1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/IR/ValueMap.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetSubtargetInfo.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/BuildLibCalls.h" 49 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "codegenprepare" 56 57 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 58 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 59 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 60 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 61 "sunken Cmps"); 62 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 63 "of sunken Casts"); 64 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 65 "computations were sunk"); 66 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 67 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 68 STATISTIC(NumAndsAdded, 69 "Number of and mask instructions added to form ext loads"); 70 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 71 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 72 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 73 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 74 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 75 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 76 77 static cl::opt<bool> DisableBranchOpts( 78 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 79 cl::desc("Disable branch optimizations in CodeGenPrepare")); 80 81 static cl::opt<bool> 82 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 83 cl::desc("Disable GC optimizations in CodeGenPrepare")); 84 85 static cl::opt<bool> DisableSelectToBranch( 86 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 87 cl::desc("Disable select to branch conversion.")); 88 89 static cl::opt<bool> AddrSinkUsingGEPs( 90 "addr-sink-using-gep", cl::Hidden, cl::init(false), 91 cl::desc("Address sinking in CGP using GEPs.")); 92 93 static cl::opt<bool> EnableAndCmpSinking( 94 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 95 cl::desc("Enable sinkinig and/cmp into branches.")); 96 97 static cl::opt<bool> DisableStoreExtract( 98 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 99 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 100 101 static cl::opt<bool> StressStoreExtract( 102 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 103 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 104 105 static cl::opt<bool> DisableExtLdPromotion( 106 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 108 "CodeGenPrepare")); 109 110 static cl::opt<bool> StressExtLdPromotion( 111 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 112 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 113 "optimization in CodeGenPrepare")); 114 115 static cl::opt<bool> DisablePreheaderProtect( 116 "disable-preheader-prot", cl::Hidden, cl::init(false), 117 cl::desc("Disable protection against removing loop preheaders")); 118 119 namespace { 120 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 121 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 122 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 123 class TypePromotionTransaction; 124 125 class CodeGenPrepare : public FunctionPass { 126 const TargetMachine *TM; 127 const TargetLowering *TLI; 128 const TargetTransformInfo *TTI; 129 const TargetLibraryInfo *TLInfo; 130 const LoopInfo *LI; 131 132 /// As we scan instructions optimizing them, this is the next instruction 133 /// to optimize. Transforms that can invalidate this should update it. 134 BasicBlock::iterator CurInstIterator; 135 136 /// Keeps track of non-local addresses that have been sunk into a block. 137 /// This allows us to avoid inserting duplicate code for blocks with 138 /// multiple load/stores of the same address. 139 ValueMap<Value*, Value*> SunkAddrs; 140 141 /// Keeps track of all instructions inserted for the current function. 142 SetOfInstrs InsertedInsts; 143 /// Keeps track of the type of the related instruction before their 144 /// promotion for the current function. 145 InstrToOrigTy PromotedInsts; 146 147 /// True if CFG is modified in any way. 148 bool ModifiedDT; 149 150 /// True if optimizing for size. 151 bool OptSize; 152 153 /// DataLayout for the Function being processed. 154 const DataLayout *DL; 155 156 public: 157 static char ID; // Pass identification, replacement for typeid 158 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 159 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 160 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 161 } 162 bool runOnFunction(Function &F) override; 163 164 const char *getPassName() const override { return "CodeGen Prepare"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 // FIXME: When we can selectively preserve passes, preserve the domtree. 168 AU.addRequired<TargetLibraryInfoWrapperPass>(); 169 AU.addRequired<TargetTransformInfoWrapperPass>(); 170 AU.addRequired<LoopInfoWrapperPass>(); 171 } 172 173 private: 174 bool eliminateFallThrough(Function &F); 175 bool eliminateMostlyEmptyBlocks(Function &F); 176 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 177 void eliminateMostlyEmptyBlock(BasicBlock *BB); 178 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 179 bool optimizeInst(Instruction *I, bool& ModifiedDT); 180 bool optimizeMemoryInst(Instruction *I, Value *Addr, 181 Type *AccessTy, unsigned AS); 182 bool optimizeInlineAsmInst(CallInst *CS); 183 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 184 bool moveExtToFormExtLoad(Instruction *&I); 185 bool optimizeExtUses(Instruction *I); 186 bool optimizeLoadExt(LoadInst *I); 187 bool optimizeSelectInst(SelectInst *SI); 188 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 189 bool optimizeSwitchInst(SwitchInst *CI); 190 bool optimizeExtractElementInst(Instruction *Inst); 191 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 192 bool placeDbgValues(Function &F); 193 bool sinkAndCmp(Function &F); 194 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 195 Instruction *&Inst, 196 const SmallVectorImpl<Instruction *> &Exts, 197 unsigned CreatedInstCost); 198 bool splitBranchCondition(Function &F); 199 bool simplifyOffsetableRelocate(Instruction &I); 200 void stripInvariantGroupMetadata(Instruction &I); 201 }; 202 } 203 204 char CodeGenPrepare::ID = 0; 205 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 206 "Optimize for code generation", false, false) 207 208 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 209 return new CodeGenPrepare(TM); 210 } 211 212 bool CodeGenPrepare::runOnFunction(Function &F) { 213 if (skipOptnoneFunction(F)) 214 return false; 215 216 DL = &F.getParent()->getDataLayout(); 217 218 bool EverMadeChange = false; 219 // Clear per function information. 220 InsertedInsts.clear(); 221 PromotedInsts.clear(); 222 223 ModifiedDT = false; 224 if (TM) 225 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 226 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 227 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 228 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 229 OptSize = F.optForSize(); 230 231 /// This optimization identifies DIV instructions that can be 232 /// profitably bypassed and carried out with a shorter, faster divide. 233 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 234 const DenseMap<unsigned int, unsigned int> &BypassWidths = 235 TLI->getBypassSlowDivWidths(); 236 BasicBlock* BB = &*F.begin(); 237 while (BB != nullptr) { 238 // bypassSlowDivision may create new BBs, but we don't want to reapply the 239 // optimization to those blocks. 240 BasicBlock* Next = BB->getNextNode(); 241 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 242 BB = Next; 243 } 244 } 245 246 // Eliminate blocks that contain only PHI nodes and an 247 // unconditional branch. 248 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 249 250 // llvm.dbg.value is far away from the value then iSel may not be able 251 // handle it properly. iSel will drop llvm.dbg.value if it can not 252 // find a node corresponding to the value. 253 EverMadeChange |= placeDbgValues(F); 254 255 // If there is a mask, compare against zero, and branch that can be combined 256 // into a single target instruction, push the mask and compare into branch 257 // users. Do this before OptimizeBlock -> OptimizeInst -> 258 // OptimizeCmpExpression, which perturbs the pattern being searched for. 259 if (!DisableBranchOpts) { 260 EverMadeChange |= sinkAndCmp(F); 261 EverMadeChange |= splitBranchCondition(F); 262 } 263 264 bool MadeChange = true; 265 while (MadeChange) { 266 MadeChange = false; 267 for (Function::iterator I = F.begin(); I != F.end(); ) { 268 BasicBlock *BB = &*I++; 269 bool ModifiedDTOnIteration = false; 270 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 271 272 // Restart BB iteration if the dominator tree of the Function was changed 273 if (ModifiedDTOnIteration) 274 break; 275 } 276 EverMadeChange |= MadeChange; 277 } 278 279 SunkAddrs.clear(); 280 281 if (!DisableBranchOpts) { 282 MadeChange = false; 283 SmallPtrSet<BasicBlock*, 8> WorkList; 284 for (BasicBlock &BB : F) { 285 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 286 MadeChange |= ConstantFoldTerminator(&BB, true); 287 if (!MadeChange) continue; 288 289 for (SmallVectorImpl<BasicBlock*>::iterator 290 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 291 if (pred_begin(*II) == pred_end(*II)) 292 WorkList.insert(*II); 293 } 294 295 // Delete the dead blocks and any of their dead successors. 296 MadeChange |= !WorkList.empty(); 297 while (!WorkList.empty()) { 298 BasicBlock *BB = *WorkList.begin(); 299 WorkList.erase(BB); 300 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 301 302 DeleteDeadBlock(BB); 303 304 for (SmallVectorImpl<BasicBlock*>::iterator 305 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 306 if (pred_begin(*II) == pred_end(*II)) 307 WorkList.insert(*II); 308 } 309 310 // Merge pairs of basic blocks with unconditional branches, connected by 311 // a single edge. 312 if (EverMadeChange || MadeChange) 313 MadeChange |= eliminateFallThrough(F); 314 315 EverMadeChange |= MadeChange; 316 } 317 318 if (!DisableGCOpts) { 319 SmallVector<Instruction *, 2> Statepoints; 320 for (BasicBlock &BB : F) 321 for (Instruction &I : BB) 322 if (isStatepoint(I)) 323 Statepoints.push_back(&I); 324 for (auto &I : Statepoints) 325 EverMadeChange |= simplifyOffsetableRelocate(*I); 326 } 327 328 return EverMadeChange; 329 } 330 331 /// Merge basic blocks which are connected by a single edge, where one of the 332 /// basic blocks has a single successor pointing to the other basic block, 333 /// which has a single predecessor. 334 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 335 bool Changed = false; 336 // Scan all of the blocks in the function, except for the entry block. 337 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 338 BasicBlock *BB = &*I++; 339 // If the destination block has a single pred, then this is a trivial 340 // edge, just collapse it. 341 BasicBlock *SinglePred = BB->getSinglePredecessor(); 342 343 // Don't merge if BB's address is taken. 344 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 345 346 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 347 if (Term && !Term->isConditional()) { 348 Changed = true; 349 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 350 // Remember if SinglePred was the entry block of the function. 351 // If so, we will need to move BB back to the entry position. 352 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 353 MergeBasicBlockIntoOnlyPred(BB, nullptr); 354 355 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 356 BB->moveBefore(&BB->getParent()->getEntryBlock()); 357 358 // We have erased a block. Update the iterator. 359 I = BB->getIterator(); 360 } 361 } 362 return Changed; 363 } 364 365 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 366 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 367 /// edges in ways that are non-optimal for isel. Start by eliminating these 368 /// blocks so we can split them the way we want them. 369 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 370 SmallPtrSet<BasicBlock *, 16> Preheaders; 371 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 372 while (!LoopList.empty()) { 373 Loop *L = LoopList.pop_back_val(); 374 LoopList.insert(LoopList.end(), L->begin(), L->end()); 375 if (BasicBlock *Preheader = L->getLoopPreheader()) 376 Preheaders.insert(Preheader); 377 } 378 379 bool MadeChange = false; 380 // Note that this intentionally skips the entry block. 381 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 382 BasicBlock *BB = &*I++; 383 384 // If this block doesn't end with an uncond branch, ignore it. 385 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 386 if (!BI || !BI->isUnconditional()) 387 continue; 388 389 // If the instruction before the branch (skipping debug info) isn't a phi 390 // node, then other stuff is happening here. 391 BasicBlock::iterator BBI = BI->getIterator(); 392 if (BBI != BB->begin()) { 393 --BBI; 394 while (isa<DbgInfoIntrinsic>(BBI)) { 395 if (BBI == BB->begin()) 396 break; 397 --BBI; 398 } 399 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 400 continue; 401 } 402 403 // Do not break infinite loops. 404 BasicBlock *DestBB = BI->getSuccessor(0); 405 if (DestBB == BB) 406 continue; 407 408 if (!canMergeBlocks(BB, DestBB)) 409 continue; 410 411 // Do not delete loop preheaders if doing so would create a critical edge. 412 // Loop preheaders can be good locations to spill registers. If the 413 // preheader is deleted and we create a critical edge, registers may be 414 // spilled in the loop body instead. 415 if (!DisablePreheaderProtect && Preheaders.count(BB) && 416 !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) 417 continue; 418 419 eliminateMostlyEmptyBlock(BB); 420 MadeChange = true; 421 } 422 return MadeChange; 423 } 424 425 /// Return true if we can merge BB into DestBB if there is a single 426 /// unconditional branch between them, and BB contains no other non-phi 427 /// instructions. 428 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 429 const BasicBlock *DestBB) const { 430 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 431 // the successor. If there are more complex condition (e.g. preheaders), 432 // don't mess around with them. 433 BasicBlock::const_iterator BBI = BB->begin(); 434 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 435 for (const User *U : PN->users()) { 436 const Instruction *UI = cast<Instruction>(U); 437 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 438 return false; 439 // If User is inside DestBB block and it is a PHINode then check 440 // incoming value. If incoming value is not from BB then this is 441 // a complex condition (e.g. preheaders) we want to avoid here. 442 if (UI->getParent() == DestBB) { 443 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 444 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 445 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 446 if (Insn && Insn->getParent() == BB && 447 Insn->getParent() != UPN->getIncomingBlock(I)) 448 return false; 449 } 450 } 451 } 452 } 453 454 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 455 // and DestBB may have conflicting incoming values for the block. If so, we 456 // can't merge the block. 457 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 458 if (!DestBBPN) return true; // no conflict. 459 460 // Collect the preds of BB. 461 SmallPtrSet<const BasicBlock*, 16> BBPreds; 462 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 463 // It is faster to get preds from a PHI than with pred_iterator. 464 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 465 BBPreds.insert(BBPN->getIncomingBlock(i)); 466 } else { 467 BBPreds.insert(pred_begin(BB), pred_end(BB)); 468 } 469 470 // Walk the preds of DestBB. 471 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 472 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 473 if (BBPreds.count(Pred)) { // Common predecessor? 474 BBI = DestBB->begin(); 475 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 476 const Value *V1 = PN->getIncomingValueForBlock(Pred); 477 const Value *V2 = PN->getIncomingValueForBlock(BB); 478 479 // If V2 is a phi node in BB, look up what the mapped value will be. 480 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 481 if (V2PN->getParent() == BB) 482 V2 = V2PN->getIncomingValueForBlock(Pred); 483 484 // If there is a conflict, bail out. 485 if (V1 != V2) return false; 486 } 487 } 488 } 489 490 return true; 491 } 492 493 494 /// Eliminate a basic block that has only phi's and an unconditional branch in 495 /// it. 496 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 497 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 498 BasicBlock *DestBB = BI->getSuccessor(0); 499 500 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 501 502 // If the destination block has a single pred, then this is a trivial edge, 503 // just collapse it. 504 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 505 if (SinglePred != DestBB) { 506 // Remember if SinglePred was the entry block of the function. If so, we 507 // will need to move BB back to the entry position. 508 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 509 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 510 511 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 512 BB->moveBefore(&BB->getParent()->getEntryBlock()); 513 514 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 515 return; 516 } 517 } 518 519 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 520 // to handle the new incoming edges it is about to have. 521 PHINode *PN; 522 for (BasicBlock::iterator BBI = DestBB->begin(); 523 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 524 // Remove the incoming value for BB, and remember it. 525 Value *InVal = PN->removeIncomingValue(BB, false); 526 527 // Two options: either the InVal is a phi node defined in BB or it is some 528 // value that dominates BB. 529 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 530 if (InValPhi && InValPhi->getParent() == BB) { 531 // Add all of the input values of the input PHI as inputs of this phi. 532 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 533 PN->addIncoming(InValPhi->getIncomingValue(i), 534 InValPhi->getIncomingBlock(i)); 535 } else { 536 // Otherwise, add one instance of the dominating value for each edge that 537 // we will be adding. 538 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 539 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 540 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 541 } else { 542 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 543 PN->addIncoming(InVal, *PI); 544 } 545 } 546 } 547 548 // The PHIs are now updated, change everything that refers to BB to use 549 // DestBB and remove BB. 550 BB->replaceAllUsesWith(DestBB); 551 BB->eraseFromParent(); 552 ++NumBlocksElim; 553 554 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 555 } 556 557 // Computes a map of base pointer relocation instructions to corresponding 558 // derived pointer relocation instructions given a vector of all relocate calls 559 static void computeBaseDerivedRelocateMap( 560 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 561 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 562 &RelocateInstMap) { 563 // Collect information in two maps: one primarily for locating the base object 564 // while filling the second map; the second map is the final structure holding 565 // a mapping between Base and corresponding Derived relocate calls 566 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 567 for (auto *ThisRelocate : AllRelocateCalls) { 568 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 569 ThisRelocate->getDerivedPtrIndex()); 570 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 571 } 572 for (auto &Item : RelocateIdxMap) { 573 std::pair<unsigned, unsigned> Key = Item.first; 574 if (Key.first == Key.second) 575 // Base relocation: nothing to insert 576 continue; 577 578 GCRelocateInst *I = Item.second; 579 auto BaseKey = std::make_pair(Key.first, Key.first); 580 581 // We're iterating over RelocateIdxMap so we cannot modify it. 582 auto MaybeBase = RelocateIdxMap.find(BaseKey); 583 if (MaybeBase == RelocateIdxMap.end()) 584 // TODO: We might want to insert a new base object relocate and gep off 585 // that, if there are enough derived object relocates. 586 continue; 587 588 RelocateInstMap[MaybeBase->second].push_back(I); 589 } 590 } 591 592 // Accepts a GEP and extracts the operands into a vector provided they're all 593 // small integer constants 594 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 595 SmallVectorImpl<Value *> &OffsetV) { 596 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 597 // Only accept small constant integer operands 598 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 599 if (!Op || Op->getZExtValue() > 20) 600 return false; 601 } 602 603 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 604 OffsetV.push_back(GEP->getOperand(i)); 605 return true; 606 } 607 608 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 609 // replace, computes a replacement, and affects it. 610 static bool 611 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 612 const SmallVectorImpl<GCRelocateInst *> &Targets) { 613 bool MadeChange = false; 614 for (GCRelocateInst *ToReplace : Targets) { 615 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 616 "Not relocating a derived object of the original base object"); 617 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 618 // A duplicate relocate call. TODO: coalesce duplicates. 619 continue; 620 } 621 622 if (RelocatedBase->getParent() != ToReplace->getParent()) { 623 // Base and derived relocates are in different basic blocks. 624 // In this case transform is only valid when base dominates derived 625 // relocate. However it would be too expensive to check dominance 626 // for each such relocate, so we skip the whole transformation. 627 continue; 628 } 629 630 Value *Base = ToReplace->getBasePtr(); 631 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 632 if (!Derived || Derived->getPointerOperand() != Base) 633 continue; 634 635 SmallVector<Value *, 2> OffsetV; 636 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 637 continue; 638 639 // Create a Builder and replace the target callsite with a gep 640 assert(RelocatedBase->getNextNode() && 641 "Should always have one since it's not a terminator"); 642 643 // Insert after RelocatedBase 644 IRBuilder<> Builder(RelocatedBase->getNextNode()); 645 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 646 647 // If gc_relocate does not match the actual type, cast it to the right type. 648 // In theory, there must be a bitcast after gc_relocate if the type does not 649 // match, and we should reuse it to get the derived pointer. But it could be 650 // cases like this: 651 // bb1: 652 // ... 653 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 654 // br label %merge 655 // 656 // bb2: 657 // ... 658 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 659 // br label %merge 660 // 661 // merge: 662 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 663 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 664 // 665 // In this case, we can not find the bitcast any more. So we insert a new bitcast 666 // no matter there is already one or not. In this way, we can handle all cases, and 667 // the extra bitcast should be optimized away in later passes. 668 Value *ActualRelocatedBase = RelocatedBase; 669 if (RelocatedBase->getType() != Base->getType()) { 670 ActualRelocatedBase = 671 Builder.CreateBitCast(RelocatedBase, Base->getType()); 672 } 673 Value *Replacement = Builder.CreateGEP( 674 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 675 Replacement->takeName(ToReplace); 676 // If the newly generated derived pointer's type does not match the original derived 677 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 678 Value *ActualReplacement = Replacement; 679 if (Replacement->getType() != ToReplace->getType()) { 680 ActualReplacement = 681 Builder.CreateBitCast(Replacement, ToReplace->getType()); 682 } 683 ToReplace->replaceAllUsesWith(ActualReplacement); 684 ToReplace->eraseFromParent(); 685 686 MadeChange = true; 687 } 688 return MadeChange; 689 } 690 691 // Turns this: 692 // 693 // %base = ... 694 // %ptr = gep %base + 15 695 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 696 // %base' = relocate(%tok, i32 4, i32 4) 697 // %ptr' = relocate(%tok, i32 4, i32 5) 698 // %val = load %ptr' 699 // 700 // into this: 701 // 702 // %base = ... 703 // %ptr = gep %base + 15 704 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 705 // %base' = gc.relocate(%tok, i32 4, i32 4) 706 // %ptr' = gep %base' + 15 707 // %val = load %ptr' 708 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 709 bool MadeChange = false; 710 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 711 712 for (auto *U : I.users()) 713 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 714 // Collect all the relocate calls associated with a statepoint 715 AllRelocateCalls.push_back(Relocate); 716 717 // We need atleast one base pointer relocation + one derived pointer 718 // relocation to mangle 719 if (AllRelocateCalls.size() < 2) 720 return false; 721 722 // RelocateInstMap is a mapping from the base relocate instruction to the 723 // corresponding derived relocate instructions 724 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 725 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 726 if (RelocateInstMap.empty()) 727 return false; 728 729 for (auto &Item : RelocateInstMap) 730 // Item.first is the RelocatedBase to offset against 731 // Item.second is the vector of Targets to replace 732 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 733 return MadeChange; 734 } 735 736 /// SinkCast - Sink the specified cast instruction into its user blocks 737 static bool SinkCast(CastInst *CI) { 738 BasicBlock *DefBB = CI->getParent(); 739 740 /// InsertedCasts - Only insert a cast in each block once. 741 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 742 743 bool MadeChange = false; 744 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 745 UI != E; ) { 746 Use &TheUse = UI.getUse(); 747 Instruction *User = cast<Instruction>(*UI); 748 749 // Figure out which BB this cast is used in. For PHI's this is the 750 // appropriate predecessor block. 