folded into the addressing mode on success. 4290 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4291 /// because it has been moved away. 4292 /// Thus AddrInst must not be added in the matched instructions. 4293 /// This state can happen when AddrInst is a sext, since it may be moved away. 4294 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4295 /// not be referenced anymore. 4296 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4297 unsigned Depth, 4298 bool *MovedAway) { 4299 // Avoid exponential behavior on extremely deep expression trees. 4300 if (Depth >= 5) return false; 4301 4302 // By default, all matched instructions stay in place. 4303 if (MovedAway) 4304 *MovedAway = false; 4305 4306 switch (Opcode) { 4307 case Instruction::PtrToInt: 4308 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4309 return matchAddr(AddrInst->getOperand(0), Depth); 4310 case Instruction::IntToPtr: { 4311 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4312 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4313 // This inttoptr is a no-op if the integer type is pointer sized. 4314 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4315 return matchAddr(AddrInst->getOperand(0), Depth); 4316 return false; 4317 } 4318 case Instruction::BitCast: 4319 // BitCast is always a noop, and we can handle it as long as it is 4320 // int->int or pointer->pointer (we don't want int<->fp or something). 4321 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4322 // Don't touch identity bitcasts. These were probably put here by LSR, 4323 // and we don't want to mess around with them. Assume it knows what it 4324 // is doing. 4325 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4326 return matchAddr(AddrInst->getOperand(0), Depth); 4327 return false; 4328 case Instruction::AddrSpaceCast: { 4329 unsigned SrcAS 4330 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4331 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4332 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4333 return matchAddr(AddrInst->getOperand(0), Depth); 4334 return false; 4335 } 4336 case Instruction::Add: { 4337 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4338 ExtAddrMode BackupAddrMode = AddrMode; 4339 unsigned OldSize = AddrModeInsts.size(); 4340 // Start a transaction at this point. 4341 // The LHS may match but not the RHS. 4342 // Therefore, we need a higher level restoration point to undo partially 4343 // matched operation. 4344 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4345 TPT.getRestorationPoint(); 4346 4347 AddrMode.InBounds = false; 4348 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4349 matchAddr(AddrInst->getOperand(0), Depth+1)) 4350 return true; 4351 4352 // Restore the old addr mode info. 4353 AddrMode = BackupAddrMode; 4354 AddrModeInsts.resize(OldSize); 4355 TPT.rollback(LastKnownGood); 4356 4357 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4358 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4359 matchAddr(AddrInst->getOperand(1), Depth+1)) 4360 return true; 4361 4362 // Otherwise we definitely can't merge the ADD in. 4363 AddrMode = BackupAddrMode; 4364 AddrModeInsts.resize(OldSize); 4365 TPT.rollback(LastKnownGood); 4366 break; 4367 } 4368 //case Instruction::Or: 4369 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4370 //break; 4371 case Instruction::Mul: 4372 case Instruction::Shl: { 4373 // Can only handle X*C and X << C. 4374 AddrMode.InBounds = false; 4375 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4376 if (!RHS || RHS->getBitWidth() > 64) 4377 return false; 4378 int64_t Scale = RHS->getSExtValue(); 4379 if (Opcode == Instruction::Shl) 4380 Scale = 1LL << Scale; 4381 4382 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4383 } 4384 case Instruction::GetElementPtr: { 4385 // Scan the GEP. We check it if it contains constant offsets and at most 4386 // one variable offset. 4387 int VariableOperand = -1; 4388 unsigned VariableScale = 0; 4389 4390 int64_t ConstantOffset = 0; 4391 gep_type_iterator GTI = gep_type_begin(AddrInst); 4392 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4393 if (StructType *STy = GTI.getStructTypeOrNull()) { 4394 const StructLayout *SL = DL.getStructLayout(STy); 4395 unsigned Idx = 4396 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4397 ConstantOffset += SL->getElementOffset(Idx); 4398 } else { 4399 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4400 if (TS.isNonZero()) { 4401 // The optimisations below currently only work for fixed offsets. 4402 if (TS.isScalable()) 4403 return false; 4404 int64_t TypeSize = TS.getFixedSize(); 4405 if (ConstantInt *CI = 4406 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4407 const APInt &CVal = CI->getValue(); 4408 if (CVal.getMinSignedBits() <= 64) { 4409 ConstantOffset += CVal.getSExtValue() * TypeSize; 4410 continue; 4411 } 4412 } 4413 // We only allow one variable index at the moment. 4414 if (VariableOperand != -1) 4415 return false; 4416 4417 // Remember the variable index. 4418 VariableOperand = i; 4419 VariableScale = TypeSize; 4420 } 4421 } 4422 } 4423 4424 // A common case is for the GEP to only do a constant offset. In this case, 4425 // just add it to the disp field and check validity. 4426 if (VariableOperand == -1) { 4427 AddrMode.BaseOffs += ConstantOffset; 4428 if (ConstantOffset == 0 || 4429 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4430 // Check to see if we can fold the base pointer in too. 4431 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4432 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4433 AddrMode.InBounds = false; 4434 return true; 4435 } 4436 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4437 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4438 ConstantOffset > 0) { 4439 // Record GEPs with non-zero offsets as candidates for splitting in the 4440 // event that the offset cannot fit into the r+i addressing mode. 4441 // Simple and common case that only one GEP is used in calculating the 4442 // address for the memory access. 4443 Value *Base = AddrInst->getOperand(0); 4444 auto *BaseI = dyn_cast<Instruction>(Base); 4445 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4446 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4447 (BaseI && !isa<CastInst>(BaseI) && 4448 !isa<GetElementPtrInst>(BaseI))) { 4449 // Make sure the parent block allows inserting non-PHI instructions 4450 // before the terminator. 4451 BasicBlock *Parent = 4452 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4453 if (!Parent->getTerminator()->isEHPad()) 4454 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4455 } 4456 } 4457 AddrMode.BaseOffs -= ConstantOffset; 4458 return false; 4459 } 4460 4461 // Save the valid addressing mode in case we can't match. 4462 ExtAddrMode BackupAddrMode = AddrMode; 4463 unsigned OldSize = AddrModeInsts.size(); 4464 4465 // See if the scale and offset amount is valid for this target. 4466 AddrMode.BaseOffs += ConstantOffset; 4467 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4468 AddrMode.InBounds = false; 4469 4470 // Match the base operand of the GEP. 4471 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4472 // If it couldn't be matched, just stuff the value in a register. 4473 if (AddrMode.HasBaseReg) { 4474 AddrMode = BackupAddrMode; 4475 AddrModeInsts.resize(OldSize); 4476 return false; 4477 } 4478 AddrMode.HasBaseReg = true; 4479 AddrMode.BaseReg = AddrInst->getOperand(0); 4480 } 4481 4482 // Match the remaining variable portion of the GEP. 4483 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4484 Depth)) { 4485 // If it couldn't be matched, try stuffing the base into a register 4486 // instead of matching it, and retrying the match of the scale. 4487 AddrMode = BackupAddrMode; 4488 AddrModeInsts.resize(OldSize); 4489 if (AddrMode.HasBaseReg) 4490 return false; 4491 AddrMode.HasBaseReg = true; 4492 AddrMode.BaseReg = AddrInst->getOperand(0); 4493 AddrMode.BaseOffs += ConstantOffset; 4494 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4495 VariableScale, Depth)) { 4496 // If even that didn't work, bail. 4497 AddrMode = BackupAddrMode; 4498 AddrModeInsts.resize(OldSize); 4499 return false; 4500 } 4501 } 4502 4503 return true; 4504 } 4505 case Instruction::SExt: 4506 case Instruction::ZExt: { 4507 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4508 if (!Ext) 4509 return false; 4510 4511 // Try to move this ext out of the way of the addressing mode. 4512 // Ask for a method for doing so. 4513 TypePromotionHelper::Action TPH = 4514 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4515 if (!TPH) 4516 return false; 4517 4518 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4519 TPT.getRestorationPoint(); 4520 unsigned CreatedInstsCost = 0; 4521 unsigned ExtCost = !TLI.isExtFree(Ext); 4522 Value *PromotedOperand = 4523 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4524 // SExt has been moved away. 4525 // Thus either it will be rematched later in the recursive calls or it is 4526 // gone. Anyway, we must not fold it into the addressing mode at this point. 4527 // E.g., 4528 // op = add opnd, 1 4529 // idx = ext op 4530 // addr = gep base, idx 4531 // is now: 4532 // promotedOpnd = ext opnd <- no match here 4533 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4534 // addr = gep base, op <- match 4535 if (MovedAway) 4536 *MovedAway = true; 4537 4538 assert(PromotedOperand && 4539 "TypePromotionHelper should have filtered out those cases"); 4540 4541 ExtAddrMode BackupAddrMode = AddrMode; 4542 unsigned OldSize = AddrModeInsts.size(); 4543 4544 if (!matchAddr(PromotedOperand, Depth) || 4545 // The total of the new cost is equal to the cost of the created 4546 // instructions. 4547 // The total of the old cost is equal to the cost of the extension plus 4548 // what we have saved in the addressing mode. 4549 !isPromotionProfitable(CreatedInstsCost, 4550 ExtCost + (AddrModeInsts.size() - OldSize), 4551 PromotedOperand)) { 4552 AddrMode = BackupAddrMode; 4553 AddrModeInsts.resize(OldSize); 4554 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4555 TPT.rollback(LastKnownGood); 4556 return false; 4557 } 4558 return true; 4559 } 4560 } 4561 return false; 4562 } 4563 4564 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4565 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4566 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4567 /// for the target. 4568 /// 4569 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4570 // Start a transaction at this point that we will rollback if the matching 4571 // fails. 4572 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4573 TPT.getRestorationPoint(); 4574 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4575 if (CI->getValue().isSignedIntN(64)) { 4576 // Fold in immediates if legal for the target. 4577 AddrMode.BaseOffs += CI->getSExtValue(); 4578 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4579 return true; 4580 AddrMode.BaseOffs -= CI->getSExtValue(); 4581 } 4582 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4583 // If this is a global variable, try to fold it into the addressing mode. 4584 if (!AddrMode.BaseGV) { 4585 AddrMode.BaseGV = GV; 4586 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4587 return true; 4588 AddrMode.BaseGV = nullptr; 4589 } 4590 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4591 ExtAddrMode BackupAddrMode = AddrMode; 4592 unsigned OldSize = AddrModeInsts.size(); 4593 4594 // Check to see if it is possible to fold this operation. 4595 bool MovedAway = false; 4596 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4597 // This instruction may have been moved away. If so, there is nothing 4598 // to check here. 4599 if (MovedAway) 4600 return true; 4601 // Okay, it's possible to fold this. Check to see if it is actually 4602 // *profitable* to do so. We use a simple cost model to avoid increasing 4603 // register pressure too much. 4604 if (I->hasOneUse() || 4605 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4606 AddrModeInsts.push_back(I); 4607 return true; 4608 } 4609 4610 // It isn't profitable to do this, roll back. 4611 //cerr << "NOT FOLDING: " << *I; 4612 AddrMode = BackupAddrMode; 4613 AddrModeInsts.resize(OldSize); 4614 TPT.rollback(LastKnownGood); 4615 } 4616 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4617 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4618 return true; 4619 TPT.rollback(LastKnownGood); 4620 } else if (isa<ConstantPointerNull>(Addr)) { 4621 // Null pointer gets folded without affecting the addressing mode. 4622 return true; 4623 } 4624 4625 // Worse case, the target should support [reg] addressing modes. :) 4626 if (!AddrMode.HasBaseReg) { 4627 AddrMode.HasBaseReg = true; 4628 AddrMode.BaseReg = Addr; 4629 // Still check for legality in case the target supports [imm] but not [i+r]. 4630 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4631 return true; 4632 AddrMode.HasBaseReg = false; 4633 AddrMode.BaseReg = nullptr; 4634 } 4635 4636 // If the base register is already taken, see if we can do [r+r]. 4637 if (AddrMode.Scale == 0) { 4638 AddrMode.Scale = 1; 4639 AddrMode.ScaledReg = Addr; 4640 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4641 return true; 4642 AddrMode.Scale = 0; 4643 AddrMode.ScaledReg = nullptr; 4644 } 4645 // Couldn't match. 4646 TPT.rollback(LastKnownGood); 4647 return false; 4648 } 4649 4650 /// Check to see if all uses of OpVal by the specified inline asm call are due 4651 /// to memory operands. If so, return true, otherwise return false. 4652 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4653 const TargetLowering &TLI, 4654 const TargetRegisterInfo &TRI) { 4655 const Function *F = CI->getFunction(); 4656 TargetLowering::AsmOperandInfoVector TargetConstraints = 4657 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4658 4659 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4660 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4661 4662 // Compute the constraint code and ConstraintType to use. 4663 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4664 4665 // If this asm operand is our Value*, and if it isn't an indirect memory 4666 // operand, we can't fold it! 4667 if (OpInfo.CallOperandVal == OpVal && 4668 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4669 !OpInfo.isIndirect)) 4670 return false; 4671 } 4672 4673 return true; 4674 } 4675 4676 // Max number of memory uses to look at before aborting the search to conserve 4677 // compile time. 4678 static constexpr int MaxMemoryUsesToScan = 20; 4679 4680 /// Recursively walk all the uses of I until we find a memory use. 4681 /// If we find an obviously non-foldable instruction, return true. 4682 /// Add the ultimately found memory instructions to MemoryUses. 4683 static bool FindAllMemoryUses( 4684 Instruction *I, 4685 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4686 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4687 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4688 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4689 // If we already considered this instruction, we're done. 4690 if (!ConsideredInsts.insert(I).second) 4691 return false; 4692 4693 // If this is an obviously unfoldable instruction, bail out. 4694 if (!MightBeFoldableInst(I)) 4695 return true; 4696 4697 // Loop over all the uses, recursively processing them. 4698 for (Use &U : I->uses()) { 4699 // Conservatively return true if we're seeing a large number or a deep chain 4700 // of users. This avoids excessive compilation times in pathological cases. 4701 if (SeenInsts++ >= MaxMemoryUsesToScan) 4702 return true; 4703 4704 Instruction *UserI = cast<Instruction>(U.getUser()); 4705 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4706 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4707 continue; 4708 } 4709 4710 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4711 unsigned opNo = U.getOperandNo(); 4712 if (opNo != StoreInst::getPointerOperandIndex()) 4713 return true; // Storing addr, not into addr. 4714 MemoryUses.push_back(std::make_pair(SI, opNo)); 4715 continue; 4716 } 4717 4718 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4719 unsigned opNo = U.getOperandNo(); 4720 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4721 return true; // Storing addr, not into addr. 4722 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4723 continue; 4724 } 4725 4726 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4727 unsigned opNo = U.getOperandNo(); 4728 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4729 return true; // Storing addr, not into addr. 4730 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4731 continue; 4732 } 4733 4734 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4735 if (CI->hasFnAttr(Attribute::Cold)) { 4736 // If this is a cold call, we can sink the addressing calculation into 4737 // the cold path. See optimizeCallInst 4738 bool OptForSize = OptSize || 4739 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4740 if (!OptForSize) 4741 continue; 4742 } 4743 4744 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4745 if (!IA) return true; 4746 4747 // If this is a memory operand, we're cool, otherwise bail out. 4748 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4749 return true; 4750 continue; 4751 } 4752 4753 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4754 PSI, BFI, SeenInsts)) 4755 return true; 4756 } 4757 4758 return false; 4759 } 4760 4761 /// Return true if Val is already known to be live at the use site that we're 4762 /// folding it into. If so, there is no cost to include it in the addressing 4763 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4764 /// instruction already. 