1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineValueType.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/Cloning.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/ValueMapper.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<unsigned> FreqRatioToSkipMerge( 179 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 180 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 181 "(frequency of destination block) is greater than this ratio")); 182 183 static cl::opt<bool> ForceSplitStore( 184 "force-split-store", cl::Hidden, cl::init(false), 185 cl::desc("Force store splitting no matter what the target query says.")); 186 187 static cl::opt<bool> 188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 189 cl::desc("Enable merging of redundant sexts when one is dominating" 190 " the other."), cl::init(true)); 191 192 static cl::opt<bool> DisableComplexAddrModes( 193 "disable-complex-addr-modes", cl::Hidden, cl::init(true), 194 cl::desc("Disables combining addressing modes with different parts " 195 "in optimizeMemoryInst.")); 196 197 static cl::opt<bool> 198 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 199 cl::desc("Allow creation of Phis in Address sinking.")); 200 201 static cl::opt<bool> 202 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 203 cl::desc("Allow creation of selects in Address sinking.")); 204 205 namespace { 206 207 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 208 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 209 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 210 using SExts = SmallVector<Instruction *, 16>; 211 using ValueToSExts = DenseMap<Value *, SExts>; 212 213 class TypePromotionTransaction; 214 215 class CodeGenPrepare : public FunctionPass { 216 const TargetMachine *TM = nullptr; 217 const TargetSubtargetInfo *SubtargetInfo; 218 const TargetLowering *TLI = nullptr; 219 const TargetRegisterInfo *TRI; 220 const TargetTransformInfo *TTI = nullptr; 221 const TargetLibraryInfo *TLInfo; 222 const LoopInfo *LI; 223 std::unique_ptr<BlockFrequencyInfo> BFI; 224 std::unique_ptr<BranchProbabilityInfo> BPI; 225 226 /// As we scan instructions optimizing them, this is the next instruction 227 /// to optimize. Transforms that can invalidate this should update it. 228 BasicBlock::iterator CurInstIterator; 229 230 /// Keeps track of non-local addresses that have been sunk into a block. 231 /// This allows us to avoid inserting duplicate code for blocks with 232 /// multiple load/stores of the same address. 233 ValueMap<Value*, Value*> SunkAddrs; 234 235 /// Keeps track of all instructions inserted for the current function. 236 SetOfInstrs InsertedInsts; 237 238 /// Keeps track of the type of the related instruction before their 239 /// promotion for the current function. 240 InstrToOrigTy PromotedInsts; 241 242 /// Keep track of instructions removed during promotion. 243 SetOfInstrs RemovedInsts; 244 245 /// Keep track of sext chains based on their initial value. 246 DenseMap<Value *, Instruction *> SeenChainsForSExt; 247 248 /// Keep track of SExt promoted. 249 ValueToSExts ValToSExtendedUses; 250 251 /// True if CFG is modified in any way. 252 bool ModifiedDT; 253 254 /// True if optimizing for size. 255 bool OptSize; 256 257 /// DataLayout for the Function being processed. 258 const DataLayout *DL = nullptr; 259 260 public: 261 static char ID; // Pass identification, replacement for typeid 262 263 CodeGenPrepare() : FunctionPass(ID) { 264 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 265 } 266 267 bool runOnFunction(Function &F) override; 268 269 StringRef getPassName() const override { return "CodeGen Prepare"; } 270 271 void getAnalysisUsage(AnalysisUsage &AU) const override { 272 // FIXME: When we can selectively preserve passes, preserve the domtree. 273 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 274 AU.addRequired<TargetLibraryInfoWrapperPass>(); 275 AU.addRequired<TargetTransformInfoWrapperPass>(); 276 AU.addRequired<LoopInfoWrapperPass>(); 277 } 278 279 private: 280 bool eliminateFallThrough(Function &F); 281 bool eliminateMostlyEmptyBlocks(Function &F); 282 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 283 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 284 void eliminateMostlyEmptyBlock(BasicBlock *BB); 285 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 286 bool isPreheader); 287 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 288 bool optimizeInst(Instruction *I, bool &ModifiedDT); 289 bool optimizeMemoryInst(Instruction *I, Value *Addr, 290 Type *AccessTy, unsigned AS); 291 bool optimizeInlineAsmInst(CallInst *CS); 292 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 293 bool optimizeExt(Instruction *&I); 294 bool optimizeExtUses(Instruction *I); 295 bool optimizeLoadExt(LoadInst *I); 296 bool optimizeSelectInst(SelectInst *SI); 297 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 298 bool optimizeSwitchInst(SwitchInst *CI); 299 bool optimizeExtractElementInst(Instruction *Inst); 300 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 301 bool placeDbgValues(Function &F); 302 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 303 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 304 bool tryToPromoteExts(TypePromotionTransaction &TPT, 305 const SmallVectorImpl<Instruction *> &Exts, 306 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 307 unsigned CreatedInstsCost = 0); 308 bool mergeSExts(Function &F); 309 bool performAddressTypePromotion( 310 Instruction *&Inst, 311 bool AllowPromotionWithoutCommonHeader, 312 bool HasPromoted, TypePromotionTransaction &TPT, 313 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 314 bool splitBranchCondition(Function &F); 315 bool simplifyOffsetableRelocate(Instruction &I); 316 bool splitIndirectCriticalEdges(Function &F); 317 }; 318 319 } // end anonymous namespace 320 321 char CodeGenPrepare::ID = 0; 322 323 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 324 "Optimize for code generation", false, false) 325 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 326 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 327 "Optimize for code generation", false, false) 328 329 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 330 331 bool CodeGenPrepare::runOnFunction(Function &F) { 332 if (skipFunction(F)) 333 return false; 334 335 DL = &F.getParent()->getDataLayout(); 336 337 bool EverMadeChange = false; 338 // Clear per function information. 339 InsertedInsts.clear(); 340 PromotedInsts.clear(); 341 BFI.reset(); 342 BPI.reset(); 343 344 ModifiedDT = false; 345 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 346 TM = &TPC->getTM<TargetMachine>(); 347 SubtargetInfo = TM->getSubtargetImpl(F); 348 TLI = SubtargetInfo->getTargetLowering(); 349 TRI = SubtargetInfo->getRegisterInfo(); 350 } 351 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 352 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 353 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 354 OptSize = F.optForSize(); 355 356 ProfileSummaryInfo *PSI = 357 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 358 if (ProfileGuidedSectionPrefix) { 359 if (PSI->isFunctionHotInCallGraph(&F)) 360 F.setSectionPrefix(".hot"); 361 else if (PSI->isFunctionColdInCallGraph(&F)) 362 F.setSectionPrefix(".unlikely"); 363 } 364 365 /// This optimization identifies DIV instructions that can be 366 /// profitably bypassed and carried out with a shorter, faster divide. 367 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 368 TLI->isSlowDivBypassed()) { 369 const DenseMap<unsigned int, unsigned int> &BypassWidths = 370 TLI->getBypassSlowDivWidths(); 371 BasicBlock* BB = &*F.begin(); 372 while (BB != nullptr) { 373 // bypassSlowDivision may create new BBs, but we don't want to reapply the 374 // optimization to those blocks. 375 BasicBlock* Next = BB->getNextNode(); 376 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 377 BB = Next; 378 } 379 } 380 381 // Eliminate blocks that contain only PHI nodes and an 382 // unconditional branch. 383 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 384 385 // llvm.dbg.value is far away from the value then iSel may not be able 386 // handle it properly. iSel will drop llvm.dbg.value if it can not 387 // find a node corresponding to the value. 388 EverMadeChange |= placeDbgValues(F); 389 390 if (!DisableBranchOpts) 391 EverMadeChange |= splitBranchCondition(F); 392 393 // Split some critical edges where one of the sources is an indirect branch, 394 // to help generate sane code for PHIs involving such edges. 395 EverMadeChange |= splitIndirectCriticalEdges(F); 396 397 bool MadeChange = true; 398 while (MadeChange) { 399 MadeChange = false; 400 SeenChainsForSExt.clear(); 401 ValToSExtendedUses.clear(); 402 RemovedInsts.clear(); 403 for (Function::iterator I = F.begin(); I != F.end(); ) { 404 BasicBlock *BB = &*I++; 405 bool ModifiedDTOnIteration = false; 406 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 407 408 // Restart BB iteration if the dominator tree of the Function was changed 409 if (ModifiedDTOnIteration) 410 break; 411 } 412 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 413 MadeChange |= mergeSExts(F); 414 415 // Really free removed instructions during promotion. 416 for (Instruction *I : RemovedInsts) 417 I->deleteValue(); 418 419 EverMadeChange |= MadeChange; 420 } 421 422 SunkAddrs.clear(); 423 424 if (!DisableBranchOpts) { 425 MadeChange = false; 426 SmallPtrSet<BasicBlock*, 8> WorkList; 427 for (BasicBlock &BB : F) { 428 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 429 MadeChange |= ConstantFoldTerminator(&BB, true); 430 if (!MadeChange) continue; 431 432 for (SmallVectorImpl<BasicBlock*>::iterator 433 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 434 if (pred_begin(*II) == pred_end(*II)) 435 WorkList.insert(*II); 436 } 437 438 // Delete the dead blocks and any of their dead successors. 439 MadeChange |= !WorkList.empty(); 440 while (!WorkList.empty()) { 441 BasicBlock *BB = *WorkList.begin(); 442 WorkList.erase(BB); 443 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 444 445 DeleteDeadBlock(BB); 446 447 for (SmallVectorImpl<BasicBlock*>::iterator 448 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 449 if (pred_begin(*II) == pred_end(*II)) 450 WorkList.insert(*II); 451 } 452 453 // Merge pairs of basic blocks with unconditional branches, connected by 454 // a single edge. 455 if (EverMadeChange || MadeChange) 456 MadeChange |= eliminateFallThrough(F); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 if (!DisableGCOpts) { 462 SmallVector<Instruction *, 2> Statepoints; 463 for (BasicBlock &BB : F) 464 for (Instruction &I : BB) 465 if (isStatepoint(I)) 466 Statepoints.push_back(&I); 467 for (auto &I : Statepoints) 468 EverMadeChange |= simplifyOffsetableRelocate(*I); 469 } 470 471 return EverMadeChange; 472 } 473 474 /// Merge basic blocks which are connected by a single edge, where one of the 475 /// basic blocks has a single successor pointing to the other basic block, 476 /// which has a single predecessor. 477 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 478 bool Changed = false; 479 // Scan all of the blocks in the function, except for the entry block. 480 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 481 BasicBlock *BB = &*I++; 482 // If the destination block has a single pred, then this is a trivial 483 // edge, just collapse it. 484 BasicBlock *SinglePred = BB->getSinglePredecessor(); 485 486 // Don't merge if BB's address is taken. 487 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 488 489 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 490 if (Term && !Term->isConditional()) { 491 Changed = true; 492 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 493 // Remember if SinglePred was the entry block of the function. 494 // If so, we will need to move BB back to the entry position. 495 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 496 MergeBasicBlockIntoOnlyPred(BB, nullptr); 497 498 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 499 BB->moveBefore(&BB->getParent()->getEntryBlock()); 500 501 // We have erased a block. Update the iterator. 502 I = BB->getIterator(); 503 } 504 } 505 return Changed; 506 } 507 508 /// Find a destination block from BB if BB is mergeable empty block. 509 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 510 // If this block doesn't end with an uncond branch, ignore it. 511 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 512 if (!BI || !BI->isUnconditional()) 513 return nullptr; 514 515 // If the instruction before the branch (skipping debug info) isn't a phi 516 // node, then other stuff is happening here. 517 BasicBlock::iterator BBI = BI->getIterator(); 518 if (BBI != BB->begin()) { 519 --BBI; 520 while (isa<DbgInfoIntrinsic>(BBI)) { 521 if (BBI == BB->begin()) 522 break; 523 --BBI; 524 } 525 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 526 return nullptr; 527 } 528 529 // Do not break infinite loops. 530 BasicBlock *DestBB = BI->getSuccessor(0); 531 if (DestBB == BB) 532 return nullptr; 533 534 if (!canMergeBlocks(BB, DestBB)) 535 DestBB = nullptr; 536 537 return DestBB; 538 } 539 540 // Return the unique indirectbr predecessor of a block. This may return null 541 // even if such a predecessor exists, if it's not useful for splitting. 542 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 543 // predecessors of BB. 544 static BasicBlock * 545 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 546 // If the block doesn't have any PHIs, we don't care about it, since there's 547 // no point in splitting it. 548 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 549 if (!PN) 550 return nullptr; 551 552 // Verify we have exactly one IBR predecessor. 553 // Conservatively bail out if one of the other predecessors is not a "regular" 554 // terminator (that is, not a switch or a br). 555 BasicBlock *IBB = nullptr; 556 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 557 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 558 TerminatorInst *PredTerm = PredBB->getTerminator(); 559 switch (PredTerm->getOpcode()) { 560 case Instruction::IndirectBr: 561 if (IBB) 562 return nullptr; 563 IBB = PredBB; 564 break; 565 case Instruction::Br: 566 case Instruction::Switch: 567 OtherPreds.push_back(PredBB); 568 continue; 569 default: 570 return nullptr; 571 } 572 } 573 574 return IBB; 575 } 576 577 // Split critical edges where the source of the edge is an indirectbr 578 // instruction. This isn't always possible, but we can handle some easy cases. 579 // This is useful because MI is unable to split such critical edges, 580 // which means it will not be able to sink instructions along those edges. 581 // This is especially painful for indirect branches with many successors, where 582 // we end up having to prepare all outgoing values in the origin block. 583 // 584 // Our normal algorithm for splitting critical edges requires us to update 585 // the outgoing edges of the edge origin block, but for an indirectbr this 586 // is hard, since it would require finding and updating the block addresses 587 // the indirect branch uses. But if a block only has a single indirectbr 588 // predecessor, with the others being regular branches, we can do it in a 589 // different way. 590 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 591 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 592 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 593 // create the following structure: 594 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 595 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 596 // Check whether the function has any indirectbrs, and collect which blocks 597 // they may jump to. Since most functions don't have indirect branches, 598 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 599 SmallSetVector<BasicBlock *, 16> Targets; 600 for (auto &BB : F) { 601 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 602 if (!IBI) 603 continue; 604 605 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 606 Targets.insert(IBI->getSuccessor(Succ)); 607 } 608 609 if (Targets.empty()) 610 return false; 611 612 bool Changed = false; 613 for (BasicBlock *Target : Targets) { 614 SmallVector<BasicBlock *, 16> OtherPreds; 615 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 616 // If we did not found an indirectbr, or the indirectbr is the only 617 // incoming edge, this isn't the kind of edge we're looking for. 618 if (!IBRPred || OtherPreds.empty()) 619 continue; 620 621 // Don't even think about ehpads/landingpads. 622 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 623 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 624 continue; 625 626 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 627 // It's possible Target was its own successor through an indirectbr. 628 // In this case, the indirectbr now comes from BodyBlock. 629 if (IBRPred == Target) 630 IBRPred = BodyBlock; 631 632 // At this point Target only has PHIs, and BodyBlock has the rest of the 633 // block's body. Create a copy of Target that will be used by the "direct" 634 // preds. 635 ValueToValueMapTy VMap; 636 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 637 638 for (BasicBlock *Pred : OtherPreds) { 639 // If the target is a loop to itself, then the terminator of the split 640 // block needs to be updated. 641 if (Pred == Target) 642 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 643 else 644 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 645 } 646 647 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 648 // they are clones, so the number of PHIs are the same. 649 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 650 // (b) Leave that as the only edge in the "Indirect" PHI. 651 // (c) Merge the two in the body block. 652 BasicBlock::iterator Indirect = Target->begin(), 653 End = Target->getFirstNonPHI()->getIterator(); 654 BasicBlock::iterator Direct = DirectSucc->begin(); 655 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 656 657 assert(&*End == Target->getTerminator() && 658 "Block was expected to only contain PHIs"); 659 660 while (Indirect != End) { 661 PHINode *DirPHI = cast<PHINode>(Direct); 662 PHINode *IndPHI = cast<PHINode>(Indirect); 663 664 // Now, clean up - the direct block shouldn't get the indirect value, 665 // and vice versa. 666 DirPHI->removeIncomingValue(IBRPred); 667 Direct++; 668 669 // Advance the pointer here, to avoid invalidation issues when the old 670 // PHI is erased. 671 Indirect++; 672 673 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 674 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 675 IBRPred); 676 677 // Create a PHI in the body block, to merge the direct and indirect 678 // predecessors. 679 PHINode *MergePHI = 680 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 681 MergePHI->addIncoming(NewIndPHI, Target); 682 MergePHI->addIncoming(DirPHI, DirectSucc); 683 684 IndPHI->replaceAllUsesWith(MergePHI); 685 IndPHI->eraseFromParent(); 686 } 687 688 Changed = true; 689 } 690 691 return Changed; 692 } 693 694 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 695 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 696 /// edges in ways that are non-optimal for isel. Start by eliminating these 697 /// blocks so we can split them the way we want them. 698 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 699 SmallPtrSet<BasicBlock *, 16> Preheaders; 700 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 701 while (!LoopList.empty()) { 702 Loop *L = LoopList.pop_back_val(); 703 LoopList.insert(LoopList.end(), L->begin(), L->end()); 704 if (BasicBlock *Preheader = L->getLoopPreheader()) 705 Preheaders.insert(Preheader); 706 } 707 708 bool MadeChange = false; 709 // Note that this intentionally skips the entry block. 710 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 711 BasicBlock *BB = &*I++; 712 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 713 if (!DestBB || 714 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 715 continue; 716 717 eliminateMostlyEmptyBlock(BB); 718 MadeChange = true; 719 } 720 return MadeChange; 721 } 722 723 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 724 BasicBlock *DestBB, 725 bool isPreheader) { 726 // Do not delete loop preheaders if doing so would create a critical edge. 727 // Loop preheaders can be good locations to spill registers. If the 728 // preheader is deleted and we create a critical edge, registers may be 729 // spilled in the loop body instead. 730 if (!DisablePreheaderProtect && isPreheader && 731 !(BB->getSinglePredecessor() && 732 BB->getSinglePredecessor()->getSingleSuccessor())) 733 return false; 734 735 // Try to skip merging if the unique predecessor of BB is terminated by a 736 // switch or indirect branch instruction, and BB is used as an incoming block 737 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 738 // add COPY instructions in the predecessor of BB instead of BB (if it is not 739 // merged). Note that the critical edge created by merging such blocks wont be 740 // split in MachineSink because the jump table is not analyzable. By keeping 741 // such empty block (BB), ISel will place COPY instructions in BB, not in the 742 // predecessor of BB. 743 BasicBlock *Pred = BB->getUniquePredecessor(); 744 if (!Pred || 745 !(isa<SwitchInst>(Pred->getTerminator()) || 746 isa<IndirectBrInst>(Pred->getTerminator()))) 747 return true; 748 749 if (BB->getTerminator() != BB->getFirstNonPHI()) 750 return true; 751 752 // We use a simple cost heuristic which determine skipping merging is 753 // profitable if the cost of skipping merging is less than the cost of 754 // merging : Cost(skipping merging) < Cost(merging BB), where the 755 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 756 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 757 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 758 // Freq(Pred) / Freq(BB) > 2. 759 // Note that if there are multiple empty blocks sharing the same incoming 760 // value for the PHIs in the DestBB, we consider them together. In such 761 // case, Cost(merging BB) will be the sum of their frequencies. 762 763 if (!isa<PHINode>(DestBB->begin())) 764 return true; 765 766 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 767 768 // Find all other incoming blocks from which incoming values of all PHIs in 769 // DestBB are the same as the ones from BB. 770 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 771 ++PI) { 772 BasicBlock *DestBBPred = *PI; 773 if (DestBBPred == BB) 774 continue; 775 776 bool HasAllSameValue = true; 777 BasicBlock::const_iterator DestBBI = DestBB->begin(); 778 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 779 if (DestPN->getIncomingValueForBlock(BB) != 780 DestPN->getIncomingValueForBlock(DestBBPred)) { 781 HasAllSameValue = false; 782 break; 783 } 784 } 785 if (HasAllSameValue) 786 SameIncomingValueBBs.insert(DestBBPred); 787 } 788 789 // See if all BB's incoming values are same as the value from Pred. In this 790 // case, no reason to skip merging because COPYs are expected to be place in 791 // Pred already. 792 if (SameIncomingValueBBs.count(Pred)) 793 return true; 794 795 if (!BFI) { 796 Function &F = *BB->getParent(); 797 LoopInfo LI{DominatorTree(F)}; 798 BPI.reset(new BranchProbabilityInfo(F, LI)); 799 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 800 } 801 802 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 803 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 804 805 for (auto SameValueBB : SameIncomingValueBBs) 806 if (SameValueBB->getUniquePredecessor() == Pred && 807 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 808 BBFreq += BFI->getBlockFreq(SameValueBB); 809 810 return PredFreq.getFrequency() <= 811 BBFreq.getFrequency() * FreqRatioToSkipMerge; 812 } 813 814 /// Return true if we can merge BB into DestBB if there is a single 815 /// unconditional branch between them, and BB contains no other non-phi 816 /// instructions. 817 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 818 const BasicBlock *DestBB) const { 819 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 820 // the successor. If there are more complex condition (e.g. preheaders), 821 // don't mess around with them. 822 BasicBlock::const_iterator BBI = BB->begin(); 823 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 824 for (const User *U : PN->users()) { 825 const Instruction *UI = cast<Instruction>(U); 826 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 827 return false; 828 // If User is inside DestBB block and it is a PHINode then check 829 // incoming value. If incoming value is not from BB then this is 830 // a complex condition (e.g. preheaders) we want to avoid here. 831 if (UI->getParent() == DestBB) { 832 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 833 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 834 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 835 if (Insn && Insn->getParent() == BB && 836 Insn->getParent() != UPN->getIncomingBlock(I)) 837 return false; 838 } 839 } 840 } 841 } 842 843 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 844 // and DestBB may have conflicting incoming values for the block. If so, we 845 // can't merge the block. 846 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 847 if (!DestBBPN) return true; // no conflict. 848 849 // Collect the preds of BB. 850 SmallPtrSet<const BasicBlock*, 16> BBPreds; 851 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 852 // It is faster to get preds from a PHI than with pred_iterator. 853 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 854 BBPreds.insert(BBPN->getIncomingBlock(i)); 855 } else { 856 BBPreds.insert(pred_begin(BB), pred_end(BB)); 857 } 858 859 // Walk the preds of DestBB. 860 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 861 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 862 if (BBPreds.count(Pred)) { // Common predecessor? 863 BBI = DestBB->begin(); 864 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 865 const Value *V1 = PN->getIncomingValueForBlock(Pred); 866 const Value *V2 = PN->getIncomingValueForBlock(BB); 867 868 // If V2 is a phi node in BB, look up what the mapped value will be. 869 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 870 if (V2PN->getParent() == BB) 871 V2 = V2PN->getIncomingValueForBlock(Pred); 872 873 // If there is a conflict, bail out. 874 if (V1 != V2) return false; 875 } 876 } 877 } 878 879 return true; 880 } 881 882 /// Eliminate a basic block that has only phi's and an unconditional branch in 883 /// it. 884 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 885 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 886 BasicBlock *DestBB = BI->getSuccessor(0); 887 888 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 889 890 // If the destination block has a single pred, then this is a trivial edge, 891 // just collapse it. 892 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 893 if (SinglePred != DestBB) { 894 // Remember if SinglePred was the entry block of the function. If so, we 895 // will need to move BB back to the entry position. 896 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 897 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 898 899 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 900 BB->moveBefore(&BB->getParent()->getEntryBlock()); 901 902 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 903 return; 904 } 905 } 906 907 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 908 // to handle the new incoming edges it is about to have. 909 PHINode *PN; 910 for (BasicBlock::iterator BBI = DestBB->begin(); 911 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 912 // Remove the incoming value for BB, and remember it. 913 Value *InVal = PN->removeIncomingValue(BB, false); 914 915 // Two options: either the InVal is a phi node defined in BB or it is some 916 // value that dominates BB. 917 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 918 if (InValPhi && InValPhi->getParent() == BB) { 919 // Add all of the input values of the input PHI as inputs of this phi. 920 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 921 PN->addIncoming(InValPhi->getIncomingValue(i), 922 InValPhi->getIncomingBlock(i)); 923 } else { 924 // Otherwise, add one instance of the dominating value for each edge that 925 // we will be adding. 926 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 927 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 928 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 929 } else { 930 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 931 PN->addIncoming(InVal, *PI); 932 } 933 } 934 } 935 936 // The PHIs are now updated, change everything that refers to BB to use 937 // DestBB and remove BB. 938 BB->replaceAllUsesWith(DestBB); 939 BB->eraseFromParent(); 940 ++NumBlocksElim; 941 942 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 943 } 944 945 // Computes a map of base pointer relocation instructions to corresponding 946 // derived pointer relocation instructions given a vector of all relocate calls 947 static void computeBaseDerivedRelocateMap( 948 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 949 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 950 &RelocateInstMap) { 951 // Collect information in two maps: one primarily for locating the base object 952 // while filling the second map; the second map is the final structure holding 953 // a mapping between Base and corresponding Derived relocate calls 954 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 955 for (auto *ThisRelocate : AllRelocateCalls) { 956 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 957 ThisRelocate->getDerivedPtrIndex()); 958 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 959 } 960 for (auto &Item : RelocateIdxMap) { 961 std::pair<unsigned, unsigned> Key = Item.first; 962 if (Key.first == Key.second) 963 // Base relocation: nothing to insert 964 continue; 965 966 GCRelocateInst *I = Item.second; 967 auto BaseKey = std::make_pair(Key.first, Key.first); 968 969 // We're iterating over RelocateIdxMap so we cannot modify it. 970 auto MaybeBase = RelocateIdxMap.find(BaseKey); 971 if (MaybeBase == RelocateIdxMap.end()) 972 // TODO: We might want to insert a new base object relocate and gep off 973 // that, if there are enough derived object relocates. 