1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 113 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 114 class TypePromotionTransaction; 115 116 class CodeGenPrepare : public FunctionPass { 117 const TargetMachine *TM; 118 const TargetLowering *TLI; 119 const TargetTransformInfo *TTI; 120 const TargetLibraryInfo *TLInfo; 121 122 /// As we scan instructions optimizing them, this is the next instruction 123 /// to optimize. Transforms that can invalidate this should update it. 124 BasicBlock::iterator CurInstIterator; 125 126 /// Keeps track of non-local addresses that have been sunk into a block. 127 /// This allows us to avoid inserting duplicate code for blocks with 128 /// multiple load/stores of the same address. 129 ValueMap<Value*, Value*> SunkAddrs; 130 131 /// Keeps track of all instructions inserted for the current function. 132 SetOfInstrs InsertedInsts; 133 /// Keeps track of the type of the related instruction before their 134 /// promotion for the current function. 135 InstrToOrigTy PromotedInsts; 136 137 /// True if CFG is modified in any way. 138 bool ModifiedDT; 139 140 /// True if optimizing for size. 141 bool OptSize; 142 143 /// DataLayout for the Function being processed. 144 const DataLayout *DL; 145 146 public: 147 static char ID; // Pass identification, replacement for typeid 148 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 149 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 150 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 151 } 152 bool runOnFunction(Function &F) override; 153 154 const char *getPassName() const override { return "CodeGen Prepare"; } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.addPreserved<DominatorTreeWrapperPass>(); 158 AU.addRequired<TargetLibraryInfoWrapperPass>(); 159 AU.addRequired<TargetTransformInfoWrapperPass>(); 160 } 161 162 private: 163 bool eliminateFallThrough(Function &F); 164 bool eliminateMostlyEmptyBlocks(Function &F); 165 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 166 void eliminateMostlyEmptyBlock(BasicBlock *BB); 167 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 168 bool optimizeInst(Instruction *I, bool& ModifiedDT); 169 bool optimizeMemoryInst(Instruction *I, Value *Addr, 170 Type *AccessTy, unsigned AS); 171 bool optimizeInlineAsmInst(CallInst *CS); 172 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 173 bool moveExtToFormExtLoad(Instruction *&I); 174 bool optimizeExtUses(Instruction *I); 175 bool optimizeSelectInst(SelectInst *SI); 176 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 177 bool optimizeExtractElementInst(Instruction *Inst); 178 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 179 bool placeDbgValues(Function &F); 180 bool sinkAndCmp(Function &F); 181 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 182 Instruction *&Inst, 183 const SmallVectorImpl<Instruction *> &Exts, 184 unsigned CreatedInstCost); 185 bool splitBranchCondition(Function &F); 186 bool simplifyOffsetableRelocate(Instruction &I); 187 void stripInvariantGroupMetadata(Instruction &I); 188 }; 189 } 190 191 char CodeGenPrepare::ID = 0; 192 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 193 "Optimize for code generation", false, false) 194 195 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 196 return new CodeGenPrepare(TM); 197 } 198 199 bool CodeGenPrepare::runOnFunction(Function &F) { 200 if (skipOptnoneFunction(F)) 201 return false; 202 203 DL = &F.getParent()->getDataLayout(); 204 205 bool EverMadeChange = false; 206 // Clear per function information. 207 InsertedInsts.clear(); 208 PromotedInsts.clear(); 209 210 ModifiedDT = false; 211 if (TM) 212 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 213 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 214 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 215 OptSize = F.optForSize(); 216 217 /// This optimization identifies DIV instructions that can be 218 /// profitably bypassed and carried out with a shorter, faster divide. 219 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 220 const DenseMap<unsigned int, unsigned int> &BypassWidths = 221 TLI->getBypassSlowDivWidths(); 222 for (Function::iterator I = F.begin(); I != F.end(); I++) 223 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 224 } 225 226 // Eliminate blocks that contain only PHI nodes and an 227 // unconditional branch. 228 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 229 230 // llvm.dbg.value is far away from the value then iSel may not be able 231 // handle it properly. iSel will drop llvm.dbg.value if it can not 232 // find a node corresponding to the value. 233 EverMadeChange |= placeDbgValues(F); 234 235 // If there is a mask, compare against zero, and branch that can be combined 236 // into a single target instruction, push the mask and compare into branch 237 // users. Do this before OptimizeBlock -> OptimizeInst -> 238 // OptimizeCmpExpression, which perturbs the pattern being searched for. 239 if (!DisableBranchOpts) { 240 EverMadeChange |= sinkAndCmp(F); 241 EverMadeChange |= splitBranchCondition(F); 242 } 243 244 bool MadeChange = true; 245 while (MadeChange) { 246 MadeChange = false; 247 for (Function::iterator I = F.begin(); I != F.end(); ) { 248 BasicBlock *BB = I++; 249 bool ModifiedDTOnIteration = false; 250 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 251 252 // Restart BB iteration if the dominator tree of the Function was changed 253 if (ModifiedDTOnIteration) 254 break; 255 } 256 EverMadeChange |= MadeChange; 257 } 258 259 SunkAddrs.clear(); 260 261 if (!DisableBranchOpts) { 262 MadeChange = false; 263 SmallPtrSet<BasicBlock*, 8> WorkList; 264 for (BasicBlock &BB : F) { 265 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 266 MadeChange |= ConstantFoldTerminator(&BB, true); 267 if (!MadeChange) continue; 268 269 for (SmallVectorImpl<BasicBlock*>::iterator 270 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 271 if (pred_begin(*II) == pred_end(*II)) 272 WorkList.insert(*II); 273 } 274 275 // Delete the dead blocks and any of their dead successors. 276 MadeChange |= !WorkList.empty(); 277 while (!WorkList.empty()) { 278 BasicBlock *BB = *WorkList.begin(); 279 WorkList.erase(BB); 280 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 281 282 DeleteDeadBlock(BB); 283 284 for (SmallVectorImpl<BasicBlock*>::iterator 285 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 286 if (pred_begin(*II) == pred_end(*II)) 287 WorkList.insert(*II); 288 } 289 290 // Merge pairs of basic blocks with unconditional branches, connected by 291 // a single edge. 292 if (EverMadeChange || MadeChange) 293 MadeChange |= eliminateFallThrough(F); 294 295 EverMadeChange |= MadeChange; 296 } 297 298 if (!DisableGCOpts) { 299 SmallVector<Instruction *, 2> Statepoints; 300 for (BasicBlock &BB : F) 301 for (Instruction &I : BB) 302 if (isStatepoint(I)) 303 Statepoints.push_back(&I); 304 for (auto &I : Statepoints) 305 EverMadeChange |= simplifyOffsetableRelocate(*I); 306 } 307 308 return EverMadeChange; 309 } 310 311 /// Merge basic blocks which are connected by a single edge, where one of the 312 /// basic blocks has a single successor pointing to the other basic block, 313 /// which has a single predecessor. 314 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 315 bool Changed = false; 316 // Scan all of the blocks in the function, except for the entry block. 317 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 318 BasicBlock *BB = I++; 319 // If the destination block has a single pred, then this is a trivial 320 // edge, just collapse it. 321 BasicBlock *SinglePred = BB->getSinglePredecessor(); 322 323 // Don't merge if BB's address is taken. 324 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 325 326 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 327 if (Term && !Term->isConditional()) { 328 Changed = true; 329 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 330 // Remember if SinglePred was the entry block of the function. 331 // If so, we will need to move BB back to the entry position. 332 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 333 MergeBasicBlockIntoOnlyPred(BB, nullptr); 334 335 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 336 BB->moveBefore(&BB->getParent()->getEntryBlock()); 337 338 // We have erased a block. Update the iterator. 339 I = BB; 340 } 341 } 342 return Changed; 343 } 344 345 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 346 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 347 /// edges in ways that are non-optimal for isel. Start by eliminating these 348 /// blocks so we can split them the way we want them. 349 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 350 bool MadeChange = false; 351 // Note that this intentionally skips the entry block. 352 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 353 BasicBlock *BB = I++; 354 355 // If this block doesn't end with an uncond branch, ignore it. 356 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 357 if (!BI || !BI->isUnconditional()) 358 continue; 359 360 // If the instruction before the branch (skipping debug info) isn't a phi 361 // node, then other stuff is happening here. 362 BasicBlock::iterator BBI = BI; 363 if (BBI != BB->begin()) { 364 --BBI; 365 while (isa<DbgInfoIntrinsic>(BBI)) { 366 if (BBI == BB->begin()) 367 break; 368 --BBI; 369 } 370 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 371 continue; 372 } 373 374 // Do not break infinite loops. 375 BasicBlock *DestBB = BI->getSuccessor(0); 376 if (DestBB == BB) 377 continue; 378 379 if (!canMergeBlocks(BB, DestBB)) 380 continue; 381 382 eliminateMostlyEmptyBlock(BB); 383 MadeChange = true; 384 } 385 return MadeChange; 386 } 387 388 /// Return true if we can merge BB into DestBB if there is a single 389 /// unconditional branch between them, and BB contains no other non-phi 390 /// instructions. 391 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 392 const BasicBlock *DestBB) const { 393 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 394 // the successor. If there are more complex condition (e.g. preheaders), 395 // don't mess around with them. 396 BasicBlock::const_iterator BBI = BB->begin(); 397 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 398 for (const User *U : PN->users()) { 399 const Instruction *UI = cast<Instruction>(U); 400 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 401 return false; 402 // If User is inside DestBB block and it is a PHINode then check 403 // incoming value. If incoming value is not from BB then this is 404 // a complex condition (e.g. preheaders) we want to avoid here. 405 if (UI->getParent() == DestBB) { 406 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 407 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 408 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 409 if (Insn && Insn->getParent() == BB && 410 Insn->getParent() != UPN->getIncomingBlock(I)) 411 return false; 412 } 413 } 414 } 415 } 416 417 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 418 // and DestBB may have conflicting incoming values for the block. If so, we 419 // can't merge the block. 420 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 421 if (!DestBBPN) return true; // no conflict. 422 423 // Collect the preds of BB. 424 SmallPtrSet<const BasicBlock*, 16> BBPreds; 425 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 426 // It is faster to get preds from a PHI than with pred_iterator. 427 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 428 BBPreds.insert(BBPN->getIncomingBlock(i)); 429 } else { 430 BBPreds.insert(pred_begin(BB), pred_end(BB)); 431 } 432 433 // Walk the preds of DestBB. 434 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 435 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 436 if (BBPreds.count(Pred)) { // Common predecessor? 437 BBI = DestBB->begin(); 438 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 439 const Value *V1 = PN->getIncomingValueForBlock(Pred); 440 const Value *V2 = PN->getIncomingValueForBlock(BB); 441 442 // If V2 is a phi node in BB, look up what the mapped value will be. 443 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 444 if (V2PN->getParent() == BB) 445 V2 = V2PN->getIncomingValueForBlock(Pred); 446 447 // If there is a conflict, bail out. 448 if (V1 != V2) return false; 449 } 450 } 451 } 452 453 return true; 454 } 455 456 457 /// Eliminate a basic block that has only phi's and an unconditional branch in 458 /// it. 459 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 460 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 461 BasicBlock *DestBB = BI->getSuccessor(0); 462 463 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 464 465 // If the destination block has a single pred, then this is a trivial edge, 466 // just collapse it. 467 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 468 if (SinglePred != DestBB) { 469 // Remember if SinglePred was the entry block of the function. If so, we 470 // will need to move BB back to the entry position. 471 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 472 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 473 474 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 475 BB->moveBefore(&BB->getParent()->getEntryBlock()); 476 477 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 478 return; 479 } 480 } 481 482 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 483 // to handle the new incoming edges it is about to have. 484 PHINode *PN; 485 for (BasicBlock::iterator BBI = DestBB->begin(); 486 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 487 // Remove the incoming value for BB, and remember it. 488 Value *InVal = PN->removeIncomingValue(BB, false); 489 490 // Two options: either the InVal is a phi node defined in BB or it is some 491 // value that dominates BB. 492 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 493 if (InValPhi && InValPhi->getParent() == BB) { 494 // Add all of the input values of the input PHI as inputs of this phi. 495 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 496 PN->addIncoming(InValPhi->getIncomingValue(i), 497 InValPhi->getIncomingBlock(i)); 498 } else { 499 // Otherwise, add one instance of the dominating value for each edge that 500 // we will be adding. 501 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 502 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 503 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 504 } else { 505 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 506 PN->addIncoming(InVal, *PI); 507 } 508 } 509 } 510 511 // The PHIs are now updated, change everything that refers to BB to use 512 // DestBB and remove BB. 513 BB->replaceAllUsesWith(DestBB); 514 BB->eraseFromParent(); 515 ++NumBlocksElim; 516 517 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 518 } 519 520 // Computes a map of base pointer relocation instructions to corresponding 521 // derived pointer relocation instructions given a vector of all relocate calls 522 static void computeBaseDerivedRelocateMap( 523 const SmallVectorImpl<User *> &AllRelocateCalls, 524 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 525 RelocateInstMap) { 526 // Collect information in two maps: one primarily for locating the base object 527 // while filling the second map; the second map is the final structure holding 528 // a mapping between Base and corresponding Derived relocate calls 529 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 530 for (auto &U : AllRelocateCalls) { 531 GCRelocateOperands ThisRelocate(U); 532 IntrinsicInst *I = cast<IntrinsicInst>(U); 533 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 534 ThisRelocate.getDerivedPtrIndex()); 535 RelocateIdxMap.insert(std::make_pair(K, I)); 536 } 537 for (auto &Item : RelocateIdxMap) { 538 std::pair<unsigned, unsigned> Key = Item.first; 539 if (Key.first == Key.second) 540 // Base relocation: nothing to insert 541 continue; 542 543 IntrinsicInst *I = Item.second; 544 auto BaseKey = std::make_pair(Key.first, Key.first); 545 546 // We're iterating over RelocateIdxMap so we cannot modify it. 547 auto MaybeBase = RelocateIdxMap.find(BaseKey); 548 if (MaybeBase == RelocateIdxMap.end()) 549 // TODO: We might want to insert a new base object relocate and gep off 550 // that, if there are enough derived object relocates. 551 continue; 552 553 RelocateInstMap[MaybeBase->second].push_back(I); 554 } 555 } 556 557 // Accepts a GEP and extracts the operands into a vector provided they're all 558 // small integer constants 559 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 560 SmallVectorImpl<Value *> &OffsetV) { 561 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 562 // Only accept small constant integer operands 563 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 564 if (!Op || Op->getZExtValue() > 20) 565 return false; 566 } 567 568 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 569 OffsetV.push_back(GEP->getOperand(i)); 570 return true; 571 } 572 573 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 574 // replace, computes a replacement, and affects it. 575 static bool 576 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 577 const SmallVectorImpl<IntrinsicInst *> &Targets) { 578 bool MadeChange = false; 579 for (auto &ToReplace : Targets) { 580 GCRelocateOperands MasterRelocate(RelocatedBase); 581 GCRelocateOperands ThisRelocate(ToReplace); 582 583 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 584 "Not relocating a derived object of the original base object"); 585 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 586 // A duplicate relocate call. TODO: coalesce duplicates. 587 continue; 588 } 589 590 Value *Base = ThisRelocate.getBasePtr(); 591 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 592 if (!Derived || Derived->getPointerOperand() != Base) 593 continue; 594 595 SmallVector<Value *, 2> OffsetV; 596 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 597 continue; 598 599 // Create a Builder and replace the target callsite with a gep 600 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 601 602 // Insert after RelocatedBase 603 IRBuilder<> Builder(RelocatedBase->getNextNode()); 604 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 605 606 // If gc_relocate does not match the actual type, cast it to the right type. 607 // In theory, there must be a bitcast after gc_relocate if the type does not 608 // match, and we should reuse it to get the derived pointer. But it could be 609 // cases like this: 610 // bb1: 611 // ... 612 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 613 // br label %merge 614 // 615 // bb2: 616 // ... 617 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 618 // br label %merge 619 // 620 // merge: 621 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 622 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 623 // 624 // In this case, we can not find the bitcast any more. So we insert a new bitcast 625 // no matter there is already one or not. In this way, we can handle all cases, and 626 // the extra bitcast should be optimized away in later passes. 627 Instruction *ActualRelocatedBase = RelocatedBase; 628 if (RelocatedBase->getType() != Base->getType()) { 629 ActualRelocatedBase = 630 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 631 } 632 Value *Replacement = Builder.CreateGEP( 633 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 634 Instruction *ReplacementInst = cast<Instruction>(Replacement); 635 Replacement->takeName(ToReplace); 636 // If the newly generated derived pointer's type does not match the original derived 637 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 638 Instruction *ActualReplacement = ReplacementInst; 639 if (ReplacementInst->getType() != ToReplace->getType()) { 640 ActualReplacement = 641 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 642 } 643 ToReplace->replaceAllUsesWith(ActualReplacement); 644 ToReplace->eraseFromParent(); 645 646 MadeChange = true; 647 } 648 return MadeChange; 649 } 650 651 // Turns this: 652 // 653 // %base = ... 654 // %ptr = gep %base + 15 655 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 656 // %base' = relocate(%tok, i32 4, i32 4) 657 // %ptr' = relocate(%tok, i32 4, i32 5) 658 // %val = load %ptr' 659 // 660 // into this: 661 // 662 // %base = ... 663 // %ptr = gep %base + 15 664 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 665 // %base' = gc.relocate(%tok, i32 4, i32 4) 666 // %ptr' = gep %base' + 15 667 // %val = load %ptr' 668 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 669 bool MadeChange = false; 670 SmallVector<User *, 2> AllRelocateCalls; 671 672 for (auto *U : I.users()) 673 if (isGCRelocate(dyn_cast<Instruction>(U))) 674 // Collect all the relocate calls associated with a statepoint 675 AllRelocateCalls.push_back(U); 676 677 // We need atleast one base pointer relocation + one derived pointer 678 // relocation to mangle 679 if (AllRelocateCalls.size() < 2) 680 return false; 681 682 // RelocateInstMap is a mapping from the base relocate instruction to the 683 // corresponding derived relocate instructions 684 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 685 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 686 if (RelocateInstMap.empty()) 687 return false; 688 689 for (auto &Item : RelocateInstMap) 690 // Item.first is the RelocatedBase to offset against 691 // Item.second is the vector of Targets to replace 692 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 693 return MadeChange; 694 } 695 696 /// SinkCast - Sink the specified cast instruction into its user blocks 697 static bool SinkCast(CastInst *CI) { 698 BasicBlock *DefBB = CI->getParent(); 699 700 /// InsertedCasts - Only insert a cast in each block once. 701 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 702 703 bool MadeChange = false; 704 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 705 UI != E; ) { 706 Use &TheUse = UI.getUse(); 707 Instruction *User = cast<Instruction>(*UI); 708 709 // Figure out which BB this cast is used in. For PHI's this is the 710 // appropriate predecessor block. 