751 BasicBlock *UserBB = User->getParent(); 752 if (PHINode *PN = dyn_cast<PHINode>(User)) { 753 UserBB = PN->getIncomingBlock(TheUse); 754 } 755 756 // Preincrement use iterator so we don't invalidate it. 757 ++UI; 758 759 // If the block selected to receive the cast is an EH pad that does not 760 // allow non-PHI instructions before the terminator, we can't sink the 761 // cast. 762 if (UserBB->getTerminator()->isEHPad()) 763 continue; 764 765 // If this user is in the same block as the cast, don't change the cast. 766 if (UserBB == DefBB) continue; 767 768 // If we have already inserted a cast into this block, use it. 769 CastInst *&InsertedCast = InsertedCasts[UserBB]; 770 771 if (!InsertedCast) { 772 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 773 assert(InsertPt != UserBB->end()); 774 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 775 CI->getType(), "", &*InsertPt); 776 } 777 778 // Replace a use of the cast with a use of the new cast. 779 TheUse = InsertedCast; 780 MadeChange = true; 781 ++NumCastUses; 782 } 783 784 // If we removed all uses, nuke the cast. 785 if (CI->use_empty()) { 786 CI->eraseFromParent(); 787 MadeChange = true; 788 } 789 790 return MadeChange; 791 } 792 793 /// If the specified cast instruction is a noop copy (e.g. it's casting from 794 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 795 /// reduce the number of virtual registers that must be created and coalesced. 796 /// 797 /// Return true if any changes are made. 798 /// 799 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 800 const DataLayout &DL) { 801 // If this is a noop copy, 802 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 803 EVT DstVT = TLI.getValueType(DL, CI->getType()); 804 805 // This is an fp<->int conversion? 806 if (SrcVT.isInteger() != DstVT.isInteger()) 807 return false; 808 809 // If this is an extension, it will be a zero or sign extension, which 810 // isn't a noop. 811 if (SrcVT.bitsLT(DstVT)) return false; 812 813 // If these values will be promoted, find out what they will be promoted 814 // to. This helps us consider truncates on PPC as noop copies when they 815 // are. 816 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 817 TargetLowering::TypePromoteInteger) 818 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 819 if (TLI.getTypeAction(CI->getContext(), DstVT) == 820 TargetLowering::TypePromoteInteger) 821 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 822 823 // If, after promotion, these are the same types, this is a noop copy. 824 if (SrcVT != DstVT) 825 return false; 826 827 return SinkCast(CI); 828 } 829 830 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 831 /// possible. 832 /// 833 /// Return true if any changes were made. 834 static bool CombineUAddWithOverflow(CmpInst *CI) { 835 Value *A, *B; 836 Instruction *AddI; 837 if (!match(CI, 838 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 839 return false; 840 841 Type *Ty = AddI->getType(); 842 if (!isa<IntegerType>(Ty)) 843 return false; 844 845 // We don't want to move around uses of condition values this late, so we we 846 // check if it is legal to create the call to the intrinsic in the basic 847 // block containing the icmp: 848 849 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 850 return false; 851 852 #ifndef NDEBUG 853 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 854 // for now: 855 if (AddI->hasOneUse()) 856 assert(*AddI->user_begin() == CI && "expected!"); 857 #endif 858 859 Module *M = CI->getModule(); 860 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 861 862 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 863 864 auto *UAddWithOverflow = 865 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 866 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 867 auto *Overflow = 868 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 869 870 CI->replaceAllUsesWith(Overflow); 871 AddI->replaceAllUsesWith(UAdd); 872 CI->eraseFromParent(); 873 AddI->eraseFromParent(); 874 return true; 875 } 876 877 /// Sink the given CmpInst into user blocks to reduce the number of virtual 878 /// registers that must be created and coalesced. This is a clear win except on 879 /// targets with multiple condition code registers (PowerPC), where it might 880 /// lose; some adjustment may be wanted there. 881 /// 882 /// Return true if any changes are made. 883 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 884 BasicBlock *DefBB = CI->getParent(); 885 886 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 887 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 888 return false; 889 890 // Only insert a cmp in each block once. 891 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 892 893 bool MadeChange = false; 894 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 895 UI != E; ) { 896 Use &TheUse = UI.getUse(); 897 Instruction *User = cast<Instruction>(*UI); 898 899 // Preincrement use iterator so we don't invalidate it. 900 ++UI; 901 902 // Don't bother for PHI nodes. 903 if (isa<PHINode>(User)) 904 continue; 905 906 // Figure out which BB this cmp is used in. 907 BasicBlock *UserBB = User->getParent(); 908 909 // If this user is in the same block as the cmp, don't change the cmp. 910 if (UserBB == DefBB) continue; 911 912 // If we have already inserted a cmp into this block, use it. 913 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 914 915 if (!InsertedCmp) { 916 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 917 assert(InsertPt != UserBB->end()); 918 InsertedCmp = 919 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 920 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 921 } 922 923 // Replace a use of the cmp with a use of the new cmp. 924 TheUse = InsertedCmp; 925 MadeChange = true; 926 ++NumCmpUses; 927 } 928 929 // If we removed all uses, nuke the cmp. 930 if (CI->use_empty()) { 931 CI->eraseFromParent(); 932 MadeChange = true; 933 } 934 935 return MadeChange; 936 } 937 938 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 939 if (SinkCmpExpression(CI, TLI)) 940 return true; 941 942 if (CombineUAddWithOverflow(CI)) 943 return true; 944 945 return false; 946 } 947 948 /// Check if the candidates could be combined with a shift instruction, which 949 /// includes: 950 /// 1. Truncate instruction 951 /// 2. And instruction and the imm is a mask of the low bits: 952 /// imm & (imm+1) == 0 953 static bool isExtractBitsCandidateUse(Instruction *User) { 954 if (!isa<TruncInst>(User)) { 955 if (User->getOpcode() != Instruction::And || 956 !isa<ConstantInt>(User->getOperand(1))) 957 return false; 958 959 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 960 961 if ((Cimm & (Cimm + 1)).getBoolValue()) 962 return false; 963 } 964 return true; 965 } 966 967 /// Sink both shift and truncate instruction to the use of truncate's BB. 968 static bool 969 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 970 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 971 const TargetLowering &TLI, const DataLayout &DL) { 972 BasicBlock *UserBB = User->getParent(); 973 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 974 TruncInst *TruncI = dyn_cast<TruncInst>(User); 975 bool MadeChange = false; 976 977 for (Value::user_iterator TruncUI = TruncI->user_begin(), 978 TruncE = TruncI->user_end(); 979 TruncUI != TruncE;) { 980 981 Use &TruncTheUse = TruncUI.getUse(); 982 Instruction *TruncUser = cast<Instruction>(*TruncUI); 983 // Preincrement use iterator so we don't invalidate it. 984 985 ++TruncUI; 986 987 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 988 if (!ISDOpcode) 989 continue; 990 991 // If the use is actually a legal node, there will not be an 992 // implicit truncate. 993 // FIXME: always querying the result type is just an 994 // approximation; some nodes' legality is determined by the 995 // operand or other means. There's no good way to find out though. 996 if (TLI.isOperationLegalOrCustom( 997 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 998 continue; 999 1000 // Don't bother for PHI nodes. 1001 if (isa<PHINode>(TruncUser)) 1002 continue; 1003 1004 BasicBlock *TruncUserBB = TruncUser->getParent(); 1005 1006 if (UserBB == TruncUserBB) 1007 continue; 1008 1009 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1010 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1011 1012 if (!InsertedShift && !InsertedTrunc) { 1013 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1014 assert(InsertPt != TruncUserBB->end()); 1015 // Sink the shift 1016 if (ShiftI->getOpcode() == Instruction::AShr) 1017 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1018 "", &*InsertPt); 1019 else 1020 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1021 "", &*InsertPt); 1022 1023 // Sink the trunc 1024 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1025 TruncInsertPt++; 1026 assert(TruncInsertPt != TruncUserBB->end()); 1027 1028 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1029 TruncI->getType(), "", &*TruncInsertPt); 1030 1031 MadeChange = true; 1032 1033 TruncTheUse = InsertedTrunc; 1034 } 1035 } 1036 return MadeChange; 1037 } 1038 1039 /// Sink the shift *right* instruction into user blocks if the uses could 1040 /// potentially be combined with this shift instruction and generate BitExtract 1041 /// instruction. It will only be applied if the architecture supports BitExtract 1042 /// instruction. Here is an example: 1043 /// BB1: 1044 /// %x.extract.shift = lshr i64 %arg1, 32 1045 /// BB2: 1046 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1047 /// ==> 1048 /// 1049 /// BB2: 1050 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1051 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1052 /// 1053 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1054 /// instruction. 1055 /// Return true if any changes are made. 1056 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1057 const TargetLowering &TLI, 1058 const DataLayout &DL) { 1059 BasicBlock *DefBB = ShiftI->getParent(); 1060 1061 /// Only insert instructions in each block once. 1062 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1063 1064 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1065 1066 bool MadeChange = false; 1067 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1068 UI != E;) { 1069 Use &TheUse = UI.getUse(); 1070 Instruction *User = cast<Instruction>(*UI); 1071 // Preincrement use iterator so we don't invalidate it. 1072 ++UI; 1073 1074 // Don't bother for PHI nodes. 1075 if (isa<PHINode>(User)) 1076 continue; 1077 1078 if (!isExtractBitsCandidateUse(User)) 1079 continue; 1080 1081 BasicBlock *UserBB = User->getParent(); 1082 1083 if (UserBB == DefBB) { 1084 // If the shift and truncate instruction are in the same BB. The use of 1085 // the truncate(TruncUse) may still introduce another truncate if not 1086 // legal. In this case, we would like to sink both shift and truncate 1087 // instruction to the BB of TruncUse. 1088 // for example: 1089 // BB1: 1090 // i64 shift.result = lshr i64 opnd, imm 1091 // trunc.result = trunc shift.result to i16 1092 // 1093 // BB2: 1094 // ----> We will have an implicit truncate here if the architecture does 1095 // not have i16 compare. 1096 // cmp i16 trunc.result, opnd2 1097 // 1098 if (isa<TruncInst>(User) && shiftIsLegal 1099 // If the type of the truncate is legal, no trucate will be 1100 // introduced in other basic blocks. 1101 && 1102 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1103 MadeChange = 1104 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1105 1106 continue; 1107 } 1108 // If we have already inserted a shift into this block, use it. 1109 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1110 1111 if (!InsertedShift) { 1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1113 assert(InsertPt != UserBB->end()); 1114 1115 if (ShiftI->getOpcode() == Instruction::AShr) 1116 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1117 "", &*InsertPt); 1118 else 1119 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1120 "", &*InsertPt); 1121 1122 MadeChange = true; 1123 } 1124 1125 // Replace a use of the shift with a use of the new shift. 1126 TheUse = InsertedShift; 1127 } 1128 1129 // If we removed all uses, nuke the shift. 1130 if (ShiftI->use_empty()) 1131 ShiftI->eraseFromParent(); 1132 1133 return MadeChange; 1134 } 1135 1136 // Translate a masked load intrinsic like 1137 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1138 // <16 x i1> %mask, <16 x i32> %passthru) 1139 // to a chain of basic blocks, with loading element one-by-one if 1140 // the appropriate mask bit is set 1141 // 1142 // %1 = bitcast i8* %addr to i32* 1143 // %2 = extractelement <16 x i1> %mask, i32 0 1144 // %3 = icmp eq i1 %2, true 1145 // br i1 %3, label %cond.load, label %else 1146 // 1147 //cond.load: ; preds = %0 1148 // %4 = getelementptr i32* %1, i32 0 1149 // %5 = load i32* %4 1150 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1151 // br label %else 1152 // 1153 //else: ; preds = %0, %cond.load 1154 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1155 // %7 = extractelement <16 x i1> %mask, i32 1 1156 // %8 = icmp eq i1 %7, true 1157 // br i1 %8, label %cond.load1, label %else2 1158 // 1159 //cond.load1: ; preds = %else 1160 // %9 = getelementptr i32* %1, i32 1 1161 // %10 = load i32* %9 1162 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1163 // br label %else2 1164 // 1165 //else2: ; preds = %else, %cond.load1 1166 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1167 // %12 = extractelement <16 x i1> %mask, i32 2 1168 // %13 = icmp eq i1 %12, true 1169 // br i1 %13, label %cond.load4, label %else5 1170 // 1171 static void scalarizeMaskedLoad(CallInst *CI) { 1172 Value *Ptr = CI->getArgOperand(0); 1173 Value *Alignment = CI->getArgOperand(1); 1174 Value *Mask = CI->getArgOperand(2); 1175 Value *Src0 = CI->getArgOperand(3); 1176 1177 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1178 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1179 assert(VecType && "Unexpected return type of masked load intrinsic"); 1180 1181 Type *EltTy = CI->getType()->getVectorElementType(); 1182 1183 IRBuilder<> Builder(CI->getContext()); 1184 Instruction *InsertPt = CI; 1185 BasicBlock *IfBlock = CI->getParent(); 1186 BasicBlock *CondBlock = nullptr; 1187 BasicBlock *PrevIfBlock = CI->getParent(); 1188 1189 Builder.SetInsertPoint(InsertPt); 1190 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1191 1192 // Short-cut if the mask is all-true. 1193 bool IsAllOnesMask = isa<Constant>(Mask) && 1194 cast<Constant>(Mask)->isAllOnesValue(); 1195 1196 if (IsAllOnesMask) { 1197 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1198 CI->replaceAllUsesWith(NewI); 1199 CI->eraseFromParent(); 1200 return; 1201 } 1202 1203 // Adjust alignment for the scalar instruction. 1204 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1205 // Bitcast %addr fron i8* to EltTy* 1206 Type *NewPtrType = 1207 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1208 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1209 unsigned VectorWidth = VecType->getNumElements(); 1210 1211 Value *UndefVal = UndefValue::get(VecType); 1212 1213 // The result vector 1214 Value *VResult = UndefVal; 1215 1216 if (isa<ConstantVector>(Mask)) { 1217 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1218 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1219 continue; 1220 Value *Gep = 1221 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1222 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1223 VResult = Builder.CreateInsertElement(VResult, Load, 1224 Builder.getInt32(Idx)); 1225 } 1226 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1227 CI->replaceAllUsesWith(NewI); 1228 CI->eraseFromParent(); 1229 return; 1230 } 1231 1232 PHINode *Phi = nullptr; 1233 Value *PrevPhi = UndefVal; 1234 1235 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1236 1237 // Fill the "else" block, created in the previous iteration 1238 // 1239 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1240 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1241 // %to_load = icmp eq i1 %mask_1, true 1242 // br i1 %to_load, label %cond.load, label %else 1243 // 1244 if (Idx > 0) { 1245 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1246 Phi->addIncoming(VResult, CondBlock); 1247 Phi->addIncoming(PrevPhi, PrevIfBlock); 1248 PrevPhi = Phi; 1249 VResult = Phi; 1250 } 1251 1252 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1253 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1254 ConstantInt::get(Predicate->getType(), 1)); 1255 1256 // Create "cond" block 1257 // 1258 // %EltAddr = getelementptr i32* %1, i32 0 1259 // %Elt = load i32* %EltAddr 1260 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1261 // 1262 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1263 Builder.SetInsertPoint(InsertPt); 1264 1265 Value *Gep = 1266 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1267 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1268 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1269 1270 // Create "else" block, fill it in the next iteration 1271 BasicBlock *NewIfBlock = 1272 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1273 Builder.SetInsertPoint(InsertPt); 1274 Instruction *OldBr = IfBlock->getTerminator(); 1275 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1276 OldBr->eraseFromParent(); 1277 PrevIfBlock = IfBlock; 1278 IfBlock = NewIfBlock; 1279 } 1280 1281 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1282 Phi->addIncoming(VResult, CondBlock); 1283 Phi->addIncoming(PrevPhi, PrevIfBlock); 1284 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1285 CI->replaceAllUsesWith(NewI); 1286 CI->eraseFromParent(); 1287 } 1288 1289 // Translate a masked store intrinsic, like 1290 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1291 // <16 x i1> %mask) 1292 // to a chain of basic blocks, that stores element one-by-one if 1293 // the appropriate mask bit is set 1294 // 1295 // %1 = bitcast i8* %addr to i32* 1296 // %2 = extractelement <16 x i1> %mask, i32 0 1297 // %3 = icmp eq i1 %2, true 1298 // br i1 %3, label %cond.store, label %else 1299 // 1300 // cond.store: ; preds = %0 1301 // %4 = extractelement <16 x i32> %val, i32 0 1302 // %5 = getelementptr i32* %1, i32 0 1303 // store i32 %4, i32* %5 1304 // br label %else 1305 // 1306 // else: ; preds = %0, %cond.store 1307 // %6 = extractelement <16 x i1> %mask, i32 1 1308 // %7 = icmp eq i1 %6, true 1309 // br i1 %7, label %cond.store1, label %else2 1310 // 1311 // cond.store1: ; preds = %else 1312 // %8 = extractelement <16 x i32> %val, i32 1 1313 // %9 = getelementptr i32* %1, i32 1 1314 // store i32 %8, i32* %9 1315 // br label %else2 1316 // . . . 1317 static void scalarizeMaskedStore(CallInst *CI) { 1318 Value *Src = CI->getArgOperand(0); 1319 Value *Ptr = CI->getArgOperand(1); 1320 Value *Alignment = CI->getArgOperand(2); 1321 Value *Mask = CI->getArgOperand(3); 1322 1323 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1324 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1325 assert(VecType && "Unexpected data type in masked store intrinsic"); 1326 1327 Type *EltTy = VecType->getElementType(); 1328 1329 IRBuilder<> Builder(CI->getContext()); 1330 Instruction *InsertPt = CI; 1331 BasicBlock *IfBlock = CI->getParent(); 1332 Builder.SetInsertPoint(InsertPt); 1333 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1334 1335 // Short-cut if the mask is all-true. 1336 bool IsAllOnesMask = isa<Constant>(Mask) && 1337 cast<Constant>(Mask)->isAllOnesValue(); 1338 1339 if (IsAllOnesMask) { 1340 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1341 CI->eraseFromParent(); 1342 return; 1343 } 1344 1345 // Adjust alignment for the scalar instruction. 1346 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1347 // Bitcast %addr fron i8* to EltTy* 1348 Type *NewPtrType = 1349 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1350 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1351 unsigned VectorWidth = VecType->getNumElements(); 1352 1353 if (isa<ConstantVector>(Mask)) { 1354 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1355 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1356 continue; 1357 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1358 Value *Gep = 1359 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1360 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1361 } 1362 CI->eraseFromParent(); 1363 return; 1364 } 1365 1366 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1367 1368 // Fill the "else" block, created in the previous iteration 1369 // 1370 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1371 // %to_store = icmp eq i1 %mask_1, true 1372 // br i1 %to_store, label %cond.store, label %else 1373 // 1374 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1375 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1376 ConstantInt::get(Predicate->getType(), 1)); 1377 1378 // Create "cond" block 1379 // 1380 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1381 // %EltAddr = getelementptr i32* %1, i32 0 1382 // %store i32 %OneElt, i32* %EltAddr 1383 // 1384 BasicBlock *CondBlock = 1385 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1386 Builder.SetInsertPoint(InsertPt); 1387 1388 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1389 Value *Gep = 1390 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1391 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1392 1393 // Create "else" block, fill it in the next iteration 1394 BasicBlock *NewIfBlock = 1395 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1396 Builder.SetInsertPoint(InsertPt); 1397 Instruction *OldBr = IfBlock->getTerminator(); 1398 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1399 OldBr->eraseFromParent(); 1400 IfBlock = NewIfBlock; 1401 } 1402 CI->eraseFromParent(); 1403 } 1404 1405 // Translate a masked gather intrinsic like 1406 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1407 // <16 x i1> %Mask, <16 x i32> %Src) 1408 // to a chain of basic blocks, with loading element one-by-one if 1409 // the appropriate mask bit is set 1410 // 1411 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1412 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1413 // % ToLoad0 = icmp eq i1 % Mask0, true 1414 // br i1 % ToLoad0, label %cond.load, label %else 1415 // 1416 // cond.load: 1417 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1418 // % Load0 = load i32, i32* % Ptr0, align 4 1419 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1420 // br label %else 1421 // 1422 // else: 1423 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1424 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1425 // % ToLoad1 = icmp eq i1 % Mask1, true 1426 // br i1 % ToLoad1, label %cond.load1, label %else2 1427 // 1428 // cond.load1: 1429 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1430 // % Load1 = load i32, i32* % Ptr1, align 4 1431 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1432 // br label %else2 1433 // . . . 1434 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1435 // ret <16 x i32> %Result 1436 static void scalarizeMaskedGather(CallInst *CI) { 1437 Value *Ptrs = CI->getArgOperand(0); 1438 Value *Alignment = CI->getArgOperand(1); 1439 Value *Mask = CI->getArgOperand(2); 1440 Value *Src0 = CI->getArgOperand(3); 1441 1442 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1443 1444 assert(VecType && "Unexpected return type of masked load intrinsic"); 1445 1446 IRBuilder<> Builder(CI->getContext()); 1447 Instruction *InsertPt = CI; 1448 BasicBlock *IfBlock = CI->getParent(); 1449 BasicBlock *CondBlock = nullptr; 1450 BasicBlock *PrevIfBlock = CI->getParent(); 1451 Builder.SetInsertPoint(InsertPt); 1452 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1453 1454 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1455 1456 Value *UndefVal = UndefValue::get(VecType); 1457 1458 // The result vector 1459 Value *VResult = UndefVal; 1460 unsigned VectorWidth = VecType->getNumElements(); 1461 1462 // Shorten the way if the mask is a vector of constants. 