974 continue; 975 976 RelocateInstMap[MaybeBase->second].push_back(I); 977 } 978 } 979 980 // Accepts a GEP and extracts the operands into a vector provided they're all 981 // small integer constants 982 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 983 SmallVectorImpl<Value *> &OffsetV) { 984 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 985 // Only accept small constant integer operands 986 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 987 if (!Op || Op->getZExtValue() > 20) 988 return false; 989 } 990 991 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 992 OffsetV.push_back(GEP->getOperand(i)); 993 return true; 994 } 995 996 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 997 // replace, computes a replacement, and affects it. 998 static bool 999 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1000 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1001 bool MadeChange = false; 1002 // We must ensure the relocation of derived pointer is defined after 1003 // relocation of base pointer. If we find a relocation corresponding to base 1004 // defined earlier than relocation of base then we move relocation of base 1005 // right before found relocation. We consider only relocation in the same 1006 // basic block as relocation of base. Relocations from other basic block will 1007 // be skipped by optimization and we do not care about them. 1008 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1009 &*R != RelocatedBase; ++R) 1010 if (auto RI = dyn_cast<GCRelocateInst>(R)) 1011 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1012 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1013 RelocatedBase->moveBefore(RI); 1014 break; 1015 } 1016 1017 for (GCRelocateInst *ToReplace : Targets) { 1018 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1019 "Not relocating a derived object of the original base object"); 1020 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1021 // A duplicate relocate call. TODO: coalesce duplicates. 1022 continue; 1023 } 1024 1025 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1026 // Base and derived relocates are in different basic blocks. 1027 // In this case transform is only valid when base dominates derived 1028 // relocate. However it would be too expensive to check dominance 1029 // for each such relocate, so we skip the whole transformation. 1030 continue; 1031 } 1032 1033 Value *Base = ToReplace->getBasePtr(); 1034 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1035 if (!Derived || Derived->getPointerOperand() != Base) 1036 continue; 1037 1038 SmallVector<Value *, 2> OffsetV; 1039 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1040 continue; 1041 1042 // Create a Builder and replace the target callsite with a gep 1043 assert(RelocatedBase->getNextNode() && 1044 "Should always have one since it's not a terminator"); 1045 1046 // Insert after RelocatedBase 1047 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1048 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1049 1050 // If gc_relocate does not match the actual type, cast it to the right type. 1051 // In theory, there must be a bitcast after gc_relocate if the type does not 1052 // match, and we should reuse it to get the derived pointer. But it could be 1053 // cases like this: 1054 // bb1: 1055 // ... 1056 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1057 // br label %merge 1058 // 1059 // bb2: 1060 // ... 1061 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1062 // br label %merge 1063 // 1064 // merge: 1065 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1066 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1067 // 1068 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1069 // no matter there is already one or not. In this way, we can handle all cases, and 1070 // the extra bitcast should be optimized away in later passes. 1071 Value *ActualRelocatedBase = RelocatedBase; 1072 if (RelocatedBase->getType() != Base->getType()) { 1073 ActualRelocatedBase = 1074 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1075 } 1076 Value *Replacement = Builder.CreateGEP( 1077 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1078 Replacement->takeName(ToReplace); 1079 // If the newly generated derived pointer's type does not match the original derived 1080 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1081 Value *ActualReplacement = Replacement; 1082 if (Replacement->getType() != ToReplace->getType()) { 1083 ActualReplacement = 1084 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1085 } 1086 ToReplace->replaceAllUsesWith(ActualReplacement); 1087 ToReplace->eraseFromParent(); 1088 1089 MadeChange = true; 1090 } 1091 return MadeChange; 1092 } 1093 1094 // Turns this: 1095 // 1096 // %base = ... 1097 // %ptr = gep %base + 15 1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1099 // %base' = relocate(%tok, i32 4, i32 4) 1100 // %ptr' = relocate(%tok, i32 4, i32 5) 1101 // %val = load %ptr' 1102 // 1103 // into this: 1104 // 1105 // %base = ... 1106 // %ptr = gep %base + 15 1107 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1108 // %base' = gc.relocate(%tok, i32 4, i32 4) 1109 // %ptr' = gep %base' + 15 1110 // %val = load %ptr' 1111 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1112 bool MadeChange = false; 1113 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1114 1115 for (auto *U : I.users()) 1116 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1117 // Collect all the relocate calls associated with a statepoint 1118 AllRelocateCalls.push_back(Relocate); 1119 1120 // We need atleast one base pointer relocation + one derived pointer 1121 // relocation to mangle 1122 if (AllRelocateCalls.size() < 2) 1123 return false; 1124 1125 // RelocateInstMap is a mapping from the base relocate instruction to the 1126 // corresponding derived relocate instructions 1127 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1128 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1129 if (RelocateInstMap.empty()) 1130 return false; 1131 1132 for (auto &Item : RelocateInstMap) 1133 // Item.first is the RelocatedBase to offset against 1134 // Item.second is the vector of Targets to replace 1135 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1136 return MadeChange; 1137 } 1138 1139 /// SinkCast - Sink the specified cast instruction into its user blocks 1140 static bool SinkCast(CastInst *CI) { 1141 BasicBlock *DefBB = CI->getParent(); 1142 1143 /// InsertedCasts - Only insert a cast in each block once. 1144 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1145 1146 bool MadeChange = false; 1147 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1148 UI != E; ) { 1149 Use &TheUse = UI.getUse(); 1150 Instruction *User = cast<Instruction>(*UI); 1151 1152 // Figure out which BB this cast is used in. For PHI's this is the 1153 // appropriate predecessor block. 1154 BasicBlock *UserBB = User->getParent(); 1155 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1156 UserBB = PN->getIncomingBlock(TheUse); 1157 } 1158 1159 // Preincrement use iterator so we don't invalidate it. 1160 ++UI; 1161 1162 // The first insertion point of a block containing an EH pad is after the 1163 // pad. If the pad is the user, we cannot sink the cast past the pad. 1164 if (User->isEHPad()) 1165 continue; 1166 1167 // If the block selected to receive the cast is an EH pad that does not 1168 // allow non-PHI instructions before the terminator, we can't sink the 1169 // cast. 1170 if (UserBB->getTerminator()->isEHPad()) 1171 continue; 1172 1173 // If this user is in the same block as the cast, don't change the cast. 1174 if (UserBB == DefBB) continue; 1175 1176 // If we have already inserted a cast into this block, use it. 1177 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1178 1179 if (!InsertedCast) { 1180 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1181 assert(InsertPt != UserBB->end()); 1182 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1183 CI->getType(), "", &*InsertPt); 1184 } 1185 1186 // Replace a use of the cast with a use of the new cast. 1187 TheUse = InsertedCast; 1188 MadeChange = true; 1189 ++NumCastUses; 1190 } 1191 1192 // If we removed all uses, nuke the cast. 1193 if (CI->use_empty()) { 1194 salvageDebugInfo(*CI); 1195 CI->eraseFromParent(); 1196 MadeChange = true; 1197 } 1198 1199 return MadeChange; 1200 } 1201 1202 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1203 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1204 /// reduce the number of virtual registers that must be created and coalesced. 1205 /// 1206 /// Return true if any changes are made. 1207 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1208 const DataLayout &DL) { 1209 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1210 // than sinking only nop casts, but is helpful on some platforms. 1211 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1212 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1213 ASC->getDestAddressSpace())) 1214 return false; 1215 } 1216 1217 // If this is a noop copy, 1218 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1219 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1220 1221 // This is an fp<->int conversion? 1222 if (SrcVT.isInteger() != DstVT.isInteger()) 1223 return false; 1224 1225 // If this is an extension, it will be a zero or sign extension, which 1226 // isn't a noop. 1227 if (SrcVT.bitsLT(DstVT)) return false; 1228 1229 // If these values will be promoted, find out what they will be promoted 1230 // to. This helps us consider truncates on PPC as noop copies when they 1231 // are. 1232 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1233 TargetLowering::TypePromoteInteger) 1234 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1235 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1236 TargetLowering::TypePromoteInteger) 1237 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1238 1239 // If, after promotion, these are the same types, this is a noop copy. 1240 if (SrcVT != DstVT) 1241 return false; 1242 1243 return SinkCast(CI); 1244 } 1245 1246 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1247 /// possible. 1248 /// 1249 /// Return true if any changes were made. 1250 static bool CombineUAddWithOverflow(CmpInst *CI) { 1251 Value *A, *B; 1252 Instruction *AddI; 1253 if (!match(CI, 1254 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1255 return false; 1256 1257 Type *Ty = AddI->getType(); 1258 if (!isa<IntegerType>(Ty)) 1259 return false; 1260 1261 // We don't want to move around uses of condition values this late, so we we 1262 // check if it is legal to create the call to the intrinsic in the basic 1263 // block containing the icmp: 1264 1265 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1266 return false; 1267 1268 #ifndef NDEBUG 1269 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1270 // for now: 1271 if (AddI->hasOneUse()) 1272 assert(*AddI->user_begin() == CI && "expected!"); 1273 #endif 1274 1275 Module *M = CI->getModule(); 1276 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1277 1278 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1279 1280 auto *UAddWithOverflow = 1281 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1282 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1283 auto *Overflow = 1284 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1285 1286 CI->replaceAllUsesWith(Overflow); 1287 AddI->replaceAllUsesWith(UAdd); 1288 CI->eraseFromParent(); 1289 AddI->eraseFromParent(); 1290 return true; 1291 } 1292 1293 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1294 /// registers that must be created and coalesced. This is a clear win except on 1295 /// targets with multiple condition code registers (PowerPC), where it might 1296 /// lose; some adjustment may be wanted there. 1297 /// 1298 /// Return true if any changes are made. 1299 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1300 BasicBlock *DefBB = CI->getParent(); 1301 1302 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1303 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1304 return false; 1305 1306 // Only insert a cmp in each block once. 1307 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1308 1309 bool MadeChange = false; 1310 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1311 UI != E; ) { 1312 Use &TheUse = UI.getUse(); 1313 Instruction *User = cast<Instruction>(*UI); 1314 1315 // Preincrement use iterator so we don't invalidate it. 1316 ++UI; 1317 1318 // Don't bother for PHI nodes. 1319 if (isa<PHINode>(User)) 1320 continue; 1321 1322 // Figure out which BB this cmp is used in. 1323 BasicBlock *UserBB = User->getParent(); 1324 1325 // If this user is in the same block as the cmp, don't change the cmp. 1326 if (UserBB == DefBB) continue; 1327 1328 // If we have already inserted a cmp into this block, use it. 1329 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1330 1331 if (!InsertedCmp) { 1332 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1333 assert(InsertPt != UserBB->end()); 1334 InsertedCmp = 1335 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1336 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1337 // Propagate the debug info. 1338 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1339 } 1340 1341 // Replace a use of the cmp with a use of the new cmp. 1342 TheUse = InsertedCmp; 1343 MadeChange = true; 1344 ++NumCmpUses; 1345 } 1346 1347 // If we removed all uses, nuke the cmp. 1348 if (CI->use_empty()) { 1349 CI->eraseFromParent(); 1350 MadeChange = true; 1351 } 1352 1353 return MadeChange; 1354 } 1355 1356 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1357 if (SinkCmpExpression(CI, TLI)) 1358 return true; 1359 1360 if (CombineUAddWithOverflow(CI)) 1361 return true; 1362 1363 return false; 1364 } 1365 1366 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1367 /// used in a compare to allow isel to generate better code for targets where 1368 /// this operation can be combined. 1369 /// 1370 /// Return true if any changes are made. 1371 static bool sinkAndCmp0Expression(Instruction *AndI, 1372 const TargetLowering &TLI, 1373 SetOfInstrs &InsertedInsts) { 1374 // Double-check that we're not trying to optimize an instruction that was 1375 // already optimized by some other part of this pass. 1376 assert(!InsertedInsts.count(AndI) && 1377 "Attempting to optimize already optimized and instruction"); 1378 (void) InsertedInsts; 1379 1380 // Nothing to do for single use in same basic block. 1381 if (AndI->hasOneUse() && 1382 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1383 return false; 1384 1385 // Try to avoid cases where sinking/duplicating is likely to increase register 1386 // pressure. 1387 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1388 !isa<ConstantInt>(AndI->getOperand(1)) && 1389 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1390 return false; 1391 1392 for (auto *U : AndI->users()) { 1393 Instruction *User = cast<Instruction>(U); 1394 1395 // Only sink for and mask feeding icmp with 0. 1396 if (!isa<ICmpInst>(User)) 1397 return false; 1398 1399 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1400 if (!CmpC || !CmpC->isZero()) 1401 return false; 1402 } 1403 1404 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1405 return false; 1406 1407 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1408 DEBUG(AndI->getParent()->dump()); 1409 1410 // Push the 'and' into the same block as the icmp 0. There should only be 1411 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1412 // others, so we don't need to keep track of which BBs we insert into. 1413 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1414 UI != E; ) { 1415 Use &TheUse = UI.getUse(); 1416 Instruction *User = cast<Instruction>(*UI); 1417 1418 // Preincrement use iterator so we don't invalidate it. 1419 ++UI; 1420 1421 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1422 1423 // Keep the 'and' in the same place if the use is already in the same block. 1424 Instruction *InsertPt = 1425 User->getParent() == AndI->getParent() ? AndI : User; 1426 Instruction *InsertedAnd = 1427 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1428 AndI->getOperand(1), "", InsertPt); 1429 // Propagate the debug info. 1430 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1431 1432 // Replace a use of the 'and' with a use of the new 'and'. 1433 TheUse = InsertedAnd; 1434 ++NumAndUses; 1435 DEBUG(User->getParent()->dump()); 1436 } 1437 1438 // We removed all uses, nuke the and. 1439 AndI->eraseFromParent(); 1440 return true; 1441 } 1442 1443 /// Check if the candidates could be combined with a shift instruction, which 1444 /// includes: 1445 /// 1. Truncate instruction 1446 /// 2. And instruction and the imm is a mask of the low bits: 1447 /// imm & (imm+1) == 0 1448 static bool isExtractBitsCandidateUse(Instruction *User) { 1449 if (!isa<TruncInst>(User)) { 1450 if (User->getOpcode() != Instruction::And || 1451 !isa<ConstantInt>(User->getOperand(1))) 1452 return false; 1453 1454 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1455 1456 if ((Cimm & (Cimm + 1)).getBoolValue()) 1457 return false; 1458 } 1459 return true; 1460 } 1461 1462 /// Sink both shift and truncate instruction to the use of truncate's BB. 1463 static bool 1464 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1465 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1466 const TargetLowering &TLI, const DataLayout &DL) { 1467 BasicBlock *UserBB = User->getParent(); 1468 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1469 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1470 bool MadeChange = false; 1471 1472 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1473 TruncE = TruncI->user_end(); 1474 TruncUI != TruncE;) { 1475 1476 Use &TruncTheUse = TruncUI.getUse(); 1477 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1478 // Preincrement use iterator so we don't invalidate it. 1479 1480 ++TruncUI; 1481 1482 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1483 if (!ISDOpcode) 1484 continue; 1485 1486 // If the use is actually a legal node, there will not be an 1487 // implicit truncate. 1488 // FIXME: always querying the result type is just an 1489 // approximation; some nodes' legality is determined by the 1490 // operand or other means. There's no good way to find out though. 1491 if (TLI.isOperationLegalOrCustom( 1492 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1493 continue; 1494 1495 // Don't bother for PHI nodes. 1496 if (isa<PHINode>(TruncUser)) 1497 continue; 1498 1499 BasicBlock *TruncUserBB = TruncUser->getParent(); 1500 1501 if (UserBB == TruncUserBB) 1502 continue; 1503 1504 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1505 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1506 1507 if (!InsertedShift && !InsertedTrunc) { 1508 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1509 assert(InsertPt != TruncUserBB->end()); 1510 // Sink the shift 1511 if (ShiftI->getOpcode() == Instruction::AShr) 1512 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1513 "", &*InsertPt); 1514 else 1515 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1516 "", &*InsertPt); 1517 1518 // Sink the trunc 1519 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1520 TruncInsertPt++; 1521 assert(TruncInsertPt != TruncUserBB->end()); 1522 1523 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1524 TruncI->getType(), "", &*TruncInsertPt); 1525 1526 MadeChange = true; 1527 1528 TruncTheUse = InsertedTrunc; 1529 } 1530 } 1531 return MadeChange; 1532 } 1533 1534 /// Sink the shift *right* instruction into user blocks if the uses could 1535 /// potentially be combined with this shift instruction and generate BitExtract 1536 /// instruction. It will only be applied if the architecture supports BitExtract 1537 /// instruction. Here is an example: 1538 /// BB1: 1539 /// %x.extract.shift = lshr i64 %arg1, 32 1540 /// BB2: 1541 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1542 /// ==> 1543 /// 1544 /// BB2: 1545 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1546 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1547 /// 1548 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1549 /// instruction. 1550 /// Return true if any changes are made. 1551 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1552 const TargetLowering &TLI, 1553 const DataLayout &DL) { 1554 BasicBlock *DefBB = ShiftI->getParent(); 1555 1556 /// Only insert instructions in each block once. 1557 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1558 1559 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1560 1561 bool MadeChange = false; 1562 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1563 UI != E;) { 1564 Use &TheUse = UI.getUse(); 1565 Instruction *User = cast<Instruction>(*UI); 1566 // Preincrement use iterator so we don't invalidate it. 1567 ++UI; 1568 1569 // Don't bother for PHI nodes. 1570 if (isa<PHINode>(User)) 1571 continue; 1572 1573 if (!isExtractBitsCandidateUse(User)) 1574 continue; 1575 1576 BasicBlock *UserBB = User->getParent(); 1577 1578 if (UserBB == DefBB) { 1579 // If the shift and truncate instruction are in the same BB. The use of 1580 // the truncate(TruncUse) may still introduce another truncate if not 1581 // legal. In this case, we would like to sink both shift and truncate 1582 // instruction to the BB of TruncUse. 1583 // for example: 1584 // BB1: 1585 // i64 shift.result = lshr i64 opnd, imm 1586 // trunc.result = trunc shift.result to i16 1587 // 1588 // BB2: 1589 // ----> We will have an implicit truncate here if the architecture does 1590 // not have i16 compare. 1591 // cmp i16 trunc.result, opnd2 1592 // 1593 if (isa<TruncInst>(User) && shiftIsLegal 1594 // If the type of the truncate is legal, no trucate will be 1595 // introduced in other basic blocks. 1596 && 1597 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1598 MadeChange = 1599 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1600 1601 continue; 1602 } 1603 // If we have already inserted a shift into this block, use it. 1604 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1605 1606 if (!InsertedShift) { 1607 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1608 assert(InsertPt != UserBB->end()); 1609 1610 if (ShiftI->getOpcode() == Instruction::AShr) 1611 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1612 "", &*InsertPt); 1613 else 1614 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1615 "", &*InsertPt); 1616 1617 MadeChange = true; 1618 } 1619 1620 // Replace a use of the shift with a use of the new shift. 1621 TheUse = InsertedShift; 1622 } 1623 1624 // If we removed all uses, nuke the shift. 1625 if (ShiftI->use_empty()) 1626 ShiftI->eraseFromParent(); 1627 1628 return MadeChange; 1629 } 1630 1631 /// If counting leading or trailing zeros is an expensive operation and a zero 1632 /// input is defined, add a check for zero to avoid calling the intrinsic. 1633 /// 1634 /// We want to transform: 1635 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1636 /// 1637 /// into: 1638 /// entry: 1639 /// %cmpz = icmp eq i64 %A, 0 1640 /// br i1 %cmpz, label %cond.end, label %cond.false 1641 /// cond.false: 1642 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1643 /// br label %cond.end 1644 /// cond.end: 1645 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1646 /// 1647 /// If the transform is performed, return true and set ModifiedDT to true. 1648 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1649 const TargetLowering *TLI, 1650 const DataLayout *DL, 1651 bool &ModifiedDT) { 1652 if (!TLI || !DL) 1653 return false; 1654 1655 // If a zero input is undefined, it doesn't make sense to despeculate that. 1656 if (match(CountZeros->getOperand(1), m_One())) 1657 return false; 1658 1659 // If it's cheap to speculate, there's nothing to do. 1660 auto IntrinsicID = CountZeros->getIntrinsicID(); 1661 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1662 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1663 return false; 1664 1665 // Only handle legal scalar cases. Anything else requires too much work. 1666 Type *Ty = CountZeros->getType(); 1667 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1668 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1669 return false; 1670 1671 // The intrinsic will be sunk behind a compare against zero and branch. 1672 BasicBlock *StartBlock = CountZeros->getParent(); 1673 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1674 1675 // Create another block after the count zero intrinsic. A PHI will be added 1676 // in this block to select the result of the intrinsic or the bit-width 1677 // constant if the input to the intrinsic is zero. 1678 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1679 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1680 1681 // Set up a builder to create a compare, conditional branch, and PHI. 1682 IRBuilder<> Builder(CountZeros->getContext()); 1683 Builder.SetInsertPoint(StartBlock->getTerminator()); 1684 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1685 1686 // Replace the unconditional branch that was created by the first split with 1687 // a compare against zero and a conditional branch. 1688 Value *Zero = Constant::getNullValue(Ty); 1689 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1690 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1691 StartBlock->getTerminator()->eraseFromParent(); 1692 1693 // Create a PHI in the end block to select either the output of the intrinsic 1694 // or the bit width of the operand. 1695 Builder.SetInsertPoint(&EndBlock->front()); 1696 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1697 CountZeros->replaceAllUsesWith(PN); 1698 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1699 PN->addIncoming(BitWidth, StartBlock); 1700 PN->addIncoming(CountZeros, CallBlock); 1701 1702 // We are explicitly handling the zero case, so we can set the intrinsic's 1703 // undefined zero argument to 'true'. This will also prevent reprocessing the 1704 // intrinsic; we only despeculate when a zero input is defined. 1705 CountZeros->setArgOperand(1, Builder.getTrue()); 1706 ModifiedDT = true; 1707 return true; 1708 } 1709 1710 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1711 BasicBlock *BB = CI->getParent(); 1712 1713 // Lower inline assembly if we can. 1714 // If we found an inline asm expession, and if the target knows how to 1715 // lower it to normal LLVM code, do so now. 1716 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1717 if (TLI->ExpandInlineAsm(CI)) { 1718 // Avoid invalidating the iterator. 1719 CurInstIterator = BB->begin(); 1720 // Avoid processing instructions out of order, which could cause 1721 // reuse before a value is defined. 1722 SunkAddrs.clear(); 1723 return true; 1724 } 1725 // Sink address computing for memory operands into the block. 1726 if (optimizeInlineAsmInst(CI)) 1727 return true; 1728 } 1729 1730 // Align the pointer arguments to this call if the target thinks it's a good 1731 // idea 1732 unsigned MinSize, PrefAlign; 1733 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1734 for (auto &Arg : CI->arg_operands()) { 1735 // We want to align both objects whose address is used directly and 1736 // objects whose address is used in casts and GEPs, though it only makes 1737 // sense for GEPs if the offset is a multiple of the desired alignment and 1738 // if size - offset meets the size threshold. 1739 if (!Arg->getType()->isPointerTy()) 1740 continue; 1741 APInt Offset(DL->getPointerSizeInBits( 1742 cast<PointerType>(Arg->getType())->getAddressSpace()), 1743 0); 1744 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1745 uint64_t Offset2 = Offset.getLimitedValue(); 1746 if ((Offset2 & (PrefAlign-1)) != 0) 1747 continue; 1748 AllocaInst *AI; 1749 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1750 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1751 AI->setAlignment(PrefAlign); 1752 // Global variables can only be aligned if they are defined in this 1753 // object (i.e. they are uniquely initialized in this object), and 1754 // over-aligning global variables that have an explicit section is 1755 // forbidden. 1756 GlobalVariable *GV; 1757 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1758 GV->getPointerAlignment(*DL) < PrefAlign && 1759 DL->getTypeAllocSize(GV->getValueType()) >= 1760 MinSize + Offset2) 1761 GV->setAlignment(PrefAlign); 1762 } 1763 // If this is a memcpy (or similar) then we may be able to improve the 1764 // alignment 1765 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1766 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1767 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1768 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1769 if (Align > MI->getAlignment()) 1770 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1771 } 1772 } 1773 1774 // If we have a cold call site, try to sink addressing computation into the 1775 // cold block. This interacts with our handling for loads and stores to 1776 // ensure that we can fold all uses of a potential addressing computation 1777 // into their uses. TODO: generalize this to work over profiling data 1778 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1779 for (auto &Arg : CI->arg_operands()) { 1780 if (!Arg->getType()->isPointerTy()) 1781 continue; 1782 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1783 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1784 } 1785 1786 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1787 if (II) { 1788 switch (II->getIntrinsicID()) { 1789 default: break; 1790 case Intrinsic::objectsize: { 1791 // Lower all uses of llvm.objectsize.