4765 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4766 Value *KnownLive2) { 4767 // If Val is either of the known-live values, we know it is live! 4768 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4769 return true; 4770 4771 // All values other than instructions and arguments (e.g. constants) are live. 4772 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4773 4774 // If Val is a constant sized alloca in the entry block, it is live, this is 4775 // true because it is just a reference to the stack/frame pointer, which is 4776 // live for the whole function. 4777 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4778 if (AI->isStaticAlloca()) 4779 return true; 4780 4781 // Check to see if this value is already used in the memory instruction's 4782 // block. If so, it's already live into the block at the very least, so we 4783 // can reasonably fold it. 4784 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4785 } 4786 4787 /// It is possible for the addressing mode of the machine to fold the specified 4788 /// instruction into a load or store that ultimately uses it. 4789 /// However, the specified instruction has multiple uses. 4790 /// Given this, it may actually increase register pressure to fold it 4791 /// into the load. For example, consider this code: 4792 /// 4793 /// X = ... 4794 /// Y = X+1 4795 /// use(Y) -> nonload/store 4796 /// Z = Y+1 4797 /// load Z 4798 /// 4799 /// In this case, Y has multiple uses, and can be folded into the load of Z 4800 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4801 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4802 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4803 /// number of computations either. 4804 /// 4805 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4806 /// X was live across 'load Z' for other reasons, we actually *would* want to 4807 /// fold the addressing mode in the Z case. This would make Y die earlier. 4808 bool AddressingModeMatcher:: 4809 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4810 ExtAddrMode &AMAfter) { 4811 if (IgnoreProfitability) return true; 4812 4813 // AMBefore is the addressing mode before this instruction was folded into it, 4814 // and AMAfter is the addressing mode after the instruction was folded. Get 4815 // the set of registers referenced by AMAfter and subtract out those 4816 // referenced by AMBefore: this is the set of values which folding in this 4817 // address extends the lifetime of. 4818 // 4819 // Note that there are only two potential values being referenced here, 4820 // BaseReg and ScaleReg (global addresses are always available, as are any 4821 // folded immediates). 4822 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4823 4824 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4825 // lifetime wasn't extended by adding this instruction. 4826 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4827 BaseReg = nullptr; 4828 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4829 ScaledReg = nullptr; 4830 4831 // If folding this instruction (and it's subexprs) didn't extend any live 4832 // ranges, we're ok with it. 4833 if (!BaseReg && !ScaledReg) 4834 return true; 4835 4836 // If all uses of this instruction can have the address mode sunk into them, 4837 // we can remove the addressing mode and effectively trade one live register 4838 // for another (at worst.) In this context, folding an addressing mode into 4839 // the use is just a particularly nice way of sinking it. 4840 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4841 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4842 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4843 PSI, BFI)) 4844 return false; // Has a non-memory, non-foldable use! 4845 4846 // Now that we know that all uses of this instruction are part of a chain of 4847 // computation involving only operations that could theoretically be folded 4848 // into a memory use, loop over each of these memory operation uses and see 4849 // if they could *actually* fold the instruction. The assumption is that 4850 // addressing modes are cheap and that duplicating the computation involved 4851 // many times is worthwhile, even on a fastpath. For sinking candidates 4852 // (i.e. cold call sites), this serves as a way to prevent excessive code 4853 // growth since most architectures have some reasonable small and fast way to 4854 // compute an effective address. (i.e LEA on x86) 4855 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4856 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4857 Instruction *User = MemoryUses[i].first; 4858 unsigned OpNo = MemoryUses[i].second; 4859 4860 // Get the access type of this use. If the use isn't a pointer, we don't 4861 // know what it accesses. 4862 Value *Address = User->getOperand(OpNo); 4863 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4864 if (!AddrTy) 4865 return false; 4866 Type *AddressAccessTy = AddrTy->getElementType(); 4867 unsigned AS = AddrTy->getAddressSpace(); 4868 4869 // Do a match against the root of this address, ignoring profitability. This 4870 // will tell us if the addressing mode for the memory operation will 4871 // *actually* cover the shared instruction. 4872 ExtAddrMode Result; 4873 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4874 0); 4875 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4876 TPT.getRestorationPoint(); 4877 AddressingModeMatcher Matcher( 4878 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4879 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4880 Matcher.IgnoreProfitability = true; 4881 bool Success = Matcher.matchAddr(Address, 0); 4882 (void)Success; assert(Success && "Couldn't select *anything*?"); 4883 4884 // The match was to check the profitability, the changes made are not 4885 // part of the original matcher. Therefore, they should be dropped 4886 // otherwise the original matcher will not present the right state. 4887 TPT.rollback(LastKnownGood); 4888 4889 // If the match didn't cover I, then it won't be shared by it. 4890 if (!is_contained(MatchedAddrModeInsts, I)) 4891 return false; 4892 4893 MatchedAddrModeInsts.clear(); 4894 } 4895 4896 return true; 4897 } 4898 4899 /// Return true if the specified values are defined in a 4900 /// different basic block than BB. 4901 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4902 if (Instruction *I = dyn_cast<Instruction>(V)) 4903 return I->getParent() != BB; 4904 return false; 4905 } 4906 4907 /// Sink addressing mode computation immediate before MemoryInst if doing so 4908 /// can be done without increasing register pressure. The need for the 4909 /// register pressure constraint means this can end up being an all or nothing 4910 /// decision for all uses of the same addressing computation. 4911 /// 4912 /// Load and Store Instructions often have addressing modes that can do 4913 /// significant amounts of computation. As such, instruction selection will try 4914 /// to get the load or store to do as much computation as possible for the 4915 /// program. The problem is that isel can only see within a single block. As 4916 /// such, we sink as much legal addressing mode work into the block as possible. 4917 /// 4918 /// This method is used to optimize both load/store and inline asms with memory 4919 /// operands. It's also used to sink addressing computations feeding into cold 4920 /// call sites into their (cold) basic block. 4921 /// 4922 /// The motivation for handling sinking into cold blocks is that doing so can 4923 /// both enable other address mode sinking (by satisfying the register pressure 4924 /// constraint above), and reduce register pressure globally (by removing the 4925 /// addressing mode computation from the fast path entirely.). 4926 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4927 Type *AccessTy, unsigned AddrSpace) { 4928 Value *Repl = Addr; 4929 4930 // Try to collapse single-value PHI nodes. This is necessary to undo 4931 // unprofitable PRE transformations. 4932 SmallVector<Value*, 8> worklist; 4933 SmallPtrSet<Value*, 16> Visited; 4934 worklist.push_back(Addr); 4935 4936 // Use a worklist to iteratively look through PHI and select nodes, and 4937 // ensure that the addressing mode obtained from the non-PHI/select roots of 4938 // the graph are compatible. 4939 bool PhiOrSelectSeen = false; 4940 SmallVector<Instruction*, 16> AddrModeInsts; 4941 const SimplifyQuery SQ(*DL, TLInfo); 4942 AddressingModeCombiner AddrModes(SQ, Addr); 4943 TypePromotionTransaction TPT(RemovedInsts); 4944 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4945 TPT.getRestorationPoint(); 4946 while (!worklist.empty()) { 4947 Value *V = worklist.back(); 4948 worklist.pop_back(); 4949 4950 // We allow traversing cyclic Phi nodes. 4951 // In case of success after this loop we ensure that traversing through 4952 // Phi nodes ends up with all cases to compute address of the form 4953 // BaseGV + Base + Scale * Index + Offset 4954 // where Scale and Offset are constans and BaseGV, Base and Index 4955 // are exactly the same Values in all cases. 4956 // It means that BaseGV, Scale and Offset dominate our memory instruction 4957 // and have the same value as they had in address computation represented 4958 // as Phi. So we can safely sink address computation to memory instruction. 4959 if (!Visited.insert(V).second) 4960 continue; 4961 4962 // For a PHI node, push all of its incoming values. 4963 if (PHINode *P = dyn_cast<PHINode>(V)) { 4964 for (Value *IncValue : P->incoming_values()) 4965 worklist.push_back(IncValue); 4966 PhiOrSelectSeen = true; 4967 continue; 4968 } 4969 // Similar for select. 4970 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4971 worklist.push_back(SI->getFalseValue()); 4972 worklist.push_back(SI->getTrueValue()); 4973 PhiOrSelectSeen = true; 4974 continue; 4975 } 4976 4977 // For non-PHIs, determine the addressing mode being computed. Note that 4978 // the result may differ depending on what other uses our candidate 4979 // addressing instructions might have. 4980 AddrModeInsts.clear(); 4981 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4982 0); 4983 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4984 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4985 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4986 BFI.get()); 4987 4988 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4989 if (GEP && !NewGEPBases.count(GEP)) { 4990 // If splitting the underlying data structure can reduce the offset of a 4991 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4992 // previously split data structures. 4993 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4994 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4995 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4996 } 4997 4998 NewAddrMode.OriginalValue = V; 4999 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5000 break; 5001 } 5002 5003 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5004 // or we have multiple but either couldn't combine them or combining them 5005 // wouldn't do anything useful, bail out now. 5006 if (!AddrModes.combineAddrModes()) { 5007 TPT.rollback(LastKnownGood); 5008 return false; 5009 } 5010 bool Modified = TPT.commit(); 5011 5012 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5013 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5014 5015 // If all the instructions matched are already in this BB, don't do anything. 5016 // If we saw a Phi node then it is not local definitely, and if we saw a select 5017 // then we want to push the address calculation past it even if it's already 5018 // in this BB. 5019 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5020 return IsNonLocalValue(V, MemoryInst->getParent()); 5021 })) { 5022 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5023 << "\n"); 5024 return Modified; 5025 } 5026 5027 // Insert this computation right after this user. Since our caller is 5028 // scanning from the top of the BB to the bottom, reuse of the expr are 5029 // guaranteed to happen later. 5030 IRBuilder<> Builder(MemoryInst); 5031 5032 // Now that we determined the addressing expression we want to use and know 5033 // that we have to sink it into this block. Check to see if we have already 5034 // done this for some other load/store instr in this block. If so, reuse 5035 // the computation. Before attempting reuse, check if the address is valid 5036 // as it may have been erased. 5037 5038 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5039 5040 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5041 if (SunkAddr) { 5042 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5043 << " for " << *MemoryInst << "\n"); 5044 if (SunkAddr->getType() != Addr->getType()) 5045 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5046 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5047 SubtargetInfo->addrSinkUsingGEPs())) { 5048 // By default, we use the GEP-based method when AA is used later. This 5049 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5050 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5051 << " for " << *MemoryInst << "\n"); 5052 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5053 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5054 5055 // First, find the pointer. 5056 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5057 ResultPtr = AddrMode.BaseReg; 5058 AddrMode.BaseReg = nullptr; 5059 } 5060 5061 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5062 // We can't add more than one pointer together, nor can we scale a 5063 // pointer (both of which seem meaningless). 5064 if (ResultPtr || AddrMode.Scale != 1) 5065 return Modified; 5066 5067 ResultPtr = AddrMode.ScaledReg; 5068 AddrMode.Scale = 0; 5069 } 5070 5071 // It is only safe to sign extend the BaseReg if we know that the math 5072 // required to create it did not overflow before we extend it. Since 5073 // the original IR value was tossed in favor of a constant back when 5074 // the AddrMode was created we need to bail out gracefully if widths 5075 // do not match instead of extending it. 5076 // 5077 // (See below for code to add the scale.) 5078 if (AddrMode.Scale) { 5079 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5080 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5081 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5082 return Modified; 5083 } 5084 5085 if (AddrMode.BaseGV) { 5086 if (ResultPtr) 5087 return Modified; 5088 5089 ResultPtr = AddrMode.BaseGV; 5090 } 5091 5092 // If the real base value actually came from an inttoptr, then the matcher 5093 // will look through it and provide only the integer value. In that case, 5094 // use it here. 5095 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5096 if (!ResultPtr && AddrMode.BaseReg) { 5097 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5098 "sunkaddr"); 5099 AddrMode.BaseReg = nullptr; 5100 } else if (!ResultPtr && AddrMode.Scale == 1) { 5101 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5102 "sunkaddr"); 5103 AddrMode.Scale = 0; 5104 } 5105 } 5106 5107 if (!ResultPtr && 5108 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5109 SunkAddr = Constant::getNullValue(Addr->getType()); 5110 } else if (!ResultPtr) { 5111 return Modified; 5112 } else { 5113 Type *I8PtrTy = 5114 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5115 Type *I8Ty = Builder.getInt8Ty(); 5116 5117 // Start with the base register. Do this first so that subsequent address 5118 // matching finds it last, which will prevent it from trying to match it 5119 // as the scaled value in case it happens to be a mul. That would be 5120 // problematic if we've sunk a different mul for the scale, because then 5121 // we'd end up sinking both muls. 5122 if (AddrMode.BaseReg) { 5123 Value *V = AddrMode.BaseReg; 5124 if (V->getType() != IntPtrTy) 5125 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5126 5127 ResultIndex = V; 5128 } 5129 5130 // Add the scale value. 5131 if (AddrMode.Scale) { 5132 Value *V = AddrMode.ScaledReg; 5133 if (V->getType() == IntPtrTy) { 5134 // done. 5135 } else { 5136 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5137 cast<IntegerType>(V->getType())->getBitWidth() && 5138 "We can't transform if ScaledReg is too narrow"); 5139 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5140 } 5141 5142 if (AddrMode.Scale != 1) 5143 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5144 "sunkaddr"); 5145 if (ResultIndex) 5146 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5147 else 5148 ResultIndex = V; 5149 } 5150 5151 // Add in the Base Offset if present. 5152 if (AddrMode.BaseOffs) { 5153 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5154 if (ResultIndex) { 5155 // We need to add this separately from the scale above to help with 5156 // SDAG consecutive load/store merging. 