1463 bool IsConstMask = isa<ConstantVector>(Mask); 1464 1465 if (IsConstMask) { 1466 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1467 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1468 continue; 1469 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1470 "Ptr" + Twine(Idx)); 1471 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1472 "Load" + Twine(Idx)); 1473 VResult = Builder.CreateInsertElement(VResult, Load, 1474 Builder.getInt32(Idx), 1475 "Res" + Twine(Idx)); 1476 } 1477 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1478 CI->replaceAllUsesWith(NewI); 1479 CI->eraseFromParent(); 1480 return; 1481 } 1482 1483 PHINode *Phi = nullptr; 1484 Value *PrevPhi = UndefVal; 1485 1486 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1487 1488 // Fill the "else" block, created in the previous iteration 1489 // 1490 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1491 // %ToLoad1 = icmp eq i1 %Mask1, true 1492 // br i1 %ToLoad1, label %cond.load, label %else 1493 // 1494 if (Idx > 0) { 1495 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1496 Phi->addIncoming(VResult, CondBlock); 1497 Phi->addIncoming(PrevPhi, PrevIfBlock); 1498 PrevPhi = Phi; 1499 VResult = Phi; 1500 } 1501 1502 Value *Predicate = Builder.CreateExtractElement(Mask, 1503 Builder.getInt32(Idx), 1504 "Mask" + Twine(Idx)); 1505 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1506 ConstantInt::get(Predicate->getType(), 1), 1507 "ToLoad" + Twine(Idx)); 1508 1509 // Create "cond" block 1510 // 1511 // %EltAddr = getelementptr i32* %1, i32 0 1512 // %Elt = load i32* %EltAddr 1513 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1514 // 1515 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1516 Builder.SetInsertPoint(InsertPt); 1517 1518 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1519 "Ptr" + Twine(Idx)); 1520 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1521 "Load" + Twine(Idx)); 1522 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1523 "Res" + Twine(Idx)); 1524 1525 // Create "else" block, fill it in the next iteration 1526 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1527 Builder.SetInsertPoint(InsertPt); 1528 Instruction *OldBr = IfBlock->getTerminator(); 1529 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1530 OldBr->eraseFromParent(); 1531 PrevIfBlock = IfBlock; 1532 IfBlock = NewIfBlock; 1533 } 1534 1535 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1536 Phi->addIncoming(VResult, CondBlock); 1537 Phi->addIncoming(PrevPhi, PrevIfBlock); 1538 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1539 CI->replaceAllUsesWith(NewI); 1540 CI->eraseFromParent(); 1541 } 1542 1543 // Translate a masked scatter intrinsic, like 1544 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1545 // <16 x i1> %Mask) 1546 // to a chain of basic blocks, that stores element one-by-one if 1547 // the appropriate mask bit is set. 1548 // 1549 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1550 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1551 // % ToStore0 = icmp eq i1 % Mask0, true 1552 // br i1 %ToStore0, label %cond.store, label %else 1553 // 1554 // cond.store: 1555 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1556 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1557 // store i32 %Elt0, i32* % Ptr0, align 4 1558 // br label %else 1559 // 1560 // else: 1561 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1562 // % ToStore1 = icmp eq i1 % Mask1, true 1563 // br i1 % ToStore1, label %cond.store1, label %else2 1564 // 1565 // cond.store1: 1566 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1567 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1568 // store i32 % Elt1, i32* % Ptr1, align 4 1569 // br label %else2 1570 // . . . 1571 static void scalarizeMaskedScatter(CallInst *CI) { 1572 Value *Src = CI->getArgOperand(0); 1573 Value *Ptrs = CI->getArgOperand(1); 1574 Value *Alignment = CI->getArgOperand(2); 1575 Value *Mask = CI->getArgOperand(3); 1576 1577 assert(isa<VectorType>(Src->getType()) && 1578 "Unexpected data type in masked scatter intrinsic"); 1579 assert(isa<VectorType>(Ptrs->getType()) && 1580 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1581 "Vector of pointers is expected in masked scatter intrinsic"); 1582 1583 IRBuilder<> Builder(CI->getContext()); 1584 Instruction *InsertPt = CI; 1585 BasicBlock *IfBlock = CI->getParent(); 1586 Builder.SetInsertPoint(InsertPt); 1587 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1588 1589 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1590 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1591 1592 // Shorten the way if the mask is a vector of constants. 1593 bool IsConstMask = isa<ConstantVector>(Mask); 1594 1595 if (IsConstMask) { 1596 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1597 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1598 continue; 1599 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1600 "Elt" + Twine(Idx)); 1601 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1602 "Ptr" + Twine(Idx)); 1603 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1604 } 1605 CI->eraseFromParent(); 1606 return; 1607 } 1608 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1609 // Fill the "else" block, created in the previous iteration 1610 // 1611 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1612 // % ToStore = icmp eq i1 % Mask1, true 1613 // br i1 % ToStore, label %cond.store, label %else 1614 // 1615 Value *Predicate = Builder.CreateExtractElement(Mask, 1616 Builder.getInt32(Idx), 1617 "Mask" + Twine(Idx)); 1618 Value *Cmp = 1619 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1620 ConstantInt::get(Predicate->getType(), 1), 1621 "ToStore" + Twine(Idx)); 1622 1623 // Create "cond" block 1624 // 1625 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1626 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1627 // %store i32 % Elt1, i32* % Ptr1 1628 // 1629 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1630 Builder.SetInsertPoint(InsertPt); 1631 1632 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1633 "Elt" + Twine(Idx)); 1634 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1635 "Ptr" + Twine(Idx)); 1636 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1637 1638 // Create "else" block, fill it in the next iteration 1639 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1640 Builder.SetInsertPoint(InsertPt); 1641 Instruction *OldBr = IfBlock->getTerminator(); 1642 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1643 OldBr->eraseFromParent(); 1644 IfBlock = NewIfBlock; 1645 } 1646 CI->eraseFromParent(); 1647 } 1648 1649 /// If counting leading or trailing zeros is an expensive operation and a zero 1650 /// input is defined, add a check for zero to avoid calling the intrinsic. 1651 /// 1652 /// We want to transform: 1653 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1654 /// 1655 /// into: 1656 /// entry: 1657 /// %cmpz = icmp eq i64 %A, 0 1658 /// br i1 %cmpz, label %cond.end, label %cond.false 1659 /// cond.false: 1660 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1661 /// br label %cond.end 1662 /// cond.end: 1663 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1664 /// 1665 /// If the transform is performed, return true and set ModifiedDT to true. 1666 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1667 const TargetLowering *TLI, 1668 const DataLayout *DL, 1669 bool &ModifiedDT) { 1670 if (!TLI || !DL) 1671 return false; 1672 1673 // If a zero input is undefined, it doesn't make sense to despeculate that. 1674 if (match(CountZeros->getOperand(1), m_One())) 1675 return false; 1676 1677 // If it's cheap to speculate, there's nothing to do. 1678 auto IntrinsicID = CountZeros->getIntrinsicID(); 1679 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1680 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1681 return false; 1682 1683 // Only handle legal scalar cases. Anything else requires too much work. 1684 Type *Ty = CountZeros->getType(); 1685 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1686 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) 1687 return false; 1688 1689 // The intrinsic will be sunk behind a compare against zero and branch. 1690 BasicBlock *StartBlock = CountZeros->getParent(); 1691 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1692 1693 // Create another block after the count zero intrinsic. A PHI will be added 1694 // in this block to select the result of the intrinsic or the bit-width 1695 // constant if the input to the intrinsic is zero. 1696 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1697 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1698 1699 // Set up a builder to create a compare, conditional branch, and PHI. 1700 IRBuilder<> Builder(CountZeros->getContext()); 1701 Builder.SetInsertPoint(StartBlock->getTerminator()); 1702 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1703 1704 // Replace the unconditional branch that was created by the first split with 1705 // a compare against zero and a conditional branch. 1706 Value *Zero = Constant::getNullValue(Ty); 1707 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1708 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1709 StartBlock->getTerminator()->eraseFromParent(); 1710 1711 // Create a PHI in the end block to select either the output of the intrinsic 1712 // or the bit width of the operand. 1713 Builder.SetInsertPoint(&EndBlock->front()); 1714 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1715 CountZeros->replaceAllUsesWith(PN); 1716 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1717 PN->addIncoming(BitWidth, StartBlock); 1718 PN->addIncoming(CountZeros, CallBlock); 1719 1720 // We are explicitly handling the zero case, so we can set the intrinsic's 1721 // undefined zero argument to 'true'. This will also prevent reprocessing the 1722 // intrinsic; we only despeculate when a zero input is defined. 1723 CountZeros->setArgOperand(1, Builder.getTrue()); 1724 ModifiedDT = true; 1725 return true; 1726 } 1727 1728 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1729 BasicBlock *BB = CI->getParent(); 1730 1731 // Lower inline assembly if we can. 1732 // If we found an inline asm expession, and if the target knows how to 1733 // lower it to normal LLVM code, do so now. 1734 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1735 if (TLI->ExpandInlineAsm(CI)) { 1736 // Avoid invalidating the iterator. 1737 CurInstIterator = BB->begin(); 1738 // Avoid processing instructions out of order, which could cause 1739 // reuse before a value is defined. 1740 SunkAddrs.clear(); 1741 return true; 1742 } 1743 // Sink address computing for memory operands into the block. 1744 if (optimizeInlineAsmInst(CI)) 1745 return true; 1746 } 1747 1748 // Align the pointer arguments to this call if the target thinks it's a good 1749 // idea 1750 unsigned MinSize, PrefAlign; 1751 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1752 for (auto &Arg : CI->arg_operands()) { 1753 // We want to align both objects whose address is used directly and 1754 // objects whose address is used in casts and GEPs, though it only makes 1755 // sense for GEPs if the offset is a multiple of the desired alignment and 1756 // if size - offset meets the size threshold. 1757 if (!Arg->getType()->isPointerTy()) 1758 continue; 1759 APInt Offset(DL->getPointerSizeInBits( 1760 cast<PointerType>(Arg->getType())->getAddressSpace()), 1761 0); 1762 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1763 uint64_t Offset2 = Offset.getLimitedValue(); 1764 if ((Offset2 & (PrefAlign-1)) != 0) 1765 continue; 1766 AllocaInst *AI; 1767 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1768 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1769 AI->setAlignment(PrefAlign); 1770 // Global variables can only be aligned if they are defined in this 1771 // object (i.e. they are uniquely initialized in this object), and 1772 // over-aligning global variables that have an explicit section is 1773 // forbidden. 1774 GlobalVariable *GV; 1775 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1776 GV->getAlignment() < PrefAlign && 1777 DL->getTypeAllocSize(GV->getValueType()) >= 1778 MinSize + Offset2) 1779 GV->setAlignment(PrefAlign); 1780 } 1781 // If this is a memcpy (or similar) then we may be able to improve the 1782 // alignment 1783 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1784 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1785 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1786 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1787 if (Align > MI->getAlignment()) 1788 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1789 } 1790 } 1791 1792 // If we have a cold call site, try to sink addressing computation into the 1793 // cold block. This interacts with our handling for loads and stores to 1794 // ensure that we can fold all uses of a potential addressing computation 1795 // into their uses. TODO: generalize this to work over profiling data 1796 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1797 for (auto &Arg : CI->arg_operands()) { 1798 if (!Arg->getType()->isPointerTy()) 1799 continue; 1800 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1801 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1802 } 1803 1804 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1805 if (II) { 1806 switch (II->getIntrinsicID()) { 1807 default: break; 1808 case Intrinsic::objectsize: { 1809 // Lower all uses of llvm.objectsize.* 1810 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1811 Type *ReturnTy = CI->getType(); 1812 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1813 1814 // Substituting this can cause recursive simplifications, which can 1815 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1816 // happens. 1817 Value *CurValue = &*CurInstIterator; 1818 WeakVH IterHandle(CurValue); 1819 1820 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1821 1822 // If the iterator instruction was recursively deleted, start over at the 1823 // start of the block. 1824 if (IterHandle != CurValue) { 1825 CurInstIterator = BB->begin(); 1826 SunkAddrs.clear(); 1827 } 1828 return true; 1829 } 1830 case Intrinsic::masked_load: { 1831 // Scalarize unsupported vector masked load 1832 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1833 scalarizeMaskedLoad(CI); 1834 ModifiedDT = true; 1835 return true; 1836 } 1837 return false; 1838 } 1839 case Intrinsic::masked_store: { 1840 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1841 scalarizeMaskedStore(CI); 1842 ModifiedDT = true; 1843 return true; 1844 } 1845 return false; 1846 } 1847 case Intrinsic::masked_gather: { 1848 if (!TTI->isLegalMaskedGather(CI->getType())) { 1849 scalarizeMaskedGather(CI); 1850 ModifiedDT = true; 1851 return true; 1852 } 1853 return false; 1854 } 1855 case Intrinsic::masked_scatter: { 1856 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1857 scalarizeMaskedScatter(CI); 1858 ModifiedDT = true; 1859 return true; 1860 } 1861 return false; 1862 } 1863 case Intrinsic::aarch64_stlxr: 1864 case Intrinsic::aarch64_stxr: { 1865 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1866 if (!ExtVal || !ExtVal->hasOneUse() || 1867 ExtVal->getParent() == CI->getParent()) 1868 return false; 1869 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1870 ExtVal->moveBefore(CI); 1871 // Mark this instruction as "inserted by CGP", so that other 1872 // optimizations don't touch it. 1873 InsertedInsts.insert(ExtVal); 1874 return true; 1875 } 1876 case Intrinsic::invariant_group_barrier: 1877 II->replaceAllUsesWith(II->getArgOperand(0)); 1878 II->eraseFromParent(); 1879 return true; 1880 1881 case Intrinsic::cttz: 1882 case Intrinsic::ctlz: 1883 // If counting zeros is expensive, try to avoid it. 1884 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1885 } 1886 1887 if (TLI) { 1888 // Unknown address space. 1889 // TODO: Target hook to pick which address space the intrinsic cares 1890 // about? 1891 unsigned AddrSpace = ~0u; 1892 SmallVector<Value*, 2> PtrOps; 1893 Type *AccessTy; 1894 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1895 while (!PtrOps.empty()) 1896 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1897 return true; 1898 } 1899 } 1900 1901 // From here on out we're working with named functions. 1902 if (!CI->getCalledFunction()) return false; 1903 1904 // Lower all default uses of _chk calls. This is very similar 1905 // to what InstCombineCalls does, but here we are only lowering calls 1906 // to fortified library functions (e.g. __memcpy_chk) that have the default 1907 // "don't know" as the objectsize. Anything else should be left alone. 1908 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1909 if (Value *V = Simplifier.optimizeCall(CI)) { 1910 CI->replaceAllUsesWith(V); 1911 CI->eraseFromParent(); 1912 return true; 1913 } 1914 return false; 1915 } 1916 1917 /// Look for opportunities to duplicate return instructions to the predecessor 1918 /// to enable tail call optimizations. The case it is currently looking for is: 1919 /// @code 1920 /// bb0: 1921 /// %tmp0 = tail call i32 @f0() 1922 /// br label %return 1923 /// bb1: 1924 /// %tmp1 = tail call i32 @f1() 1925 /// br label %return 1926 /// bb2: 1927 /// %tmp2 = tail call i32 @f2() 1928 /// br label %return 1929 /// return: 1930 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1931 /// ret i32 %retval 1932 /// @endcode 1933 /// 1934 /// => 1935 /// 1936 /// @code 1937 /// bb0: 1938 /// %tmp0 = tail call i32 @f0() 1939 /// ret i32 %tmp0 1940 /// bb1: 1941 /// %tmp1 = tail call i32 @f1() 1942 /// ret i32 %tmp1 1943 /// bb2: 1944 /// %tmp2 = tail call i32 @f2() 1945 /// ret i32 %tmp2 1946 /// @endcode 1947 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1948 if (!TLI) 1949 return false; 1950 1951 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1952 if (!RI) 1953 return false; 1954 1955 PHINode *PN = nullptr; 1956 BitCastInst *BCI = nullptr; 1957 Value *V = RI->getReturnValue(); 1958 if (V) { 1959 BCI = dyn_cast<BitCastInst>(V); 1960 if (BCI) 1961 V = BCI->getOperand(0); 1962 1963 PN = dyn_cast<PHINode>(V); 1964 if (!PN) 1965 return false; 1966 } 1967 1968 if (PN && PN->getParent() != BB) 1969 return false; 1970 1971 // It's not safe to eliminate the sign / zero extension of the return value. 1972 // See llvm::isInTailCallPosition(). 1973 const Function *F = BB->getParent(); 1974 AttributeSet CallerAttrs = F->getAttributes(); 1975 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1976 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1977 return false; 1978 1979 // Make sure there are no instructions between the PHI and return, or that the 1980 // return is the first instruction in the block. 1981 if (PN) { 1982 BasicBlock::iterator BI = BB->begin(); 1983 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1984 if (&*BI == BCI) 1985 // Also skip over the bitcast. 1986 ++BI; 1987 if (&*BI != RI) 1988 return false; 1989 } else { 1990 BasicBlock::iterator BI = BB->begin(); 1991 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1992 if (&*BI != RI) 1993 return false; 1994 } 1995 1996 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1997 /// call. 1998 SmallVector<CallInst*, 4> TailCalls; 1999 if (PN) { 2000 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2001 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2002 // Make sure the phi value is indeed produced by the tail call. 2003 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2004 TLI->mayBeEmittedAsTailCall(CI)) 2005 TailCalls.push_back(CI); 2006 } 2007 } else { 2008 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2009 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2010 if (!VisitedBBs.insert(*PI).second) 2011 continue; 2012 2013 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2014 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2015 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2016 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2017 if (RI == RE) 2018 continue; 2019 2020 CallInst *CI = dyn_cast<CallInst>(&*RI); 2021 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 2022 TailCalls.push_back(CI); 2023 } 2024 } 2025 2026 bool Changed = false; 2027 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2028 CallInst *CI = TailCalls[i]; 2029 CallSite CS(CI); 2030 2031 // Conservatively require the attributes of the call to match those of the 2032 // return. Ignore noalias because it doesn't affect the call sequence. 2033 AttributeSet CalleeAttrs = CS.getAttributes(); 2034 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2035 removeAttribute(Attribute::NoAlias) != 2036 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2037 removeAttribute(Attribute::NoAlias)) 2038 continue; 2039 2040 // Make sure the call instruction is followed by an unconditional branch to 2041 // the return block. 2042 BasicBlock *CallBB = CI->getParent(); 2043 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2044 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2045 continue; 2046 2047 // Duplicate the return into CallBB. 2048 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 2049 ModifiedDT = Changed = true; 2050 ++NumRetsDup; 2051 } 2052 2053 // If we eliminated all predecessors of the block, delete the block now. 2054 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2055 BB->eraseFromParent(); 2056 2057 return Changed; 2058 } 2059 2060 //===----------------------------------------------------------------------===// 2061 // Memory Optimization 2062 //===----------------------------------------------------------------------===// 2063 2064 namespace { 2065 2066 /// This is an extended version of TargetLowering::AddrMode 2067 /// which holds actual Value*'s for register values. 2068 struct ExtAddrMode : public TargetLowering::AddrMode { 2069 Value *BaseReg; 2070 Value *ScaledReg; 2071 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2072 void print(raw_ostream &OS) const; 2073 void dump() const; 2074 2075 bool operator==(const ExtAddrMode& O) const { 2076 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2077 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2078 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2079 } 2080 }; 2081 2082 #ifndef NDEBUG 2083 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2084 AM.print(OS); 2085 return OS; 2086 } 2087 #endif 2088 2089 void ExtAddrMode::print(raw_ostream &OS) const { 2090 bool NeedPlus = false; 2091 OS << "["; 2092 if (BaseGV) { 2093 OS << (NeedPlus ? " + " : "") 2094 << "GV:"; 2095 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2096 NeedPlus = true; 2097 } 2098 2099 if (BaseOffs) { 2100 OS << (NeedPlus ? " + " : "") 2101 << BaseOffs; 2102 NeedPlus = true; 2103 } 2104 2105 if (BaseReg) { 2106 OS << (NeedPlus ? " + " : "") 2107 << "Base:"; 2108 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2109 NeedPlus = true; 2110 } 2111 if (Scale) { 2112 OS << (NeedPlus ? " + " : "") 2113 << Scale << "*"; 2114 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2115 } 2116 2117 OS << ']'; 2118 } 2119 2120 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2121 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2122 print(dbgs()); 2123 dbgs() << '\n'; 2124 } 2125 #endif 2126 2127 /// \brief This class provides transaction based operation on the IR. 2128 /// Every change made through this class is recorded in the internal state and 2129 /// can be undone (rollback) until commit is called. 2130 class TypePromotionTransaction { 2131 2132 /// \brief This represents the common interface of the individual transaction. 2133 /// Each class implements the logic for doing one specific modification on 2134 /// the IR via the TypePromotionTransaction. 2135 class TypePromotionAction { 2136 protected: 2137 /// The Instruction modified. 2138 Instruction *Inst; 2139 2140 public: 2141 /// \brief Constructor of the action. 2142 /// The constructor performs the related action on the IR. 2143 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2144 2145 virtual ~TypePromotionAction() {} 2146 2147 /// \brief Undo the modification done by this action. 2148 /// When this method is called, the IR must be in the same state as it was 2149 /// before this action was applied. 2150 /// \pre Undoing the action works if and only if the IR is in the exact same 2151 /// state as it was directly after this action was applied. 2152 virtual void undo() = 0; 2153 2154 /// \brief Advocate every change made by this action. 2155 /// When the results on the IR of the action are to be kept, it is important 2156 /// to call this function, otherwise hidden information may be kept forever. 2157 virtual void commit() { 2158 // Nothing to be done, this action is not doing anything. 2159 } 2160 }; 2161 2162 /// \brief Utility to remember the position of an instruction. 2163 class InsertionHandler { 2164 /// Position of an instruction. 2165 /// Either an instruction: 2166 /// - Is the first in a basic block: BB is used. 2167 /// - Has a previous instructon: PrevInst is used. 2168 union { 2169 Instruction *PrevInst; 2170 BasicBlock *BB; 2171 } Point; 2172 /// Remember whether or not the instruction had a previous instruction. 2173 bool HasPrevInstruction; 2174 2175 public: 2176 /// \brief Record the position of \p Inst. 2177 InsertionHandler(Instruction *Inst) { 2178 BasicBlock::iterator It = Inst->getIterator(); 2179 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2180 if (HasPrevInstruction) 2181 Point.PrevInst = &*--It; 2182 else 2183 Point.BB = Inst->getParent(); 2184 } 2185 2186 /// \brief Insert \p Inst at the recorded position. 2187 void insert(Instruction *Inst) { 2188 if (HasPrevInstruction) { 2189 if (Inst->getParent()) 2190 Inst->removeFromParent(); 2191 Inst->insertAfter(Point.PrevInst); 2192 } else { 2193 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2194 if (Inst->getParent()) 2195 Inst->moveBefore(Position); 2196 else 2197 Inst->insertBefore(Position); 2198 } 2199 } 2200 }; 2201 2202 /// \brief Move an instruction before another. 2203 class InstructionMoveBefore : public TypePromotionAction { 2204 /// Original position of the instruction. 2205 InsertionHandler Position; 2206 2207 public: 2208 /// \brief Move \p Inst before \p Before. 2209 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2210 : TypePromotionAction(Inst), Position(Inst) { 2211 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2212 Inst->moveBefore(Before); 2213 } 2214 2215 /// \brief Move the instruction back to its original position. 