* 1792 ConstantInt *RetVal = 1793 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1794 // Substituting this can cause recursive simplifications, which can 1795 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1796 // this 1797 // happens. 1798 Value *CurValue = &*CurInstIterator; 1799 WeakTrackingVH IterHandle(CurValue); 1800 1801 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1802 1803 // If the iterator instruction was recursively deleted, start over at the 1804 // start of the block. 1805 if (IterHandle != CurValue) { 1806 CurInstIterator = BB->begin(); 1807 SunkAddrs.clear(); 1808 } 1809 return true; 1810 } 1811 case Intrinsic::aarch64_stlxr: 1812 case Intrinsic::aarch64_stxr: { 1813 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1814 if (!ExtVal || !ExtVal->hasOneUse() || 1815 ExtVal->getParent() == CI->getParent()) 1816 return false; 1817 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1818 ExtVal->moveBefore(CI); 1819 // Mark this instruction as "inserted by CGP", so that other 1820 // optimizations don't touch it. 1821 InsertedInsts.insert(ExtVal); 1822 return true; 1823 } 1824 case Intrinsic::invariant_group_barrier: 1825 II->replaceAllUsesWith(II->getArgOperand(0)); 1826 II->eraseFromParent(); 1827 return true; 1828 1829 case Intrinsic::cttz: 1830 case Intrinsic::ctlz: 1831 // If counting zeros is expensive, try to avoid it. 1832 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1833 } 1834 1835 if (TLI) { 1836 SmallVector<Value*, 2> PtrOps; 1837 Type *AccessTy; 1838 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1839 while (!PtrOps.empty()) { 1840 Value *PtrVal = PtrOps.pop_back_val(); 1841 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1842 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1843 return true; 1844 } 1845 } 1846 } 1847 1848 // From here on out we're working with named functions. 1849 if (!CI->getCalledFunction()) return false; 1850 1851 // Lower all default uses of _chk calls. This is very similar 1852 // to what InstCombineCalls does, but here we are only lowering calls 1853 // to fortified library functions (e.g. __memcpy_chk) that have the default 1854 // "don't know" as the objectsize. Anything else should be left alone. 1855 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1856 if (Value *V = Simplifier.optimizeCall(CI)) { 1857 CI->replaceAllUsesWith(V); 1858 CI->eraseFromParent(); 1859 return true; 1860 } 1861 1862 return false; 1863 } 1864 1865 /// Look for opportunities to duplicate return instructions to the predecessor 1866 /// to enable tail call optimizations. The case it is currently looking for is: 1867 /// @code 1868 /// bb0: 1869 /// %tmp0 = tail call i32 @f0() 1870 /// br label %return 1871 /// bb1: 1872 /// %tmp1 = tail call i32 @f1() 1873 /// br label %return 1874 /// bb2: 1875 /// %tmp2 = tail call i32 @f2() 1876 /// br label %return 1877 /// return: 1878 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1879 /// ret i32 %retval 1880 /// @endcode 1881 /// 1882 /// => 1883 /// 1884 /// @code 1885 /// bb0: 1886 /// %tmp0 = tail call i32 @f0() 1887 /// ret i32 %tmp0 1888 /// bb1: 1889 /// %tmp1 = tail call i32 @f1() 1890 /// ret i32 %tmp1 1891 /// bb2: 1892 /// %tmp2 = tail call i32 @f2() 1893 /// ret i32 %tmp2 1894 /// @endcode 1895 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1896 if (!TLI) 1897 return false; 1898 1899 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1900 if (!RetI) 1901 return false; 1902 1903 PHINode *PN = nullptr; 1904 BitCastInst *BCI = nullptr; 1905 Value *V = RetI->getReturnValue(); 1906 if (V) { 1907 BCI = dyn_cast<BitCastInst>(V); 1908 if (BCI) 1909 V = BCI->getOperand(0); 1910 1911 PN = dyn_cast<PHINode>(V); 1912 if (!PN) 1913 return false; 1914 } 1915 1916 if (PN && PN->getParent() != BB) 1917 return false; 1918 1919 // Make sure there are no instructions between the PHI and return, or that the 1920 // return is the first instruction in the block. 1921 if (PN) { 1922 BasicBlock::iterator BI = BB->begin(); 1923 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1924 if (&*BI == BCI) 1925 // Also skip over the bitcast. 1926 ++BI; 1927 if (&*BI != RetI) 1928 return false; 1929 } else { 1930 BasicBlock::iterator BI = BB->begin(); 1931 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1932 if (&*BI != RetI) 1933 return false; 1934 } 1935 1936 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1937 /// call. 1938 const Function *F = BB->getParent(); 1939 SmallVector<CallInst*, 4> TailCalls; 1940 if (PN) { 1941 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1942 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1943 // Make sure the phi value is indeed produced by the tail call. 1944 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1945 TLI->mayBeEmittedAsTailCall(CI) && 1946 attributesPermitTailCall(F, CI, RetI, *TLI)) 1947 TailCalls.push_back(CI); 1948 } 1949 } else { 1950 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1951 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1952 if (!VisitedBBs.insert(*PI).second) 1953 continue; 1954 1955 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1956 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1957 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1958 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1959 if (RI == RE) 1960 continue; 1961 1962 CallInst *CI = dyn_cast<CallInst>(&*RI); 1963 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1964 attributesPermitTailCall(F, CI, RetI, *TLI)) 1965 TailCalls.push_back(CI); 1966 } 1967 } 1968 1969 bool Changed = false; 1970 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1971 CallInst *CI = TailCalls[i]; 1972 CallSite CS(CI); 1973 1974 // Conservatively require the attributes of the call to match those of the 1975 // return. Ignore noalias because it doesn't affect the call sequence. 1976 AttributeList CalleeAttrs = CS.getAttributes(); 1977 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1978 .removeAttribute(Attribute::NoAlias) != 1979 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1980 .removeAttribute(Attribute::NoAlias)) 1981 continue; 1982 1983 // Make sure the call instruction is followed by an unconditional branch to 1984 // the return block. 1985 BasicBlock *CallBB = CI->getParent(); 1986 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1987 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1988 continue; 1989 1990 // Duplicate the return into CallBB. 1991 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1992 ModifiedDT = Changed = true; 1993 ++NumRetsDup; 1994 } 1995 1996 // If we eliminated all predecessors of the block, delete the block now. 1997 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1998 BB->eraseFromParent(); 1999 2000 return Changed; 2001 } 2002 2003 //===----------------------------------------------------------------------===// 2004 // Memory Optimization 2005 //===----------------------------------------------------------------------===// 2006 2007 namespace { 2008 2009 /// This is an extended version of TargetLowering::AddrMode 2010 /// which holds actual Value*'s for register values. 2011 struct ExtAddrMode : public TargetLowering::AddrMode { 2012 Value *BaseReg = nullptr; 2013 Value *ScaledReg = nullptr; 2014 Value *OriginalValue = nullptr; 2015 2016 enum FieldName { 2017 NoField = 0x00, 2018 BaseRegField = 0x01, 2019 BaseGVField = 0x02, 2020 BaseOffsField = 0x04, 2021 ScaledRegField = 0x08, 2022 ScaleField = 0x10, 2023 MultipleFields = 0xff 2024 }; 2025 2026 ExtAddrMode() = default; 2027 2028 void print(raw_ostream &OS) const; 2029 void dump() const; 2030 2031 FieldName compare(const ExtAddrMode &other) { 2032 // First check that the types are the same on each field, as differing types 2033 // is something we can't cope with later on. 2034 if (BaseReg && other.BaseReg && 2035 BaseReg->getType() != other.BaseReg->getType()) 2036 return MultipleFields; 2037 if (BaseGV && other.BaseGV && 2038 BaseGV->getType() != other.BaseGV->getType()) 2039 return MultipleFields; 2040 if (ScaledReg && other.ScaledReg && 2041 ScaledReg->getType() != other.ScaledReg->getType()) 2042 return MultipleFields; 2043 2044 // Check each field to see if it differs. 2045 unsigned Result = NoField; 2046 if (BaseReg != other.BaseReg) 2047 Result |= BaseRegField; 2048 if (BaseGV != other.BaseGV) 2049 Result |= BaseGVField; 2050 if (BaseOffs != other.BaseOffs) 2051 Result |= BaseOffsField; 2052 if (ScaledReg != other.ScaledReg) 2053 Result |= ScaledRegField; 2054 // Don't count 0 as being a different scale, because that actually means 2055 // unscaled (which will already be counted by having no ScaledReg). 2056 if (Scale && other.Scale && Scale != other.Scale) 2057 Result |= ScaleField; 2058 2059 if (countPopulation(Result) > 1) 2060 return MultipleFields; 2061 else 2062 return static_cast<FieldName>(Result); 2063 } 2064 2065 // AddrModes with a baseReg or gv where the reg/gv is 2066 // the only populated field are trivial. 2067 bool isTrivial() { 2068 if (BaseGV && !BaseOffs && !Scale && !BaseReg) 2069 return true; 2070 2071 if (!BaseGV && !BaseOffs && !Scale && BaseReg) 2072 return true; 2073 2074 return false; 2075 } 2076 }; 2077 2078 } // end anonymous namespace 2079 2080 #ifndef NDEBUG 2081 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2082 AM.print(OS); 2083 return OS; 2084 } 2085 #endif 2086 2087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2088 void ExtAddrMode::print(raw_ostream &OS) const { 2089 bool NeedPlus = false; 2090 OS << "["; 2091 if (BaseGV) { 2092 OS << (NeedPlus ? " + " : "") 2093 << "GV:"; 2094 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2095 NeedPlus = true; 2096 } 2097 2098 if (BaseOffs) { 2099 OS << (NeedPlus ? " + " : "") 2100 << BaseOffs; 2101 NeedPlus = true; 2102 } 2103 2104 if (BaseReg) { 2105 OS << (NeedPlus ? " + " : "") 2106 << "Base:"; 2107 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2108 NeedPlus = true; 2109 } 2110 if (Scale) { 2111 OS << (NeedPlus ? " + " : "") 2112 << Scale << "*"; 2113 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2114 } 2115 2116 OS << ']'; 2117 } 2118 2119 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2120 print(dbgs()); 2121 dbgs() << '\n'; 2122 } 2123 #endif 2124 2125 namespace { 2126 2127 /// \brief This class provides transaction based operation on the IR. 2128 /// Every change made through this class is recorded in the internal state and 2129 /// can be undone (rollback) until commit is called. 2130 class TypePromotionTransaction { 2131 /// \brief This represents the common interface of the individual transaction. 2132 /// Each class implements the logic for doing one specific modification on 2133 /// the IR via the TypePromotionTransaction. 2134 class TypePromotionAction { 2135 protected: 2136 /// The Instruction modified. 2137 Instruction *Inst; 2138 2139 public: 2140 /// \brief Constructor of the action. 2141 /// The constructor performs the related action on the IR. 2142 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2143 2144 virtual ~TypePromotionAction() = default; 2145 2146 /// \brief Undo the modification done by this action. 2147 /// When this method is called, the IR must be in the same state as it was 2148 /// before this action was applied. 2149 /// \pre Undoing the action works if and only if the IR is in the exact same 2150 /// state as it was directly after this action was applied. 2151 virtual void undo() = 0; 2152 2153 /// \brief Advocate every change made by this action. 2154 /// When the results on the IR of the action are to be kept, it is important 2155 /// to call this function, otherwise hidden information may be kept forever. 2156 virtual void commit() { 2157 // Nothing to be done, this action is not doing anything. 2158 } 2159 }; 2160 2161 /// \brief Utility to remember the position of an instruction. 2162 class InsertionHandler { 2163 /// Position of an instruction. 2164 /// Either an instruction: 2165 /// - Is the first in a basic block: BB is used. 2166 /// - Has a previous instructon: PrevInst is used. 2167 union { 2168 Instruction *PrevInst; 2169 BasicBlock *BB; 2170 } Point; 2171 2172 /// Remember whether or not the instruction had a previous instruction. 2173 bool HasPrevInstruction; 2174 2175 public: 2176 /// \brief Record the position of \p Inst. 2177 InsertionHandler(Instruction *Inst) { 2178 BasicBlock::iterator It = Inst->getIterator(); 2179 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2180 if (HasPrevInstruction) 2181 Point.PrevInst = &*--It; 2182 else 2183 Point.BB = Inst->getParent(); 2184 } 2185 2186 /// \brief Insert \p Inst at the recorded position. 2187 void insert(Instruction *Inst) { 2188 if (HasPrevInstruction) { 2189 if (Inst->getParent()) 2190 Inst->removeFromParent(); 2191 Inst->insertAfter(Point.PrevInst); 2192 } else { 2193 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2194 if (Inst->getParent()) 2195 Inst->moveBefore(Position); 2196 else 2197 Inst->insertBefore(Position); 2198 } 2199 } 2200 }; 2201 2202 /// \brief Move an instruction before another. 2203 class InstructionMoveBefore : public TypePromotionAction { 2204 /// Original position of the instruction. 2205 InsertionHandler Position; 2206 2207 public: 2208 /// \brief Move \p Inst before \p Before. 2209 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2210 : TypePromotionAction(Inst), Position(Inst) { 2211 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2212 Inst->moveBefore(Before); 2213 } 2214 2215 /// \brief Move the instruction back to its original position. 2216 void undo() override { 2217 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2218 Position.insert(Inst); 2219 } 2220 }; 2221 2222 /// \brief Set the operand of an instruction with a new value. 2223 class OperandSetter : public TypePromotionAction { 2224 /// Original operand of the instruction. 2225 Value *Origin; 2226 2227 /// Index of the modified instruction. 2228 unsigned Idx; 2229 2230 public: 2231 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2232 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2233 : TypePromotionAction(Inst), Idx(Idx) { 2234 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2235 << "for:" << *Inst << "\n" 2236 << "with:" << *NewVal << "\n"); 2237 Origin = Inst->getOperand(Idx); 2238 Inst->setOperand(Idx, NewVal); 2239 } 2240 2241 /// \brief Restore the original value of the instruction. 2242 void undo() override { 2243 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2244 << "for: " << *Inst << "\n" 2245 << "with: " << *Origin << "\n"); 2246 Inst->setOperand(Idx, Origin); 2247 } 2248 }; 2249 2250 /// \brief Hide the operands of an instruction. 2251 /// Do as if this instruction was not using any of its operands. 2252 class OperandsHider : public TypePromotionAction { 2253 /// The list of original operands. 2254 SmallVector<Value *, 4> OriginalValues; 2255 2256 public: 2257 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2258 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2259 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2260 unsigned NumOpnds = Inst->getNumOperands(); 2261 OriginalValues.reserve(NumOpnds); 2262 for (unsigned It = 0; It < NumOpnds; ++It) { 2263 // Save the current operand. 2264 Value *Val = Inst->getOperand(It); 2265 OriginalValues.push_back(Val); 2266 // Set a dummy one. 2267 // We could use OperandSetter here, but that would imply an overhead 2268 // that we are not willing to pay. 2269 Inst->setOperand(It, UndefValue::get(Val->getType())); 2270 } 2271 } 2272 2273 /// \brief Restore the original list of uses. 2274 void undo() override { 2275 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2276 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2277 Inst->setOperand(It, OriginalValues[It]); 2278 } 2279 }; 2280 2281 /// \brief Build a truncate instruction. 2282 class TruncBuilder : public TypePromotionAction { 2283 Value *Val; 2284 2285 public: 2286 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2287 /// result. 2288 /// trunc Opnd to Ty. 2289 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2290 IRBuilder<> Builder(Opnd); 2291 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2292 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2293 } 2294 2295 /// \brief Get the built value. 2296 Value *getBuiltValue() { return Val; } 2297 2298 /// \brief Remove the built instruction. 2299 void undo() override { 2300 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2301 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2302 IVal->eraseFromParent(); 2303 } 2304 }; 2305 2306 /// \brief Build a sign extension instruction. 2307 class SExtBuilder : public TypePromotionAction { 2308 Value *Val; 2309 2310 public: 2311 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2312 /// result. 2313 /// sext Opnd to Ty. 2314 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2315 : TypePromotionAction(InsertPt) { 2316 IRBuilder<> Builder(InsertPt); 2317 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2318 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2319 } 2320 2321 /// \brief Get the built value. 2322 Value *getBuiltValue() { return Val; } 2323 2324 /// \brief Remove the built instruction. 2325 void undo() override { 2326 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2327 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2328 IVal->eraseFromParent(); 2329 } 2330 }; 2331 2332 /// \brief Build a zero extension instruction. 2333 class ZExtBuilder : public TypePromotionAction { 2334 Value *Val; 2335 2336 public: 2337 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2338 /// result. 2339 /// zext Opnd to Ty. 2340 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2341 : TypePromotionAction(InsertPt) { 2342 IRBuilder<> Builder(InsertPt); 2343 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2344 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2345 } 2346 2347 /// \brief Get the built value. 2348 Value *getBuiltValue() { return Val; } 2349 2350 /// \brief Remove the built instruction. 2351 void undo() override { 2352 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2353 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2354 IVal->eraseFromParent(); 2355 } 2356 }; 2357 2358 /// \brief Mutate an instruction to another type. 2359 class TypeMutator : public TypePromotionAction { 2360 /// Record the original type. 2361 Type *OrigTy; 2362 2363 public: 2364 /// \brief Mutate the type of \p Inst into \p NewTy. 2365 TypeMutator(Instruction *Inst, Type *NewTy) 2366 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2367 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2368 << "\n"); 2369 Inst->mutateType(NewTy); 2370 } 2371 2372 /// \brief Mutate the instruction back to its original type. 2373 void undo() override { 2374 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2375 << "\n"); 2376 Inst->mutateType(OrigTy); 2377 } 2378 }; 2379 2380 /// \brief Replace the uses of an instruction by another instruction. 2381 class UsesReplacer : public TypePromotionAction { 2382 /// Helper structure to keep track of the replaced uses. 2383 struct InstructionAndIdx { 2384 /// The instruction using the instruction. 2385 Instruction *Inst; 2386 2387 /// The index where this instruction is used for Inst. 2388 unsigned Idx; 2389 2390 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2391 : Inst(Inst), Idx(Idx) {} 2392 }; 2393 2394 /// Keep track of the original uses (pair Instruction, Index). 2395 SmallVector<InstructionAndIdx, 4> OriginalUses; 2396 2397 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2398 2399 public: 2400 /// \brief Replace all the use of \p Inst by \p New. 2401 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2402 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2403 << "\n"); 2404 // Record the original uses. 2405 for (Use &U : Inst->uses()) { 2406 Instruction *UserI = cast<Instruction>(U.getUser()); 2407 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2408 } 2409 // Now, we can replace the uses. 2410 Inst->replaceAllUsesWith(New); 2411 } 2412 2413 /// \brief Reassign the original uses of Inst to Inst. 2414 void undo() override { 2415 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2416 for (use_iterator UseIt = OriginalUses.begin(), 2417 EndIt = OriginalUses.end(); 2418 UseIt != EndIt; ++UseIt) { 2419 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2420 } 2421 } 2422 }; 2423 2424 /// \brief Remove an instruction from the IR. 2425 class InstructionRemover : public TypePromotionAction { 2426 /// Original position of the instruction. 2427 InsertionHandler Inserter; 2428 2429 /// Helper structure to hide all the link to the instruction. In other 2430 /// words, this helps to do as if the instruction was removed. 2431 OperandsHider Hider; 2432 2433 /// Keep track of the uses replaced, if any. 2434 UsesReplacer *Replacer = nullptr; 2435 2436 /// Keep track of instructions removed. 2437 SetOfInstrs &RemovedInsts; 2438 2439 public: 2440 /// \brief Remove all reference of \p Inst and optinally replace all its 2441 /// uses with New. 2442 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2443 /// \pre If !Inst->use_empty(), then New != nullptr 2444 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2445 Value *New = nullptr) 2446 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2447 RemovedInsts(RemovedInsts) { 2448 if (New) 2449 Replacer = new UsesReplacer(Inst, New); 2450 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2451 RemovedInsts.insert(Inst); 2452 /// The instructions removed here will be freed after completing 2453 /// optimizeBlock() for all blocks as we need to keep track of the 2454 /// removed instructions during promotion. 2455 Inst->removeFromParent(); 2456 } 2457 2458 ~InstructionRemover() override { delete Replacer; } 2459 2460 /// \brief Resurrect the instruction and reassign it to the proper uses if 2461 /// new value was provided when build this action. 2462 void undo() override { 2463 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2464 Inserter.insert(Inst); 2465 if (Replacer) 2466 Replacer->undo(); 2467 Hider.undo(); 2468 RemovedInsts.erase(Inst); 2469 } 2470 }; 2471 2472 public: 2473 /// Restoration point. 2474 /// The restoration point is a pointer to an action instead of an iterator 2475 /// because the iterator may be invalidated but not the pointer. 2476 using ConstRestorationPt = const TypePromotionAction *; 2477 2478 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2479 : RemovedInsts(RemovedInsts) {} 2480 2481 /// Advocate every changes made in that transaction. 2482 void commit(); 2483 2484 /// Undo all the changes made after the given point. 2485 void rollback(ConstRestorationPt Point); 2486 2487 /// Get the current restoration point. 2488 ConstRestorationPt getRestorationPoint() const; 2489 2490 /// \name API for IR modification with state keeping to support rollback. 2491 /// @{ 2492 /// Same as Instruction::setOperand. 2493 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2494 2495 /// Same as Instruction::eraseFromParent. 2496 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2497 2498 /// Same as Value::replaceAllUsesWith. 2499 void replaceAllUsesWith(Instruction *Inst, Value *New); 2500 2501 /// Same as Value::mutateType. 2502 void mutateType(Instruction *Inst, Type *NewTy); 2503 2504 /// Same as IRBuilder::createTrunc. 2505 Value *createTrunc(Instruction *Opnd, Type *Ty); 2506 2507 /// Same as IRBuilder::createSExt. 2508 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2509 2510 /// Same as IRBuilder::createZExt. 2511 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2512 2513 /// Same as Instruction::moveBefore. 2514 void moveBefore(Instruction *Inst, Instruction *Before); 2515 /// @} 2516 2517 private: 2518 /// The ordered list of actions made so far. 2519 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2520 2521 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2522 2523 SetOfInstrs &RemovedInsts; 2524 }; 2525 2526 } // end anonymous namespace 2527 2528 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2529 Value *NewVal) { 2530 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2531 Inst, Idx, NewVal)); 2532 } 2533 2534 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2535 Value *NewVal) { 2536 Actions.push_back( 2537 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2538 Inst, RemovedInsts, NewVal)); 2539 } 2540 2541 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2542 Value *New) { 2543 Actions.push_back( 2544 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2545 } 2546 2547 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2548 Actions.push_back( 2549 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2550 } 2551 2552 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2553 Type *Ty) { 2554 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2555 Value *Val = Ptr->getBuiltValue(); 2556 Actions.push_back(std::move(Ptr)); 2557 return Val; 2558 } 2559 2560 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2561 Value *Opnd, Type *Ty) { 2562 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2563 Value *Val = Ptr->getBuiltValue(); 2564 Actions.push_back(std::move(Ptr)); 2565 return Val; 2566 } 2567 2568 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2569 Value *Opnd, Type *Ty) { 2570 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2571 Value *Val = Ptr->getBuiltValue(); 2572 Actions.push_back(std::move(Ptr)); 2573 return Val; 2574 } 2575 2576 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2577 Instruction *Before) { 2578 Actions.push_back( 2579 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2580 Inst, Before)); 2581 } 2582 2583 TypePromotionTransaction::ConstRestorationPt 2584 TypePromotionTransaction::getRestorationPoint() const { 2585 return !Actions.empty() ? Actions.back().get() : nullptr; 2586 } 2587 2588 void TypePromotionTransaction::commit() { 2589 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2590 ++It) 2591 (*It)->commit(); 2592 Actions.clear(); 2593 } 2594 2595 void TypePromotionTransaction::rollback( 2596 TypePromotionTransaction::ConstRestorationPt Point) { 2597 while (!Actions.empty() && Point != Actions.back().get()) { 2598 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2599 Curr->undo(); 2600 } 2601 } 2602 2603 namespace { 2604 2605 /// \brief A helper class for matching addressing modes. 2606 /// 2607 /// This encapsulates the logic for matching the target-legal addressing modes. 2608 class AddressingModeMatcher { 2609 SmallVectorImpl<Instruction*> &AddrModeInsts; 2610 const TargetLowering &TLI; 2611 const TargetRegisterInfo &TRI; 2612 const DataLayout &DL; 2613 2614 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2615 /// the memory instruction that we're computing this address for. 2616 Type *AccessTy; 2617 unsigned AddrSpace; 2618 Instruction *MemoryInst; 2619 2620 /// This is the addressing mode that we're building up. This is 2621 /// part of the return value of this addressing mode matching stuff. 2622 ExtAddrMode &AddrMode; 2623 2624 /// The instructions inserted by other CodeGenPrepare optimizations. 2625 const SetOfInstrs &InsertedInsts; 2626 2627 /// A map from the instructions to their type before promotion. 2628 InstrToOrigTy &PromotedInsts; 2629 2630 /// The ongoing transaction where every action should be registered. 2631 TypePromotionTransaction &TPT; 2632 2633 /// This is set to true when we should not do profitability checks. 2634 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2635 bool IgnoreProfitability; 2636 2637 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2638 const TargetLowering &TLI, 2639 const TargetRegisterInfo &TRI, 2640 Type *AT, unsigned AS, 2641 Instruction *MI, ExtAddrMode &AM, 2642 const SetOfInstrs &InsertedInsts, 2643 InstrToOrigTy &PromotedInsts, 2644 TypePromotionTransaction &TPT) 2645 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2646 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2647 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2648 PromotedInsts(PromotedInsts), TPT(TPT) { 2649 IgnoreProfitability = false; 2650 } 2651 2652 public: 2653 /// Find the maximal addressing mode that a load/store of V can fold, 2654 /// give an access type of AccessTy. This returns a list of involved 2655 /// instructions in AddrModeInsts. 2656 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2657 /// optimizations. 2658 /// \p PromotedInsts maps the instructions to their type before promotion. 2659 /// \p The ongoing transaction where every action should be registered. 2660 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2661 Instruction *MemoryInst, 2662 SmallVectorImpl<Instruction*> &AddrModeInsts, 2663 const TargetLowering &TLI, 2664 const TargetRegisterInfo &TRI, 2665 const SetOfInstrs &InsertedInsts, 2666 InstrToOrigTy &PromotedInsts, 2667 TypePromotionTransaction &TPT) { 2668 ExtAddrMode Result; 2669 2670 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2671 AccessTy, AS, 2672 MemoryInst, Result, InsertedInsts, 2673 PromotedInsts, TPT).matchAddr(V, 0); 2674 (void)Success; assert(Success && "Couldn't select *anything*?"); 2675 return Result; 2676 } 2677 2678 private: 2679 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2680 bool matchAddr(Value *V, unsigned Depth); 2681 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2682 bool *MovedAway = nullptr); 2683 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2684 ExtAddrMode &AMBefore, 2685 ExtAddrMode &AMAfter); 2686 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2687 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2688 Value *PromotedOperand) const; 2689 }; 2690 2691 /// \brief Keep track of simplification of Phi nodes. 2692 /// Accept the set of all phi nodes and erase phi node from this set 2693 /// if it is simplified. 