5157 if (ResultPtr->getType() != I8PtrTy) 5158 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5159 ResultPtr = 5160 AddrMode.InBounds 5161 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5162 "sunkaddr") 5163 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5164 } 5165 5166 ResultIndex = V; 5167 } 5168 5169 if (!ResultIndex) { 5170 SunkAddr = ResultPtr; 5171 } else { 5172 if (ResultPtr->getType() != I8PtrTy) 5173 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5174 SunkAddr = 5175 AddrMode.InBounds 5176 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5177 "sunkaddr") 5178 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5179 } 5180 5181 if (SunkAddr->getType() != Addr->getType()) 5182 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5183 } 5184 } else { 5185 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5186 // non-integral pointers, so in that case bail out now. 5187 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5188 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5189 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5190 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5191 if (DL->isNonIntegralPointerType(Addr->getType()) || 5192 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5193 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5194 (AddrMode.BaseGV && 5195 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5196 return Modified; 5197 5198 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5199 << " for " << *MemoryInst << "\n"); 5200 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5201 Value *Result = nullptr; 5202 5203 // Start with the base register. Do this first so that subsequent address 5204 // matching finds it last, which will prevent it from trying to match it 5205 // as the scaled value in case it happens to be a mul. That would be 5206 // problematic if we've sunk a different mul for the scale, because then 5207 // we'd end up sinking both muls. 5208 if (AddrMode.BaseReg) { 5209 Value *V = AddrMode.BaseReg; 5210 if (V->getType()->isPointerTy()) 5211 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5212 if (V->getType() != IntPtrTy) 5213 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5214 Result = V; 5215 } 5216 5217 // Add the scale value. 5218 if (AddrMode.Scale) { 5219 Value *V = AddrMode.ScaledReg; 5220 if (V->getType() == IntPtrTy) { 5221 // done. 5222 } else if (V->getType()->isPointerTy()) { 5223 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5224 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5225 cast<IntegerType>(V->getType())->getBitWidth()) { 5226 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5227 } else { 5228 // It is only safe to sign extend the BaseReg if we know that the math 5229 // required to create it did not overflow before we extend it. Since 5230 // the original IR value was tossed in favor of a constant back when 5231 // the AddrMode was created we need to bail out gracefully if widths 5232 // do not match instead of extending it. 5233 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5234 if (I && (Result != AddrMode.BaseReg)) 5235 I->eraseFromParent(); 5236 return Modified; 5237 } 5238 if (AddrMode.Scale != 1) 5239 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5240 "sunkaddr"); 5241 if (Result) 5242 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5243 else 5244 Result = V; 5245 } 5246 5247 // Add in the BaseGV if present. 5248 if (AddrMode.BaseGV) { 5249 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5250 if (Result) 5251 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5252 else 5253 Result = V; 5254 } 5255 5256 // Add in the Base Offset if present. 5257 if (AddrMode.BaseOffs) { 5258 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5259 if (Result) 5260 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5261 else 5262 Result = V; 5263 } 5264 5265 if (!Result) 5266 SunkAddr = Constant::getNullValue(Addr->getType()); 5267 else 5268 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5269 } 5270 5271 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5272 // Store the newly computed address into the cache. In the case we reused a 5273 // value, this should be idempotent. 5274 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5275 5276 // If we have no uses, recursively delete the value and all dead instructions 5277 // using it. 5278 if (Repl->use_empty()) { 5279 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5280 RecursivelyDeleteTriviallyDeadInstructions( 5281 Repl, TLInfo, nullptr, 5282 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5283 }); 5284 } 5285 ++NumMemoryInsts; 5286 return true; 5287 } 5288 5289 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5290 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5291 /// only handle a 2 operand GEP in the same basic block or a splat constant 5292 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5293 /// index. 5294 /// 5295 /// If the existing GEP has a vector base pointer that is splat, we can look 5296 /// through the splat to find the scalar pointer. If we can't find a scalar 5297 /// pointer there's nothing we can do. 5298 /// 5299 /// If we have a GEP with more than 2 indices where the middle indices are all 5300 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5301 /// 5302 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5303 /// followed by a GEP with an all zeroes vector index. This will enable 5304 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5305 /// zero index. 5306 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5307 Value *Ptr) { 5308 // FIXME: Support scalable vectors. 5309 if (isa<ScalableVectorType>(Ptr->getType())) 5310 return false; 5311 5312 Value *NewAddr; 5313 5314 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5315 // Don't optimize GEPs that don't have indices. 5316 if (!GEP->hasIndices()) 5317 return false; 5318 5319 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5320 // FIXME: We should support this by sinking the GEP. 5321 if (MemoryInst->getParent() != GEP->getParent()) 5322 return false; 5323 5324 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5325 5326 bool RewriteGEP = false; 5327 5328 if (Ops[0]->getType()->isVectorTy()) { 5329 Ops[0] = getSplatValue(Ops[0]); 5330 if (!Ops[0]) 5331 return false; 5332 RewriteGEP = true; 5333 } 5334 5335 unsigned FinalIndex = Ops.size() - 1; 5336 5337 // Ensure all but the last index is 0. 5338 // FIXME: This isn't strictly required. All that's required is that they are 5339 // all scalars or splats. 5340 for (unsigned i = 1; i < FinalIndex; ++i) { 5341 auto *C = dyn_cast<Constant>(Ops[i]); 5342 if (!C) 5343 return false; 5344 if (isa<VectorType>(C->getType())) 5345 C = C->getSplatValue(); 5346 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5347 if (!CI || !CI->isZero()) 5348 return false; 5349 // Scalarize the index if needed. 5350 Ops[i] = CI; 5351 } 5352 5353 // Try to scalarize the final index. 5354 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5355 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5356 auto *C = dyn_cast<ConstantInt>(V); 5357 // Don't scalarize all zeros vector. 5358 if (!C || !C->isZero()) { 5359 Ops[FinalIndex] = V; 5360 RewriteGEP = true; 5361 } 5362 } 5363 } 5364 5365 // If we made any changes or the we have extra operands, we need to generate 5366 // new instructions. 5367 if (!RewriteGEP && Ops.size() == 2) 5368 return false; 5369 5370 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 5371 5372 IRBuilder<> Builder(MemoryInst); 5373 5374 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5375 5376 // If the final index isn't a vector, emit a scalar GEP containing all ops 5377 // and a vector GEP with all zeroes final index. 5378 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5379 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5380 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5381 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5382 } else { 5383 Value *Base = Ops[0]; 5384 Value *Index = Ops[FinalIndex]; 5385 5386 // Create a scalar GEP if there are more than 2 operands. 5387 if (Ops.size() != 2) { 5388 // Replace the last index with 0. 5389 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5390 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5391 } 5392 5393 // Now create the GEP with scalar pointer and vector index. 5394 NewAddr = Builder.CreateGEP(Base, Index); 5395 } 5396 } else if (!isa<Constant>(Ptr)) { 5397 // Not a GEP, maybe its a splat and we can create a GEP to enable 5398 // SelectionDAGBuilder to use it as a uniform base. 5399 Value *V = getSplatValue(Ptr); 5400 if (!V) 5401 return false; 5402 5403 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 5404 5405 IRBuilder<> Builder(MemoryInst); 5406 5407 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5408 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5409 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5410 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5411 } else { 5412 // Constant, SelectionDAGBuilder knows to check if its a splat. 5413 return false; 5414 } 5415 5416 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5417 5418 // If we have no uses, recursively delete the value and all dead instructions 5419 // using it. 5420 if (Ptr->use_empty()) 5421 RecursivelyDeleteTriviallyDeadInstructions( 5422 Ptr, TLInfo, nullptr, 5423 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5424 5425 return true; 5426 } 5427 5428 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5429 /// address computing into the block when possible / profitable. 5430 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5431 bool MadeChange = false; 5432 5433 const TargetRegisterInfo *TRI = 5434 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5435 TargetLowering::AsmOperandInfoVector TargetConstraints = 5436 TLI->ParseConstraints(*DL, TRI, *CS); 5437 unsigned ArgNo = 0; 5438 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5439 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5440 5441 // Compute the constraint code and ConstraintType to use. 5442 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5443 5444 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5445 OpInfo.isIndirect) { 5446 Value *OpVal = CS->getArgOperand(ArgNo++); 5447 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5448 } else if (OpInfo.Type == InlineAsm::isInput) 5449 ArgNo++; 5450 } 5451 5452 return MadeChange; 5453 } 5454 5455 /// Check if all the uses of \p Val are equivalent (or free) zero or 5456 /// sign extensions. 5457 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5458 assert(!Val->use_empty() && "Input must have at least one use"); 5459 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5460 bool IsSExt = isa<SExtInst>(FirstUser); 5461 Type *ExtTy = FirstUser->getType(); 5462 for (const User *U : Val->users()) { 5463 const Instruction *UI = cast<Instruction>(U); 5464 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5465 return false; 5466 Type *CurTy = UI->getType(); 5467 // Same input and output types: Same instruction after CSE. 5468 if (CurTy == ExtTy) 5469 continue; 5470 5471 // If IsSExt is true, we are in this situation: 5472 // a = Val 5473 // b = sext ty1 a to ty2 5474 // c = sext ty1 a to ty3 5475 // Assuming ty2 is shorter than ty3, this could be turned into: 5476 // a = Val 5477 // b = sext ty1 a to ty2 5478 // c = sext ty2 b to ty3 5479 // However, the last sext is not free. 5480 if (IsSExt) 5481 return false; 5482 5483 // This is a ZExt, maybe this is free to extend from one type to another. 5484 // In that case, we would not account for a different use. 5485 Type *NarrowTy; 5486 Type *LargeTy; 5487 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5488 CurTy->getScalarType()->getIntegerBitWidth()) { 5489 NarrowTy = CurTy; 5490 LargeTy = ExtTy; 5491 } else { 5492 NarrowTy = ExtTy; 5493 LargeTy = CurTy; 5494 } 5495 5496 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5497 return false; 5498 } 5499 // All uses are the same or can be derived from one another for free. 5500 return true; 5501 } 5502 5503 /// Try to speculatively promote extensions in \p Exts and continue 5504 /// promoting through newly promoted operands recursively as far as doing so is 5505 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5506 /// When some promotion happened, \p TPT contains the proper state to revert 5507 /// them. 5508 /// 5509 /// \return true if some promotion happened, false otherwise. 5510 bool CodeGenPrepare::tryToPromoteExts( 5511 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5512 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5513 unsigned CreatedInstsCost) { 5514 bool Promoted = false; 5515 5516 // Iterate over all the extensions to try to promote them. 5517 for (auto *I : Exts) { 5518 // Early check if we directly have ext(load). 5519 if (isa<LoadInst>(I->getOperand(0))) { 5520 ProfitablyMovedExts.push_back(I); 5521 continue; 5522 } 5523 5524 // Check whether or not we want to do any promotion. The reason we have 5525 // this check inside the for loop is to catch the case where an extension 5526 // is directly fed by a load because in such case the extension can be moved 5527 // up without any promotion on its operands. 5528 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5529 return false; 5530 5531 // Get the action to perform the promotion. 5532 TypePromotionHelper::Action TPH = 5533 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5534 // Check if we can promote. 5535 if (!TPH) { 5536 // Save the current extension as we cannot move up through its operand. 5537 ProfitablyMovedExts.push_back(I); 5538 continue; 5539 } 5540 5541 // Save the current state. 5542 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5543 TPT.getRestorationPoint(); 5544 SmallVector<Instruction *, 4> NewExts; 5545 unsigned NewCreatedInstsCost = 0; 5546 unsigned ExtCost = !TLI->isExtFree(I); 5547 // Promote. 5548 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5549 &NewExts, nullptr, *TLI); 5550 assert(PromotedVal && 5551 "TypePromotionHelper should have filtered out those cases"); 5552 5553 // We would be able to merge only one extension in a load. 5554 // Therefore, if we have more than 1 new extension we heuristically 5555 // cut this search path, because it means we degrade the code quality. 5556 // With exactly 2, the transformation is neutral, because we will merge 5557 // one extension but leave one. However, we optimistically keep going, 5558 // because the new extension may be removed too. 5559 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5560 // FIXME: It would be possible to propagate a negative value instead of 5561 // conservatively ceiling it to 0. 5562 TotalCreatedInstsCost = 5563 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5564 if (!StressExtLdPromotion && 5565 (TotalCreatedInstsCost > 1 || 5566 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5567 // This promotion is not profitable, rollback to the previous state, and 5568 // save the current extension in ProfitablyMovedExts as the latest 5569 // speculative promotion turned out to be unprofitable. 5570 TPT.rollback(LastKnownGood); 5571 ProfitablyMovedExts.push_back(I); 5572 continue; 5573 } 5574 // Continue promoting NewExts as far as doing so is profitable. 5575 SmallVector<Instruction *, 2> NewlyMovedExts; 5576 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5577 bool NewPromoted = false; 5578 for (auto *ExtInst : NewlyMovedExts) { 5579 Instruction *MovedExt = cast<Instruction>(ExtInst); 5580 Value *ExtOperand = MovedExt->getOperand(0); 5581 // If we have reached to a load, we need this extra profitability check 5582 // as it could potentially be merged into an ext(load). 5583 if (isa<LoadInst>(ExtOperand) && 5584 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5585 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5586 continue; 5587 5588 ProfitablyMovedExts.push_back(MovedExt); 5589 NewPromoted = true; 5590 } 5591 5592 // If none of speculative promotions for NewExts is profitable, rollback 5593 // and save the current extension (I) as the last profitable extension. 5594 if (!NewPromoted) { 5595 TPT.rollback(LastKnownGood); 5596 ProfitablyMovedExts.push_back(I); 5597 continue; 5598 } 5599 // The promotion is profitable. 5600 Promoted = true; 5601 } 5602 return Promoted; 5603 } 5604 5605 /// Merging redundant sexts when one is dominating the other. 5606 bool CodeGenPrepare::mergeSExts(Function &F) { 5607 bool Changed = false; 5608 for (auto &Entry : ValToSExtendedUses) { 5609 SExts &Insts = Entry.second; 5610 SExts CurPts; 5611 for (Instruction *Inst : Insts) { 5612 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5613 Inst->getOperand(0) != Entry.first) 5614 continue; 5615 bool inserted = false; 5616 for (auto &Pt : CurPts) { 5617 if (getDT(F).dominates(Inst, Pt)) { 5618 Pt->replaceAllUsesWith(Inst); 5619 RemovedInsts.insert(Pt); 5620 Pt->removeFromParent(); 5621 Pt = Inst; 5622 inserted = true; 5623 Changed = true; 5624 break; 5625 } 5626 if (!getDT(F).dominates(Pt, Inst)) 5627 // Give up if we need to merge in a common dominator as the 5628 // experiments show it is not profitable. 