1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GetElementPtrTypeIterator.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/IR/ValueMap.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/BuildLibCalls.h"
49 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
52 using namespace llvm;
53 using namespace llvm::PatternMatch;
54 
55 #define DEBUG_TYPE "codegenprepare"
56 
57 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
58 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
59 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
60 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
61                       "sunken Cmps");
62 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
63                        "of sunken Casts");
64 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
65                           "computations were sunk");
66 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
67 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
68 STATISTIC(NumAndsAdded,
69           "Number of and mask instructions added to form ext loads");
70 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
71 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
72 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
73 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
74 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
75 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
76 
77 static cl::opt<bool> DisableBranchOpts(
78   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
79   cl::desc("Disable branch optimizations in CodeGenPrepare"));
80 
81 static cl::opt<bool>
82     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
83                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
84 
85 static cl::opt<bool> DisableSelectToBranch(
86   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
87   cl::desc("Disable select to branch conversion."));
88 
89 static cl::opt<bool> AddrSinkUsingGEPs(
90   "addr-sink-using-gep", cl::Hidden, cl::init(false),
91   cl::desc("Address sinking in CGP using GEPs."));
92 
93 static cl::opt<bool> EnableAndCmpSinking(
94    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
95    cl::desc("Enable sinkinig and/cmp into branches."));
96 
97 static cl::opt<bool> DisableStoreExtract(
98     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
99     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
100 
101 static cl::opt<bool> StressStoreExtract(
102     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
103     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
104 
105 static cl::opt<bool> DisableExtLdPromotion(
106     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
107     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
108              "CodeGenPrepare"));
109 
110 static cl::opt<bool> StressExtLdPromotion(
111     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
112     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
113              "optimization in CodeGenPrepare"));
114 
115 static cl::opt<bool> DisablePreheaderProtect(
116     "disable-preheader-prot", cl::Hidden, cl::init(false),
117     cl::desc("Disable protection against removing loop preheaders"));
118 
119 namespace {
120 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
121 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
122 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
123 class TypePromotionTransaction;
124 
125   class CodeGenPrepare : public FunctionPass {
126     const TargetMachine *TM;
127     const TargetLowering *TLI;
128     const TargetTransformInfo *TTI;
129     const TargetLibraryInfo *TLInfo;
130     const LoopInfo *LI;
131 
132     /// As we scan instructions optimizing them, this is the next instruction
133     /// to optimize. Transforms that can invalidate this should update it.
134     BasicBlock::iterator CurInstIterator;
135 
136     /// Keeps track of non-local addresses that have been sunk into a block.
137     /// This allows us to avoid inserting duplicate code for blocks with
138     /// multiple load/stores of the same address.
139     ValueMap<Value*, Value*> SunkAddrs;
140 
141     /// Keeps track of all instructions inserted for the current function.
142     SetOfInstrs InsertedInsts;
143     /// Keeps track of the type of the related instruction before their
144     /// promotion for the current function.
145     InstrToOrigTy PromotedInsts;
146 
147     /// True if CFG is modified in any way.
148     bool ModifiedDT;
149 
150     /// True if optimizing for size.
151     bool OptSize;
152 
153     /// DataLayout for the Function being processed.
154     const DataLayout *DL;
155 
156   public:
157     static char ID; // Pass identification, replacement for typeid
158     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
159         : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
160         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
161       }
162     bool runOnFunction(Function &F) override;
163 
164     const char *getPassName() const override { return "CodeGen Prepare"; }
165 
166     void getAnalysisUsage(AnalysisUsage &AU) const override {
167       // FIXME: When we can selectively preserve passes, preserve the domtree.
168       AU.addRequired<TargetLibraryInfoWrapperPass>();
169       AU.addRequired<TargetTransformInfoWrapperPass>();
170       AU.addRequired<LoopInfoWrapperPass>();
171     }
172 
173   private:
174     bool eliminateFallThrough(Function &F);
175     bool eliminateMostlyEmptyBlocks(Function &F);
176     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
177     void eliminateMostlyEmptyBlock(BasicBlock *BB);
178     bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
179     bool optimizeInst(Instruction *I, bool& ModifiedDT);
180     bool optimizeMemoryInst(Instruction *I, Value *Addr,
181                             Type *AccessTy, unsigned AS);
182     bool optimizeInlineAsmInst(CallInst *CS);
183     bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
184     bool moveExtToFormExtLoad(Instruction *&I);
185     bool optimizeExtUses(Instruction *I);
186     bool optimizeLoadExt(LoadInst *I);
187     bool optimizeSelectInst(SelectInst *SI);
188     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
189     bool optimizeSwitchInst(SwitchInst *CI);
190     bool optimizeExtractElementInst(Instruction *Inst);
191     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
192     bool placeDbgValues(Function &F);
193     bool sinkAndCmp(Function &F);
194     bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
195                         Instruction *&Inst,
196                         const SmallVectorImpl<Instruction *> &Exts,
197                         unsigned CreatedInstCost);
198     bool splitBranchCondition(Function &F);
199     bool simplifyOffsetableRelocate(Instruction &I);
200     void stripInvariantGroupMetadata(Instruction &I);
201   };
202 }
203 
204 char CodeGenPrepare::ID = 0;
205 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
206                    "Optimize for code generation", false, false)
207 
208 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
209   return new CodeGenPrepare(TM);
210 }
211 
212 bool CodeGenPrepare::runOnFunction(Function &F) {
213   if (skipOptnoneFunction(F))
214     return false;
215 
216   DL = &F.getParent()->getDataLayout();
217 
218   bool EverMadeChange = false;
219   // Clear per function information.
220   InsertedInsts.clear();
221   PromotedInsts.clear();
222 
223   ModifiedDT = false;
224   if (TM)
225     TLI = TM->getSubtargetImpl(F)->getTargetLowering();
226   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
227   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
228   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
229   OptSize = F.optForSize();
230 
231   /// This optimization identifies DIV instructions that can be
232   /// profitably bypassed and carried out with a shorter, faster divide.
233   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
234     const DenseMap<unsigned int, unsigned int> &BypassWidths =
235        TLI->getBypassSlowDivWidths();
236     BasicBlock* BB = &*F.begin();
237     while (BB != nullptr) {
238       // bypassSlowDivision may create new BBs, but we don't want to reapply the
239       // optimization to those blocks.
240       BasicBlock* Next = BB->getNextNode();
241       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
242       BB = Next;
243     }
244   }
245 
246   // Eliminate blocks that contain only PHI nodes and an
247   // unconditional branch.
248   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
249 
250   // llvm.dbg.value is far away from the value then iSel may not be able
251   // handle it properly. iSel will drop llvm.dbg.value if it can not
252   // find a node corresponding to the value.
253   EverMadeChange |= placeDbgValues(F);
254 
255   // If there is a mask, compare against zero, and branch that can be combined
256   // into a single target instruction, push the mask and compare into branch
257   // users. Do this before OptimizeBlock -> OptimizeInst ->
258   // OptimizeCmpExpression, which perturbs the pattern being searched for.
259   if (!DisableBranchOpts) {
260     EverMadeChange |= sinkAndCmp(F);
261     EverMadeChange |= splitBranchCondition(F);
262   }
263 
264   bool MadeChange = true;
265   while (MadeChange) {
266     MadeChange = false;
267     for (Function::iterator I = F.begin(); I != F.end(); ) {
268       BasicBlock *BB = &*I++;
269       bool ModifiedDTOnIteration = false;
270       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
271 
272       // Restart BB iteration if the dominator tree of the Function was changed
273       if (ModifiedDTOnIteration)
274         break;
275     }
276     EverMadeChange |= MadeChange;
277   }
278 
279   SunkAddrs.clear();
280 
281   if (!DisableBranchOpts) {
282     MadeChange = false;
283     SmallPtrSet<BasicBlock*, 8> WorkList;
284     for (BasicBlock &BB : F) {
285       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
286       MadeChange |= ConstantFoldTerminator(&BB, true);
287       if (!MadeChange) continue;
288 
289       for (SmallVectorImpl<BasicBlock*>::iterator
290              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
291         if (pred_begin(*II) == pred_end(*II))
292           WorkList.insert(*II);
293     }
294 
295     // Delete the dead blocks and any of their dead successors.
296     MadeChange |= !WorkList.empty();
297     while (!WorkList.empty()) {
298       BasicBlock *BB = *WorkList.begin();
299       WorkList.erase(BB);
300       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
301 
302       DeleteDeadBlock(BB);
303 
304       for (SmallVectorImpl<BasicBlock*>::iterator
305              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
306         if (pred_begin(*II) == pred_end(*II))
307           WorkList.insert(*II);
308     }
309 
310     // Merge pairs of basic blocks with unconditional branches, connected by
311     // a single edge.
312     if (EverMadeChange || MadeChange)
313       MadeChange |= eliminateFallThrough(F);
314 
315     EverMadeChange |= MadeChange;
316   }
317 
318   if (!DisableGCOpts) {
319     SmallVector<Instruction *, 2> Statepoints;
320     for (BasicBlock &BB : F)
321       for (Instruction &I : BB)
322         if (isStatepoint(I))
323           Statepoints.push_back(&I);
324     for (auto &I : Statepoints)
325       EverMadeChange |= simplifyOffsetableRelocate(*I);
326   }
327 
328   return EverMadeChange;
329 }
330 
331 /// Merge basic blocks which are connected by a single edge, where one of the
332 /// basic blocks has a single successor pointing to the other basic block,
333 /// which has a single predecessor.
334 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
335   bool Changed = false;
336   // Scan all of the blocks in the function, except for the entry block.
337   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
338     BasicBlock *BB = &*I++;
339     // If the destination block has a single pred, then this is a trivial
340     // edge, just collapse it.
341     BasicBlock *SinglePred = BB->getSinglePredecessor();
342 
343     // Don't merge if BB's address is taken.
344     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
345 
346     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
347     if (Term && !Term->isConditional()) {
348       Changed = true;
349       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
350       // Remember if SinglePred was the entry block of the function.
351       // If so, we will need to move BB back to the entry position.
352       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
353       MergeBasicBlockIntoOnlyPred(BB, nullptr);
354 
355       if (isEntry && BB != &BB->getParent()->getEntryBlock())
356         BB->moveBefore(&BB->getParent()->getEntryBlock());
357 
358       // We have erased a block. Update the iterator.
359       I = BB->getIterator();
360     }
361   }
362   return Changed;
363 }
364 
365 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
366 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
367 /// edges in ways that are non-optimal for isel. Start by eliminating these
368 /// blocks so we can split them the way we want them.
369 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
370   SmallPtrSet<BasicBlock *, 16> Preheaders;
371   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
372   while (!LoopList.empty()) {
373     Loop *L = LoopList.pop_back_val();
374     LoopList.insert(LoopList.end(), L->begin(), L->end());
375     if (BasicBlock *Preheader = L->getLoopPreheader())
376       Preheaders.insert(Preheader);
377   }
378 
379   bool MadeChange = false;
380   // Note that this intentionally skips the entry block.
381   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
382     BasicBlock *BB = &*I++;
383 
384     // If this block doesn't end with an uncond branch, ignore it.
385     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
386     if (!BI || !BI->isUnconditional())
387       continue;
388 
389     // If the instruction before the branch (skipping debug info) isn't a phi
390     // node, then other stuff is happening here.
391     BasicBlock::iterator BBI = BI->getIterator();
392     if (BBI != BB->begin()) {
393       --BBI;
394       while (isa<DbgInfoIntrinsic>(BBI)) {
395         if (BBI == BB->begin())
396           break;
397         --BBI;
398       }
399       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
400         continue;
401     }
402 
403     // Do not break infinite loops.
404     BasicBlock *DestBB = BI->getSuccessor(0);
405     if (DestBB == BB)
406       continue;
407 
408     if (!canMergeBlocks(BB, DestBB))
409       continue;
410 
411     // Do not delete loop preheaders if doing so would create a critical edge.
412     // Loop preheaders can be good locations to spill registers. If the
413     // preheader is deleted and we create a critical edge, registers may be
414     // spilled in the loop body instead.
415     if (!DisablePreheaderProtect && Preheaders.count(BB) &&
416         !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor()))
417      continue;
418 
419     eliminateMostlyEmptyBlock(BB);
420     MadeChange = true;
421   }
422   return MadeChange;
423 }
424 
425 /// Return true if we can merge BB into DestBB if there is a single
426 /// unconditional branch between them, and BB contains no other non-phi
427 /// instructions.