2694 class SimplificationTracker { 2695 DenseMap<Value *, Value *> Storage; 2696 const SimplifyQuery &SQ; 2697 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2698 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2699 2700 public: 2701 SimplificationTracker(const SimplifyQuery &sq, 2702 SmallPtrSetImpl<PHINode *> &APN, 2703 SmallPtrSetImpl<SelectInst *> &ASN) 2704 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2705 2706 Value *Get(Value *V) { 2707 do { 2708 auto SV = Storage.find(V); 2709 if (SV == Storage.end()) 2710 return V; 2711 V = SV->second; 2712 } while (true); 2713 } 2714 2715 Value *Simplify(Value *Val) { 2716 SmallVector<Value *, 32> WorkList; 2717 SmallPtrSet<Value *, 32> Visited; 2718 WorkList.push_back(Val); 2719 while (!WorkList.empty()) { 2720 auto P = WorkList.pop_back_val(); 2721 if (!Visited.insert(P).second) 2722 continue; 2723 if (auto *PI = dyn_cast<Instruction>(P)) 2724 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2725 for (auto *U : PI->users()) 2726 WorkList.push_back(cast<Value>(U)); 2727 Put(PI, V); 2728 PI->replaceAllUsesWith(V); 2729 if (auto *PHI = dyn_cast<PHINode>(PI)) 2730 AllPhiNodes.erase(PHI); 2731 if (auto *Select = dyn_cast<SelectInst>(PI)) 2732 AllSelectNodes.erase(Select); 2733 PI->eraseFromParent(); 2734 } 2735 } 2736 return Get(Val); 2737 } 2738 2739 void Put(Value *From, Value *To) { 2740 Storage.insert({ From, To }); 2741 } 2742 }; 2743 2744 /// \brief A helper class for combining addressing modes. 2745 class AddressingModeCombiner { 2746 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2747 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2748 typedef std::pair<PHINode *, PHINode *> PHIPair; 2749 2750 private: 2751 /// The addressing modes we've collected. 2752 SmallVector<ExtAddrMode, 16> AddrModes; 2753 2754 /// The field in which the AddrModes differ, when we have more than one. 2755 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2756 2757 /// Are the AddrModes that we have all just equal to their original values? 2758 bool AllAddrModesTrivial = true; 2759 2760 /// Common Type for all different fields in addressing modes. 2761 Type *CommonType; 2762 2763 /// SimplifyQuery for simplifyInstruction utility. 2764 const SimplifyQuery &SQ; 2765 2766 /// Original Address. 2767 ValueInBB Original; 2768 2769 public: 2770 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2771 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2772 2773 /// \brief Get the combined AddrMode 2774 const ExtAddrMode &getAddrMode() const { 2775 return AddrModes[0]; 2776 } 2777 2778 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2779 /// have. 2780 /// \return True iff we succeeded in doing so. 2781 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2782 // Take note of if we have any non-trivial AddrModes, as we need to detect 2783 // when all AddrModes are trivial as then we would introduce a phi or select 2784 // which just duplicates what's already there. 2785 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2786 2787 // If this is the first addrmode then everything is fine. 2788 if (AddrModes.empty()) { 2789 AddrModes.emplace_back(NewAddrMode); 2790 return true; 2791 } 2792 2793 // Figure out how different this is from the other address modes, which we 2794 // can do just by comparing against the first one given that we only care 2795 // about the cumulative difference. 2796 ExtAddrMode::FieldName ThisDifferentField = 2797 AddrModes[0].compare(NewAddrMode); 2798 if (DifferentField == ExtAddrMode::NoField) 2799 DifferentField = ThisDifferentField; 2800 else if (DifferentField != ThisDifferentField) 2801 DifferentField = ExtAddrMode::MultipleFields; 2802 2803 // If NewAddrMode differs in only one dimension then we can handle it by 2804 // inserting a phi/select later on. Even if NewAddMode is the same 2805 // we still need to collect it due to original value is different. 2806 // And later we will need all original values as anchors during 2807 // finding the common Phi node. 2808 if (DifferentField != ExtAddrMode::MultipleFields) { 2809 AddrModes.emplace_back(NewAddrMode); 2810 return true; 2811 } 2812 2813 // We couldn't combine NewAddrMode with the rest, so return failure. 2814 AddrModes.clear(); 2815 return false; 2816 } 2817 2818 /// \brief Combine the addressing modes we've collected into a single 2819 /// addressing mode. 2820 /// \return True iff we successfully combined them or we only had one so 2821 /// didn't need to combine them anyway. 2822 bool combineAddrModes() { 2823 // If we have no AddrModes then they can't be combined. 2824 if (AddrModes.size() == 0) 2825 return false; 2826 2827 // A single AddrMode can trivially be combined. 2828 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2829 return true; 2830 2831 // If the AddrModes we collected are all just equal to the value they are 2832 // derived from then combining them wouldn't do anything useful. 2833 if (AllAddrModesTrivial) 2834 return false; 2835 2836 if (DisableComplexAddrModes) 2837 return false; 2838 2839 // For now we support only different base registers. 2840 // TODO: enable others. 2841 if (DifferentField != ExtAddrMode::BaseRegField) 2842 return false; 2843 2844 // Build a map between <original value, basic block where we saw it> to 2845 // value of base register. 2846 FoldAddrToValueMapping Map; 2847 initializeMap(Map); 2848 2849 Value *CommonValue = findCommon(Map); 2850 if (CommonValue) 2851 AddrModes[0].BaseReg = CommonValue; 2852 return CommonValue != nullptr; 2853 } 2854 2855 private: 2856 /// \brief Initialize Map with anchor values. For address seen in some BB 2857 /// we set the value of different field saw in this address. 2858 /// If address is not an instruction than basic block is set to null. 2859 /// At the same time we find a common type for different field we will 2860 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2861 void initializeMap(FoldAddrToValueMapping &Map) { 2862 // Keep track of keys where the value is null. We will need to replace it 2863 // with constant null when we know the common type. 2864 SmallVector<ValueInBB, 2> NullValue; 2865 for (auto &AM : AddrModes) { 2866 BasicBlock *BB = nullptr; 2867 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2868 BB = I->getParent(); 2869 2870 // For now we support only base register as different field. 2871 // TODO: Enable others. 2872 Value *DV = AM.BaseReg; 2873 if (DV) { 2874 if (CommonType) 2875 assert(CommonType == DV->getType() && "Different types detected!"); 2876 else 2877 CommonType = DV->getType(); 2878 Map[{ AM.OriginalValue, BB }] = DV; 2879 } else { 2880 NullValue.push_back({ AM.OriginalValue, BB }); 2881 } 2882 } 2883 assert(CommonType && "At least one non-null value must be!"); 2884 for (auto VIBB : NullValue) 2885 Map[VIBB] = Constant::getNullValue(CommonType); 2886 } 2887 2888 /// \brief We have mapping between value A and basic block where value A 2889 /// seen to other value B where B was a field in addressing mode represented 2890 /// by A. Also we have an original value C representin an address in some 2891 /// basic block. Traversing from C through phi and selects we ended up with 2892 /// A's in a map. This utility function tries to find a value V which is a 2893 /// field in addressing mode C and traversing through phi nodes and selects 2894 /// we will end up in corresponded values B in a map. 2895 /// The utility will create a new Phi/Selects if needed. 2896 // The simple example looks as follows: 2897 // BB1: 2898 // p1 = b1 + 40 2899 // br cond BB2, BB3 2900 // BB2: 2901 // p2 = b2 + 40 2902 // br BB3 2903 // BB3: 2904 // p = phi [p1, BB1], [p2, BB2] 2905 // v = load p 2906 // Map is 2907 // <p1, BB1> -> b1 2908 // <p2, BB2> -> b2 2909 // Request is 2910 // <p, BB3> -> ? 2911 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2912 Value *findCommon(FoldAddrToValueMapping &Map) { 2913 // Tracks of new created Phi nodes. 2914 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2915 // Tracks of new created Select nodes. 2916 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2917 // Tracks the simplification of new created phi nodes. The reason we use 2918 // this mapping is because we will add new created Phi nodes in AddrToBase. 2919 // Simplification of Phi nodes is recursive, so some Phi node may 2920 // be simplified after we added it to AddrToBase. 2921 // Using this mapping we can find the current value in AddrToBase. 2922 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2923 2924 // First step, DFS to create PHI nodes for all intermediate blocks. 2925 // Also fill traverse order for the second step. 2926 SmallVector<ValueInBB, 32> TraverseOrder; 2927 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2928 2929 // Second Step, fill new nodes by merged values and simplify if possible. 2930 FillPlaceholders(Map, TraverseOrder, ST); 2931 2932 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2933 DestroyNodes(NewPhiNodes); 2934 DestroyNodes(NewSelectNodes); 2935 return nullptr; 2936 } 2937 2938 // Now we'd like to match New Phi nodes to existed ones. 2939 unsigned PhiNotMatchedCount = 0; 2940 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2941 DestroyNodes(NewPhiNodes); 2942 DestroyNodes(NewSelectNodes); 2943 return nullptr; 2944 } 2945 2946 auto *Result = ST.Get(Map.find(Original)->second); 2947 if (Result) { 2948 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2949 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2950 } 2951 return Result; 2952 } 2953 2954 /// \brief Destroy nodes from a set. 2955 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2956 // For safe erasing, replace the Phi with dummy value first. 2957 auto Dummy = UndefValue::get(CommonType); 2958 for (auto I : Instructions) { 2959 I->replaceAllUsesWith(Dummy); 2960 I->eraseFromParent(); 2961 } 2962 } 2963 2964 /// \brief Try to match PHI node to Candidate. 2965 /// Matcher tracks the matched Phi nodes. 2966 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2967 DenseSet<PHIPair> &Matcher, 2968 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2969 SmallVector<PHIPair, 8> WorkList; 2970 Matcher.insert({ PHI, Candidate }); 2971 WorkList.push_back({ PHI, Candidate }); 2972 SmallSet<PHIPair, 8> Visited; 2973 while (!WorkList.empty()) { 2974 auto Item = WorkList.pop_back_val(); 2975 if (!Visited.insert(Item).second) 2976 continue; 2977 // We iterate over all incoming values to Phi to compare them. 2978 // If values are different and both of them Phi and the first one is a 2979 // Phi we added (subject to match) and both of them is in the same basic 2980 // block then we can match our pair if values match. So we state that 2981 // these values match and add it to work list to verify that. 2982 for (auto B : Item.first->blocks()) { 2983 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2984 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2985 if (FirstValue == SecondValue) 2986 continue; 2987 2988 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2989 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2990 2991 // One of them is not Phi or 2992 // The first one is not Phi node from the set we'd like to match or 2993 // Phi nodes from different basic blocks then 2994 // we will not be able to match. 2995 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2996 FirstPhi->getParent() != SecondPhi->getParent()) 2997 return false; 2998 2999 // If we already matched them then continue. 3000 if (Matcher.count({ FirstPhi, SecondPhi })) 3001 continue; 3002 // So the values are different and does not match. So we need them to 3003 // match. 3004 Matcher.insert({ FirstPhi, SecondPhi }); 3005 // But me must check it. 3006 WorkList.push_back({ FirstPhi, SecondPhi }); 3007 } 3008 } 3009 return true; 3010 } 3011 3012 /// \brief For the given set of PHI nodes try to find their equivalents. 3013 /// Returns false if this matching fails and creation of new Phi is disabled. 3014 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 3015 SimplificationTracker &ST, bool AllowNewPhiNodes, 3016 unsigned &PhiNotMatchedCount) { 3017 DenseSet<PHIPair> Matched; 3018 SmallPtrSet<PHINode *, 8> WillNotMatch; 3019 while (PhiNodesToMatch.size()) { 3020 PHINode *PHI = *PhiNodesToMatch.begin(); 3021 3022 // Add us, if no Phi nodes in the basic block we do not match. 3023 WillNotMatch.clear(); 3024 WillNotMatch.insert(PHI); 3025 3026 // Traverse all Phis until we found equivalent or fail to do that. 3027 bool IsMatched = false; 3028 for (auto &P : PHI->getParent()->phis()) { 3029 if (&P == PHI) 3030 continue; 3031 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3032 break; 3033 // If it does not match, collect all Phi nodes from matcher. 3034 // if we end up with no match, them all these Phi nodes will not match 3035 // later. 3036 for (auto M : Matched) 3037 WillNotMatch.insert(M.first); 3038 Matched.clear(); 3039 } 3040 if (IsMatched) { 3041 // Replace all matched values and erase them. 3042 for (auto MV : Matched) { 3043 MV.first->replaceAllUsesWith(MV.second); 3044 PhiNodesToMatch.erase(MV.first); 3045 ST.Put(MV.first, MV.second); 3046 MV.first->eraseFromParent(); 3047 } 3048 Matched.clear(); 3049 continue; 3050 } 3051 // If we are not allowed to create new nodes then bail out. 3052 if (!AllowNewPhiNodes) 3053 return false; 3054 // Just remove all seen values in matcher. They will not match anything. 3055 PhiNotMatchedCount += WillNotMatch.size(); 3056 for (auto *P : WillNotMatch) 3057 PhiNodesToMatch.erase(P); 3058 } 3059 return true; 3060 } 3061 /// \brief Fill the placeholder with values from predecessors and simplify it. 3062 void FillPlaceholders(FoldAddrToValueMapping &Map, 3063 SmallVectorImpl<ValueInBB> &TraverseOrder, 3064 SimplificationTracker &ST) { 3065 while (!TraverseOrder.empty()) { 3066 auto Current = TraverseOrder.pop_back_val(); 3067 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3068 Value *CurrentValue = Current.first; 3069 BasicBlock *CurrentBlock = Current.second; 3070 Value *V = Map[Current]; 3071 3072 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3073 // CurrentValue also must be Select. 3074 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3075 auto *TrueValue = CurrentSelect->getTrueValue(); 3076 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3077 ? CurrentBlock 3078 : nullptr }; 3079 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3080 Select->setTrueValue(Map[TrueItem]); 3081 auto *FalseValue = CurrentSelect->getFalseValue(); 3082 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3083 ? CurrentBlock 3084 : nullptr }; 3085 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3086 Select->setFalseValue(Map[FalseItem]); 3087 } else { 3088 // Must be a Phi node then. 3089 PHINode *PHI = cast<PHINode>(V); 3090 // Fill the Phi node with values from predecessors. 3091 bool IsDefinedInThisBB = 3092 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3093 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3094 for (auto B : predecessors(CurrentBlock)) { 3095 Value *PV = IsDefinedInThisBB 3096 ? CurrentPhi->getIncomingValueForBlock(B) 3097 : CurrentValue; 3098 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3099 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3100 PHI->addIncoming(ST.Get(Map[item]), B); 3101 } 3102 } 3103 // Simplify if possible. 3104 Map[Current] = ST.Simplify(V); 3105 } 3106 } 3107 3108 /// Starting from value recursively iterates over predecessors up to known 3109 /// ending values represented in a map. For each traversed block inserts 3110 /// a placeholder Phi or Select. 3111 /// Reports all new created Phi/Select nodes by adding them to set. 3112 /// Also reports and order in what basic blocks have been traversed. 3113 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3114 SmallVectorImpl<ValueInBB> &TraverseOrder, 3115 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3116 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3117 SmallVector<ValueInBB, 32> Worklist; 3118 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3119 "Address must be a Phi or Select node"); 3120 auto *Dummy = UndefValue::get(CommonType); 3121 Worklist.push_back(Original); 3122 while (!Worklist.empty()) { 3123 auto Current = Worklist.pop_back_val(); 3124 // If value is not an instruction it is something global, constant, 3125 // parameter and we can say that this value is observable in any block. 3126 // Set block to null to denote it. 3127 // Also please take into account that it is how we build anchors. 3128 if (!isa<Instruction>(Current.first)) 3129 Current.second = nullptr; 3130 // if it is already visited or it is an ending value then skip it. 3131 if (Map.find(Current) != Map.end()) 3132 continue; 3133 TraverseOrder.push_back(Current); 3134 3135 Value *CurrentValue = Current.first; 3136 BasicBlock *CurrentBlock = Current.second; 3137 // CurrentValue must be a Phi node or select. All others must be covered 3138 // by anchors. 3139 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3140 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3141 3142 unsigned PredCount = 3143 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3144 // if Current Value is not defined in this basic block we are interested 3145 // in values in predecessors. 3146 if (!IsDefinedInThisBB) { 3147 assert(PredCount && "Unreachable block?!"); 3148 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3149 &CurrentBlock->front()); 3150 Map[Current] = PHI; 3151 NewPhiNodes.insert(PHI); 3152 // Add all predecessors in work list. 3153 for (auto B : predecessors(CurrentBlock)) 3154 Worklist.push_back({ CurrentValue, B }); 3155 continue; 3156 } 3157 // Value is defined in this basic block. 3158 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3159 // Is it OK to get metadata from OrigSelect?! 3160 // Create a Select placeholder with dummy value. 3161 SelectInst *Select = 3162 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3163 OrigSelect->getName(), OrigSelect, OrigSelect); 3164 Map[Current] = Select; 3165 NewSelectNodes.insert(Select); 3166 // We are interested in True and False value in this basic block. 3167 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3168 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3169 } else { 3170 // It must be a Phi node then. 3171 auto *CurrentPhi = cast<PHINode>(CurrentI); 3172 // Create new Phi node for merge of bases. 3173 assert(PredCount && "Unreachable block?!"); 3174 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3175 &CurrentBlock->front()); 3176 Map[Current] = PHI; 3177 NewPhiNodes.insert(PHI); 3178 3179 // Add all predecessors in work list. 3180 for (auto B : predecessors(CurrentBlock)) 3181 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3182 } 3183 } 3184 } 3185 }; 3186 } // end anonymous namespace 3187 3188 /// Try adding ScaleReg*Scale to the current addressing mode. 3189 /// Return true and update AddrMode if this addr mode is legal for the target, 3190 /// false if not. 3191 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3192 unsigned Depth) { 3193 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3194 // mode. Just process that directly. 3195 if (Scale == 1) 3196 return matchAddr(ScaleReg, Depth); 3197 3198 // If the scale is 0, it takes nothing to add this. 3199 if (Scale == 0) 3200 return true; 3201 3202 // If we already have a scale of this value, we can add to it, otherwise, we 3203 // need an available scale field. 3204 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3205 return false; 3206 3207 ExtAddrMode TestAddrMode = AddrMode; 3208 3209 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3210 // [A+B + A*7] -> [B+A*8]. 3211 TestAddrMode.Scale += Scale; 3212 TestAddrMode.ScaledReg = ScaleReg; 3213 3214 // If the new address isn't legal, bail out. 3215 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3216 return false; 3217 3218 // It was legal, so commit it. 3219 AddrMode = TestAddrMode; 3220 3221 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3222 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3223 // X*Scale + C*Scale to addr mode. 3224 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3225 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3226 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3227 TestAddrMode.ScaledReg = AddLHS; 3228 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3229 3230 // If this addressing mode is legal, commit it and remember that we folded 3231 // this instruction. 3232 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3233 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3234 AddrMode = TestAddrMode; 3235 return true; 3236 } 3237 } 3238 3239 // Otherwise, not (x+c)*scale, just return what we have. 3240 return true; 3241 } 3242 3243 /// This is a little filter, which returns true if an addressing computation 3244 /// involving I might be folded into a load/store accessing it. 3245 /// This doesn't need to be perfect, but needs to accept at least 3246 /// the set of instructions that MatchOperationAddr can. 3247 static bool MightBeFoldableInst(Instruction *I) { 3248 switch (I->getOpcode()) { 3249 case Instruction::BitCast: 3250 case Instruction::AddrSpaceCast: 3251 // Don't touch identity bitcasts. 3252 if (I->getType() == I->getOperand(0)->getType()) 3253 return false; 3254 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3255 case Instruction::PtrToInt: 3256 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3257 return true; 3258 case Instruction::IntToPtr: 3259 // We know the input is intptr_t, so this is foldable. 3260 return true; 3261 case Instruction::Add: 3262 return true; 3263 case Instruction::Mul: 3264 case Instruction::Shl: 3265 // Can only handle X*C and X << C. 3266 return isa<ConstantInt>(I->getOperand(1)); 3267 case Instruction::GetElementPtr: 3268 return true; 3269 default: 3270 return false; 3271 } 3272 } 3273 3274 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3275 /// \note \p Val is assumed to be the product of some type promotion. 3276 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3277 /// to be legal, as the non-promoted value would have had the same state. 3278 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3279 const DataLayout &DL, Value *Val) { 3280 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3281 if (!PromotedInst) 3282 return false; 3283 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3284 // If the ISDOpcode is undefined, it was undefined before the promotion. 3285 if (!ISDOpcode) 3286 return true; 3287 // Otherwise, check if the promoted instruction is legal or not. 3288 return TLI.isOperationLegalOrCustom( 3289 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3290 } 3291 3292 namespace { 3293 3294 /// \brief Hepler class to perform type promotion. 3295 class TypePromotionHelper { 3296 /// \brief Utility function to check whether or not a sign or zero extension 3297 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3298 /// either using the operands of \p Inst or promoting \p Inst. 3299 /// The type of the extension is defined by \p IsSExt. 3300 /// In other words, check if: 3301 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3302 /// #1 Promotion applies: 3303 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3304 /// #2 Operand reuses: 3305 /// ext opnd1 to ConsideredExtType. 3306 /// \p PromotedInsts maps the instructions to their type before promotion. 3307 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3308 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3309 3310 /// \brief Utility function to determine if \p OpIdx should be promoted when 3311 /// promoting \p Inst. 3312 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3313 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3314 } 3315 3316 /// \brief Utility function to promote the operand of \p Ext when this 3317 /// operand is a promotable trunc or sext or zext. 3318 /// \p PromotedInsts maps the instructions to their type before promotion. 3319 /// \p CreatedInstsCost[out] contains the cost of all instructions 3320 /// created to promote the operand of Ext. 3321 /// Newly added extensions are inserted in \p Exts. 3322 /// Newly added truncates are inserted in \p Truncs. 3323 /// Should never be called directly. 3324 /// \return The promoted value which is used instead of Ext. 3325 static Value *promoteOperandForTruncAndAnyExt( 3326 Instruction *Ext, TypePromotionTransaction &TPT, 3327 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3328 SmallVectorImpl<Instruction *> *Exts, 3329 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3330 3331 /// \brief Utility function to promote the operand of \p Ext when this 3332 /// operand is promotable and is not a supported trunc or sext. 3333 /// \p PromotedInsts maps the instructions to their type before promotion. 3334 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3335 /// created to promote the operand of Ext. 3336 /// Newly added extensions are inserted in \p Exts. 3337 /// Newly added truncates are inserted in \p Truncs. 3338 /// Should never be called directly. 3339 /// \return The promoted value which is used instead of Ext. 3340 static Value *promoteOperandForOther(Instruction *Ext, 3341 TypePromotionTransaction &TPT, 3342 InstrToOrigTy &PromotedInsts, 3343 unsigned &CreatedInstsCost, 3344 SmallVectorImpl<Instruction *> *Exts, 3345 SmallVectorImpl<Instruction *> *Truncs, 3346 const TargetLowering &TLI, bool IsSExt); 3347 3348 /// \see promoteOperandForOther. 3349 static Value *signExtendOperandForOther( 3350 Instruction *Ext, TypePromotionTransaction &TPT, 3351 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3352 SmallVectorImpl<Instruction *> *Exts, 3353 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3354 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3355 Exts, Truncs, TLI, true); 3356 } 3357 3358 /// \see promoteOperandForOther. 3359 static Value *zeroExtendOperandForOther( 3360 Instruction *Ext, TypePromotionTransaction &TPT, 3361 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3362 SmallVectorImpl<Instruction *> *Exts, 3363 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3364 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3365 Exts, Truncs, TLI, false); 3366 } 3367 3368 public: 3369 /// Type for the utility function that promotes the operand of Ext. 3370 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3371 InstrToOrigTy &PromotedInsts, 3372 unsigned &CreatedInstsCost, 3373 SmallVectorImpl<Instruction *> *Exts, 3374 SmallVectorImpl<Instruction *> *Truncs, 3375 const TargetLowering &TLI); 3376 3377 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3378 /// action to promote the operand of \p Ext instead of using Ext. 3379 /// \return NULL if no promotable action is possible with the current 3380 /// sign extension. 3381 /// \p InsertedInsts keeps track of all the instructions inserted by the 3382 /// other CodeGenPrepare optimizations. This information is important 3383 /// because we do not want to promote these instructions as CodeGenPrepare 3384 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3385 /// \p PromotedInsts maps the instructions to their type before promotion. 3386 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3387 const TargetLowering &TLI, 3388 const InstrToOrigTy &PromotedInsts); 3389 }; 3390 3391 } // end anonymous namespace 3392 3393 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3394 Type *ConsideredExtType, 3395 const InstrToOrigTy &PromotedInsts, 3396 bool IsSExt) { 3397 // The promotion helper does not know how to deal with vector types yet. 3398 // To be able to fix that, we would need to fix the places where we 3399 // statically extend, e.g., constants and such. 3400 if (Inst->getType()->isVectorTy()) 3401 return false; 3402 3403 // We can always get through zext. 3404 if (isa<ZExtInst>(Inst)) 3405 return true; 3406 3407 // sext(sext) is ok too. 3408 if (IsSExt && isa<SExtInst>(Inst)) 3409 return true; 3410 3411 // We can get through binary operator, if it is legal. In other words, the 3412 // binary operator must have a nuw or nsw flag. 3413 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3414 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3415 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3416 (IsSExt && BinOp->hasNoSignedWrap()))) 3417 return true; 3418 3419 // Check if we can do the following simplification. 3420 // ext(trunc(opnd)) --> ext(opnd) 3421 if (!isa<TruncInst>(Inst)) 3422 return false; 3423 3424 Value *OpndVal = Inst->getOperand(0); 3425 // Check if we can use this operand in the extension. 3426 // If the type is larger than the result type of the extension, we cannot. 3427 if (!OpndVal->getType()->isIntegerTy() || 3428 OpndVal->getType()->getIntegerBitWidth() > 3429 ConsideredExtType->getIntegerBitWidth()) 3430 return false; 3431 3432 // If the operand of the truncate is not an instruction, we will not have 3433 // any information on the dropped bits. 3434 // (Actually we could for constant but it is not worth the extra logic). 3435 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3436 if (!Opnd) 3437 return false; 3438 3439 // Check if the source of the type is narrow enough. 3440 // I.e., check that trunc just drops extended bits of the same kind of 3441 // the extension. 3442 // #1 get the type of the operand and check the kind of the extended bits. 3443 const Type *OpndType; 3444 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3445 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3446 OpndType = It->second.getPointer(); 3447 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3448 OpndType = Opnd->getOperand(0)->getType(); 3449 else 3450 return false; 3451 3452 // #2 check that the truncate just drops extended bits. 3453 return Inst->getType()->getIntegerBitWidth() >= 3454 OpndType->getIntegerBitWidth(); 3455 } 3456 3457 TypePromotionHelper::Action TypePromotionHelper::getAction( 3458 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3459 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3460 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3461 "Unexpected instruction type"); 3462 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3463 Type *ExtTy = Ext->getType(); 3464 bool IsSExt = isa<SExtInst>(Ext); 3465 // If the operand of the extension is not an instruction, we cannot 3466 // get through. 