5629 continue; 5630 Inst->replaceAllUsesWith(Pt); 5631 RemovedInsts.insert(Inst); 5632 Inst->removeFromParent(); 5633 inserted = true; 5634 Changed = true; 5635 break; 5636 } 5637 if (!inserted) 5638 CurPts.push_back(Inst); 5639 } 5640 } 5641 return Changed; 5642 } 5643 5644 // Splitting large data structures so that the GEPs accessing them can have 5645 // smaller offsets so that they can be sunk to the same blocks as their users. 5646 // For example, a large struct starting from %base is split into two parts 5647 // where the second part starts from %new_base. 5648 // 5649 // Before: 5650 // BB0: 5651 // %base = 5652 // 5653 // BB1: 5654 // %gep0 = gep %base, off0 5655 // %gep1 = gep %base, off1 5656 // %gep2 = gep %base, off2 5657 // 5658 // BB2: 5659 // %load1 = load %gep0 5660 // %load2 = load %gep1 5661 // %load3 = load %gep2 5662 // 5663 // After: 5664 // BB0: 5665 // %base = 5666 // %new_base = gep %base, off0 5667 // 5668 // BB1: 5669 // %new_gep0 = %new_base 5670 // %new_gep1 = gep %new_base, off1 - off0 5671 // %new_gep2 = gep %new_base, off2 - off0 5672 // 5673 // BB2: 5674 // %load1 = load i32, i32* %new_gep0 5675 // %load2 = load i32, i32* %new_gep1 5676 // %load3 = load i32, i32* %new_gep2 5677 // 5678 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5679 // their offsets are smaller enough to fit into the addressing mode. 5680 bool CodeGenPrepare::splitLargeGEPOffsets() { 5681 bool Changed = false; 5682 for (auto &Entry : LargeOffsetGEPMap) { 5683 Value *OldBase = Entry.first; 5684 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5685 &LargeOffsetGEPs = Entry.second; 5686 auto compareGEPOffset = 5687 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5688 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5689 if (LHS.first == RHS.first) 5690 return false; 5691 if (LHS.second != RHS.second) 5692 return LHS.second < RHS.second; 5693 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5694 }; 5695 // Sorting all the GEPs of the same data structures based on the offsets. 5696 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5697 LargeOffsetGEPs.erase( 5698 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5699 LargeOffsetGEPs.end()); 5700 // Skip if all the GEPs have the same offsets. 5701 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5702 continue; 5703 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5704 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5705 Value *NewBaseGEP = nullptr; 5706 5707 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5708 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5709 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5710 int64_t Offset = LargeOffsetGEP->second; 5711 if (Offset != BaseOffset) { 5712 TargetLowering::AddrMode AddrMode; 5713 AddrMode.BaseOffs = Offset - BaseOffset; 5714 // The result type of the GEP might not be the type of the memory 5715 // access. 5716 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5717 GEP->getResultElementType(), 5718 GEP->getAddressSpace())) { 5719 // We need to create a new base if the offset to the current base is 5720 // too large to fit into the addressing mode. So, a very large struct 5721 // may be split into several parts. 5722 BaseGEP = GEP; 5723 BaseOffset = Offset; 5724 NewBaseGEP = nullptr; 5725 } 5726 } 5727 5728 // Generate a new GEP to replace the current one. 5729 LLVMContext &Ctx = GEP->getContext(); 5730 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5731 Type *I8PtrTy = 5732 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5733 Type *I8Ty = Type::getInt8Ty(Ctx); 5734 5735 if (!NewBaseGEP) { 5736 // Create a new base if we don't have one yet. Find the insertion 5737 // pointer for the new base first. 5738 BasicBlock::iterator NewBaseInsertPt; 5739 BasicBlock *NewBaseInsertBB; 5740 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5741 // If the base of the struct is an instruction, the new base will be 5742 // inserted close to it. 5743 NewBaseInsertBB = BaseI->getParent(); 5744 if (isa<PHINode>(BaseI)) 5745 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5746 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5747 NewBaseInsertBB = 5748 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5749 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5750 } else 5751 NewBaseInsertPt = std::next(BaseI->getIterator()); 5752 } else { 5753 // If the current base is an argument or global value, the new base 5754 // will be inserted to the entry block. 5755 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5756 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5757 } 5758 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5759 // Create a new base. 5760 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5761 NewBaseGEP = OldBase; 5762 if (NewBaseGEP->getType() != I8PtrTy) 5763 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5764 NewBaseGEP = 5765 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5766 NewGEPBases.insert(NewBaseGEP); 5767 } 5768 5769 IRBuilder<> Builder(GEP); 5770 Value *NewGEP = NewBaseGEP; 5771 if (Offset == BaseOffset) { 5772 if (GEP->getType() != I8PtrTy) 5773 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5774 } else { 5775 // Calculate the new offset for the new GEP. 5776 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5777 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5778 5779 if (GEP->getType() != I8PtrTy) 5780 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5781 } 5782 GEP->replaceAllUsesWith(NewGEP); 5783 LargeOffsetGEPID.erase(GEP); 5784 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5785 GEP->eraseFromParent(); 5786 Changed = true; 5787 } 5788 } 5789 return Changed; 5790 } 5791 5792 bool CodeGenPrepare::optimizePhiType( 5793 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5794 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5795 // We are looking for a collection on interconnected phi nodes that together 5796 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5797 // are of the same type. Convert the whole set of nodes to the type of the 5798 // bitcast. 5799 Type *PhiTy = I->getType(); 5800 Type *ConvertTy = nullptr; 5801 if (Visited.count(I) || 5802 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5803 return false; 5804 5805 SmallVector<Instruction *, 4> Worklist; 5806 Worklist.push_back(cast<Instruction>(I)); 5807 SmallPtrSet<PHINode *, 4> PhiNodes; 5808 PhiNodes.insert(I); 5809 Visited.insert(I); 5810 SmallPtrSet<Instruction *, 4> Defs; 5811 SmallPtrSet<Instruction *, 4> Uses; 5812 // This works by adding extra bitcasts between load/stores and removing 5813 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5814 // we can get in the situation where we remove a bitcast in one iteration 5815 // just to add it again in the next. We need to ensure that at least one 5816 // bitcast we remove are anchored to something that will not change back. 5817 bool AnyAnchored = false; 5818 5819 while (!Worklist.empty()) { 5820 Instruction *II = Worklist.pop_back_val(); 5821 5822 if (auto *Phi = dyn_cast<PHINode>(II)) { 5823 // Handle Defs, which might also be PHI's 5824 for (Value *V : Phi->incoming_values()) { 5825 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5826 if (!PhiNodes.count(OpPhi)) { 5827 if (Visited.count(OpPhi)) 5828 return false; 5829 PhiNodes.insert(OpPhi); 5830 Visited.insert(OpPhi); 5831 Worklist.push_back(OpPhi); 5832 } 5833 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5834 if (!OpLoad->isSimple()) 5835 return false; 5836 if (!Defs.count(OpLoad)) { 5837 Defs.insert(OpLoad); 5838 Worklist.push_back(OpLoad); 5839 } 5840 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5841 if (!Defs.count(OpEx)) { 5842 Defs.insert(OpEx); 5843 Worklist.push_back(OpEx); 5844 } 5845 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5846 if (!ConvertTy) 5847 ConvertTy = OpBC->getOperand(0)->getType(); 5848 if (OpBC->getOperand(0)->getType() != ConvertTy) 5849 return false; 5850 if (!Defs.count(OpBC)) { 5851 Defs.insert(OpBC); 5852 Worklist.push_back(OpBC); 5853 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5854 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5855 } 5856 } else if (!isa<UndefValue>(V)) { 5857 return false; 5858 } 5859 } 5860 } 5861 5862 // Handle uses which might also be phi's 5863 for (User *V : II->users()) { 5864 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5865 if (!PhiNodes.count(OpPhi)) { 5866 if (Visited.count(OpPhi)) 5867 return false; 5868 PhiNodes.insert(OpPhi); 5869 Visited.insert(OpPhi); 5870 Worklist.push_back(OpPhi); 5871 } 5872 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5873 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5874 return false; 5875 Uses.insert(OpStore); 5876 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5877 if (!ConvertTy) 5878 ConvertTy = OpBC->getType(); 5879 if (OpBC->getType() != ConvertTy) 5880 return false; 5881 Uses.insert(OpBC); 5882 AnyAnchored |= 5883 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5884 } else { 5885 return false; 5886 } 5887 } 5888 } 5889 5890 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5891 return false; 5892 5893 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5894 << *ConvertTy << "\n"); 5895 5896 // Create all the new phi nodes of the new type, and bitcast any loads to the 5897 // correct type. 5898 ValueToValueMap ValMap; 5899 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5900 for (Instruction *D : Defs) { 5901 if (isa<BitCastInst>(D)) { 5902 ValMap[D] = D->getOperand(0); 5903 DeletedInstrs.insert(D); 5904 } else { 5905 ValMap[D] = 5906 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5907 } 5908 } 5909 for (PHINode *Phi : PhiNodes) 5910 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5911 Phi->getName() + ".tc", Phi); 5912 // Pipe together all the PhiNodes. 5913 for (PHINode *Phi : PhiNodes) { 5914 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5915 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5916 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5917 Phi->getIncomingBlock(i)); 5918 Visited.insert(NewPhi); 5919 } 5920 // And finally pipe up the stores and bitcasts 5921 for (Instruction *U : Uses) { 5922 if (isa<BitCastInst>(U)) { 5923 DeletedInstrs.insert(U); 5924 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5925 } else { 5926 U->setOperand(0, 5927 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5928 } 5929 } 5930 5931 // Save the removed phis to be deleted later. 5932 for (PHINode *Phi : PhiNodes) 5933 DeletedInstrs.insert(Phi); 5934 return true; 5935 } 5936 5937 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5938 if (!OptimizePhiTypes) 5939 return false; 5940 5941 bool Changed = false; 5942 SmallPtrSet<PHINode *, 4> Visited; 5943 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5944 5945 // Attempt to optimize all the phis in the functions to the correct type. 5946 for (auto &BB : F) 5947 for (auto &Phi : BB.phis()) 5948 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5949 5950 // Remove any old phi's that have been converted. 5951 for (auto *I : DeletedInstrs) { 5952 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5953 I->eraseFromParent(); 5954 } 5955 5956 return Changed; 5957 } 5958 5959 /// Return true, if an ext(load) can be formed from an extension in 5960 /// \p MovedExts. 5961 bool CodeGenPrepare::canFormExtLd( 5962 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5963 Instruction *&Inst, bool HasPromoted) { 5964 for (auto *MovedExtInst : MovedExts) { 5965 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5966 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5967 Inst = MovedExtInst; 5968 break; 5969 } 5970 } 5971 if (!LI) 5972 return false; 5973 5974 // If they're already in the same block, there's nothing to do. 5975 // Make the cheap checks first if we did not promote. 5976 // If we promoted, we need to check if it is indeed profitable. 5977 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5978 return false; 5979 5980 return TLI->isExtLoad(LI, Inst, *DL); 5981 } 5982 5983 /// Move a zext or sext fed by a load into the same basic block as the load, 5984 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5985 /// extend into the load. 5986 /// 5987 /// E.g., 5988 /// \code 5989 /// %ld = load i32* %addr 5990 /// %add = add nuw i32 %ld, 4 5991 /// %zext = zext i32 %add to i64 5992 // \endcode 5993 /// => 5994 /// \code 5995 /// %ld = load i32* %addr 5996 /// %zext = zext i32 %ld to i64 5997 /// %add = add nuw i64 %zext, 4 5998 /// \encode 5999 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6000 /// allow us to match zext(load i32*) to i64. 6001 /// 6002 /// Also, try to promote the computations used to obtain a sign extended 6003 /// value used into memory accesses. 6004 /// E.g., 6005 /// \code 6006 /// a = add nsw i32 b, 3 6007 /// d = sext i32 a to i64 6008 /// e = getelementptr ..., i64 d 6009 /// \endcode 6010 /// => 6011 /// \code 6012 /// f = sext i32 b to i64 6013 /// a = add nsw i64 f, 3 6014 /// e = getelementptr ..., i64 a 6015 /// \endcode 6016 /// 6017 /// \p Inst[in/out] the extension may be modified during the process if some 6018 /// promotions apply. 6019 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6020 bool AllowPromotionWithoutCommonHeader = false; 6021 /// See if it is an interesting sext operations for the address type 6022 /// promotion before trying to promote it, e.g., the ones with the right 6023 /// type and used in memory accesses. 6024 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6025 *Inst, AllowPromotionWithoutCommonHeader); 6026 TypePromotionTransaction TPT(RemovedInsts); 6027 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6028 TPT.getRestorationPoint(); 6029 SmallVector<Instruction *, 1> Exts; 6030 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6031 Exts.push_back(Inst); 6032 6033 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6034 6035 // Look for a load being extended. 6036 LoadInst *LI = nullptr; 6037 Instruction *ExtFedByLoad; 6038 6039 // Try to promote a chain of computation if it allows to form an extended 6040 // load. 6041 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6042 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6043 TPT.commit(); 6044 // Move the extend into the same block as the load. 6045 ExtFedByLoad->moveAfter(LI); 6046 ++NumExtsMoved; 6047 Inst = ExtFedByLoad; 6048 return true; 6049 } 6050 6051 // Continue promoting SExts if known as considerable depending on targets. 6052 if (ATPConsiderable && 6053 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6054 HasPromoted, TPT, SpeculativelyMovedExts)) 6055 return true; 6056 6057 TPT.rollback(LastKnownGood); 6058 return false; 6059 } 6060 6061 // Perform address type promotion if doing so is profitable. 6062 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6063 // instructions that sign extended the same initial value. However, if 6064 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6065 // extension is just profitable. 6066 bool CodeGenPrepare::performAddressTypePromotion( 6067 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6068 bool HasPromoted, TypePromotionTransaction &TPT, 6069 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6070 bool Promoted = false; 6071 SmallPtrSet<Instruction *, 1> UnhandledExts; 6072 bool AllSeenFirst = true; 6073 for (auto *I : SpeculativelyMovedExts) { 6074 Value *HeadOfChain = I->getOperand(0); 6075 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6076 SeenChainsForSExt.find(HeadOfChain); 6077 // If there is an unhandled SExt which has the same header, try to promote 6078 // it as well. 6079 if (AlreadySeen != SeenChainsForSExt.end()) { 6080 if (AlreadySeen->second != nullptr) 6081 UnhandledExts.insert(AlreadySeen->second); 6082 AllSeenFirst = false; 6083 } 6084 } 6085 6086 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6087 SpeculativelyMovedExts.size() == 1)) { 6088 TPT.commit(); 6089 if (HasPromoted) 6090 Promoted = true; 6091 for (auto *I : SpeculativelyMovedExts) { 6092 Value *HeadOfChain = I->getOperand(0); 6093 SeenChainsForSExt[HeadOfChain] = nullptr; 6094 ValToSExtendedUses[HeadOfChain].push_back(I); 6095 } 6096 // Update Inst as promotion happen. 6097 Inst = SpeculativelyMovedExts.pop_back_val(); 6098 } else { 6099 // This is the first chain visited from the header, keep the current chain 6100 // as unhandled. Defer to promote this until we encounter another SExt 6101 // chain derived from the same header. 6102 for (auto *I : SpeculativelyMovedExts) { 6103 Value *HeadOfChain = I->getOperand(0); 6104 SeenChainsForSExt[HeadOfChain] = Inst; 6105 } 6106 return false; 6107 } 6108 6109 if (!AllSeenFirst && !UnhandledExts.empty()) 6110 for (auto *VisitedSExt : UnhandledExts) { 6111 if (RemovedInsts.count(VisitedSExt)) 6112 continue; 6113 TypePromotionTransaction TPT(RemovedInsts); 6114 SmallVector<Instruction *, 1> Exts; 6115 SmallVector<Instruction *, 2> Chains; 6116 Exts.push_back(VisitedSExt); 6117 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6118 TPT.commit(); 6119 if (HasPromoted) 6120 Promoted = true; 6121 for (auto *I : Chains) { 6122 Value *HeadOfChain = I->getOperand(0); 6123 // Mark this as handled. 