2216 void undo() override { 2217 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2218 Position.insert(Inst); 2219 } 2220 }; 2221 2222 /// \brief Set the operand of an instruction with a new value. 2223 class OperandSetter : public TypePromotionAction { 2224 /// Original operand of the instruction. 2225 Value *Origin; 2226 /// Index of the modified instruction. 2227 unsigned Idx; 2228 2229 public: 2230 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2231 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2232 : TypePromotionAction(Inst), Idx(Idx) { 2233 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2234 << "for:" << *Inst << "\n" 2235 << "with:" << *NewVal << "\n"); 2236 Origin = Inst->getOperand(Idx); 2237 Inst->setOperand(Idx, NewVal); 2238 } 2239 2240 /// \brief Restore the original value of the instruction. 2241 void undo() override { 2242 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2243 << "for: " << *Inst << "\n" 2244 << "with: " << *Origin << "\n"); 2245 Inst->setOperand(Idx, Origin); 2246 } 2247 }; 2248 2249 /// \brief Hide the operands of an instruction. 2250 /// Do as if this instruction was not using any of its operands. 2251 class OperandsHider : public TypePromotionAction { 2252 /// The list of original operands. 2253 SmallVector<Value *, 4> OriginalValues; 2254 2255 public: 2256 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2257 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2258 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2259 unsigned NumOpnds = Inst->getNumOperands(); 2260 OriginalValues.reserve(NumOpnds); 2261 for (unsigned It = 0; It < NumOpnds; ++It) { 2262 // Save the current operand. 2263 Value *Val = Inst->getOperand(It); 2264 OriginalValues.push_back(Val); 2265 // Set a dummy one. 2266 // We could use OperandSetter here, but that would imply an overhead 2267 // that we are not willing to pay. 2268 Inst->setOperand(It, UndefValue::get(Val->getType())); 2269 } 2270 } 2271 2272 /// \brief Restore the original list of uses. 2273 void undo() override { 2274 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2275 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2276 Inst->setOperand(It, OriginalValues[It]); 2277 } 2278 }; 2279 2280 /// \brief Build a truncate instruction. 2281 class TruncBuilder : public TypePromotionAction { 2282 Value *Val; 2283 public: 2284 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2285 /// result. 2286 /// trunc Opnd to Ty. 2287 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2288 IRBuilder<> Builder(Opnd); 2289 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2290 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2291 } 2292 2293 /// \brief Get the built value. 2294 Value *getBuiltValue() { return Val; } 2295 2296 /// \brief Remove the built instruction. 2297 void undo() override { 2298 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2299 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2300 IVal->eraseFromParent(); 2301 } 2302 }; 2303 2304 /// \brief Build a sign extension instruction. 2305 class SExtBuilder : public TypePromotionAction { 2306 Value *Val; 2307 public: 2308 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2309 /// result. 2310 /// sext Opnd to Ty. 2311 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2312 : TypePromotionAction(InsertPt) { 2313 IRBuilder<> Builder(InsertPt); 2314 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2315 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2316 } 2317 2318 /// \brief Get the built value. 2319 Value *getBuiltValue() { return Val; } 2320 2321 /// \brief Remove the built instruction. 2322 void undo() override { 2323 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2324 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2325 IVal->eraseFromParent(); 2326 } 2327 }; 2328 2329 /// \brief Build a zero extension instruction. 2330 class ZExtBuilder : public TypePromotionAction { 2331 Value *Val; 2332 public: 2333 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2334 /// result. 2335 /// zext Opnd to Ty. 2336 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2337 : TypePromotionAction(InsertPt) { 2338 IRBuilder<> Builder(InsertPt); 2339 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2340 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2341 } 2342 2343 /// \brief Get the built value. 2344 Value *getBuiltValue() { return Val; } 2345 2346 /// \brief Remove the built instruction. 2347 void undo() override { 2348 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2349 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2350 IVal->eraseFromParent(); 2351 } 2352 }; 2353 2354 /// \brief Mutate an instruction to another type. 2355 class TypeMutator : public TypePromotionAction { 2356 /// Record the original type. 2357 Type *OrigTy; 2358 2359 public: 2360 /// \brief Mutate the type of \p Inst into \p NewTy. 2361 TypeMutator(Instruction *Inst, Type *NewTy) 2362 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2363 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2364 << "\n"); 2365 Inst->mutateType(NewTy); 2366 } 2367 2368 /// \brief Mutate the instruction back to its original type. 2369 void undo() override { 2370 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2371 << "\n"); 2372 Inst->mutateType(OrigTy); 2373 } 2374 }; 2375 2376 /// \brief Replace the uses of an instruction by another instruction. 2377 class UsesReplacer : public TypePromotionAction { 2378 /// Helper structure to keep track of the replaced uses. 2379 struct InstructionAndIdx { 2380 /// The instruction using the instruction. 2381 Instruction *Inst; 2382 /// The index where this instruction is used for Inst. 2383 unsigned Idx; 2384 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2385 : Inst(Inst), Idx(Idx) {} 2386 }; 2387 2388 /// Keep track of the original uses (pair Instruction, Index). 2389 SmallVector<InstructionAndIdx, 4> OriginalUses; 2390 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2391 2392 public: 2393 /// \brief Replace all the use of \p Inst by \p New. 2394 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2395 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2396 << "\n"); 2397 // Record the original uses. 2398 for (Use &U : Inst->uses()) { 2399 Instruction *UserI = cast<Instruction>(U.getUser()); 2400 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2401 } 2402 // Now, we can replace the uses. 2403 Inst->replaceAllUsesWith(New); 2404 } 2405 2406 /// \brief Reassign the original uses of Inst to Inst. 2407 void undo() override { 2408 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2409 for (use_iterator UseIt = OriginalUses.begin(), 2410 EndIt = OriginalUses.end(); 2411 UseIt != EndIt; ++UseIt) { 2412 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2413 } 2414 } 2415 }; 2416 2417 /// \brief Remove an instruction from the IR. 2418 class InstructionRemover : public TypePromotionAction { 2419 /// Original position of the instruction. 2420 InsertionHandler Inserter; 2421 /// Helper structure to hide all the link to the instruction. In other 2422 /// words, this helps to do as if the instruction was removed. 2423 OperandsHider Hider; 2424 /// Keep track of the uses replaced, if any. 2425 UsesReplacer *Replacer; 2426 2427 public: 2428 /// \brief Remove all reference of \p Inst and optinally replace all its 2429 /// uses with New. 2430 /// \pre If !Inst->use_empty(), then New != nullptr 2431 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2432 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2433 Replacer(nullptr) { 2434 if (New) 2435 Replacer = new UsesReplacer(Inst, New); 2436 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2437 Inst->removeFromParent(); 2438 } 2439 2440 ~InstructionRemover() override { delete Replacer; } 2441 2442 /// \brief Really remove the instruction. 2443 void commit() override { delete Inst; } 2444 2445 /// \brief Resurrect the instruction and reassign it to the proper uses if 2446 /// new value was provided when build this action. 2447 void undo() override { 2448 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2449 Inserter.insert(Inst); 2450 if (Replacer) 2451 Replacer->undo(); 2452 Hider.undo(); 2453 } 2454 }; 2455 2456 public: 2457 /// Restoration point. 2458 /// The restoration point is a pointer to an action instead of an iterator 2459 /// because the iterator may be invalidated but not the pointer. 2460 typedef const TypePromotionAction *ConstRestorationPt; 2461 /// Advocate every changes made in that transaction. 2462 void commit(); 2463 /// Undo all the changes made after the given point. 2464 void rollback(ConstRestorationPt Point); 2465 /// Get the current restoration point. 2466 ConstRestorationPt getRestorationPoint() const; 2467 2468 /// \name API for IR modification with state keeping to support rollback. 2469 /// @{ 2470 /// Same as Instruction::setOperand. 2471 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2472 /// Same as Instruction::eraseFromParent. 2473 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2474 /// Same as Value::replaceAllUsesWith. 2475 void replaceAllUsesWith(Instruction *Inst, Value *New); 2476 /// Same as Value::mutateType. 2477 void mutateType(Instruction *Inst, Type *NewTy); 2478 /// Same as IRBuilder::createTrunc. 2479 Value *createTrunc(Instruction *Opnd, Type *Ty); 2480 /// Same as IRBuilder::createSExt. 2481 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2482 /// Same as IRBuilder::createZExt. 2483 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2484 /// Same as Instruction::moveBefore. 2485 void moveBefore(Instruction *Inst, Instruction *Before); 2486 /// @} 2487 2488 private: 2489 /// The ordered list of actions made so far. 2490 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2491 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2492 }; 2493 2494 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2495 Value *NewVal) { 2496 Actions.push_back( 2497 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2498 } 2499 2500 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2501 Value *NewVal) { 2502 Actions.push_back( 2503 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2504 } 2505 2506 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2507 Value *New) { 2508 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2509 } 2510 2511 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2512 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2513 } 2514 2515 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2516 Type *Ty) { 2517 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2518 Value *Val = Ptr->getBuiltValue(); 2519 Actions.push_back(std::move(Ptr)); 2520 return Val; 2521 } 2522 2523 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2524 Value *Opnd, Type *Ty) { 2525 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2526 Value *Val = Ptr->getBuiltValue(); 2527 Actions.push_back(std::move(Ptr)); 2528 return Val; 2529 } 2530 2531 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2532 Value *Opnd, Type *Ty) { 2533 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2534 Value *Val = Ptr->getBuiltValue(); 2535 Actions.push_back(std::move(Ptr)); 2536 return Val; 2537 } 2538 2539 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2540 Instruction *Before) { 2541 Actions.push_back( 2542 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2543 } 2544 2545 TypePromotionTransaction::ConstRestorationPt 2546 TypePromotionTransaction::getRestorationPoint() const { 2547 return !Actions.empty() ? Actions.back().get() : nullptr; 2548 } 2549 2550 void TypePromotionTransaction::commit() { 2551 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2552 ++It) 2553 (*It)->commit(); 2554 Actions.clear(); 2555 } 2556 2557 void TypePromotionTransaction::rollback( 2558 TypePromotionTransaction::ConstRestorationPt Point) { 2559 while (!Actions.empty() && Point != Actions.back().get()) { 2560 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2561 Curr->undo(); 2562 } 2563 } 2564 2565 /// \brief A helper class for matching addressing modes. 2566 /// 2567 /// This encapsulates the logic for matching the target-legal addressing modes. 2568 class AddressingModeMatcher { 2569 SmallVectorImpl<Instruction*> &AddrModeInsts; 2570 const TargetMachine &TM; 2571 const TargetLowering &TLI; 2572 const DataLayout &DL; 2573 2574 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2575 /// the memory instruction that we're computing this address for. 2576 Type *AccessTy; 2577 unsigned AddrSpace; 2578 Instruction *MemoryInst; 2579 2580 /// This is the addressing mode that we're building up. This is 2581 /// part of the return value of this addressing mode matching stuff. 2582 ExtAddrMode &AddrMode; 2583 2584 /// The instructions inserted by other CodeGenPrepare optimizations. 2585 const SetOfInstrs &InsertedInsts; 2586 /// A map from the instructions to their type before promotion. 2587 InstrToOrigTy &PromotedInsts; 2588 /// The ongoing transaction where every action should be registered. 2589 TypePromotionTransaction &TPT; 2590 2591 /// This is set to true when we should not do profitability checks. 2592 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2593 bool IgnoreProfitability; 2594 2595 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2596 const TargetMachine &TM, Type *AT, unsigned AS, 2597 Instruction *MI, ExtAddrMode &AM, 2598 const SetOfInstrs &InsertedInsts, 2599 InstrToOrigTy &PromotedInsts, 2600 TypePromotionTransaction &TPT) 2601 : AddrModeInsts(AMI), TM(TM), 2602 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2603 ->getTargetLowering()), 2604 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2605 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2606 PromotedInsts(PromotedInsts), TPT(TPT) { 2607 IgnoreProfitability = false; 2608 } 2609 public: 2610 2611 /// Find the maximal addressing mode that a load/store of V can fold, 2612 /// give an access type of AccessTy. This returns a list of involved 2613 /// instructions in AddrModeInsts. 2614 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2615 /// optimizations. 2616 /// \p PromotedInsts maps the instructions to their type before promotion. 2617 /// \p The ongoing transaction where every action should be registered. 2618 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2619 Instruction *MemoryInst, 2620 SmallVectorImpl<Instruction*> &AddrModeInsts, 2621 const TargetMachine &TM, 2622 const SetOfInstrs &InsertedInsts, 2623 InstrToOrigTy &PromotedInsts, 2624 TypePromotionTransaction &TPT) { 2625 ExtAddrMode Result; 2626 2627 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2628 MemoryInst, Result, InsertedInsts, 2629 PromotedInsts, TPT).matchAddr(V, 0); 2630 (void)Success; assert(Success && "Couldn't select *anything*?"); 2631 return Result; 2632 } 2633 private: 2634 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2635 bool matchAddr(Value *V, unsigned Depth); 2636 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2637 bool *MovedAway = nullptr); 2638 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2639 ExtAddrMode &AMBefore, 2640 ExtAddrMode &AMAfter); 2641 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2642 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2643 Value *PromotedOperand) const; 2644 }; 2645 2646 /// Try adding ScaleReg*Scale to the current addressing mode. 2647 /// Return true and update AddrMode if this addr mode is legal for the target, 2648 /// false if not. 2649 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2650 unsigned Depth) { 2651 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2652 // mode. Just process that directly. 2653 if (Scale == 1) 2654 return matchAddr(ScaleReg, Depth); 2655 2656 // If the scale is 0, it takes nothing to add this. 2657 if (Scale == 0) 2658 return true; 2659 2660 // If we already have a scale of this value, we can add to it, otherwise, we 2661 // need an available scale field. 2662 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2663 return false; 2664 2665 ExtAddrMode TestAddrMode = AddrMode; 2666 2667 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2668 // [A+B + A*7] -> [B+A*8]. 2669 TestAddrMode.Scale += Scale; 2670 TestAddrMode.ScaledReg = ScaleReg; 2671 2672 // If the new address isn't legal, bail out. 2673 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2674 return false; 2675 2676 // It was legal, so commit it. 2677 AddrMode = TestAddrMode; 2678 2679 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2680 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2681 // X*Scale + C*Scale to addr mode. 2682 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2683 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2684 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2685 TestAddrMode.ScaledReg = AddLHS; 2686 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2687 2688 // If this addressing mode is legal, commit it and remember that we folded 2689 // this instruction. 2690 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2691 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2692 AddrMode = TestAddrMode; 2693 return true; 2694 } 2695 } 2696 2697 // Otherwise, not (x+c)*scale, just return what we have. 2698 return true; 2699 } 2700 2701 /// This is a little filter, which returns true if an addressing computation 2702 /// involving I might be folded into a load/store accessing it. 2703 /// This doesn't need to be perfect, but needs to accept at least 2704 /// the set of instructions that MatchOperationAddr can. 2705 static bool MightBeFoldableInst(Instruction *I) { 2706 switch (I->getOpcode()) { 2707 case Instruction::BitCast: 2708 case Instruction::AddrSpaceCast: 2709 // Don't touch identity bitcasts. 2710 if (I->getType() == I->getOperand(0)->getType()) 2711 return false; 2712 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2713 case Instruction::PtrToInt: 2714 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2715 return true; 2716 case Instruction::IntToPtr: 2717 // We know the input is intptr_t, so this is foldable. 2718 return true; 2719 case Instruction::Add: 2720 return true; 2721 case Instruction::Mul: 2722 case Instruction::Shl: 2723 // Can only handle X*C and X << C. 2724 return isa<ConstantInt>(I->getOperand(1)); 2725 case Instruction::GetElementPtr: 2726 return true; 2727 default: 2728 return false; 2729 } 2730 } 2731 2732 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2733 /// \note \p Val is assumed to be the product of some type promotion. 2734 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2735 /// to be legal, as the non-promoted value would have had the same state. 2736 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2737 const DataLayout &DL, Value *Val) { 2738 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2739 if (!PromotedInst) 2740 return false; 2741 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2742 // If the ISDOpcode is undefined, it was undefined before the promotion. 2743 if (!ISDOpcode) 2744 return true; 2745 // Otherwise, check if the promoted instruction is legal or not. 2746 return TLI.isOperationLegalOrCustom( 2747 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2748 } 2749 2750 /// \brief Hepler class to perform type promotion. 2751 class TypePromotionHelper { 2752 /// \brief Utility function to check whether or not a sign or zero extension 2753 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2754 /// either using the operands of \p Inst or promoting \p Inst. 2755 /// The type of the extension is defined by \p IsSExt. 2756 /// In other words, check if: 2757 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2758 /// #1 Promotion applies: 2759 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2760 /// #2 Operand reuses: 2761 /// ext opnd1 to ConsideredExtType. 2762 /// \p PromotedInsts maps the instructions to their type before promotion. 2763 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2764 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2765 2766 /// \brief Utility function to determine if \p OpIdx should be promoted when 2767 /// promoting \p Inst. 2768 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2769 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2770 } 2771 2772 /// \brief Utility function to promote the operand of \p Ext when this 2773 /// operand is a promotable trunc or sext or zext. 2774 /// \p PromotedInsts maps the instructions to their type before promotion. 2775 /// \p CreatedInstsCost[out] contains the cost of all instructions 2776 /// created to promote the operand of Ext. 2777 /// Newly added extensions are inserted in \p Exts. 2778 /// Newly added truncates are inserted in \p Truncs. 2779 /// Should never be called directly. 2780 /// \return The promoted value which is used instead of Ext. 2781 static Value *promoteOperandForTruncAndAnyExt( 2782 Instruction *Ext, TypePromotionTransaction &TPT, 2783 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2784 SmallVectorImpl<Instruction *> *Exts, 2785 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2786 2787 /// \brief Utility function to promote the operand of \p Ext when this 2788 /// operand is promotable and is not a supported trunc or sext. 2789 /// \p PromotedInsts maps the instructions to their type before promotion. 2790 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2791 /// created to promote the operand of Ext. 2792 /// Newly added extensions are inserted in \p Exts. 2793 /// Newly added truncates are inserted in \p Truncs. 2794 /// Should never be called directly. 2795 /// \return The promoted value which is used instead of Ext. 2796 static Value *promoteOperandForOther(Instruction *Ext, 2797 TypePromotionTransaction &TPT, 2798 InstrToOrigTy &PromotedInsts, 2799 unsigned &CreatedInstsCost, 2800 SmallVectorImpl<Instruction *> *Exts, 2801 SmallVectorImpl<Instruction *> *Truncs, 2802 const TargetLowering &TLI, bool IsSExt); 2803 2804 /// \see promoteOperandForOther. 2805 static Value *signExtendOperandForOther( 2806 Instruction *Ext, TypePromotionTransaction &TPT, 2807 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2808 SmallVectorImpl<Instruction *> *Exts, 2809 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2810 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2811 Exts, Truncs, TLI, true); 2812 } 2813 2814 /// \see promoteOperandForOther. 2815 static Value *zeroExtendOperandForOther( 2816 Instruction *Ext, TypePromotionTransaction &TPT, 2817 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2818 SmallVectorImpl<Instruction *> *Exts, 2819 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2820 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2821 Exts, Truncs, TLI, false); 2822 } 2823 2824 public: 2825 /// Type for the utility function that promotes the operand of Ext. 2826 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2827 InstrToOrigTy &PromotedInsts, 2828 unsigned &CreatedInstsCost, 2829 SmallVectorImpl<Instruction *> *Exts, 2830 SmallVectorImpl<Instruction *> *Truncs, 2831 const TargetLowering &TLI); 2832 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2833 /// action to promote the operand of \p Ext instead of using Ext. 2834 /// \return NULL if no promotable action is possible with the current 2835 /// sign extension. 2836 /// \p InsertedInsts keeps track of all the instructions inserted by the 2837 /// other CodeGenPrepare optimizations. This information is important 2838 /// because we do not want to promote these instructions as CodeGenPrepare 2839 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2840 /// \p PromotedInsts maps the instructions to their type before promotion. 2841 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2842 const TargetLowering &TLI, 2843 const InstrToOrigTy &PromotedInsts); 2844 }; 2845 2846 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2847 Type *ConsideredExtType, 2848 const InstrToOrigTy &PromotedInsts, 2849 bool IsSExt) { 2850 // The promotion helper does not know how to deal with vector types yet. 2851 // To be able to fix that, we would need to fix the places where we 2852 // statically extend, e.g., constants and such. 2853 if (Inst->getType()->isVectorTy()) 2854 return false; 2855 2856 // We can always get through zext. 2857 if (isa<ZExtInst>(Inst)) 2858 return true; 2859 2860 // sext(sext) is ok too. 2861 if (IsSExt && isa<SExtInst>(Inst)) 2862 return true; 2863 2864 // We can get through binary operator, if it is legal. In other words, the 2865 // binary operator must have a nuw or nsw flag. 2866 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2867 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2868 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2869 (IsSExt && BinOp->hasNoSignedWrap()))) 2870 return true; 2871 2872 // Check if we can do the following simplification. 2873 // ext(trunc(opnd)) --> ext(opnd) 2874 if (!isa<TruncInst>(Inst)) 2875 return false; 2876 2877 Value *OpndVal = Inst->getOperand(0); 2878 // Check if we can use this operand in the extension. 2879 // If the type is larger than the result type of the extension, we cannot. 2880 if (!OpndVal->getType()->isIntegerTy() || 2881 OpndVal->getType()->getIntegerBitWidth() > 2882 ConsideredExtType->getIntegerBitWidth()) 2883 return false; 2884 2885 // If the operand of the truncate is not an instruction, we will not have 2886 // any information on the dropped bits. 2887 // (Actually we could for constant but it is not worth the extra logic). 2888 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2889 if (!Opnd) 2890 return false; 2891 2892 // Check if the source of the type is narrow enough. 2893 // I.e., check that trunc just drops extended bits of the same kind of 2894 // the extension. 