3467 // If it, check we can get through. 3468 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3469 return nullptr; 3470 3471 // Do not promote if the operand has been added by codegenprepare. 3472 // Otherwise, it means we are undoing an optimization that is likely to be 3473 // redone, thus causing potential infinite loop. 3474 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3475 return nullptr; 3476 3477 // SExt or Trunc instructions. 3478 // Return the related handler. 3479 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3480 isa<ZExtInst>(ExtOpnd)) 3481 return promoteOperandForTruncAndAnyExt; 3482 3483 // Regular instruction. 3484 // Abort early if we will have to insert non-free instructions. 3485 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3486 return nullptr; 3487 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3488 } 3489 3490 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3491 Instruction *SExt, TypePromotionTransaction &TPT, 3492 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3493 SmallVectorImpl<Instruction *> *Exts, 3494 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3495 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3496 // get through it and this method should not be called. 3497 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3498 Value *ExtVal = SExt; 3499 bool HasMergedNonFreeExt = false; 3500 if (isa<ZExtInst>(SExtOpnd)) { 3501 // Replace s|zext(zext(opnd)) 3502 // => zext(opnd). 3503 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3504 Value *ZExt = 3505 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3506 TPT.replaceAllUsesWith(SExt, ZExt); 3507 TPT.eraseInstruction(SExt); 3508 ExtVal = ZExt; 3509 } else { 3510 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3511 // => z|sext(opnd). 3512 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3513 } 3514 CreatedInstsCost = 0; 3515 3516 // Remove dead code. 3517 if (SExtOpnd->use_empty()) 3518 TPT.eraseInstruction(SExtOpnd); 3519 3520 // Check if the extension is still needed. 3521 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3522 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3523 if (ExtInst) { 3524 if (Exts) 3525 Exts->push_back(ExtInst); 3526 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3527 } 3528 return ExtVal; 3529 } 3530 3531 // At this point we have: ext ty opnd to ty. 3532 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3533 Value *NextVal = ExtInst->getOperand(0); 3534 TPT.eraseInstruction(ExtInst, NextVal); 3535 return NextVal; 3536 } 3537 3538 Value *TypePromotionHelper::promoteOperandForOther( 3539 Instruction *Ext, TypePromotionTransaction &TPT, 3540 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3541 SmallVectorImpl<Instruction *> *Exts, 3542 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3543 bool IsSExt) { 3544 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3545 // get through it and this method should not be called. 3546 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3547 CreatedInstsCost = 0; 3548 if (!ExtOpnd->hasOneUse()) { 3549 // ExtOpnd will be promoted. 3550 // All its uses, but Ext, will need to use a truncated value of the 3551 // promoted version. 3552 // Create the truncate now. 3553 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3554 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3555 // Insert it just after the definition. 3556 ITrunc->moveAfter(ExtOpnd); 3557 if (Truncs) 3558 Truncs->push_back(ITrunc); 3559 } 3560 3561 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3562 // Restore the operand of Ext (which has been replaced by the previous call 3563 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3564 TPT.setOperand(Ext, 0, ExtOpnd); 3565 } 3566 3567 // Get through the Instruction: 3568 // 1. Update its type. 3569 // 2. Replace the uses of Ext by Inst. 3570 // 3. Extend each operand that needs to be extended. 3571 3572 // Remember the original type of the instruction before promotion. 3573 // This is useful to know that the high bits are sign extended bits. 3574 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3575 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3576 // Step #1. 3577 TPT.mutateType(ExtOpnd, Ext->getType()); 3578 // Step #2. 3579 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3580 // Step #3. 3581 Instruction *ExtForOpnd = Ext; 3582 3583 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3584 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3585 ++OpIdx) { 3586 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3587 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3588 !shouldExtOperand(ExtOpnd, OpIdx)) { 3589 DEBUG(dbgs() << "No need to propagate\n"); 3590 continue; 3591 } 3592 // Check if we can statically extend the operand. 3593 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3594 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3595 DEBUG(dbgs() << "Statically extend\n"); 3596 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3597 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3598 : Cst->getValue().zext(BitWidth); 3599 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3600 continue; 3601 } 3602 // UndefValue are typed, so we have to statically sign extend them. 3603 if (isa<UndefValue>(Opnd)) { 3604 DEBUG(dbgs() << "Statically extend\n"); 3605 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3606 continue; 3607 } 3608 3609 // Otherwise we have to explicity sign extend the operand. 3610 // Check if Ext was reused to extend an operand. 3611 if (!ExtForOpnd) { 3612 // If yes, create a new one. 3613 DEBUG(dbgs() << "More operands to ext\n"); 3614 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3615 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3616 if (!isa<Instruction>(ValForExtOpnd)) { 3617 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3618 continue; 3619 } 3620 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3621 } 3622 if (Exts) 3623 Exts->push_back(ExtForOpnd); 3624 TPT.setOperand(ExtForOpnd, 0, Opnd); 3625 3626 // Move the sign extension before the insertion point. 3627 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3628 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3629 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3630 // If more sext are required, new instructions will have to be created. 3631 ExtForOpnd = nullptr; 3632 } 3633 if (ExtForOpnd == Ext) { 3634 DEBUG(dbgs() << "Extension is useless now\n"); 3635 TPT.eraseInstruction(Ext); 3636 } 3637 return ExtOpnd; 3638 } 3639 3640 /// Check whether or not promoting an instruction to a wider type is profitable. 3641 /// \p NewCost gives the cost of extension instructions created by the 3642 /// promotion. 3643 /// \p OldCost gives the cost of extension instructions before the promotion 3644 /// plus the number of instructions that have been 3645 /// matched in the addressing mode the promotion. 3646 /// \p PromotedOperand is the value that has been promoted. 3647 /// \return True if the promotion is profitable, false otherwise. 3648 bool AddressingModeMatcher::isPromotionProfitable( 3649 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3650 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3651 // The cost of the new extensions is greater than the cost of the 3652 // old extension plus what we folded. 3653 // This is not profitable. 3654 if (NewCost > OldCost) 3655 return false; 3656 if (NewCost < OldCost) 3657 return true; 3658 // The promotion is neutral but it may help folding the sign extension in 3659 // loads for instance. 3660 // Check that we did not create an illegal instruction. 3661 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3662 } 3663 3664 /// Given an instruction or constant expr, see if we can fold the operation 3665 /// into the addressing mode. If so, update the addressing mode and return 3666 /// true, otherwise return false without modifying AddrMode. 3667 /// If \p MovedAway is not NULL, it contains the information of whether or 3668 /// not AddrInst has to be folded into the addressing mode on success. 3669 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3670 /// because it has been moved away. 3671 /// Thus AddrInst must not be added in the matched instructions. 3672 /// This state can happen when AddrInst is a sext, since it may be moved away. 3673 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3674 /// not be referenced anymore. 3675 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3676 unsigned Depth, 3677 bool *MovedAway) { 3678 // Avoid exponential behavior on extremely deep expression trees. 3679 if (Depth >= 5) return false; 3680 3681 // By default, all matched instructions stay in place. 3682 if (MovedAway) 3683 *MovedAway = false; 3684 3685 switch (Opcode) { 3686 case Instruction::PtrToInt: 3687 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3688 return matchAddr(AddrInst->getOperand(0), Depth); 3689 case Instruction::IntToPtr: { 3690 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3691 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3692 // This inttoptr is a no-op if the integer type is pointer sized. 3693 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3694 return matchAddr(AddrInst->getOperand(0), Depth); 3695 return false; 3696 } 3697 case Instruction::BitCast: 3698 // BitCast is always a noop, and we can handle it as long as it is 3699 // int->int or pointer->pointer (we don't want int<->fp or something). 3700 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3701 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3702 // Don't touch identity bitcasts. These were probably put here by LSR, 3703 // and we don't want to mess around with them. Assume it knows what it 3704 // is doing. 3705 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3706 return matchAddr(AddrInst->getOperand(0), Depth); 3707 return false; 3708 case Instruction::AddrSpaceCast: { 3709 unsigned SrcAS 3710 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3711 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3712 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3713 return matchAddr(AddrInst->getOperand(0), Depth); 3714 return false; 3715 } 3716 case Instruction::Add: { 3717 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3718 ExtAddrMode BackupAddrMode = AddrMode; 3719 unsigned OldSize = AddrModeInsts.size(); 3720 // Start a transaction at this point. 3721 // The LHS may match but not the RHS. 3722 // Therefore, we need a higher level restoration point to undo partially 3723 // matched operation. 3724 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3725 TPT.getRestorationPoint(); 3726 3727 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3728 matchAddr(AddrInst->getOperand(0), Depth+1)) 3729 return true; 3730 3731 // Restore the old addr mode info. 3732 AddrMode = BackupAddrMode; 3733 AddrModeInsts.resize(OldSize); 3734 TPT.rollback(LastKnownGood); 3735 3736 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3737 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3738 matchAddr(AddrInst->getOperand(1), Depth+1)) 3739 return true; 3740 3741 // Otherwise we definitely can't merge the ADD in. 3742 AddrMode = BackupAddrMode; 3743 AddrModeInsts.resize(OldSize); 3744 TPT.rollback(LastKnownGood); 3745 break; 3746 } 3747 //case Instruction::Or: 3748 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3749 //break; 3750 case Instruction::Mul: 3751 case Instruction::Shl: { 3752 // Can only handle X*C and X << C. 3753 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3754 if (!RHS || RHS->getBitWidth() > 64) 3755 return false; 3756 int64_t Scale = RHS->getSExtValue(); 3757 if (Opcode == Instruction::Shl) 3758 Scale = 1LL << Scale; 3759 3760 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3761 } 3762 case Instruction::GetElementPtr: { 3763 // Scan the GEP. We check it if it contains constant offsets and at most 3764 // one variable offset. 3765 int VariableOperand = -1; 3766 unsigned VariableScale = 0; 3767 3768 int64_t ConstantOffset = 0; 3769 gep_type_iterator GTI = gep_type_begin(AddrInst); 3770 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3771 if (StructType *STy = GTI.getStructTypeOrNull()) { 3772 const StructLayout *SL = DL.getStructLayout(STy); 3773 unsigned Idx = 3774 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3775 ConstantOffset += SL->getElementOffset(Idx); 3776 } else { 3777 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3778 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3779 ConstantOffset += CI->getSExtValue()*TypeSize; 3780 } else if (TypeSize) { // Scales of zero don't do anything. 3781 // We only allow one variable index at the moment. 3782 if (VariableOperand != -1) 3783 return false; 3784 3785 // Remember the variable index. 3786 VariableOperand = i; 3787 VariableScale = TypeSize; 3788 } 3789 } 3790 } 3791 3792 // A common case is for the GEP to only do a constant offset. In this case, 3793 // just add it to the disp field and check validity. 3794 if (VariableOperand == -1) { 3795 AddrMode.BaseOffs += ConstantOffset; 3796 if (ConstantOffset == 0 || 3797 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3798 // Check to see if we can fold the base pointer in too. 3799 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3800 return true; 3801 } 3802 AddrMode.BaseOffs -= ConstantOffset; 3803 return false; 3804 } 3805 3806 // Save the valid addressing mode in case we can't match. 3807 ExtAddrMode BackupAddrMode = AddrMode; 3808 unsigned OldSize = AddrModeInsts.size(); 3809 3810 // See if the scale and offset amount is valid for this target. 3811 AddrMode.BaseOffs += ConstantOffset; 3812 3813 // Match the base operand of the GEP. 3814 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3815 // If it couldn't be matched, just stuff the value in a register. 3816 if (AddrMode.HasBaseReg) { 3817 AddrMode = BackupAddrMode; 3818 AddrModeInsts.resize(OldSize); 3819 return false; 3820 } 3821 AddrMode.HasBaseReg = true; 3822 AddrMode.BaseReg = AddrInst->getOperand(0); 3823 } 3824 3825 // Match the remaining variable portion of the GEP. 3826 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3827 Depth)) { 3828 // If it couldn't be matched, try stuffing the base into a register 3829 // instead of matching it, and retrying the match of the scale. 3830 AddrMode = BackupAddrMode; 3831 AddrModeInsts.resize(OldSize); 3832 if (AddrMode.HasBaseReg) 3833 return false; 3834 AddrMode.HasBaseReg = true; 3835 AddrMode.BaseReg = AddrInst->getOperand(0); 3836 AddrMode.BaseOffs += ConstantOffset; 3837 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3838 VariableScale, Depth)) { 3839 // If even that didn't work, bail. 3840 AddrMode = BackupAddrMode; 3841 AddrModeInsts.resize(OldSize); 3842 return false; 3843 } 3844 } 3845 3846 return true; 3847 } 3848 case Instruction::SExt: 3849 case Instruction::ZExt: { 3850 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3851 if (!Ext) 3852 return false; 3853 3854 // Try to move this ext out of the way of the addressing mode. 3855 // Ask for a method for doing so. 3856 TypePromotionHelper::Action TPH = 3857 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3858 if (!TPH) 3859 return false; 3860 3861 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3862 TPT.getRestorationPoint(); 3863 unsigned CreatedInstsCost = 0; 3864 unsigned ExtCost = !TLI.isExtFree(Ext); 3865 Value *PromotedOperand = 3866 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3867 // SExt has been moved away. 3868 // Thus either it will be rematched later in the recursive calls or it is 3869 // gone. Anyway, we must not fold it into the addressing mode at this point. 3870 // E.g., 3871 // op = add opnd, 1 3872 // idx = ext op 3873 // addr = gep base, idx 3874 // is now: 3875 // promotedOpnd = ext opnd <- no match here 3876 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3877 // addr = gep base, op <- match 3878 if (MovedAway) 3879 *MovedAway = true; 3880 3881 assert(PromotedOperand && 3882 "TypePromotionHelper should have filtered out those cases"); 3883 3884 ExtAddrMode BackupAddrMode = AddrMode; 3885 unsigned OldSize = AddrModeInsts.size(); 3886 3887 if (!matchAddr(PromotedOperand, Depth) || 3888 // The total of the new cost is equal to the cost of the created 3889 // instructions. 3890 // The total of the old cost is equal to the cost of the extension plus 3891 // what we have saved in the addressing mode. 3892 !isPromotionProfitable(CreatedInstsCost, 3893 ExtCost + (AddrModeInsts.size() - OldSize), 3894 PromotedOperand)) { 3895 AddrMode = BackupAddrMode; 3896 AddrModeInsts.resize(OldSize); 3897 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3898 TPT.rollback(LastKnownGood); 3899 return false; 3900 } 3901 return true; 3902 } 3903 } 3904 return false; 3905 } 3906 3907 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3908 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3909 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3910 /// for the target. 3911 /// 3912 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3913 // Start a transaction at this point that we will rollback if the matching 3914 // fails. 3915 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3916 TPT.getRestorationPoint(); 3917 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3918 // Fold in immediates if legal for the target. 3919 AddrMode.BaseOffs += CI->getSExtValue(); 3920 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3921 return true; 3922 AddrMode.BaseOffs -= CI->getSExtValue(); 3923 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3924 // If this is a global variable, try to fold it into the addressing mode. 3925 if (!AddrMode.BaseGV) { 3926 AddrMode.BaseGV = GV; 3927 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3928 return true; 3929 AddrMode.BaseGV = nullptr; 3930 } 3931 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3932 ExtAddrMode BackupAddrMode = AddrMode; 3933 unsigned OldSize = AddrModeInsts.size(); 3934 3935 // Check to see if it is possible to fold this operation. 3936 bool MovedAway = false; 3937 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3938 // This instruction may have been moved away. If so, there is nothing 3939 // to check here. 3940 if (MovedAway) 3941 return true; 3942 // Okay, it's possible to fold this. Check to see if it is actually 3943 // *profitable* to do so. We use a simple cost model to avoid increasing 3944 // register pressure too much. 3945 if (I->hasOneUse() || 3946 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3947 AddrModeInsts.push_back(I); 3948 return true; 3949 } 3950 3951 // It isn't profitable to do this, roll back. 3952 //cerr << "NOT FOLDING: " << *I; 3953 AddrMode = BackupAddrMode; 3954 AddrModeInsts.resize(OldSize); 3955 TPT.rollback(LastKnownGood); 3956 } 3957 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3958 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3959 return true; 3960 TPT.rollback(LastKnownGood); 3961 } else if (isa<ConstantPointerNull>(Addr)) { 3962 // Null pointer gets folded without affecting the addressing mode. 3963 return true; 3964 } 3965 3966 // Worse case, the target should support [reg] addressing modes. :) 3967 if (!AddrMode.HasBaseReg) { 3968 AddrMode.HasBaseReg = true; 3969 AddrMode.BaseReg = Addr; 3970 // Still check for legality in case the target supports [imm] but not [i+r]. 3971 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3972 return true; 3973 AddrMode.HasBaseReg = false; 3974 AddrMode.BaseReg = nullptr; 3975 } 3976 3977 // If the base register is already taken, see if we can do [r+r]. 3978 if (AddrMode.Scale == 0) { 3979 AddrMode.Scale = 1; 3980 AddrMode.ScaledReg = Addr; 3981 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3982 return true; 3983 AddrMode.Scale = 0; 3984 AddrMode.ScaledReg = nullptr; 3985 } 3986 // Couldn't match. 3987 TPT.rollback(LastKnownGood); 3988 return false; 3989 } 3990 3991 /// Check to see if all uses of OpVal by the specified inline asm call are due 3992 /// to memory operands. If so, return true, otherwise return false. 3993 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3994 const TargetLowering &TLI, 3995 const TargetRegisterInfo &TRI) { 3996 const Function *F = CI->getFunction(); 3997 TargetLowering::AsmOperandInfoVector TargetConstraints = 3998 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3999 ImmutableCallSite(CI)); 4000 4001 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4002 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4003 4004 // Compute the constraint code and ConstraintType to use. 4005 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4006 4007 // If this asm operand is our Value*, and if it isn't an indirect memory 4008 // operand, we can't fold it! 4009 if (OpInfo.CallOperandVal == OpVal && 4010 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4011 !OpInfo.isIndirect)) 4012 return false; 4013 } 4014 4015 return true; 4016 } 4017 4018 // Max number of memory uses to look at before aborting the search to conserve 4019 // compile time. 4020 static constexpr int MaxMemoryUsesToScan = 20; 4021 4022 /// Recursively walk all the uses of I until we find a memory use. 4023 /// If we find an obviously non-foldable instruction, return true. 4024 /// Add the ultimately found memory instructions to MemoryUses. 4025 static bool FindAllMemoryUses( 4026 Instruction *I, 4027 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4028 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4029 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4030 // If we already considered this instruction, we're done. 4031 if (!ConsideredInsts.insert(I).second) 4032 return false; 4033 4034 // If this is an obviously unfoldable instruction, bail out. 4035 if (!MightBeFoldableInst(I)) 4036 return true; 4037 4038 const bool OptSize = I->getFunction()->optForSize(); 4039 4040 // Loop over all the uses, recursively processing them. 4041 for (Use &U : I->uses()) { 4042 // Conservatively return true if we're seeing a large number or a deep chain 4043 // of users. This avoids excessive compilation times in pathological cases. 4044 if (SeenInsts++ >= MaxMemoryUsesToScan) 4045 return true; 4046 4047 Instruction *UserI = cast<Instruction>(U.getUser()); 4048 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4049 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4050 continue; 4051 } 4052 4053 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4054 unsigned opNo = U.getOperandNo(); 4055 if (opNo != StoreInst::getPointerOperandIndex()) 4056 return true; // Storing addr, not into addr. 4057 MemoryUses.push_back(std::make_pair(SI, opNo)); 4058 continue; 4059 } 4060 4061 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4062 unsigned opNo = U.getOperandNo(); 4063 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4064 return true; // Storing addr, not into addr. 4065 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4066 continue; 4067 } 4068 4069 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4070 unsigned opNo = U.getOperandNo(); 4071 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4072 return true; // Storing addr, not into addr. 4073 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4074 continue; 4075 } 4076 4077 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4078 // If this is a cold call, we can sink the addressing calculation into 4079 // the cold path. See optimizeCallInst 4080 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4081 continue; 4082 4083 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4084 if (!IA) return true; 4085 4086 // If this is a memory operand, we're cool, otherwise bail out. 4087 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4088 return true; 4089 continue; 4090 } 4091 4092 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4093 SeenInsts)) 4094 return true; 4095 } 4096 4097 return false; 4098 } 4099 4100 /// Return true if Val is already known to be live at the use site that we're 4101 /// folding it into. If so, there is no cost to include it in the addressing 4102 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4103 /// instruction already. 4104 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4105 Value *KnownLive2) { 4106 // If Val is either of the known-live values, we know it is live! 4107 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4108 return true; 4109 4110 // All values other than instructions and arguments (e.g. constants) are live. 4111 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4112 4113 // If Val is a constant sized alloca in the entry block, it is live, this is 4114 // true because it is just a reference to the stack/frame pointer, which is 4115 // live for the whole function. 4116 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4117 if (AI->isStaticAlloca()) 4118 return true; 4119 4120 // Check to see if this value is already used in the memory instruction's 4121 // block. If so, it's already live into the block at the very least, so we 4122 // can reasonably fold it. 4123 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4124 } 4125 4126 /// It is possible for the addressing mode of the machine to fold the specified 4127 /// instruction into a load or store that ultimately uses it. 4128 /// However, the specified instruction has multiple uses. 4129 /// Given this, it may actually increase register pressure to fold it 4130 /// into the load. For example, consider this code: 4131 /// 4132 /// X = ... 4133 /// Y = X+1 4134 /// use(Y) -> nonload/store 4135 /// Z = Y+1 4136 /// load Z 4137 /// 4138 /// In this case, Y has multiple uses, and can be folded into the load of Z 4139 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4140 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4141 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4142 /// number of computations either. 4143 /// 4144 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4145 /// X was live across 'load Z' for other reasons, we actually *would* want to 4146 /// fold the addressing mode in the Z case. This would make Y die earlier. 4147 bool AddressingModeMatcher:: 4148 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4149 ExtAddrMode &AMAfter) { 4150 if (IgnoreProfitability) return true; 4151 4152 // AMBefore is the addressing mode before this instruction was folded into it, 4153 // and AMAfter is the addressing mode after the instruction was folded. Get 4154 // the set of registers referenced by AMAfter and subtract out those 4155 // referenced by AMBefore: this is the set of values which folding in this 4156 // address extends the lifetime of. 4157 // 4158 // Note that there are only two potential values being referenced here, 4159 // BaseReg and ScaleReg (global addresses are always available, as are any 4160 // folded immediates). 4161 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4162 4163 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4164 // lifetime wasn't extended by adding this instruction. 4165 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4166 BaseReg = nullptr; 4167 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4168 ScaledReg = nullptr; 4169 4170 // If folding this instruction (and it's subexprs) didn't extend any live 4171 // ranges, we're ok with it. 4172 if (!BaseReg && !ScaledReg) 4173 return true; 4174 4175 // If all uses of this instruction can have the address mode sunk into them, 4176 // we can remove the addressing mode and effectively trade one live register 4177 // for another (at worst.) In this context, folding an addressing mode into 4178 // the use is just a particularly nice way of sinking it. 4179 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4180 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4181 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4182 return false; // Has a non-memory, non-foldable use! 4183 4184 // Now that we know that all uses of this instruction are part of a chain of 4185 // computation involving only operations that could theoretically be folded 4186 // into a memory use, loop over each of these memory operation uses and see 4187 // if they could *actually* fold the instruction. The assumption is that 4188 // addressing modes are cheap and that duplicating the computation involved 4189 // many times is worthwhile, even on a fastpath. For sinking candidates 4190 // (i.e. cold call sites), this serves as a way to prevent excessive code 4191 // growth since most architectures have some reasonable small and fast way to 4192 // compute an effective address. (i.e LEA on x86) 4193 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4194 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4195 Instruction *User = MemoryUses[i].first; 4196 unsigned OpNo = MemoryUses[i].second; 4197 4198 // Get the access type of this use. If the use isn't a pointer, we don't 4199 // know what it accesses. 4200 Value *Address = User->getOperand(OpNo); 4201 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4202 if (!AddrTy) 4203 return false; 4204 Type *AddressAccessTy = AddrTy->getElementType(); 4205 unsigned AS = AddrTy->getAddressSpace(); 4206 4207 // Do a match against the root of this address, ignoring profitability. This 4208 // will tell us if the addressing mode for the memory operation will 4209 // *actually* cover the shared instruction. 4210 ExtAddrMode Result; 4211 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4212 TPT.getRestorationPoint(); 4213 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4214 AddressAccessTy, AS, 4215 MemoryInst, Result, InsertedInsts, 4216 PromotedInsts, TPT); 4217 Matcher.IgnoreProfitability = true; 4218 bool Success = Matcher.matchAddr(Address, 0); 4219 (void)Success; assert(Success && "Couldn't select *anything*?"); 4220 4221 // The match was to check the profitability, the changes made are not 4222 // part of the original matcher. Therefore, they should be dropped 4223 // otherwise the original matcher will not present the right state. 