6124 SeenChainsForSExt[HeadOfChain] = nullptr; 6125 ValToSExtendedUses[HeadOfChain].push_back(I); 6126 } 6127 } 6128 return Promoted; 6129 } 6130 6131 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6132 BasicBlock *DefBB = I->getParent(); 6133 6134 // If the result of a {s|z}ext and its source are both live out, rewrite all 6135 // other uses of the source with result of extension. 6136 Value *Src = I->getOperand(0); 6137 if (Src->hasOneUse()) 6138 return false; 6139 6140 // Only do this xform if truncating is free. 6141 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6142 return false; 6143 6144 // Only safe to perform the optimization if the source is also defined in 6145 // this block. 6146 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6147 return false; 6148 6149 bool DefIsLiveOut = false; 6150 for (User *U : I->users()) { 6151 Instruction *UI = cast<Instruction>(U); 6152 6153 // Figure out which BB this ext is used in. 6154 BasicBlock *UserBB = UI->getParent(); 6155 if (UserBB == DefBB) continue; 6156 DefIsLiveOut = true; 6157 break; 6158 } 6159 if (!DefIsLiveOut) 6160 return false; 6161 6162 // Make sure none of the uses are PHI nodes. 6163 for (User *U : Src->users()) { 6164 Instruction *UI = cast<Instruction>(U); 6165 BasicBlock *UserBB = UI->getParent(); 6166 if (UserBB == DefBB) continue; 6167 // Be conservative. We don't want this xform to end up introducing 6168 // reloads just before load / store instructions. 6169 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6170 return false; 6171 } 6172 6173 // InsertedTruncs - Only insert one trunc in each block once. 6174 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6175 6176 bool MadeChange = false; 6177 for (Use &U : Src->uses()) { 6178 Instruction *User = cast<Instruction>(U.getUser()); 6179 6180 // Figure out which BB this ext is used in. 6181 BasicBlock *UserBB = User->getParent(); 6182 if (UserBB == DefBB) continue; 6183 6184 // Both src and def are live in this block. Rewrite the use. 6185 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6186 6187 if (!InsertedTrunc) { 6188 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6189 assert(InsertPt != UserBB->end()); 6190 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6191 InsertedInsts.insert(InsertedTrunc); 6192 } 6193 6194 // Replace a use of the {s|z}ext source with a use of the result. 6195 U = InsertedTrunc; 6196 ++NumExtUses; 6197 MadeChange = true; 6198 } 6199 6200 return MadeChange; 6201 } 6202 6203 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6204 // just after the load if the target can fold this into one extload instruction, 6205 // with the hope of eliminating some of the other later "and" instructions using 6206 // the loaded value. "and"s that are made trivially redundant by the insertion 6207 // of the new "and" are removed by this function, while others (e.g. those whose 6208 // path from the load goes through a phi) are left for isel to potentially 6209 // remove. 6210 // 6211 // For example: 6212 // 6213 // b0: 6214 // x = load i32 6215 // ... 6216 // b1: 6217 // y = and x, 0xff 6218 // z = use y 6219 // 6220 // becomes: 6221 // 6222 // b0: 6223 // x = load i32 6224 // x' = and x, 0xff 6225 // ... 6226 // b1: 6227 // z = use x' 6228 // 6229 // whereas: 6230 // 6231 // b0: 6232 // x1 = load i32 6233 // ... 6234 // b1: 6235 // x2 = load i32 6236 // ... 6237 // b2: 6238 // x = phi x1, x2 6239 // y = and x, 0xff 6240 // 6241 // becomes (after a call to optimizeLoadExt for each load): 6242 // 6243 // b0: 6244 // x1 = load i32 6245 // x1' = and x1, 0xff 6246 // ... 6247 // b1: 6248 // x2 = load i32 6249 // x2' = and x2, 0xff 6250 // ... 6251 // b2: 6252 // x = phi x1', x2' 6253 // y = and x, 0xff 6254 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6255 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6256 return false; 6257 6258 // Skip loads we've already transformed. 6259 if (Load->hasOneUse() && 6260 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6261 return false; 6262 6263 // Look at all uses of Load, looking through phis, to determine how many bits 6264 // of the loaded value are needed. 6265 SmallVector<Instruction *, 8> WorkList; 6266 SmallPtrSet<Instruction *, 16> Visited; 6267 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6268 for (auto *U : Load->users()) 6269 WorkList.push_back(cast<Instruction>(U)); 6270 6271 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6272 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6273 APInt DemandBits(BitWidth, 0); 6274 APInt WidestAndBits(BitWidth, 0); 6275 6276 while (!WorkList.empty()) { 6277 Instruction *I = WorkList.back(); 6278 WorkList.pop_back(); 6279 6280 // Break use-def graph loops. 6281 if (!Visited.insert(I).second) 6282 continue; 6283 6284 // For a PHI node, push all of its users. 6285 if (auto *Phi = dyn_cast<PHINode>(I)) { 6286 for (auto *U : Phi->users()) 6287 WorkList.push_back(cast<Instruction>(U)); 6288 continue; 6289 } 6290 6291 switch (I->getOpcode()) { 6292 case Instruction::And: { 6293 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6294 if (!AndC) 6295 return false; 6296 APInt AndBits = AndC->getValue(); 6297 DemandBits |= AndBits; 6298 // Keep track of the widest and mask we see. 6299 if (AndBits.ugt(WidestAndBits)) 6300 WidestAndBits = AndBits; 6301 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6302 AndsToMaybeRemove.push_back(I); 6303 break; 6304 } 6305 6306 case Instruction::Shl: { 6307 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6308 if (!ShlC) 6309 return false; 6310 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6311 DemandBits.setLowBits(BitWidth - ShiftAmt); 6312 break; 6313 } 6314 6315 case Instruction::Trunc: { 6316 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6317 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6318 DemandBits.setLowBits(TruncBitWidth); 6319 break; 6320 } 6321 6322 default: 6323 return false; 6324 } 6325 } 6326 6327 uint32_t ActiveBits = DemandBits.getActiveBits(); 6328 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6329 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6330 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6331 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6332 // followed by an AND. 6333 // TODO: Look into removing this restriction by fixing backends to either 6334 // return false for isLoadExtLegal for i1 or have them select this pattern to 6335 // a single instruction. 6336 // 6337 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6338 // mask, since these are the only ands that will be removed by isel. 6339 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6340 WidestAndBits != DemandBits) 6341 return false; 6342 6343 LLVMContext &Ctx = Load->getType()->getContext(); 6344 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6345 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6346 6347 // Reject cases that won't be matched as extloads. 6348 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6349 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6350 return false; 6351 6352 IRBuilder<> Builder(Load->getNextNode()); 6353 auto *NewAnd = cast<Instruction>( 6354 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6355 // Mark this instruction as "inserted by CGP", so that other 6356 // optimizations don't touch it. 6357 InsertedInsts.insert(NewAnd); 6358 6359 // Replace all uses of load with new and (except for the use of load in the 6360 // new and itself). 6361 Load->replaceAllUsesWith(NewAnd); 6362 NewAnd->setOperand(0, Load); 6363 6364 // Remove any and instructions that are now redundant. 6365 for (auto *And : AndsToMaybeRemove) 6366 // Check that the and mask is the same as the one we decided to put on the 6367 // new and. 6368 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6369 And->replaceAllUsesWith(NewAnd); 6370 if (&*CurInstIterator == And) 6371 CurInstIterator = std::next(And->getIterator()); 6372 And->eraseFromParent(); 6373 ++NumAndUses; 6374 } 6375 6376 ++NumAndsAdded; 6377 return true; 6378 } 6379 6380 /// Check if V (an operand of a select instruction) is an expensive instruction 6381 /// that is only used once. 6382 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6383 auto *I = dyn_cast<Instruction>(V); 6384 // If it's safe to speculatively execute, then it should not have side 6385 // effects; therefore, it's safe to sink and possibly *not* execute. 6386 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6387 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6388 TargetTransformInfo::TCC_Expensive; 6389 } 6390 6391 /// Returns true if a SelectInst should be turned into an explicit branch. 6392 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6393 const TargetLowering *TLI, 6394 SelectInst *SI) { 6395 // If even a predictable select is cheap, then a branch can't be cheaper. 6396 if (!TLI->isPredictableSelectExpensive()) 6397 return false; 6398 6399 // FIXME: This should use the same heuristics as IfConversion to determine 6400 // whether a select is better represented as a branch. 6401 6402 // If metadata tells us that the select condition is obviously predictable, 6403 // then we want to replace the select with a branch. 6404 uint64_t TrueWeight, FalseWeight; 6405 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6406 uint64_t Max = std::max(TrueWeight, FalseWeight); 6407 uint64_t Sum = TrueWeight + FalseWeight; 6408 if (Sum != 0) { 6409 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6410 if (Probability > TLI->getPredictableBranchThreshold()) 6411 return true; 6412 } 6413 } 6414 6415 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6416 6417 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6418 // comparison condition. If the compare has more than one use, there's 6419 // probably another cmov or setcc around, so it's not worth emitting a branch. 6420 if (!Cmp || !Cmp->hasOneUse()) 6421 return false; 6422 6423 // If either operand of the select is expensive and only needed on one side 6424 // of the select, we should form a branch. 6425 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6426 sinkSelectOperand(TTI, SI->getFalseValue())) 6427 return true; 6428 6429 return false; 6430 } 6431 6432 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6433 /// false value of \p SI. If the true/false value of \p SI is defined by any 6434 /// select instructions in \p Selects, look through the defining select 6435 /// instruction until the true/false value is not defined in \p Selects. 6436 static Value *getTrueOrFalseValue( 6437 SelectInst *SI, bool isTrue, 6438 const SmallPtrSet<const Instruction *, 2> &Selects) { 6439 Value *V = nullptr; 6440 6441 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6442 DefSI = dyn_cast<SelectInst>(V)) { 6443 assert(DefSI->getCondition() == SI->getCondition() && 6444 "The condition of DefSI does not match with SI"); 6445 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6446 } 6447 6448 assert(V && "Failed to get select true/false value"); 6449 return V; 6450 } 6451 6452 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6453 assert(Shift->isShift() && "Expected a shift"); 6454 6455 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6456 // general vector shifts, and (3) the shift amount is a select-of-splatted 6457 // values, hoist the shifts before the select: 6458 // shift Op0, (select Cond, TVal, FVal) --> 6459 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6460 // 6461 // This is inverting a generic IR transform when we know that the cost of a 6462 // general vector shift is more than the cost of 2 shift-by-scalars. 6463 // We can't do this effectively in SDAG because we may not be able to 6464 // determine if the select operands are splats from within a basic block. 6465 Type *Ty = Shift->getType(); 6466 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6467 return false; 6468 Value *Cond, *TVal, *FVal; 6469 if (!match(Shift->getOperand(1), 6470 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6471 return false; 6472 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6473 return false; 6474 6475 IRBuilder<> Builder(Shift); 6476 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6477 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6478 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6479 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6480 Shift->replaceAllUsesWith(NewSel); 6481 Shift->eraseFromParent(); 6482 return true; 6483 } 6484 6485 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6486 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6487 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6488 "Expected a funnel shift"); 6489 6490 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6491 // than general vector shifts, and (3) the shift amount is select-of-splatted 6492 // values, hoist the funnel shifts before the select: 6493 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6494 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6495 // 6496 // This is inverting a generic IR transform when we know that the cost of a 6497 // general vector shift is more than the cost of 2 shift-by-scalars. 6498 // We can't do this effectively in SDAG because we may not be able to 6499 // determine if the select operands are splats from within a basic block. 6500 Type *Ty = Fsh->getType(); 6501 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6502 return false; 6503 Value *Cond, *TVal, *FVal; 6504 if (!match(Fsh->getOperand(2), 6505 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6506 return false; 6507 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6508 return false; 6509 6510 IRBuilder<> Builder(Fsh); 6511 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6512 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6513 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6514 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6515 Fsh->replaceAllUsesWith(NewSel); 6516 Fsh->eraseFromParent(); 6517 return true; 6518 } 6519 6520 /// If we have a SelectInst that will likely profit from branch prediction, 6521 /// turn it into a branch. 6522 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6523 if (DisableSelectToBranch) 6524 return false; 6525 6526 // Find all consecutive select instructions that share the same condition. 6527 SmallVector<SelectInst *, 2> ASI; 6528 ASI.push_back(SI); 6529 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6530 It != SI->getParent()->end(); ++It) { 6531 SelectInst *I = dyn_cast<SelectInst>(&*It); 6532 if (I && SI->getCondition() == I->getCondition()) { 6533 ASI.push_back(I); 6534 } else { 6535 break; 6536 } 6537 } 6538 6539 SelectInst *LastSI = ASI.back(); 6540 // Increment the current iterator to skip all the rest of select instructions 6541 // because they will be either "not lowered" or "all lowered" to branch. 6542 CurInstIterator = std::next(LastSI->getIterator()); 6543 6544 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6545 6546 // Can we convert the 'select' to CF ? 6547 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6548 return false; 6549 6550 TargetLowering::SelectSupportKind SelectKind; 6551 if (VectorCond) 6552 SelectKind = TargetLowering::VectorMaskSelect; 6553 else if (SI->getType()->isVectorTy()) 6554 SelectKind = TargetLowering::ScalarCondVectorVal; 6555 else 6556 SelectKind = TargetLowering::ScalarValSelect; 6557 6558 if (TLI->isSelectSupported(SelectKind) && 6559 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6560 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6561 return false; 6562 6563 // The DominatorTree needs to be rebuilt by any consumers after this 6564 // transformation. We simply reset here rather than setting the ModifiedDT 6565 // flag to avoid restarting the function walk in runOnFunction for each 6566 // select optimized. 6567 DT.reset(); 6568 6569 // Transform a sequence like this: 6570 // start: 6571 // %cmp = cmp uge i32 %a, %b 6572 // %sel = select i1 %cmp, i32 %c, i32 %d 6573 // 6574 // Into: 6575 // start: 6576 // %cmp = cmp uge i32 %a, %b 6577 // %cmp.frozen = freeze %cmp 6578 // br i1 %cmp.frozen, label %select.true, label %select.false 6579 // select.true: 6580 // br label %select.end 6581 // select.false: 6582 // br label %select.end 6583 // select.end: 6584 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6585 // 6586 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6587 // In addition, we may sink instructions that produce %c or %d from 6588 // the entry block into the destination(s) of the new branch. 6589 // If the true or false blocks do not contain a sunken instruction, that 6590 // block and its branch may be optimized away. In that case, one side of the 6591 // first branch will point directly to select.end, and the corresponding PHI 6592 // predecessor block will be the start block. 6593 6594 // First, we split the block containing the select into 2 blocks. 6595 BasicBlock *StartBlock = SI->getParent(); 6596 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6597 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6598 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6599 6600 // Delete the unconditional branch that was just created by the split. 6601 StartBlock->getTerminator()->eraseFromParent(); 6602 6603 // These are the new basic blocks for the conditional branch. 