428 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
429                                     const BasicBlock *DestBB) const {
430   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
431   // the successor.  If there are more complex condition (e.g. preheaders),
432   // don't mess around with them.
433   BasicBlock::const_iterator BBI = BB->begin();
434   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
435     for (const User *U : PN->users()) {
436       const Instruction *UI = cast<Instruction>(U);
437       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
438         return false;
439       // If User is inside DestBB block and it is a PHINode then check
440       // incoming value. If incoming value is not from BB then this is
441       // a complex condition (e.g. preheaders) we want to avoid here.
442       if (UI->getParent() == DestBB) {
443         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
444           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
445             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
446             if (Insn && Insn->getParent() == BB &&
447                 Insn->getParent() != UPN->getIncomingBlock(I))
448               return false;
449           }
450       }
451     }
452   }
453 
454   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
455   // and DestBB may have conflicting incoming values for the block.  If so, we
456   // can't merge the block.
457   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
458   if (!DestBBPN) return true;  // no conflict.
459 
460   // Collect the preds of BB.
461   SmallPtrSet<const BasicBlock*, 16> BBPreds;
462   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
463     // It is faster to get preds from a PHI than with pred_iterator.
464     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
465       BBPreds.insert(BBPN->getIncomingBlock(i));
466   } else {
467     BBPreds.insert(pred_begin(BB), pred_end(BB));
468   }
469 
470   // Walk the preds of DestBB.
471   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
472     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
473     if (BBPreds.count(Pred)) {   // Common predecessor?
474       BBI = DestBB->begin();
475       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
476         const Value *V1 = PN->getIncomingValueForBlock(Pred);
477         const Value *V2 = PN->getIncomingValueForBlock(BB);
478 
479         // If V2 is a phi node in BB, look up what the mapped value will be.
480         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
481           if (V2PN->getParent() == BB)
482             V2 = V2PN->getIncomingValueForBlock(Pred);
483 
484         // If there is a conflict, bail out.
485         if (V1 != V2) return false;
486       }
487     }
488   }
489 
490   return true;
491 }
492 
493 
494 /// Eliminate a basic block that has only phi's and an unconditional branch in
495 /// it.
496 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
497   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
498   BasicBlock *DestBB = BI->getSuccessor(0);
499 
500   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
501 
502   // If the destination block has a single pred, then this is a trivial edge,
503   // just collapse it.
504   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
505     if (SinglePred != DestBB) {
506       // Remember if SinglePred was the entry block of the function.  If so, we
507       // will need to move BB back to the entry position.
508       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
509       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
510 
511       if (isEntry && BB != &BB->getParent()->getEntryBlock())
512         BB->moveBefore(&BB->getParent()->getEntryBlock());
513 
514       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
515       return;
516     }
517   }
518 
519   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
520   // to handle the new incoming edges it is about to have.
521   PHINode *PN;
522   for (BasicBlock::iterator BBI = DestBB->begin();
523        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
524     // Remove the incoming value for BB, and remember it.
525     Value *InVal = PN->removeIncomingValue(BB, false);
526 
527     // Two options: either the InVal is a phi node defined in BB or it is some
528     // value that dominates BB.
529     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
530     if (InValPhi && InValPhi->getParent() == BB) {
531       // Add all of the input values of the input PHI as inputs of this phi.
532       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
533         PN->addIncoming(InValPhi->getIncomingValue(i),
534                         InValPhi->getIncomingBlock(i));
535     } else {
536       // Otherwise, add one instance of the dominating value for each edge that
537       // we will be adding.
538       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
539         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
540           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
541       } else {
542         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
543           PN->addIncoming(InVal, *PI);
544       }
545     }
546   }
547 
548   // The PHIs are now updated, change everything that refers to BB to use
549   // DestBB and remove BB.
550   BB->replaceAllUsesWith(DestBB);
551   BB->eraseFromParent();
552   ++NumBlocksElim;
553 
554   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
555 }
556 
557 // Computes a map of base pointer relocation instructions to corresponding
558 // derived pointer relocation instructions given a vector of all relocate calls
559 static void computeBaseDerivedRelocateMap(
560     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
561     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
562         &RelocateInstMap) {
563   // Collect information in two maps: one primarily for locating the base object
564   // while filling the second map; the second map is the final structure holding
565   // a mapping between Base and corresponding Derived relocate calls
566   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
567   for (auto *ThisRelocate : AllRelocateCalls) {
568     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
569                             ThisRelocate->getDerivedPtrIndex());
570     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
571   }
572   for (auto &Item : RelocateIdxMap) {
573     std::pair<unsigned, unsigned> Key = Item.first;
574     if (Key.first == Key.second)
575       // Base relocation: nothing to insert
576       continue;
577 
578     GCRelocateInst *I = Item.second;
579     auto BaseKey = std::make_pair(Key.first, Key.first);
580 
581     // We're iterating over RelocateIdxMap so we cannot modify it.
582     auto MaybeBase = RelocateIdxMap.find(BaseKey);
583     if (MaybeBase == RelocateIdxMap.end())
584       // TODO: We might want to insert a new base object relocate and gep off
585       // that, if there are enough derived object relocates.
586       continue;
587 
588     RelocateInstMap[MaybeBase->second].push_back(I);
589   }
590 }
591 
592 // Accepts a GEP and extracts the operands into a vector provided they're all
593 // small integer constants
594 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
595                                           SmallVectorImpl<Value *> &OffsetV) {
596   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
597     // Only accept small constant integer operands
598     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
599     if (!Op || Op->getZExtValue() > 20)
600       return false;
601   }
602 
603   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
604     OffsetV.push_back(GEP->getOperand(i));
605   return true;
606 }
607 
608 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
609 // replace, computes a replacement, and affects it.
610 static bool
611 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
612                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
613   bool MadeChange = false;
614   for (GCRelocateInst *ToReplace : Targets) {
615     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
616            "Not relocating a derived object of the original base object");
617     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
618       // A duplicate relocate call. TODO: coalesce duplicates.
619       continue;
620     }
621 
622     if (RelocatedBase->getParent() != ToReplace->getParent()) {
623       // Base and derived relocates are in different basic blocks.
624       // In this case transform is only valid when base dominates derived
625       // relocate. However it would be too expensive to check dominance
626       // for each such relocate, so we skip the whole transformation.
627       continue;
628     }
629 
630     Value *Base = ToReplace->getBasePtr();
631     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
632     if (!Derived || Derived->getPointerOperand() != Base)
633       continue;
634 
635     SmallVector<Value *, 2> OffsetV;
636     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
637       continue;
638 
639     // Create a Builder and replace the target callsite with a gep
640     assert(RelocatedBase->getNextNode() &&
641            "Should always have one since it's not a terminator");
642 
643     // Insert after RelocatedBase
644     IRBuilder<> Builder(RelocatedBase->getNextNode());
645     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
646 
647     // If gc_relocate does not match the actual type, cast it to the right type.
648     // In theory, there must be a bitcast after gc_relocate if the type does not
649     // match, and we should reuse it to get the derived pointer. But it could be
650     // cases like this:
651     // bb1:
652     //  ...
653     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
654     //  br label %merge
655     //
656     // bb2:
657     //  ...
658     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
659     //  br label %merge
660     //
661     // merge:
662     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
663     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
664     //
665     // In this case, we can not find the bitcast any more. So we insert a new bitcast
666     // no matter there is already one or not. In this way, we can handle all cases, and
667     // the extra bitcast should be optimized away in later passes.
668     Value *ActualRelocatedBase = RelocatedBase;
669     if (RelocatedBase->getType() != Base->getType()) {
670       ActualRelocatedBase =
671           Builder.CreateBitCast(RelocatedBase, Base->getType());
672     }
673     Value *Replacement = Builder.CreateGEP(
674         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
675     Replacement->takeName(ToReplace);
676     // If the newly generated derived pointer's type does not match the original derived
677     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
678     Value *ActualReplacement = Replacement;
679     if (Replacement->getType() != ToReplace->getType()) {
680       ActualReplacement =
681           Builder.CreateBitCast(Replacement, ToReplace->getType());
682     }
683     ToReplace->replaceAllUsesWith(ActualReplacement);
684     ToReplace->eraseFromParent();
685 
686     MadeChange = true;
687   }
688   return MadeChange;
689 }
690 
691 // Turns this:
692 //
693 // %base = ...
694 // %ptr = gep %base + 15
695 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
696 // %base' = relocate(%tok, i32 4, i32 4)
697 // %ptr' = relocate(%tok, i32 4, i32 5)
698 // %val = load %ptr'
699 //
700 // into this:
701 //
702 // %base = ...
703 // %ptr = gep %base + 15
704 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
705 // %base' = gc.relocate(%tok, i32 4, i32 4)
706 // %ptr' = gep %base' + 15
707 // %val = load %ptr'
708 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
709   bool MadeChange = false;
710   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
711 
712   for (auto *U : I.users())
713     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
714       // Collect all the relocate calls associated with a statepoint
715       AllRelocateCalls.push_back(Relocate);
716 
717   // We need atleast one base pointer relocation + one derived pointer
718   // relocation to mangle
719   if (AllRelocateCalls.size() < 2)
720     return false;
721 
722   // RelocateInstMap is a mapping from the base relocate instruction to the
723   // corresponding derived relocate instructions
724   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
725   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
726   if (RelocateInstMap.empty())
727     return false;
728 
729   for (auto &Item : RelocateInstMap)
730     // Item.first is the RelocatedBase to offset against
731     // Item.second is the vector of Targets to replace
732     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
733   return MadeChange;
734 }
735 
736 /// SinkCast - Sink the specified cast instruction into its user blocks
737 static bool SinkCast(CastInst *CI) {
738   BasicBlock *DefBB = CI->getParent();
739 
740   /// InsertedCasts - Only insert a cast in each block once.
741   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
742 
743   bool MadeChange = false;
744   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
745        UI != E; ) {
746     Use &TheUse = UI.getUse();
747     Instruction *User = cast<Instruction>(*UI);
748 
749     // Figure out which BB this cast is used in.  For PHI's this is the
750     // appropriate predecessor block.
751     BasicBlock *UserBB = User->getParent();
752     if (PHINode *PN = dyn_cast<PHINode>(User)) {
753       UserBB = PN->getIncomingBlock(TheUse);
754     }
755 
756     // Preincrement use iterator so we don't invalidate it.
757     ++UI;
758 
759     // If the block selected to receive the cast is an EH pad that does not
760     // allow non-PHI instructions before the terminator, we can't sink the
761     // cast.
762     if (UserBB->getTerminator()->isEHPad())
763       continue;
764 
765     // If this user is in the same block as the cast, don't change the cast.
766     if (UserBB == DefBB) continue;
767 
768     // If we have already inserted a cast into this block, use it.
769     CastInst *&InsertedCast = InsertedCasts[UserBB];
770 
771     if (!InsertedCast) {
772       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
773       assert(InsertPt != UserBB->end());
774       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
775                                       CI->getType(), "", &*InsertPt);
776     }
777 
778     // Replace a use of the cast with a use of the new cast.
779     TheUse = InsertedCast;
780     MadeChange = true;
781     ++NumCastUses;
782   }
783 
784   // If we removed all uses, nuke the cast.
785   if (CI->use_empty()) {
786     CI->eraseFromParent();
787     MadeChange = true;
788   }
789 
790   return MadeChange;
791 }
792 
793 /// If the specified cast instruction is a noop copy (e.g. it's casting from
794 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
795 /// reduce the number of virtual registers that must be created and coalesced.
796 ///
797 /// Return true if any changes are made.
798 ///
799 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
800                                        const DataLayout &DL) {
801   // If this is a noop copy,
802   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
803   EVT DstVT = TLI.getValueType(DL, CI->getType());
804 
805   // This is an fp<->int conversion?
806   if (SrcVT.isInteger() != DstVT.isInteger())
807     return false;
808 
809   // If this is an extension, it will be a zero or sign extension, which
810   // isn't a noop.
811   if (SrcVT.bitsLT(DstVT)) return false;
812 
813   // If these values will be promoted, find out what they will be promoted
814   // to.  This helps us consider truncates on PPC as noop copies when they
815   // are.
816   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
817       TargetLowering::TypePromoteInteger)
818     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
819   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
820       TargetLowering::TypePromoteInteger)
821     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
822 
823   // If, after promotion, these are the same types, this is a noop copy.
824   if (SrcVT != DstVT)
825     return false;
826 
827   return SinkCast(CI);
828 }
829 
830 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
831 /// possible.