4224 TPT.rollback(LastKnownGood); 4225 4226 // If the match didn't cover I, then it won't be shared by it. 4227 if (!is_contained(MatchedAddrModeInsts, I)) 4228 return false; 4229 4230 MatchedAddrModeInsts.clear(); 4231 } 4232 4233 return true; 4234 } 4235 4236 /// Return true if the specified values are defined in a 4237 /// different basic block than BB. 4238 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4239 if (Instruction *I = dyn_cast<Instruction>(V)) 4240 return I->getParent() != BB; 4241 return false; 4242 } 4243 4244 /// Sink addressing mode computation immediate before MemoryInst if doing so 4245 /// can be done without increasing register pressure. The need for the 4246 /// register pressure constraint means this can end up being an all or nothing 4247 /// decision for all uses of the same addressing computation. 4248 /// 4249 /// Load and Store Instructions often have addressing modes that can do 4250 /// significant amounts of computation. As such, instruction selection will try 4251 /// to get the load or store to do as much computation as possible for the 4252 /// program. The problem is that isel can only see within a single block. As 4253 /// such, we sink as much legal addressing mode work into the block as possible. 4254 /// 4255 /// This method is used to optimize both load/store and inline asms with memory 4256 /// operands. It's also used to sink addressing computations feeding into cold 4257 /// call sites into their (cold) basic block. 4258 /// 4259 /// The motivation for handling sinking into cold blocks is that doing so can 4260 /// both enable other address mode sinking (by satisfying the register pressure 4261 /// constraint above), and reduce register pressure globally (by removing the 4262 /// addressing mode computation from the fast path entirely.). 4263 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4264 Type *AccessTy, unsigned AddrSpace) { 4265 Value *Repl = Addr; 4266 4267 // Try to collapse single-value PHI nodes. This is necessary to undo 4268 // unprofitable PRE transformations. 4269 SmallVector<Value*, 8> worklist; 4270 SmallPtrSet<Value*, 16> Visited; 4271 worklist.push_back(Addr); 4272 4273 // Use a worklist to iteratively look through PHI and select nodes, and 4274 // ensure that the addressing mode obtained from the non-PHI/select roots of 4275 // the graph are compatible. 4276 bool PhiOrSelectSeen = false; 4277 SmallVector<Instruction*, 16> AddrModeInsts; 4278 const SimplifyQuery SQ(*DL, TLInfo); 4279 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4280 TypePromotionTransaction TPT(RemovedInsts); 4281 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4282 TPT.getRestorationPoint(); 4283 while (!worklist.empty()) { 4284 Value *V = worklist.back(); 4285 worklist.pop_back(); 4286 4287 // We allow traversing cyclic Phi nodes. 4288 // In case of success after this loop we ensure that traversing through 4289 // Phi nodes ends up with all cases to compute address of the form 4290 // BaseGV + Base + Scale * Index + Offset 4291 // where Scale and Offset are constans and BaseGV, Base and Index 4292 // are exactly the same Values in all cases. 4293 // It means that BaseGV, Scale and Offset dominate our memory instruction 4294 // and have the same value as they had in address computation represented 4295 // as Phi. So we can safely sink address computation to memory instruction. 4296 if (!Visited.insert(V).second) 4297 continue; 4298 4299 // For a PHI node, push all of its incoming values. 4300 if (PHINode *P = dyn_cast<PHINode>(V)) { 4301 for (Value *IncValue : P->incoming_values()) 4302 worklist.push_back(IncValue); 4303 PhiOrSelectSeen = true; 4304 continue; 4305 } 4306 // Similar for select. 4307 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4308 worklist.push_back(SI->getFalseValue()); 4309 worklist.push_back(SI->getTrueValue()); 4310 PhiOrSelectSeen = true; 4311 continue; 4312 } 4313 4314 // For non-PHIs, determine the addressing mode being computed. Note that 4315 // the result may differ depending on what other uses our candidate 4316 // addressing instructions might have. 4317 AddrModeInsts.clear(); 4318 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4319 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4320 InsertedInsts, PromotedInsts, TPT); 4321 NewAddrMode.OriginalValue = V; 4322 4323 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4324 break; 4325 } 4326 4327 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4328 // or we have multiple but either couldn't combine them or combining them 4329 // wouldn't do anything useful, bail out now. 4330 if (!AddrModes.combineAddrModes()) { 4331 TPT.rollback(LastKnownGood); 4332 return false; 4333 } 4334 TPT.commit(); 4335 4336 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4337 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4338 4339 // If all the instructions matched are already in this BB, don't do anything. 4340 // If we saw a Phi node then it is not local definitely, and if we saw a select 4341 // then we want to push the address calculation past it even if it's already 4342 // in this BB. 4343 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4344 return IsNonLocalValue(V, MemoryInst->getParent()); 4345 })) { 4346 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4347 return false; 4348 } 4349 4350 // Insert this computation right after this user. Since our caller is 4351 // scanning from the top of the BB to the bottom, reuse of the expr are 4352 // guaranteed to happen later. 4353 IRBuilder<> Builder(MemoryInst); 4354 4355 // Now that we determined the addressing expression we want to use and know 4356 // that we have to sink it into this block. Check to see if we have already 4357 // done this for some other load/store instr in this block. If so, reuse the 4358 // computation. 4359 Value *&SunkAddr = SunkAddrs[Addr]; 4360 if (SunkAddr) { 4361 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4362 << *MemoryInst << "\n"); 4363 if (SunkAddr->getType() != Addr->getType()) 4364 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4365 } else if (AddrSinkUsingGEPs || 4366 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4367 SubtargetInfo->useAA())) { 4368 // By default, we use the GEP-based method when AA is used later. This 4369 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4370 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4371 << *MemoryInst << "\n"); 4372 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4373 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4374 4375 // First, find the pointer. 4376 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4377 ResultPtr = AddrMode.BaseReg; 4378 AddrMode.BaseReg = nullptr; 4379 } 4380 4381 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4382 // We can't add more than one pointer together, nor can we scale a 4383 // pointer (both of which seem meaningless). 4384 if (ResultPtr || AddrMode.Scale != 1) 4385 return false; 4386 4387 ResultPtr = AddrMode.ScaledReg; 4388 AddrMode.Scale = 0; 4389 } 4390 4391 // It is only safe to sign extend the BaseReg if we know that the math 4392 // required to create it did not overflow before we extend it. Since 4393 // the original IR value was tossed in favor of a constant back when 4394 // the AddrMode was created we need to bail out gracefully if widths 4395 // do not match instead of extending it. 4396 // 4397 // (See below for code to add the scale.) 4398 if (AddrMode.Scale) { 4399 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4400 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4401 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4402 return false; 4403 } 4404 4405 if (AddrMode.BaseGV) { 4406 if (ResultPtr) 4407 return false; 4408 4409 ResultPtr = AddrMode.BaseGV; 4410 } 4411 4412 // If the real base value actually came from an inttoptr, then the matcher 4413 // will look through it and provide only the integer value. In that case, 4414 // use it here. 4415 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4416 if (!ResultPtr && AddrMode.BaseReg) { 4417 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4418 "sunkaddr"); 4419 AddrMode.BaseReg = nullptr; 4420 } else if (!ResultPtr && AddrMode.Scale == 1) { 4421 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4422 "sunkaddr"); 4423 AddrMode.Scale = 0; 4424 } 4425 } 4426 4427 if (!ResultPtr && 4428 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4429 SunkAddr = Constant::getNullValue(Addr->getType()); 4430 } else if (!ResultPtr) { 4431 return false; 4432 } else { 4433 Type *I8PtrTy = 4434 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4435 Type *I8Ty = Builder.getInt8Ty(); 4436 4437 // Start with the base register. Do this first so that subsequent address 4438 // matching finds it last, which will prevent it from trying to match it 4439 // as the scaled value in case it happens to be a mul. That would be 4440 // problematic if we've sunk a different mul for the scale, because then 4441 // we'd end up sinking both muls. 4442 if (AddrMode.BaseReg) { 4443 Value *V = AddrMode.BaseReg; 4444 if (V->getType() != IntPtrTy) 4445 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4446 4447 ResultIndex = V; 4448 } 4449 4450 // Add the scale value. 4451 if (AddrMode.Scale) { 4452 Value *V = AddrMode.ScaledReg; 4453 if (V->getType() == IntPtrTy) { 4454 // done. 4455 } else { 4456 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4457 cast<IntegerType>(V->getType())->getBitWidth() && 4458 "We can't transform if ScaledReg is too narrow"); 4459 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4460 } 4461 4462 if (AddrMode.Scale != 1) 4463 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4464 "sunkaddr"); 4465 if (ResultIndex) 4466 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4467 else 4468 ResultIndex = V; 4469 } 4470 4471 // Add in the Base Offset if present. 4472 if (AddrMode.BaseOffs) { 4473 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4474 if (ResultIndex) { 4475 // We need to add this separately from the scale above to help with 4476 // SDAG consecutive load/store merging. 4477 if (ResultPtr->getType() != I8PtrTy) 4478 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4479 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4480 } 4481 4482 ResultIndex = V; 4483 } 4484 4485 if (!ResultIndex) { 4486 SunkAddr = ResultPtr; 4487 } else { 4488 if (ResultPtr->getType() != I8PtrTy) 4489 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4490 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4491 } 4492 4493 if (SunkAddr->getType() != Addr->getType()) 4494 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4495 } 4496 } else { 4497 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4498 // non-integral pointers, so in that case bail out now. 4499 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4500 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4501 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4502 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4503 if (DL->isNonIntegralPointerType(Addr->getType()) || 4504 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4505 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4506 (AddrMode.BaseGV && 4507 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4508 return false; 4509 4510 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4511 << *MemoryInst << "\n"); 4512 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4513 Value *Result = nullptr; 4514 4515 // Start with the base register. Do this first so that subsequent address 4516 // matching finds it last, which will prevent it from trying to match it 4517 // as the scaled value in case it happens to be a mul. That would be 4518 // problematic if we've sunk a different mul for the scale, because then 4519 // we'd end up sinking both muls. 4520 if (AddrMode.BaseReg) { 4521 Value *V = AddrMode.BaseReg; 4522 if (V->getType()->isPointerTy()) 4523 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4524 if (V->getType() != IntPtrTy) 4525 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4526 Result = V; 4527 } 4528 4529 // Add the scale value. 4530 if (AddrMode.Scale) { 4531 Value *V = AddrMode.ScaledReg; 4532 if (V->getType() == IntPtrTy) { 4533 // done. 4534 } else if (V->getType()->isPointerTy()) { 4535 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4536 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4537 cast<IntegerType>(V->getType())->getBitWidth()) { 4538 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4539 } else { 4540 // It is only safe to sign extend the BaseReg if we know that the math 4541 // required to create it did not overflow before we extend it. Since 4542 // the original IR value was tossed in favor of a constant back when 4543 // the AddrMode was created we need to bail out gracefully if widths 4544 // do not match instead of extending it. 4545 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4546 if (I && (Result != AddrMode.BaseReg)) 4547 I->eraseFromParent(); 4548 return false; 4549 } 4550 if (AddrMode.Scale != 1) 4551 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4552 "sunkaddr"); 4553 if (Result) 4554 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4555 else 4556 Result = V; 4557 } 4558 4559 // Add in the BaseGV if present. 4560 if (AddrMode.BaseGV) { 4561 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4562 if (Result) 4563 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4564 else 4565 Result = V; 4566 } 4567 4568 // Add in the Base Offset if present. 4569 if (AddrMode.BaseOffs) { 4570 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4571 if (Result) 4572 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4573 else 4574 Result = V; 4575 } 4576 4577 if (!Result) 4578 SunkAddr = Constant::getNullValue(Addr->getType()); 4579 else 4580 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4581 } 4582 4583 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4584 4585 // If we have no uses, recursively delete the value and all dead instructions 4586 // using it. 4587 if (Repl->use_empty()) { 4588 // This can cause recursive deletion, which can invalidate our iterator. 4589 // Use a WeakTrackingVH to hold onto it in case this happens. 4590 Value *CurValue = &*CurInstIterator; 4591 WeakTrackingVH IterHandle(CurValue); 4592 BasicBlock *BB = CurInstIterator->getParent(); 4593 4594 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4595 4596 if (IterHandle != CurValue) { 4597 // If the iterator instruction was recursively deleted, start over at the 4598 // start of the block. 4599 CurInstIterator = BB->begin(); 4600 SunkAddrs.clear(); 4601 } 4602 } 4603 ++NumMemoryInsts; 4604 return true; 4605 } 4606 4607 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4608 /// address computing into the block when possible / profitable. 4609 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4610 bool MadeChange = false; 4611 4612 const TargetRegisterInfo *TRI = 4613 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4614 TargetLowering::AsmOperandInfoVector TargetConstraints = 4615 TLI->ParseConstraints(*DL, TRI, CS); 4616 unsigned ArgNo = 0; 4617 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4618 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4619 4620 // Compute the constraint code and ConstraintType to use. 4621 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4622 4623 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4624 OpInfo.isIndirect) { 4625 Value *OpVal = CS->getArgOperand(ArgNo++); 4626 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4627 } else if (OpInfo.Type == InlineAsm::isInput) 4628 ArgNo++; 4629 } 4630 4631 return MadeChange; 4632 } 4633 4634 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4635 /// sign extensions. 4636 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4637 assert(!Val->use_empty() && "Input must have at least one use"); 4638 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4639 bool IsSExt = isa<SExtInst>(FirstUser); 4640 Type *ExtTy = FirstUser->getType(); 4641 for (const User *U : Val->users()) { 4642 const Instruction *UI = cast<Instruction>(U); 4643 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4644 return false; 4645 Type *CurTy = UI->getType(); 4646 // Same input and output types: Same instruction after CSE. 4647 if (CurTy == ExtTy) 4648 continue; 4649 4650 // If IsSExt is true, we are in this situation: 4651 // a = Val 4652 // b = sext ty1 a to ty2 4653 // c = sext ty1 a to ty3 4654 // Assuming ty2 is shorter than ty3, this could be turned into: 4655 // a = Val 4656 // b = sext ty1 a to ty2 4657 // c = sext ty2 b to ty3 4658 // However, the last sext is not free. 4659 if (IsSExt) 4660 return false; 4661 4662 // This is a ZExt, maybe this is free to extend from one type to another. 4663 // In that case, we would not account for a different use. 4664 Type *NarrowTy; 4665 Type *LargeTy; 4666 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4667 CurTy->getScalarType()->getIntegerBitWidth()) { 4668 NarrowTy = CurTy; 4669 LargeTy = ExtTy; 4670 } else { 4671 NarrowTy = ExtTy; 4672 LargeTy = CurTy; 4673 } 4674 4675 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4676 return false; 4677 } 4678 // All uses are the same or can be derived from one another for free. 4679 return true; 4680 } 4681 4682 /// \brief Try to speculatively promote extensions in \p Exts and continue 4683 /// promoting through newly promoted operands recursively as far as doing so is 4684 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4685 /// When some promotion happened, \p TPT contains the proper state to revert 4686 /// them. 4687 /// 4688 /// \return true if some promotion happened, false otherwise. 4689 bool CodeGenPrepare::tryToPromoteExts( 4690 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4691 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4692 unsigned CreatedInstsCost) { 4693 bool Promoted = false; 4694 4695 // Iterate over all the extensions to try to promote them. 4696 for (auto I : Exts) { 4697 // Early check if we directly have ext(load). 4698 if (isa<LoadInst>(I->getOperand(0))) { 4699 ProfitablyMovedExts.push_back(I); 4700 continue; 4701 } 4702 4703 // Check whether or not we want to do any promotion. The reason we have 4704 // this check inside the for loop is to catch the case where an extension 4705 // is directly fed by a load because in such case the extension can be moved 4706 // up without any promotion on its operands. 4707 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4708 return false; 4709 4710 // Get the action to perform the promotion. 4711 TypePromotionHelper::Action TPH = 4712 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4713 // Check if we can promote. 4714 if (!TPH) { 4715 // Save the current extension as we cannot move up through its operand. 4716 ProfitablyMovedExts.push_back(I); 4717 continue; 4718 } 4719 4720 // Save the current state. 4721 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4722 TPT.getRestorationPoint(); 4723 SmallVector<Instruction *, 4> NewExts; 4724 unsigned NewCreatedInstsCost = 0; 4725 unsigned ExtCost = !TLI->isExtFree(I); 4726 // Promote. 4727 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4728 &NewExts, nullptr, *TLI); 4729 assert(PromotedVal && 4730 "TypePromotionHelper should have filtered out those cases"); 4731 4732 // We would be able to merge only one extension in a load. 4733 // Therefore, if we have more than 1 new extension we heuristically 4734 // cut this search path, because it means we degrade the code quality. 4735 // With exactly 2, the transformation is neutral, because we will merge 4736 // one extension but leave one. However, we optimistically keep going, 4737 // because the new extension may be removed too. 4738 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4739 // FIXME: It would be possible to propagate a negative value instead of 4740 // conservatively ceiling it to 0. 4741 TotalCreatedInstsCost = 4742 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4743 if (!StressExtLdPromotion && 4744 (TotalCreatedInstsCost > 1 || 4745 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4746 // This promotion is not profitable, rollback to the previous state, and 4747 // save the current extension in ProfitablyMovedExts as the latest 4748 // speculative promotion turned out to be unprofitable. 4749 TPT.rollback(LastKnownGood); 4750 ProfitablyMovedExts.push_back(I); 4751 continue; 4752 } 4753 // Continue promoting NewExts as far as doing so is profitable. 4754 SmallVector<Instruction *, 2> NewlyMovedExts; 4755 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4756 bool NewPromoted = false; 4757 for (auto ExtInst : NewlyMovedExts) { 4758 Instruction *MovedExt = cast<Instruction>(ExtInst); 4759 Value *ExtOperand = MovedExt->getOperand(0); 4760 // If we have reached to a load, we need this extra profitability check 4761 // as it could potentially be merged into an ext(load). 4762 if (isa<LoadInst>(ExtOperand) && 4763 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4764 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4765 continue; 4766 4767 ProfitablyMovedExts.push_back(MovedExt); 4768 NewPromoted = true; 4769 } 4770 4771 // If none of speculative promotions for NewExts is profitable, rollback 4772 // and save the current extension (I) as the last profitable extension. 4773 if (!NewPromoted) { 4774 TPT.rollback(LastKnownGood); 4775 ProfitablyMovedExts.push_back(I); 4776 continue; 4777 } 4778 // The promotion is profitable. 4779 Promoted = true; 4780 } 4781 return Promoted; 4782 } 4783 4784 /// Merging redundant sexts when one is dominating the other. 4785 bool CodeGenPrepare::mergeSExts(Function &F) { 4786 DominatorTree DT(F); 4787 bool Changed = false; 4788 for (auto &Entry : ValToSExtendedUses) { 4789 SExts &Insts = Entry.second; 4790 SExts CurPts; 4791 for (Instruction *Inst : Insts) { 4792 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4793 Inst->getOperand(0) != Entry.first) 4794 continue; 4795 bool inserted = false; 4796 for (auto &Pt : CurPts) { 4797 if (DT.dominates(Inst, Pt)) { 4798 Pt->replaceAllUsesWith(Inst); 4799 RemovedInsts.insert(Pt); 4800 Pt->removeFromParent(); 4801 Pt = Inst; 4802 inserted = true; 4803 Changed = true; 4804 break; 4805 } 4806 if (!DT.dominates(Pt, Inst)) 4807 // Give up if we need to merge in a common dominator as the 4808 // expermients show it is not profitable. 4809 continue; 4810 Inst->replaceAllUsesWith(Pt); 4811 RemovedInsts.insert(Inst); 4812 Inst->removeFromParent(); 4813 inserted = true; 4814 Changed = true; 4815 break; 4816 } 4817 if (!inserted) 4818 CurPts.push_back(Inst); 4819 } 4820 } 4821 return Changed; 4822 } 4823 4824 /// Return true, if an ext(load) can be formed from an extension in 4825 /// \p MovedExts. 4826 bool CodeGenPrepare::canFormExtLd( 4827 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4828 Instruction *&Inst, bool HasPromoted) { 4829 for (auto *MovedExtInst : MovedExts) { 4830 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4831 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4832 Inst = MovedExtInst; 4833 break; 4834 } 4835 } 4836 if (!LI) 4837 return false; 4838 4839 // If they're already in the same block, there's nothing to do. 4840 // Make the cheap checks first if we did not promote. 4841 // If we promoted, we need to check if it is indeed profitable. 4842 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4843 return false; 4844 4845 return TLI->isExtLoad(LI, Inst, *DL); 4846 } 4847 4848 /// Move a zext or sext fed by a load into the same basic block as the load, 4849 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4850 /// extend into the load. 4851 /// 4852 /// E.g., 4853 /// \code 4854 /// %ld = load i32* %addr 4855 /// %add = add nuw i32 %ld, 4 4856 /// %zext = zext i32 %add to i64 4857 // \endcode 4858 /// => 4859 /// \code 4860 /// %ld = load i32* %addr 4861 /// %zext = zext i32 %ld to i64 4862 /// %add = add nuw i64 %zext, 4 4863 /// \encode 4864 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4865 /// allow us to match zext(load i32*) to i64. 4866 /// 4867 /// Also, try to promote the computations used to obtain a sign extended 4868 /// value used into memory accesses. 4869 /// E.g., 4870 /// \code 4871 /// a = add nsw i32 b, 3 4872 /// d = sext i32 a to i64 4873 /// e = getelementptr ..., i64 d 4874 /// \endcode 4875 /// => 4876 /// \code 4877 /// f = sext i32 b to i64 4878 /// a = add nsw i64 f, 3 4879 /// e = getelementptr ..., i64 a 4880 /// \endcode 4881 /// 4882 /// \p Inst[in/out] the extension may be modified during the process if some 4883 /// promotions apply. 4884 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4885 // ExtLoad formation and address type promotion infrastructure requires TLI to 4886 // be effective. 4887 if (!TLI) 4888 return false; 4889 4890 bool AllowPromotionWithoutCommonHeader = false; 4891 /// See if it is an interesting sext operations for the address type 4892 /// promotion before trying to promote it, e.g., the ones with the right 4893 /// type and used in memory accesses. 4894 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4895 *Inst, AllowPromotionWithoutCommonHeader); 4896 TypePromotionTransaction TPT(RemovedInsts); 4897 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4898 TPT.getRestorationPoint(); 4899 SmallVector<Instruction *, 1> Exts; 4900 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4901 Exts.push_back(Inst); 4902 4903 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4904 4905 // Look for a load being extended. 4906 LoadInst *LI = nullptr; 4907 Instruction *ExtFedByLoad; 4908 4909 // Try to promote a chain of computation if it allows to form an extended 4910 // load. 4911 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4912 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4913 TPT.commit(); 4914 // Move the extend into the same block as the load 4915 ExtFedByLoad->moveAfter(LI); 4916 // CGP does not check if the zext would be speculatively executed when moved 4917 // to the same basic block as the load. Preserving its original location 4918 // would pessimize the debugging experience, as well as negatively impact 4919 // the quality of sample pgo. We don't want to use "line 0" as that has a 4920 // size cost in the line-table section and logically the zext can be seen as 4921 // part of the load. Therefore we conservatively reuse the same debug 4922 // location for the load and the zext. 4923 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4924 ++NumExtsMoved; 4925 Inst = ExtFedByLoad; 4926 return true; 4927 } 4928 4929 // Continue promoting SExts if known as considerable depending on targets. 4930 if (ATPConsiderable && 4931 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4932 HasPromoted, TPT, SpeculativelyMovedExts)) 4933 return true; 4934 4935 TPT.rollback(LastKnownGood); 4936 return false; 4937 } 4938 4939 // Perform address type promotion if doing so is profitable. 4940 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4941 // instructions that sign extended the same initial value. However, if 4942 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4943 // extension is just profitable. 4944 bool CodeGenPrepare::performAddressTypePromotion( 4945 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4946 bool HasPromoted, TypePromotionTransaction &TPT, 4947 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4948 bool Promoted = false; 4949 SmallPtrSet<Instruction *, 1> UnhandledExts; 4950 bool AllSeenFirst = true; 4951 for (auto I : SpeculativelyMovedExts) { 4952 Value *HeadOfChain = I->getOperand(0); 4953 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4954 SeenChainsForSExt.find(HeadOfChain); 4955 // If there is an unhandled SExt which has the same header, try to promote 4956 // it as well. 4957 if (AlreadySeen != SeenChainsForSExt.end()) { 4958 if (AlreadySeen->second != nullptr) 4959 UnhandledExts.insert(AlreadySeen->second); 4960 AllSeenFirst = false; 4961 } 4962 } 4963 4964 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4965 SpeculativelyMovedExts.size() == 1)) { 4966 TPT.commit(); 4967 if (HasPromoted) 4968 Promoted = true; 4969 for (auto I : SpeculativelyMovedExts) { 4970 Value *HeadOfChain = I->getOperand(0); 4971 SeenChainsForSExt[HeadOfChain] = nullptr; 4972 ValToSExtendedUses[HeadOfChain].push_back(I); 4973 } 4974 // Update Inst as promotion happen. 4975 Inst = SpeculativelyMovedExts.pop_back_val(); 4976 } else { 4977 // This is the first chain visited from the header, keep the current chain 4978 // as unhandled. Defer to promote this until we encounter another SExt 4979 // chain derived from the same header. 4980 for (auto I : SpeculativelyMovedExts) { 4981 Value *HeadOfChain = I->getOperand(0); 4982 SeenChainsForSExt[HeadOfChain] = Inst; 4983 } 4984 return false; 4985 } 4986 4987 if (!AllSeenFirst && !UnhandledExts.empty()) 4988 for (auto VisitedSExt : UnhandledExts) { 4989 if (RemovedInsts.count(VisitedSExt)) 4990 continue; 4991 TypePromotionTransaction TPT(RemovedInsts); 4992 SmallVector<Instruction *, 1> Exts; 4993 SmallVector<Instruction *, 2> Chains; 4994 Exts.push_back(VisitedSExt); 4995 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4996 TPT.commit(); 4997 if (HasPromoted) 4998 Promoted = true; 4999 for (auto I : Chains) { 5000 Value *HeadOfChain = I->getOperand(0); 5001 // Mark this as handled. 5002 SeenChainsForSExt[HeadOfChain] = nullptr; 5003 ValToSExtendedUses[HeadOfChain].push_back(I); 5004 } 5005 } 5006 return Promoted; 5007 } 5008 5009 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5010 BasicBlock *DefBB = I->getParent(); 5011 5012 // If the result of a {s|z}ext and its source are both live out, rewrite all 5013 // other uses of the source with result of extension. 5014 Value *Src = I->getOperand(0); 5015 if (Src->hasOneUse()) 5016 return false; 5017 5018 // Only do this xform if truncating is free. 5019 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5020 return false; 5021 5022 // Only safe to perform the optimization if the source is also defined in 5023 // this block. 