6604 // At least one will become an actual new basic block. 6605 BasicBlock *TrueBlock = nullptr; 6606 BasicBlock *FalseBlock = nullptr; 6607 BranchInst *TrueBranch = nullptr; 6608 BranchInst *FalseBranch = nullptr; 6609 6610 // Sink expensive instructions into the conditional blocks to avoid executing 6611 // them speculatively. 6612 for (SelectInst *SI : ASI) { 6613 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6614 if (TrueBlock == nullptr) { 6615 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6616 EndBlock->getParent(), EndBlock); 6617 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6618 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6619 } 6620 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6621 TrueInst->moveBefore(TrueBranch); 6622 } 6623 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6624 if (FalseBlock == nullptr) { 6625 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6626 EndBlock->getParent(), EndBlock); 6627 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6628 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6629 } 6630 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6631 FalseInst->moveBefore(FalseBranch); 6632 } 6633 } 6634 6635 // If there was nothing to sink, then arbitrarily choose the 'false' side 6636 // for a new input value to the PHI. 6637 if (TrueBlock == FalseBlock) { 6638 assert(TrueBlock == nullptr && 6639 "Unexpected basic block transform while optimizing select"); 6640 6641 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6642 EndBlock->getParent(), EndBlock); 6643 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6644 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6645 } 6646 6647 // Insert the real conditional branch based on the original condition. 6648 // If we did not create a new block for one of the 'true' or 'false' paths 6649 // of the condition, it means that side of the branch goes to the end block 6650 // directly and the path originates from the start block from the point of 6651 // view of the new PHI. 6652 BasicBlock *TT, *FT; 6653 if (TrueBlock == nullptr) { 6654 TT = EndBlock; 6655 FT = FalseBlock; 6656 TrueBlock = StartBlock; 6657 } else if (FalseBlock == nullptr) { 6658 TT = TrueBlock; 6659 FT = EndBlock; 6660 FalseBlock = StartBlock; 6661 } else { 6662 TT = TrueBlock; 6663 FT = FalseBlock; 6664 } 6665 IRBuilder<> IB(SI); 6666 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6667 IB.CreateCondBr(CondFr, TT, FT, SI); 6668 6669 SmallPtrSet<const Instruction *, 2> INS; 6670 INS.insert(ASI.begin(), ASI.end()); 6671 // Use reverse iterator because later select may use the value of the 6672 // earlier select, and we need to propagate value through earlier select 6673 // to get the PHI operand. 6674 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6675 SelectInst *SI = *It; 6676 // The select itself is replaced with a PHI Node. 6677 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6678 PN->takeName(SI); 6679 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6680 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6681 PN->setDebugLoc(SI->getDebugLoc()); 6682 6683 SI->replaceAllUsesWith(PN); 6684 SI->eraseFromParent(); 6685 INS.erase(SI); 6686 ++NumSelectsExpanded; 6687 } 6688 6689 // Instruct OptimizeBlock to skip to the next block. 6690 CurInstIterator = StartBlock->end(); 6691 return true; 6692 } 6693 6694 /// Some targets only accept certain types for splat inputs. For example a VDUP 6695 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6696 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6697 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6698 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6699 m_Undef(), m_ZeroMask()))) 6700 return false; 6701 Type *NewType = TLI->shouldConvertSplatType(SVI); 6702 if (!NewType) 6703 return false; 6704 6705 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6706 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6707 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6708 "Expected a type of the same size!"); 6709 auto *NewVecType = 6710 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6711 6712 // Create a bitcast (shuffle (insert (bitcast(..)))) 6713 IRBuilder<> Builder(SVI->getContext()); 6714 Builder.SetInsertPoint(SVI); 6715 Value *BC1 = Builder.CreateBitCast( 6716 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6717 Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1, 6718 (uint64_t)0); 6719 Value *Shuffle = Builder.CreateShuffleVector( 6720 Insert, UndefValue::get(NewVecType), SVI->getShuffleMask()); 6721 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6722 6723 SVI->replaceAllUsesWith(BC2); 6724 RecursivelyDeleteTriviallyDeadInstructions( 6725 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6726 6727 // Also hoist the bitcast up to its operand if it they are not in the same 6728 // block. 6729 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6730 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6731 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6732 !Op->isTerminator() && !Op->isEHPad()) 6733 BCI->moveAfter(Op); 6734 6735 return true; 6736 } 6737 6738 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6739 // If the operands of I can be folded into a target instruction together with 6740 // I, duplicate and sink them. 6741 SmallVector<Use *, 4> OpsToSink; 6742 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6743 return false; 6744 6745 // OpsToSink can contain multiple uses in a use chain (e.g. 6746 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6747 // uses must come first, so we process the ops in reverse order so as to not 6748 // create invalid IR. 6749 BasicBlock *TargetBB = I->getParent(); 6750 bool Changed = false; 6751 SmallVector<Use *, 4> ToReplace; 6752 for (Use *U : reverse(OpsToSink)) { 6753 auto *UI = cast<Instruction>(U->get()); 6754 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6755 continue; 6756 ToReplace.push_back(U); 6757 } 6758 6759 SetVector<Instruction *> MaybeDead; 6760 DenseMap<Instruction *, Instruction *> NewInstructions; 6761 Instruction *InsertPoint = I; 6762 for (Use *U : ToReplace) { 6763 auto *UI = cast<Instruction>(U->get()); 6764 Instruction *NI = UI->clone(); 6765 NewInstructions[UI] = NI; 6766 MaybeDead.insert(UI); 6767 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6768 NI->insertBefore(InsertPoint); 6769 InsertPoint = NI; 6770 InsertedInsts.insert(NI); 6771 6772 // Update the use for the new instruction, making sure that we update the 6773 // sunk instruction uses, if it is part of a chain that has already been 6774 // sunk. 6775 Instruction *OldI = cast<Instruction>(U->getUser()); 6776 if (NewInstructions.count(OldI)) 6777 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6778 else 6779 U->set(NI); 6780 Changed = true; 6781 } 6782 6783 // Remove instructions that are dead after sinking. 6784 for (auto *I : MaybeDead) { 6785 if (!I->hasNUsesOrMore(1)) { 6786 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6787 I->eraseFromParent(); 6788 } 6789 } 6790 6791 return Changed; 6792 } 6793 6794 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6795 Value *Cond = SI->getCondition(); 6796 Type *OldType = Cond->getType(); 6797 LLVMContext &Context = Cond->getContext(); 6798 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6799 unsigned RegWidth = RegType.getSizeInBits(); 6800 6801 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6802 return false; 6803 6804 // If the register width is greater than the type width, expand the condition 6805 // of the switch instruction and each case constant to the width of the 6806 // register. By widening the type of the switch condition, subsequent 6807 // comparisons (for case comparisons) will not need to be extended to the 6808 // preferred register width, so we will potentially eliminate N-1 extends, 6809 // where N is the number of cases in the switch. 6810 auto *NewType = Type::getIntNTy(Context, RegWidth); 6811 6812 // Zero-extend the switch condition and case constants unless the switch 6813 // condition is a function argument that is already being sign-extended. 6814 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6815 // everything instead. 6816 Instruction::CastOps ExtType = Instruction::ZExt; 6817 if (auto *Arg = dyn_cast<Argument>(Cond)) 6818 if (Arg->hasSExtAttr()) 6819 ExtType = Instruction::SExt; 6820 6821 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6822 ExtInst->insertBefore(SI); 6823 ExtInst->setDebugLoc(SI->getDebugLoc()); 6824 SI->setCondition(ExtInst); 6825 for (auto Case : SI->cases()) { 6826 APInt NarrowConst = Case.getCaseValue()->getValue(); 6827 APInt WideConst = (ExtType == Instruction::ZExt) ? 6828 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6829 Case.setValue(ConstantInt::get(Context, WideConst)); 6830 } 6831 6832 return true; 6833 } 6834 6835 6836 namespace { 6837 6838 /// Helper class to promote a scalar operation to a vector one. 6839 /// This class is used to move downward extractelement transition. 6840 /// E.g., 6841 /// a = vector_op <2 x i32> 6842 /// b = extractelement <2 x i32> a, i32 0 6843 /// c = scalar_op b 6844 /// store c 6845 /// 6846 /// => 6847 /// a = vector_op <2 x i32> 6848 /// c = vector_op a (equivalent to scalar_op on the related lane) 6849 /// * d = extractelement <2 x i32> c, i32 0 6850 /// * store d 6851 /// Assuming both extractelement and store can be combine, we get rid of the 6852 /// transition. 6853 class VectorPromoteHelper { 6854 /// DataLayout associated with the current module. 6855 const DataLayout &DL; 6856 6857 /// Used to perform some checks on the legality of vector operations. 6858 const TargetLowering &TLI; 6859 6860 /// Used to estimated the cost of the promoted chain. 6861 const TargetTransformInfo &TTI; 6862 6863 /// The transition being moved downwards. 6864 Instruction *Transition; 6865 6866 /// The sequence of instructions to be promoted. 6867 SmallVector<Instruction *, 4> InstsToBePromoted; 6868 6869 /// Cost of combining a store and an extract. 6870 unsigned StoreExtractCombineCost; 6871 6872 /// Instruction that will be combined with the transition. 6873 Instruction *CombineInst = nullptr; 6874 6875 /// The instruction that represents the current end of the transition. 6876 /// Since we are faking the promotion until we reach the end of the chain 6877 /// of computation, we need a way to get the current end of the transition. 6878 Instruction *getEndOfTransition() const { 6879 if (InstsToBePromoted.empty()) 6880 return Transition; 6881 return InstsToBePromoted.back(); 6882 } 6883 6884 /// Return the index of the original value in the transition. 6885 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6886 /// c, is at index 0. 6887 unsigned getTransitionOriginalValueIdx() const { 6888 assert(isa<ExtractElementInst>(Transition) && 6889 "Other kind of transitions are not supported yet"); 6890 return 0; 6891 } 6892 6893 /// Return the index of the index in the transition. 6894 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6895 /// is at index 1. 6896 unsigned getTransitionIdx() const { 6897 assert(isa<ExtractElementInst>(Transition) && 6898 "Other kind of transitions are not supported yet"); 6899 return 1; 6900 } 6901 6902 /// Get the type of the transition. 6903 /// This is the type of the original value. 6904 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6905 /// transition is <2 x i32>. 6906 Type *getTransitionType() const { 6907 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6908 } 6909 6910 /// Promote \p ToBePromoted by moving \p Def downward through. 6911 /// I.e., we have the following sequence: 6912 /// Def = Transition <ty1> a to <ty2> 6913 /// b = ToBePromoted <ty2> Def, ... 6914 /// => 6915 /// b = ToBePromoted <ty1> a, ... 6916 /// Def = Transition <ty1> ToBePromoted to <ty2> 6917 void promoteImpl(Instruction *ToBePromoted); 6918 6919 /// Check whether or not it is profitable to promote all the 6920 /// instructions enqueued to be promoted. 6921 bool isProfitableToPromote() { 6922 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6923 unsigned Index = isa<ConstantInt>(ValIdx) 6924 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6925 : -1; 6926 Type *PromotedType = getTransitionType(); 6927 6928 StoreInst *ST = cast<StoreInst>(CombineInst); 6929 unsigned AS = ST->getPointerAddressSpace(); 6930 unsigned Align = ST->getAlignment(); 6931 // Check if this store is supported. 6932 if (!TLI.allowsMisalignedMemoryAccesses( 6933 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6934 Align)) { 6935 // If this is not supported, there is no way we can combine 6936 // the extract with the store. 6937 return false; 6938 } 6939 6940 // The scalar chain of computation has to pay for the transition 6941 // scalar to vector. 6942 // The vector chain has to account for the combining cost. 6943 uint64_t ScalarCost = 6944 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6945 uint64_t VectorCost = StoreExtractCombineCost; 6946 enum TargetTransformInfo::TargetCostKind CostKind = 6947 TargetTransformInfo::TCK_RecipThroughput; 6948 for (const auto &Inst : InstsToBePromoted) { 6949 // Compute the cost. 6950 // By construction, all instructions being promoted are arithmetic ones. 6951 // Moreover, one argument is a constant that can be viewed as a splat 6952 // constant. 6953 Value *Arg0 = Inst->getOperand(0); 6954 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6955 isa<ConstantFP>(Arg0); 6956 TargetTransformInfo::OperandValueKind Arg0OVK = 6957 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6958 : TargetTransformInfo::OK_AnyValue; 6959 TargetTransformInfo::OperandValueKind Arg1OVK = 6960 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6961 : TargetTransformInfo::OK_AnyValue; 6962 ScalarCost += TTI.getArithmeticInstrCost( 6963 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6964 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6965 CostKind, 6966 Arg0OVK, Arg1OVK); 6967 } 6968 LLVM_DEBUG( 6969 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6970 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6971 return ScalarCost > VectorCost; 6972 } 6973 6974 /// Generate a constant vector with \p Val with the same 6975 /// number of elements as the transition. 6976 /// \p UseSplat defines whether or not \p Val should be replicated 6977 /// across the whole vector. 6978 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6979 /// otherwise we generate a vector with as many undef as possible: 6980 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6981 /// used at the index of the extract. 6982 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6983 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6984 if (!UseSplat) { 6985 // If we cannot determine where the constant must be, we have to 6986 // use a splat constant. 6987 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6988 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6989 ExtractIdx = CstVal->getSExtValue(); 6990 else 6991 UseSplat = true; 6992 } 6993 6994 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6995 if (UseSplat) 6996 return ConstantVector::getSplat(EC, Val); 6997 6998 if (!EC.isScalable()) { 6999 SmallVector<Constant *, 4> ConstVec; 7000 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7001 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7002 if (Idx == ExtractIdx) 7003 ConstVec.push_back(Val); 7004 else 7005 ConstVec.push_back(UndefVal); 7006 } 7007 return ConstantVector::get(ConstVec); 7008 } else 7009 llvm_unreachable( 7010 "Generate scalable vector for non-splat is unimplemented"); 7011 } 7012 7013 /// Check if promoting to a vector type an operand at \p OperandIdx 7014 /// in \p Use can trigger undefined behavior. 7015 static bool canCauseUndefinedBehavior(const Instruction *Use, 7016 unsigned OperandIdx) { 7017 // This is not safe to introduce undef when the operand is on 7018 // the right hand side of a division-like instruction. 7019 if (OperandIdx != 1) 7020 return false; 7021 switch (Use->getOpcode()) { 7022 default: 7023 return false; 7024 case Instruction::SDiv: 7025 case Instruction::UDiv: 7026 case Instruction::SRem: 7027 case Instruction::URem: 7028 return true; 7029 case Instruction::FDiv: 7030 case Instruction::FRem: 7031 return !Use->hasNoNaNs(); 7032 } 7033 llvm_unreachable(nullptr); 7034 } 7035 7036 public: 7037 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7038 const TargetTransformInfo &TTI, Instruction *Transition, 7039 unsigned CombineCost) 7040 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7041 StoreExtractCombineCost(CombineCost) { 7042 assert(Transition && "Do not know how to promote null"); 7043 } 7044 7045 /// Check if we can promote \p ToBePromoted to \p Type. 7046 bool canPromote(const Instruction *ToBePromoted) const { 7047 // We could support CastInst too. 7048 return isa<BinaryOperator>(ToBePromoted); 7049 } 7050 7051 /// Check if it is profitable to promote \p ToBePromoted 7052 /// by moving downward the transition through. 7053 bool shouldPromote(const Instruction *ToBePromoted) const { 7054 // Promote only if all the operands can be statically expanded. 7055 // Indeed, we do not want to introduce any new kind of transitions. 