832 ///
833 /// Return true if any changes were made.
834 static bool CombineUAddWithOverflow(CmpInst *CI) {
835   Value *A, *B;
836   Instruction *AddI;
837   if (!match(CI,
838              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
839     return false;
840 
841   Type *Ty = AddI->getType();
842   if (!isa<IntegerType>(Ty))
843     return false;
844 
845   // We don't want to move around uses of condition values this late, so we we
846   // check if it is legal to create the call to the intrinsic in the basic
847   // block containing the icmp:
848 
849   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
850     return false;
851 
852 #ifndef NDEBUG
853   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
854   // for now:
855   if (AddI->hasOneUse())
856     assert(*AddI->user_begin() == CI && "expected!");
857 #endif
858 
859   Module *M = CI->getModule();
860   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
861 
862   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
863 
864   auto *UAddWithOverflow =
865       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
866   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
867   auto *Overflow =
868       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
869 
870   CI->replaceAllUsesWith(Overflow);
871   AddI->replaceAllUsesWith(UAdd);
872   CI->eraseFromParent();
873   AddI->eraseFromParent();
874   return true;
875 }
876 
877 /// Sink the given CmpInst into user blocks to reduce the number of virtual
878 /// registers that must be created and coalesced. This is a clear win except on
879 /// targets with multiple condition code registers (PowerPC), where it might
880 /// lose; some adjustment may be wanted there.
881 ///
882 /// Return true if any changes are made.
883 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
884   BasicBlock *DefBB = CI->getParent();
885 
886   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
887   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
888     return false;
889 
890   // Only insert a cmp in each block once.
891   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
892 
893   bool MadeChange = false;
894   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
895        UI != E; ) {
896     Use &TheUse = UI.getUse();
897     Instruction *User = cast<Instruction>(*UI);
898 
899     // Preincrement use iterator so we don't invalidate it.
900     ++UI;
901 
902     // Don't bother for PHI nodes.
903     if (isa<PHINode>(User))
904       continue;
905 
906     // Figure out which BB this cmp is used in.
907     BasicBlock *UserBB = User->getParent();
908 
909     // If this user is in the same block as the cmp, don't change the cmp.
910     if (UserBB == DefBB) continue;
911 
912     // If we have already inserted a cmp into this block, use it.
913     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
914 
915     if (!InsertedCmp) {
916       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
917       assert(InsertPt != UserBB->end());
918       InsertedCmp =
919           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
920                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
921     }
922 
923     // Replace a use of the cmp with a use of the new cmp.
924     TheUse = InsertedCmp;
925     MadeChange = true;
926     ++NumCmpUses;
927   }
928 
929   // If we removed all uses, nuke the cmp.
930   if (CI->use_empty()) {
931     CI->eraseFromParent();
932     MadeChange = true;
933   }
934 
935   return MadeChange;
936 }
937 
938 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
939   if (SinkCmpExpression(CI, TLI))
940     return true;
941 
942   if (CombineUAddWithOverflow(CI))
943     return true;
944 
945   return false;
946 }
947 
948 /// Check if the candidates could be combined with a shift instruction, which
949 /// includes:
950 /// 1. Truncate instruction
951 /// 2. And instruction and the imm is a mask of the low bits:
952 /// imm & (imm+1) == 0
953 static bool isExtractBitsCandidateUse(Instruction *User) {
954   if (!isa<TruncInst>(User)) {
955     if (User->getOpcode() != Instruction::And ||
956         !isa<ConstantInt>(User->getOperand(1)))
957       return false;
958 
959     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
960 
961     if ((Cimm & (Cimm + 1)).getBoolValue())
962       return false;
963   }
964   return true;
965 }
966 
967 /// Sink both shift and truncate instruction to the use of truncate's BB.
968 static bool
969 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
970                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
971                      const TargetLowering &TLI, const DataLayout &DL) {
972   BasicBlock *UserBB = User->getParent();
973   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
974   TruncInst *TruncI = dyn_cast<TruncInst>(User);
975   bool MadeChange = false;
976 
977   for (Value::user_iterator TruncUI = TruncI->user_begin(),
978                             TruncE = TruncI->user_end();
979        TruncUI != TruncE;) {
980 
981     Use &TruncTheUse = TruncUI.getUse();
982     Instruction *TruncUser = cast<Instruction>(*TruncUI);
983     // Preincrement use iterator so we don't invalidate it.
984 
985     ++TruncUI;
986 
987     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
988     if (!ISDOpcode)
989       continue;
990 
991     // If the use is actually a legal node, there will not be an
992     // implicit truncate.
993     // FIXME: always querying the result type is just an
994     // approximation; some nodes' legality is determined by the
995     // operand or other means. There's no good way to find out though.
996     if (TLI.isOperationLegalOrCustom(
997             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
998       continue;
999 
1000     // Don't bother for PHI nodes.
1001     if (isa<PHINode>(TruncUser))
1002       continue;
1003 
1004     BasicBlock *TruncUserBB = TruncUser->getParent();
1005 
1006     if (UserBB == TruncUserBB)
1007       continue;
1008 
1009     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1010     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1011 
1012     if (!InsertedShift && !InsertedTrunc) {
1013       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1014       assert(InsertPt != TruncUserBB->end());
1015       // Sink the shift
1016       if (ShiftI->getOpcode() == Instruction::AShr)
1017         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1018                                                    "", &*InsertPt);
1019       else
1020         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1021                                                    "", &*InsertPt);
1022 
1023       // Sink the trunc
1024       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1025       TruncInsertPt++;
1026       assert(TruncInsertPt != TruncUserBB->end());
1027 
1028       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1029                                        TruncI->getType(), "", &*TruncInsertPt);
1030 
1031       MadeChange = true;
1032 
1033       TruncTheUse = InsertedTrunc;
1034     }
1035   }
1036   return MadeChange;
1037 }
1038 
1039 /// Sink the shift *right* instruction into user blocks if the uses could
1040 /// potentially be combined with this shift instruction and generate BitExtract
1041 /// instruction. It will only be applied if the architecture supports BitExtract
1042 /// instruction. Here is an example:
1043 /// BB1:
1044 ///   %x.extract.shift = lshr i64 %arg1, 32
1045 /// BB2:
1046 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1047 /// ==>
1048 ///
1049 /// BB2:
1050 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1051 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1052 ///
1053 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1054 /// instruction.
1055 /// Return true if any changes are made.
1056 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1057                                 const TargetLowering &TLI,
1058                                 const DataLayout &DL) {
1059   BasicBlock *DefBB = ShiftI->getParent();
1060 
1061   /// Only insert instructions in each block once.
1062   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1063 
1064   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1065 
1066   bool MadeChange = false;
1067   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1068        UI != E;) {
1069     Use &TheUse = UI.getUse();
1070     Instruction *User = cast<Instruction>(*UI);
1071     // Preincrement use iterator so we don't invalidate it.
1072     ++UI;
1073 
1074     // Don't bother for PHI nodes.
1075     if (isa<PHINode>(User))
1076       continue;
1077 
1078     if (!isExtractBitsCandidateUse(User))
1079       continue;
1080 
1081     BasicBlock *UserBB = User->getParent();
1082 
1083     if (UserBB == DefBB) {
1084       // If the shift and truncate instruction are in the same BB. The use of
1085       // the truncate(TruncUse) may still introduce another truncate if not
1086       // legal. In this case, we would like to sink both shift and truncate
1087       // instruction to the BB of TruncUse.
1088       // for example:
1089       // BB1:
1090       // i64 shift.result = lshr i64 opnd, imm
1091       // trunc.result = trunc shift.result to i16
1092       //
1093       // BB2:
1094       //   ----> We will have an implicit truncate here if the architecture does
1095       //   not have i16 compare.
1096       // cmp i16 trunc.result, opnd2
1097       //
1098       if (isa<TruncInst>(User) && shiftIsLegal
1099           // If the type of the truncate is legal, no trucate will be
1100           // introduced in other basic blocks.
1101           &&
1102           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1103         MadeChange =
1104             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1105 
1106       continue;
1107     }
1108     // If we have already inserted a shift into this block, use it.
1109     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1110 
1111     if (!InsertedShift) {
1112       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113       assert(InsertPt != UserBB->end());
1114 
1115       if (ShiftI->getOpcode() == Instruction::AShr)
1116         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1117                                                    "", &*InsertPt);
1118       else
1119         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1120                                                    "", &*InsertPt);
1121 
1122       MadeChange = true;
1123     }
1124 
1125     // Replace a use of the shift with a use of the new shift.
1126     TheUse = InsertedShift;
1127   }
1128 
1129   // If we removed all uses, nuke the shift.
1130   if (ShiftI->use_empty())
1131     ShiftI->eraseFromParent();
1132 
1133   return MadeChange;
1134 }
1135 
1136 // Translate a masked load intrinsic like
1137 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1138 //                               <16 x i1> %mask, <16 x i32> %passthru)
1139 // to a chain of basic blocks, with loading element one-by-one if
1140 // the appropriate mask bit is set
1141 //
1142 //  %1 = bitcast i8* %addr to i32*
1143 //  %2 = extractelement <16 x i1> %mask, i32 0
1144 //  %3 = icmp eq i1 %2, true
1145 //  br i1 %3, label %cond.load, label %else
1146 //
1147 //cond.load:                                        ; preds = %0
1148 //  %4 = getelementptr i32* %1, i32 0
1149 //  %5 = load i32* %4
1150 //  %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1151 //  br label %else
1152 //
1153 //else:                                             ; preds = %0, %cond.load
1154 //  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1155 //  %7 = extractelement <16 x i1> %mask, i32 1
1156 //  %8 = icmp eq i1 %7, true
1157 //  br i1 %8, label %cond.load1, label %else2
1158 //
1159 //cond.load1:                                       ; preds = %else
1160 //  %9 = getelementptr i32* %1, i32 1
1161 //  %10 = load i32* %9
1162 //  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1163 //  br label %else2
1164 //
1165 //else2:                                            ; preds = %else, %cond.load1
1166 //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1167 //  %12 = extractelement <16 x i1> %mask, i32 2
1168 //  %13 = icmp eq i1 %12, true
1169 //  br i1 %13, label %cond.load4, label %else5
1170 //
1171 static void scalarizeMaskedLoad(CallInst *CI) {
1172   Value *Ptr  = CI->getArgOperand(0);
1173   Value *Alignment = CI->getArgOperand(1);
1174   Value *Mask = CI->getArgOperand(2);
1175   Value *Src0 = CI->getArgOperand(3);
1176 
1177   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1178   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1179   assert(VecType && "Unexpected return type of masked load intrinsic");
1180 
1181   Type *EltTy = CI->getType()->getVectorElementType();
1182 
1183   IRBuilder<> Builder(CI->getContext());
1184   Instruction *InsertPt = CI;
1185   BasicBlock *IfBlock = CI->getParent();
1186   BasicBlock *CondBlock = nullptr;
1187   BasicBlock *PrevIfBlock = CI->getParent();
1188 
1189   Builder.SetInsertPoint(InsertPt);
1190   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1191 
1192   // Short-cut if the mask is all-true.
1193   bool IsAllOnesMask = isa<Constant>(Mask) &&
1194     cast<Constant>(Mask)->isAllOnesValue();
1195 
1196   if (IsAllOnesMask) {
1197     Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
1198     CI->replaceAllUsesWith(NewI);
1199     CI->eraseFromParent();
1200     return;
1201   }
1202 
1203   // Adjust alignment for the scalar instruction.