711 BasicBlock *UserBB = User->getParent(); 712 if (PHINode *PN = dyn_cast<PHINode>(User)) { 713 UserBB = PN->getIncomingBlock(TheUse); 714 } 715 716 // Preincrement use iterator so we don't invalidate it. 717 ++UI; 718 719 // If this user is in the same block as the cast, don't change the cast. 720 if (UserBB == DefBB) continue; 721 722 // If we have already inserted a cast into this block, use it. 723 CastInst *&InsertedCast = InsertedCasts[UserBB]; 724 725 if (!InsertedCast) { 726 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 727 InsertedCast = 728 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 729 InsertPt); 730 } 731 732 // Replace a use of the cast with a use of the new cast. 733 TheUse = InsertedCast; 734 MadeChange = true; 735 ++NumCastUses; 736 } 737 738 // If we removed all uses, nuke the cast. 739 if (CI->use_empty()) { 740 CI->eraseFromParent(); 741 MadeChange = true; 742 } 743 744 return MadeChange; 745 } 746 747 /// If the specified cast instruction is a noop copy (e.g. it's casting from 748 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 749 /// reduce the number of virtual registers that must be created and coalesced. 750 /// 751 /// Return true if any changes are made. 752 /// 753 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 754 const DataLayout &DL) { 755 // If this is a noop copy, 756 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 757 EVT DstVT = TLI.getValueType(DL, CI->getType()); 758 759 // This is an fp<->int conversion? 760 if (SrcVT.isInteger() != DstVT.isInteger()) 761 return false; 762 763 // If this is an extension, it will be a zero or sign extension, which 764 // isn't a noop. 765 if (SrcVT.bitsLT(DstVT)) return false; 766 767 // If these values will be promoted, find out what they will be promoted 768 // to. This helps us consider truncates on PPC as noop copies when they 769 // are. 770 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 771 TargetLowering::TypePromoteInteger) 772 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 773 if (TLI.getTypeAction(CI->getContext(), DstVT) == 774 TargetLowering::TypePromoteInteger) 775 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 776 777 // If, after promotion, these are the same types, this is a noop copy. 778 if (SrcVT != DstVT) 779 return false; 780 781 return SinkCast(CI); 782 } 783 784 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 785 /// possible. 786 /// 787 /// Return true if any changes were made. 788 static bool CombineUAddWithOverflow(CmpInst *CI) { 789 Value *A, *B; 790 Instruction *AddI; 791 if (!match(CI, 792 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 793 return false; 794 795 Type *Ty = AddI->getType(); 796 if (!isa<IntegerType>(Ty)) 797 return false; 798 799 // We don't want to move around uses of condition values this late, so we we 800 // check if it is legal to create the call to the intrinsic in the basic 801 // block containing the icmp: 802 803 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 804 return false; 805 806 #ifndef NDEBUG 807 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 808 // for now: 809 if (AddI->hasOneUse()) 810 assert(*AddI->user_begin() == CI && "expected!"); 811 #endif 812 813 Module *M = CI->getParent()->getParent()->getParent(); 814 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 815 816 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 817 818 auto *UAddWithOverflow = 819 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 820 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 821 auto *Overflow = 822 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 823 824 CI->replaceAllUsesWith(Overflow); 825 AddI->replaceAllUsesWith(UAdd); 826 CI->eraseFromParent(); 827 AddI->eraseFromParent(); 828 return true; 829 } 830 831 /// Sink the given CmpInst into user blocks to reduce the number of virtual 832 /// registers that must be created and coalesced. This is a clear win except on 833 /// targets with multiple condition code registers (PowerPC), where it might 834 /// lose; some adjustment may be wanted there. 835 /// 836 /// Return true if any changes are made. 837 static bool SinkCmpExpression(CmpInst *CI) { 838 BasicBlock *DefBB = CI->getParent(); 839 840 /// Only insert a cmp in each block once. 841 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 842 843 bool MadeChange = false; 844 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 845 UI != E; ) { 846 Use &TheUse = UI.getUse(); 847 Instruction *User = cast<Instruction>(*UI); 848 849 // Preincrement use iterator so we don't invalidate it. 850 ++UI; 851 852 // Don't bother for PHI nodes. 853 if (isa<PHINode>(User)) 854 continue; 855 856 // Figure out which BB this cmp is used in. 857 BasicBlock *UserBB = User->getParent(); 858 859 // If this user is in the same block as the cmp, don't change the cmp. 860 if (UserBB == DefBB) continue; 861 862 // If we have already inserted a cmp into this block, use it. 863 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 864 865 if (!InsertedCmp) { 866 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 867 InsertedCmp = 868 CmpInst::Create(CI->getOpcode(), 869 CI->getPredicate(), CI->getOperand(0), 870 CI->getOperand(1), "", InsertPt); 871 } 872 873 // Replace a use of the cmp with a use of the new cmp. 874 TheUse = InsertedCmp; 875 MadeChange = true; 876 ++NumCmpUses; 877 } 878 879 // If we removed all uses, nuke the cmp. 880 if (CI->use_empty()) { 881 CI->eraseFromParent(); 882 MadeChange = true; 883 } 884 885 return MadeChange; 886 } 887 888 static bool OptimizeCmpExpression(CmpInst *CI) { 889 if (SinkCmpExpression(CI)) 890 return true; 891 892 if (CombineUAddWithOverflow(CI)) 893 return true; 894 895 return false; 896 } 897 898 /// Check if the candidates could be combined with a shift instruction, which 899 /// includes: 900 /// 1. Truncate instruction 901 /// 2. And instruction and the imm is a mask of the low bits: 902 /// imm & (imm+1) == 0 903 static bool isExtractBitsCandidateUse(Instruction *User) { 904 if (!isa<TruncInst>(User)) { 905 if (User->getOpcode() != Instruction::And || 906 !isa<ConstantInt>(User->getOperand(1))) 907 return false; 908 909 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 910 911 if ((Cimm & (Cimm + 1)).getBoolValue()) 912 return false; 913 } 914 return true; 915 } 916 917 /// Sink both shift and truncate instruction to the use of truncate's BB. 918 static bool 919 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 920 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 921 const TargetLowering &TLI, const DataLayout &DL) { 922 BasicBlock *UserBB = User->getParent(); 923 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 924 TruncInst *TruncI = dyn_cast<TruncInst>(User); 925 bool MadeChange = false; 926 927 for (Value::user_iterator TruncUI = TruncI->user_begin(), 928 TruncE = TruncI->user_end(); 929 TruncUI != TruncE;) { 930 931 Use &TruncTheUse = TruncUI.getUse(); 932 Instruction *TruncUser = cast<Instruction>(*TruncUI); 933 // Preincrement use iterator so we don't invalidate it. 934 935 ++TruncUI; 936 937 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 938 if (!ISDOpcode) 939 continue; 940 941 // If the use is actually a legal node, there will not be an 942 // implicit truncate. 943 // FIXME: always querying the result type is just an 944 // approximation; some nodes' legality is determined by the 945 // operand or other means. There's no good way to find out though. 946 if (TLI.isOperationLegalOrCustom( 947 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 948 continue; 949 950 // Don't bother for PHI nodes. 951 if (isa<PHINode>(TruncUser)) 952 continue; 953 954 BasicBlock *TruncUserBB = TruncUser->getParent(); 955 956 if (UserBB == TruncUserBB) 957 continue; 958 959 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 960 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 961 962 if (!InsertedShift && !InsertedTrunc) { 963 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 964 // Sink the shift 965 if (ShiftI->getOpcode() == Instruction::AShr) 966 InsertedShift = 967 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 968 else 969 InsertedShift = 970 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 971 972 // Sink the trunc 973 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 974 TruncInsertPt++; 975 976 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 977 TruncI->getType(), "", TruncInsertPt); 978 979 MadeChange = true; 980 981 TruncTheUse = InsertedTrunc; 982 } 983 } 984 return MadeChange; 985 } 986 987 /// Sink the shift *right* instruction into user blocks if the uses could 988 /// potentially be combined with this shift instruction and generate BitExtract 989 /// instruction. It will only be applied if the architecture supports BitExtract 990 /// instruction. Here is an example: 991 /// BB1: 992 /// %x.extract.shift = lshr i64 %arg1, 32 993 /// BB2: 994 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 995 /// ==> 996 /// 997 /// BB2: 998 /// %x.extract.shift.1 = lshr i64 %arg1, 32 999 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1000 /// 1001 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1002 /// instruction. 1003 /// Return true if any changes are made. 1004 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1005 const TargetLowering &TLI, 1006 const DataLayout &DL) { 1007 BasicBlock *DefBB = ShiftI->getParent(); 1008 1009 /// Only insert instructions in each block once. 1010 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1011 1012 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1013 1014 bool MadeChange = false; 1015 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1016 UI != E;) { 1017 Use &TheUse = UI.getUse(); 1018 Instruction *User = cast<Instruction>(*UI); 1019 // Preincrement use iterator so we don't invalidate it. 1020 ++UI; 1021 1022 // Don't bother for PHI nodes. 1023 if (isa<PHINode>(User)) 1024 continue; 1025 1026 if (!isExtractBitsCandidateUse(User)) 1027 continue; 1028 1029 BasicBlock *UserBB = User->getParent(); 1030 1031 if (UserBB == DefBB) { 1032 // If the shift and truncate instruction are in the same BB. The use of 1033 // the truncate(TruncUse) may still introduce another truncate if not 1034 // legal. In this case, we would like to sink both shift and truncate 1035 // instruction to the BB of TruncUse. 1036 // for example: 1037 // BB1: 1038 // i64 shift.result = lshr i64 opnd, imm 1039 // trunc.result = trunc shift.result to i16 1040 // 1041 // BB2: 1042 // ----> We will have an implicit truncate here if the architecture does 1043 // not have i16 compare. 1044 // cmp i16 trunc.result, opnd2 1045 // 1046 if (isa<TruncInst>(User) && shiftIsLegal 1047 // If the type of the truncate is legal, no trucate will be 1048 // introduced in other basic blocks. 1049 && 1050 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1051 MadeChange = 1052 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1053 1054 continue; 1055 } 1056 // If we have already inserted a shift into this block, use it. 1057 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1058 1059 if (!InsertedShift) { 1060 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1061 1062 if (ShiftI->getOpcode() == Instruction::AShr) 1063 InsertedShift = 1064 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 1065 else 1066 InsertedShift = 1067 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 1068 1069 MadeChange = true; 1070 } 1071 1072 // Replace a use of the shift with a use of the new shift. 1073 TheUse = InsertedShift; 1074 } 1075 1076 // If we removed all uses, nuke the shift. 1077 if (ShiftI->use_empty()) 1078 ShiftI->eraseFromParent(); 1079 1080 return MadeChange; 1081 } 1082 1083 // Translate a masked load intrinsic like 1084 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1085 // <16 x i1> %mask, <16 x i32> %passthru) 1086 // to a chain of basic blocks, with loading element one-by-one if 1087 // the appropriate mask bit is set 1088 // 1089 // %1 = bitcast i8* %addr to i32* 1090 // %2 = extractelement <16 x i1> %mask, i32 0 1091 // %3 = icmp eq i1 %2, true 1092 // br i1 %3, label %cond.load, label %else 1093 // 1094 //cond.load: ; preds = %0 1095 // %4 = getelementptr i32* %1, i32 0 1096 // %5 = load i32* %4 1097 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1098 // br label %else 1099 // 1100 //else: ; preds = %0, %cond.load 1101 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1102 // %7 = extractelement <16 x i1> %mask, i32 1 1103 // %8 = icmp eq i1 %7, true 1104 // br i1 %8, label %cond.load1, label %else2 1105 // 1106 //cond.load1: ; preds = %else 1107 // %9 = getelementptr i32* %1, i32 1 1108 // %10 = load i32* %9 1109 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1110 // br label %else2 1111 // 1112 //else2: ; preds = %else, %cond.load1 1113 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1114 // %12 = extractelement <16 x i1> %mask, i32 2 1115 // %13 = icmp eq i1 %12, true 1116 // br i1 %13, label %cond.load4, label %else5 1117 // 1118 static void ScalarizeMaskedLoad(CallInst *CI) { 1119 Value *Ptr = CI->getArgOperand(0); 1120 Value *Src0 = CI->getArgOperand(3); 1121 Value *Mask = CI->getArgOperand(2); 1122 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1123 Type *EltTy = VecType->getElementType(); 1124 1125 assert(VecType && "Unexpected return type of masked load intrinsic"); 1126 1127 IRBuilder<> Builder(CI->getContext()); 1128 Instruction *InsertPt = CI; 1129 BasicBlock *IfBlock = CI->getParent(); 1130 BasicBlock *CondBlock = nullptr; 1131 BasicBlock *PrevIfBlock = CI->getParent(); 1132 Builder.SetInsertPoint(InsertPt); 1133 1134 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1135 1136 // Bitcast %addr fron i8* to EltTy* 1137 Type *NewPtrType = 1138 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1139 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1140 Value *UndefVal = UndefValue::get(VecType); 1141 1142 // The result vector 1143 Value *VResult = UndefVal; 1144 1145 PHINode *Phi = nullptr; 1146 Value *PrevPhi = UndefVal; 1147 1148 unsigned VectorWidth = VecType->getNumElements(); 1149 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1150 1151 // Fill the "else" block, created in the previous iteration 1152 // 1153 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1154 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1155 // %to_load = icmp eq i1 %mask_1, true 1156 // br i1 %to_load, label %cond.load, label %else 1157 // 1158 if (Idx > 0) { 1159 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1160 Phi->addIncoming(VResult, CondBlock); 1161 Phi->addIncoming(PrevPhi, PrevIfBlock); 1162 PrevPhi = Phi; 1163 VResult = Phi; 1164 } 1165 1166 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1167 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1168 ConstantInt::get(Predicate->getType(), 1)); 1169 1170 // Create "cond" block 1171 // 1172 // %EltAddr = getelementptr i32* %1, i32 0 1173 // %Elt = load i32* %EltAddr 1174 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1175 // 1176 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1177 Builder.SetInsertPoint(InsertPt); 1178 1179 Value *Gep = 1180 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1181 LoadInst* Load = Builder.CreateLoad(Gep, false); 1182 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1183 1184 // Create "else" block, fill it in the next iteration 1185 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1186 Builder.SetInsertPoint(InsertPt); 1187 Instruction *OldBr = IfBlock->getTerminator(); 1188 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1189 OldBr->eraseFromParent(); 1190 PrevIfBlock = IfBlock; 1191 IfBlock = NewIfBlock; 1192 } 1193 1194 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1195 Phi->addIncoming(VResult, CondBlock); 1196 Phi->addIncoming(PrevPhi, PrevIfBlock); 1197 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1198 CI->replaceAllUsesWith(NewI); 1199 CI->eraseFromParent(); 1200 } 1201 1202 // Translate a masked store intrinsic, like 1203 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1204 // <16 x i1> %mask) 1205 // to a chain of basic blocks, that stores element one-by-one if 1206 // the appropriate mask bit is set 1207 // 1208 // %1 = bitcast i8* %addr to i32* 1209 // %2 = extractelement <16 x i1> %mask, i32 0 1210 // %3 = icmp eq i1 %2, true 1211 // br i1 %3, label %cond.store, label %else 1212 // 1213 // cond.store: ; preds = %0 1214 // %4 = extractelement <16 x i32> %val, i32 0 1215 // %5 = getelementptr i32* %1, i32 0 1216 // store i32 %4, i32* %5 1217 // br label %else 1218 // 1219 // else: ; preds = %0, %cond.store 1220 // %6 = extractelement <16 x i1> %mask, i32 1 1221 // %7 = icmp eq i1 %6, true 1222 // br i1 %7, label %cond.store1, label %else2 1223 // 1224 // cond.store1: ; preds = %else 1225 // %8 = extractelement <16 x i32> %val, i32 1 1226 // %9 = getelementptr i32* %1, i32 1 1227 // store i32 %8, i32* %9 1228 // br label %else2 1229 // . . . 1230 static void ScalarizeMaskedStore(CallInst *CI) { 1231 Value *Ptr = CI->getArgOperand(1); 1232 Value *Src = CI->getArgOperand(0); 1233 Value *Mask = CI->getArgOperand(3); 1234 1235 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1236 Type *EltTy = VecType->getElementType(); 1237 1238 assert(VecType && "Unexpected data type in masked store intrinsic"); 1239 1240 IRBuilder<> Builder(CI->getContext()); 1241 Instruction *InsertPt = CI; 1242 BasicBlock *IfBlock = CI->getParent(); 1243 Builder.SetInsertPoint(InsertPt); 1244 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1245 1246 // Bitcast %addr fron i8* to EltTy* 1247 Type *NewPtrType = 1248 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1249 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1250 1251 unsigned VectorWidth = VecType->getNumElements(); 1252 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1253 1254 // Fill the "else" block, created in the previous iteration 1255 // 1256 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1257 // %to_store = icmp eq i1 %mask_1, true 1258 // br i1 %to_load, label %cond.store, label %else 1259 // 1260 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1261 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1262 ConstantInt::get(Predicate->getType(), 1)); 1263 1264 // Create "cond" block 1265 // 1266 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1267 // %EltAddr = getelementptr i32* %1, i32 0 1268 // %store i32 %OneElt, i32* %EltAddr 1269 // 1270 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1271 Builder.SetInsertPoint(InsertPt); 1272 1273 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1274 Value *Gep = 1275 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1276 Builder.CreateStore(OneElt, Gep); 1277 1278 // Create "else" block, fill it in the next iteration 1279 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1280 Builder.SetInsertPoint(InsertPt); 1281 Instruction *OldBr = IfBlock->getTerminator(); 1282 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1283 OldBr->eraseFromParent(); 1284 IfBlock = NewIfBlock; 1285 } 1286 CI->eraseFromParent(); 1287 } 1288 1289 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1290 BasicBlock *BB = CI->getParent(); 1291 1292 // Lower inline assembly if we can. 1293 // If we found an inline asm expession, and if the target knows how to 1294 // lower it to normal LLVM code, do so now. 1295 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1296 if (TLI->ExpandInlineAsm(CI)) { 1297 // Avoid invalidating the iterator. 1298 CurInstIterator = BB->begin(); 1299 // Avoid processing instructions out of order, which could cause 1300 // reuse before a value is defined. 1301 SunkAddrs.clear(); 1302 return true; 1303 } 1304 // Sink address computing for memory operands into the block. 1305 if (optimizeInlineAsmInst(CI)) 1306 return true; 1307 } 1308 1309 // Align the pointer arguments to this call if the target thinks it's a good 1310 // idea 1311 unsigned MinSize, PrefAlign; 1312 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1313 for (auto &Arg : CI->arg_operands()) { 1314 // We want to align both objects whose address is used directly and 1315 // objects whose address is used in casts and GEPs, though it only makes 1316 // sense for GEPs if the offset is a multiple of the desired alignment and 1317 // if size - offset meets the size threshold. 1318 if (!Arg->getType()->isPointerTy()) 1319 continue; 1320 APInt Offset(DL->getPointerSizeInBits( 1321 cast<PointerType>(Arg->getType())->getAddressSpace()), 1322 0); 1323 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1324 uint64_t Offset2 = Offset.getLimitedValue(); 1325 if ((Offset2 & (PrefAlign-1)) != 0) 1326 continue; 1327 AllocaInst *AI; 1328 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1329 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1330 AI->setAlignment(PrefAlign); 1331 // Global variables can only be aligned if they are defined in this 1332 // object (i.e. they are uniquely initialized in this object), and 1333 // over-aligning global variables that have an explicit section is 1334 // forbidden. 