7056 for (const Use &U : ToBePromoted->operands()) { 7057 const Value *Val = U.get(); 7058 if (Val == getEndOfTransition()) { 7059 // If the use is a division and the transition is on the rhs, 7060 // we cannot promote the operation, otherwise we may create a 7061 // division by zero. 7062 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7063 return false; 7064 continue; 7065 } 7066 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7067 !isa<ConstantFP>(Val)) 7068 return false; 7069 } 7070 // Check that the resulting operation is legal. 7071 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7072 if (!ISDOpcode) 7073 return false; 7074 return StressStoreExtract || 7075 TLI.isOperationLegalOrCustom( 7076 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7077 } 7078 7079 /// Check whether or not \p Use can be combined 7080 /// with the transition. 7081 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7082 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7083 7084 /// Record \p ToBePromoted as part of the chain to be promoted. 7085 void enqueueForPromotion(Instruction *ToBePromoted) { 7086 InstsToBePromoted.push_back(ToBePromoted); 7087 } 7088 7089 /// Set the instruction that will be combined with the transition. 7090 void recordCombineInstruction(Instruction *ToBeCombined) { 7091 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7092 CombineInst = ToBeCombined; 7093 } 7094 7095 /// Promote all the instructions enqueued for promotion if it is 7096 /// is profitable. 7097 /// \return True if the promotion happened, false otherwise. 7098 bool promote() { 7099 // Check if there is something to promote. 7100 // Right now, if we do not have anything to combine with, 7101 // we assume the promotion is not profitable. 7102 if (InstsToBePromoted.empty() || !CombineInst) 7103 return false; 7104 7105 // Check cost. 7106 if (!StressStoreExtract && !isProfitableToPromote()) 7107 return false; 7108 7109 // Promote. 7110 for (auto &ToBePromoted : InstsToBePromoted) 7111 promoteImpl(ToBePromoted); 7112 InstsToBePromoted.clear(); 7113 return true; 7114 } 7115 }; 7116 7117 } // end anonymous namespace 7118 7119 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7120 // At this point, we know that all the operands of ToBePromoted but Def 7121 // can be statically promoted. 7122 // For Def, we need to use its parameter in ToBePromoted: 7123 // b = ToBePromoted ty1 a 7124 // Def = Transition ty1 b to ty2 7125 // Move the transition down. 7126 // 1. Replace all uses of the promoted operation by the transition. 7127 // = ... b => = ... Def. 7128 assert(ToBePromoted->getType() == Transition->getType() && 7129 "The type of the result of the transition does not match " 7130 "the final type"); 7131 ToBePromoted->replaceAllUsesWith(Transition); 7132 // 2. Update the type of the uses. 7133 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7134 Type *TransitionTy = getTransitionType(); 7135 ToBePromoted->mutateType(TransitionTy); 7136 // 3. Update all the operands of the promoted operation with promoted 7137 // operands. 7138 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7139 for (Use &U : ToBePromoted->operands()) { 7140 Value *Val = U.get(); 7141 Value *NewVal = nullptr; 7142 if (Val == Transition) 7143 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7144 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7145 isa<ConstantFP>(Val)) { 7146 // Use a splat constant if it is not safe to use undef. 7147 NewVal = getConstantVector( 7148 cast<Constant>(Val), 7149 isa<UndefValue>(Val) || 7150 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7151 } else 7152 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7153 "this?"); 7154 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7155 } 7156 Transition->moveAfter(ToBePromoted); 7157 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7158 } 7159 7160 /// Some targets can do store(extractelement) with one instruction. 7161 /// Try to push the extractelement towards the stores when the target 7162 /// has this feature and this is profitable. 7163 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7164 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7165 if (DisableStoreExtract || 7166 (!StressStoreExtract && 7167 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7168 Inst->getOperand(1), CombineCost))) 7169 return false; 7170 7171 // At this point we know that Inst is a vector to scalar transition. 7172 // Try to move it down the def-use chain, until: 7173 // - We can combine the transition with its single use 7174 // => we got rid of the transition. 7175 // - We escape the current basic block 7176 // => we would need to check that we are moving it at a cheaper place and 7177 // we do not do that for now. 7178 BasicBlock *Parent = Inst->getParent(); 7179 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7180 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7181 // If the transition has more than one use, assume this is not going to be 7182 // beneficial. 7183 while (Inst->hasOneUse()) { 7184 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7185 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7186 7187 if (ToBePromoted->getParent() != Parent) { 7188 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7189 << ToBePromoted->getParent()->getName() 7190 << ") than the transition (" << Parent->getName() 7191 << ").\n"); 7192 return false; 7193 } 7194 7195 if (VPH.canCombine(ToBePromoted)) { 7196 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7197 << "will be combined with: " << *ToBePromoted << '\n'); 7198 VPH.recordCombineInstruction(ToBePromoted); 7199 bool Changed = VPH.promote(); 7200 NumStoreExtractExposed += Changed; 7201 return Changed; 7202 } 7203 7204 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7205 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7206 return false; 7207 7208 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7209 7210 VPH.enqueueForPromotion(ToBePromoted); 7211 Inst = ToBePromoted; 7212 } 7213 return false; 7214 } 7215 7216 /// For the instruction sequence of store below, F and I values 7217 /// are bundled together as an i64 value before being stored into memory. 7218 /// Sometimes it is more efficient to generate separate stores for F and I, 7219 /// which can remove the bitwise instructions or sink them to colder places. 7220 /// 7221 /// (store (or (zext (bitcast F to i32) to i64), 7222 /// (shl (zext I to i64), 32)), addr) --> 7223 /// (store F, addr) and (store I, addr+4) 7224 /// 7225 /// Similarly, splitting for other merged store can also be beneficial, like: 7226 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7227 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7228 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7229 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7230 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7231 /// 7232 /// We allow each target to determine specifically which kind of splitting is 7233 /// supported. 7234 /// 7235 /// The store patterns are commonly seen from the simple code snippet below 7236 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7237 /// void goo(const std::pair<int, float> &); 7238 /// hoo() { 7239 /// ... 7240 /// goo(std::make_pair(tmp, ftmp)); 7241 /// ... 7242 /// } 7243 /// 7244 /// Although we already have similar splitting in DAG Combine, we duplicate 7245 /// it in CodeGenPrepare to catch the case in which pattern is across 7246 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7247 /// during code expansion. 7248 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7249 const TargetLowering &TLI) { 7250 // Handle simple but common cases only. 7251 Type *StoreType = SI.getValueOperand()->getType(); 7252 7253 // The code below assumes shifting a value by <number of bits>, 7254 // whereas scalable vectors would have to be shifted by 7255 // <2log(vscale) + number of bits> in order to store the 7256 // low/high parts. Bailing out for now. 7257 if (isa<ScalableVectorType>(StoreType)) 7258 return false; 7259 7260 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7261 DL.getTypeSizeInBits(StoreType) == 0) 7262 return false; 7263 7264 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7265 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7266 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7267 return false; 7268 7269 // Don't split the store if it is volatile. 7270 if (SI.isVolatile()) 7271 return false; 7272 7273 // Match the following patterns: 7274 // (store (or (zext LValue to i64), 7275 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7276 // or 7277 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7278 // (zext LValue to i64), 7279 // Expect both operands of OR and the first operand of SHL have only 7280 // one use. 7281 Value *LValue, *HValue; 7282 if (!match(SI.getValueOperand(), 7283 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7284 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7285 m_SpecificInt(HalfValBitSize)))))) 7286 return false; 7287 7288 // Check LValue and HValue are int with size less or equal than 32. 7289 if (!LValue->getType()->isIntegerTy() || 7290 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7291 !HValue->getType()->isIntegerTy() || 7292 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7293 return false; 7294 7295 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7296 // as the input of target query. 7297 auto *LBC = dyn_cast<BitCastInst>(LValue); 7298 auto *HBC = dyn_cast<BitCastInst>(HValue); 7299 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7300 : EVT::getEVT(LValue->getType()); 7301 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7302 : EVT::getEVT(HValue->getType()); 7303 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7304 return false; 7305 7306 // Start to split store. 7307 IRBuilder<> Builder(SI.getContext()); 7308 Builder.SetInsertPoint(&SI); 7309 7310 // If LValue/HValue is a bitcast in another BB, create a new one in current 7311 // BB so it may be merged with the splitted stores by dag combiner. 7312 if (LBC && LBC->getParent() != SI.getParent()) 7313 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7314 if (HBC && HBC->getParent() != SI.getParent()) 7315 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7316 7317 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7318 auto CreateSplitStore = [&](Value *V, bool Upper) { 7319 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7320 Value *Addr = Builder.CreateBitCast( 7321 SI.getOperand(1), 7322 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7323 Align Alignment = SI.getAlign(); 7324 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7325 if (IsOffsetStore) { 7326 Addr = Builder.CreateGEP( 7327 SplitStoreType, Addr, 7328 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7329 7330 // When splitting the store in half, naturally one half will retain the 7331 // alignment of the original wider store, regardless of whether it was 7332 // over-aligned or not, while the other will require adjustment. 7333 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7334 } 7335 Builder.CreateAlignedStore(V, Addr, Alignment); 7336 }; 7337 7338 CreateSplitStore(LValue, false); 7339 CreateSplitStore(HValue, true); 7340 7341 // Delete the old store. 7342 SI.eraseFromParent(); 7343 return true; 7344 } 7345 7346 // Return true if the GEP has two operands, the first operand is of a sequential 7347 // type, and the second operand is a constant. 7348 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7349 gep_type_iterator I = gep_type_begin(*GEP); 7350 return GEP->getNumOperands() == 2 && 7351 I.isSequential() && 7352 isa<ConstantInt>(GEP->getOperand(1)); 7353 } 7354 7355 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7356 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7357 // reducing liveness interference across those edges benefits global register 7358 // allocation. Currently handles only certain cases. 7359 // 7360 // For example, unmerge %GEPI and %UGEPI as below. 7361 // 7362 // ---------- BEFORE ---------- 7363 // SrcBlock: 7364 // ... 7365 // %GEPIOp = ... 7366 // ... 7367 // %GEPI = gep %GEPIOp, Idx 7368 // ... 7369 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7370 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7371 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7372 // %UGEPI) 7373 // 7374 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7375 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7376 // ... 7377 // 7378 // DstBi: 7379 // ... 7380 // %UGEPI = gep %GEPIOp, UIdx 7381 // ... 7382 // --------------------------- 7383 // 7384 // ---------- AFTER ---------- 7385 // SrcBlock: 7386 // ... (same as above) 7387 // (* %GEPI is still alive on the indirectbr edges) 7388 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7389 // unmerging) 7390 // ... 7391 // 7392 // DstBi: 7393 // ... 7394 // %UGEPI = gep %GEPI, (UIdx-Idx) 7395 // ... 7396 // --------------------------- 7397 // 7398 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7399 // no longer alive on them. 7400 // 7401 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7402 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7403 // not to disable further simplications and optimizations as a result of GEP 7404 // merging. 7405 // 7406 // Note this unmerging may increase the length of the data flow critical path 7407 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7408 // between the register pressure and the length of data-flow critical 7409 // path. Restricting this to the uncommon IndirectBr case would minimize the 7410 // impact of potentially longer critical path, if any, and the impact on compile 7411 // time. 7412 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7413 const TargetTransformInfo *TTI) { 7414 BasicBlock *SrcBlock = GEPI->getParent(); 7415 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7416 // (non-IndirectBr) cases exit early here. 7417 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7418 return false; 7419 // Check that GEPI is a simple gep with a single constant index. 7420 if (!GEPSequentialConstIndexed(GEPI)) 7421 return false; 7422 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7423 // Check that GEPI is a cheap one. 7424 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7425 TargetTransformInfo::TCK_SizeAndLatency) 7426 > TargetTransformInfo::TCC_Basic) 7427 return false; 7428 Value *GEPIOp = GEPI->getOperand(0); 7429 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7430 if (!isa<Instruction>(GEPIOp)) 7431 return false; 7432 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7433 if (GEPIOpI->getParent() != SrcBlock) 7434 return false; 7435 // Check that GEP is used outside the block, meaning it's alive on the 7436 // IndirectBr edge(s). 7437 if (find_if(GEPI->users(), [&](User *Usr) { 7438 if (auto *I = dyn_cast<Instruction>(Usr)) { 7439 if (I->getParent() != SrcBlock) { 7440 return true; 7441 } 7442 } 7443 return false; 7444 }) == GEPI->users().end()) 7445 return false; 7446 // The second elements of the GEP chains to be unmerged. 7447 std::vector<GetElementPtrInst *> UGEPIs; 7448 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7449 // on IndirectBr edges. 7450 for (User *Usr : GEPIOp->users()) { 7451 if (Usr == GEPI) continue; 7452 // Check if Usr is an Instruction. If not, give up. 7453 if (!isa<Instruction>(Usr)) 7454 return false; 7455 auto *UI = cast<Instruction>(Usr); 7456 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7457 if (UI->getParent() == SrcBlock) 7458 continue; 7459 // Check if Usr is a GEP. If not, give up. 7460 if (!isa<GetElementPtrInst>(Usr)) 7461 return false; 7462 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7463 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7464 // the pointer operand to it. If so, record it in the vector. If not, give 7465 // up. 7466 if (!GEPSequentialConstIndexed(UGEPI)) 7467 return false; 7468 if (UGEPI->getOperand(0) != GEPIOp) 7469 return false; 7470 if (GEPIIdx->getType() != 7471 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7472 return false; 7473 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7474 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7475 TargetTransformInfo::TCK_SizeAndLatency) 7476 > TargetTransformInfo::TCC_Basic) 7477 return false; 7478 UGEPIs.push_back(UGEPI); 7479 } 7480 if (UGEPIs.size() == 0) 7481 return false; 7482 // Check the materializing cost of (Uidx-Idx). 7483 for (GetElementPtrInst *UGEPI : UGEPIs) { 7484 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7485 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7486 unsigned ImmCost = 7487 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7488 TargetTransformInfo::TCK_SizeAndLatency); 7489 if (ImmCost > TargetTransformInfo::TCC_Basic) 7490 return false; 7491 } 7492 // Now unmerge between GEPI and UGEPIs. 7493 for (GetElementPtrInst *UGEPI : UGEPIs) { 7494 UGEPI->setOperand(0, GEPI); 7495 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7496 Constant *NewUGEPIIdx = 7497 ConstantInt::get(GEPIIdx->getType(), 7498 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7499 UGEPI->setOperand(1, NewUGEPIIdx); 7500 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7501 // inbounds to avoid UB. 7502 if (!GEPI->isInBounds()) { 7503 UGEPI->setIsInBounds(false); 7504 } 7505 } 7506 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7507 // alive on IndirectBr edges). 