5024 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5025 return false; 5026 5027 bool DefIsLiveOut = false; 5028 for (User *U : I->users()) { 5029 Instruction *UI = cast<Instruction>(U); 5030 5031 // Figure out which BB this ext is used in. 5032 BasicBlock *UserBB = UI->getParent(); 5033 if (UserBB == DefBB) continue; 5034 DefIsLiveOut = true; 5035 break; 5036 } 5037 if (!DefIsLiveOut) 5038 return false; 5039 5040 // Make sure none of the uses are PHI nodes. 5041 for (User *U : Src->users()) { 5042 Instruction *UI = cast<Instruction>(U); 5043 BasicBlock *UserBB = UI->getParent(); 5044 if (UserBB == DefBB) continue; 5045 // Be conservative. We don't want this xform to end up introducing 5046 // reloads just before load / store instructions. 5047 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5048 return false; 5049 } 5050 5051 // InsertedTruncs - Only insert one trunc in each block once. 5052 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5053 5054 bool MadeChange = false; 5055 for (Use &U : Src->uses()) { 5056 Instruction *User = cast<Instruction>(U.getUser()); 5057 5058 // Figure out which BB this ext is used in. 5059 BasicBlock *UserBB = User->getParent(); 5060 if (UserBB == DefBB) continue; 5061 5062 // Both src and def are live in this block. Rewrite the use. 5063 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5064 5065 if (!InsertedTrunc) { 5066 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5067 assert(InsertPt != UserBB->end()); 5068 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5069 InsertedInsts.insert(InsertedTrunc); 5070 } 5071 5072 // Replace a use of the {s|z}ext source with a use of the result. 5073 U = InsertedTrunc; 5074 ++NumExtUses; 5075 MadeChange = true; 5076 } 5077 5078 return MadeChange; 5079 } 5080 5081 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5082 // just after the load if the target can fold this into one extload instruction, 5083 // with the hope of eliminating some of the other later "and" instructions using 5084 // the loaded value. "and"s that are made trivially redundant by the insertion 5085 // of the new "and" are removed by this function, while others (e.g. those whose 5086 // path from the load goes through a phi) are left for isel to potentially 5087 // remove. 5088 // 5089 // For example: 5090 // 5091 // b0: 5092 // x = load i32 5093 // ... 5094 // b1: 5095 // y = and x, 0xff 5096 // z = use y 5097 // 5098 // becomes: 5099 // 5100 // b0: 5101 // x = load i32 5102 // x' = and x, 0xff 5103 // ... 5104 // b1: 5105 // z = use x' 5106 // 5107 // whereas: 5108 // 5109 // b0: 5110 // x1 = load i32 5111 // ... 5112 // b1: 5113 // x2 = load i32 5114 // ... 5115 // b2: 5116 // x = phi x1, x2 5117 // y = and x, 0xff 5118 // 5119 // becomes (after a call to optimizeLoadExt for each load): 5120 // 5121 // b0: 5122 // x1 = load i32 5123 // x1' = and x1, 0xff 5124 // ... 5125 // b1: 5126 // x2 = load i32 5127 // x2' = and x2, 0xff 5128 // ... 5129 // b2: 5130 // x = phi x1', x2' 5131 // y = and x, 0xff 5132 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5133 if (!Load->isSimple() || 5134 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5135 return false; 5136 5137 // Skip loads we've already transformed. 5138 if (Load->hasOneUse() && 5139 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5140 return false; 5141 5142 // Look at all uses of Load, looking through phis, to determine how many bits 5143 // of the loaded value are needed. 5144 SmallVector<Instruction *, 8> WorkList; 5145 SmallPtrSet<Instruction *, 16> Visited; 5146 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5147 for (auto *U : Load->users()) 5148 WorkList.push_back(cast<Instruction>(U)); 5149 5150 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5151 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5152 APInt DemandBits(BitWidth, 0); 5153 APInt WidestAndBits(BitWidth, 0); 5154 5155 while (!WorkList.empty()) { 5156 Instruction *I = WorkList.back(); 5157 WorkList.pop_back(); 5158 5159 // Break use-def graph loops. 5160 if (!Visited.insert(I).second) 5161 continue; 5162 5163 // For a PHI node, push all of its users. 5164 if (auto *Phi = dyn_cast<PHINode>(I)) { 5165 for (auto *U : Phi->users()) 5166 WorkList.push_back(cast<Instruction>(U)); 5167 continue; 5168 } 5169 5170 switch (I->getOpcode()) { 5171 case Instruction::And: { 5172 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5173 if (!AndC) 5174 return false; 5175 APInt AndBits = AndC->getValue(); 5176 DemandBits |= AndBits; 5177 // Keep track of the widest and mask we see. 5178 if (AndBits.ugt(WidestAndBits)) 5179 WidestAndBits = AndBits; 5180 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5181 AndsToMaybeRemove.push_back(I); 5182 break; 5183 } 5184 5185 case Instruction::Shl: { 5186 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5187 if (!ShlC) 5188 return false; 5189 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5190 DemandBits.setLowBits(BitWidth - ShiftAmt); 5191 break; 5192 } 5193 5194 case Instruction::Trunc: { 5195 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5196 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5197 DemandBits.setLowBits(TruncBitWidth); 5198 break; 5199 } 5200 5201 default: 5202 return false; 5203 } 5204 } 5205 5206 uint32_t ActiveBits = DemandBits.getActiveBits(); 5207 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5208 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5209 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5210 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5211 // followed by an AND. 5212 // TODO: Look into removing this restriction by fixing backends to either 5213 // return false for isLoadExtLegal for i1 or have them select this pattern to 5214 // a single instruction. 5215 // 5216 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5217 // mask, since these are the only ands that will be removed by isel. 5218 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5219 WidestAndBits != DemandBits) 5220 return false; 5221 5222 LLVMContext &Ctx = Load->getType()->getContext(); 5223 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5224 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5225 5226 // Reject cases that won't be matched as extloads. 5227 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5228 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5229 return false; 5230 5231 IRBuilder<> Builder(Load->getNextNode()); 5232 auto *NewAnd = dyn_cast<Instruction>( 5233 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5234 // Mark this instruction as "inserted by CGP", so that other 5235 // optimizations don't touch it. 5236 InsertedInsts.insert(NewAnd); 5237 5238 // Replace all uses of load with new and (except for the use of load in the 5239 // new and itself). 5240 Load->replaceAllUsesWith(NewAnd); 5241 NewAnd->setOperand(0, Load); 5242 5243 // Remove any and instructions that are now redundant. 5244 for (auto *And : AndsToMaybeRemove) 5245 // Check that the and mask is the same as the one we decided to put on the 5246 // new and. 5247 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5248 And->replaceAllUsesWith(NewAnd); 5249 if (&*CurInstIterator == And) 5250 CurInstIterator = std::next(And->getIterator()); 5251 And->eraseFromParent(); 5252 ++NumAndUses; 5253 } 5254 5255 ++NumAndsAdded; 5256 return true; 5257 } 5258 5259 /// Check if V (an operand of a select instruction) is an expensive instruction 5260 /// that is only used once. 5261 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5262 auto *I = dyn_cast<Instruction>(V); 5263 // If it's safe to speculatively execute, then it should not have side 5264 // effects; therefore, it's safe to sink and possibly *not* execute. 5265 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5266 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5267 } 5268 5269 /// Returns true if a SelectInst should be turned into an explicit branch. 5270 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5271 const TargetLowering *TLI, 5272 SelectInst *SI) { 5273 // If even a predictable select is cheap, then a branch can't be cheaper. 5274 if (!TLI->isPredictableSelectExpensive()) 5275 return false; 5276 5277 // FIXME: This should use the same heuristics as IfConversion to determine 5278 // whether a select is better represented as a branch. 5279 5280 // If metadata tells us that the select condition is obviously predictable, 5281 // then we want to replace the select with a branch. 5282 uint64_t TrueWeight, FalseWeight; 5283 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5284 uint64_t Max = std::max(TrueWeight, FalseWeight); 5285 uint64_t Sum = TrueWeight + FalseWeight; 5286 if (Sum != 0) { 5287 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5288 if (Probability > TLI->getPredictableBranchThreshold()) 5289 return true; 5290 } 5291 } 5292 5293 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5294 5295 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5296 // comparison condition. If the compare has more than one use, there's 5297 // probably another cmov or setcc around, so it's not worth emitting a branch. 5298 if (!Cmp || !Cmp->hasOneUse()) 5299 return false; 5300 5301 // If either operand of the select is expensive and only needed on one side 5302 // of the select, we should form a branch. 5303 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5304 sinkSelectOperand(TTI, SI->getFalseValue())) 5305 return true; 5306 5307 return false; 5308 } 5309 5310 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5311 /// false value of \p SI. If the true/false value of \p SI is defined by any 5312 /// select instructions in \p Selects, look through the defining select 5313 /// instruction until the true/false value is not defined in \p Selects. 5314 static Value *getTrueOrFalseValue( 5315 SelectInst *SI, bool isTrue, 5316 const SmallPtrSet<const Instruction *, 2> &Selects) { 5317 Value *V; 5318 5319 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5320 DefSI = dyn_cast<SelectInst>(V)) { 5321 assert(DefSI->getCondition() == SI->getCondition() && 5322 "The condition of DefSI does not match with SI"); 5323 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5324 } 5325 return V; 5326 } 5327 5328 /// If we have a SelectInst that will likely profit from branch prediction, 5329 /// turn it into a branch. 5330 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5331 // Find all consecutive select instructions that share the same condition. 5332 SmallVector<SelectInst *, 2> ASI; 5333 ASI.push_back(SI); 5334 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5335 It != SI->getParent()->end(); ++It) { 5336 SelectInst *I = dyn_cast<SelectInst>(&*It); 5337 if (I && SI->getCondition() == I->getCondition()) { 5338 ASI.push_back(I); 5339 } else { 5340 break; 5341 } 5342 } 5343 5344 SelectInst *LastSI = ASI.back(); 5345 // Increment the current iterator to skip all the rest of select instructions 5346 // because they will be either "not lowered" or "all lowered" to branch. 5347 CurInstIterator = std::next(LastSI->getIterator()); 5348 5349 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5350 5351 // Can we convert the 'select' to CF ? 5352 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5353 SI->getMetadata(LLVMContext::MD_unpredictable)) 5354 return false; 5355 5356 TargetLowering::SelectSupportKind SelectKind; 5357 if (VectorCond) 5358 SelectKind = TargetLowering::VectorMaskSelect; 5359 else if (SI->getType()->isVectorTy()) 5360 SelectKind = TargetLowering::ScalarCondVectorVal; 5361 else 5362 SelectKind = TargetLowering::ScalarValSelect; 5363 5364 if (TLI->isSelectSupported(SelectKind) && 5365 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5366 return false; 5367 5368 ModifiedDT = true; 5369 5370 // Transform a sequence like this: 5371 // start: 5372 // %cmp = cmp uge i32 %a, %b 5373 // %sel = select i1 %cmp, i32 %c, i32 %d 5374 // 5375 // Into: 5376 // start: 5377 // %cmp = cmp uge i32 %a, %b 5378 // br i1 %cmp, label %select.true, label %select.false 5379 // select.true: 5380 // br label %select.end 5381 // select.false: 5382 // br label %select.end 5383 // select.end: 5384 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5385 // 5386 // In addition, we may sink instructions that produce %c or %d from 5387 // the entry block into the destination(s) of the new branch. 5388 // If the true or false blocks do not contain a sunken instruction, that 5389 // block and its branch may be optimized away. In that case, one side of the 5390 // first branch will point directly to select.end, and the corresponding PHI 5391 // predecessor block will be the start block. 5392 5393 // First, we split the block containing the select into 2 blocks. 5394 BasicBlock *StartBlock = SI->getParent(); 5395 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5396 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5397 5398 // Delete the unconditional branch that was just created by the split. 5399 StartBlock->getTerminator()->eraseFromParent(); 5400 5401 // These are the new basic blocks for the conditional branch. 5402 // At least one will become an actual new basic block. 5403 BasicBlock *TrueBlock = nullptr; 5404 BasicBlock *FalseBlock = nullptr; 5405 BranchInst *TrueBranch = nullptr; 5406 BranchInst *FalseBranch = nullptr; 5407 5408 // Sink expensive instructions into the conditional blocks to avoid executing 5409 // them speculatively. 5410 for (SelectInst *SI : ASI) { 5411 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5412 if (TrueBlock == nullptr) { 5413 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5414 EndBlock->getParent(), EndBlock); 5415 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5416 } 5417 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5418 TrueInst->moveBefore(TrueBranch); 5419 } 5420 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5421 if (FalseBlock == nullptr) { 5422 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5423 EndBlock->getParent(), EndBlock); 5424 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5425 } 5426 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5427 FalseInst->moveBefore(FalseBranch); 5428 } 5429 } 5430 5431 // If there was nothing to sink, then arbitrarily choose the 'false' side 5432 // for a new input value to the PHI. 5433 if (TrueBlock == FalseBlock) { 5434 assert(TrueBlock == nullptr && 5435 "Unexpected basic block transform while optimizing select"); 5436 5437 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5438 EndBlock->getParent(), EndBlock); 5439 BranchInst::Create(EndBlock, FalseBlock); 5440 } 5441 5442 // Insert the real conditional branch based on the original condition. 5443 // If we did not create a new block for one of the 'true' or 'false' paths 5444 // of the condition, it means that side of the branch goes to the end block 5445 // directly and the path originates from the start block from the point of 5446 // view of the new PHI. 5447 BasicBlock *TT, *FT; 5448 if (TrueBlock == nullptr) { 5449 TT = EndBlock; 5450 FT = FalseBlock; 5451 TrueBlock = StartBlock; 5452 } else if (FalseBlock == nullptr) { 5453 TT = TrueBlock; 5454 FT = EndBlock; 5455 FalseBlock = StartBlock; 5456 } else { 5457 TT = TrueBlock; 5458 FT = FalseBlock; 5459 } 5460 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5461 5462 SmallPtrSet<const Instruction *, 2> INS; 5463 INS.insert(ASI.begin(), ASI.end()); 5464 // Use reverse iterator because later select may use the value of the 5465 // earlier select, and we need to propagate value through earlier select 5466 // to get the PHI operand. 5467 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5468 SelectInst *SI = *It; 5469 // The select itself is replaced with a PHI Node. 5470 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5471 PN->takeName(SI); 5472 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5473 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5474 5475 SI->replaceAllUsesWith(PN); 5476 SI->eraseFromParent(); 5477 INS.erase(SI); 5478 ++NumSelectsExpanded; 5479 } 5480 5481 // Instruct OptimizeBlock to skip to the next block. 5482 CurInstIterator = StartBlock->end(); 5483 return true; 5484 } 5485 5486 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5487 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5488 int SplatElem = -1; 5489 for (unsigned i = 0; i < Mask.size(); ++i) { 5490 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5491 return false; 5492 SplatElem = Mask[i]; 5493 } 5494 5495 return true; 5496 } 5497 5498 /// Some targets have expensive vector shifts if the lanes aren't all the same 5499 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5500 /// it's often worth sinking a shufflevector splat down to its use so that 5501 /// codegen can spot all lanes are identical. 5502 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5503 BasicBlock *DefBB = SVI->getParent(); 5504 5505 // Only do this xform if variable vector shifts are particularly expensive. 5506 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5507 return false; 5508 5509 // We only expect better codegen by sinking a shuffle if we can recognise a 5510 // constant splat. 5511 if (!isBroadcastShuffle(SVI)) 5512 return false; 5513 5514 // InsertedShuffles - Only insert a shuffle in each block once. 5515 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5516 5517 bool MadeChange = false; 5518 for (User *U : SVI->users()) { 5519 Instruction *UI = cast<Instruction>(U); 5520 5521 // Figure out which BB this ext is used in. 5522 BasicBlock *UserBB = UI->getParent(); 5523 if (UserBB == DefBB) continue; 5524 5525 // For now only apply this when the splat is used by a shift instruction. 5526 if (!UI->isShift()) continue; 5527 5528 // Everything checks out, sink the shuffle if the user's block doesn't 5529 // already have a copy. 5530 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5531 5532 if (!InsertedShuffle) { 5533 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5534 assert(InsertPt != UserBB->end()); 5535 InsertedShuffle = 5536 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5537 SVI->getOperand(2), "", &*InsertPt); 5538 } 5539 5540 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5541 MadeChange = true; 5542 } 5543 5544 // If we removed all uses, nuke the shuffle. 5545 if (SVI->use_empty()) { 5546 SVI->eraseFromParent(); 5547 MadeChange = true; 5548 } 5549 5550 return MadeChange; 5551 } 5552 5553 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5554 if (!TLI || !DL) 5555 return false; 5556 5557 Value *Cond = SI->getCondition(); 5558 Type *OldType = Cond->getType(); 5559 LLVMContext &Context = Cond->getContext(); 5560 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5561 unsigned RegWidth = RegType.getSizeInBits(); 5562 5563 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5564 return false; 5565 5566 // If the register width is greater than the type width, expand the condition 5567 // of the switch instruction and each case constant to the width of the 5568 // register. By widening the type of the switch condition, subsequent 5569 // comparisons (for case comparisons) will not need to be extended to the 5570 // preferred register width, so we will potentially eliminate N-1 extends, 5571 // where N is the number of cases in the switch. 5572 auto *NewType = Type::getIntNTy(Context, RegWidth); 5573 5574 // Zero-extend the switch condition and case constants unless the switch 5575 // condition is a function argument that is already being sign-extended. 5576 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5577 // everything instead. 5578 Instruction::CastOps ExtType = Instruction::ZExt; 5579 if (auto *Arg = dyn_cast<Argument>(Cond)) 5580 if (Arg->hasSExtAttr()) 5581 ExtType = Instruction::SExt; 5582 5583 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5584 ExtInst->insertBefore(SI); 5585 SI->setCondition(ExtInst); 5586 for (auto Case : SI->cases()) { 5587 APInt NarrowConst = Case.getCaseValue()->getValue(); 5588 APInt WideConst = (ExtType == Instruction::ZExt) ? 5589 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5590 Case.setValue(ConstantInt::get(Context, WideConst)); 5591 } 5592 5593 return true; 5594 } 5595 5596 5597 namespace { 5598 5599 /// \brief Helper class to promote a scalar operation to a vector one. 5600 /// This class is used to move downward extractelement transition. 5601 /// E.g., 5602 /// a = vector_op <2 x i32> 5603 /// b = extractelement <2 x i32> a, i32 0 5604 /// c = scalar_op b 5605 /// store c 5606 /// 5607 /// => 5608 /// a = vector_op <2 x i32> 5609 /// c = vector_op a (equivalent to scalar_op on the related lane) 5610 /// * d = extractelement <2 x i32> c, i32 0 5611 /// * store d 5612 /// Assuming both extractelement and store can be combine, we get rid of the 5613 /// transition. 5614 class VectorPromoteHelper { 5615 /// DataLayout associated with the current module. 5616 const DataLayout &DL; 5617 5618 /// Used to perform some checks on the legality of vector operations. 5619 const TargetLowering &TLI; 5620 5621 /// Used to estimated the cost of the promoted chain. 5622 const TargetTransformInfo &TTI; 5623 5624 /// The transition being moved downwards. 5625 Instruction *Transition; 5626 5627 /// The sequence of instructions to be promoted. 5628 SmallVector<Instruction *, 4> InstsToBePromoted; 5629 5630 /// Cost of combining a store and an extract. 5631 unsigned StoreExtractCombineCost; 5632 5633 /// Instruction that will be combined with the transition. 5634 Instruction *CombineInst = nullptr; 5635 5636 /// \brief The instruction that represents the current end of the transition. 5637 /// Since we are faking the promotion until we reach the end of the chain 5638 /// of computation, we need a way to get the current end of the transition. 5639 Instruction *getEndOfTransition() const { 5640 if (InstsToBePromoted.empty()) 5641 return Transition; 5642 return InstsToBePromoted.back(); 5643 } 5644 5645 /// \brief Return the index of the original value in the transition. 5646 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5647 /// c, is at index 0. 5648 unsigned getTransitionOriginalValueIdx() const { 5649 assert(isa<ExtractElementInst>(Transition) && 5650 "Other kind of transitions are not supported yet"); 5651 return 0; 5652 } 5653 5654 /// \brief Return the index of the index in the transition. 5655 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5656 /// is at index 1. 5657 unsigned getTransitionIdx() const { 5658 assert(isa<ExtractElementInst>(Transition) && 5659 "Other kind of transitions are not supported yet"); 5660 return 1; 5661 } 5662 5663 /// \brief Get the type of the transition. 5664 /// This is the type of the original value. 5665 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5666 /// transition is <2 x i32>. 5667 Type *getTransitionType() const { 5668 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5669 } 5670 5671 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5672 /// I.e., we have the following sequence: 5673 /// Def = Transition <ty1> a to <ty2> 5674 /// b = ToBePromoted <ty2> Def, ... 5675 /// => 5676 /// b = ToBePromoted <ty1> a, ... 5677 /// Def = Transition <ty1> ToBePromoted to <ty2> 5678 void promoteImpl(Instruction *ToBePromoted); 5679 5680 /// \brief Check whether or not it is profitable to promote all the 5681 /// instructions enqueued to be promoted. 5682 bool isProfitableToPromote() { 5683 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5684 unsigned Index = isa<ConstantInt>(ValIdx) 5685 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5686 : -1; 5687 Type *PromotedType = getTransitionType(); 5688 5689 StoreInst *ST = cast<StoreInst>(CombineInst); 5690 unsigned AS = ST->getPointerAddressSpace(); 5691 unsigned Align = ST->getAlignment(); 5692 // Check if this store is supported. 5693 if (!TLI.allowsMisalignedMemoryAccesses( 5694 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5695 Align)) { 5696 // If this is not supported, there is no way we can combine 5697 // the extract with the store. 5698 return false; 5699 } 5700 5701 // The scalar chain of computation has to pay for the transition 5702 // scalar to vector. 5703 // The vector chain has to account for the combining cost. 5704 uint64_t ScalarCost = 5705 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5706 uint64_t VectorCost = StoreExtractCombineCost; 5707 for (const auto &Inst : InstsToBePromoted) { 5708 // Compute the cost. 5709 // By construction, all instructions being promoted are arithmetic ones. 5710 // Moreover, one argument is a constant that can be viewed as a splat 5711 // constant. 5712 Value *Arg0 = Inst->getOperand(0); 5713 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5714 isa<ConstantFP>(Arg0); 5715 TargetTransformInfo::OperandValueKind Arg0OVK = 5716 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5717 : TargetTransformInfo::OK_AnyValue; 5718 TargetTransformInfo::OperandValueKind Arg1OVK = 5719 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5720 : TargetTransformInfo::OK_AnyValue; 5721 ScalarCost += TTI.getArithmeticInstrCost( 5722 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5723 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5724 Arg0OVK, Arg1OVK); 5725 } 5726 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5727 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5728 return ScalarCost > VectorCost; 5729 } 5730 5731 /// \brief Generate a constant vector with \p Val with the same 5732 /// number of elements as the transition. 5733 /// \p UseSplat defines whether or not \p Val should be replicated 5734 /// across the whole vector. 5735 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5736 /// otherwise we generate a vector with as many undef as possible: 5737 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5738 /// used at the index of the extract. 5739 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5740 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5741 if (!UseSplat) { 5742 // If we cannot determine where the constant must be, we have to 5743 // use a splat constant. 5744 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5745 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5746 ExtractIdx = CstVal->getSExtValue(); 5747 else 5748 UseSplat = true; 5749 } 5750 5751 unsigned End = getTransitionType()->getVectorNumElements(); 5752 if (UseSplat) 5753 return ConstantVector::getSplat(End, Val); 5754 5755 SmallVector<Constant *, 4> ConstVec; 5756 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5757 for (unsigned Idx = 0; Idx != End; ++Idx) { 5758 if (Idx == ExtractIdx) 5759 ConstVec.push_back(Val); 5760 else 5761 ConstVec.push_back(UndefVal); 5762 } 5763 return ConstantVector::get(ConstVec); 5764 } 5765 5766 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5767 /// in \p Use can trigger undefined behavior. 5768 static bool canCauseUndefinedBehavior(const Instruction *Use, 5769 unsigned OperandIdx) { 5770 // This is not safe to introduce undef when the operand is on 5771 // the right hand side of a division-like instruction. 5772 if (OperandIdx != 1) 5773 return false; 5774 switch (Use->getOpcode()) { 5775 default: 5776 return false; 5777 case Instruction::SDiv: 5778 case Instruction::UDiv: 5779 case Instruction::SRem: 5780 case Instruction::URem: 5781 return true; 5782 case Instruction::FDiv: 5783 case Instruction::FRem: 5784 return !Use->hasNoNaNs(); 5785 } 5786 llvm_unreachable(nullptr); 5787 } 5788 5789 public: 5790 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5791 const TargetTransformInfo &TTI, Instruction *Transition, 5792 unsigned CombineCost) 5793 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5794 StoreExtractCombineCost(CombineCost) { 5795 assert(Transition && "Do not know how to promote null"); 5796 } 5797 5798 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5799 bool canPromote(const Instruction *ToBePromoted) const { 5800 // We could support CastInst too. 5801 return isa<BinaryOperator>(ToBePromoted); 5802 } 5803 5804 /// \brief Check if it is profitable to promote \p ToBePromoted 5805 /// by moving downward the transition through. 5806 bool shouldPromote(const Instruction *ToBePromoted) const { 5807 // Promote only if all the operands can be statically expanded. 5808 // Indeed, we do not want to introduce any new kind of transitions. 5809 for (const Use &U : ToBePromoted->operands()) { 5810 const Value *Val = U.get(); 5811 if (Val == getEndOfTransition()) { 5812 // If the use is a division and the transition is on the rhs, 5813 // we cannot promote the operation, otherwise we may create a 5814 // division by zero. 5815 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5816 return false; 5817 continue; 5818 } 5819 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5820 !isa<ConstantFP>(Val)) 5821 return false; 5822 } 5823 // Check that the resulting operation is legal. 5824 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5825 if (!ISDOpcode) 5826 return false; 5827 return StressStoreExtract || 5828 TLI.isOperationLegalOrCustom( 5829 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5830 } 5831 5832 /// \brief Check whether or not \p Use can be combined 5833 /// with the transition. 5834 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5835 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5836 5837 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5838 void enqueueForPromotion(Instruction *ToBePromoted) { 5839 InstsToBePromoted.push_back(ToBePromoted); 5840 } 5841 5842 /// \brief Set the instruction that will be combined with the transition. 5843 void recordCombineInstruction(Instruction *ToBeCombined) { 5844 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5845 CombineInst = ToBeCombined; 5846 } 5847 5848 /// \brief Promote all the instructions enqueued for promotion if it is 5849 /// is profitable. 5850 /// \return True if the promotion happened, false otherwise. 5851 bool promote() { 5852 // Check if there is something to promote. 