1335 GlobalVariable *GV; 1336 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1337 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1338 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1339 MinSize + Offset2) 1340 GV->setAlignment(PrefAlign); 1341 } 1342 // If this is a memcpy (or similar) then we may be able to improve the 1343 // alignment 1344 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1345 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1346 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1347 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1348 if (Align > MI->getAlignment()) 1349 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1350 } 1351 } 1352 1353 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1354 if (II) { 1355 switch (II->getIntrinsicID()) { 1356 default: break; 1357 case Intrinsic::objectsize: { 1358 // Lower all uses of llvm.objectsize.* 1359 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1360 Type *ReturnTy = CI->getType(); 1361 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1362 1363 // Substituting this can cause recursive simplifications, which can 1364 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1365 // happens. 1366 WeakVH IterHandle(CurInstIterator); 1367 1368 replaceAndRecursivelySimplify(CI, RetVal, 1369 TLInfo, nullptr); 1370 1371 // If the iterator instruction was recursively deleted, start over at the 1372 // start of the block. 1373 if (IterHandle != CurInstIterator) { 1374 CurInstIterator = BB->begin(); 1375 SunkAddrs.clear(); 1376 } 1377 return true; 1378 } 1379 case Intrinsic::masked_load: { 1380 // Scalarize unsupported vector masked load 1381 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1382 ScalarizeMaskedLoad(CI); 1383 ModifiedDT = true; 1384 return true; 1385 } 1386 return false; 1387 } 1388 case Intrinsic::masked_store: { 1389 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1390 ScalarizeMaskedStore(CI); 1391 ModifiedDT = true; 1392 return true; 1393 } 1394 return false; 1395 } 1396 case Intrinsic::aarch64_stlxr: 1397 case Intrinsic::aarch64_stxr: { 1398 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1399 if (!ExtVal || !ExtVal->hasOneUse() || 1400 ExtVal->getParent() == CI->getParent()) 1401 return false; 1402 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1403 ExtVal->moveBefore(CI); 1404 // Mark this instruction as "inserted by CGP", so that other 1405 // optimizations don't touch it. 1406 InsertedInsts.insert(ExtVal); 1407 return true; 1408 } 1409 case Intrinsic::invariant_group_barrier: 1410 II->replaceAllUsesWith(II->getArgOperand(0)); 1411 II->eraseFromParent(); 1412 return true; 1413 } 1414 1415 if (TLI) { 1416 // Unknown address space. 1417 // TODO: Target hook to pick which address space the intrinsic cares 1418 // about? 1419 unsigned AddrSpace = ~0u; 1420 SmallVector<Value*, 2> PtrOps; 1421 Type *AccessTy; 1422 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1423 while (!PtrOps.empty()) 1424 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1425 return true; 1426 } 1427 } 1428 1429 // From here on out we're working with named functions. 1430 if (!CI->getCalledFunction()) return false; 1431 1432 // Lower all default uses of _chk calls. This is very similar 1433 // to what InstCombineCalls does, but here we are only lowering calls 1434 // to fortified library functions (e.g. __memcpy_chk) that have the default 1435 // "don't know" as the objectsize. Anything else should be left alone. 1436 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1437 if (Value *V = Simplifier.optimizeCall(CI)) { 1438 CI->replaceAllUsesWith(V); 1439 CI->eraseFromParent(); 1440 return true; 1441 } 1442 return false; 1443 } 1444 1445 /// Look for opportunities to duplicate return instructions to the predecessor 1446 /// to enable tail call optimizations. The case it is currently looking for is: 1447 /// @code 1448 /// bb0: 1449 /// %tmp0 = tail call i32 @f0() 1450 /// br label %return 1451 /// bb1: 1452 /// %tmp1 = tail call i32 @f1() 1453 /// br label %return 1454 /// bb2: 1455 /// %tmp2 = tail call i32 @f2() 1456 /// br label %return 1457 /// return: 1458 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1459 /// ret i32 %retval 1460 /// @endcode 1461 /// 1462 /// => 1463 /// 1464 /// @code 1465 /// bb0: 1466 /// %tmp0 = tail call i32 @f0() 1467 /// ret i32 %tmp0 1468 /// bb1: 1469 /// %tmp1 = tail call i32 @f1() 1470 /// ret i32 %tmp1 1471 /// bb2: 1472 /// %tmp2 = tail call i32 @f2() 1473 /// ret i32 %tmp2 1474 /// @endcode 1475 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1476 if (!TLI) 1477 return false; 1478 1479 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1480 if (!RI) 1481 return false; 1482 1483 PHINode *PN = nullptr; 1484 BitCastInst *BCI = nullptr; 1485 Value *V = RI->getReturnValue(); 1486 if (V) { 1487 BCI = dyn_cast<BitCastInst>(V); 1488 if (BCI) 1489 V = BCI->getOperand(0); 1490 1491 PN = dyn_cast<PHINode>(V); 1492 if (!PN) 1493 return false; 1494 } 1495 1496 if (PN && PN->getParent() != BB) 1497 return false; 1498 1499 // It's not safe to eliminate the sign / zero extension of the return value. 1500 // See llvm::isInTailCallPosition(). 1501 const Function *F = BB->getParent(); 1502 AttributeSet CallerAttrs = F->getAttributes(); 1503 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1504 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1505 return false; 1506 1507 // Make sure there are no instructions between the PHI and return, or that the 1508 // return is the first instruction in the block. 1509 if (PN) { 1510 BasicBlock::iterator BI = BB->begin(); 1511 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1512 if (&*BI == BCI) 1513 // Also skip over the bitcast. 1514 ++BI; 1515 if (&*BI != RI) 1516 return false; 1517 } else { 1518 BasicBlock::iterator BI = BB->begin(); 1519 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1520 if (&*BI != RI) 1521 return false; 1522 } 1523 1524 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1525 /// call. 1526 SmallVector<CallInst*, 4> TailCalls; 1527 if (PN) { 1528 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1529 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1530 // Make sure the phi value is indeed produced by the tail call. 1531 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1532 TLI->mayBeEmittedAsTailCall(CI)) 1533 TailCalls.push_back(CI); 1534 } 1535 } else { 1536 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1537 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1538 if (!VisitedBBs.insert(*PI).second) 1539 continue; 1540 1541 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1542 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1543 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1544 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1545 if (RI == RE) 1546 continue; 1547 1548 CallInst *CI = dyn_cast<CallInst>(&*RI); 1549 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1550 TailCalls.push_back(CI); 1551 } 1552 } 1553 1554 bool Changed = false; 1555 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1556 CallInst *CI = TailCalls[i]; 1557 CallSite CS(CI); 1558 1559 // Conservatively require the attributes of the call to match those of the 1560 // return. Ignore noalias because it doesn't affect the call sequence. 1561 AttributeSet CalleeAttrs = CS.getAttributes(); 1562 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1563 removeAttribute(Attribute::NoAlias) != 1564 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1565 removeAttribute(Attribute::NoAlias)) 1566 continue; 1567 1568 // Make sure the call instruction is followed by an unconditional branch to 1569 // the return block. 1570 BasicBlock *CallBB = CI->getParent(); 1571 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1572 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1573 continue; 1574 1575 // Duplicate the return into CallBB. 1576 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1577 ModifiedDT = Changed = true; 1578 ++NumRetsDup; 1579 } 1580 1581 // If we eliminated all predecessors of the block, delete the block now. 1582 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1583 BB->eraseFromParent(); 1584 1585 return Changed; 1586 } 1587 1588 //===----------------------------------------------------------------------===// 1589 // Memory Optimization 1590 //===----------------------------------------------------------------------===// 1591 1592 namespace { 1593 1594 /// This is an extended version of TargetLowering::AddrMode 1595 /// which holds actual Value*'s for register values. 1596 struct ExtAddrMode : public TargetLowering::AddrMode { 1597 Value *BaseReg; 1598 Value *ScaledReg; 1599 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1600 void print(raw_ostream &OS) const; 1601 void dump() const; 1602 1603 bool operator==(const ExtAddrMode& O) const { 1604 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1605 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1606 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1607 } 1608 }; 1609 1610 #ifndef NDEBUG 1611 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1612 AM.print(OS); 1613 return OS; 1614 } 1615 #endif 1616 1617 void ExtAddrMode::print(raw_ostream &OS) const { 1618 bool NeedPlus = false; 1619 OS << "["; 1620 if (BaseGV) { 1621 OS << (NeedPlus ? " + " : "") 1622 << "GV:"; 1623 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1624 NeedPlus = true; 1625 } 1626 1627 if (BaseOffs) { 1628 OS << (NeedPlus ? " + " : "") 1629 << BaseOffs; 1630 NeedPlus = true; 1631 } 1632 1633 if (BaseReg) { 1634 OS << (NeedPlus ? " + " : "") 1635 << "Base:"; 1636 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1637 NeedPlus = true; 1638 } 1639 if (Scale) { 1640 OS << (NeedPlus ? " + " : "") 1641 << Scale << "*"; 1642 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1643 } 1644 1645 OS << ']'; 1646 } 1647 1648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1649 void ExtAddrMode::dump() const { 1650 print(dbgs()); 1651 dbgs() << '\n'; 1652 } 1653 #endif 1654 1655 /// \brief This class provides transaction based operation on the IR. 1656 /// Every change made through this class is recorded in the internal state and 1657 /// can be undone (rollback) until commit is called. 1658 class TypePromotionTransaction { 1659 1660 /// \brief This represents the common interface of the individual transaction. 1661 /// Each class implements the logic for doing one specific modification on 1662 /// the IR via the TypePromotionTransaction. 1663 class TypePromotionAction { 1664 protected: 1665 /// The Instruction modified. 1666 Instruction *Inst; 1667 1668 public: 1669 /// \brief Constructor of the action. 1670 /// The constructor performs the related action on the IR. 1671 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1672 1673 virtual ~TypePromotionAction() {} 1674 1675 /// \brief Undo the modification done by this action. 1676 /// When this method is called, the IR must be in the same state as it was 1677 /// before this action was applied. 1678 /// \pre Undoing the action works if and only if the IR is in the exact same 1679 /// state as it was directly after this action was applied. 1680 virtual void undo() = 0; 1681 1682 /// \brief Advocate every change made by this action. 1683 /// When the results on the IR of the action are to be kept, it is important 1684 /// to call this function, otherwise hidden information may be kept forever. 1685 virtual void commit() { 1686 // Nothing to be done, this action is not doing anything. 1687 } 1688 }; 1689 1690 /// \brief Utility to remember the position of an instruction. 1691 class InsertionHandler { 1692 /// Position of an instruction. 1693 /// Either an instruction: 1694 /// - Is the first in a basic block: BB is used. 1695 /// - Has a previous instructon: PrevInst is used. 1696 union { 1697 Instruction *PrevInst; 1698 BasicBlock *BB; 1699 } Point; 1700 /// Remember whether or not the instruction had a previous instruction. 1701 bool HasPrevInstruction; 1702 1703 public: 1704 /// \brief Record the position of \p Inst. 1705 InsertionHandler(Instruction *Inst) { 1706 BasicBlock::iterator It = Inst; 1707 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1708 if (HasPrevInstruction) 1709 Point.PrevInst = --It; 1710 else 1711 Point.BB = Inst->getParent(); 1712 } 1713 1714 /// \brief Insert \p Inst at the recorded position. 1715 void insert(Instruction *Inst) { 1716 if (HasPrevInstruction) { 1717 if (Inst->getParent()) 1718 Inst->removeFromParent(); 1719 Inst->insertAfter(Point.PrevInst); 1720 } else { 1721 Instruction *Position = Point.BB->getFirstInsertionPt(); 1722 if (Inst->getParent()) 1723 Inst->moveBefore(Position); 1724 else 1725 Inst->insertBefore(Position); 1726 } 1727 } 1728 }; 1729 1730 /// \brief Move an instruction before another. 1731 class InstructionMoveBefore : public TypePromotionAction { 1732 /// Original position of the instruction. 1733 InsertionHandler Position; 1734 1735 public: 1736 /// \brief Move \p Inst before \p Before. 1737 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1738 : TypePromotionAction(Inst), Position(Inst) { 1739 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1740 Inst->moveBefore(Before); 1741 } 1742 1743 /// \brief Move the instruction back to its original position. 1744 void undo() override { 1745 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1746 Position.insert(Inst); 1747 } 1748 }; 1749 1750 /// \brief Set the operand of an instruction with a new value. 1751 class OperandSetter : public TypePromotionAction { 1752 /// Original operand of the instruction. 1753 Value *Origin; 1754 /// Index of the modified instruction. 1755 unsigned Idx; 1756 1757 public: 1758 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1759 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1760 : TypePromotionAction(Inst), Idx(Idx) { 1761 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1762 << "for:" << *Inst << "\n" 1763 << "with:" << *NewVal << "\n"); 1764 Origin = Inst->getOperand(Idx); 1765 Inst->setOperand(Idx, NewVal); 1766 } 1767 1768 /// \brief Restore the original value of the instruction. 1769 void undo() override { 1770 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1771 << "for: " << *Inst << "\n" 1772 << "with: " << *Origin << "\n"); 1773 Inst->setOperand(Idx, Origin); 1774 } 1775 }; 1776 1777 /// \brief Hide the operands of an instruction. 1778 /// Do as if this instruction was not using any of its operands. 1779 class OperandsHider : public TypePromotionAction { 1780 /// The list of original operands. 1781 SmallVector<Value *, 4> OriginalValues; 1782 1783 public: 1784 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1785 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1786 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1787 unsigned NumOpnds = Inst->getNumOperands(); 1788 OriginalValues.reserve(NumOpnds); 1789 for (unsigned It = 0; It < NumOpnds; ++It) { 1790 // Save the current operand. 1791 Value *Val = Inst->getOperand(It); 1792 OriginalValues.push_back(Val); 1793 // Set a dummy one. 1794 // We could use OperandSetter here, but that would implied an overhead 1795 // that we are not willing to pay. 1796 Inst->setOperand(It, UndefValue::get(Val->getType())); 1797 } 1798 } 1799 1800 /// \brief Restore the original list of uses. 1801 void undo() override { 1802 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1803 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1804 Inst->setOperand(It, OriginalValues[It]); 1805 } 1806 }; 1807 1808 /// \brief Build a truncate instruction. 1809 class TruncBuilder : public TypePromotionAction { 1810 Value *Val; 1811 public: 1812 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1813 /// result. 1814 /// trunc Opnd to Ty. 1815 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1816 IRBuilder<> Builder(Opnd); 1817 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1818 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1819 } 1820 1821 /// \brief Get the built value. 1822 Value *getBuiltValue() { return Val; } 1823 1824 /// \brief Remove the built instruction. 1825 void undo() override { 1826 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1827 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1828 IVal->eraseFromParent(); 1829 } 1830 }; 1831 1832 /// \brief Build a sign extension instruction. 1833 class SExtBuilder : public TypePromotionAction { 1834 Value *Val; 1835 public: 1836 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1837 /// result. 1838 /// sext Opnd to Ty. 1839 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1840 : TypePromotionAction(InsertPt) { 1841 IRBuilder<> Builder(InsertPt); 1842 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1843 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1844 } 1845 1846 /// \brief Get the built value. 1847 Value *getBuiltValue() { return Val; } 1848 1849 /// \brief Remove the built instruction. 1850 void undo() override { 1851 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1852 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1853 IVal->eraseFromParent(); 1854 } 1855 }; 1856 1857 /// \brief Build a zero extension instruction. 1858 class ZExtBuilder : public TypePromotionAction { 1859 Value *Val; 1860 public: 1861 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1862 /// result. 1863 /// zext Opnd to Ty. 1864 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1865 : TypePromotionAction(InsertPt) { 1866 IRBuilder<> Builder(InsertPt); 1867 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1868 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1869 } 1870 1871 /// \brief Get the built value. 1872 Value *getBuiltValue() { return Val; } 1873 1874 /// \brief Remove the built instruction. 1875 void undo() override { 1876 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1877 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1878 IVal->eraseFromParent(); 1879 } 1880 }; 1881 1882 /// \brief Mutate an instruction to another type. 1883 class TypeMutator : public TypePromotionAction { 1884 /// Record the original type. 1885 Type *OrigTy; 1886 1887 public: 1888 /// \brief Mutate the type of \p Inst into \p NewTy. 1889 TypeMutator(Instruction *Inst, Type *NewTy) 1890 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1891 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1892 << "\n"); 1893 Inst->mutateType(NewTy); 1894 } 1895 1896 /// \brief Mutate the instruction back to its original type. 1897 void undo() override { 1898 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1899 << "\n"); 1900 Inst->mutateType(OrigTy); 1901 } 1902 }; 1903 1904 /// \brief Replace the uses of an instruction by another instruction. 1905 class UsesReplacer : public TypePromotionAction { 1906 /// Helper structure to keep track of the replaced uses. 1907 struct InstructionAndIdx { 1908 /// The instruction using the instruction. 1909 Instruction *Inst; 1910 /// The index where this instruction is used for Inst. 1911 unsigned Idx; 1912 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1913 : Inst(Inst), Idx(Idx) {} 1914 }; 1915 1916 /// Keep track of the original uses (pair Instruction, Index). 1917 SmallVector<InstructionAndIdx, 4> OriginalUses; 1918 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1919 1920 public: 1921 /// \brief Replace all the use of \p Inst by \p New. 1922 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1923 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1924 << "\n"); 1925 // Record the original uses. 1926 for (Use &U : Inst->uses()) { 1927 Instruction *UserI = cast<Instruction>(U.getUser()); 1928 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1929 } 1930 // Now, we can replace the uses. 1931 Inst->replaceAllUsesWith(New); 1932 } 1933 1934 /// \brief Reassign the original uses of Inst to Inst. 1935 void undo() override { 1936 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1937 for (use_iterator UseIt = OriginalUses.begin(), 1938 EndIt = OriginalUses.end(); 1939 UseIt != EndIt; ++UseIt) { 1940 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1941 } 1942 } 1943 }; 1944 1945 /// \brief Remove an instruction from the IR. 1946 class InstructionRemover : public TypePromotionAction { 1947 /// Original position of the instruction. 1948 InsertionHandler Inserter; 1949 /// Helper structure to hide all the link to the instruction. In other 1950 /// words, this helps to do as if the instruction was removed. 1951 OperandsHider Hider; 1952 /// Keep track of the uses replaced, if any. 1953 UsesReplacer *Replacer; 1954 1955 public: 1956 /// \brief Remove all reference of \p Inst and optinally replace all its 1957 /// uses with New. 1958 /// \pre If !Inst->use_empty(), then New != nullptr 1959 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1960 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1961 Replacer(nullptr) { 1962 if (New) 1963 Replacer = new UsesReplacer(Inst, New); 1964 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1965 Inst->removeFromParent(); 1966 } 1967 1968 ~InstructionRemover() override { delete Replacer; } 1969 1970 /// \brief Really remove the instruction. 1971 void commit() override { delete Inst; } 1972 1973 /// \brief Resurrect the instruction and reassign it to the proper uses if 1974 /// new value was provided when build this action. 