1204   AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
1205   // Bitcast %addr fron i8* to EltTy*
1206   Type *NewPtrType =
1207     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1208   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1209   unsigned VectorWidth = VecType->getNumElements();
1210 
1211   Value *UndefVal = UndefValue::get(VecType);
1212 
1213   // The result vector
1214   Value *VResult = UndefVal;
1215 
1216   if (isa<ConstantVector>(Mask)) {
1217     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1218       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1219           continue;
1220       Value *Gep =
1221           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1222       LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1223       VResult = Builder.CreateInsertElement(VResult, Load,
1224                                             Builder.getInt32(Idx));
1225     }
1226     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1227     CI->replaceAllUsesWith(NewI);
1228     CI->eraseFromParent();
1229     return;
1230   }
1231 
1232   PHINode *Phi = nullptr;
1233   Value *PrevPhi = UndefVal;
1234 
1235   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1236 
1237     // Fill the "else" block, created in the previous iteration
1238     //
1239     //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1240     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1241     //  %to_load = icmp eq i1 %mask_1, true
1242     //  br i1 %to_load, label %cond.load, label %else
1243     //
1244     if (Idx > 0) {
1245       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1246       Phi->addIncoming(VResult, CondBlock);
1247       Phi->addIncoming(PrevPhi, PrevIfBlock);
1248       PrevPhi = Phi;
1249       VResult = Phi;
1250     }
1251 
1252     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1253     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1254                                     ConstantInt::get(Predicate->getType(), 1));
1255 
1256     // Create "cond" block
1257     //
1258     //  %EltAddr = getelementptr i32* %1, i32 0
1259     //  %Elt = load i32* %EltAddr
1260     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1261     //
1262     CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
1263     Builder.SetInsertPoint(InsertPt);
1264 
1265     Value *Gep =
1266         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1267     LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1268     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1269 
1270     // Create "else" block, fill it in the next iteration
1271     BasicBlock *NewIfBlock =
1272         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1273     Builder.SetInsertPoint(InsertPt);
1274     Instruction *OldBr = IfBlock->getTerminator();
1275     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1276     OldBr->eraseFromParent();
1277     PrevIfBlock = IfBlock;
1278     IfBlock = NewIfBlock;
1279   }
1280 
1281   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1282   Phi->addIncoming(VResult, CondBlock);
1283   Phi->addIncoming(PrevPhi, PrevIfBlock);
1284   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1285   CI->replaceAllUsesWith(NewI);
1286   CI->eraseFromParent();
1287 }
1288 
1289 // Translate a masked store intrinsic, like
1290 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1291 //                               <16 x i1> %mask)
1292 // to a chain of basic blocks, that stores element one-by-one if
1293 // the appropriate mask bit is set
1294 //
1295 //   %1 = bitcast i8* %addr to i32*
1296 //   %2 = extractelement <16 x i1> %mask, i32 0
1297 //   %3 = icmp eq i1 %2, true
1298 //   br i1 %3, label %cond.store, label %else
1299 //
1300 // cond.store:                                       ; preds = %0
1301 //   %4 = extractelement <16 x i32> %val, i32 0
1302 //   %5 = getelementptr i32* %1, i32 0
1303 //   store i32 %4, i32* %5
1304 //   br label %else
1305 //
1306 // else:                                             ; preds = %0, %cond.store
1307 //   %6 = extractelement <16 x i1> %mask, i32 1
1308 //   %7 = icmp eq i1 %6, true
1309 //   br i1 %7, label %cond.store1, label %else2
1310 //
1311 // cond.store1:                                      ; preds = %else
1312 //   %8 = extractelement <16 x i32> %val, i32 1
1313 //   %9 = getelementptr i32* %1, i32 1
1314 //   store i32 %8, i32* %9
1315 //   br label %else2
1316 //   . . .
1317 static void scalarizeMaskedStore(CallInst *CI) {
1318   Value *Src = CI->getArgOperand(0);
1319   Value *Ptr  = CI->getArgOperand(1);
1320   Value *Alignment = CI->getArgOperand(2);
1321   Value *Mask = CI->getArgOperand(3);
1322 
1323   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1324   VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1325   assert(VecType && "Unexpected data type in masked store intrinsic");
1326 
1327   Type *EltTy = VecType->getElementType();
1328 
1329   IRBuilder<> Builder(CI->getContext());
1330   Instruction *InsertPt = CI;
1331   BasicBlock *IfBlock = CI->getParent();
1332   Builder.SetInsertPoint(InsertPt);
1333   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1334 
1335   // Short-cut if the mask is all-true.
1336   bool IsAllOnesMask = isa<Constant>(Mask) &&
1337     cast<Constant>(Mask)->isAllOnesValue();
1338 
1339   if (IsAllOnesMask) {
1340     Builder.CreateAlignedStore(Src, Ptr, AlignVal);
1341     CI->eraseFromParent();
1342     return;
1343   }
1344 
1345   // Adjust alignment for the scalar instruction.
1346   AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
1347   // Bitcast %addr fron i8* to EltTy*
1348   Type *NewPtrType =
1349     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1350   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1351   unsigned VectorWidth = VecType->getNumElements();
1352 
1353   if (isa<ConstantVector>(Mask)) {
1354     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1355       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1356           continue;
1357       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1358       Value *Gep =
1359           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1360       Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1361     }
1362     CI->eraseFromParent();
1363     return;
1364   }
1365 
1366   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1367 
1368     // Fill the "else" block, created in the previous iteration
1369     //
1370     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1371     //  %to_store = icmp eq i1 %mask_1, true
1372     //  br i1 %to_store, label %cond.store, label %else
1373     //
1374     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1375     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1376                                     ConstantInt::get(Predicate->getType(), 1));
1377 
1378     // Create "cond" block
1379     //
1380     //  %OneElt = extractelement <16 x i32> %Src, i32 Idx
1381     //  %EltAddr = getelementptr i32* %1, i32 0
1382     //  %store i32 %OneElt, i32* %EltAddr
1383     //
1384     BasicBlock *CondBlock =
1385         IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
1386     Builder.SetInsertPoint(InsertPt);
1387 
1388     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1389     Value *Gep =
1390         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1391     Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1392 
1393     // Create "else" block, fill it in the next iteration
1394     BasicBlock *NewIfBlock =
1395         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1396     Builder.SetInsertPoint(InsertPt);
1397     Instruction *OldBr = IfBlock->getTerminator();
1398     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1399     OldBr->eraseFromParent();
1400     IfBlock = NewIfBlock;
1401   }
1402   CI->eraseFromParent();
1403 }
1404 
1405 // Translate a masked gather intrinsic like
1406 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
1407 //                               <16 x i1> %Mask, <16 x i32> %Src)
1408 // to a chain of basic blocks, with loading element one-by-one if
1409 // the appropriate mask bit is set
1410 //
1411 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
1412 // % Mask0 = extractelement <16 x i1> %Mask, i32 0
1413 // % ToLoad0 = icmp eq i1 % Mask0, true
1414 // br i1 % ToLoad0, label %cond.load, label %else
1415 //
1416 // cond.load:
1417 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1418 // % Load0 = load i32, i32* % Ptr0, align 4
1419 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
1420 // br label %else
1421 //
1422 // else:
1423 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
1424 // % Mask1 = extractelement <16 x i1> %Mask, i32 1
1425 // % ToLoad1 = icmp eq i1 % Mask1, true
1426 // br i1 % ToLoad1, label %cond.load1, label %else2
1427 //
1428 // cond.load1:
1429 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1430 // % Load1 = load i32, i32* % Ptr1, align 4
1431 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
1432 // br label %else2
1433 // . . .
1434 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
1435 // ret <16 x i32> %Result
1436 static void scalarizeMaskedGather(CallInst *CI) {
1437   Value *Ptrs = CI->getArgOperand(0);
1438   Value *Alignment = CI->getArgOperand(1);
1439   Value *Mask = CI->getArgOperand(2);
1440   Value *Src0 = CI->getArgOperand(3);
1441 
1442   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1443 
1444   assert(VecType && "Unexpected return type of masked load intrinsic");
1445 
1446   IRBuilder<> Builder(CI->getContext());
1447   Instruction *InsertPt = CI;
1448   BasicBlock *IfBlock = CI->getParent();
1449   BasicBlock *CondBlock = nullptr;
1450   BasicBlock *PrevIfBlock = CI->getParent();
1451   Builder.SetInsertPoint(InsertPt);
1452   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1453 
1454   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1455 
1456   Value *UndefVal = UndefValue::get(VecType);
1457 
1458   // The result vector
1459   Value *VResult = UndefVal;
1460   unsigned VectorWidth = VecType->getNumElements();
1461 
1462   // Shorten the way if the mask is a vector of constants.
1463   bool IsConstMask = isa<ConstantVector>(Mask);
1464 
1465   if (IsConstMask) {
1466     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1467       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1468         continue;
1469       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1470                                                 "Ptr" + Twine(Idx));
1471       LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1472                                                  "Load" + Twine(Idx));
1473       VResult = Builder.CreateInsertElement(VResult, Load,
1474                                             Builder.getInt32(Idx),
1475                                             "Res" + Twine(Idx));
1476     }
1477     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1478     CI->replaceAllUsesWith(NewI);
1479     CI->eraseFromParent();
1480     return;
1481   }
1482 
1483   PHINode *Phi = nullptr;
1484   Value *PrevPhi = UndefVal;
1485 
1486   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1487 
1488     // Fill the "else" block, created in the previous iteration
1489     //
1490     //  %Mask1 = extractelement <16 x i1> %Mask, i32 1
1491     //  %ToLoad1 = icmp eq i1 %Mask1, true
1492     //  br i1 %ToLoad1, label %cond.load, label %else
1493     //
1494     if (Idx > 0) {
1495       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1496       Phi->addIncoming(VResult, CondBlock);
1497       Phi->addIncoming(PrevPhi, PrevIfBlock);
1498       PrevPhi = Phi;
1499       VResult = Phi;
1500     }
1501 
1502     Value *Predicate = Builder.CreateExtractElement(Mask,
1503                                                     Builder.getInt32(Idx),
1504                                                     "Mask" + Twine(Idx));
1505     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1506                                     ConstantInt::get(Predicate->getType(), 1),
1507                                     "ToLoad" + Twine(Idx));
1508 
1509     // Create "cond" block
1510     //
1511     //  %EltAddr = getelementptr i32* %1, i32 0
1512     //  %Elt = load i32* %EltAddr
1513     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1514     //
1515     CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1516     Builder.SetInsertPoint(InsertPt);
1517 
1518     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1519                                               "Ptr" + Twine(Idx));
1520     LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1521                                                "Load" + Twine(Idx));
1522     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
1523                                           "Res" + Twine(Idx));
1524 
1525     // Create "else" block, fill it in the next iteration
1526     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1527     Builder.SetInsertPoint(InsertPt);
1528     Instruction *OldBr = IfBlock->getTerminator();
1529     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1530     OldBr->eraseFromParent();
1531     PrevIfBlock = IfBlock;
1532     IfBlock = NewIfBlock;
1533   }
1534 
1535   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1536   Phi->addIncoming(VResult, CondBlock);
1537   Phi->addIncoming(PrevPhi, PrevIfBlock);
1538   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1539   CI->replaceAllUsesWith(NewI);
1540   CI->eraseFromParent();
1541 }
1542 
1543 // Translate a masked scatter intrinsic, like
1544 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
1545 //                                  <16 x i1> %Mask)
1546 // to a chain of basic blocks, that stores element one-by-one if
1547 // the appropriate mask bit is set.
1548 //
1549 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
1550 // % Mask0 = extractelement <16 x i1> % Mask, i32 0
1551 // % ToStore0 = icmp eq i1 % Mask0, true
1552 // br i1 %ToStore0, label %cond.store, label %else
1553 //
1554 // cond.store:
1555 // % Elt0 = extractelement <16 x i32> %Src, i32 0
1556 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1557 // store i32 %Elt0, i32* % Ptr0, align 4
1558 // br label %else
1559 //
1560 // else:
1561 // % Mask1 = extractelement <16 x i1> % Mask, i32 1
1562 // % ToStore1 = icmp eq i1 % Mask1, true
1563 // br i1 % ToStore1, label %cond.store1, label %else2
1564 //
1565 // cond.store1:
1566 // % Elt1 = extractelement <16 x i32> %Src, i32 1
1567 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1568 // store i32 % Elt1, i32* % Ptr1, align 4
1569 // br label %else2
1570 //   . . .
1571 static void scalarizeMaskedScatter(CallInst *CI) {
1572   Value *Src = CI->getArgOperand(0);
1573   Value *Ptrs = CI->getArgOperand(1);
1574   Value *Alignment = CI->getArgOperand(2);
1575   Value *Mask = CI->getArgOperand(3);
1576 
1577   assert(isa<VectorType>(Src->getType()) &&
1578          "Unexpected data type in masked scatter intrinsic");
1579   assert(isa<VectorType>(Ptrs->getType()) &&
1580          isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
1581          "Vector of pointers is expected in masked scatter intrinsic");
1582 
1583   IRBuilder<> Builder(CI->getContext());
1584   Instruction *InsertPt = CI;
1585   BasicBlock *IfBlock = CI->getParent();
1586   Builder.SetInsertPoint(InsertPt);
1587   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1588 
1589   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1590   unsigned VectorWidth = Src->getType()->getVectorNumElements();
1591 
1592   // Shorten the way if the mask is a vector of constants.