2895 // #1 get the type of the operand and check the kind of the extended bits. 2896 const Type *OpndType; 2897 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2898 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2899 OpndType = It->second.getPointer(); 2900 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2901 OpndType = Opnd->getOperand(0)->getType(); 2902 else 2903 return false; 2904 2905 // #2 check that the truncate just drops extended bits. 2906 return Inst->getType()->getIntegerBitWidth() >= 2907 OpndType->getIntegerBitWidth(); 2908 } 2909 2910 TypePromotionHelper::Action TypePromotionHelper::getAction( 2911 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2912 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2913 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2914 "Unexpected instruction type"); 2915 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2916 Type *ExtTy = Ext->getType(); 2917 bool IsSExt = isa<SExtInst>(Ext); 2918 // If the operand of the extension is not an instruction, we cannot 2919 // get through. 2920 // If it, check we can get through. 2921 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2922 return nullptr; 2923 2924 // Do not promote if the operand has been added by codegenprepare. 2925 // Otherwise, it means we are undoing an optimization that is likely to be 2926 // redone, thus causing potential infinite loop. 2927 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2928 return nullptr; 2929 2930 // SExt or Trunc instructions. 2931 // Return the related handler. 2932 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2933 isa<ZExtInst>(ExtOpnd)) 2934 return promoteOperandForTruncAndAnyExt; 2935 2936 // Regular instruction. 2937 // Abort early if we will have to insert non-free instructions. 2938 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2939 return nullptr; 2940 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2941 } 2942 2943 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2944 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2945 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2946 SmallVectorImpl<Instruction *> *Exts, 2947 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2948 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2949 // get through it and this method should not be called. 2950 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2951 Value *ExtVal = SExt; 2952 bool HasMergedNonFreeExt = false; 2953 if (isa<ZExtInst>(SExtOpnd)) { 2954 // Replace s|zext(zext(opnd)) 2955 // => zext(opnd). 2956 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2957 Value *ZExt = 2958 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2959 TPT.replaceAllUsesWith(SExt, ZExt); 2960 TPT.eraseInstruction(SExt); 2961 ExtVal = ZExt; 2962 } else { 2963 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2964 // => z|sext(opnd). 2965 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2966 } 2967 CreatedInstsCost = 0; 2968 2969 // Remove dead code. 2970 if (SExtOpnd->use_empty()) 2971 TPT.eraseInstruction(SExtOpnd); 2972 2973 // Check if the extension is still needed. 2974 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2975 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2976 if (ExtInst) { 2977 if (Exts) 2978 Exts->push_back(ExtInst); 2979 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2980 } 2981 return ExtVal; 2982 } 2983 2984 // At this point we have: ext ty opnd to ty. 2985 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2986 Value *NextVal = ExtInst->getOperand(0); 2987 TPT.eraseInstruction(ExtInst, NextVal); 2988 return NextVal; 2989 } 2990 2991 Value *TypePromotionHelper::promoteOperandForOther( 2992 Instruction *Ext, TypePromotionTransaction &TPT, 2993 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2994 SmallVectorImpl<Instruction *> *Exts, 2995 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2996 bool IsSExt) { 2997 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2998 // get through it and this method should not be called. 2999 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3000 CreatedInstsCost = 0; 3001 if (!ExtOpnd->hasOneUse()) { 3002 // ExtOpnd will be promoted. 3003 // All its uses, but Ext, will need to use a truncated value of the 3004 // promoted version. 3005 // Create the truncate now. 3006 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3007 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3008 ITrunc->removeFromParent(); 3009 // Insert it just after the definition. 3010 ITrunc->insertAfter(ExtOpnd); 3011 if (Truncs) 3012 Truncs->push_back(ITrunc); 3013 } 3014 3015 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3016 // Restore the operand of Ext (which has been replaced by the previous call 3017 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3018 TPT.setOperand(Ext, 0, ExtOpnd); 3019 } 3020 3021 // Get through the Instruction: 3022 // 1. Update its type. 3023 // 2. Replace the uses of Ext by Inst. 3024 // 3. Extend each operand that needs to be extended. 3025 3026 // Remember the original type of the instruction before promotion. 3027 // This is useful to know that the high bits are sign extended bits. 3028 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3029 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3030 // Step #1. 3031 TPT.mutateType(ExtOpnd, Ext->getType()); 3032 // Step #2. 3033 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3034 // Step #3. 3035 Instruction *ExtForOpnd = Ext; 3036 3037 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3038 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3039 ++OpIdx) { 3040 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3041 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3042 !shouldExtOperand(ExtOpnd, OpIdx)) { 3043 DEBUG(dbgs() << "No need to propagate\n"); 3044 continue; 3045 } 3046 // Check if we can statically extend the operand. 3047 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3048 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3049 DEBUG(dbgs() << "Statically extend\n"); 3050 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3051 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3052 : Cst->getValue().zext(BitWidth); 3053 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3054 continue; 3055 } 3056 // UndefValue are typed, so we have to statically sign extend them. 3057 if (isa<UndefValue>(Opnd)) { 3058 DEBUG(dbgs() << "Statically extend\n"); 3059 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3060 continue; 3061 } 3062 3063 // Otherwise we have to explicity sign extend the operand. 3064 // Check if Ext was reused to extend an operand. 3065 if (!ExtForOpnd) { 3066 // If yes, create a new one. 3067 DEBUG(dbgs() << "More operands to ext\n"); 3068 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3069 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3070 if (!isa<Instruction>(ValForExtOpnd)) { 3071 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3072 continue; 3073 } 3074 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3075 } 3076 if (Exts) 3077 Exts->push_back(ExtForOpnd); 3078 TPT.setOperand(ExtForOpnd, 0, Opnd); 3079 3080 // Move the sign extension before the insertion point. 3081 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3082 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3083 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3084 // If more sext are required, new instructions will have to be created. 3085 ExtForOpnd = nullptr; 3086 } 3087 if (ExtForOpnd == Ext) { 3088 DEBUG(dbgs() << "Extension is useless now\n"); 3089 TPT.eraseInstruction(Ext); 3090 } 3091 return ExtOpnd; 3092 } 3093 3094 /// Check whether or not promoting an instruction to a wider type is profitable. 3095 /// \p NewCost gives the cost of extension instructions created by the 3096 /// promotion. 3097 /// \p OldCost gives the cost of extension instructions before the promotion 3098 /// plus the number of instructions that have been 3099 /// matched in the addressing mode the promotion. 3100 /// \p PromotedOperand is the value that has been promoted. 3101 /// \return True if the promotion is profitable, false otherwise. 3102 bool AddressingModeMatcher::isPromotionProfitable( 3103 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3104 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3105 // The cost of the new extensions is greater than the cost of the 3106 // old extension plus what we folded. 3107 // This is not profitable. 3108 if (NewCost > OldCost) 3109 return false; 3110 if (NewCost < OldCost) 3111 return true; 3112 // The promotion is neutral but it may help folding the sign extension in 3113 // loads for instance. 3114 // Check that we did not create an illegal instruction. 3115 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3116 } 3117 3118 /// Given an instruction or constant expr, see if we can fold the operation 3119 /// into the addressing mode. If so, update the addressing mode and return 3120 /// true, otherwise return false without modifying AddrMode. 3121 /// If \p MovedAway is not NULL, it contains the information of whether or 3122 /// not AddrInst has to be folded into the addressing mode on success. 3123 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3124 /// because it has been moved away. 3125 /// Thus AddrInst must not be added in the matched instructions. 3126 /// This state can happen when AddrInst is a sext, since it may be moved away. 3127 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3128 /// not be referenced anymore. 3129 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3130 unsigned Depth, 3131 bool *MovedAway) { 3132 // Avoid exponential behavior on extremely deep expression trees. 3133 if (Depth >= 5) return false; 3134 3135 // By default, all matched instructions stay in place. 3136 if (MovedAway) 3137 *MovedAway = false; 3138 3139 switch (Opcode) { 3140 case Instruction::PtrToInt: 3141 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3142 return matchAddr(AddrInst->getOperand(0), Depth); 3143 case Instruction::IntToPtr: { 3144 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3145 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3146 // This inttoptr is a no-op if the integer type is pointer sized. 3147 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3148 return matchAddr(AddrInst->getOperand(0), Depth); 3149 return false; 3150 } 3151 case Instruction::BitCast: 3152 // BitCast is always a noop, and we can handle it as long as it is 3153 // int->int or pointer->pointer (we don't want int<->fp or something). 3154 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3155 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3156 // Don't touch identity bitcasts. These were probably put here by LSR, 3157 // and we don't want to mess around with them. Assume it knows what it 3158 // is doing. 3159 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3160 return matchAddr(AddrInst->getOperand(0), Depth); 3161 return false; 3162 case Instruction::AddrSpaceCast: { 3163 unsigned SrcAS 3164 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3165 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3166 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3167 return matchAddr(AddrInst->getOperand(0), Depth); 3168 return false; 3169 } 3170 case Instruction::Add: { 3171 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3172 ExtAddrMode BackupAddrMode = AddrMode; 3173 unsigned OldSize = AddrModeInsts.size(); 3174 // Start a transaction at this point. 3175 // The LHS may match but not the RHS. 3176 // Therefore, we need a higher level restoration point to undo partially 3177 // matched operation. 3178 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3179 TPT.getRestorationPoint(); 3180 3181 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3182 matchAddr(AddrInst->getOperand(0), Depth+1)) 3183 return true; 3184 3185 // Restore the old addr mode info. 3186 AddrMode = BackupAddrMode; 3187 AddrModeInsts.resize(OldSize); 3188 TPT.rollback(LastKnownGood); 3189 3190 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3191 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3192 matchAddr(AddrInst->getOperand(1), Depth+1)) 3193 return true; 3194 3195 // Otherwise we definitely can't merge the ADD in. 3196 AddrMode = BackupAddrMode; 3197 AddrModeInsts.resize(OldSize); 3198 TPT.rollback(LastKnownGood); 3199 break; 3200 } 3201 //case Instruction::Or: 3202 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3203 //break; 3204 case Instruction::Mul: 3205 case Instruction::Shl: { 3206 // Can only handle X*C and X << C. 3207 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3208 if (!RHS) 3209 return false; 3210 int64_t Scale = RHS->getSExtValue(); 3211 if (Opcode == Instruction::Shl) 3212 Scale = 1LL << Scale; 3213 3214 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3215 } 3216 case Instruction::GetElementPtr: { 3217 // Scan the GEP. We check it if it contains constant offsets and at most 3218 // one variable offset. 3219 int VariableOperand = -1; 3220 unsigned VariableScale = 0; 3221 3222 int64_t ConstantOffset = 0; 3223 gep_type_iterator GTI = gep_type_begin(AddrInst); 3224 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3225 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3226 const StructLayout *SL = DL.getStructLayout(STy); 3227 unsigned Idx = 3228 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3229 ConstantOffset += SL->getElementOffset(Idx); 3230 } else { 3231 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3232 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3233 ConstantOffset += CI->getSExtValue()*TypeSize; 3234 } else if (TypeSize) { // Scales of zero don't do anything. 3235 // We only allow one variable index at the moment. 3236 if (VariableOperand != -1) 3237 return false; 3238 3239 // Remember the variable index. 3240 VariableOperand = i; 3241 VariableScale = TypeSize; 3242 } 3243 } 3244 } 3245 3246 // A common case is for the GEP to only do a constant offset. In this case, 3247 // just add it to the disp field and check validity. 3248 if (VariableOperand == -1) { 3249 AddrMode.BaseOffs += ConstantOffset; 3250 if (ConstantOffset == 0 || 3251 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3252 // Check to see if we can fold the base pointer in too. 3253 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3254 return true; 3255 } 3256 AddrMode.BaseOffs -= ConstantOffset; 3257 return false; 3258 } 3259 3260 // Save the valid addressing mode in case we can't match. 3261 ExtAddrMode BackupAddrMode = AddrMode; 3262 unsigned OldSize = AddrModeInsts.size(); 3263 3264 // See if the scale and offset amount is valid for this target. 3265 AddrMode.BaseOffs += ConstantOffset; 3266 3267 // Match the base operand of the GEP. 3268 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3269 // If it couldn't be matched, just stuff the value in a register. 3270 if (AddrMode.HasBaseReg) { 3271 AddrMode = BackupAddrMode; 3272 AddrModeInsts.resize(OldSize); 3273 return false; 3274 } 3275 AddrMode.HasBaseReg = true; 3276 AddrMode.BaseReg = AddrInst->getOperand(0); 3277 } 3278 3279 // Match the remaining variable portion of the GEP. 3280 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3281 Depth)) { 3282 // If it couldn't be matched, try stuffing the base into a register 3283 // instead of matching it, and retrying the match of the scale. 3284 AddrMode = BackupAddrMode; 3285 AddrModeInsts.resize(OldSize); 3286 if (AddrMode.HasBaseReg) 3287 return false; 3288 AddrMode.HasBaseReg = true; 3289 AddrMode.BaseReg = AddrInst->getOperand(0); 3290 AddrMode.BaseOffs += ConstantOffset; 3291 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3292 VariableScale, Depth)) { 3293 // If even that didn't work, bail. 3294 AddrMode = BackupAddrMode; 3295 AddrModeInsts.resize(OldSize); 3296 return false; 3297 } 3298 } 3299 3300 return true; 3301 } 3302 case Instruction::SExt: 3303 case Instruction::ZExt: { 3304 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3305 if (!Ext) 3306 return false; 3307 3308 // Try to move this ext out of the way of the addressing mode. 3309 // Ask for a method for doing so. 3310 TypePromotionHelper::Action TPH = 3311 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3312 if (!TPH) 3313 return false; 3314 3315 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3316 TPT.getRestorationPoint(); 3317 unsigned CreatedInstsCost = 0; 3318 unsigned ExtCost = !TLI.isExtFree(Ext); 3319 Value *PromotedOperand = 3320 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3321 // SExt has been moved away. 3322 // Thus either it will be rematched later in the recursive calls or it is 3323 // gone. Anyway, we must not fold it into the addressing mode at this point. 3324 // E.g., 3325 // op = add opnd, 1 3326 // idx = ext op 3327 // addr = gep base, idx 3328 // is now: 3329 // promotedOpnd = ext opnd <- no match here 3330 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3331 // addr = gep base, op <- match 3332 if (MovedAway) 3333 *MovedAway = true; 3334 3335 assert(PromotedOperand && 3336 "TypePromotionHelper should have filtered out those cases"); 3337 3338 ExtAddrMode BackupAddrMode = AddrMode; 3339 unsigned OldSize = AddrModeInsts.size(); 3340 3341 if (!matchAddr(PromotedOperand, Depth) || 3342 // The total of the new cost is equal to the cost of the created 3343 // instructions. 3344 // The total of the old cost is equal to the cost of the extension plus 3345 // what we have saved in the addressing mode. 3346 !isPromotionProfitable(CreatedInstsCost, 3347 ExtCost + (AddrModeInsts.size() - OldSize), 3348 PromotedOperand)) { 3349 AddrMode = BackupAddrMode; 3350 AddrModeInsts.resize(OldSize); 3351 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3352 TPT.rollback(LastKnownGood); 3353 return false; 3354 } 3355 return true; 3356 } 3357 } 3358 return false; 3359 } 3360 3361 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3362 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3363 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3364 /// for the target. 3365 /// 3366 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3367 // Start a transaction at this point that we will rollback if the matching 3368 // fails. 3369 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3370 TPT.getRestorationPoint(); 3371 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3372 // Fold in immediates if legal for the target. 3373 AddrMode.BaseOffs += CI->getSExtValue(); 3374 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3375 return true; 3376 AddrMode.BaseOffs -= CI->getSExtValue(); 3377 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3378 // If this is a global variable, try to fold it into the addressing mode. 3379 if (!AddrMode.BaseGV) { 3380 AddrMode.BaseGV = GV; 3381 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3382 return true; 3383 AddrMode.BaseGV = nullptr; 3384 } 3385 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3386 ExtAddrMode BackupAddrMode = AddrMode; 3387 unsigned OldSize = AddrModeInsts.size(); 3388 3389 // Check to see if it is possible to fold this operation. 3390 bool MovedAway = false; 3391 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3392 // This instruction may have been moved away. If so, there is nothing 3393 // to check here. 3394 if (MovedAway) 3395 return true; 3396 // Okay, it's possible to fold this. Check to see if it is actually 3397 // *profitable* to do so. We use a simple cost model to avoid increasing 3398 // register pressure too much. 3399 if (I->hasOneUse() || 3400 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3401 AddrModeInsts.push_back(I); 3402 return true; 3403 } 3404 3405 // It isn't profitable to do this, roll back. 3406 //cerr << "NOT FOLDING: " << *I; 3407 AddrMode = BackupAddrMode; 3408 AddrModeInsts.resize(OldSize); 3409 TPT.rollback(LastKnownGood); 3410 } 3411 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3412 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3413 return true; 3414 TPT.rollback(LastKnownGood); 3415 } else if (isa<ConstantPointerNull>(Addr)) { 3416 // Null pointer gets folded without affecting the addressing mode. 3417 return true; 3418 } 3419 3420 // Worse case, the target should support [reg] addressing modes. :) 3421 if (!AddrMode.HasBaseReg) { 3422 AddrMode.HasBaseReg = true; 3423 AddrMode.BaseReg = Addr; 3424 // Still check for legality in case the target supports [imm] but not [i+r]. 3425 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3426 return true; 3427 AddrMode.HasBaseReg = false; 3428 AddrMode.BaseReg = nullptr; 3429 } 3430 3431 // If the base register is already taken, see if we can do [r+r]. 3432 if (AddrMode.Scale == 0) { 3433 AddrMode.Scale = 1; 3434 AddrMode.ScaledReg = Addr; 3435 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3436 return true; 3437 AddrMode.Scale = 0; 3438 AddrMode.ScaledReg = nullptr; 3439 } 3440 // Couldn't match. 3441 TPT.rollback(LastKnownGood); 3442 return false; 3443 } 3444 3445 /// Check to see if all uses of OpVal by the specified inline asm call are due 3446 /// to memory operands. If so, return true, otherwise return false. 3447 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3448 const TargetMachine &TM) { 3449 const Function *F = CI->getParent()->getParent(); 3450 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3451 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3452 TargetLowering::AsmOperandInfoVector TargetConstraints = 3453 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3454 ImmutableCallSite(CI)); 3455 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3456 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3457 3458 // Compute the constraint code and ConstraintType to use. 3459 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3460 3461 // If this asm operand is our Value*, and if it isn't an indirect memory 3462 // operand, we can't fold it! 3463 if (OpInfo.CallOperandVal == OpVal && 3464 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3465 !OpInfo.isIndirect)) 3466 return false; 3467 } 3468 3469 return true; 3470 } 3471 3472 /// Recursively walk all the uses of I until we find a memory use. 3473 /// If we find an obviously non-foldable instruction, return true. 3474 /// Add the ultimately found memory instructions to MemoryUses. 3475 static bool FindAllMemoryUses( 3476 Instruction *I, 3477 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3478 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3479 // If we already considered this instruction, we're done. 3480 if (!ConsideredInsts.insert(I).second) 3481 return false; 3482 3483 // If this is an obviously unfoldable instruction, bail out. 3484 if (!MightBeFoldableInst(I)) 3485 return true; 3486 3487 const bool OptSize = I->getFunction()->optForSize(); 3488 3489 // Loop over all the uses, recursively processing them. 3490 for (Use &U : I->uses()) { 3491 Instruction *UserI = cast<Instruction>(U.getUser()); 3492 3493 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3494 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3495 continue; 3496 } 3497 3498 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3499 unsigned opNo = U.getOperandNo(); 3500 if (opNo == 0) return true; // Storing addr, not into addr. 3501 MemoryUses.push_back(std::make_pair(SI, opNo)); 3502 continue; 3503 } 3504 3505 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3506 // If this is a cold call, we can sink the addressing calculation into 3507 // the cold path. See optimizeCallInst 3508 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3509 continue; 3510 3511 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3512 if (!IA) return true; 3513 3514 // If this is a memory operand, we're cool, otherwise bail out. 3515 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3516 return true; 3517 continue; 3518 } 3519 3520 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3521 return true; 3522 } 3523 3524 return false; 3525 } 3526 3527 /// Return true if Val is already known to be live at the use site that we're 3528 /// folding it into. If so, there is no cost to include it in the addressing 3529 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3530 /// instruction already. 3531 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3532 Value *KnownLive2) { 3533 // If Val is either of the known-live values, we know it is live! 3534 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3535 return true; 3536 3537 // All values other than instructions and arguments (e.g. constants) are live. 3538 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3539 3540 // If Val is a constant sized alloca in the entry block, it is live, this is 3541 // true because it is just a reference to the stack/frame pointer, which is 3542 // live for the whole function. 3543 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3544 if (AI->isStaticAlloca()) 3545 return true; 3546 3547 // Check to see if this value is already used in the memory instruction's 3548 // block. If so, it's already live into the block at the very least, so we 3549 // can reasonably fold it. 3550 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3551 } 3552 3553 /// It is possible for the addressing mode of the machine to fold the specified 3554 /// instruction into a load or store that ultimately uses it. 3555 /// However, the specified instruction has multiple uses. 3556 /// Given this, it may actually increase register pressure to fold it 3557 /// into the load. For example, consider this code: 3558 /// 3559 /// X = ... 