1975 void undo() override { 1976 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1977 Inserter.insert(Inst); 1978 if (Replacer) 1979 Replacer->undo(); 1980 Hider.undo(); 1981 } 1982 }; 1983 1984 public: 1985 /// Restoration point. 1986 /// The restoration point is a pointer to an action instead of an iterator 1987 /// because the iterator may be invalidated but not the pointer. 1988 typedef const TypePromotionAction *ConstRestorationPt; 1989 /// Advocate every changes made in that transaction. 1990 void commit(); 1991 /// Undo all the changes made after the given point. 1992 void rollback(ConstRestorationPt Point); 1993 /// Get the current restoration point. 1994 ConstRestorationPt getRestorationPoint() const; 1995 1996 /// \name API for IR modification with state keeping to support rollback. 1997 /// @{ 1998 /// Same as Instruction::setOperand. 1999 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2000 /// Same as Instruction::eraseFromParent. 2001 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2002 /// Same as Value::replaceAllUsesWith. 2003 void replaceAllUsesWith(Instruction *Inst, Value *New); 2004 /// Same as Value::mutateType. 2005 void mutateType(Instruction *Inst, Type *NewTy); 2006 /// Same as IRBuilder::createTrunc. 2007 Value *createTrunc(Instruction *Opnd, Type *Ty); 2008 /// Same as IRBuilder::createSExt. 2009 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2010 /// Same as IRBuilder::createZExt. 2011 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2012 /// Same as Instruction::moveBefore. 2013 void moveBefore(Instruction *Inst, Instruction *Before); 2014 /// @} 2015 2016 private: 2017 /// The ordered list of actions made so far. 2018 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2019 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2020 }; 2021 2022 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2023 Value *NewVal) { 2024 Actions.push_back( 2025 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2026 } 2027 2028 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2029 Value *NewVal) { 2030 Actions.push_back( 2031 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2032 } 2033 2034 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2035 Value *New) { 2036 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2037 } 2038 2039 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2040 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2041 } 2042 2043 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2044 Type *Ty) { 2045 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2046 Value *Val = Ptr->getBuiltValue(); 2047 Actions.push_back(std::move(Ptr)); 2048 return Val; 2049 } 2050 2051 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2052 Value *Opnd, Type *Ty) { 2053 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2054 Value *Val = Ptr->getBuiltValue(); 2055 Actions.push_back(std::move(Ptr)); 2056 return Val; 2057 } 2058 2059 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2060 Value *Opnd, Type *Ty) { 2061 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2062 Value *Val = Ptr->getBuiltValue(); 2063 Actions.push_back(std::move(Ptr)); 2064 return Val; 2065 } 2066 2067 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2068 Instruction *Before) { 2069 Actions.push_back( 2070 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2071 } 2072 2073 TypePromotionTransaction::ConstRestorationPt 2074 TypePromotionTransaction::getRestorationPoint() const { 2075 return !Actions.empty() ? Actions.back().get() : nullptr; 2076 } 2077 2078 void TypePromotionTransaction::commit() { 2079 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2080 ++It) 2081 (*It)->commit(); 2082 Actions.clear(); 2083 } 2084 2085 void TypePromotionTransaction::rollback( 2086 TypePromotionTransaction::ConstRestorationPt Point) { 2087 while (!Actions.empty() && Point != Actions.back().get()) { 2088 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2089 Curr->undo(); 2090 } 2091 } 2092 2093 /// \brief A helper class for matching addressing modes. 2094 /// 2095 /// This encapsulates the logic for matching the target-legal addressing modes. 2096 class AddressingModeMatcher { 2097 SmallVectorImpl<Instruction*> &AddrModeInsts; 2098 const TargetMachine &TM; 2099 const TargetLowering &TLI; 2100 const DataLayout &DL; 2101 2102 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2103 /// the memory instruction that we're computing this address for. 2104 Type *AccessTy; 2105 unsigned AddrSpace; 2106 Instruction *MemoryInst; 2107 2108 /// This is the addressing mode that we're building up. This is 2109 /// part of the return value of this addressing mode matching stuff. 2110 ExtAddrMode &AddrMode; 2111 2112 /// The instructions inserted by other CodeGenPrepare optimizations. 2113 const SetOfInstrs &InsertedInsts; 2114 /// A map from the instructions to their type before promotion. 2115 InstrToOrigTy &PromotedInsts; 2116 /// The ongoing transaction where every action should be registered. 2117 TypePromotionTransaction &TPT; 2118 2119 /// This is set to true when we should not do profitability checks. 2120 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2121 bool IgnoreProfitability; 2122 2123 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2124 const TargetMachine &TM, Type *AT, unsigned AS, 2125 Instruction *MI, ExtAddrMode &AM, 2126 const SetOfInstrs &InsertedInsts, 2127 InstrToOrigTy &PromotedInsts, 2128 TypePromotionTransaction &TPT) 2129 : AddrModeInsts(AMI), TM(TM), 2130 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2131 ->getTargetLowering()), 2132 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2133 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2134 PromotedInsts(PromotedInsts), TPT(TPT) { 2135 IgnoreProfitability = false; 2136 } 2137 public: 2138 2139 /// Find the maximal addressing mode that a load/store of V can fold, 2140 /// give an access type of AccessTy. This returns a list of involved 2141 /// instructions in AddrModeInsts. 2142 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2143 /// optimizations. 2144 /// \p PromotedInsts maps the instructions to their type before promotion. 2145 /// \p The ongoing transaction where every action should be registered. 2146 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2147 Instruction *MemoryInst, 2148 SmallVectorImpl<Instruction*> &AddrModeInsts, 2149 const TargetMachine &TM, 2150 const SetOfInstrs &InsertedInsts, 2151 InstrToOrigTy &PromotedInsts, 2152 TypePromotionTransaction &TPT) { 2153 ExtAddrMode Result; 2154 2155 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2156 MemoryInst, Result, InsertedInsts, 2157 PromotedInsts, TPT).matchAddr(V, 0); 2158 (void)Success; assert(Success && "Couldn't select *anything*?"); 2159 return Result; 2160 } 2161 private: 2162 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2163 bool matchAddr(Value *V, unsigned Depth); 2164 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2165 bool *MovedAway = nullptr); 2166 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2167 ExtAddrMode &AMBefore, 2168 ExtAddrMode &AMAfter); 2169 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2170 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2171 Value *PromotedOperand) const; 2172 }; 2173 2174 /// Try adding ScaleReg*Scale to the current addressing mode. 2175 /// Return true and update AddrMode if this addr mode is legal for the target, 2176 /// false if not. 2177 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2178 unsigned Depth) { 2179 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2180 // mode. Just process that directly. 2181 if (Scale == 1) 2182 return matchAddr(ScaleReg, Depth); 2183 2184 // If the scale is 0, it takes nothing to add this. 2185 if (Scale == 0) 2186 return true; 2187 2188 // If we already have a scale of this value, we can add to it, otherwise, we 2189 // need an available scale field. 2190 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2191 return false; 2192 2193 ExtAddrMode TestAddrMode = AddrMode; 2194 2195 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2196 // [A+B + A*7] -> [B+A*8]. 2197 TestAddrMode.Scale += Scale; 2198 TestAddrMode.ScaledReg = ScaleReg; 2199 2200 // If the new address isn't legal, bail out. 2201 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2202 return false; 2203 2204 // It was legal, so commit it. 2205 AddrMode = TestAddrMode; 2206 2207 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2208 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2209 // X*Scale + C*Scale to addr mode. 2210 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2211 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2212 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2213 TestAddrMode.ScaledReg = AddLHS; 2214 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2215 2216 // If this addressing mode is legal, commit it and remember that we folded 2217 // this instruction. 2218 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2219 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2220 AddrMode = TestAddrMode; 2221 return true; 2222 } 2223 } 2224 2225 // Otherwise, not (x+c)*scale, just return what we have. 2226 return true; 2227 } 2228 2229 /// This is a little filter, which returns true if an addressing computation 2230 /// involving I might be folded into a load/store accessing it. 2231 /// This doesn't need to be perfect, but needs to accept at least 2232 /// the set of instructions that MatchOperationAddr can. 2233 static bool MightBeFoldableInst(Instruction *I) { 2234 switch (I->getOpcode()) { 2235 case Instruction::BitCast: 2236 case Instruction::AddrSpaceCast: 2237 // Don't touch identity bitcasts. 2238 if (I->getType() == I->getOperand(0)->getType()) 2239 return false; 2240 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2241 case Instruction::PtrToInt: 2242 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2243 return true; 2244 case Instruction::IntToPtr: 2245 // We know the input is intptr_t, so this is foldable. 2246 return true; 2247 case Instruction::Add: 2248 return true; 2249 case Instruction::Mul: 2250 case Instruction::Shl: 2251 // Can only handle X*C and X << C. 2252 return isa<ConstantInt>(I->getOperand(1)); 2253 case Instruction::GetElementPtr: 2254 return true; 2255 default: 2256 return false; 2257 } 2258 } 2259 2260 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2261 /// \note \p Val is assumed to be the product of some type promotion. 2262 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2263 /// to be legal, as the non-promoted value would have had the same state. 2264 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2265 const DataLayout &DL, Value *Val) { 2266 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2267 if (!PromotedInst) 2268 return false; 2269 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2270 // If the ISDOpcode is undefined, it was undefined before the promotion. 2271 if (!ISDOpcode) 2272 return true; 2273 // Otherwise, check if the promoted instruction is legal or not. 2274 return TLI.isOperationLegalOrCustom( 2275 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2276 } 2277 2278 /// \brief Hepler class to perform type promotion. 2279 class TypePromotionHelper { 2280 /// \brief Utility function to check whether or not a sign or zero extension 2281 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2282 /// either using the operands of \p Inst or promoting \p Inst. 2283 /// The type of the extension is defined by \p IsSExt. 2284 /// In other words, check if: 2285 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2286 /// #1 Promotion applies: 2287 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2288 /// #2 Operand reuses: 2289 /// ext opnd1 to ConsideredExtType. 2290 /// \p PromotedInsts maps the instructions to their type before promotion. 2291 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2292 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2293 2294 /// \brief Utility function to determine if \p OpIdx should be promoted when 2295 /// promoting \p Inst. 2296 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2297 if (isa<SelectInst>(Inst) && OpIdx == 0) 2298 return false; 2299 return true; 2300 } 2301 2302 /// \brief Utility function to promote the operand of \p Ext when this 2303 /// operand is a promotable trunc or sext or zext. 2304 /// \p PromotedInsts maps the instructions to their type before promotion. 2305 /// \p CreatedInstsCost[out] contains the cost of all instructions 2306 /// created to promote the operand of Ext. 2307 /// Newly added extensions are inserted in \p Exts. 2308 /// Newly added truncates are inserted in \p Truncs. 2309 /// Should never be called directly. 2310 /// \return The promoted value which is used instead of Ext. 2311 static Value *promoteOperandForTruncAndAnyExt( 2312 Instruction *Ext, TypePromotionTransaction &TPT, 2313 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2314 SmallVectorImpl<Instruction *> *Exts, 2315 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2316 2317 /// \brief Utility function to promote the operand of \p Ext when this 2318 /// operand is promotable and is not a supported trunc or sext. 2319 /// \p PromotedInsts maps the instructions to their type before promotion. 2320 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2321 /// created to promote the operand of Ext. 2322 /// Newly added extensions are inserted in \p Exts. 2323 /// Newly added truncates are inserted in \p Truncs. 2324 /// Should never be called directly. 2325 /// \return The promoted value which is used instead of Ext. 2326 static Value *promoteOperandForOther(Instruction *Ext, 2327 TypePromotionTransaction &TPT, 2328 InstrToOrigTy &PromotedInsts, 2329 unsigned &CreatedInstsCost, 2330 SmallVectorImpl<Instruction *> *Exts, 2331 SmallVectorImpl<Instruction *> *Truncs, 2332 const TargetLowering &TLI, bool IsSExt); 2333 2334 /// \see promoteOperandForOther. 2335 static Value *signExtendOperandForOther( 2336 Instruction *Ext, TypePromotionTransaction &TPT, 2337 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2338 SmallVectorImpl<Instruction *> *Exts, 2339 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2340 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2341 Exts, Truncs, TLI, true); 2342 } 2343 2344 /// \see promoteOperandForOther. 2345 static Value *zeroExtendOperandForOther( 2346 Instruction *Ext, TypePromotionTransaction &TPT, 2347 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2348 SmallVectorImpl<Instruction *> *Exts, 2349 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2350 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2351 Exts, Truncs, TLI, false); 2352 } 2353 2354 public: 2355 /// Type for the utility function that promotes the operand of Ext. 2356 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2357 InstrToOrigTy &PromotedInsts, 2358 unsigned &CreatedInstsCost, 2359 SmallVectorImpl<Instruction *> *Exts, 2360 SmallVectorImpl<Instruction *> *Truncs, 2361 const TargetLowering &TLI); 2362 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2363 /// action to promote the operand of \p Ext instead of using Ext. 2364 /// \return NULL if no promotable action is possible with the current 2365 /// sign extension. 2366 /// \p InsertedInsts keeps track of all the instructions inserted by the 2367 /// other CodeGenPrepare optimizations. This information is important 2368 /// because we do not want to promote these instructions as CodeGenPrepare 2369 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2370 /// \p PromotedInsts maps the instructions to their type before promotion. 2371 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2372 const TargetLowering &TLI, 2373 const InstrToOrigTy &PromotedInsts); 2374 }; 2375 2376 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2377 Type *ConsideredExtType, 2378 const InstrToOrigTy &PromotedInsts, 2379 bool IsSExt) { 2380 // The promotion helper does not know how to deal with vector types yet. 2381 // To be able to fix that, we would need to fix the places where we 2382 // statically extend, e.g., constants and such. 2383 if (Inst->getType()->isVectorTy()) 2384 return false; 2385 2386 // We can always get through zext. 2387 if (isa<ZExtInst>(Inst)) 2388 return true; 2389 2390 // sext(sext) is ok too. 2391 if (IsSExt && isa<SExtInst>(Inst)) 2392 return true; 2393 2394 // We can get through binary operator, if it is legal. In other words, the 2395 // binary operator must have a nuw or nsw flag. 2396 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2397 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2398 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2399 (IsSExt && BinOp->hasNoSignedWrap()))) 2400 return true; 2401 2402 // Check if we can do the following simplification. 2403 // ext(trunc(opnd)) --> ext(opnd) 2404 if (!isa<TruncInst>(Inst)) 2405 return false; 2406 2407 Value *OpndVal = Inst->getOperand(0); 2408 // Check if we can use this operand in the extension. 2409 // If the type is larger than the result type of the extension, 2410 // we cannot. 2411 if (!OpndVal->getType()->isIntegerTy() || 2412 OpndVal->getType()->getIntegerBitWidth() > 2413 ConsideredExtType->getIntegerBitWidth()) 2414 return false; 2415 2416 // If the operand of the truncate is not an instruction, we will not have 2417 // any information on the dropped bits. 2418 // (Actually we could for constant but it is not worth the extra logic). 2419 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2420 if (!Opnd) 2421 return false; 2422 2423 // Check if the source of the type is narrow enough. 2424 // I.e., check that trunc just drops extended bits of the same kind of 2425 // the extension. 2426 // #1 get the type of the operand and check the kind of the extended bits. 2427 const Type *OpndType; 2428 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2429 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2430 OpndType = It->second.getPointer(); 2431 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2432 OpndType = Opnd->getOperand(0)->getType(); 2433 else 2434 return false; 2435 2436 // #2 check that the truncate just drop extended bits. 2437 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2438 return true; 2439 2440 return false; 2441 } 2442 2443 TypePromotionHelper::Action TypePromotionHelper::getAction( 2444 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2445 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2446 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2447 "Unexpected instruction type"); 2448 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2449 Type *ExtTy = Ext->getType(); 2450 bool IsSExt = isa<SExtInst>(Ext); 2451 // If the operand of the extension is not an instruction, we cannot 2452 // get through. 2453 // If it, check we can get through. 2454 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2455 return nullptr; 2456 2457 // Do not promote if the operand has been added by codegenprepare. 2458 // Otherwise, it means we are undoing an optimization that is likely to be 2459 // redone, thus causing potential infinite loop. 2460 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2461 return nullptr; 2462 2463 // SExt or Trunc instructions. 2464 // Return the related handler. 2465 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2466 isa<ZExtInst>(ExtOpnd)) 2467 return promoteOperandForTruncAndAnyExt; 2468 2469 // Regular instruction. 2470 // Abort early if we will have to insert non-free instructions. 2471 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2472 return nullptr; 2473 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2474 } 2475 2476 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2477 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2478 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2479 SmallVectorImpl<Instruction *> *Exts, 2480 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2481 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2482 // get through it and this method should not be called. 2483 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2484 Value *ExtVal = SExt; 2485 bool HasMergedNonFreeExt = false; 2486 if (isa<ZExtInst>(SExtOpnd)) { 2487 // Replace s|zext(zext(opnd)) 2488 // => zext(opnd). 2489 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2490 Value *ZExt = 2491 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2492 TPT.replaceAllUsesWith(SExt, ZExt); 2493 TPT.eraseInstruction(SExt); 2494 ExtVal = ZExt; 2495 } else { 2496 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2497 // => z|sext(opnd). 2498 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2499 } 2500 CreatedInstsCost = 0; 2501 2502 // Remove dead code. 2503 if (SExtOpnd->use_empty()) 2504 TPT.eraseInstruction(SExtOpnd); 2505 2506 // Check if the extension is still needed. 2507 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2508 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2509 if (ExtInst) { 2510 if (Exts) 2511 Exts->push_back(ExtInst); 2512 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2513 } 2514 return ExtVal; 2515 } 2516 2517 // At this point we have: ext ty opnd to ty. 2518 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2519 Value *NextVal = ExtInst->getOperand(0); 2520 TPT.eraseInstruction(ExtInst, NextVal); 2521 return NextVal; 2522 } 2523 2524 Value *TypePromotionHelper::promoteOperandForOther( 2525 Instruction *Ext, TypePromotionTransaction &TPT, 2526 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2527 SmallVectorImpl<Instruction *> *Exts, 2528 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2529 bool IsSExt) { 2530 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2531 // get through it and this method should not be called. 