1593   bool IsConstMask = isa<ConstantVector>(Mask);
1594 
1595   if (IsConstMask) {
1596     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1597       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1598         continue;
1599       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1600                                                    "Elt" + Twine(Idx));
1601       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1602                                                 "Ptr" + Twine(Idx));
1603       Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1604     }
1605     CI->eraseFromParent();
1606     return;
1607   }
1608   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1609     // Fill the "else" block, created in the previous iteration
1610     //
1611     //  % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
1612     //  % ToStore = icmp eq i1 % Mask1, true
1613     //  br i1 % ToStore, label %cond.store, label %else
1614     //
1615     Value *Predicate = Builder.CreateExtractElement(Mask,
1616                                                     Builder.getInt32(Idx),
1617                                                     "Mask" + Twine(Idx));
1618     Value *Cmp =
1619        Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1620                           ConstantInt::get(Predicate->getType(), 1),
1621                           "ToStore" + Twine(Idx));
1622 
1623     // Create "cond" block
1624     //
1625     //  % Elt1 = extractelement <16 x i32> %Src, i32 1
1626     //  % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1627     //  %store i32 % Elt1, i32* % Ptr1
1628     //
1629     BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1630     Builder.SetInsertPoint(InsertPt);
1631 
1632     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1633                                                  "Elt" + Twine(Idx));
1634     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1635                                               "Ptr" + Twine(Idx));
1636     Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1637 
1638     // Create "else" block, fill it in the next iteration
1639     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1640     Builder.SetInsertPoint(InsertPt);
1641     Instruction *OldBr = IfBlock->getTerminator();
1642     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1643     OldBr->eraseFromParent();
1644     IfBlock = NewIfBlock;
1645   }
1646   CI->eraseFromParent();
1647 }
1648 
1649 /// If counting leading or trailing zeros is an expensive operation and a zero
1650 /// input is defined, add a check for zero to avoid calling the intrinsic.
1651 ///
1652 /// We want to transform:
1653 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1654 ///
1655 /// into:
1656 ///   entry:
1657 ///     %cmpz = icmp eq i64 %A, 0
1658 ///     br i1 %cmpz, label %cond.end, label %cond.false
1659 ///   cond.false:
1660 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1661 ///     br label %cond.end
1662 ///   cond.end:
1663 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1664 ///
1665 /// If the transform is performed, return true and set ModifiedDT to true.
1666 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1667                                   const TargetLowering *TLI,
1668                                   const DataLayout *DL,
1669                                   bool &ModifiedDT) {
1670   if (!TLI || !DL)
1671     return false;
1672 
1673   // If a zero input is undefined, it doesn't make sense to despeculate that.
1674   if (match(CountZeros->getOperand(1), m_One()))
1675     return false;
1676 
1677   // If it's cheap to speculate, there's nothing to do.
1678   auto IntrinsicID = CountZeros->getIntrinsicID();
1679   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1680       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1681     return false;
1682 
1683   // Only handle legal scalar cases. Anything else requires too much work.
1684   Type *Ty = CountZeros->getType();
1685   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1686   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize())
1687     return false;
1688 
1689   // The intrinsic will be sunk behind a compare against zero and branch.
1690   BasicBlock *StartBlock = CountZeros->getParent();
1691   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1692 
1693   // Create another block after the count zero intrinsic. A PHI will be added
1694   // in this block to select the result of the intrinsic or the bit-width
1695   // constant if the input to the intrinsic is zero.
1696   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1697   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1698 
1699   // Set up a builder to create a compare, conditional branch, and PHI.
1700   IRBuilder<> Builder(CountZeros->getContext());
1701   Builder.SetInsertPoint(StartBlock->getTerminator());
1702   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1703 
1704   // Replace the unconditional branch that was created by the first split with
1705   // a compare against zero and a conditional branch.
1706   Value *Zero = Constant::getNullValue(Ty);
1707   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1708   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1709   StartBlock->getTerminator()->eraseFromParent();
1710 
1711   // Create a PHI in the end block to select either the output of the intrinsic
1712   // or the bit width of the operand.
1713   Builder.SetInsertPoint(&EndBlock->front());
1714   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1715   CountZeros->replaceAllUsesWith(PN);
1716   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1717   PN->addIncoming(BitWidth, StartBlock);
1718   PN->addIncoming(CountZeros, CallBlock);
1719 
1720   // We are explicitly handling the zero case, so we can set the intrinsic's
1721   // undefined zero argument to 'true'. This will also prevent reprocessing the
1722   // intrinsic; we only despeculate when a zero input is defined.
1723   CountZeros->setArgOperand(1, Builder.getTrue());
1724   ModifiedDT = true;
1725   return true;
1726 }
1727 
1728 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1729   BasicBlock *BB = CI->getParent();
1730 
1731   // Lower inline assembly if we can.
1732   // If we found an inline asm expession, and if the target knows how to
1733   // lower it to normal LLVM code, do so now.
1734   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1735     if (TLI->ExpandInlineAsm(CI)) {
1736       // Avoid invalidating the iterator.
1737       CurInstIterator = BB->begin();
1738       // Avoid processing instructions out of order, which could cause
1739       // reuse before a value is defined.
1740       SunkAddrs.clear();
1741       return true;
1742     }
1743     // Sink address computing for memory operands into the block.
1744     if (optimizeInlineAsmInst(CI))
1745       return true;
1746   }
1747 
1748   // Align the pointer arguments to this call if the target thinks it's a good
1749   // idea
1750   unsigned MinSize, PrefAlign;
1751   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1752     for (auto &Arg : CI->arg_operands()) {
1753       // We want to align both objects whose address is used directly and
1754       // objects whose address is used in casts and GEPs, though it only makes
1755       // sense for GEPs if the offset is a multiple of the desired alignment and
1756       // if size - offset meets the size threshold.
1757       if (!Arg->getType()->isPointerTy())
1758         continue;
1759       APInt Offset(DL->getPointerSizeInBits(
1760                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1761                    0);
1762       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1763       uint64_t Offset2 = Offset.getLimitedValue();
1764       if ((Offset2 & (PrefAlign-1)) != 0)
1765         continue;
1766       AllocaInst *AI;
1767       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1768           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1769         AI->setAlignment(PrefAlign);
1770       // Global variables can only be aligned if they are defined in this
1771       // object (i.e. they are uniquely initialized in this object), and
1772       // over-aligning global variables that have an explicit section is
1773       // forbidden.
1774       GlobalVariable *GV;
1775       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1776           GV->getAlignment() < PrefAlign &&
1777           DL->getTypeAllocSize(GV->getValueType()) >=
1778               MinSize + Offset2)
1779         GV->setAlignment(PrefAlign);
1780     }
1781     // If this is a memcpy (or similar) then we may be able to improve the
1782     // alignment
1783     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1784       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
1785       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1786         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
1787       if (Align > MI->getAlignment())
1788         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1789     }
1790   }
1791 
1792   // If we have a cold call site, try to sink addressing computation into the
1793   // cold block.  This interacts with our handling for loads and stores to
1794   // ensure that we can fold all uses of a potential addressing computation
1795   // into their uses.  TODO: generalize this to work over profiling data
1796   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1797     for (auto &Arg : CI->arg_operands()) {
1798       if (!Arg->getType()->isPointerTy())
1799         continue;
1800       unsigned AS = Arg->getType()->getPointerAddressSpace();
1801       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1802     }
1803 
1804   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1805   if (II) {
1806     switch (II->getIntrinsicID()) {
1807     default: break;
1808     case Intrinsic::objectsize: {
1809       // Lower all uses of llvm.objectsize.*
1810       bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1811       Type *ReturnTy = CI->getType();
1812       Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1813 
1814       // Substituting this can cause recursive simplifications, which can
1815       // invalidate our iterator.  Use a WeakVH to hold onto it in case this
1816       // happens.
1817       Value *CurValue = &*CurInstIterator;
1818       WeakVH IterHandle(CurValue);
1819 
1820       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1821 
1822       // If the iterator instruction was recursively deleted, start over at the
1823       // start of the block.
1824       if (IterHandle != CurValue) {
1825         CurInstIterator = BB->begin();
1826         SunkAddrs.clear();
1827       }
1828       return true;
1829     }
1830     case Intrinsic::masked_load: {
1831       // Scalarize unsupported vector masked load
1832       if (!TTI->isLegalMaskedLoad(CI->getType())) {
1833         scalarizeMaskedLoad(CI);
1834         ModifiedDT = true;
1835         return true;
1836       }
1837       return false;
1838     }
1839     case Intrinsic::masked_store: {
1840       if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
1841         scalarizeMaskedStore(CI);
1842         ModifiedDT = true;
1843         return true;
1844       }
1845       return false;
1846     }
1847     case Intrinsic::masked_gather: {
1848       if (!TTI->isLegalMaskedGather(CI->getType())) {
1849         scalarizeMaskedGather(CI);
1850         ModifiedDT = true;
1851         return true;
1852       }
1853       return false;
1854     }
1855     case Intrinsic::masked_scatter: {
1856       if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
1857         scalarizeMaskedScatter(CI);
1858         ModifiedDT = true;
1859         return true;
1860       }
1861       return false;
1862     }
1863     case Intrinsic::aarch64_stlxr:
1864     case Intrinsic::aarch64_stxr: {
1865       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1866       if (!ExtVal || !ExtVal->hasOneUse() ||
1867           ExtVal->getParent() == CI->getParent())
1868         return false;
1869       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1870       ExtVal->moveBefore(CI);
1871       // Mark this instruction as "inserted by CGP", so that other
1872       // optimizations don't touch it.
1873       InsertedInsts.insert(ExtVal);
1874       return true;
1875     }
1876     case Intrinsic::invariant_group_barrier:
1877       II->replaceAllUsesWith(II->getArgOperand(0));
1878       II->eraseFromParent();
1879       return true;
1880 
1881     case Intrinsic::cttz:
1882     case Intrinsic::ctlz:
1883       // If counting zeros is expensive, try to avoid it.
1884       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1885     }
1886 
1887     if (TLI) {
1888       // Unknown address space.
1889       // TODO: Target hook to pick which address space the intrinsic cares
1890       // about?
1891       unsigned AddrSpace = ~0u;
1892       SmallVector<Value*, 2> PtrOps;
1893       Type *AccessTy;
1894       if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
1895         while (!PtrOps.empty())
1896           if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
1897             return true;
1898     }
1899   }
1900 
1901   // From here on out we're working with named functions.
1902   if (!CI->getCalledFunction()) return false;
1903 
1904   // Lower all default uses of _chk calls.  This is very similar
1905   // to what InstCombineCalls does, but here we are only lowering calls
1906   // to fortified library functions (e.g. __memcpy_chk) that have the default
1907   // "don't know" as the objectsize.  Anything else should be left alone.
1908   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1909   if (Value *V = Simplifier.optimizeCall(CI)) {
1910     CI->replaceAllUsesWith(V);
1911     CI->eraseFromParent();
1912     return true;
1913   }
1914   return false;
1915 }
1916 
1917 /// Look for opportunities to duplicate return instructions to the predecessor
1918 /// to enable tail call optimizations. The case it is currently looking for is:
1919 /// @code
1920 /// bb0:
1921 ///   %tmp0 = tail call i32 @f0()
1922 ///   br label %return
1923 /// bb1:
1924 ///   %tmp1 = tail call i32 @f1()
1925 ///   br label %return
1926 /// bb2:
1927 ///   %tmp2 = tail call i32 @f2()
1928 ///   br label %return
1929 /// return:
1930 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1931 ///   ret i32 %retval
1932 /// @endcode
1933 ///
1934 /// =>
1935 ///
1936 /// @code
1937 /// bb0:
1938 ///   %tmp0 = tail call i32 @f0()
1939 ///   ret i32 %tmp0
1940 /// bb1:
1941 ///   %tmp1 = tail call i32 @f1()
1942 ///   ret i32 %tmp1
1943 /// bb2:
1944 ///   %tmp2 = tail call i32 @f2()
1945 ///   ret i32 %tmp2
1946 /// @endcode
1947 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1948   if (!TLI)
1949     return false;
1950 
1951   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1952   if (!RI)
1953     return false;
1954 
1955   PHINode *PN = nullptr;
1956   BitCastInst *BCI = nullptr;
1957   Value *V = RI->getReturnValue();
1958   if (V) {
1959     BCI = dyn_cast<BitCastInst>(V);
1960     if (BCI)
1961       V = BCI->getOperand(0);
1962 
1963     PN = dyn_cast<PHINode>(V);
1964     if (!PN)
1965       return false;
1966   }
1967 
1968   if (PN && PN->getParent() != BB)
1969     return false;
1970 
1971   // It's not safe to eliminate the sign / zero extension of the return value.