3560 /// Y = X+1 3561 /// use(Y) -> nonload/store 3562 /// Z = Y+1 3563 /// load Z 3564 /// 3565 /// In this case, Y has multiple uses, and can be folded into the load of Z 3566 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3567 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3568 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3569 /// number of computations either. 3570 /// 3571 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3572 /// X was live across 'load Z' for other reasons, we actually *would* want to 3573 /// fold the addressing mode in the Z case. This would make Y die earlier. 3574 bool AddressingModeMatcher:: 3575 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3576 ExtAddrMode &AMAfter) { 3577 if (IgnoreProfitability) return true; 3578 3579 // AMBefore is the addressing mode before this instruction was folded into it, 3580 // and AMAfter is the addressing mode after the instruction was folded. Get 3581 // the set of registers referenced by AMAfter and subtract out those 3582 // referenced by AMBefore: this is the set of values which folding in this 3583 // address extends the lifetime of. 3584 // 3585 // Note that there are only two potential values being referenced here, 3586 // BaseReg and ScaleReg (global addresses are always available, as are any 3587 // folded immediates). 3588 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3589 3590 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3591 // lifetime wasn't extended by adding this instruction. 3592 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3593 BaseReg = nullptr; 3594 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3595 ScaledReg = nullptr; 3596 3597 // If folding this instruction (and it's subexprs) didn't extend any live 3598 // ranges, we're ok with it. 3599 if (!BaseReg && !ScaledReg) 3600 return true; 3601 3602 // If all uses of this instruction can have the address mode sunk into them, 3603 // we can remove the addressing mode and effectively trade one live register 3604 // for another (at worst.) In this context, folding an addressing mode into 3605 // the use is just a particularly nice way of sinking it. 3606 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3607 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3608 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3609 return false; // Has a non-memory, non-foldable use! 3610 3611 // Now that we know that all uses of this instruction are part of a chain of 3612 // computation involving only operations that could theoretically be folded 3613 // into a memory use, loop over each of these memory operation uses and see 3614 // if they could *actually* fold the instruction. The assumption is that 3615 // addressing modes are cheap and that duplicating the computation involved 3616 // many times is worthwhile, even on a fastpath. For sinking candidates 3617 // (i.e. cold call sites), this serves as a way to prevent excessive code 3618 // growth since most architectures have some reasonable small and fast way to 3619 // compute an effective address. (i.e LEA on x86) 3620 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3621 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3622 Instruction *User = MemoryUses[i].first; 3623 unsigned OpNo = MemoryUses[i].second; 3624 3625 // Get the access type of this use. If the use isn't a pointer, we don't 3626 // know what it accesses. 3627 Value *Address = User->getOperand(OpNo); 3628 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3629 if (!AddrTy) 3630 return false; 3631 Type *AddressAccessTy = AddrTy->getElementType(); 3632 unsigned AS = AddrTy->getAddressSpace(); 3633 3634 // Do a match against the root of this address, ignoring profitability. This 3635 // will tell us if the addressing mode for the memory operation will 3636 // *actually* cover the shared instruction. 3637 ExtAddrMode Result; 3638 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3639 TPT.getRestorationPoint(); 3640 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3641 MemoryInst, Result, InsertedInsts, 3642 PromotedInsts, TPT); 3643 Matcher.IgnoreProfitability = true; 3644 bool Success = Matcher.matchAddr(Address, 0); 3645 (void)Success; assert(Success && "Couldn't select *anything*?"); 3646 3647 // The match was to check the profitability, the changes made are not 3648 // part of the original matcher. Therefore, they should be dropped 3649 // otherwise the original matcher will not present the right state. 3650 TPT.rollback(LastKnownGood); 3651 3652 // If the match didn't cover I, then it won't be shared by it. 3653 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3654 I) == MatchedAddrModeInsts.end()) 3655 return false; 3656 3657 MatchedAddrModeInsts.clear(); 3658 } 3659 3660 return true; 3661 } 3662 3663 } // end anonymous namespace 3664 3665 /// Return true if the specified values are defined in a 3666 /// different basic block than BB. 3667 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3668 if (Instruction *I = dyn_cast<Instruction>(V)) 3669 return I->getParent() != BB; 3670 return false; 3671 } 3672 3673 /// Sink addressing mode computation immediate before MemoryInst if doing so 3674 /// can be done without increasing register pressure. The need for the 3675 /// register pressure constraint means this can end up being an all or nothing 3676 /// decision for all uses of the same addressing computation. 3677 /// 3678 /// Load and Store Instructions often have addressing modes that can do 3679 /// significant amounts of computation. As such, instruction selection will try 3680 /// to get the load or store to do as much computation as possible for the 3681 /// program. The problem is that isel can only see within a single block. As 3682 /// such, we sink as much legal addressing mode work into the block as possible. 3683 /// 3684 /// This method is used to optimize both load/store and inline asms with memory 3685 /// operands. It's also used to sink addressing computations feeding into cold 3686 /// call sites into their (cold) basic block. 3687 /// 3688 /// The motivation for handling sinking into cold blocks is that doing so can 3689 /// both enable other address mode sinking (by satisfying the register pressure 3690 /// constraint above), and reduce register pressure globally (by removing the 3691 /// addressing mode computation from the fast path entirely.). 3692 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3693 Type *AccessTy, unsigned AddrSpace) { 3694 Value *Repl = Addr; 3695 3696 // Try to collapse single-value PHI nodes. This is necessary to undo 3697 // unprofitable PRE transformations. 3698 SmallVector<Value*, 8> worklist; 3699 SmallPtrSet<Value*, 16> Visited; 3700 worklist.push_back(Addr); 3701 3702 // Use a worklist to iteratively look through PHI nodes, and ensure that 3703 // the addressing mode obtained from the non-PHI roots of the graph 3704 // are equivalent. 3705 Value *Consensus = nullptr; 3706 unsigned NumUsesConsensus = 0; 3707 bool IsNumUsesConsensusValid = false; 3708 SmallVector<Instruction*, 16> AddrModeInsts; 3709 ExtAddrMode AddrMode; 3710 TypePromotionTransaction TPT; 3711 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3712 TPT.getRestorationPoint(); 3713 while (!worklist.empty()) { 3714 Value *V = worklist.back(); 3715 worklist.pop_back(); 3716 3717 // Break use-def graph loops. 3718 if (!Visited.insert(V).second) { 3719 Consensus = nullptr; 3720 break; 3721 } 3722 3723 // For a PHI node, push all of its incoming values. 3724 if (PHINode *P = dyn_cast<PHINode>(V)) { 3725 for (Value *IncValue : P->incoming_values()) 3726 worklist.push_back(IncValue); 3727 continue; 3728 } 3729 3730 // For non-PHIs, determine the addressing mode being computed. Note that 3731 // the result may differ depending on what other uses our candidate 3732 // addressing instructions might have. 3733 SmallVector<Instruction*, 16> NewAddrModeInsts; 3734 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3735 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3736 InsertedInsts, PromotedInsts, TPT); 3737 3738 // This check is broken into two cases with very similar code to avoid using 3739 // getNumUses() as much as possible. Some values have a lot of uses, so 3740 // calling getNumUses() unconditionally caused a significant compile-time 3741 // regression. 3742 if (!Consensus) { 3743 Consensus = V; 3744 AddrMode = NewAddrMode; 3745 AddrModeInsts = NewAddrModeInsts; 3746 continue; 3747 } else if (NewAddrMode == AddrMode) { 3748 if (!IsNumUsesConsensusValid) { 3749 NumUsesConsensus = Consensus->getNumUses(); 3750 IsNumUsesConsensusValid = true; 3751 } 3752 3753 // Ensure that the obtained addressing mode is equivalent to that obtained 3754 // for all other roots of the PHI traversal. Also, when choosing one 3755 // such root as representative, select the one with the most uses in order 3756 // to keep the cost modeling heuristics in AddressingModeMatcher 3757 // applicable. 3758 unsigned NumUses = V->getNumUses(); 3759 if (NumUses > NumUsesConsensus) { 3760 Consensus = V; 3761 NumUsesConsensus = NumUses; 3762 AddrModeInsts = NewAddrModeInsts; 3763 } 3764 continue; 3765 } 3766 3767 Consensus = nullptr; 3768 break; 3769 } 3770 3771 // If the addressing mode couldn't be determined, or if multiple different 3772 // ones were determined, bail out now. 3773 if (!Consensus) { 3774 TPT.rollback(LastKnownGood); 3775 return false; 3776 } 3777 TPT.commit(); 3778 3779 // Check to see if any of the instructions supersumed by this addr mode are 3780 // non-local to I's BB. 3781 bool AnyNonLocal = false; 3782 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3783 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3784 AnyNonLocal = true; 3785 break; 3786 } 3787 } 3788 3789 // If all the instructions matched are already in this BB, don't do anything. 3790 if (!AnyNonLocal) { 3791 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3792 return false; 3793 } 3794 3795 // Insert this computation right after this user. Since our caller is 3796 // scanning from the top of the BB to the bottom, reuse of the expr are 3797 // guaranteed to happen later. 3798 IRBuilder<> Builder(MemoryInst); 3799 3800 // Now that we determined the addressing expression we want to use and know 3801 // that we have to sink it into this block. Check to see if we have already 3802 // done this for some other load/store instr in this block. If so, reuse the 3803 // computation. 3804 Value *&SunkAddr = SunkAddrs[Addr]; 3805 if (SunkAddr) { 3806 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3807 << *MemoryInst << "\n"); 3808 if (SunkAddr->getType() != Addr->getType()) 3809 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3810 } else if (AddrSinkUsingGEPs || 3811 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3812 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3813 ->useAA())) { 3814 // By default, we use the GEP-based method when AA is used later. This 3815 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3816 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3817 << *MemoryInst << "\n"); 3818 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3819 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3820 3821 // First, find the pointer. 3822 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3823 ResultPtr = AddrMode.BaseReg; 3824 AddrMode.BaseReg = nullptr; 3825 } 3826 3827 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3828 // We can't add more than one pointer together, nor can we scale a 3829 // pointer (both of which seem meaningless). 3830 if (ResultPtr || AddrMode.Scale != 1) 3831 return false; 3832 3833 ResultPtr = AddrMode.ScaledReg; 3834 AddrMode.Scale = 0; 3835 } 3836 3837 if (AddrMode.BaseGV) { 3838 if (ResultPtr) 3839 return false; 3840 3841 ResultPtr = AddrMode.BaseGV; 3842 } 3843 3844 // If the real base value actually came from an inttoptr, then the matcher 3845 // will look through it and provide only the integer value. In that case, 3846 // use it here. 3847 if (!ResultPtr && AddrMode.BaseReg) { 3848 ResultPtr = 3849 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3850 AddrMode.BaseReg = nullptr; 3851 } else if (!ResultPtr && AddrMode.Scale == 1) { 3852 ResultPtr = 3853 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3854 AddrMode.Scale = 0; 3855 } 3856 3857 if (!ResultPtr && 3858 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3859 SunkAddr = Constant::getNullValue(Addr->getType()); 3860 } else if (!ResultPtr) { 3861 return false; 3862 } else { 3863 Type *I8PtrTy = 3864 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3865 Type *I8Ty = Builder.getInt8Ty(); 3866 3867 // Start with the base register. Do this first so that subsequent address 3868 // matching finds it last, which will prevent it from trying to match it 3869 // as the scaled value in case it happens to be a mul. That would be 3870 // problematic if we've sunk a different mul for the scale, because then 3871 // we'd end up sinking both muls. 3872 if (AddrMode.BaseReg) { 3873 Value *V = AddrMode.BaseReg; 3874 if (V->getType() != IntPtrTy) 3875 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3876 3877 ResultIndex = V; 3878 } 3879 3880 // Add the scale value. 3881 if (AddrMode.Scale) { 3882 Value *V = AddrMode.ScaledReg; 3883 if (V->getType() == IntPtrTy) { 3884 // done. 3885 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3886 cast<IntegerType>(V->getType())->getBitWidth()) { 3887 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3888 } else { 3889 // It is only safe to sign extend the BaseReg if we know that the math 3890 // required to create it did not overflow before we extend it. Since 3891 // the original IR value was tossed in favor of a constant back when 3892 // the AddrMode was created we need to bail out gracefully if widths 3893 // do not match instead of extending it. 3894 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3895 if (I && (ResultIndex != AddrMode.BaseReg)) 3896 I->eraseFromParent(); 3897 return false; 3898 } 3899 3900 if (AddrMode.Scale != 1) 3901 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3902 "sunkaddr"); 3903 if (ResultIndex) 3904 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3905 else 3906 ResultIndex = V; 3907 } 3908 3909 // Add in the Base Offset if present. 3910 if (AddrMode.BaseOffs) { 3911 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3912 if (ResultIndex) { 3913 // We need to add this separately from the scale above to help with 3914 // SDAG consecutive load/store merging. 3915 if (ResultPtr->getType() != I8PtrTy) 3916 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3917 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3918 } 3919 3920 ResultIndex = V; 3921 } 3922 3923 if (!ResultIndex) { 3924 SunkAddr = ResultPtr; 3925 } else { 3926 if (ResultPtr->getType() != I8PtrTy) 3927 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3928 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3929 } 3930 3931 if (SunkAddr->getType() != Addr->getType()) 3932 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3933 } 3934 } else { 3935 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3936 << *MemoryInst << "\n"); 3937 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3938 Value *Result = nullptr; 3939 3940 // Start with the base register. Do this first so that subsequent address 3941 // matching finds it last, which will prevent it from trying to match it 3942 // as the scaled value in case it happens to be a mul. That would be 3943 // problematic if we've sunk a different mul for the scale, because then 3944 // we'd end up sinking both muls. 3945 if (AddrMode.BaseReg) { 3946 Value *V = AddrMode.BaseReg; 3947 if (V->getType()->isPointerTy()) 3948 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3949 if (V->getType() != IntPtrTy) 3950 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3951 Result = V; 3952 } 3953 3954 // Add the scale value. 3955 if (AddrMode.Scale) { 3956 Value *V = AddrMode.ScaledReg; 3957 if (V->getType() == IntPtrTy) { 3958 // done. 3959 } else if (V->getType()->isPointerTy()) { 3960 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3961 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3962 cast<IntegerType>(V->getType())->getBitWidth()) { 3963 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3964 } else { 3965 // It is only safe to sign extend the BaseReg if we know that the math 3966 // required to create it did not overflow before we extend it. Since 3967 // the original IR value was tossed in favor of a constant back when 3968 // the AddrMode was created we need to bail out gracefully if widths 3969 // do not match instead of extending it. 3970 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3971 if (I && (Result != AddrMode.BaseReg)) 3972 I->eraseFromParent(); 3973 return false; 3974 } 3975 if (AddrMode.Scale != 1) 3976 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3977 "sunkaddr"); 3978 if (Result) 3979 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3980 else 3981 Result = V; 3982 } 3983 3984 // Add in the BaseGV if present. 3985 if (AddrMode.BaseGV) { 3986 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3987 if (Result) 3988 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3989 else 3990 Result = V; 3991 } 3992 3993 // Add in the Base Offset if present. 3994 if (AddrMode.BaseOffs) { 3995 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3996 if (Result) 3997 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3998 else 3999 Result = V; 4000 } 4001 4002 if (!Result) 4003 SunkAddr = Constant::getNullValue(Addr->getType()); 4004 else 4005 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4006 } 4007 4008 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4009 4010 // If we have no uses, recursively delete the value and all dead instructions 4011 // using it. 4012 if (Repl->use_empty()) { 4013 // This can cause recursive deletion, which can invalidate our iterator. 4014 // Use a WeakVH to hold onto it in case this happens. 4015 Value *CurValue = &*CurInstIterator; 4016 WeakVH IterHandle(CurValue); 4017 BasicBlock *BB = CurInstIterator->getParent(); 4018 4019 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4020 4021 if (IterHandle != CurValue) { 4022 // If the iterator instruction was recursively deleted, start over at the 4023 // start of the block. 4024 CurInstIterator = BB->begin(); 4025 SunkAddrs.clear(); 4026 } 4027 } 4028 ++NumMemoryInsts; 4029 return true; 4030 } 4031 4032 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4033 /// address computing into the block when possible / profitable. 4034 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4035 bool MadeChange = false; 4036 4037 const TargetRegisterInfo *TRI = 4038 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4039 TargetLowering::AsmOperandInfoVector TargetConstraints = 4040 TLI->ParseConstraints(*DL, TRI, CS); 4041 unsigned ArgNo = 0; 4042 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4043 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4044 4045 // Compute the constraint code and ConstraintType to use. 4046 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4047 4048 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4049 OpInfo.isIndirect) { 4050 Value *OpVal = CS->getArgOperand(ArgNo++); 4051 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4052 } else if (OpInfo.Type == InlineAsm::isInput) 4053 ArgNo++; 4054 } 4055 4056 return MadeChange; 4057 } 4058 4059 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4060 /// sign extensions. 4061 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4062 assert(!Inst->use_empty() && "Input must have at least one use"); 4063 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4064 bool IsSExt = isa<SExtInst>(FirstUser); 4065 Type *ExtTy = FirstUser->getType(); 4066 for (const User *U : Inst->users()) { 4067 const Instruction *UI = cast<Instruction>(U); 4068 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4069 return false; 4070 Type *CurTy = UI->getType(); 4071 // Same input and output types: Same instruction after CSE. 4072 if (CurTy == ExtTy) 4073 continue; 4074 4075 // If IsSExt is true, we are in this situation: 4076 // a = Inst 4077 // b = sext ty1 a to ty2 4078 // c = sext ty1 a to ty3 4079 // Assuming ty2 is shorter than ty3, this could be turned into: 4080 // a = Inst 4081 // b = sext ty1 a to ty2 4082 // c = sext ty2 b to ty3 4083 // However, the last sext is not free. 4084 if (IsSExt) 4085 return false; 4086 4087 // This is a ZExt, maybe this is free to extend from one type to another. 4088 // In that case, we would not account for a different use. 4089 Type *NarrowTy; 4090 Type *LargeTy; 4091 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4092 CurTy->getScalarType()->getIntegerBitWidth()) { 4093 NarrowTy = CurTy; 4094 LargeTy = ExtTy; 4095 } else { 4096 NarrowTy = ExtTy; 4097 LargeTy = CurTy; 4098 } 4099 4100 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4101 return false; 4102 } 4103 // All uses are the same or can be derived from one another for free. 4104 return true; 4105 } 4106 4107 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4108 /// load instruction. 4109 /// If an ext(load) can be formed, it is returned via \p LI for the load 4110 /// and \p Inst for the extension. 4111 /// Otherwise LI == nullptr and Inst == nullptr. 4112 /// When some promotion happened, \p TPT contains the proper state to 4113 /// revert them. 4114 /// 4115 /// \return true when promoting was necessary to expose the ext(load) 4116 /// opportunity, false otherwise. 4117 /// 4118 /// Example: 4119 /// \code 4120 /// %ld = load i32* %addr 4121 /// %add = add nuw i32 %ld, 4 4122 /// %zext = zext i32 %add to i64 4123 /// \endcode 4124 /// => 4125 /// \code 4126 /// %ld = load i32* %addr 4127 /// %zext = zext i32 %ld to i64 4128 /// %add = add nuw i64 %zext, 4 4129 /// \encode 4130 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4131 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4132 LoadInst *&LI, Instruction *&Inst, 4133 const SmallVectorImpl<Instruction *> &Exts, 4134 unsigned CreatedInstsCost = 0) { 4135 // Iterate over all the extensions to see if one form an ext(load). 4136 for (auto I : Exts) { 4137 // Check if we directly have ext(load). 4138 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4139 Inst = I; 4140 // No promotion happened here. 4141 return false; 4142 } 4143 // Check whether or not we want to do any promotion. 4144 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4145 continue; 4146 // Get the action to perform the promotion. 4147 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4148 I, InsertedInsts, *TLI, PromotedInsts); 4149 // Check if we can promote. 4150 if (!TPH) 4151 continue; 4152 // Save the current state. 4153 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4154 TPT.getRestorationPoint(); 4155 SmallVector<Instruction *, 4> NewExts; 4156 unsigned NewCreatedInstsCost = 0; 4157 unsigned ExtCost = !TLI->isExtFree(I); 4158 // Promote. 4159 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4160 &NewExts, nullptr, *TLI); 4161 assert(PromotedVal && 4162 "TypePromotionHelper should have filtered out those cases"); 4163 4164 // We would be able to merge only one extension in a load. 4165 // Therefore, if we have more than 1 new extension we heuristically 4166 // cut this search path, because it means we degrade the code quality. 4167 // With exactly 2, the transformation is neutral, because we will merge 4168 // one extension but leave one. However, we optimistically keep going, 4169 // because the new extension may be removed too. 4170 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4171 TotalCreatedInstsCost -= ExtCost; 4172 if (!StressExtLdPromotion && 4173 (TotalCreatedInstsCost > 1 || 4174 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4175 // The promotion is not profitable, rollback to the previous state. 4176 TPT.rollback(LastKnownGood); 4177 continue; 4178 } 4179 // The promotion is profitable. 4180 // Check if it exposes an ext(load). 4181 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4182 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4183 // If we have created a new extension, i.e., now we have two 4184 // extensions. We must make sure one of them is merged with 4185 // the load, otherwise we may degrade the code quality. 4186 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4187 // Promotion happened. 4188 return true; 4189 // If this does not help to expose an ext(load) then, rollback. 4190 TPT.rollback(LastKnownGood); 4191 } 4192 // None of the extension can form an ext(load). 4193 LI = nullptr; 4194 Inst = nullptr; 4195 return false; 4196 } 4197 4198 /// Move a zext or sext fed by a load into the same basic block as the load, 4199 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4200 /// extend into the load. 4201 /// \p I[in/out] the extension may be modified during the process if some 4202 /// promotions apply. 4203 /// 4204 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4205 // Try to promote a chain of computation if it allows to form 4206 // an extended load. 4207 TypePromotionTransaction TPT; 4208 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4209 TPT.getRestorationPoint(); 4210 SmallVector<Instruction *, 1> Exts; 4211 Exts.push_back(I); 4212 // Look for a load being extended. 4213 LoadInst *LI = nullptr; 4214 Instruction *OldExt = I; 4215 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4216 if (!LI || !I) { 4217 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4218 "the code must remain the same"); 4219 I = OldExt; 4220 return false; 4221 } 4222 4223 // If they're already in the same block, there's nothing to do. 4224 // Make the cheap checks first if we did not promote. 4225 // If we promoted, we need to check if it is indeed profitable. 