2532 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2533 CreatedInstsCost = 0; 2534 if (!ExtOpnd->hasOneUse()) { 2535 // ExtOpnd will be promoted. 2536 // All its uses, but Ext, will need to use a truncated value of the 2537 // promoted version. 2538 // Create the truncate now. 2539 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2540 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2541 ITrunc->removeFromParent(); 2542 // Insert it just after the definition. 2543 ITrunc->insertAfter(ExtOpnd); 2544 if (Truncs) 2545 Truncs->push_back(ITrunc); 2546 } 2547 2548 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2549 // Restore the operand of Ext (which has been replace by the previous call 2550 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2551 TPT.setOperand(Ext, 0, ExtOpnd); 2552 } 2553 2554 // Get through the Instruction: 2555 // 1. Update its type. 2556 // 2. Replace the uses of Ext by Inst. 2557 // 3. Extend each operand that needs to be extended. 2558 2559 // Remember the original type of the instruction before promotion. 2560 // This is useful to know that the high bits are sign extended bits. 2561 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2562 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2563 // Step #1. 2564 TPT.mutateType(ExtOpnd, Ext->getType()); 2565 // Step #2. 2566 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2567 // Step #3. 2568 Instruction *ExtForOpnd = Ext; 2569 2570 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2571 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2572 ++OpIdx) { 2573 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2574 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2575 !shouldExtOperand(ExtOpnd, OpIdx)) { 2576 DEBUG(dbgs() << "No need to propagate\n"); 2577 continue; 2578 } 2579 // Check if we can statically extend the operand. 2580 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2581 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2582 DEBUG(dbgs() << "Statically extend\n"); 2583 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2584 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2585 : Cst->getValue().zext(BitWidth); 2586 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2587 continue; 2588 } 2589 // UndefValue are typed, so we have to statically sign extend them. 2590 if (isa<UndefValue>(Opnd)) { 2591 DEBUG(dbgs() << "Statically extend\n"); 2592 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2593 continue; 2594 } 2595 2596 // Otherwise we have to explicity sign extend the operand. 2597 // Check if Ext was reused to extend an operand. 2598 if (!ExtForOpnd) { 2599 // If yes, create a new one. 2600 DEBUG(dbgs() << "More operands to ext\n"); 2601 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2602 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2603 if (!isa<Instruction>(ValForExtOpnd)) { 2604 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2605 continue; 2606 } 2607 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2608 } 2609 if (Exts) 2610 Exts->push_back(ExtForOpnd); 2611 TPT.setOperand(ExtForOpnd, 0, Opnd); 2612 2613 // Move the sign extension before the insertion point. 2614 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2615 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2616 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2617 // If more sext are required, new instructions will have to be created. 2618 ExtForOpnd = nullptr; 2619 } 2620 if (ExtForOpnd == Ext) { 2621 DEBUG(dbgs() << "Extension is useless now\n"); 2622 TPT.eraseInstruction(Ext); 2623 } 2624 return ExtOpnd; 2625 } 2626 2627 /// Check whether or not promoting an instruction to a wider type is profitable. 2628 /// \p NewCost gives the cost of extension instructions created by the 2629 /// promotion. 2630 /// \p OldCost gives the cost of extension instructions before the promotion 2631 /// plus the number of instructions that have been 2632 /// matched in the addressing mode the promotion. 2633 /// \p PromotedOperand is the value that has been promoted. 2634 /// \return True if the promotion is profitable, false otherwise. 2635 bool AddressingModeMatcher::isPromotionProfitable( 2636 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2637 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2638 // The cost of the new extensions is greater than the cost of the 2639 // old extension plus what we folded. 2640 // This is not profitable. 2641 if (NewCost > OldCost) 2642 return false; 2643 if (NewCost < OldCost) 2644 return true; 2645 // The promotion is neutral but it may help folding the sign extension in 2646 // loads for instance. 2647 // Check that we did not create an illegal instruction. 2648 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2649 } 2650 2651 /// Given an instruction or constant expr, see if we can fold the operation 2652 /// into the addressing mode. If so, update the addressing mode and return 2653 /// true, otherwise return false without modifying AddrMode. 2654 /// If \p MovedAway is not NULL, it contains the information of whether or 2655 /// not AddrInst has to be folded into the addressing mode on success. 2656 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2657 /// because it has been moved away. 2658 /// Thus AddrInst must not be added in the matched instructions. 2659 /// This state can happen when AddrInst is a sext, since it may be moved away. 2660 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2661 /// not be referenced anymore. 2662 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 2663 unsigned Depth, 2664 bool *MovedAway) { 2665 // Avoid exponential behavior on extremely deep expression trees. 2666 if (Depth >= 5) return false; 2667 2668 // By default, all matched instructions stay in place. 2669 if (MovedAway) 2670 *MovedAway = false; 2671 2672 switch (Opcode) { 2673 case Instruction::PtrToInt: 2674 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2675 return matchAddr(AddrInst->getOperand(0), Depth); 2676 case Instruction::IntToPtr: { 2677 auto AS = AddrInst->getType()->getPointerAddressSpace(); 2678 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 2679 // This inttoptr is a no-op if the integer type is pointer sized. 2680 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 2681 return matchAddr(AddrInst->getOperand(0), Depth); 2682 return false; 2683 } 2684 case Instruction::BitCast: 2685 // BitCast is always a noop, and we can handle it as long as it is 2686 // int->int or pointer->pointer (we don't want int<->fp or something). 2687 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2688 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2689 // Don't touch identity bitcasts. These were probably put here by LSR, 2690 // and we don't want to mess around with them. Assume it knows what it 2691 // is doing. 2692 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2693 return matchAddr(AddrInst->getOperand(0), Depth); 2694 return false; 2695 case Instruction::AddrSpaceCast: { 2696 unsigned SrcAS 2697 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2698 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2699 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2700 return matchAddr(AddrInst->getOperand(0), Depth); 2701 return false; 2702 } 2703 case Instruction::Add: { 2704 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2705 ExtAddrMode BackupAddrMode = AddrMode; 2706 unsigned OldSize = AddrModeInsts.size(); 2707 // Start a transaction at this point. 2708 // The LHS may match but not the RHS. 2709 // Therefore, we need a higher level restoration point to undo partially 2710 // matched operation. 2711 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2712 TPT.getRestorationPoint(); 2713 2714 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 2715 matchAddr(AddrInst->getOperand(0), Depth+1)) 2716 return true; 2717 2718 // Restore the old addr mode info. 2719 AddrMode = BackupAddrMode; 2720 AddrModeInsts.resize(OldSize); 2721 TPT.rollback(LastKnownGood); 2722 2723 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2724 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 2725 matchAddr(AddrInst->getOperand(1), Depth+1)) 2726 return true; 2727 2728 // Otherwise we definitely can't merge the ADD in. 2729 AddrMode = BackupAddrMode; 2730 AddrModeInsts.resize(OldSize); 2731 TPT.rollback(LastKnownGood); 2732 break; 2733 } 2734 //case Instruction::Or: 2735 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2736 //break; 2737 case Instruction::Mul: 2738 case Instruction::Shl: { 2739 // Can only handle X*C and X << C. 2740 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2741 if (!RHS) 2742 return false; 2743 int64_t Scale = RHS->getSExtValue(); 2744 if (Opcode == Instruction::Shl) 2745 Scale = 1LL << Scale; 2746 2747 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2748 } 2749 case Instruction::GetElementPtr: { 2750 // Scan the GEP. We check it if it contains constant offsets and at most 2751 // one variable offset. 2752 int VariableOperand = -1; 2753 unsigned VariableScale = 0; 2754 2755 int64_t ConstantOffset = 0; 2756 gep_type_iterator GTI = gep_type_begin(AddrInst); 2757 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2758 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2759 const StructLayout *SL = DL.getStructLayout(STy); 2760 unsigned Idx = 2761 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2762 ConstantOffset += SL->getElementOffset(Idx); 2763 } else { 2764 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 2765 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2766 ConstantOffset += CI->getSExtValue()*TypeSize; 2767 } else if (TypeSize) { // Scales of zero don't do anything. 2768 // We only allow one variable index at the moment. 2769 if (VariableOperand != -1) 2770 return false; 2771 2772 // Remember the variable index. 2773 VariableOperand = i; 2774 VariableScale = TypeSize; 2775 } 2776 } 2777 } 2778 2779 // A common case is for the GEP to only do a constant offset. In this case, 2780 // just add it to the disp field and check validity. 2781 if (VariableOperand == -1) { 2782 AddrMode.BaseOffs += ConstantOffset; 2783 if (ConstantOffset == 0 || 2784 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 2785 // Check to see if we can fold the base pointer in too. 2786 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 2787 return true; 2788 } 2789 AddrMode.BaseOffs -= ConstantOffset; 2790 return false; 2791 } 2792 2793 // Save the valid addressing mode in case we can't match. 2794 ExtAddrMode BackupAddrMode = AddrMode; 2795 unsigned OldSize = AddrModeInsts.size(); 2796 2797 // See if the scale and offset amount is valid for this target. 2798 AddrMode.BaseOffs += ConstantOffset; 2799 2800 // Match the base operand of the GEP. 2801 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 2802 // If it couldn't be matched, just stuff the value in a register. 2803 if (AddrMode.HasBaseReg) { 2804 AddrMode = BackupAddrMode; 2805 AddrModeInsts.resize(OldSize); 2806 return false; 2807 } 2808 AddrMode.HasBaseReg = true; 2809 AddrMode.BaseReg = AddrInst->getOperand(0); 2810 } 2811 2812 // Match the remaining variable portion of the GEP. 2813 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2814 Depth)) { 2815 // If it couldn't be matched, try stuffing the base into a register 2816 // instead of matching it, and retrying the match of the scale. 2817 AddrMode = BackupAddrMode; 2818 AddrModeInsts.resize(OldSize); 2819 if (AddrMode.HasBaseReg) 2820 return false; 2821 AddrMode.HasBaseReg = true; 2822 AddrMode.BaseReg = AddrInst->getOperand(0); 2823 AddrMode.BaseOffs += ConstantOffset; 2824 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 2825 VariableScale, Depth)) { 2826 // If even that didn't work, bail. 2827 AddrMode = BackupAddrMode; 2828 AddrModeInsts.resize(OldSize); 2829 return false; 2830 } 2831 } 2832 2833 return true; 2834 } 2835 case Instruction::SExt: 2836 case Instruction::ZExt: { 2837 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2838 if (!Ext) 2839 return false; 2840 2841 // Try to move this ext out of the way of the addressing mode. 2842 // Ask for a method for doing so. 2843 TypePromotionHelper::Action TPH = 2844 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2845 if (!TPH) 2846 return false; 2847 2848 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2849 TPT.getRestorationPoint(); 2850 unsigned CreatedInstsCost = 0; 2851 unsigned ExtCost = !TLI.isExtFree(Ext); 2852 Value *PromotedOperand = 2853 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2854 // SExt has been moved away. 2855 // Thus either it will be rematched later in the recursive calls or it is 2856 // gone. Anyway, we must not fold it into the addressing mode at this point. 2857 // E.g., 2858 // op = add opnd, 1 2859 // idx = ext op 2860 // addr = gep base, idx 2861 // is now: 2862 // promotedOpnd = ext opnd <- no match here 2863 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2864 // addr = gep base, op <- match 2865 if (MovedAway) 2866 *MovedAway = true; 2867 2868 assert(PromotedOperand && 2869 "TypePromotionHelper should have filtered out those cases"); 2870 2871 ExtAddrMode BackupAddrMode = AddrMode; 2872 unsigned OldSize = AddrModeInsts.size(); 2873 2874 if (!matchAddr(PromotedOperand, Depth) || 2875 // The total of the new cost is equals to the cost of the created 2876 // instructions. 2877 // The total of the old cost is equals to the cost of the extension plus 2878 // what we have saved in the addressing mode. 2879 !isPromotionProfitable(CreatedInstsCost, 2880 ExtCost + (AddrModeInsts.size() - OldSize), 2881 PromotedOperand)) { 2882 AddrMode = BackupAddrMode; 2883 AddrModeInsts.resize(OldSize); 2884 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2885 TPT.rollback(LastKnownGood); 2886 return false; 2887 } 2888 return true; 2889 } 2890 } 2891 return false; 2892 } 2893 2894 /// If we can, try to add the value of 'Addr' into the current addressing mode. 2895 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 2896 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 2897 /// for the target. 2898 /// 2899 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 2900 // Start a transaction at this point that we will rollback if the matching 2901 // fails. 2902 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2903 TPT.getRestorationPoint(); 2904 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2905 // Fold in immediates if legal for the target. 2906 AddrMode.BaseOffs += CI->getSExtValue(); 2907 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2908 return true; 2909 AddrMode.BaseOffs -= CI->getSExtValue(); 2910 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2911 // If this is a global variable, try to fold it into the addressing mode. 2912 if (!AddrMode.BaseGV) { 2913 AddrMode.BaseGV = GV; 2914 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2915 return true; 2916 AddrMode.BaseGV = nullptr; 2917 } 2918 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2919 ExtAddrMode BackupAddrMode = AddrMode; 2920 unsigned OldSize = AddrModeInsts.size(); 2921 2922 // Check to see if it is possible to fold this operation. 2923 bool MovedAway = false; 2924 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2925 // This instruction may have been move away. If so, there is nothing 2926 // to check here. 2927 if (MovedAway) 2928 return true; 2929 // Okay, it's possible to fold this. Check to see if it is actually 2930 // *profitable* to do so. We use a simple cost model to avoid increasing 2931 // register pressure too much. 2932 if (I->hasOneUse() || 2933 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2934 AddrModeInsts.push_back(I); 2935 return true; 2936 } 2937 2938 // It isn't profitable to do this, roll back. 2939 //cerr << "NOT FOLDING: " << *I; 2940 AddrMode = BackupAddrMode; 2941 AddrModeInsts.resize(OldSize); 2942 TPT.rollback(LastKnownGood); 2943 } 2944 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2945 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 2946 return true; 2947 TPT.rollback(LastKnownGood); 2948 } else if (isa<ConstantPointerNull>(Addr)) { 2949 // Null pointer gets folded without affecting the addressing mode. 2950 return true; 2951 } 2952 2953 // Worse case, the target should support [reg] addressing modes. :) 2954 if (!AddrMode.HasBaseReg) { 2955 AddrMode.HasBaseReg = true; 2956 AddrMode.BaseReg = Addr; 2957 // Still check for legality in case the target supports [imm] but not [i+r]. 2958 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2959 return true; 2960 AddrMode.HasBaseReg = false; 2961 AddrMode.BaseReg = nullptr; 2962 } 2963 2964 // If the base register is already taken, see if we can do [r+r]. 2965 if (AddrMode.Scale == 0) { 2966 AddrMode.Scale = 1; 2967 AddrMode.ScaledReg = Addr; 2968 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2969 return true; 2970 AddrMode.Scale = 0; 2971 AddrMode.ScaledReg = nullptr; 2972 } 2973 // Couldn't match. 2974 TPT.rollback(LastKnownGood); 2975 return false; 2976 } 2977 2978 /// Check to see if all uses of OpVal by the specified inline asm call are due 2979 /// to memory operands. If so, return true, otherwise return false. 2980 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2981 const TargetMachine &TM) { 2982 const Function *F = CI->getParent()->getParent(); 2983 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2984 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2985 TargetLowering::AsmOperandInfoVector TargetConstraints = 2986 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 2987 ImmutableCallSite(CI)); 2988 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2989 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2990 2991 // Compute the constraint code and ConstraintType to use. 2992 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2993 2994 // If this asm operand is our Value*, and if it isn't an indirect memory 2995 // operand, we can't fold it! 2996 if (OpInfo.CallOperandVal == OpVal && 2997 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2998 !OpInfo.isIndirect)) 2999 return false; 3000 } 3001 3002 return true; 3003 } 3004 3005 /// Recursively walk all the uses of I until we find a memory use. 3006 /// If we find an obviously non-foldable instruction, return true. 3007 /// Add the ultimately found memory instructions to MemoryUses. 3008 static bool FindAllMemoryUses( 3009 Instruction *I, 3010 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3011 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3012 // If we already considered this instruction, we're done. 3013 if (!ConsideredInsts.insert(I).second) 3014 return false; 3015 3016 // If this is an obviously unfoldable instruction, bail out. 3017 if (!MightBeFoldableInst(I)) 3018 return true; 3019 3020 // Loop over all the uses, recursively processing them. 3021 for (Use &U : I->uses()) { 3022 Instruction *UserI = cast<Instruction>(U.getUser()); 3023 3024 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3025 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3026 continue; 3027 } 3028 3029 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3030 unsigned opNo = U.getOperandNo(); 3031 if (opNo == 0) return true; // Storing addr, not into addr. 3032 MemoryUses.push_back(std::make_pair(SI, opNo)); 3033 continue; 3034 } 3035 3036 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3037 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3038 if (!IA) return true; 3039 3040 // If this is a memory operand, we're cool, otherwise bail out. 3041 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3042 return true; 3043 continue; 3044 } 3045 3046 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3047 return true; 3048 } 3049 3050 return false; 3051 } 3052 3053 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 3054 /// the use site that we're folding it into. If so, there is no cost to 3055 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 3056 /// that we know are live at the instruction already. 3057 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3058 Value *KnownLive2) { 3059 // If Val is either of the known-live values, we know it is live! 3060 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3061 return true; 3062 3063 // All values other than instructions and arguments (e.g. constants) are live. 3064 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3065 3066 // If Val is a constant sized alloca in the entry block, it is live, this is 3067 // true because it is just a reference to the stack/frame pointer, which is 3068 // live for the whole function. 3069 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3070 if (AI->isStaticAlloca()) 3071 return true; 3072 3073 // Check to see if this value is already used in the memory instruction's 3074 // block. If so, it's already live into the block at the very least, so we 3075 // can reasonably fold it. 3076 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3077 } 3078 3079 /// It is possible for the addressing mode of the machine to fold the specified 3080 /// instruction into a load or store that ultimately uses it. 3081 /// However, the specified instruction has multiple uses. 3082 /// Given this, it may actually increase register pressure to fold it 3083 /// into the load. For example, consider this code: 3084 /// 3085 /// X = ... 