5853 // Right now, if we do not have anything to combine with, 5854 // we assume the promotion is not profitable. 5855 if (InstsToBePromoted.empty() || !CombineInst) 5856 return false; 5857 5858 // Check cost. 5859 if (!StressStoreExtract && !isProfitableToPromote()) 5860 return false; 5861 5862 // Promote. 5863 for (auto &ToBePromoted : InstsToBePromoted) 5864 promoteImpl(ToBePromoted); 5865 InstsToBePromoted.clear(); 5866 return true; 5867 } 5868 }; 5869 5870 } // end anonymous namespace 5871 5872 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5873 // At this point, we know that all the operands of ToBePromoted but Def 5874 // can be statically promoted. 5875 // For Def, we need to use its parameter in ToBePromoted: 5876 // b = ToBePromoted ty1 a 5877 // Def = Transition ty1 b to ty2 5878 // Move the transition down. 5879 // 1. Replace all uses of the promoted operation by the transition. 5880 // = ... b => = ... Def. 5881 assert(ToBePromoted->getType() == Transition->getType() && 5882 "The type of the result of the transition does not match " 5883 "the final type"); 5884 ToBePromoted->replaceAllUsesWith(Transition); 5885 // 2. Update the type of the uses. 5886 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5887 Type *TransitionTy = getTransitionType(); 5888 ToBePromoted->mutateType(TransitionTy); 5889 // 3. Update all the operands of the promoted operation with promoted 5890 // operands. 5891 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5892 for (Use &U : ToBePromoted->operands()) { 5893 Value *Val = U.get(); 5894 Value *NewVal = nullptr; 5895 if (Val == Transition) 5896 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5897 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5898 isa<ConstantFP>(Val)) { 5899 // Use a splat constant if it is not safe to use undef. 5900 NewVal = getConstantVector( 5901 cast<Constant>(Val), 5902 isa<UndefValue>(Val) || 5903 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5904 } else 5905 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5906 "this?"); 5907 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5908 } 5909 Transition->moveAfter(ToBePromoted); 5910 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5911 } 5912 5913 /// Some targets can do store(extractelement) with one instruction. 5914 /// Try to push the extractelement towards the stores when the target 5915 /// has this feature and this is profitable. 5916 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5917 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5918 if (DisableStoreExtract || !TLI || 5919 (!StressStoreExtract && 5920 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5921 Inst->getOperand(1), CombineCost))) 5922 return false; 5923 5924 // At this point we know that Inst is a vector to scalar transition. 5925 // Try to move it down the def-use chain, until: 5926 // - We can combine the transition with its single use 5927 // => we got rid of the transition. 5928 // - We escape the current basic block 5929 // => we would need to check that we are moving it at a cheaper place and 5930 // we do not do that for now. 5931 BasicBlock *Parent = Inst->getParent(); 5932 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5933 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5934 // If the transition has more than one use, assume this is not going to be 5935 // beneficial. 5936 while (Inst->hasOneUse()) { 5937 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5938 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5939 5940 if (ToBePromoted->getParent() != Parent) { 5941 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5942 << ToBePromoted->getParent()->getName() 5943 << ") than the transition (" << Parent->getName() << ").\n"); 5944 return false; 5945 } 5946 5947 if (VPH.canCombine(ToBePromoted)) { 5948 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5949 << "will be combined with: " << *ToBePromoted << '\n'); 5950 VPH.recordCombineInstruction(ToBePromoted); 5951 bool Changed = VPH.promote(); 5952 NumStoreExtractExposed += Changed; 5953 return Changed; 5954 } 5955 5956 DEBUG(dbgs() << "Try promoting.\n"); 5957 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5958 return false; 5959 5960 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5961 5962 VPH.enqueueForPromotion(ToBePromoted); 5963 Inst = ToBePromoted; 5964 } 5965 return false; 5966 } 5967 5968 /// For the instruction sequence of store below, F and I values 5969 /// are bundled together as an i64 value before being stored into memory. 5970 /// Sometimes it is more efficent to generate separate stores for F and I, 5971 /// which can remove the bitwise instructions or sink them to colder places. 5972 /// 5973 /// (store (or (zext (bitcast F to i32) to i64), 5974 /// (shl (zext I to i64), 32)), addr) --> 5975 /// (store F, addr) and (store I, addr+4) 5976 /// 5977 /// Similarly, splitting for other merged store can also be beneficial, like: 5978 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5979 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5980 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5981 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5982 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5983 /// 5984 /// We allow each target to determine specifically which kind of splitting is 5985 /// supported. 5986 /// 5987 /// The store patterns are commonly seen from the simple code snippet below 5988 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5989 /// void goo(const std::pair<int, float> &); 5990 /// hoo() { 5991 /// ... 5992 /// goo(std::make_pair(tmp, ftmp)); 5993 /// ... 5994 /// } 5995 /// 5996 /// Although we already have similar splitting in DAG Combine, we duplicate 5997 /// it in CodeGenPrepare to catch the case in which pattern is across 5998 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5999 /// during code expansion. 6000 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6001 const TargetLowering &TLI) { 6002 // Handle simple but common cases only. 6003 Type *StoreType = SI.getValueOperand()->getType(); 6004 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6005 DL.getTypeSizeInBits(StoreType) == 0) 6006 return false; 6007 6008 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6009 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6010 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6011 DL.getTypeSizeInBits(SplitStoreType)) 6012 return false; 6013 6014 // Match the following patterns: 6015 // (store (or (zext LValue to i64), 6016 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6017 // or 6018 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6019 // (zext LValue to i64), 6020 // Expect both operands of OR and the first operand of SHL have only 6021 // one use. 6022 Value *LValue, *HValue; 6023 if (!match(SI.getValueOperand(), 6024 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6025 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6026 m_SpecificInt(HalfValBitSize)))))) 6027 return false; 6028 6029 // Check LValue and HValue are int with size less or equal than 32. 6030 if (!LValue->getType()->isIntegerTy() || 6031 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6032 !HValue->getType()->isIntegerTy() || 6033 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6034 return false; 6035 6036 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6037 // as the input of target query. 6038 auto *LBC = dyn_cast<BitCastInst>(LValue); 6039 auto *HBC = dyn_cast<BitCastInst>(HValue); 6040 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6041 : EVT::getEVT(LValue->getType()); 6042 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6043 : EVT::getEVT(HValue->getType()); 6044 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6045 return false; 6046 6047 // Start to split store. 6048 IRBuilder<> Builder(SI.getContext()); 6049 Builder.SetInsertPoint(&SI); 6050 6051 // If LValue/HValue is a bitcast in another BB, create a new one in current 6052 // BB so it may be merged with the splitted stores by dag combiner. 6053 if (LBC && LBC->getParent() != SI.getParent()) 6054 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6055 if (HBC && HBC->getParent() != SI.getParent()) 6056 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6057 6058 auto CreateSplitStore = [&](Value *V, bool Upper) { 6059 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6060 Value *Addr = Builder.CreateBitCast( 6061 SI.getOperand(1), 6062 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6063 if (Upper) 6064 Addr = Builder.CreateGEP( 6065 SplitStoreType, Addr, 6066 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6067 Builder.CreateAlignedStore( 6068 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6069 }; 6070 6071 CreateSplitStore(LValue, false); 6072 CreateSplitStore(HValue, true); 6073 6074 // Delete the old store. 6075 SI.eraseFromParent(); 6076 return true; 6077 } 6078 6079 // Return true if the GEP has two operands, the first operand is of a sequential 6080 // type, and the second operand is a constant. 6081 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6082 gep_type_iterator I = gep_type_begin(*GEP); 6083 return GEP->getNumOperands() == 2 && 6084 I.isSequential() && 6085 isa<ConstantInt>(GEP->getOperand(1)); 6086 } 6087 6088 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6089 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6090 // reducing liveness interference across those edges benefits global register 6091 // allocation. Currently handles only certain cases. 6092 // 6093 // For example, unmerge %GEPI and %UGEPI as below. 6094 // 6095 // ---------- BEFORE ---------- 6096 // SrcBlock: 6097 // ... 6098 // %GEPIOp = ... 6099 // ... 6100 // %GEPI = gep %GEPIOp, Idx 6101 // ... 6102 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6103 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6104 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6105 // %UGEPI) 6106 // 6107 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6108 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6109 // ... 6110 // 6111 // DstBi: 6112 // ... 6113 // %UGEPI = gep %GEPIOp, UIdx 6114 // ... 6115 // --------------------------- 6116 // 6117 // ---------- AFTER ---------- 6118 // SrcBlock: 6119 // ... (same as above) 6120 // (* %GEPI is still alive on the indirectbr edges) 6121 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6122 // unmerging) 6123 // ... 6124 // 6125 // DstBi: 6126 // ... 6127 // %UGEPI = gep %GEPI, (UIdx-Idx) 6128 // ... 6129 // --------------------------- 6130 // 6131 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6132 // no longer alive on them. 6133 // 6134 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6135 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6136 // not to disable further simplications and optimizations as a result of GEP 6137 // merging. 6138 // 6139 // Note this unmerging may increase the length of the data flow critical path 6140 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6141 // between the register pressure and the length of data-flow critical 6142 // path. Restricting this to the uncommon IndirectBr case would minimize the 6143 // impact of potentially longer critical path, if any, and the impact on compile 6144 // time. 6145 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6146 const TargetTransformInfo *TTI) { 6147 BasicBlock *SrcBlock = GEPI->getParent(); 6148 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6149 // (non-IndirectBr) cases exit early here. 6150 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6151 return false; 6152 // Check that GEPI is a simple gep with a single constant index. 6153 if (!GEPSequentialConstIndexed(GEPI)) 6154 return false; 6155 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6156 // Check that GEPI is a cheap one. 6157 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6158 > TargetTransformInfo::TCC_Basic) 6159 return false; 6160 Value *GEPIOp = GEPI->getOperand(0); 6161 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6162 if (!isa<Instruction>(GEPIOp)) 6163 return false; 6164 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6165 if (GEPIOpI->getParent() != SrcBlock) 6166 return false; 6167 // Check that GEP is used outside the block, meaning it's alive on the 6168 // IndirectBr edge(s). 6169 if (find_if(GEPI->users(), [&](User *Usr) { 6170 if (auto *I = dyn_cast<Instruction>(Usr)) { 6171 if (I->getParent() != SrcBlock) { 6172 return true; 6173 } 6174 } 6175 return false; 6176 }) == GEPI->users().end()) 6177 return false; 6178 // The second elements of the GEP chains to be unmerged. 6179 std::vector<GetElementPtrInst *> UGEPIs; 6180 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6181 // on IndirectBr edges. 6182 for (User *Usr : GEPIOp->users()) { 6183 if (Usr == GEPI) continue; 6184 // Check if Usr is an Instruction. If not, give up. 6185 if (!isa<Instruction>(Usr)) 6186 return false; 6187 auto *UI = cast<Instruction>(Usr); 6188 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6189 if (UI->getParent() == SrcBlock) 6190 continue; 6191 // Check if Usr is a GEP. If not, give up. 6192 if (!isa<GetElementPtrInst>(Usr)) 6193 return false; 6194 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6195 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6196 // the pointer operand to it. If so, record it in the vector. If not, give 6197 // up. 6198 if (!GEPSequentialConstIndexed(UGEPI)) 6199 return false; 6200 if (UGEPI->getOperand(0) != GEPIOp) 6201 return false; 6202 if (GEPIIdx->getType() != 6203 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6204 return false; 6205 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6206 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6207 > TargetTransformInfo::TCC_Basic) 6208 return false; 6209 UGEPIs.push_back(UGEPI); 6210 } 6211 if (UGEPIs.size() == 0) 6212 return false; 6213 // Check the materializing cost of (Uidx-Idx). 6214 for (GetElementPtrInst *UGEPI : UGEPIs) { 6215 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6216 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6217 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6218 if (ImmCost > TargetTransformInfo::TCC_Basic) 6219 return false; 6220 } 6221 // Now unmerge between GEPI and UGEPIs. 6222 for (GetElementPtrInst *UGEPI : UGEPIs) { 6223 UGEPI->setOperand(0, GEPI); 6224 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6225 Constant *NewUGEPIIdx = 6226 ConstantInt::get(GEPIIdx->getType(), 6227 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6228 UGEPI->setOperand(1, NewUGEPIIdx); 6229 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6230 // inbounds to avoid UB. 6231 if (!GEPI->isInBounds()) { 6232 UGEPI->setIsInBounds(false); 6233 } 6234 } 6235 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6236 // alive on IndirectBr edges). 6237 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6238 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6239 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6240 return true; 6241 } 6242 6243 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6244 // Bail out if we inserted the instruction to prevent optimizations from 6245 // stepping on each other's toes. 6246 if (InsertedInsts.count(I)) 6247 return false; 6248 6249 if (PHINode *P = dyn_cast<PHINode>(I)) { 6250 // It is possible for very late stage optimizations (such as SimplifyCFG) 6251 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6252 // trivial PHI, go ahead and zap it here. 6253 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6254 P->replaceAllUsesWith(V); 6255 P->eraseFromParent(); 6256 ++NumPHIsElim; 6257 return true; 6258 } 6259 return false; 6260 } 6261 6262 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6263 // If the source of the cast is a constant, then this should have 6264 // already been constant folded. The only reason NOT to constant fold 6265 // it is if something (e.g. LSR) was careful to place the constant 6266 // evaluation in a block other than then one that uses it (e.g. to hoist 6267 // the address of globals out of a loop). If this is the case, we don't 6268 // want to forward-subst the cast. 6269 if (isa<Constant>(CI->getOperand(0))) 6270 return false; 6271 6272 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6273 return true; 6274 6275 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6276 /// Sink a zext or sext into its user blocks if the target type doesn't 6277 /// fit in one register 6278 if (TLI && 6279 TLI->getTypeAction(CI->getContext(), 6280 TLI->getValueType(*DL, CI->getType())) == 6281 TargetLowering::TypeExpandInteger) { 6282 return SinkCast(CI); 6283 } else { 6284 bool MadeChange = optimizeExt(I); 6285 return MadeChange | optimizeExtUses(I); 6286 } 6287 } 6288 return false; 6289 } 6290 6291 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6292 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6293 return OptimizeCmpExpression(CI, TLI); 6294 6295 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6296 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6297 if (TLI) { 6298 bool Modified = optimizeLoadExt(LI); 6299 unsigned AS = LI->getPointerAddressSpace(); 6300 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6301 return Modified; 6302 } 6303 return false; 6304 } 6305 6306 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6307 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6308 return true; 6309 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6310 if (TLI) { 6311 unsigned AS = SI->getPointerAddressSpace(); 6312 return optimizeMemoryInst(I, SI->getOperand(1), 6313 SI->getOperand(0)->getType(), AS); 6314 } 6315 return false; 6316 } 6317 6318 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6319 unsigned AS = RMW->getPointerAddressSpace(); 6320 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6321 RMW->getType(), AS); 6322 } 6323 6324 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6325 unsigned AS = CmpX->getPointerAddressSpace(); 6326 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6327 CmpX->getCompareOperand()->getType(), AS); 6328 } 6329 6330 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6331 6332 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6333 EnableAndCmpSinking && TLI) 6334 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6335 6336 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6337 BinOp->getOpcode() == Instruction::LShr)) { 6338 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6339 if (TLI && CI && TLI->hasExtractBitsInsn()) 6340 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6341 6342 return false; 6343 } 6344 6345 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6346 if (GEPI->hasAllZeroIndices()) { 6347 /// The GEP operand must be a pointer, so must its result -> BitCast 6348 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6349 GEPI->getName(), GEPI); 6350 GEPI->replaceAllUsesWith(NC); 6351 GEPI->eraseFromParent(); 6352 ++NumGEPsElim; 6353 optimizeInst(NC, ModifiedDT); 6354 return true; 6355 } 6356 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6357 return true; 6358 } 6359 return false; 6360 } 6361 6362 if (CallInst *CI = dyn_cast<CallInst>(I)) 6363 return optimizeCallInst(CI, ModifiedDT); 6364 6365 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6366 return optimizeSelectInst(SI); 6367 6368 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6369 return optimizeShuffleVectorInst(SVI); 6370 6371 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6372 return optimizeSwitchInst(Switch); 6373 6374 if (isa<ExtractElementInst>(I)) 6375 return optimizeExtractElementInst(I); 6376 6377 return false; 6378 } 6379 6380 /// Given an OR instruction, check to see if this is a bitreverse 6381 /// idiom. If so, insert the new intrinsic and return true. 6382 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6383 const TargetLowering &TLI) { 6384 if (!I.getType()->isIntegerTy() || 6385 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6386 TLI.getValueType(DL, I.getType(), true))) 6387 return false; 6388 6389 SmallVector<Instruction*, 4> Insts; 6390 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6391 return false; 6392 Instruction *LastInst = Insts.back(); 6393 I.replaceAllUsesWith(LastInst); 6394 RecursivelyDeleteTriviallyDeadInstructions(&I); 6395 return true; 6396 } 6397 6398 // In this pass we look for GEP and cast instructions that are used 6399 // across basic blocks and rewrite them to improve basic-block-at-a-time 6400 // selection. 6401 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6402 SunkAddrs.clear(); 6403 bool MadeChange = false; 6404 6405 CurInstIterator = BB.begin(); 6406 while (CurInstIterator != BB.end()) { 6407 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6408 if (ModifiedDT) 6409 return true; 6410 } 6411 6412 bool MadeBitReverse = true; 6413 while (TLI && MadeBitReverse) { 6414 MadeBitReverse = false; 6415 for (auto &I : reverse(BB)) { 6416 if (makeBitReverse(I, *DL, *TLI)) { 6417 MadeBitReverse = MadeChange = true; 6418 ModifiedDT = true; 6419 break; 6420 } 6421 } 6422 } 6423 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6424 6425 return MadeChange; 6426 } 6427 6428 // llvm.dbg.value is far away from the value then iSel may not be able 6429 // handle it properly. iSel will drop llvm.dbg.value if it can not 6430 // find a node corresponding to the value. 6431 bool CodeGenPrepare::placeDbgValues(Function &F) { 6432 bool MadeChange = false; 6433 for (BasicBlock &BB : F) { 6434 Instruction *PrevNonDbgInst = nullptr; 6435 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6436 Instruction *Insn = &*BI++; 6437 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6438 // Leave dbg.values that refer to an alloca alone. These 6439 // intrinsics describe the address of a variable (= the alloca) 6440 // being taken. They should not be moved next to the alloca 6441 // (and to the beginning of the scope), but rather stay close to 6442 // where said address is used. 6443 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6444 PrevNonDbgInst = Insn; 6445 continue; 6446 } 6447 6448 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6449 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6450 // If VI is a phi in a block with an EHPad terminator, we can't insert 6451 // after it. 6452 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6453 continue; 6454 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6455 DVI->removeFromParent(); 6456 if (isa<PHINode>(VI)) 6457 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6458 else 6459 DVI->insertAfter(VI); 6460 MadeChange = true; 6461 ++NumDbgValueMoved; 6462 } 6463 } 6464 } 6465 return MadeChange; 6466 } 6467 6468 /// \brief Scale down both weights to fit into uint32_t. 6469 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6470 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6471 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6472 NewTrue = NewTrue / Scale; 6473 NewFalse = NewFalse / Scale; 6474 } 6475 6476 /// \brief Some targets prefer to split a conditional branch like: 6477 /// \code 6478 /// %0 = icmp ne i32 %a, 0 6479 /// %1 = icmp ne i32 %b, 0 6480 /// %or.cond = or i1 %0, %1 6481 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6482 /// \endcode 6483 /// into multiple branch instructions like: 6484 /// \code 6485 /// bb1: 6486 /// %0 = icmp ne i32 %a, 0 6487 /// br i1 %0, label %TrueBB, label %bb2 6488 /// bb2: 6489 /// %1 = icmp ne i32 %b, 0 6490 /// br i1 %1, label %TrueBB, label %FalseBB 6491 /// \endcode 6492 /// This usually allows instruction selection to do even further optimizations 6493 /// and combine the compare with the branch instruction. Currently this is 6494 /// applied for targets which have "cheap" jump instructions. 6495 /// 6496 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6497 /// 6498 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6499 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6500 return false; 6501 6502 bool MadeChange = false; 6503 for (auto &BB : F) { 6504 // Does this BB end with the following? 6505 // %cond1 = icmp|fcmp|binary instruction ... 6506 // %cond2 = icmp|fcmp|binary instruction ... 6507 // %cond.or = or|and i1 %cond1, cond2 6508 // br i1 %cond.or label %dest1, label %dest2" 6509 BinaryOperator *LogicOp; 6510 BasicBlock *TBB, *FBB; 6511 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6512 continue; 6513 6514 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6515 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6516 continue; 6517 6518 unsigned Opc; 6519 Value *Cond1, *Cond2; 6520 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6521 m_OneUse(m_Value(Cond2))))) 6522 Opc = Instruction::And; 6523 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6524 m_OneUse(m_Value(Cond2))))) 6525 Opc = Instruction::Or; 6526 else 6527 continue; 6528 6529 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6530 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6531 continue; 6532 6533 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6534 6535 // Create a new BB. 6536 auto TmpBB = 6537 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6538 BB.getParent(), BB.getNextNode()); 6539 6540 // Update original basic block by using the first condition directly by the 6541 // branch instruction and removing the no longer needed and/or instruction. 6542 Br1->setCondition(Cond1); 6543 LogicOp->eraseFromParent(); 6544 6545 // Depending on the conditon we have to either replace the true or the false 6546 // successor of the original branch instruction. 6547 if (Opc == Instruction::And) 6548 Br1->setSuccessor(0, TmpBB); 6549 else 6550 Br1->setSuccessor(1, TmpBB); 6551 6552 // Fill in the new basic block. 6553 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6554 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6555 I->removeFromParent(); 6556 I->insertBefore(Br2); 6557 } 6558 6559 // Update PHI nodes in both successors. The original BB needs to be 6560 // replaced in one successor's PHI nodes, because the branch comes now from 6561 // the newly generated BB (NewBB). In the other successor we need to add one 6562 // incoming edge to the PHI nodes, because both branch instructions target 6563 // now the same successor. Depending on the original branch condition 6564 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6565 // we perform the correct update for the PHI nodes. 6566 // This doesn't change the successor order of the just created branch 6567 // instruction (or any other instruction). 6568 if (Opc == Instruction::Or) 6569 std::swap(TBB, FBB); 6570 6571 // Replace the old BB with the new BB. 6572 for (auto &I : *TBB) { 6573 PHINode *PN = dyn_cast<PHINode>(&I); 6574 if (!PN) 6575 break; 6576 int i; 6577 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6578 PN->setIncomingBlock(i, TmpBB); 6579 } 6580 6581 // Add another incoming edge form the new BB. 6582 for (auto &I : *FBB) { 6583 PHINode *PN = dyn_cast<PHINode>(&I); 6584 if (!PN) 6585 break; 6586 auto *Val = PN->getIncomingValueForBlock(&BB); 6587 PN->addIncoming(Val, TmpBB); 6588 } 6589 6590 // Update the branch weights (from SelectionDAGBuilder:: 6591 // FindMergedConditions). 6592 if (Opc == Instruction::Or) { 6593 // Codegen X | Y as: 6594 // BB1: 6595 // jmp_if_X TBB 6596 // jmp TmpBB 6597 // TmpBB: 6598 // jmp_if_Y TBB 6599 // jmp FBB 6600 // 6601 6602 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6603 // The requirement is that 6604 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6605 // = TrueProb for orignal BB. 6606 // Assuming the orignal weights are A and B, one choice is to set BB1's 6607 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6608 // assumes that 6609 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6610 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6611 // TmpBB, but the math is more complicated. 6612 uint64_t TrueWeight, FalseWeight; 6613 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6614 uint64_t NewTrueWeight = TrueWeight; 6615 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6616 scaleWeights(NewTrueWeight, NewFalseWeight); 6617 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6618 .createBranchWeights(TrueWeight, FalseWeight)); 6619 6620 NewTrueWeight = TrueWeight; 6621 NewFalseWeight = 2 * FalseWeight; 6622 scaleWeights(NewTrueWeight, NewFalseWeight); 6623 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6624 .createBranchWeights(TrueWeight, FalseWeight)); 6625 } 6626 } else { 6627 // Codegen X & Y as: 6628 // BB1: 6629 // jmp_if_X TmpBB 6630 // jmp FBB 6631 // TmpBB: 6632 // jmp_if_Y TBB 6633 // jmp FBB 6634 // 6635 // This requires creation of TmpBB after CurBB. 6636 6637 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6638 // The requirement is that 6639 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6640 // = FalseProb for orignal BB. 6641 // Assuming the orignal weights are A and B, one choice is to set BB1's 6642 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6643 // assumes that 6644 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6645 uint64_t TrueWeight, FalseWeight; 6646 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6647 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6648 uint64_t NewFalseWeight = FalseWeight; 6649 scaleWeights(NewTrueWeight, NewFalseWeight); 6650 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6651 .createBranchWeights(TrueWeight, FalseWeight)); 6652 6653 NewTrueWeight = 2 * TrueWeight; 6654 NewFalseWeight = FalseWeight; 6655 scaleWeights(NewTrueWeight, NewFalseWeight); 6656 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6657 .createBranchWeights(TrueWeight, FalseWeight)); 6658 } 6659 } 6660 6661 // Note: No point in getting fancy here, since the DT info is never 6662 // available to CodeGenPrepare. 6663 ModifiedDT = true; 6664 6665 MadeChange = true; 6666 6667 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6668 TmpBB->dump()); 6669 } 6670 return MadeChange; 6671 } 6672