4226 if (!HasPromoted && LI->getParent() == I->getParent()) 4227 return false; 4228 4229 EVT VT = TLI->getValueType(*DL, I->getType()); 4230 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4231 4232 // If the load has other users and the truncate is not free, this probably 4233 // isn't worthwhile. 4234 if (!LI->hasOneUse() && TLI && 4235 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4236 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4237 I = OldExt; 4238 TPT.rollback(LastKnownGood); 4239 return false; 4240 } 4241 4242 // Check whether the target supports casts folded into loads. 4243 unsigned LType; 4244 if (isa<ZExtInst>(I)) 4245 LType = ISD::ZEXTLOAD; 4246 else { 4247 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4248 LType = ISD::SEXTLOAD; 4249 } 4250 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4251 I = OldExt; 4252 TPT.rollback(LastKnownGood); 4253 return false; 4254 } 4255 4256 // Move the extend into the same block as the load, so that SelectionDAG 4257 // can fold it. 4258 TPT.commit(); 4259 I->removeFromParent(); 4260 I->insertAfter(LI); 4261 ++NumExtsMoved; 4262 return true; 4263 } 4264 4265 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4266 BasicBlock *DefBB = I->getParent(); 4267 4268 // If the result of a {s|z}ext and its source are both live out, rewrite all 4269 // other uses of the source with result of extension. 4270 Value *Src = I->getOperand(0); 4271 if (Src->hasOneUse()) 4272 return false; 4273 4274 // Only do this xform if truncating is free. 4275 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4276 return false; 4277 4278 // Only safe to perform the optimization if the source is also defined in 4279 // this block. 4280 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4281 return false; 4282 4283 bool DefIsLiveOut = false; 4284 for (User *U : I->users()) { 4285 Instruction *UI = cast<Instruction>(U); 4286 4287 // Figure out which BB this ext is used in. 4288 BasicBlock *UserBB = UI->getParent(); 4289 if (UserBB == DefBB) continue; 4290 DefIsLiveOut = true; 4291 break; 4292 } 4293 if (!DefIsLiveOut) 4294 return false; 4295 4296 // Make sure none of the uses are PHI nodes. 4297 for (User *U : Src->users()) { 4298 Instruction *UI = cast<Instruction>(U); 4299 BasicBlock *UserBB = UI->getParent(); 4300 if (UserBB == DefBB) continue; 4301 // Be conservative. We don't want this xform to end up introducing 4302 // reloads just before load / store instructions. 4303 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4304 return false; 4305 } 4306 4307 // InsertedTruncs - Only insert one trunc in each block once. 4308 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4309 4310 bool MadeChange = false; 4311 for (Use &U : Src->uses()) { 4312 Instruction *User = cast<Instruction>(U.getUser()); 4313 4314 // Figure out which BB this ext is used in. 4315 BasicBlock *UserBB = User->getParent(); 4316 if (UserBB == DefBB) continue; 4317 4318 // Both src and def are live in this block. Rewrite the use. 4319 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4320 4321 if (!InsertedTrunc) { 4322 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4323 assert(InsertPt != UserBB->end()); 4324 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4325 InsertedInsts.insert(InsertedTrunc); 4326 } 4327 4328 // Replace a use of the {s|z}ext source with a use of the result. 4329 U = InsertedTrunc; 4330 ++NumExtUses; 4331 MadeChange = true; 4332 } 4333 4334 return MadeChange; 4335 } 4336 4337 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4338 // just after the load if the target can fold this into one extload instruction, 4339 // with the hope of eliminating some of the other later "and" instructions using 4340 // the loaded value. "and"s that are made trivially redundant by the insertion 4341 // of the new "and" are removed by this function, while others (e.g. those whose 4342 // path from the load goes through a phi) are left for isel to potentially 4343 // remove. 4344 // 4345 // For example: 4346 // 4347 // b0: 4348 // x = load i32 4349 // ... 4350 // b1: 4351 // y = and x, 0xff 4352 // z = use y 4353 // 4354 // becomes: 4355 // 4356 // b0: 4357 // x = load i32 4358 // x' = and x, 0xff 4359 // ... 4360 // b1: 4361 // z = use x' 4362 // 4363 // whereas: 4364 // 4365 // b0: 4366 // x1 = load i32 4367 // ... 4368 // b1: 4369 // x2 = load i32 4370 // ... 4371 // b2: 4372 // x = phi x1, x2 4373 // y = and x, 0xff 4374 // 4375 // becomes (after a call to optimizeLoadExt for each load): 4376 // 4377 // b0: 4378 // x1 = load i32 4379 // x1' = and x1, 0xff 4380 // ... 4381 // b1: 4382 // x2 = load i32 4383 // x2' = and x2, 0xff 4384 // ... 4385 // b2: 4386 // x = phi x1', x2' 4387 // y = and x, 0xff 4388 // 4389 4390 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4391 4392 if (!Load->isSimple() || 4393 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4394 return false; 4395 4396 // Skip loads we've already transformed or have no reason to transform. 4397 if (Load->hasOneUse()) { 4398 User *LoadUser = *Load->user_begin(); 4399 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4400 !dyn_cast<PHINode>(LoadUser)) 4401 return false; 4402 } 4403 4404 // Look at all uses of Load, looking through phis, to determine how many bits 4405 // of the loaded value are needed. 4406 SmallVector<Instruction *, 8> WorkList; 4407 SmallPtrSet<Instruction *, 16> Visited; 4408 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4409 for (auto *U : Load->users()) 4410 WorkList.push_back(cast<Instruction>(U)); 4411 4412 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4413 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4414 APInt DemandBits(BitWidth, 0); 4415 APInt WidestAndBits(BitWidth, 0); 4416 4417 while (!WorkList.empty()) { 4418 Instruction *I = WorkList.back(); 4419 WorkList.pop_back(); 4420 4421 // Break use-def graph loops. 4422 if (!Visited.insert(I).second) 4423 continue; 4424 4425 // For a PHI node, push all of its users. 4426 if (auto *Phi = dyn_cast<PHINode>(I)) { 4427 for (auto *U : Phi->users()) 4428 WorkList.push_back(cast<Instruction>(U)); 4429 continue; 4430 } 4431 4432 switch (I->getOpcode()) { 4433 case llvm::Instruction::And: { 4434 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4435 if (!AndC) 4436 return false; 4437 APInt AndBits = AndC->getValue(); 4438 DemandBits |= AndBits; 4439 // Keep track of the widest and mask we see. 4440 if (AndBits.ugt(WidestAndBits)) 4441 WidestAndBits = AndBits; 4442 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4443 AndsToMaybeRemove.push_back(I); 4444 break; 4445 } 4446 4447 case llvm::Instruction::Shl: { 4448 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4449 if (!ShlC) 4450 return false; 4451 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4452 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4453 DemandBits |= ShlDemandBits; 4454 break; 4455 } 4456 4457 case llvm::Instruction::Trunc: { 4458 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4459 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4460 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4461 DemandBits |= TruncBits; 4462 break; 4463 } 4464 4465 default: 4466 return false; 4467 } 4468 } 4469 4470 uint32_t ActiveBits = DemandBits.getActiveBits(); 4471 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4472 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4473 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4474 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4475 // followed by an AND. 4476 // TODO: Look into removing this restriction by fixing backends to either 4477 // return false for isLoadExtLegal for i1 or have them select this pattern to 4478 // a single instruction. 4479 // 4480 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4481 // mask, since these are the only ands that will be removed by isel. 4482 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4483 WidestAndBits != DemandBits) 4484 return false; 4485 4486 LLVMContext &Ctx = Load->getType()->getContext(); 4487 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4488 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4489 4490 // Reject cases that won't be matched as extloads. 4491 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4492 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4493 return false; 4494 4495 IRBuilder<> Builder(Load->getNextNode()); 4496 auto *NewAnd = dyn_cast<Instruction>( 4497 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4498 4499 // Replace all uses of load with new and (except for the use of load in the 4500 // new and itself). 4501 Load->replaceAllUsesWith(NewAnd); 4502 NewAnd->setOperand(0, Load); 4503 4504 // Remove any and instructions that are now redundant. 4505 for (auto *And : AndsToMaybeRemove) 4506 // Check that the and mask is the same as the one we decided to put on the 4507 // new and. 4508 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4509 And->replaceAllUsesWith(NewAnd); 4510 if (&*CurInstIterator == And) 4511 CurInstIterator = std::next(And->getIterator()); 4512 And->eraseFromParent(); 4513 ++NumAndUses; 4514 } 4515 4516 ++NumAndsAdded; 4517 return true; 4518 } 4519 4520 /// Check if V (an operand of a select instruction) is an expensive instruction 4521 /// that is only used once. 4522 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4523 auto *I = dyn_cast<Instruction>(V); 4524 // If it's safe to speculatively execute, then it should not have side 4525 // effects; therefore, it's safe to sink and possibly *not* execute. 4526 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4527 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4528 } 4529 4530 /// Returns true if a SelectInst should be turned into an explicit branch. 4531 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4532 SelectInst *SI) { 4533 // FIXME: This should use the same heuristics as IfConversion to determine 4534 // whether a select is better represented as a branch. This requires that 4535 // branch probability metadata is preserved for the select, which is not the 4536 // case currently. 4537 4538 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4539 4540 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4541 // comparison condition. If the compare has more than one use, there's 4542 // probably another cmov or setcc around, so it's not worth emitting a branch. 4543 if (!Cmp || !Cmp->hasOneUse()) 4544 return false; 4545 4546 // If either operand of the select is expensive and only needed on one side 4547 // of the select, we should form a branch. 4548 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4549 sinkSelectOperand(TTI, SI->getFalseValue())) 4550 return true; 4551 4552 return false; 4553 } 4554 4555 4556 /// If we have a SelectInst that will likely profit from branch prediction, 4557 /// turn it into a branch. 4558 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4559 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4560 4561 // Can we convert the 'select' to CF ? 4562 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4563 return false; 4564 4565 TargetLowering::SelectSupportKind SelectKind; 4566 if (VectorCond) 4567 SelectKind = TargetLowering::VectorMaskSelect; 4568 else if (SI->getType()->isVectorTy()) 4569 SelectKind = TargetLowering::ScalarCondVectorVal; 4570 else 4571 SelectKind = TargetLowering::ScalarValSelect; 4572 4573 // Do we have efficient codegen support for this kind of 'selects' ? 4574 if (TLI->isSelectSupported(SelectKind)) { 4575 // We have efficient codegen support for the select instruction. 4576 // Check if it is profitable to keep this 'select'. 4577 if (!TLI->isPredictableSelectExpensive() || 4578 !isFormingBranchFromSelectProfitable(TTI, SI)) 4579 return false; 4580 } 4581 4582 ModifiedDT = true; 4583 4584 // Transform a sequence like this: 4585 // start: 4586 // %cmp = cmp uge i32 %a, %b 4587 // %sel = select i1 %cmp, i32 %c, i32 %d 4588 // 4589 // Into: 4590 // start: 4591 // %cmp = cmp uge i32 %a, %b 4592 // br i1 %cmp, label %select.true, label %select.false 4593 // select.true: 4594 // br label %select.end 4595 // select.false: 4596 // br label %select.end 4597 // select.end: 4598 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4599 // 4600 // In addition, we may sink instructions that produce %c or %d from 4601 // the entry block into the destination(s) of the new branch. 4602 // If the true or false blocks do not contain a sunken instruction, that 4603 // block and its branch may be optimized away. In that case, one side of the 4604 // first branch will point directly to select.end, and the corresponding PHI 4605 // predecessor block will be the start block. 4606 4607 // First, we split the block containing the select into 2 blocks. 4608 BasicBlock *StartBlock = SI->getParent(); 4609 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4610 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4611 4612 // Delete the unconditional branch that was just created by the split. 4613 StartBlock->getTerminator()->eraseFromParent(); 4614 4615 // These are the new basic blocks for the conditional branch. 4616 // At least one will become an actual new basic block. 4617 BasicBlock *TrueBlock = nullptr; 4618 BasicBlock *FalseBlock = nullptr; 4619 4620 // Sink expensive instructions into the conditional blocks to avoid executing 4621 // them speculatively. 4622 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4623 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4624 EndBlock->getParent(), EndBlock); 4625 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4626 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4627 TrueInst->moveBefore(TrueBranch); 4628 } 4629 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4630 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4631 EndBlock->getParent(), EndBlock); 4632 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4633 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4634 FalseInst->moveBefore(FalseBranch); 4635 } 4636 4637 // If there was nothing to sink, then arbitrarily choose the 'false' side 4638 // for a new input value to the PHI. 4639 if (TrueBlock == FalseBlock) { 4640 assert(TrueBlock == nullptr && 4641 "Unexpected basic block transform while optimizing select"); 4642 4643 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4644 EndBlock->getParent(), EndBlock); 4645 BranchInst::Create(EndBlock, FalseBlock); 4646 } 4647 4648 // Insert the real conditional branch based on the original condition. 4649 // If we did not create a new block for one of the 'true' or 'false' paths 4650 // of the condition, it means that side of the branch goes to the end block 4651 // directly and the path originates from the start block from the point of 4652 // view of the new PHI. 4653 if (TrueBlock == nullptr) { 4654 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4655 TrueBlock = StartBlock; 4656 } else if (FalseBlock == nullptr) { 4657 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4658 FalseBlock = StartBlock; 4659 } else { 4660 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4661 } 4662 4663 // The select itself is replaced with a PHI Node. 4664 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4665 PN->takeName(SI); 4666 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4667 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4668 4669 SI->replaceAllUsesWith(PN); 4670 SI->eraseFromParent(); 4671 4672 // Instruct OptimizeBlock to skip to the next block. 4673 CurInstIterator = StartBlock->end(); 4674 ++NumSelectsExpanded; 4675 return true; 4676 } 4677 4678 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4679 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4680 int SplatElem = -1; 4681 for (unsigned i = 0; i < Mask.size(); ++i) { 4682 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4683 return false; 4684 SplatElem = Mask[i]; 4685 } 4686 4687 return true; 4688 } 4689 4690 /// Some targets have expensive vector shifts if the lanes aren't all the same 4691 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4692 /// it's often worth sinking a shufflevector splat down to its use so that 4693 /// codegen can spot all lanes are identical. 4694 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4695 BasicBlock *DefBB = SVI->getParent(); 4696 4697 // Only do this xform if variable vector shifts are particularly expensive. 4698 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4699 return false; 4700 4701 // We only expect better codegen by sinking a shuffle if we can recognise a 4702 // constant splat. 4703 if (!isBroadcastShuffle(SVI)) 4704 return false; 4705 4706 // InsertedShuffles - Only insert a shuffle in each block once. 4707 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4708 4709 bool MadeChange = false; 4710 for (User *U : SVI->users()) { 4711 Instruction *UI = cast<Instruction>(U); 4712 4713 // Figure out which BB this ext is used in. 4714 BasicBlock *UserBB = UI->getParent(); 4715 if (UserBB == DefBB) continue; 4716 4717 // For now only apply this when the splat is used by a shift instruction. 4718 if (!UI->isShift()) continue; 4719 4720 // Everything checks out, sink the shuffle if the user's block doesn't 4721 // already have a copy. 4722 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4723 4724 if (!InsertedShuffle) { 4725 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4726 assert(InsertPt != UserBB->end()); 4727 InsertedShuffle = 4728 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4729 SVI->getOperand(2), "", &*InsertPt); 4730 } 4731 4732 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4733 MadeChange = true; 4734 } 4735 4736 // If we removed all uses, nuke the shuffle. 4737 if (SVI->use_empty()) { 4738 SVI->eraseFromParent(); 4739 MadeChange = true; 4740 } 4741 4742 return MadeChange; 4743 } 4744 4745 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4746 if (!TLI || !DL) 4747 return false; 4748 4749 Value *Cond = SI->getCondition(); 4750 Type *OldType = Cond->getType(); 4751 LLVMContext &Context = Cond->getContext(); 4752 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4753 unsigned RegWidth = RegType.getSizeInBits(); 4754 4755 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4756 return false; 4757 4758 // If the register width is greater than the type width, expand the condition 4759 // of the switch instruction and each case constant to the width of the 4760 // register. By widening the type of the switch condition, subsequent 4761 // comparisons (for case comparisons) will not need to be extended to the 4762 // preferred register width, so we will potentially eliminate N-1 extends, 4763 // where N is the number of cases in the switch. 4764 auto *NewType = Type::getIntNTy(Context, RegWidth); 4765 4766 // Zero-extend the switch condition and case constants unless the switch 4767 // condition is a function argument that is already being sign-extended. 4768 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4769 // everything instead. 4770 Instruction::CastOps ExtType = Instruction::ZExt; 4771 if (auto *Arg = dyn_cast<Argument>(Cond)) 4772 if (Arg->hasSExtAttr()) 4773 ExtType = Instruction::SExt; 4774 4775 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4776 ExtInst->insertBefore(SI); 4777 SI->setCondition(ExtInst); 4778 for (SwitchInst::CaseIt Case : SI->cases()) { 4779 APInt NarrowConst = Case.getCaseValue()->getValue(); 4780 APInt WideConst = (ExtType == Instruction::ZExt) ? 4781 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4782 Case.setValue(ConstantInt::get(Context, WideConst)); 4783 } 4784 4785 return true; 4786 } 4787 4788 namespace { 4789 /// \brief Helper class to promote a scalar operation to a vector one. 4790 /// This class is used to move downward extractelement transition. 4791 /// E.g., 4792 /// a = vector_op <2 x i32> 4793 /// b = extractelement <2 x i32> a, i32 0 4794 /// c = scalar_op b 4795 /// store c 4796 /// 4797 /// => 4798 /// a = vector_op <2 x i32> 4799 /// c = vector_op a (equivalent to scalar_op on the related lane) 4800 /// * d = extractelement <2 x i32> c, i32 0 4801 /// * store d 4802 /// Assuming both extractelement and store can be combine, we get rid of the 4803 /// transition. 4804 class VectorPromoteHelper { 4805 /// DataLayout associated with the current module. 4806 const DataLayout &DL; 4807 4808 /// Used to perform some checks on the legality of vector operations. 4809 const TargetLowering &TLI; 4810 4811 /// Used to estimated the cost of the promoted chain. 4812 const TargetTransformInfo &TTI; 4813 4814 /// The transition being moved downwards. 4815 Instruction *Transition; 4816 /// The sequence of instructions to be promoted. 4817 SmallVector<Instruction *, 4> InstsToBePromoted; 4818 /// Cost of combining a store and an extract. 4819 unsigned StoreExtractCombineCost; 4820 /// Instruction that will be combined with the transition. 4821 Instruction *CombineInst; 4822 4823 /// \brief The instruction that represents the current end of the transition. 4824 /// Since we are faking the promotion until we reach the end of the chain 4825 /// of computation, we need a way to get the current end of the transition. 4826 Instruction *getEndOfTransition() const { 4827 if (InstsToBePromoted.empty()) 4828 return Transition; 4829 return InstsToBePromoted.back(); 4830 } 4831 4832 /// \brief Return the index of the original value in the transition. 4833 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4834 /// c, is at index 0. 4835 unsigned getTransitionOriginalValueIdx() const { 4836 assert(isa<ExtractElementInst>(Transition) && 4837 "Other kind of transitions are not supported yet"); 4838 return 0; 4839 } 4840 4841 /// \brief Return the index of the index in the transition. 4842 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4843 /// is at index 1. 4844 unsigned getTransitionIdx() const { 4845 assert(isa<ExtractElementInst>(Transition) && 4846 "Other kind of transitions are not supported yet"); 4847 return 1; 4848 } 4849 4850 /// \brief Get the type of the transition. 4851 /// This is the type of the original value. 4852 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4853 /// transition is <2 x i32>. 4854 Type *getTransitionType() const { 4855 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4856 } 4857 4858 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4859 /// I.e., we have the following sequence: 4860 /// Def = Transition <ty1> a to <ty2> 4861 /// b = ToBePromoted <ty2> Def, ... 4862 /// => 4863 /// b = ToBePromoted <ty1> a, ... 4864 /// Def = Transition <ty1> ToBePromoted to <ty2> 4865 void promoteImpl(Instruction *ToBePromoted); 4866 4867 /// \brief Check whether or not it is profitable to promote all the 4868 /// instructions enqueued to be promoted. 4869 bool isProfitableToPromote() { 4870 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4871 unsigned Index = isa<ConstantInt>(ValIdx) 4872 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4873 : -1; 4874 Type *PromotedType = getTransitionType(); 4875 4876 StoreInst *ST = cast<StoreInst>(CombineInst); 4877 unsigned AS = ST->getPointerAddressSpace(); 4878 unsigned Align = ST->getAlignment(); 4879 // Check if this store is supported. 4880 if (!TLI.allowsMisalignedMemoryAccesses( 4881 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4882 Align)) { 4883 // If this is not supported, there is no way we can combine 4884 // the extract with the store. 4885 return false; 4886 } 4887 4888 // The scalar chain of computation has to pay for the transition 4889 // scalar to vector. 4890 // The vector chain has to account for the combining cost. 4891 uint64_t ScalarCost = 4892 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4893 uint64_t VectorCost = StoreExtractCombineCost; 4894 for (const auto &Inst : InstsToBePromoted) { 4895 // Compute the cost. 4896 // By construction, all instructions being promoted are arithmetic ones. 4897 // Moreover, one argument is a constant that can be viewed as a splat 4898 // constant. 4899 Value *Arg0 = Inst->getOperand(0); 4900 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4901 isa<ConstantFP>(Arg0); 4902 TargetTransformInfo::OperandValueKind Arg0OVK = 4903 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4904 : TargetTransformInfo::OK_AnyValue; 4905 TargetTransformInfo::OperandValueKind Arg1OVK = 4906 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4907 : TargetTransformInfo::OK_AnyValue; 4908 ScalarCost += TTI.getArithmeticInstrCost( 4909 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4910 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4911 Arg0OVK, Arg1OVK); 4912 } 4913 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4914 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4915 return ScalarCost > VectorCost; 4916 } 4917 4918 /// \brief Generate a constant vector with \p Val with the same 4919 /// number of elements as the transition. 4920 /// \p UseSplat defines whether or not \p Val should be replicated 4921 /// across the whole vector. 4922 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4923 /// otherwise we generate a vector with as many undef as possible: 4924 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4925 /// used at the index of the extract. 4926 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4927 unsigned ExtractIdx = UINT_MAX; 4928 if (!UseSplat) { 4929 // If we cannot determine where the constant must be, we have to 4930 // use a splat constant. 