1972   // See llvm::isInTailCallPosition().
1973   const Function *F = BB->getParent();
1974   AttributeSet CallerAttrs = F->getAttributes();
1975   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1976       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1977     return false;
1978 
1979   // Make sure there are no instructions between the PHI and return, or that the
1980   // return is the first instruction in the block.
1981   if (PN) {
1982     BasicBlock::iterator BI = BB->begin();
1983     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1984     if (&*BI == BCI)
1985       // Also skip over the bitcast.
1986       ++BI;
1987     if (&*BI != RI)
1988       return false;
1989   } else {
1990     BasicBlock::iterator BI = BB->begin();
1991     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1992     if (&*BI != RI)
1993       return false;
1994   }
1995 
1996   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1997   /// call.
1998   SmallVector<CallInst*, 4> TailCalls;
1999   if (PN) {
2000     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2001       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2002       // Make sure the phi value is indeed produced by the tail call.
2003       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2004           TLI->mayBeEmittedAsTailCall(CI))
2005         TailCalls.push_back(CI);
2006     }
2007   } else {
2008     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2009     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2010       if (!VisitedBBs.insert(*PI).second)
2011         continue;
2012 
2013       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2014       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2015       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2016       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2017       if (RI == RE)
2018         continue;
2019 
2020       CallInst *CI = dyn_cast<CallInst>(&*RI);
2021       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
2022         TailCalls.push_back(CI);
2023     }
2024   }
2025 
2026   bool Changed = false;
2027   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2028     CallInst *CI = TailCalls[i];
2029     CallSite CS(CI);
2030 
2031     // Conservatively require the attributes of the call to match those of the
2032     // return. Ignore noalias because it doesn't affect the call sequence.
2033     AttributeSet CalleeAttrs = CS.getAttributes();
2034     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
2035           removeAttribute(Attribute::NoAlias) !=
2036         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
2037           removeAttribute(Attribute::NoAlias))
2038       continue;
2039 
2040     // Make sure the call instruction is followed by an unconditional branch to
2041     // the return block.
2042     BasicBlock *CallBB = CI->getParent();
2043     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2044     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2045       continue;
2046 
2047     // Duplicate the return into CallBB.
2048     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
2049     ModifiedDT = Changed = true;
2050     ++NumRetsDup;
2051   }
2052 
2053   // If we eliminated all predecessors of the block, delete the block now.
2054   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2055     BB->eraseFromParent();
2056 
2057   return Changed;
2058 }
2059 
2060 //===----------------------------------------------------------------------===//
2061 // Memory Optimization
2062 //===----------------------------------------------------------------------===//
2063 
2064 namespace {
2065 
2066 /// This is an extended version of TargetLowering::AddrMode
2067 /// which holds actual Value*'s for register values.
2068 struct ExtAddrMode : public TargetLowering::AddrMode {
2069   Value *BaseReg;
2070   Value *ScaledReg;
2071   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2072   void print(raw_ostream &OS) const;
2073   void dump() const;
2074 
2075   bool operator==(const ExtAddrMode& O) const {
2076     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2077            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2078            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2079   }
2080 };
2081 
2082 #ifndef NDEBUG
2083 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2084   AM.print(OS);
2085   return OS;
2086 }
2087 #endif
2088 
2089 void ExtAddrMode::print(raw_ostream &OS) const {
2090   bool NeedPlus = false;
2091   OS << "[";
2092   if (BaseGV) {
2093     OS << (NeedPlus ? " + " : "")
2094        << "GV:";
2095     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2096     NeedPlus = true;
2097   }
2098 
2099   if (BaseOffs) {
2100     OS << (NeedPlus ? " + " : "")
2101        << BaseOffs;
2102     NeedPlus = true;
2103   }
2104 
2105   if (BaseReg) {
2106     OS << (NeedPlus ? " + " : "")
2107        << "Base:";
2108     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2109     NeedPlus = true;
2110   }
2111   if (Scale) {
2112     OS << (NeedPlus ? " + " : "")
2113        << Scale << "*";
2114     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2115   }
2116 
2117   OS << ']';
2118 }
2119 
2120 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2121 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2122   print(dbgs());
2123   dbgs() << '\n';
2124 }
2125 #endif
2126 
2127 /// \brief This class provides transaction based operation on the IR.
2128 /// Every change made through this class is recorded in the internal state and
2129 /// can be undone (rollback) until commit is called.
2130 class TypePromotionTransaction {
2131 
2132   /// \brief This represents the common interface of the individual transaction.
2133   /// Each class implements the logic for doing one specific modification on
2134   /// the IR via the TypePromotionTransaction.
2135   class TypePromotionAction {
2136   protected:
2137     /// The Instruction modified.
2138     Instruction *Inst;
2139 
2140   public:
2141     /// \brief Constructor of the action.
2142     /// The constructor performs the related action on the IR.
2143     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2144 
2145     virtual ~TypePromotionAction() {}
2146 
2147     /// \brief Undo the modification done by this action.
2148     /// When this method is called, the IR must be in the same state as it was
2149     /// before this action was applied.
2150     /// \pre Undoing the action works if and only if the IR is in the exact same
2151     /// state as it was directly after this action was applied.
2152     virtual void undo() = 0;
2153 
2154     /// \brief Advocate every change made by this action.
2155     /// When the results on the IR of the action are to be kept, it is important
2156     /// to call this function, otherwise hidden information may be kept forever.
2157     virtual void commit() {
2158       // Nothing to be done, this action is not doing anything.
2159     }
2160   };
2161 
2162   /// \brief Utility to remember the position of an instruction.
2163   class InsertionHandler {
2164     /// Position of an instruction.
2165     /// Either an instruction:
2166     /// - Is the first in a basic block: BB is used.
2167     /// - Has a previous instructon: PrevInst is used.
2168     union {
2169       Instruction *PrevInst;
2170       BasicBlock *BB;
2171     } Point;
2172     /// Remember whether or not the instruction had a previous instruction.
2173     bool HasPrevInstruction;
2174 
2175   public:
2176     /// \brief Record the position of \p Inst.
2177     InsertionHandler(Instruction *Inst) {
2178       BasicBlock::iterator It = Inst->getIterator();
2179       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2180       if (HasPrevInstruction)
2181         Point.PrevInst = &*--It;
2182       else
2183         Point.BB = Inst->getParent();
2184     }
2185 
2186     /// \brief Insert \p Inst at the recorded position.
2187     void insert(Instruction *Inst) {
2188       if (HasPrevInstruction) {
2189         if (Inst->getParent())
2190           Inst->removeFromParent();
2191         Inst->insertAfter(Point.PrevInst);
2192       } else {
2193         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2194         if (Inst->getParent())
2195           Inst->moveBefore(Position);
2196         else
2197           Inst->insertBefore(Position);
2198       }
2199     }
2200   };
2201 
2202   /// \brief Move an instruction before another.
2203   class InstructionMoveBefore : public TypePromotionAction {
2204     /// Original position of the instruction.
2205     InsertionHandler Position;
2206 
2207   public:
2208     /// \brief Move \p Inst before \p Before.
2209     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2210         : TypePromotionAction(Inst), Position(Inst) {
2211       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2212       Inst->moveBefore(Before);
2213     }
2214 
2215     /// \brief Move the instruction back to its original position.
2216     void undo() override {
2217       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2218       Position.insert(Inst);
2219     }
2220   };
2221 
2222   /// \brief Set the operand of an instruction with a new value.
2223   class OperandSetter : public TypePromotionAction {
2224     /// Original operand of the instruction.
2225     Value *Origin;
2226     /// Index of the modified instruction.
2227     unsigned Idx;
2228 
2229   public:
2230     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2231     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2232         : TypePromotionAction(Inst), Idx(Idx) {
2233       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2234                    << "for:" << *Inst << "\n"
2235                    << "with:" << *NewVal << "\n");
2236       Origin = Inst->getOperand(Idx);
2237       Inst->setOperand(Idx, NewVal);
2238     }
2239 
2240     /// \brief Restore the original value of the instruction.
2241     void undo() override {
2242       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2243                    << "for: " << *Inst << "\n"
2244                    << "with: " << *Origin << "\n");
2245       Inst->setOperand(Idx, Origin);
2246     }
2247   };
2248 
2249   /// \brief Hide the operands of an instruction.
2250   /// Do as if this instruction was not using any of its operands.
2251   class OperandsHider : public TypePromotionAction {
2252     /// The list of original operands.
2253     SmallVector<Value *, 4> OriginalValues;
2254 
2255   public:
2256     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2257     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2258       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2259       unsigned NumOpnds = Inst->getNumOperands();
2260       OriginalValues.reserve(NumOpnds);
2261       for (unsigned It = 0; It < NumOpnds; ++It) {
2262         // Save the current operand.
2263         Value *Val = Inst->getOperand(It);
2264         OriginalValues.push_back(Val);
2265         // Set a dummy one.
2266         // We could use OperandSetter here, but that would imply an overhead
2267         // that we are not willing to pay.
2268         Inst->setOperand(It, UndefValue::get(Val->getType()));
2269       }
2270     }
2271 
2272     /// \brief Restore the original list of uses.
2273     void undo() override {
2274       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2275       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2276         Inst->setOperand(It, OriginalValues[It]);
2277     }
2278   };
2279 
2280   /// \brief Build a truncate instruction.
2281   class TruncBuilder : public TypePromotionAction {
2282     Value *Val;
2283   public:
2284     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2285     /// result.
2286     /// trunc Opnd to Ty.
2287     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2288       IRBuilder<> Builder(Opnd);
2289       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2290       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2291     }
2292 
2293     /// \brief Get the built value.
2294     Value *getBuiltValue() { return Val; }
2295 
2296     /// \brief Remove the built instruction.
2297     void undo() override {
2298       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2299       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2300         IVal->eraseFromParent();
2301     }
2302   };
2303 
2304   /// \brief Build a sign extension instruction.
2305   class SExtBuilder : public TypePromotionAction {
2306     Value *Val;
2307   public:
2308     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2309     /// result.
2310     /// sext Opnd to Ty.
2311     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2312         : TypePromotionAction(InsertPt) {
2313       IRBuilder<> Builder(InsertPt);
2314       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2315       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2316     }
2317 
2318     /// \brief Get the built value.
2319     Value *getBuiltValue() { return Val; }
2320 
2321     /// \brief Remove the built instruction.
2322     void undo() override {
2323       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2324       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2325         IVal->eraseFromParent();
2326     }
2327   };
2328 
2329   /// \brief Build a zero extension instruction.
2330   class ZExtBuilder : public TypePromotionAction {
2331     Value *Val;
2332   public:
2333     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2334     /// result.
2335     /// zext Opnd to Ty.
2336     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2337         : TypePromotionAction(InsertPt) {
2338       IRBuilder<> Builder(InsertPt);
2339       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2340       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2341     }
2342 
2343     /// \brief Get the built value.
2344     Value *getBuiltValue() { return Val; }
2345 
2346     /// \brief Remove the built instruction.
2347     void undo() override {
2348       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2349       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2350         IVal->eraseFromParent();
2351     }
2352   };
2353 
2354   /// \brief Mutate an instruction to another type.
2355   class TypeMutator : public TypePromotionAction {
2356     /// Record the original type.
2357     Type *OrigTy;
2358 
2359   public:
2360     /// \brief Mutate the type of \p Inst into \p NewTy.
2361     TypeMutator(Instruction *Inst, Type *NewTy)
2362         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2363       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2364                    << "\n");
2365       Inst->mutateType(NewTy);
2366     }
2367 
2368     /// \brief Mutate the instruction back to its original type.
2369     void undo() override {
2370       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2371                    << "\n");
2372       Inst->mutateType(OrigTy);
2373     }
2374   };
2375 
2376   /// \brief Replace the uses of an instruction by another instruction.
2377   class UsesReplacer : public TypePromotionAction {
2378     /// Helper structure to keep track of the replaced uses.
2379     struct InstructionAndIdx {
2380       /// The instruction using the instruction.
2381       Instruction *Inst;
2382       /// The index where this instruction is used for Inst.
2383       unsigned Idx;
2384       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2385           : Inst(Inst), Idx(Idx) {}
2386     };
2387 
2388     /// Keep track of the original uses (pair Instruction, Index).