3086 /// Y = X+1 3087 /// use(Y) -> nonload/store 3088 /// Z = Y+1 3089 /// load Z 3090 /// 3091 /// In this case, Y has multiple uses, and can be folded into the load of Z 3092 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3093 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3094 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3095 /// number of computations either. 3096 /// 3097 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3098 /// X was live across 'load Z' for other reasons, we actually *would* want to 3099 /// fold the addressing mode in the Z case. This would make Y die earlier. 3100 bool AddressingModeMatcher:: 3101 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3102 ExtAddrMode &AMAfter) { 3103 if (IgnoreProfitability) return true; 3104 3105 // AMBefore is the addressing mode before this instruction was folded into it, 3106 // and AMAfter is the addressing mode after the instruction was folded. Get 3107 // the set of registers referenced by AMAfter and subtract out those 3108 // referenced by AMBefore: this is the set of values which folding in this 3109 // address extends the lifetime of. 3110 // 3111 // Note that there are only two potential values being referenced here, 3112 // BaseReg and ScaleReg (global addresses are always available, as are any 3113 // folded immediates). 3114 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3115 3116 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3117 // lifetime wasn't extended by adding this instruction. 3118 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3119 BaseReg = nullptr; 3120 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3121 ScaledReg = nullptr; 3122 3123 // If folding this instruction (and it's subexprs) didn't extend any live 3124 // ranges, we're ok with it. 3125 if (!BaseReg && !ScaledReg) 3126 return true; 3127 3128 // If all uses of this instruction are ultimately load/store/inlineasm's, 3129 // check to see if their addressing modes will include this instruction. If 3130 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3131 // uses. 3132 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3133 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3134 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3135 return false; // Has a non-memory, non-foldable use! 3136 3137 // Now that we know that all uses of this instruction are part of a chain of 3138 // computation involving only operations that could theoretically be folded 3139 // into a memory use, loop over each of these uses and see if they could 3140 // *actually* fold the instruction. 3141 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3142 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3143 Instruction *User = MemoryUses[i].first; 3144 unsigned OpNo = MemoryUses[i].second; 3145 3146 // Get the access type of this use. If the use isn't a pointer, we don't 3147 // know what it accesses. 3148 Value *Address = User->getOperand(OpNo); 3149 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3150 if (!AddrTy) 3151 return false; 3152 Type *AddressAccessTy = AddrTy->getElementType(); 3153 unsigned AS = AddrTy->getAddressSpace(); 3154 3155 // Do a match against the root of this address, ignoring profitability. This 3156 // will tell us if the addressing mode for the memory operation will 3157 // *actually* cover the shared instruction. 3158 ExtAddrMode Result; 3159 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3160 TPT.getRestorationPoint(); 3161 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3162 MemoryInst, Result, InsertedInsts, 3163 PromotedInsts, TPT); 3164 Matcher.IgnoreProfitability = true; 3165 bool Success = Matcher.matchAddr(Address, 0); 3166 (void)Success; assert(Success && "Couldn't select *anything*?"); 3167 3168 // The match was to check the profitability, the changes made are not 3169 // part of the original matcher. Therefore, they should be dropped 3170 // otherwise the original matcher will not present the right state. 3171 TPT.rollback(LastKnownGood); 3172 3173 // If the match didn't cover I, then it won't be shared by it. 3174 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3175 I) == MatchedAddrModeInsts.end()) 3176 return false; 3177 3178 MatchedAddrModeInsts.clear(); 3179 } 3180 3181 return true; 3182 } 3183 3184 } // end anonymous namespace 3185 3186 /// Return true if the specified values are defined in a 3187 /// different basic block than BB. 3188 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3189 if (Instruction *I = dyn_cast<Instruction>(V)) 3190 return I->getParent() != BB; 3191 return false; 3192 } 3193 3194 /// Load and Store Instructions often have addressing modes that can do 3195 /// significant amounts of computation. As such, instruction selection will try 3196 /// to get the load or store to do as much computation as possible for the 3197 /// program. The problem is that isel can only see within a single block. As 3198 /// such, we sink as much legal addressing mode work into the block as possible. 3199 /// 3200 /// This method is used to optimize both load/store and inline asms with memory 3201 /// operands. 3202 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3203 Type *AccessTy, unsigned AddrSpace) { 3204 Value *Repl = Addr; 3205 3206 // Try to collapse single-value PHI nodes. This is necessary to undo 3207 // unprofitable PRE transformations. 3208 SmallVector<Value*, 8> worklist; 3209 SmallPtrSet<Value*, 16> Visited; 3210 worklist.push_back(Addr); 3211 3212 // Use a worklist to iteratively look through PHI nodes, and ensure that 3213 // the addressing mode obtained from the non-PHI roots of the graph 3214 // are equivalent. 3215 Value *Consensus = nullptr; 3216 unsigned NumUsesConsensus = 0; 3217 bool IsNumUsesConsensusValid = false; 3218 SmallVector<Instruction*, 16> AddrModeInsts; 3219 ExtAddrMode AddrMode; 3220 TypePromotionTransaction TPT; 3221 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3222 TPT.getRestorationPoint(); 3223 while (!worklist.empty()) { 3224 Value *V = worklist.back(); 3225 worklist.pop_back(); 3226 3227 // Break use-def graph loops. 3228 if (!Visited.insert(V).second) { 3229 Consensus = nullptr; 3230 break; 3231 } 3232 3233 // For a PHI node, push all of its incoming values. 3234 if (PHINode *P = dyn_cast<PHINode>(V)) { 3235 for (Value *IncValue : P->incoming_values()) 3236 worklist.push_back(IncValue); 3237 continue; 3238 } 3239 3240 // For non-PHIs, determine the addressing mode being computed. 3241 SmallVector<Instruction*, 16> NewAddrModeInsts; 3242 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3243 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3244 InsertedInsts, PromotedInsts, TPT); 3245 3246 // This check is broken into two cases with very similar code to avoid using 3247 // getNumUses() as much as possible. Some values have a lot of uses, so 3248 // calling getNumUses() unconditionally caused a significant compile-time 3249 // regression. 3250 if (!Consensus) { 3251 Consensus = V; 3252 AddrMode = NewAddrMode; 3253 AddrModeInsts = NewAddrModeInsts; 3254 continue; 3255 } else if (NewAddrMode == AddrMode) { 3256 if (!IsNumUsesConsensusValid) { 3257 NumUsesConsensus = Consensus->getNumUses(); 3258 IsNumUsesConsensusValid = true; 3259 } 3260 3261 // Ensure that the obtained addressing mode is equivalent to that obtained 3262 // for all other roots of the PHI traversal. Also, when choosing one 3263 // such root as representative, select the one with the most uses in order 3264 // to keep the cost modeling heuristics in AddressingModeMatcher 3265 // applicable. 3266 unsigned NumUses = V->getNumUses(); 3267 if (NumUses > NumUsesConsensus) { 3268 Consensus = V; 3269 NumUsesConsensus = NumUses; 3270 AddrModeInsts = NewAddrModeInsts; 3271 } 3272 continue; 3273 } 3274 3275 Consensus = nullptr; 3276 break; 3277 } 3278 3279 // If the addressing mode couldn't be determined, or if multiple different 3280 // ones were determined, bail out now. 3281 if (!Consensus) { 3282 TPT.rollback(LastKnownGood); 3283 return false; 3284 } 3285 TPT.commit(); 3286 3287 // Check to see if any of the instructions supersumed by this addr mode are 3288 // non-local to I's BB. 3289 bool AnyNonLocal = false; 3290 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3291 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3292 AnyNonLocal = true; 3293 break; 3294 } 3295 } 3296 3297 // If all the instructions matched are already in this BB, don't do anything. 3298 if (!AnyNonLocal) { 3299 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3300 return false; 3301 } 3302 3303 // Insert this computation right after this user. Since our caller is 3304 // scanning from the top of the BB to the bottom, reuse of the expr are 3305 // guaranteed to happen later. 3306 IRBuilder<> Builder(MemoryInst); 3307 3308 // Now that we determined the addressing expression we want to use and know 3309 // that we have to sink it into this block. Check to see if we have already 3310 // done this for some other load/store instr in this block. If so, reuse the 3311 // computation. 3312 Value *&SunkAddr = SunkAddrs[Addr]; 3313 if (SunkAddr) { 3314 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3315 << *MemoryInst << "\n"); 3316 if (SunkAddr->getType() != Addr->getType()) 3317 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3318 } else if (AddrSinkUsingGEPs || 3319 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3320 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3321 ->useAA())) { 3322 // By default, we use the GEP-based method when AA is used later. This 3323 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3324 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3325 << *MemoryInst << "\n"); 3326 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3327 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3328 3329 // First, find the pointer. 3330 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3331 ResultPtr = AddrMode.BaseReg; 3332 AddrMode.BaseReg = nullptr; 3333 } 3334 3335 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3336 // We can't add more than one pointer together, nor can we scale a 3337 // pointer (both of which seem meaningless). 3338 if (ResultPtr || AddrMode.Scale != 1) 3339 return false; 3340 3341 ResultPtr = AddrMode.ScaledReg; 3342 AddrMode.Scale = 0; 3343 } 3344 3345 if (AddrMode.BaseGV) { 3346 if (ResultPtr) 3347 return false; 3348 3349 ResultPtr = AddrMode.BaseGV; 3350 } 3351 3352 // If the real base value actually came from an inttoptr, then the matcher 3353 // will look through it and provide only the integer value. In that case, 3354 // use it here. 3355 if (!ResultPtr && AddrMode.BaseReg) { 3356 ResultPtr = 3357 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3358 AddrMode.BaseReg = nullptr; 3359 } else if (!ResultPtr && AddrMode.Scale == 1) { 3360 ResultPtr = 3361 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3362 AddrMode.Scale = 0; 3363 } 3364 3365 if (!ResultPtr && 3366 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3367 SunkAddr = Constant::getNullValue(Addr->getType()); 3368 } else if (!ResultPtr) { 3369 return false; 3370 } else { 3371 Type *I8PtrTy = 3372 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3373 Type *I8Ty = Builder.getInt8Ty(); 3374 3375 // Start with the base register. Do this first so that subsequent address 3376 // matching finds it last, which will prevent it from trying to match it 3377 // as the scaled value in case it happens to be a mul. That would be 3378 // problematic if we've sunk a different mul for the scale, because then 3379 // we'd end up sinking both muls. 3380 if (AddrMode.BaseReg) { 3381 Value *V = AddrMode.BaseReg; 3382 if (V->getType() != IntPtrTy) 3383 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3384 3385 ResultIndex = V; 3386 } 3387 3388 // Add the scale value. 3389 if (AddrMode.Scale) { 3390 Value *V = AddrMode.ScaledReg; 3391 if (V->getType() == IntPtrTy) { 3392 // done. 3393 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3394 cast<IntegerType>(V->getType())->getBitWidth()) { 3395 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3396 } else { 3397 // It is only safe to sign extend the BaseReg if we know that the math 3398 // required to create it did not overflow before we extend it. Since 3399 // the original IR value was tossed in favor of a constant back when 3400 // the AddrMode was created we need to bail out gracefully if widths 3401 // do not match instead of extending it. 3402 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3403 if (I && (ResultIndex != AddrMode.BaseReg)) 3404 I->eraseFromParent(); 3405 return false; 3406 } 3407 3408 if (AddrMode.Scale != 1) 3409 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3410 "sunkaddr"); 3411 if (ResultIndex) 3412 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3413 else 3414 ResultIndex = V; 3415 } 3416 3417 // Add in the Base Offset if present. 3418 if (AddrMode.BaseOffs) { 3419 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3420 if (ResultIndex) { 3421 // We need to add this separately from the scale above to help with 3422 // SDAG consecutive load/store merging. 3423 if (ResultPtr->getType() != I8PtrTy) 3424 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3425 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3426 } 3427 3428 ResultIndex = V; 3429 } 3430 3431 if (!ResultIndex) { 3432 SunkAddr = ResultPtr; 3433 } else { 3434 if (ResultPtr->getType() != I8PtrTy) 3435 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3436 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3437 } 3438 3439 if (SunkAddr->getType() != Addr->getType()) 3440 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3441 } 3442 } else { 3443 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3444 << *MemoryInst << "\n"); 3445 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3446 Value *Result = nullptr; 3447 3448 // Start with the base register. Do this first so that subsequent address 3449 // matching finds it last, which will prevent it from trying to match it 3450 // as the scaled value in case it happens to be a mul. That would be 3451 // problematic if we've sunk a different mul for the scale, because then 3452 // we'd end up sinking both muls. 3453 if (AddrMode.BaseReg) { 3454 Value *V = AddrMode.BaseReg; 3455 if (V->getType()->isPointerTy()) 3456 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3457 if (V->getType() != IntPtrTy) 3458 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3459 Result = V; 3460 } 3461 3462 // Add the scale value. 3463 if (AddrMode.Scale) { 3464 Value *V = AddrMode.ScaledReg; 3465 if (V->getType() == IntPtrTy) { 3466 // done. 3467 } else if (V->getType()->isPointerTy()) { 3468 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3469 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3470 cast<IntegerType>(V->getType())->getBitWidth()) { 3471 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3472 } else { 3473 // It is only safe to sign extend the BaseReg if we know that the math 3474 // required to create it did not overflow before we extend it. Since 3475 // the original IR value was tossed in favor of a constant back when 3476 // the AddrMode was created we need to bail out gracefully if widths 3477 // do not match instead of extending it. 3478 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3479 if (I && (Result != AddrMode.BaseReg)) 3480 I->eraseFromParent(); 3481 return false; 3482 } 3483 if (AddrMode.Scale != 1) 3484 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3485 "sunkaddr"); 3486 if (Result) 3487 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3488 else 3489 Result = V; 3490 } 3491 3492 // Add in the BaseGV if present. 3493 if (AddrMode.BaseGV) { 3494 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3495 if (Result) 3496 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3497 else 3498 Result = V; 3499 } 3500 3501 // Add in the Base Offset if present. 3502 if (AddrMode.BaseOffs) { 3503 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3504 if (Result) 3505 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3506 else 3507 Result = V; 3508 } 3509 3510 if (!Result) 3511 SunkAddr = Constant::getNullValue(Addr->getType()); 3512 else 3513 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3514 } 3515 3516 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3517 3518 // If we have no uses, recursively delete the value and all dead instructions 3519 // using it. 3520 if (Repl->use_empty()) { 3521 // This can cause recursive deletion, which can invalidate our iterator. 3522 // Use a WeakVH to hold onto it in case this happens. 3523 WeakVH IterHandle(CurInstIterator); 3524 BasicBlock *BB = CurInstIterator->getParent(); 3525 3526 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3527 3528 if (IterHandle != CurInstIterator) { 3529 // If the iterator instruction was recursively deleted, start over at the 3530 // start of the block. 3531 CurInstIterator = BB->begin(); 3532 SunkAddrs.clear(); 3533 } 3534 } 3535 ++NumMemoryInsts; 3536 return true; 3537 } 3538 3539 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3540 /// address computing into the block when possible / profitable. 3541 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3542 bool MadeChange = false; 3543 3544 const TargetRegisterInfo *TRI = 3545 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3546 TargetLowering::AsmOperandInfoVector TargetConstraints = 3547 TLI->ParseConstraints(*DL, TRI, CS); 3548 unsigned ArgNo = 0; 3549 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3550 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3551 3552 // Compute the constraint code and ConstraintType to use. 3553 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3554 3555 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3556 OpInfo.isIndirect) { 3557 Value *OpVal = CS->getArgOperand(ArgNo++); 3558 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3559 } else if (OpInfo.Type == InlineAsm::isInput) 3560 ArgNo++; 3561 } 3562 3563 return MadeChange; 3564 } 3565 3566 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3567 /// sign extensions. 3568 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3569 assert(!Inst->use_empty() && "Input must have at least one use"); 3570 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3571 bool IsSExt = isa<SExtInst>(FirstUser); 3572 Type *ExtTy = FirstUser->getType(); 3573 for (const User *U : Inst->users()) { 3574 const Instruction *UI = cast<Instruction>(U); 3575 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3576 return false; 3577 Type *CurTy = UI->getType(); 3578 // Same input and output types: Same instruction after CSE. 3579 if (CurTy == ExtTy) 3580 continue; 3581 3582 // If IsSExt is true, we are in this situation: 3583 // a = Inst 3584 // b = sext ty1 a to ty2 3585 // c = sext ty1 a to ty3 3586 // Assuming ty2 is shorter than ty3, this could be turned into: 3587 // a = Inst 3588 // b = sext ty1 a to ty2 3589 // c = sext ty2 b to ty3 3590 // However, the last sext is not free. 3591 if (IsSExt) 3592 return false; 3593 3594 // This is a ZExt, maybe this is free to extend from one type to another. 3595 // In that case, we would not account for a different use. 3596 Type *NarrowTy; 3597 Type *LargeTy; 3598 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3599 CurTy->getScalarType()->getIntegerBitWidth()) { 3600 NarrowTy = CurTy; 3601 LargeTy = ExtTy; 3602 } else { 3603 NarrowTy = ExtTy; 3604 LargeTy = CurTy; 3605 } 3606 3607 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3608 return false; 3609 } 3610 // All uses are the same or can be derived from one another for free. 3611 return true; 3612 } 3613 3614 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3615 /// load instruction. 3616 /// If an ext(load) can be formed, it is returned via \p LI for the load 3617 /// and \p Inst for the extension. 3618 /// Otherwise LI == nullptr and Inst == nullptr. 3619 /// When some promotion happened, \p TPT contains the proper state to 3620 /// revert them. 3621 /// 3622 /// \return true when promoting was necessary to expose the ext(load) 3623 /// opportunity, false otherwise. 3624 /// 3625 /// Example: 3626 /// \code 3627 /// %ld = load i32* %addr 3628 /// %add = add nuw i32 %ld, 4 3629 /// %zext = zext i32 %add to i64 3630 /// \endcode 3631 /// => 3632 /// \code 3633 /// %ld = load i32* %addr 3634 /// %zext = zext i32 %ld to i64 3635 /// %add = add nuw i64 %zext, 4 3636 /// \encode 3637 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3638 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 3639 LoadInst *&LI, Instruction *&Inst, 3640 const SmallVectorImpl<Instruction *> &Exts, 3641 unsigned CreatedInstsCost = 0) { 3642 // Iterate over all the extensions to see if one form an ext(load). 3643 for (auto I : Exts) { 3644 // Check if we directly have ext(load). 3645 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3646 Inst = I; 3647 // No promotion happened here. 3648 return false; 3649 } 3650 // Check whether or not we want to do any promotion. 3651 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3652 continue; 3653 // Get the action to perform the promotion. 3654 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3655 I, InsertedInsts, *TLI, PromotedInsts); 3656 // Check if we can promote. 