7508 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7509 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7510 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7511 return true; 7512 } 7513 7514 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7515 // Bail out if we inserted the instruction to prevent optimizations from 7516 // stepping on each other's toes. 7517 if (InsertedInsts.count(I)) 7518 return false; 7519 7520 // TODO: Move into the switch on opcode below here. 7521 if (PHINode *P = dyn_cast<PHINode>(I)) { 7522 // It is possible for very late stage optimizations (such as SimplifyCFG) 7523 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7524 // trivial PHI, go ahead and zap it here. 7525 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7526 LargeOffsetGEPMap.erase(P); 7527 P->replaceAllUsesWith(V); 7528 P->eraseFromParent(); 7529 ++NumPHIsElim; 7530 return true; 7531 } 7532 return false; 7533 } 7534 7535 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7536 // If the source of the cast is a constant, then this should have 7537 // already been constant folded. The only reason NOT to constant fold 7538 // it is if something (e.g. LSR) was careful to place the constant 7539 // evaluation in a block other than then one that uses it (e.g. to hoist 7540 // the address of globals out of a loop). If this is the case, we don't 7541 // want to forward-subst the cast. 7542 if (isa<Constant>(CI->getOperand(0))) 7543 return false; 7544 7545 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7546 return true; 7547 7548 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7549 /// Sink a zext or sext into its user blocks if the target type doesn't 7550 /// fit in one register 7551 if (TLI->getTypeAction(CI->getContext(), 7552 TLI->getValueType(*DL, CI->getType())) == 7553 TargetLowering::TypeExpandInteger) { 7554 return SinkCast(CI); 7555 } else { 7556 bool MadeChange = optimizeExt(I); 7557 return MadeChange | optimizeExtUses(I); 7558 } 7559 } 7560 return false; 7561 } 7562 7563 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7564 if (optimizeCmp(Cmp, ModifiedDT)) 7565 return true; 7566 7567 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7568 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7569 bool Modified = optimizeLoadExt(LI); 7570 unsigned AS = LI->getPointerAddressSpace(); 7571 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7572 return Modified; 7573 } 7574 7575 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7576 if (splitMergedValStore(*SI, *DL, *TLI)) 7577 return true; 7578 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7579 unsigned AS = SI->getPointerAddressSpace(); 7580 return optimizeMemoryInst(I, SI->getOperand(1), 7581 SI->getOperand(0)->getType(), AS); 7582 } 7583 7584 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7585 unsigned AS = RMW->getPointerAddressSpace(); 7586 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7587 RMW->getType(), AS); 7588 } 7589 7590 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7591 unsigned AS = CmpX->getPointerAddressSpace(); 7592 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7593 CmpX->getCompareOperand()->getType(), AS); 7594 } 7595 7596 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7597 7598 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7599 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7600 7601 // TODO: Move this into the switch on opcode - it handles shifts already. 7602 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7603 BinOp->getOpcode() == Instruction::LShr)) { 7604 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7605 if (CI && TLI->hasExtractBitsInsn()) 7606 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7607 return true; 7608 } 7609 7610 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7611 if (GEPI->hasAllZeroIndices()) { 7612 /// The GEP operand must be a pointer, so must its result -> BitCast 7613 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7614 GEPI->getName(), GEPI); 7615 NC->setDebugLoc(GEPI->getDebugLoc()); 7616 GEPI->replaceAllUsesWith(NC); 7617 GEPI->eraseFromParent(); 7618 ++NumGEPsElim; 7619 optimizeInst(NC, ModifiedDT); 7620 return true; 7621 } 7622 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7623 return true; 7624 } 7625 return false; 7626 } 7627 7628 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7629 // freeze(icmp a, const)) -> icmp (freeze a), const 7630 // This helps generate efficient conditional jumps. 7631 Instruction *CmpI = nullptr; 7632 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7633 CmpI = II; 7634 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7635 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7636 7637 if (CmpI && CmpI->hasOneUse()) { 7638 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7639 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7640 isa<ConstantPointerNull>(Op0); 7641 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7642 isa<ConstantPointerNull>(Op1); 7643 if (Const0 || Const1) { 7644 if (!Const0 || !Const1) { 7645 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7646 F->takeName(FI); 7647 CmpI->setOperand(Const0 ? 1 : 0, F); 7648 } 7649 FI->replaceAllUsesWith(CmpI); 7650 FI->eraseFromParent(); 7651 return true; 7652 } 7653 } 7654 return false; 7655 } 7656 7657 if (tryToSinkFreeOperands(I)) 7658 return true; 7659 7660 switch (I->getOpcode()) { 7661 case Instruction::Shl: 7662 case Instruction::LShr: 7663 case Instruction::AShr: 7664 return optimizeShiftInst(cast<BinaryOperator>(I)); 7665 case Instruction::Call: 7666 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7667 case Instruction::Select: 7668 return optimizeSelectInst(cast<SelectInst>(I)); 7669 case Instruction::ShuffleVector: 7670 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7671 case Instruction::Switch: 7672 return optimizeSwitchInst(cast<SwitchInst>(I)); 7673 case Instruction::ExtractElement: 7674 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7675 } 7676 7677 return false; 7678 } 7679 7680 /// Given an OR instruction, check to see if this is a bitreverse 7681 /// idiom. If so, insert the new intrinsic and return true. 7682 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7683 if (!I.getType()->isIntegerTy() || 7684 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7685 TLI->getValueType(*DL, I.getType(), true))) 7686 return false; 7687 7688 SmallVector<Instruction*, 4> Insts; 7689 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7690 return false; 7691 Instruction *LastInst = Insts.back(); 7692 I.replaceAllUsesWith(LastInst); 7693 RecursivelyDeleteTriviallyDeadInstructions( 7694 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7695 return true; 7696 } 7697 7698 // In this pass we look for GEP and cast instructions that are used 7699 // across basic blocks and rewrite them to improve basic-block-at-a-time 7700 // selection. 7701 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7702 SunkAddrs.clear(); 7703 bool MadeChange = false; 7704 7705 CurInstIterator = BB.begin(); 7706 while (CurInstIterator != BB.end()) { 7707 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7708 if (ModifiedDT) 7709 return true; 7710 } 7711 7712 bool MadeBitReverse = true; 7713 while (MadeBitReverse) { 7714 MadeBitReverse = false; 7715 for (auto &I : reverse(BB)) { 7716 if (makeBitReverse(I)) { 7717 MadeBitReverse = MadeChange = true; 7718 break; 7719 } 7720 } 7721 } 7722 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7723 7724 return MadeChange; 7725 } 7726 7727 // Some CGP optimizations may move or alter what's computed in a block. Check 7728 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7729 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7730 assert(isa<DbgValueInst>(I)); 7731 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7732 7733 // Does this dbg.value refer to a sunk address calculation? 7734 Value *Location = DVI.getVariableLocation(); 7735 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7736 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7737 if (SunkAddr) { 7738 // Point dbg.value at locally computed address, which should give the best 7739 // opportunity to be accurately lowered. This update may change the type of 7740 // pointer being referred to; however this makes no difference to debugging 7741 // information, and we can't generate bitcasts that may affect codegen. 7742 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7743 ValueAsMetadata::get(SunkAddr))); 7744 return true; 7745 } 7746 return false; 7747 } 7748 7749 // A llvm.dbg.value may be using a value before its definition, due to 7750 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7751 // them by moving the dbg.value to immediately after the value definition. 7752 // FIXME: Ideally this should never be necessary, and this has the potential 7753 // to re-order dbg.value intrinsics. 7754 bool CodeGenPrepare::placeDbgValues(Function &F) { 7755 bool MadeChange = false; 7756 DominatorTree DT(F); 7757 7758 for (BasicBlock &BB : F) { 7759 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7760 Instruction *Insn = &*BI++; 7761 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7762 if (!DVI) 7763 continue; 7764 7765 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7766 7767 if (!VI || VI->isTerminator()) 7768 continue; 7769 7770 // If VI is a phi in a block with an EHPad terminator, we can't insert 7771 // after it. 7772 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7773 continue; 7774 7775 // If the defining instruction dominates the dbg.value, we do not need 7776 // to move the dbg.value. 7777 if (DT.dominates(VI, DVI)) 7778 continue; 7779 7780 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7781 << *DVI << ' ' << *VI); 7782 DVI->removeFromParent(); 7783 if (isa<PHINode>(VI)) 7784 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7785 else 7786 DVI->insertAfter(VI); 7787 MadeChange = true; 7788 ++NumDbgValueMoved; 7789 } 7790 } 7791 return MadeChange; 7792 } 7793 7794 /// Scale down both weights to fit into uint32_t. 7795 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7796 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7797 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7798 NewTrue = NewTrue / Scale; 7799 NewFalse = NewFalse / Scale; 7800 } 7801 7802 /// Some targets prefer to split a conditional branch like: 7803 /// \code 7804 /// %0 = icmp ne i32 %a, 0 7805 /// %1 = icmp ne i32 %b, 0 7806 /// %or.cond = or i1 %0, %1 7807 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7808 /// \endcode 7809 /// into multiple branch instructions like: 7810 /// \code 7811 /// bb1: 7812 /// %0 = icmp ne i32 %a, 0 7813 /// br i1 %0, label %TrueBB, label %bb2 7814 /// bb2: 7815 /// %1 = icmp ne i32 %b, 0 7816 /// br i1 %1, label %TrueBB, label %FalseBB 7817 /// \endcode 7818 /// This usually allows instruction selection to do even further optimizations 7819 /// and combine the compare with the branch instruction. Currently this is 7820 /// applied for targets which have "cheap" jump instructions. 7821 /// 7822 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7823 /// 7824 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7825 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7826 return false; 7827 7828 bool MadeChange = false; 7829 for (auto &BB : F) { 7830 // Does this BB end with the following? 7831 // %cond1 = icmp|fcmp|binary instruction ... 7832 // %cond2 = icmp|fcmp|binary instruction ... 7833 // %cond.or = or|and i1 %cond1, cond2 7834 // br i1 %cond.or label %dest1, label %dest2" 7835 BinaryOperator *LogicOp; 7836 BasicBlock *TBB, *FBB; 7837 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7838 continue; 7839 7840 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7841 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7842 continue; 7843 7844 // The merging of mostly empty BB can cause a degenerate branch. 7845 if (TBB == FBB) 7846 continue; 7847 7848 unsigned Opc; 7849 Value *Cond1, *Cond2; 7850 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7851 m_OneUse(m_Value(Cond2))))) 7852 Opc = Instruction::And; 7853 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7854 m_OneUse(m_Value(Cond2))))) 7855 Opc = Instruction::Or; 7856 else 7857 continue; 7858 7859 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7860 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7861 continue; 7862 7863 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7864 7865 // Create a new BB. 7866 auto *TmpBB = 7867 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7868 BB.getParent(), BB.getNextNode()); 7869 7870 // Update original basic block by using the first condition directly by the 7871 // branch instruction and removing the no longer needed and/or instruction. 7872 Br1->setCondition(Cond1); 7873 LogicOp->eraseFromParent(); 7874 7875 // Depending on the condition we have to either replace the true or the 7876 // false successor of the original branch instruction. 7877 if (Opc == Instruction::And) 7878 Br1->setSuccessor(0, TmpBB); 7879 else 7880 Br1->setSuccessor(1, TmpBB); 7881 7882 // Fill in the new basic block. 7883 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7884 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7885 I->removeFromParent(); 7886 I->insertBefore(Br2); 7887 } 7888 7889 // Update PHI nodes in both successors. The original BB needs to be 7890 // replaced in one successor's PHI nodes, because the branch comes now from 7891 // the newly generated BB (NewBB). In the other successor we need to add one 7892 // incoming edge to the PHI nodes, because both branch instructions target 7893 // now the same successor. Depending on the original branch condition 7894 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7895 // we perform the correct update for the PHI nodes. 7896 // This doesn't change the successor order of the just created branch 7897 // instruction (or any other instruction). 7898 if (Opc == Instruction::Or) 7899 std::swap(TBB, FBB); 7900 7901 // Replace the old BB with the new BB. 7902 TBB->replacePhiUsesWith(&BB, TmpBB); 7903 7904 // Add another incoming edge form the new BB. 7905 for (PHINode &PN : FBB->phis()) { 7906 auto *Val = PN.getIncomingValueForBlock(&BB); 7907 PN.addIncoming(Val, TmpBB); 7908 } 7909 7910 // Update the branch weights (from SelectionDAGBuilder:: 7911 // FindMergedConditions). 7912 if (Opc == Instruction::Or) { 7913 // Codegen X | Y as: 7914 // BB1: 7915 // jmp_if_X TBB 7916 // jmp TmpBB 7917 // TmpBB: 7918 // jmp_if_Y TBB 7919 // jmp FBB 7920 // 7921 7922 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7923 // The requirement is that 7924 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7925 // = TrueProb for original BB. 7926 // Assuming the original weights are A and B, one choice is to set BB1's 7927 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7928 // assumes that 7929 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7930 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7931 // TmpBB, but the math is more complicated. 7932 uint64_t TrueWeight, FalseWeight; 7933 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7934 uint64_t NewTrueWeight = TrueWeight; 7935 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7936 scaleWeights(NewTrueWeight, NewFalseWeight); 7937 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7938 .createBranchWeights(TrueWeight, FalseWeight)); 7939 7940 NewTrueWeight = TrueWeight; 7941 NewFalseWeight = 2 * FalseWeight; 7942 scaleWeights(NewTrueWeight, NewFalseWeight); 7943 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7944 .createBranchWeights(TrueWeight, FalseWeight)); 7945 } 7946 } else { 7947 // Codegen X & Y as: 7948 // BB1: 7949 // jmp_if_X TmpBB 7950 // jmp FBB 7951 // TmpBB: 7952 // jmp_if_Y TBB 7953 // jmp FBB 7954 // 7955 // This requires creation of TmpBB after CurBB. 7956 7957 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7958 // The requirement is that 7959 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7960 // = FalseProb for original BB. 7961 // Assuming the original weights are A and B, one choice is to set BB1's 7962 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7963 // assumes that 7964 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7965 uint64_t TrueWeight, FalseWeight; 7966 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7967 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7968 uint64_t NewFalseWeight = FalseWeight; 7969 scaleWeights(NewTrueWeight, NewFalseWeight); 7970 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7971 .createBranchWeights(TrueWeight, FalseWeight)); 7972 7973 NewTrueWeight = 2 * TrueWeight; 7974 NewFalseWeight = FalseWeight; 7975 scaleWeights(NewTrueWeight, NewFalseWeight); 7976 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7977 .createBranchWeights(TrueWeight, FalseWeight)); 7978 } 7979 } 7980 7981 ModifiedDT = true; 7982 MadeChange = true; 7983 7984 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7985 TmpBB->dump()); 7986 } 7987 return MadeChange; 7988 } 7989