2389     SmallVector<InstructionAndIdx, 4> OriginalUses;
2390     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2391 
2392   public:
2393     /// \brief Replace all the use of \p Inst by \p New.
2394     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2395       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2396                    << "\n");
2397       // Record the original uses.
2398       for (Use &U : Inst->uses()) {
2399         Instruction *UserI = cast<Instruction>(U.getUser());
2400         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2401       }
2402       // Now, we can replace the uses.
2403       Inst->replaceAllUsesWith(New);
2404     }
2405 
2406     /// \brief Reassign the original uses of Inst to Inst.
2407     void undo() override {
2408       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2409       for (use_iterator UseIt = OriginalUses.begin(),
2410                         EndIt = OriginalUses.end();
2411            UseIt != EndIt; ++UseIt) {
2412         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2413       }
2414     }
2415   };
2416 
2417   /// \brief Remove an instruction from the IR.
2418   class InstructionRemover : public TypePromotionAction {
2419     /// Original position of the instruction.
2420     InsertionHandler Inserter;
2421     /// Helper structure to hide all the link to the instruction. In other
2422     /// words, this helps to do as if the instruction was removed.
2423     OperandsHider Hider;
2424     /// Keep track of the uses replaced, if any.
2425     UsesReplacer *Replacer;
2426 
2427   public:
2428     /// \brief Remove all reference of \p Inst and optinally replace all its
2429     /// uses with New.
2430     /// \pre If !Inst->use_empty(), then New != nullptr
2431     InstructionRemover(Instruction *Inst, Value *New = nullptr)
2432         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2433           Replacer(nullptr) {
2434       if (New)
2435         Replacer = new UsesReplacer(Inst, New);
2436       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2437       Inst->removeFromParent();
2438     }
2439 
2440     ~InstructionRemover() override { delete Replacer; }
2441 
2442     /// \brief Really remove the instruction.
2443     void commit() override { delete Inst; }
2444 
2445     /// \brief Resurrect the instruction and reassign it to the proper uses if
2446     /// new value was provided when build this action.
2447     void undo() override {
2448       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2449       Inserter.insert(Inst);
2450       if (Replacer)
2451         Replacer->undo();
2452       Hider.undo();
2453     }
2454   };
2455 
2456 public:
2457   /// Restoration point.
2458   /// The restoration point is a pointer to an action instead of an iterator
2459   /// because the iterator may be invalidated but not the pointer.
2460   typedef const TypePromotionAction *ConstRestorationPt;
2461   /// Advocate every changes made in that transaction.
2462   void commit();
2463   /// Undo all the changes made after the given point.
2464   void rollback(ConstRestorationPt Point);
2465   /// Get the current restoration point.
2466   ConstRestorationPt getRestorationPoint() const;
2467 
2468   /// \name API for IR modification with state keeping to support rollback.
2469   /// @{
2470   /// Same as Instruction::setOperand.
2471   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2472   /// Same as Instruction::eraseFromParent.
2473   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2474   /// Same as Value::replaceAllUsesWith.
2475   void replaceAllUsesWith(Instruction *Inst, Value *New);
2476   /// Same as Value::mutateType.
2477   void mutateType(Instruction *Inst, Type *NewTy);
2478   /// Same as IRBuilder::createTrunc.
2479   Value *createTrunc(Instruction *Opnd, Type *Ty);
2480   /// Same as IRBuilder::createSExt.
2481   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2482   /// Same as IRBuilder::createZExt.
2483   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2484   /// Same as Instruction::moveBefore.
2485   void moveBefore(Instruction *Inst, Instruction *Before);
2486   /// @}
2487 
2488 private:
2489   /// The ordered list of actions made so far.
2490   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2491   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
2492 };
2493 
2494 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2495                                           Value *NewVal) {
2496   Actions.push_back(
2497       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
2498 }
2499 
2500 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2501                                                 Value *NewVal) {
2502   Actions.push_back(
2503       make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
2504 }
2505 
2506 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2507                                                   Value *New) {
2508   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2509 }
2510 
2511 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2512   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2513 }
2514 
2515 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2516                                              Type *Ty) {
2517   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2518   Value *Val = Ptr->getBuiltValue();
2519   Actions.push_back(std::move(Ptr));
2520   return Val;
2521 }
2522 
2523 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2524                                             Value *Opnd, Type *Ty) {
2525   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2526   Value *Val = Ptr->getBuiltValue();
2527   Actions.push_back(std::move(Ptr));
2528   return Val;
2529 }
2530 
2531 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2532                                             Value *Opnd, Type *Ty) {
2533   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2534   Value *Val = Ptr->getBuiltValue();
2535   Actions.push_back(std::move(Ptr));
2536   return Val;
2537 }
2538 
2539 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2540                                           Instruction *Before) {
2541   Actions.push_back(
2542       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2543 }
2544 
2545 TypePromotionTransaction::ConstRestorationPt
2546 TypePromotionTransaction::getRestorationPoint() const {
2547   return !Actions.empty() ? Actions.back().get() : nullptr;
2548 }
2549 
2550 void TypePromotionTransaction::commit() {
2551   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2552        ++It)
2553     (*It)->commit();
2554   Actions.clear();
2555 }
2556 
2557 void TypePromotionTransaction::rollback(
2558     TypePromotionTransaction::ConstRestorationPt Point) {
2559   while (!Actions.empty() && Point != Actions.back().get()) {
2560     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2561     Curr->undo();
2562   }
2563 }
2564 
2565 /// \brief A helper class for matching addressing modes.
2566 ///
2567 /// This encapsulates the logic for matching the target-legal addressing modes.
2568 class AddressingModeMatcher {
2569   SmallVectorImpl<Instruction*> &AddrModeInsts;
2570   const TargetMachine &TM;
2571   const TargetLowering &TLI;
2572   const DataLayout &DL;
2573 
2574   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2575   /// the memory instruction that we're computing this address for.
2576   Type *AccessTy;
2577   unsigned AddrSpace;
2578   Instruction *MemoryInst;
2579 
2580   /// This is the addressing mode that we're building up. This is
2581   /// part of the return value of this addressing mode matching stuff.
2582   ExtAddrMode &AddrMode;
2583 
2584   /// The instructions inserted by other CodeGenPrepare optimizations.
2585   const SetOfInstrs &InsertedInsts;
2586   /// A map from the instructions to their type before promotion.
2587   InstrToOrigTy &PromotedInsts;
2588   /// The ongoing transaction where every action should be registered.
2589   TypePromotionTransaction &TPT;
2590 
2591   /// This is set to true when we should not do profitability checks.
2592   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2593   bool IgnoreProfitability;
2594 
2595   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2596                         const TargetMachine &TM, Type *AT, unsigned AS,
2597                         Instruction *MI, ExtAddrMode &AM,
2598                         const SetOfInstrs &InsertedInsts,
2599                         InstrToOrigTy &PromotedInsts,
2600                         TypePromotionTransaction &TPT)
2601       : AddrModeInsts(AMI), TM(TM),
2602         TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2603                  ->getTargetLowering()),
2604         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2605         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2606         PromotedInsts(PromotedInsts), TPT(TPT) {
2607     IgnoreProfitability = false;
2608   }
2609 public:
2610 
2611   /// Find the maximal addressing mode that a load/store of V can fold,
2612   /// give an access type of AccessTy.  This returns a list of involved
2613   /// instructions in AddrModeInsts.
2614   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2615   /// optimizations.
2616   /// \p PromotedInsts maps the instructions to their type before promotion.
2617   /// \p The ongoing transaction where every action should be registered.
2618   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
2619                            Instruction *MemoryInst,
2620                            SmallVectorImpl<Instruction*> &AddrModeInsts,
2621                            const TargetMachine &TM,
2622                            const SetOfInstrs &InsertedInsts,
2623                            InstrToOrigTy &PromotedInsts,
2624                            TypePromotionTransaction &TPT) {
2625     ExtAddrMode Result;
2626 
2627     bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
2628                                          MemoryInst, Result, InsertedInsts,
2629                                          PromotedInsts, TPT).matchAddr(V, 0);
2630     (void)Success; assert(Success && "Couldn't select *anything*?");
2631     return Result;
2632   }
2633 private:
2634   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2635   bool matchAddr(Value *V, unsigned Depth);
2636   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2637                           bool *MovedAway = nullptr);
2638   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2639                                             ExtAddrMode &AMBefore,
2640                                             ExtAddrMode &AMAfter);
2641   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2642   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2643                              Value *PromotedOperand) const;
2644 };
2645 
2646 /// Try adding ScaleReg*Scale to the current addressing mode.
2647 /// Return true and update AddrMode if this addr mode is legal for the target,
2648 /// false if not.
2649 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
2650                                              unsigned Depth) {
2651   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2652   // mode.  Just process that directly.
2653   if (Scale == 1)
2654     return matchAddr(ScaleReg, Depth);
2655 
2656   // If the scale is 0, it takes nothing to add this.
2657   if (Scale == 0)
2658     return true;
2659 
2660   // If we already have a scale of this value, we can add to it, otherwise, we
2661   // need an available scale field.
2662   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2663     return false;
2664 
2665   ExtAddrMode TestAddrMode = AddrMode;
2666 
2667   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
2668   // [A+B + A*7] -> [B+A*8].
2669   TestAddrMode.Scale += Scale;
2670   TestAddrMode.ScaledReg = ScaleReg;
2671 
2672   // If the new address isn't legal, bail out.
2673   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
2674     return false;
2675 
2676   // It was legal, so commit it.
2677   AddrMode = TestAddrMode;
2678 
2679   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
2680   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
2681   // X*Scale + C*Scale to addr mode.
2682   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2683   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
2684       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2685     TestAddrMode.ScaledReg = AddLHS;
2686     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2687 
2688     // If this addressing mode is legal, commit it and remember that we folded
2689     // this instruction.
2690     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
2691       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2692       AddrMode = TestAddrMode;
2693       return true;
2694     }
2695   }
2696 
2697   // Otherwise, not (x+c)*scale, just return what we have.
2698   return true;
2699 }
2700 
2701 /// This is a little filter, which returns true if an addressing computation
2702 /// involving I might be folded into a load/store accessing it.
2703 /// This doesn't need to be perfect, but needs to accept at least
2704 /// the set of instructions that MatchOperationAddr can.
2705 static bool MightBeFoldableInst(Instruction *I) {
2706   switch (I->getOpcode()) {
2707   case Instruction::BitCast:
2708   case Instruction::AddrSpaceCast:
2709     // Don't touch identity bitcasts.
2710     if (I->getType() == I->getOperand(0)->getType())
2711       return false;
2712     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2713   case Instruction::PtrToInt:
2714     // PtrToInt is always a noop, as we know that the int type is pointer sized.
2715     return true;
2716   case Instruction::IntToPtr:
2717     // We know the input is intptr_t, so this is foldable.
2718     return true;
2719   case Instruction::Add:
2720     return true;
2721   case Instruction::Mul:
2722   case Instruction::Shl:
2723     // Can only handle X*C and X << C.
2724     return isa<ConstantInt>(I->getOperand(1));
2725   case Instruction::GetElementPtr:
2726     return true;
2727   default:
2728     return false;
2729   }
2730 }
2731 
2732 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2733 /// \note \p Val is assumed to be the product of some type promotion.
2734 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2735 /// to be legal, as the non-promoted value would have had the same state.
2736 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
2737                                        const DataLayout &DL, Value *Val) {
2738   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2739   if (!PromotedInst)
2740     return false;
2741   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2742   // If the ISDOpcode is undefined, it was undefined before the promotion.
2743   if (!ISDOpcode)
2744     return true;
2745   // Otherwise, check if the promoted instruction is legal or not.
2746   return TLI.isOperationLegalOrCustom(
2747       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
2748 }
2749 
2750 /// \brief Hepler class to perform type promotion.
2751 class TypePromotionHelper {
2752   /// \brief Utility function to check whether or not a sign or zero extension
2753   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2754   /// either using the operands of \p Inst or promoting \p Inst.
2755   /// The type of the extension is defined by \p IsSExt.
2756   /// In other words, check if:
2757   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2758   /// #1 Promotion applies:
2759   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2760   /// #2 Operand reuses:
2761   /// ext opnd1 to ConsideredExtType.
2762   /// \p PromotedInsts maps the instructions to their type before promotion.
2763   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2764                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
2765 
2766   /// \brief Utility function to determine if \p OpIdx should be promoted when
2767   /// promoting \p Inst.