3657 if (!TPH) 3658 continue; 3659 // Save the current state. 3660 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3661 TPT.getRestorationPoint(); 3662 SmallVector<Instruction *, 4> NewExts; 3663 unsigned NewCreatedInstsCost = 0; 3664 unsigned ExtCost = !TLI->isExtFree(I); 3665 // Promote. 3666 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3667 &NewExts, nullptr, *TLI); 3668 assert(PromotedVal && 3669 "TypePromotionHelper should have filtered out those cases"); 3670 3671 // We would be able to merge only one extension in a load. 3672 // Therefore, if we have more than 1 new extension we heuristically 3673 // cut this search path, because it means we degrade the code quality. 3674 // With exactly 2, the transformation is neutral, because we will merge 3675 // one extension but leave one. However, we optimistically keep going, 3676 // because the new extension may be removed too. 3677 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3678 TotalCreatedInstsCost -= ExtCost; 3679 if (!StressExtLdPromotion && 3680 (TotalCreatedInstsCost > 1 || 3681 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 3682 // The promotion is not profitable, rollback to the previous state. 3683 TPT.rollback(LastKnownGood); 3684 continue; 3685 } 3686 // The promotion is profitable. 3687 // Check if it exposes an ext(load). 3688 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3689 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3690 // If we have created a new extension, i.e., now we have two 3691 // extensions. We must make sure one of them is merged with 3692 // the load, otherwise we may degrade the code quality. 3693 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3694 // Promotion happened. 3695 return true; 3696 // If this does not help to expose an ext(load) then, rollback. 3697 TPT.rollback(LastKnownGood); 3698 } 3699 // None of the extension can form an ext(load). 3700 LI = nullptr; 3701 Inst = nullptr; 3702 return false; 3703 } 3704 3705 /// Move a zext or sext fed by a load into the same basic block as the load, 3706 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 3707 /// extend into the load. 3708 /// \p I[in/out] the extension may be modified during the process if some 3709 /// promotions apply. 3710 /// 3711 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 3712 // Try to promote a chain of computation if it allows to form 3713 // an extended load. 3714 TypePromotionTransaction TPT; 3715 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3716 TPT.getRestorationPoint(); 3717 SmallVector<Instruction *, 1> Exts; 3718 Exts.push_back(I); 3719 // Look for a load being extended. 3720 LoadInst *LI = nullptr; 3721 Instruction *OldExt = I; 3722 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 3723 if (!LI || !I) { 3724 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3725 "the code must remain the same"); 3726 I = OldExt; 3727 return false; 3728 } 3729 3730 // If they're already in the same block, there's nothing to do. 3731 // Make the cheap checks first if we did not promote. 3732 // If we promoted, we need to check if it is indeed profitable. 3733 if (!HasPromoted && LI->getParent() == I->getParent()) 3734 return false; 3735 3736 EVT VT = TLI->getValueType(*DL, I->getType()); 3737 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 3738 3739 // If the load has other users and the truncate is not free, this probably 3740 // isn't worthwhile. 3741 if (!LI->hasOneUse() && TLI && 3742 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3743 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3744 I = OldExt; 3745 TPT.rollback(LastKnownGood); 3746 return false; 3747 } 3748 3749 // Check whether the target supports casts folded into loads. 3750 unsigned LType; 3751 if (isa<ZExtInst>(I)) 3752 LType = ISD::ZEXTLOAD; 3753 else { 3754 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3755 LType = ISD::SEXTLOAD; 3756 } 3757 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3758 I = OldExt; 3759 TPT.rollback(LastKnownGood); 3760 return false; 3761 } 3762 3763 // Move the extend into the same block as the load, so that SelectionDAG 3764 // can fold it. 3765 TPT.commit(); 3766 I->removeFromParent(); 3767 I->insertAfter(LI); 3768 ++NumExtsMoved; 3769 return true; 3770 } 3771 3772 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 3773 BasicBlock *DefBB = I->getParent(); 3774 3775 // If the result of a {s|z}ext and its source are both live out, rewrite all 3776 // other uses of the source with result of extension. 3777 Value *Src = I->getOperand(0); 3778 if (Src->hasOneUse()) 3779 return false; 3780 3781 // Only do this xform if truncating is free. 3782 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3783 return false; 3784 3785 // Only safe to perform the optimization if the source is also defined in 3786 // this block. 3787 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3788 return false; 3789 3790 bool DefIsLiveOut = false; 3791 for (User *U : I->users()) { 3792 Instruction *UI = cast<Instruction>(U); 3793 3794 // Figure out which BB this ext is used in. 3795 BasicBlock *UserBB = UI->getParent(); 3796 if (UserBB == DefBB) continue; 3797 DefIsLiveOut = true; 3798 break; 3799 } 3800 if (!DefIsLiveOut) 3801 return false; 3802 3803 // Make sure none of the uses are PHI nodes. 3804 for (User *U : Src->users()) { 3805 Instruction *UI = cast<Instruction>(U); 3806 BasicBlock *UserBB = UI->getParent(); 3807 if (UserBB == DefBB) continue; 3808 // Be conservative. We don't want this xform to end up introducing 3809 // reloads just before load / store instructions. 3810 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3811 return false; 3812 } 3813 3814 // InsertedTruncs - Only insert one trunc in each block once. 3815 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3816 3817 bool MadeChange = false; 3818 for (Use &U : Src->uses()) { 3819 Instruction *User = cast<Instruction>(U.getUser()); 3820 3821 // Figure out which BB this ext is used in. 3822 BasicBlock *UserBB = User->getParent(); 3823 if (UserBB == DefBB) continue; 3824 3825 // Both src and def are live in this block. Rewrite the use. 3826 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3827 3828 if (!InsertedTrunc) { 3829 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3830 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3831 InsertedInsts.insert(InsertedTrunc); 3832 } 3833 3834 // Replace a use of the {s|z}ext source with a use of the result. 3835 U = InsertedTrunc; 3836 ++NumExtUses; 3837 MadeChange = true; 3838 } 3839 3840 return MadeChange; 3841 } 3842 3843 /// Returns true if a SelectInst should be turned into an explicit branch. 3844 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3845 // FIXME: This should use the same heuristics as IfConversion to determine 3846 // whether a select is better represented as a branch. This requires that 3847 // branch probability metadata is preserved for the select, which is not the 3848 // case currently. 3849 3850 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3851 3852 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 3853 // comparison condition. If the compare has more than one use, there's 3854 // probably another cmov or setcc around, so it's not worth emitting a branch. 3855 if (!Cmp || !Cmp->hasOneUse()) 3856 return false; 3857 3858 Value *CmpOp0 = Cmp->getOperand(0); 3859 Value *CmpOp1 = Cmp->getOperand(1); 3860 3861 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 3862 // on a load from memory. But if the load is used more than once, do not 3863 // change the select to a branch because the load is probably needed 3864 // regardless of whether the branch is taken or not. 3865 return ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3866 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3867 } 3868 3869 3870 /// If we have a SelectInst that will likely profit from branch prediction, 3871 /// turn it into a branch. 3872 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 3873 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3874 3875 // Can we convert the 'select' to CF ? 3876 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3877 return false; 3878 3879 TargetLowering::SelectSupportKind SelectKind; 3880 if (VectorCond) 3881 SelectKind = TargetLowering::VectorMaskSelect; 3882 else if (SI->getType()->isVectorTy()) 3883 SelectKind = TargetLowering::ScalarCondVectorVal; 3884 else 3885 SelectKind = TargetLowering::ScalarValSelect; 3886 3887 // Do we have efficient codegen support for this kind of 'selects' ? 3888 if (TLI->isSelectSupported(SelectKind)) { 3889 // We have efficient codegen support for the select instruction. 3890 // Check if it is profitable to keep this 'select'. 3891 if (!TLI->isPredictableSelectExpensive() || 3892 !isFormingBranchFromSelectProfitable(SI)) 3893 return false; 3894 } 3895 3896 ModifiedDT = true; 3897 3898 // First, we split the block containing the select into 2 blocks. 3899 BasicBlock *StartBlock = SI->getParent(); 3900 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3901 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3902 3903 // Create a new block serving as the landing pad for the branch. 3904 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3905 NextBlock->getParent(), NextBlock); 3906 3907 // Move the unconditional branch from the block with the select in it into our 3908 // landing pad block. 3909 StartBlock->getTerminator()->eraseFromParent(); 3910 BranchInst::Create(NextBlock, SmallBlock); 3911 3912 // Insert the real conditional branch based on the original condition. 3913 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3914 3915 // The select itself is replaced with a PHI Node. 3916 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3917 PN->takeName(SI); 3918 PN->addIncoming(SI->getTrueValue(), StartBlock); 3919 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3920 SI->replaceAllUsesWith(PN); 3921 SI->eraseFromParent(); 3922 3923 // Instruct OptimizeBlock to skip to the next block. 3924 CurInstIterator = StartBlock->end(); 3925 ++NumSelectsExpanded; 3926 return true; 3927 } 3928 3929 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3930 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3931 int SplatElem = -1; 3932 for (unsigned i = 0; i < Mask.size(); ++i) { 3933 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3934 return false; 3935 SplatElem = Mask[i]; 3936 } 3937 3938 return true; 3939 } 3940 3941 /// Some targets have expensive vector shifts if the lanes aren't all the same 3942 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3943 /// it's often worth sinking a shufflevector splat down to its use so that 3944 /// codegen can spot all lanes are identical. 3945 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3946 BasicBlock *DefBB = SVI->getParent(); 3947 3948 // Only do this xform if variable vector shifts are particularly expensive. 3949 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3950 return false; 3951 3952 // We only expect better codegen by sinking a shuffle if we can recognise a 3953 // constant splat. 3954 if (!isBroadcastShuffle(SVI)) 3955 return false; 3956 3957 // InsertedShuffles - Only insert a shuffle in each block once. 3958 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3959 3960 bool MadeChange = false; 3961 for (User *U : SVI->users()) { 3962 Instruction *UI = cast<Instruction>(U); 3963 3964 // Figure out which BB this ext is used in. 3965 BasicBlock *UserBB = UI->getParent(); 3966 if (UserBB == DefBB) continue; 3967 3968 // For now only apply this when the splat is used by a shift instruction. 3969 if (!UI->isShift()) continue; 3970 3971 // Everything checks out, sink the shuffle if the user's block doesn't 3972 // already have a copy. 3973 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3974 3975 if (!InsertedShuffle) { 3976 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3977 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3978 SVI->getOperand(1), 3979 SVI->getOperand(2), "", InsertPt); 3980 } 3981 3982 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3983 MadeChange = true; 3984 } 3985 3986 // If we removed all uses, nuke the shuffle. 3987 if (SVI->use_empty()) { 3988 SVI->eraseFromParent(); 3989 MadeChange = true; 3990 } 3991 3992 return MadeChange; 3993 } 3994 3995 namespace { 3996 /// \brief Helper class to promote a scalar operation to a vector one. 3997 /// This class is used to move downward extractelement transition. 3998 /// E.g., 3999 /// a = vector_op <2 x i32> 4000 /// b = extractelement <2 x i32> a, i32 0 4001 /// c = scalar_op b 4002 /// store c 4003 /// 4004 /// => 4005 /// a = vector_op <2 x i32> 4006 /// c = vector_op a (equivalent to scalar_op on the related lane) 4007 /// * d = extractelement <2 x i32> c, i32 0 4008 /// * store d 4009 /// Assuming both extractelement and store can be combine, we get rid of the 4010 /// transition. 4011 class VectorPromoteHelper { 4012 /// DataLayout associated with the current module. 4013 const DataLayout &DL; 4014 4015 /// Used to perform some checks on the legality of vector operations. 4016 const TargetLowering &TLI; 4017 4018 /// Used to estimated the cost of the promoted chain. 4019 const TargetTransformInfo &TTI; 4020 4021 /// The transition being moved downwards. 4022 Instruction *Transition; 4023 /// The sequence of instructions to be promoted. 4024 SmallVector<Instruction *, 4> InstsToBePromoted; 4025 /// Cost of combining a store and an extract. 4026 unsigned StoreExtractCombineCost; 4027 /// Instruction that will be combined with the transition. 4028 Instruction *CombineInst; 4029 4030 /// \brief The instruction that represents the current end of the transition. 4031 /// Since we are faking the promotion until we reach the end of the chain 4032 /// of computation, we need a way to get the current end of the transition. 4033 Instruction *getEndOfTransition() const { 4034 if (InstsToBePromoted.empty()) 4035 return Transition; 4036 return InstsToBePromoted.back(); 4037 } 4038 4039 /// \brief Return the index of the original value in the transition. 4040 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4041 /// c, is at index 0. 4042 unsigned getTransitionOriginalValueIdx() const { 4043 assert(isa<ExtractElementInst>(Transition) && 4044 "Other kind of transitions are not supported yet"); 4045 return 0; 4046 } 4047 4048 /// \brief Return the index of the index in the transition. 4049 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4050 /// is at index 1. 4051 unsigned getTransitionIdx() const { 4052 assert(isa<ExtractElementInst>(Transition) && 4053 "Other kind of transitions are not supported yet"); 4054 return 1; 4055 } 4056 4057 /// \brief Get the type of the transition. 4058 /// This is the type of the original value. 4059 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4060 /// transition is <2 x i32>. 4061 Type *getTransitionType() const { 4062 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4063 } 4064 4065 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4066 /// I.e., we have the following sequence: 4067 /// Def = Transition <ty1> a to <ty2> 4068 /// b = ToBePromoted <ty2> Def, ... 4069 /// => 4070 /// b = ToBePromoted <ty1> a, ... 4071 /// Def = Transition <ty1> ToBePromoted to <ty2> 4072 void promoteImpl(Instruction *ToBePromoted); 4073 4074 /// \brief Check whether or not it is profitable to promote all the 4075 /// instructions enqueued to be promoted. 4076 bool isProfitableToPromote() { 4077 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4078 unsigned Index = isa<ConstantInt>(ValIdx) 4079 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4080 : -1; 4081 Type *PromotedType = getTransitionType(); 4082 4083 StoreInst *ST = cast<StoreInst>(CombineInst); 4084 unsigned AS = ST->getPointerAddressSpace(); 4085 unsigned Align = ST->getAlignment(); 4086 // Check if this store is supported. 4087 if (!TLI.allowsMisalignedMemoryAccesses( 4088 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4089 Align)) { 4090 // If this is not supported, there is no way we can combine 4091 // the extract with the store. 4092 return false; 4093 } 4094 4095 // The scalar chain of computation has to pay for the transition 4096 // scalar to vector. 4097 // The vector chain has to account for the combining cost. 4098 uint64_t ScalarCost = 4099 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4100 uint64_t VectorCost = StoreExtractCombineCost; 4101 for (const auto &Inst : InstsToBePromoted) { 4102 // Compute the cost. 4103 // By construction, all instructions being promoted are arithmetic ones. 4104 // Moreover, one argument is a constant that can be viewed as a splat 4105 // constant. 4106 Value *Arg0 = Inst->getOperand(0); 4107 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4108 isa<ConstantFP>(Arg0); 4109 TargetTransformInfo::OperandValueKind Arg0OVK = 4110 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4111 : TargetTransformInfo::OK_AnyValue; 4112 TargetTransformInfo::OperandValueKind Arg1OVK = 4113 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4114 : TargetTransformInfo::OK_AnyValue; 4115 ScalarCost += TTI.getArithmeticInstrCost( 4116 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4117 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4118 Arg0OVK, Arg1OVK); 4119 } 4120 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4121 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4122 return ScalarCost > VectorCost; 4123 } 4124 4125 /// \brief Generate a constant vector with \p Val with the same 4126 /// number of elements as the transition. 4127 /// \p UseSplat defines whether or not \p Val should be replicated 4128 /// across the whole vector. 4129 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4130 /// otherwise we generate a vector with as many undef as possible: 4131 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4132 /// used at the index of the extract. 4133 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4134 unsigned ExtractIdx = UINT_MAX; 4135 if (!UseSplat) { 4136 // If we cannot determine where the constant must be, we have to 4137 // use a splat constant. 4138 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4139 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4140 ExtractIdx = CstVal->getSExtValue(); 4141 else 4142 UseSplat = true; 4143 } 4144 4145 unsigned End = getTransitionType()->getVectorNumElements(); 4146 if (UseSplat) 4147 return ConstantVector::getSplat(End, Val); 4148 4149 SmallVector<Constant *, 4> ConstVec; 4150 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4151 for (unsigned Idx = 0; Idx != End; ++Idx) { 4152 if (Idx == ExtractIdx) 4153 ConstVec.push_back(Val); 4154 else 4155 ConstVec.push_back(UndefVal); 4156 } 4157 return ConstantVector::get(ConstVec); 4158 } 4159 4160 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4161 /// in \p Use can trigger undefined behavior. 4162 static bool canCauseUndefinedBehavior(const Instruction *Use, 4163 unsigned OperandIdx) { 4164 // This is not safe to introduce undef when the operand is on 4165 // the right hand side of a division-like instruction. 4166 if (OperandIdx != 1) 4167 return false; 4168 switch (Use->getOpcode()) { 4169 default: 4170 return false; 4171 case Instruction::SDiv: 4172 case Instruction::UDiv: 4173 case Instruction::SRem: 4174 case Instruction::URem: 4175 return true; 4176 case Instruction::FDiv: 4177 case Instruction::FRem: 4178 return !Use->hasNoNaNs(); 4179 } 4180 llvm_unreachable(nullptr); 4181 } 4182 4183 public: 4184 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4185 const TargetTransformInfo &TTI, Instruction *Transition, 4186 unsigned CombineCost) 4187 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4188 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4189 assert(Transition && "Do not know how to promote null"); 4190 } 4191 4192 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4193 bool canPromote(const Instruction *ToBePromoted) const { 4194 // We could support CastInst too. 4195 return isa<BinaryOperator>(ToBePromoted); 4196 } 4197 4198 /// \brief Check if it is profitable to promote \p ToBePromoted 4199 /// by moving downward the transition through. 4200 bool shouldPromote(const Instruction *ToBePromoted) const { 4201 // Promote only if all the operands can be statically expanded. 4202 // Indeed, we do not want to introduce any new kind of transitions. 4203 for (const Use &U : ToBePromoted->operands()) { 4204 const Value *Val = U.get(); 4205 if (Val == getEndOfTransition()) { 4206 // If the use is a division and the transition is on the rhs, 4207 // we cannot promote the operation, otherwise we may create a 4208 // division by zero. 4209 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4210 return false; 4211 continue; 4212 } 4213 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4214 !isa<ConstantFP>(Val)) 4215 return false; 4216 } 4217 // Check that the resulting operation is legal. 4218 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4219 if (!ISDOpcode) 4220 return false; 4221 return StressStoreExtract || 4222 TLI.isOperationLegalOrCustom( 4223 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4224 } 4225 4226 /// \brief Check whether or not \p Use can be combined 4227 /// with the transition. 4228 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4229 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4230 4231 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4232 void enqueueForPromotion(Instruction *ToBePromoted) { 4233 InstsToBePromoted.push_back(ToBePromoted); 4234 } 4235 4236 /// \brief Set the instruction that will be combined with the transition. 