4931 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4932 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4933 ExtractIdx = CstVal->getSExtValue(); 4934 else 4935 UseSplat = true; 4936 } 4937 4938 unsigned End = getTransitionType()->getVectorNumElements(); 4939 if (UseSplat) 4940 return ConstantVector::getSplat(End, Val); 4941 4942 SmallVector<Constant *, 4> ConstVec; 4943 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4944 for (unsigned Idx = 0; Idx != End; ++Idx) { 4945 if (Idx == ExtractIdx) 4946 ConstVec.push_back(Val); 4947 else 4948 ConstVec.push_back(UndefVal); 4949 } 4950 return ConstantVector::get(ConstVec); 4951 } 4952 4953 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4954 /// in \p Use can trigger undefined behavior. 4955 static bool canCauseUndefinedBehavior(const Instruction *Use, 4956 unsigned OperandIdx) { 4957 // This is not safe to introduce undef when the operand is on 4958 // the right hand side of a division-like instruction. 4959 if (OperandIdx != 1) 4960 return false; 4961 switch (Use->getOpcode()) { 4962 default: 4963 return false; 4964 case Instruction::SDiv: 4965 case Instruction::UDiv: 4966 case Instruction::SRem: 4967 case Instruction::URem: 4968 return true; 4969 case Instruction::FDiv: 4970 case Instruction::FRem: 4971 return !Use->hasNoNaNs(); 4972 } 4973 llvm_unreachable(nullptr); 4974 } 4975 4976 public: 4977 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4978 const TargetTransformInfo &TTI, Instruction *Transition, 4979 unsigned CombineCost) 4980 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4981 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4982 assert(Transition && "Do not know how to promote null"); 4983 } 4984 4985 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4986 bool canPromote(const Instruction *ToBePromoted) const { 4987 // We could support CastInst too. 4988 return isa<BinaryOperator>(ToBePromoted); 4989 } 4990 4991 /// \brief Check if it is profitable to promote \p ToBePromoted 4992 /// by moving downward the transition through. 4993 bool shouldPromote(const Instruction *ToBePromoted) const { 4994 // Promote only if all the operands can be statically expanded. 4995 // Indeed, we do not want to introduce any new kind of transitions. 4996 for (const Use &U : ToBePromoted->operands()) { 4997 const Value *Val = U.get(); 4998 if (Val == getEndOfTransition()) { 4999 // If the use is a division and the transition is on the rhs, 5000 // we cannot promote the operation, otherwise we may create a 5001 // division by zero. 5002 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5003 return false; 5004 continue; 5005 } 5006 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5007 !isa<ConstantFP>(Val)) 5008 return false; 5009 } 5010 // Check that the resulting operation is legal. 5011 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5012 if (!ISDOpcode) 5013 return false; 5014 return StressStoreExtract || 5015 TLI.isOperationLegalOrCustom( 5016 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5017 } 5018 5019 /// \brief Check whether or not \p Use can be combined 5020 /// with the transition. 5021 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5022 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5023 5024 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5025 void enqueueForPromotion(Instruction *ToBePromoted) { 5026 InstsToBePromoted.push_back(ToBePromoted); 5027 } 5028 5029 /// \brief Set the instruction that will be combined with the transition. 5030 void recordCombineInstruction(Instruction *ToBeCombined) { 5031 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5032 CombineInst = ToBeCombined; 5033 } 5034 5035 /// \brief Promote all the instructions enqueued for promotion if it is 5036 /// is profitable. 5037 /// \return True if the promotion happened, false otherwise. 5038 bool promote() { 5039 // Check if there is something to promote. 5040 // Right now, if we do not have anything to combine with, 5041 // we assume the promotion is not profitable. 5042 if (InstsToBePromoted.empty() || !CombineInst) 5043 return false; 5044 5045 // Check cost. 5046 if (!StressStoreExtract && !isProfitableToPromote()) 5047 return false; 5048 5049 // Promote. 5050 for (auto &ToBePromoted : InstsToBePromoted) 5051 promoteImpl(ToBePromoted); 5052 InstsToBePromoted.clear(); 5053 return true; 5054 } 5055 }; 5056 } // End of anonymous namespace. 5057 5058 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5059 // At this point, we know that all the operands of ToBePromoted but Def 5060 // can be statically promoted. 5061 // For Def, we need to use its parameter in ToBePromoted: 5062 // b = ToBePromoted ty1 a 5063 // Def = Transition ty1 b to ty2 5064 // Move the transition down. 5065 // 1. Replace all uses of the promoted operation by the transition. 5066 // = ... b => = ... Def. 5067 assert(ToBePromoted->getType() == Transition->getType() && 5068 "The type of the result of the transition does not match " 5069 "the final type"); 5070 ToBePromoted->replaceAllUsesWith(Transition); 5071 // 2. Update the type of the uses. 5072 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5073 Type *TransitionTy = getTransitionType(); 5074 ToBePromoted->mutateType(TransitionTy); 5075 // 3. Update all the operands of the promoted operation with promoted 5076 // operands. 5077 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5078 for (Use &U : ToBePromoted->operands()) { 5079 Value *Val = U.get(); 5080 Value *NewVal = nullptr; 5081 if (Val == Transition) 5082 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5083 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5084 isa<ConstantFP>(Val)) { 5085 // Use a splat constant if it is not safe to use undef. 5086 NewVal = getConstantVector( 5087 cast<Constant>(Val), 5088 isa<UndefValue>(Val) || 5089 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5090 } else 5091 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5092 "this?"); 5093 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5094 } 5095 Transition->removeFromParent(); 5096 Transition->insertAfter(ToBePromoted); 5097 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5098 } 5099 5100 /// Some targets can do store(extractelement) with one instruction. 5101 /// Try to push the extractelement towards the stores when the target 5102 /// has this feature and this is profitable. 5103 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5104 unsigned CombineCost = UINT_MAX; 5105 if (DisableStoreExtract || !TLI || 5106 (!StressStoreExtract && 5107 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5108 Inst->getOperand(1), CombineCost))) 5109 return false; 5110 5111 // At this point we know that Inst is a vector to scalar transition. 5112 // Try to move it down the def-use chain, until: 5113 // - We can combine the transition with its single use 5114 // => we got rid of the transition. 5115 // - We escape the current basic block 5116 // => we would need to check that we are moving it at a cheaper place and 5117 // we do not do that for now. 5118 BasicBlock *Parent = Inst->getParent(); 5119 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5120 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5121 // If the transition has more than one use, assume this is not going to be 5122 // beneficial. 5123 while (Inst->hasOneUse()) { 5124 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5125 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5126 5127 if (ToBePromoted->getParent() != Parent) { 5128 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5129 << ToBePromoted->getParent()->getName() 5130 << ") than the transition (" << Parent->getName() << ").\n"); 5131 return false; 5132 } 5133 5134 if (VPH.canCombine(ToBePromoted)) { 5135 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5136 << "will be combined with: " << *ToBePromoted << '\n'); 5137 VPH.recordCombineInstruction(ToBePromoted); 5138 bool Changed = VPH.promote(); 5139 NumStoreExtractExposed += Changed; 5140 return Changed; 5141 } 5142 5143 DEBUG(dbgs() << "Try promoting.\n"); 5144 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5145 return false; 5146 5147 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5148 5149 VPH.enqueueForPromotion(ToBePromoted); 5150 Inst = ToBePromoted; 5151 } 5152 return false; 5153 } 5154 5155 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5156 // Bail out if we inserted the instruction to prevent optimizations from 5157 // stepping on each other's toes. 5158 if (InsertedInsts.count(I)) 5159 return false; 5160 5161 if (PHINode *P = dyn_cast<PHINode>(I)) { 5162 // It is possible for very late stage optimizations (such as SimplifyCFG) 5163 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5164 // trivial PHI, go ahead and zap it here. 5165 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5166 P->replaceAllUsesWith(V); 5167 P->eraseFromParent(); 5168 ++NumPHIsElim; 5169 return true; 5170 } 5171 return false; 5172 } 5173 5174 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5175 // If the source of the cast is a constant, then this should have 5176 // already been constant folded. The only reason NOT to constant fold 5177 // it is if something (e.g. LSR) was careful to place the constant 5178 // evaluation in a block other than then one that uses it (e.g. to hoist 5179 // the address of globals out of a loop). If this is the case, we don't 5180 // want to forward-subst the cast. 5181 if (isa<Constant>(CI->getOperand(0))) 5182 return false; 5183 5184 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5185 return true; 5186 5187 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5188 /// Sink a zext or sext into its user blocks if the target type doesn't 5189 /// fit in one register 5190 if (TLI && 5191 TLI->getTypeAction(CI->getContext(), 5192 TLI->getValueType(*DL, CI->getType())) == 5193 TargetLowering::TypeExpandInteger) { 5194 return SinkCast(CI); 5195 } else { 5196 bool MadeChange = moveExtToFormExtLoad(I); 5197 return MadeChange | optimizeExtUses(I); 5198 } 5199 } 5200 return false; 5201 } 5202 5203 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5204 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5205 return OptimizeCmpExpression(CI, TLI); 5206 5207 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5208 stripInvariantGroupMetadata(*LI); 5209 if (TLI) { 5210 bool Modified = optimizeLoadExt(LI); 5211 unsigned AS = LI->getPointerAddressSpace(); 5212 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5213 return Modified; 5214 } 5215 return false; 5216 } 5217 5218 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5219 stripInvariantGroupMetadata(*SI); 5220 if (TLI) { 5221 unsigned AS = SI->getPointerAddressSpace(); 5222 return optimizeMemoryInst(I, SI->getOperand(1), 5223 SI->getOperand(0)->getType(), AS); 5224 } 5225 return false; 5226 } 5227 5228 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5229 5230 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5231 BinOp->getOpcode() == Instruction::LShr)) { 5232 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5233 if (TLI && CI && TLI->hasExtractBitsInsn()) 5234 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5235 5236 return false; 5237 } 5238 5239 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5240 if (GEPI->hasAllZeroIndices()) { 5241 /// The GEP operand must be a pointer, so must its result -> BitCast 5242 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5243 GEPI->getName(), GEPI); 5244 GEPI->replaceAllUsesWith(NC); 5245 GEPI->eraseFromParent(); 5246 ++NumGEPsElim; 5247 optimizeInst(NC, ModifiedDT); 5248 return true; 5249 } 5250 return false; 5251 } 5252 5253 if (CallInst *CI = dyn_cast<CallInst>(I)) 5254 return optimizeCallInst(CI, ModifiedDT); 5255 5256 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5257 return optimizeSelectInst(SI); 5258 5259 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5260 return optimizeShuffleVectorInst(SVI); 5261 5262 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5263 return optimizeSwitchInst(Switch); 5264 5265 if (isa<ExtractElementInst>(I)) 5266 return optimizeExtractElementInst(I); 5267 5268 return false; 5269 } 5270 5271 /// Given an OR instruction, check to see if this is a bitreverse 5272 /// idiom. If so, insert the new intrinsic and return true. 5273 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5274 const TargetLowering &TLI) { 5275 if (!I.getType()->isIntegerTy() || 5276 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5277 TLI.getValueType(DL, I.getType(), true))) 5278 return false; 5279 5280 SmallVector<Instruction*, 4> Insts; 5281 if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts)) 5282 return false; 5283 Instruction *LastInst = Insts.back(); 5284 I.replaceAllUsesWith(LastInst); 5285 RecursivelyDeleteTriviallyDeadInstructions(&I); 5286 return true; 5287 } 5288 5289 // In this pass we look for GEP and cast instructions that are used 5290 // across basic blocks and rewrite them to improve basic-block-at-a-time 5291 // selection. 5292 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5293 SunkAddrs.clear(); 5294 bool MadeChange = false; 5295 5296 CurInstIterator = BB.begin(); 5297 while (CurInstIterator != BB.end()) { 5298 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5299 if (ModifiedDT) 5300 return true; 5301 } 5302 5303 bool MadeBitReverse = true; 5304 while (TLI && MadeBitReverse) { 5305 MadeBitReverse = false; 5306 for (auto &I : reverse(BB)) { 5307 if (makeBitReverse(I, *DL, *TLI)) { 5308 MadeBitReverse = MadeChange = true; 5309 ModifiedDT = true; 5310 break; 5311 } 5312 } 5313 } 5314 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5315 5316 return MadeChange; 5317 } 5318 5319 // llvm.dbg.value is far away from the value then iSel may not be able 5320 // handle it properly. iSel will drop llvm.dbg.value if it can not 5321 // find a node corresponding to the value. 5322 bool CodeGenPrepare::placeDbgValues(Function &F) { 5323 bool MadeChange = false; 5324 for (BasicBlock &BB : F) { 5325 Instruction *PrevNonDbgInst = nullptr; 5326 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5327 Instruction *Insn = &*BI++; 5328 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5329 // Leave dbg.values that refer to an alloca alone. These 5330 // instrinsics describe the address of a variable (= the alloca) 5331 // being taken. They should not be moved next to the alloca 5332 // (and to the beginning of the scope), but rather stay close to 5333 // where said address is used. 5334 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5335 PrevNonDbgInst = Insn; 5336 continue; 5337 } 5338 5339 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5340 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5341 // If VI is a phi in a block with an EHPad terminator, we can't insert 5342 // after it. 5343 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5344 continue; 5345 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5346 DVI->removeFromParent(); 5347 if (isa<PHINode>(VI)) 5348 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5349 else 5350 DVI->insertAfter(VI); 5351 MadeChange = true; 5352 ++NumDbgValueMoved; 5353 } 5354 } 5355 } 5356 return MadeChange; 5357 } 5358 5359 // If there is a sequence that branches based on comparing a single bit 5360 // against zero that can be combined into a single instruction, and the 5361 // target supports folding these into a single instruction, sink the 5362 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5363 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5364 // searched for. 5365 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5366 if (!EnableAndCmpSinking) 5367 return false; 5368 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5369 return false; 5370 bool MadeChange = false; 5371 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 5372 BasicBlock *BB = &*I++; 5373 5374 // Does this BB end with the following? 5375 // %andVal = and %val, #single-bit-set 5376 // %icmpVal = icmp %andResult, 0 5377 // br i1 %cmpVal label %dest1, label %dest2" 5378 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 5379 if (!Brcc || !Brcc->isConditional()) 5380 continue; 5381 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5382 if (!Cmp || Cmp->getParent() != BB) 5383 continue; 5384 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5385 if (!Zero || !Zero->isZero()) 5386 continue; 5387 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5388 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 5389 continue; 5390 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5391 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5392 continue; 5393 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 5394 5395 // Push the "and; icmp" for any users that are conditional branches. 5396 // Since there can only be one branch use per BB, we don't need to keep 5397 // track of which BBs we insert into. 5398 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 5399 UI != E; ) { 5400 Use &TheUse = *UI; 5401 // Find brcc use. 5402 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 5403 ++UI; 5404 if (!BrccUser || !BrccUser->isConditional()) 5405 continue; 5406 BasicBlock *UserBB = BrccUser->getParent(); 5407 if (UserBB == BB) continue; 5408 DEBUG(dbgs() << "found Brcc use\n"); 5409 5410 // Sink the "and; icmp" to use. 5411 MadeChange = true; 5412 BinaryOperator *NewAnd = 5413 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5414 BrccUser); 5415 CmpInst *NewCmp = 5416 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5417 "", BrccUser); 5418 TheUse = NewCmp; 5419 ++NumAndCmpsMoved; 5420 DEBUG(BrccUser->getParent()->dump()); 5421 } 5422 } 5423 return MadeChange; 5424 } 5425 5426 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5427 /// success, or returns false if no or invalid metadata was found. 5428 static bool extractBranchMetadata(BranchInst *BI, 5429 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5430 assert(BI->isConditional() && 5431 "Looking for probabilities on unconditional branch?"); 5432 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5433 if (!ProfileData || ProfileData->getNumOperands() != 3) 5434 return false; 5435 5436 const auto *CITrue = 5437 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5438 const auto *CIFalse = 5439 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5440 if (!CITrue || !CIFalse) 5441 return false; 5442 5443 ProbTrue = CITrue->getValue().getZExtValue(); 5444 ProbFalse = CIFalse->getValue().getZExtValue(); 5445 5446 return true; 5447 } 5448 5449 /// \brief Scale down both weights to fit into uint32_t. 5450 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5453 NewTrue = NewTrue / Scale; 5454 NewFalse = NewFalse / Scale; 5455 } 5456 5457 /// \brief Some targets prefer to split a conditional branch like: 5458 /// \code 5459 /// %0 = icmp ne i32 %a, 0 5460 /// %1 = icmp ne i32 %b, 0 5461 /// %or.cond = or i1 %0, %1 5462 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5463 /// \endcode 5464 /// into multiple branch instructions like: 5465 /// \code 5466 /// bb1: 5467 /// %0 = icmp ne i32 %a, 0 5468 /// br i1 %0, label %TrueBB, label %bb2 5469 /// bb2: 5470 /// %1 = icmp ne i32 %b, 0 5471 /// br i1 %1, label %TrueBB, label %FalseBB 5472 /// \endcode 5473 /// This usually allows instruction selection to do even further optimizations 5474 /// and combine the compare with the branch instruction. Currently this is 5475 /// applied for targets which have "cheap" jump instructions. 5476 /// 5477 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5478 /// 5479 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5480 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5481 return false; 5482 5483 bool MadeChange = false; 5484 for (auto &BB : F) { 5485 // Does this BB end with the following? 5486 // %cond1 = icmp|fcmp|binary instruction ... 5487 // %cond2 = icmp|fcmp|binary instruction ... 5488 // %cond.or = or|and i1 %cond1, cond2 5489 // br i1 %cond.or label %dest1, label %dest2" 5490 BinaryOperator *LogicOp; 5491 BasicBlock *TBB, *FBB; 5492 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5493 continue; 5494 5495 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5496 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5497 continue; 5498 5499 unsigned Opc; 5500 Value *Cond1, *Cond2; 5501 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5502 m_OneUse(m_Value(Cond2))))) 5503 Opc = Instruction::And; 5504 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5505 m_OneUse(m_Value(Cond2))))) 5506 Opc = Instruction::Or; 5507 else 5508 continue; 5509 5510 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5511 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5512 continue; 5513 5514 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5515 5516 // Create a new BB. 5517 auto TmpBB = 5518 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5519 BB.getParent(), BB.getNextNode()); 5520 5521 // Update original basic block by using the first condition directly by the 5522 // branch instruction and removing the no longer needed and/or instruction. 5523 Br1->setCondition(Cond1); 5524 LogicOp->eraseFromParent(); 5525 5526 // Depending on the conditon we have to either replace the true or the false 5527 // successor of the original branch instruction. 5528 if (Opc == Instruction::And) 5529 Br1->setSuccessor(0, TmpBB); 5530 else 5531 Br1->setSuccessor(1, TmpBB); 5532 5533 // Fill in the new basic block. 5534 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5535 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5536 I->removeFromParent(); 5537 I->insertBefore(Br2); 5538 } 5539 5540 // Update PHI nodes in both successors. The original BB needs to be 5541 // replaced in one succesor's PHI nodes, because the branch comes now from 5542 // the newly generated BB (NewBB). In the other successor we need to add one 5543 // incoming edge to the PHI nodes, because both branch instructions target 5544 // now the same successor. Depending on the original branch condition 5545 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5546 // we perfrom the correct update for the PHI nodes. 5547 // This doesn't change the successor order of the just created branch 5548 // instruction (or any other instruction). 5549 if (Opc == Instruction::Or) 5550 std::swap(TBB, FBB); 5551 5552 // Replace the old BB with the new BB. 5553 for (auto &I : *TBB) { 5554 PHINode *PN = dyn_cast<PHINode>(&I); 5555 if (!PN) 5556 break; 5557 int i; 5558 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5559 PN->setIncomingBlock(i, TmpBB); 5560 } 5561 5562 // Add another incoming edge form the new BB. 5563 for (auto &I : *FBB) { 5564 PHINode *PN = dyn_cast<PHINode>(&I); 5565 if (!PN) 5566 break; 5567 auto *Val = PN->getIncomingValueForBlock(&BB); 5568 PN->addIncoming(Val, TmpBB); 5569 } 5570 5571 // Update the branch weights (from SelectionDAGBuilder:: 5572 // FindMergedConditions). 5573 if (Opc == Instruction::Or) { 5574 // Codegen X | Y as: 5575 // BB1: 5576 // jmp_if_X TBB 5577 // jmp TmpBB 5578 // TmpBB: 5579 // jmp_if_Y TBB 5580 // jmp FBB 5581 // 5582 5583 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5584 // The requirement is that 5585 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5586 // = TrueProb for orignal BB. 5587 // Assuming the orignal weights are A and B, one choice is to set BB1's 5588 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5589 // assumes that 5590 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5591 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5592 // TmpBB, but the math is more complicated. 5593 uint64_t TrueWeight, FalseWeight; 5594 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5595 uint64_t NewTrueWeight = TrueWeight; 5596 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5597 scaleWeights(NewTrueWeight, NewFalseWeight); 5598 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5599 .createBranchWeights(TrueWeight, FalseWeight)); 5600 5601 NewTrueWeight = TrueWeight; 5602 NewFalseWeight = 2 * FalseWeight; 5603 scaleWeights(NewTrueWeight, NewFalseWeight); 5604 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5605 .createBranchWeights(TrueWeight, FalseWeight)); 5606 } 5607 } else { 5608 // Codegen X & Y as: 5609 // BB1: 5610 // jmp_if_X TmpBB 5611 // jmp FBB 5612 // TmpBB: 5613 // jmp_if_Y TBB 5614 // jmp FBB 5615 // 5616 // This requires creation of TmpBB after CurBB. 5617 5618 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5619 // The requirement is that 5620 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5621 // = FalseProb for orignal BB. 5622 // Assuming the orignal weights are A and B, one choice is to set BB1's 5623 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5624 // assumes that 5625 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5626 uint64_t TrueWeight, FalseWeight; 5627 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5628 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5629 uint64_t NewFalseWeight = FalseWeight; 5630 scaleWeights(NewTrueWeight, NewFalseWeight); 5631 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5632 .createBranchWeights(TrueWeight, FalseWeight)); 5633 5634 NewTrueWeight = 2 * TrueWeight; 5635 NewFalseWeight = FalseWeight; 5636 scaleWeights(NewTrueWeight, NewFalseWeight); 5637 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5638 .createBranchWeights(TrueWeight, FalseWeight)); 5639 } 5640 } 5641 5642 // Note: No point in getting fancy here, since the DT info is never 5643 // available to CodeGenPrepare. 5644 ModifiedDT = true; 5645 5646 MadeChange = true; 5647 5648 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5649 TmpBB->dump()); 5650 } 5651 return MadeChange; 5652 } 5653 5654 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5655 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5656 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5657 } 5658