4237 void recordCombineInstruction(Instruction *ToBeCombined) { 4238 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4239 CombineInst = ToBeCombined; 4240 } 4241 4242 /// \brief Promote all the instructions enqueued for promotion if it is 4243 /// is profitable. 4244 /// \return True if the promotion happened, false otherwise. 4245 bool promote() { 4246 // Check if there is something to promote. 4247 // Right now, if we do not have anything to combine with, 4248 // we assume the promotion is not profitable. 4249 if (InstsToBePromoted.empty() || !CombineInst) 4250 return false; 4251 4252 // Check cost. 4253 if (!StressStoreExtract && !isProfitableToPromote()) 4254 return false; 4255 4256 // Promote. 4257 for (auto &ToBePromoted : InstsToBePromoted) 4258 promoteImpl(ToBePromoted); 4259 InstsToBePromoted.clear(); 4260 return true; 4261 } 4262 }; 4263 } // End of anonymous namespace. 4264 4265 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4266 // At this point, we know that all the operands of ToBePromoted but Def 4267 // can be statically promoted. 4268 // For Def, we need to use its parameter in ToBePromoted: 4269 // b = ToBePromoted ty1 a 4270 // Def = Transition ty1 b to ty2 4271 // Move the transition down. 4272 // 1. Replace all uses of the promoted operation by the transition. 4273 // = ... b => = ... Def. 4274 assert(ToBePromoted->getType() == Transition->getType() && 4275 "The type of the result of the transition does not match " 4276 "the final type"); 4277 ToBePromoted->replaceAllUsesWith(Transition); 4278 // 2. Update the type of the uses. 4279 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4280 Type *TransitionTy = getTransitionType(); 4281 ToBePromoted->mutateType(TransitionTy); 4282 // 3. Update all the operands of the promoted operation with promoted 4283 // operands. 4284 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4285 for (Use &U : ToBePromoted->operands()) { 4286 Value *Val = U.get(); 4287 Value *NewVal = nullptr; 4288 if (Val == Transition) 4289 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4290 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4291 isa<ConstantFP>(Val)) { 4292 // Use a splat constant if it is not safe to use undef. 4293 NewVal = getConstantVector( 4294 cast<Constant>(Val), 4295 isa<UndefValue>(Val) || 4296 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4297 } else 4298 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4299 "this?"); 4300 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4301 } 4302 Transition->removeFromParent(); 4303 Transition->insertAfter(ToBePromoted); 4304 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4305 } 4306 4307 /// Some targets can do store(extractelement) with one instruction. 4308 /// Try to push the extractelement towards the stores when the target 4309 /// has this feature and this is profitable. 4310 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 4311 unsigned CombineCost = UINT_MAX; 4312 if (DisableStoreExtract || !TLI || 4313 (!StressStoreExtract && 4314 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4315 Inst->getOperand(1), CombineCost))) 4316 return false; 4317 4318 // At this point we know that Inst is a vector to scalar transition. 4319 // Try to move it down the def-use chain, until: 4320 // - We can combine the transition with its single use 4321 // => we got rid of the transition. 4322 // - We escape the current basic block 4323 // => we would need to check that we are moving it at a cheaper place and 4324 // we do not do that for now. 4325 BasicBlock *Parent = Inst->getParent(); 4326 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4327 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4328 // If the transition has more than one use, assume this is not going to be 4329 // beneficial. 4330 while (Inst->hasOneUse()) { 4331 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4332 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4333 4334 if (ToBePromoted->getParent() != Parent) { 4335 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4336 << ToBePromoted->getParent()->getName() 4337 << ") than the transition (" << Parent->getName() << ").\n"); 4338 return false; 4339 } 4340 4341 if (VPH.canCombine(ToBePromoted)) { 4342 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4343 << "will be combined with: " << *ToBePromoted << '\n'); 4344 VPH.recordCombineInstruction(ToBePromoted); 4345 bool Changed = VPH.promote(); 4346 NumStoreExtractExposed += Changed; 4347 return Changed; 4348 } 4349 4350 DEBUG(dbgs() << "Try promoting.\n"); 4351 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4352 return false; 4353 4354 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4355 4356 VPH.enqueueForPromotion(ToBePromoted); 4357 Inst = ToBePromoted; 4358 } 4359 return false; 4360 } 4361 4362 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 4363 // Bail out if we inserted the instruction to prevent optimizations from 4364 // stepping on each other's toes. 4365 if (InsertedInsts.count(I)) 4366 return false; 4367 4368 if (PHINode *P = dyn_cast<PHINode>(I)) { 4369 // It is possible for very late stage optimizations (such as SimplifyCFG) 4370 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4371 // trivial PHI, go ahead and zap it here. 4372 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4373 P->replaceAllUsesWith(V); 4374 P->eraseFromParent(); 4375 ++NumPHIsElim; 4376 return true; 4377 } 4378 return false; 4379 } 4380 4381 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4382 // If the source of the cast is a constant, then this should have 4383 // already been constant folded. The only reason NOT to constant fold 4384 // it is if something (e.g. LSR) was careful to place the constant 4385 // evaluation in a block other than then one that uses it (e.g. to hoist 4386 // the address of globals out of a loop). If this is the case, we don't 4387 // want to forward-subst the cast. 4388 if (isa<Constant>(CI->getOperand(0))) 4389 return false; 4390 4391 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4392 return true; 4393 4394 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4395 /// Sink a zext or sext into its user blocks if the target type doesn't 4396 /// fit in one register 4397 if (TLI && 4398 TLI->getTypeAction(CI->getContext(), 4399 TLI->getValueType(*DL, CI->getType())) == 4400 TargetLowering::TypeExpandInteger) { 4401 return SinkCast(CI); 4402 } else { 4403 bool MadeChange = moveExtToFormExtLoad(I); 4404 return MadeChange | optimizeExtUses(I); 4405 } 4406 } 4407 return false; 4408 } 4409 4410 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4411 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4412 return OptimizeCmpExpression(CI); 4413 4414 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4415 stripInvariantGroupMetadata(*LI); 4416 if (TLI) { 4417 unsigned AS = LI->getPointerAddressSpace(); 4418 return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4419 } 4420 return false; 4421 } 4422 4423 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4424 stripInvariantGroupMetadata(*SI); 4425 if (TLI) { 4426 unsigned AS = SI->getPointerAddressSpace(); 4427 return optimizeMemoryInst(I, SI->getOperand(1), 4428 SI->getOperand(0)->getType(), AS); 4429 } 4430 return false; 4431 } 4432 4433 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4434 4435 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4436 BinOp->getOpcode() == Instruction::LShr)) { 4437 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4438 if (TLI && CI && TLI->hasExtractBitsInsn()) 4439 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4440 4441 return false; 4442 } 4443 4444 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4445 if (GEPI->hasAllZeroIndices()) { 4446 /// The GEP operand must be a pointer, so must its result -> BitCast 4447 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4448 GEPI->getName(), GEPI); 4449 GEPI->replaceAllUsesWith(NC); 4450 GEPI->eraseFromParent(); 4451 ++NumGEPsElim; 4452 optimizeInst(NC, ModifiedDT); 4453 return true; 4454 } 4455 return false; 4456 } 4457 4458 if (CallInst *CI = dyn_cast<CallInst>(I)) 4459 return optimizeCallInst(CI, ModifiedDT); 4460 4461 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4462 return optimizeSelectInst(SI); 4463 4464 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4465 return optimizeShuffleVectorInst(SVI); 4466 4467 if (isa<ExtractElementInst>(I)) 4468 return optimizeExtractElementInst(I); 4469 4470 return false; 4471 } 4472 4473 // In this pass we look for GEP and cast instructions that are used 4474 // across basic blocks and rewrite them to improve basic-block-at-a-time 4475 // selection. 4476 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4477 SunkAddrs.clear(); 4478 bool MadeChange = false; 4479 4480 CurInstIterator = BB.begin(); 4481 while (CurInstIterator != BB.end()) { 4482 MadeChange |= optimizeInst(CurInstIterator++, ModifiedDT); 4483 if (ModifiedDT) 4484 return true; 4485 } 4486 MadeChange |= dupRetToEnableTailCallOpts(&BB); 4487 4488 return MadeChange; 4489 } 4490 4491 // llvm.dbg.value is far away from the value then iSel may not be able 4492 // handle it properly. iSel will drop llvm.dbg.value if it can not 4493 // find a node corresponding to the value. 4494 bool CodeGenPrepare::placeDbgValues(Function &F) { 4495 bool MadeChange = false; 4496 for (BasicBlock &BB : F) { 4497 Instruction *PrevNonDbgInst = nullptr; 4498 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4499 Instruction *Insn = BI++; 4500 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4501 // Leave dbg.values that refer to an alloca alone. These 4502 // instrinsics describe the address of a variable (= the alloca) 4503 // being taken. They should not be moved next to the alloca 4504 // (and to the beginning of the scope), but rather stay close to 4505 // where said address is used. 4506 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4507 PrevNonDbgInst = Insn; 4508 continue; 4509 } 4510 4511 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4512 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4513 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4514 DVI->removeFromParent(); 4515 if (isa<PHINode>(VI)) 4516 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4517 else 4518 DVI->insertAfter(VI); 4519 MadeChange = true; 4520 ++NumDbgValueMoved; 4521 } 4522 } 4523 } 4524 return MadeChange; 4525 } 4526 4527 // If there is a sequence that branches based on comparing a single bit 4528 // against zero that can be combined into a single instruction, and the 4529 // target supports folding these into a single instruction, sink the 4530 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4531 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4532 // searched for. 4533 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4534 if (!EnableAndCmpSinking) 4535 return false; 4536 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4537 return false; 4538 bool MadeChange = false; 4539 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4540 BasicBlock *BB = I++; 4541 4542 // Does this BB end with the following? 4543 // %andVal = and %val, #single-bit-set 4544 // %icmpVal = icmp %andResult, 0 4545 // br i1 %cmpVal label %dest1, label %dest2" 4546 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4547 if (!Brcc || !Brcc->isConditional()) 4548 continue; 4549 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4550 if (!Cmp || Cmp->getParent() != BB) 4551 continue; 4552 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4553 if (!Zero || !Zero->isZero()) 4554 continue; 4555 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4556 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4557 continue; 4558 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4559 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4560 continue; 4561 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4562 4563 // Push the "and; icmp" for any users that are conditional branches. 4564 // Since there can only be one branch use per BB, we don't need to keep 4565 // track of which BBs we insert into. 4566 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4567 UI != E; ) { 4568 Use &TheUse = *UI; 4569 // Find brcc use. 4570 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4571 ++UI; 4572 if (!BrccUser || !BrccUser->isConditional()) 4573 continue; 4574 BasicBlock *UserBB = BrccUser->getParent(); 4575 if (UserBB == BB) continue; 4576 DEBUG(dbgs() << "found Brcc use\n"); 4577 4578 // Sink the "and; icmp" to use. 4579 MadeChange = true; 4580 BinaryOperator *NewAnd = 4581 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4582 BrccUser); 4583 CmpInst *NewCmp = 4584 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4585 "", BrccUser); 4586 TheUse = NewCmp; 4587 ++NumAndCmpsMoved; 4588 DEBUG(BrccUser->getParent()->dump()); 4589 } 4590 } 4591 return MadeChange; 4592 } 4593 4594 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4595 /// success, or returns false if no or invalid metadata was found. 4596 static bool extractBranchMetadata(BranchInst *BI, 4597 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4598 assert(BI->isConditional() && 4599 "Looking for probabilities on unconditional branch?"); 4600 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4601 if (!ProfileData || ProfileData->getNumOperands() != 3) 4602 return false; 4603 4604 const auto *CITrue = 4605 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4606 const auto *CIFalse = 4607 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4608 if (!CITrue || !CIFalse) 4609 return false; 4610 4611 ProbTrue = CITrue->getValue().getZExtValue(); 4612 ProbFalse = CIFalse->getValue().getZExtValue(); 4613 4614 return true; 4615 } 4616 4617 /// \brief Scale down both weights to fit into uint32_t. 4618 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4619 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4620 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4621 NewTrue = NewTrue / Scale; 4622 NewFalse = NewFalse / Scale; 4623 } 4624 4625 /// \brief Some targets prefer to split a conditional branch like: 4626 /// \code 4627 /// %0 = icmp ne i32 %a, 0 4628 /// %1 = icmp ne i32 %b, 0 4629 /// %or.cond = or i1 %0, %1 4630 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4631 /// \endcode 4632 /// into multiple branch instructions like: 4633 /// \code 4634 /// bb1: 4635 /// %0 = icmp ne i32 %a, 0 4636 /// br i1 %0, label %TrueBB, label %bb2 4637 /// bb2: 4638 /// %1 = icmp ne i32 %b, 0 4639 /// br i1 %1, label %TrueBB, label %FalseBB 4640 /// \endcode 4641 /// This usually allows instruction selection to do even further optimizations 4642 /// and combine the compare with the branch instruction. Currently this is 4643 /// applied for targets which have "cheap" jump instructions. 4644 /// 4645 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4646 /// 4647 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4648 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4649 return false; 4650 4651 bool MadeChange = false; 4652 for (auto &BB : F) { 4653 // Does this BB end with the following? 4654 // %cond1 = icmp|fcmp|binary instruction ... 4655 // %cond2 = icmp|fcmp|binary instruction ... 4656 // %cond.or = or|and i1 %cond1, cond2 4657 // br i1 %cond.or label %dest1, label %dest2" 4658 BinaryOperator *LogicOp; 4659 BasicBlock *TBB, *FBB; 4660 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4661 continue; 4662 4663 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4664 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 4665 continue; 4666 4667 unsigned Opc; 4668 Value *Cond1, *Cond2; 4669 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4670 m_OneUse(m_Value(Cond2))))) 4671 Opc = Instruction::And; 4672 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4673 m_OneUse(m_Value(Cond2))))) 4674 Opc = Instruction::Or; 4675 else 4676 continue; 4677 4678 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4679 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4680 continue; 4681 4682 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4683 4684 // Create a new BB. 4685 auto *InsertBefore = std::next(Function::iterator(BB)) 4686 .getNodePtrUnchecked(); 4687 auto TmpBB = BasicBlock::Create(BB.getContext(), 4688 BB.getName() + ".cond.split", 4689 BB.getParent(), InsertBefore); 4690 4691 // Update original basic block by using the first condition directly by the 4692 // branch instruction and removing the no longer needed and/or instruction. 4693 Br1->setCondition(Cond1); 4694 LogicOp->eraseFromParent(); 4695 4696 // Depending on the conditon we have to either replace the true or the false 4697 // successor of the original branch instruction. 4698 if (Opc == Instruction::And) 4699 Br1->setSuccessor(0, TmpBB); 4700 else 4701 Br1->setSuccessor(1, TmpBB); 4702 4703 // Fill in the new basic block. 4704 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4705 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4706 I->removeFromParent(); 4707 I->insertBefore(Br2); 4708 } 4709 4710 // Update PHI nodes in both successors. The original BB needs to be 4711 // replaced in one succesor's PHI nodes, because the branch comes now from 4712 // the newly generated BB (NewBB). In the other successor we need to add one 4713 // incoming edge to the PHI nodes, because both branch instructions target 4714 // now the same successor. Depending on the original branch condition 4715 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4716 // we perfrom the correct update for the PHI nodes. 4717 // This doesn't change the successor order of the just created branch 4718 // instruction (or any other instruction). 4719 if (Opc == Instruction::Or) 4720 std::swap(TBB, FBB); 4721 4722 // Replace the old BB with the new BB. 4723 for (auto &I : *TBB) { 4724 PHINode *PN = dyn_cast<PHINode>(&I); 4725 if (!PN) 4726 break; 4727 int i; 4728 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4729 PN->setIncomingBlock(i, TmpBB); 4730 } 4731 4732 // Add another incoming edge form the new BB. 4733 for (auto &I : *FBB) { 4734 PHINode *PN = dyn_cast<PHINode>(&I); 4735 if (!PN) 4736 break; 4737 auto *Val = PN->getIncomingValueForBlock(&BB); 4738 PN->addIncoming(Val, TmpBB); 4739 } 4740 4741 // Update the branch weights (from SelectionDAGBuilder:: 4742 // FindMergedConditions). 4743 if (Opc == Instruction::Or) { 4744 // Codegen X | Y as: 4745 // BB1: 4746 // jmp_if_X TBB 4747 // jmp TmpBB 4748 // TmpBB: 4749 // jmp_if_Y TBB 4750 // jmp FBB 4751 // 4752 4753 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4754 // The requirement is that 4755 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4756 // = TrueProb for orignal BB. 4757 // Assuming the orignal weights are A and B, one choice is to set BB1's 4758 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4759 // assumes that 4760 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4761 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4762 // TmpBB, but the math is more complicated. 4763 uint64_t TrueWeight, FalseWeight; 4764 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4765 uint64_t NewTrueWeight = TrueWeight; 4766 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4767 scaleWeights(NewTrueWeight, NewFalseWeight); 4768 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4769 .createBranchWeights(TrueWeight, FalseWeight)); 4770 4771 NewTrueWeight = TrueWeight; 4772 NewFalseWeight = 2 * FalseWeight; 4773 scaleWeights(NewTrueWeight, NewFalseWeight); 4774 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4775 .createBranchWeights(TrueWeight, FalseWeight)); 4776 } 4777 } else { 4778 // Codegen X & Y as: 4779 // BB1: 4780 // jmp_if_X TmpBB 4781 // jmp FBB 4782 // TmpBB: 4783 // jmp_if_Y TBB 4784 // jmp FBB 4785 // 4786 // This requires creation of TmpBB after CurBB. 4787 4788 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4789 // The requirement is that 4790 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4791 // = FalseProb for orignal BB. 4792 // Assuming the orignal weights are A and B, one choice is to set BB1's 4793 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4794 // assumes that 4795 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4796 uint64_t TrueWeight, FalseWeight; 4797 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4798 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4799 uint64_t NewFalseWeight = FalseWeight; 4800 scaleWeights(NewTrueWeight, NewFalseWeight); 4801 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4802 .createBranchWeights(TrueWeight, FalseWeight)); 4803 4804 NewTrueWeight = 2 * TrueWeight; 4805 NewFalseWeight = FalseWeight; 4806 scaleWeights(NewTrueWeight, NewFalseWeight); 4807 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4808 .createBranchWeights(TrueWeight, FalseWeight)); 4809 } 4810 } 4811 4812 // Note: No point in getting fancy here, since the DT info is never 4813 // available to CodeGenPrepare. 4814 ModifiedDT = true; 4815 4816 MadeChange = true; 4817 4818 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4819 TmpBB->dump()); 4820 } 4821 return MadeChange; 4822 } 4823 4824 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 4825 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 4826 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 4827 } 4828