2768   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2769     return !(isa<SelectInst>(Inst) && OpIdx == 0);
2770   }
2771 
2772   /// \brief Utility function to promote the operand of \p Ext when this
2773   /// operand is a promotable trunc or sext or zext.
2774   /// \p PromotedInsts maps the instructions to their type before promotion.
2775   /// \p CreatedInstsCost[out] contains the cost of all instructions
2776   /// created to promote the operand of Ext.
2777   /// Newly added extensions are inserted in \p Exts.
2778   /// Newly added truncates are inserted in \p Truncs.
2779   /// Should never be called directly.
2780   /// \return The promoted value which is used instead of Ext.
2781   static Value *promoteOperandForTruncAndAnyExt(
2782       Instruction *Ext, TypePromotionTransaction &TPT,
2783       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2784       SmallVectorImpl<Instruction *> *Exts,
2785       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2786 
2787   /// \brief Utility function to promote the operand of \p Ext when this
2788   /// operand is promotable and is not a supported trunc or sext.
2789   /// \p PromotedInsts maps the instructions to their type before promotion.
2790   /// \p CreatedInstsCost[out] contains the cost of all the instructions
2791   /// created to promote the operand of Ext.
2792   /// Newly added extensions are inserted in \p Exts.
2793   /// Newly added truncates are inserted in \p Truncs.
2794   /// Should never be called directly.
2795   /// \return The promoted value which is used instead of Ext.
2796   static Value *promoteOperandForOther(Instruction *Ext,
2797                                        TypePromotionTransaction &TPT,
2798                                        InstrToOrigTy &PromotedInsts,
2799                                        unsigned &CreatedInstsCost,
2800                                        SmallVectorImpl<Instruction *> *Exts,
2801                                        SmallVectorImpl<Instruction *> *Truncs,
2802                                        const TargetLowering &TLI, bool IsSExt);
2803 
2804   /// \see promoteOperandForOther.
2805   static Value *signExtendOperandForOther(
2806       Instruction *Ext, TypePromotionTransaction &TPT,
2807       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2808       SmallVectorImpl<Instruction *> *Exts,
2809       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2810     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2811                                   Exts, Truncs, TLI, true);
2812   }
2813 
2814   /// \see promoteOperandForOther.
2815   static Value *zeroExtendOperandForOther(
2816       Instruction *Ext, TypePromotionTransaction &TPT,
2817       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2818       SmallVectorImpl<Instruction *> *Exts,
2819       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2820     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2821                                   Exts, Truncs, TLI, false);
2822   }
2823 
2824 public:
2825   /// Type for the utility function that promotes the operand of Ext.
2826   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2827                            InstrToOrigTy &PromotedInsts,
2828                            unsigned &CreatedInstsCost,
2829                            SmallVectorImpl<Instruction *> *Exts,
2830                            SmallVectorImpl<Instruction *> *Truncs,
2831                            const TargetLowering &TLI);
2832   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2833   /// action to promote the operand of \p Ext instead of using Ext.
2834   /// \return NULL if no promotable action is possible with the current
2835   /// sign extension.
2836   /// \p InsertedInsts keeps track of all the instructions inserted by the
2837   /// other CodeGenPrepare optimizations. This information is important
2838   /// because we do not want to promote these instructions as CodeGenPrepare
2839   /// will reinsert them later. Thus creating an infinite loop: create/remove.
2840   /// \p PromotedInsts maps the instructions to their type before promotion.
2841   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
2842                           const TargetLowering &TLI,
2843                           const InstrToOrigTy &PromotedInsts);
2844 };
2845 
2846 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2847                                         Type *ConsideredExtType,
2848                                         const InstrToOrigTy &PromotedInsts,
2849                                         bool IsSExt) {
2850   // The promotion helper does not know how to deal with vector types yet.
2851   // To be able to fix that, we would need to fix the places where we
2852   // statically extend, e.g., constants and such.
2853   if (Inst->getType()->isVectorTy())
2854     return false;
2855 
2856   // We can always get through zext.
2857   if (isa<ZExtInst>(Inst))
2858     return true;
2859 
2860   // sext(sext) is ok too.
2861   if (IsSExt && isa<SExtInst>(Inst))
2862     return true;
2863 
2864   // We can get through binary operator, if it is legal. In other words, the
2865   // binary operator must have a nuw or nsw flag.
2866   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2867   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2868       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2869        (IsSExt && BinOp->hasNoSignedWrap())))
2870     return true;
2871 
2872   // Check if we can do the following simplification.
2873   // ext(trunc(opnd)) --> ext(opnd)
2874   if (!isa<TruncInst>(Inst))
2875     return false;
2876 
2877   Value *OpndVal = Inst->getOperand(0);
2878   // Check if we can use this operand in the extension.
2879   // If the type is larger than the result type of the extension, we cannot.
2880   if (!OpndVal->getType()->isIntegerTy() ||
2881       OpndVal->getType()->getIntegerBitWidth() >
2882           ConsideredExtType->getIntegerBitWidth())
2883     return false;
2884 
2885   // If the operand of the truncate is not an instruction, we will not have
2886   // any information on the dropped bits.
2887   // (Actually we could for constant but it is not worth the extra logic).
2888   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2889   if (!Opnd)
2890     return false;
2891 
2892   // Check if the source of the type is narrow enough.
2893   // I.e., check that trunc just drops extended bits of the same kind of
2894   // the extension.
2895   // #1 get the type of the operand and check the kind of the extended bits.
2896   const Type *OpndType;
2897   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2898   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
2899     OpndType = It->second.getPointer();
2900   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2901     OpndType = Opnd->getOperand(0)->getType();
2902   else
2903     return false;
2904 
2905   // #2 check that the truncate just drops extended bits.
2906   return Inst->getType()->getIntegerBitWidth() >=
2907          OpndType->getIntegerBitWidth();
2908 }
2909 
2910 TypePromotionHelper::Action TypePromotionHelper::getAction(
2911     Instruction *Ext, const SetOfInstrs &InsertedInsts,
2912     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2913   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2914          "Unexpected instruction type");
2915   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2916   Type *ExtTy = Ext->getType();
2917   bool IsSExt = isa<SExtInst>(Ext);
2918   // If the operand of the extension is not an instruction, we cannot
2919   // get through.
2920   // If it, check we can get through.
2921   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2922     return nullptr;
2923 
2924   // Do not promote if the operand has been added by codegenprepare.
2925   // Otherwise, it means we are undoing an optimization that is likely to be
2926   // redone, thus causing potential infinite loop.
2927   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
2928     return nullptr;
2929 
2930   // SExt or Trunc instructions.
2931   // Return the related handler.
2932   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2933       isa<ZExtInst>(ExtOpnd))
2934     return promoteOperandForTruncAndAnyExt;
2935 
2936   // Regular instruction.
2937   // Abort early if we will have to insert non-free instructions.
2938   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2939     return nullptr;
2940   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2941 }
2942 
2943 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2944     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2945     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2946     SmallVectorImpl<Instruction *> *Exts,
2947     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2948   // By construction, the operand of SExt is an instruction. Otherwise we cannot
2949   // get through it and this method should not be called.
2950   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2951   Value *ExtVal = SExt;
2952   bool HasMergedNonFreeExt = false;
2953   if (isa<ZExtInst>(SExtOpnd)) {
2954     // Replace s|zext(zext(opnd))
2955     // => zext(opnd).
2956     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2957     Value *ZExt =
2958         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2959     TPT.replaceAllUsesWith(SExt, ZExt);
2960     TPT.eraseInstruction(SExt);
2961     ExtVal = ZExt;
2962   } else {
2963     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2964     // => z|sext(opnd).
2965     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2966   }
2967   CreatedInstsCost = 0;
2968 
2969   // Remove dead code.
2970   if (SExtOpnd->use_empty())
2971     TPT.eraseInstruction(SExtOpnd);
2972 
2973   // Check if the extension is still needed.
2974   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2975   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2976     if (ExtInst) {
2977       if (Exts)
2978         Exts->push_back(ExtInst);
2979       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2980     }
2981     return ExtVal;
2982   }
2983 
2984   // At this point we have: ext ty opnd to ty.
2985   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2986   Value *NextVal = ExtInst->getOperand(0);
2987   TPT.eraseInstruction(ExtInst, NextVal);
2988   return NextVal;
2989 }
2990 
2991 Value *TypePromotionHelper::promoteOperandForOther(
2992     Instruction *Ext, TypePromotionTransaction &TPT,
2993     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2994     SmallVectorImpl<Instruction *> *Exts,
2995     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2996     bool IsSExt) {
2997   // By construction, the operand of Ext is an instruction. Otherwise we cannot
2998   // get through it and this method should not be called.
2999   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3000   CreatedInstsCost = 0;
3001   if (!ExtOpnd->hasOneUse()) {
3002     // ExtOpnd will be promoted.
3003     // All its uses, but Ext, will need to use a truncated value of the
3004     // promoted version.
3005     // Create the truncate now.
3006     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3007     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3008       ITrunc->removeFromParent();
3009       // Insert it just after the definition.
3010       ITrunc->insertAfter(ExtOpnd);
3011       if (Truncs)
3012         Truncs->push_back(ITrunc);
3013     }
3014 
3015     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3016     // Restore the operand of Ext (which has been replaced by the previous call
3017     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3018     TPT.setOperand(Ext, 0, ExtOpnd);
3019   }
3020 
3021   // Get through the Instruction:
3022   // 1. Update its type.
3023   // 2. Replace the uses of Ext by Inst.
3024   // 3. Extend each operand that needs to be extended.
3025 
3026   // Remember the original type of the instruction before promotion.
3027   // This is useful to know that the high bits are sign extended bits.
3028   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3029       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3030   // Step #1.
3031   TPT.mutateType(ExtOpnd, Ext->getType());
3032   // Step #2.
3033   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3034   // Step #3.
3035   Instruction *ExtForOpnd = Ext;
3036 
3037   DEBUG(dbgs() << "Propagate Ext to operands\n");
3038   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3039        ++OpIdx) {
3040     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3041     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3042         !shouldExtOperand(ExtOpnd, OpIdx)) {
3043       DEBUG(dbgs() << "No need to propagate\n");
3044       continue;
3045     }
3046     // Check if we can statically extend the operand.
3047     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3048     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3049       DEBUG(dbgs() << "Statically extend\n");
3050       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3051       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3052                             : Cst->getValue().zext(BitWidth);
3053       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3054       continue;
3055     }
3056     // UndefValue are typed, so we have to statically sign extend them.
3057     if (isa<UndefValue>(Opnd)) {
3058       DEBUG(dbgs() << "Statically extend\n");
3059       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3060       continue;
3061     }
3062 
3063     // Otherwise we have to explicity sign extend the operand.
3064     // Check if Ext was reused to extend an operand.
3065     if (!ExtForOpnd) {
3066       // If yes, create a new one.
3067       DEBUG(dbgs() << "More operands to ext\n");
3068       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3069         : TPT.createZExt(Ext, Opnd, Ext->getType());
3070       if (!isa<Instruction>(ValForExtOpnd)) {
3071         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3072         continue;
3073       }
3074       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3075     }
3076     if (Exts)
3077       Exts->push_back(ExtForOpnd);
3078     TPT.setOperand(ExtForOpnd, 0, Opnd);
3079 
3080     // Move the sign extension before the insertion point.
3081     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3082     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3083     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3084     // If more sext are required, new instructions will have to be created.
3085     ExtForOpnd = nullptr;
3086   }
3087   if (ExtForOpnd == Ext) {
3088     DEBUG(dbgs() << "Extension is useless now\n");
3089     TPT.eraseInstruction(Ext);
3090   }
3091   return ExtOpnd;
3092 }
3093 
3094 /// Check whether or not promoting an instruction to a wider type is profitable.
3095 /// \p NewCost gives the cost of extension instructions created by the
3096 /// promotion.
3097 /// \p OldCost gives the cost of extension instructions before the promotion
3098 /// plus the number of instructions that have been
3099 /// matched in the addressing mode the promotion.
3100 /// \p PromotedOperand is the value that has been promoted.
3101 /// \return True if the promotion is profitable, false otherwise.
3102 bool AddressingModeMatcher::isPromotionProfitable(
3103     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3104   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3105   // The cost of the new extensions is greater than the cost of the
3106   // old extension plus what we folded.
3107   // This is not profitable.
3108   if (NewCost > OldCost)
3109     return false;
3110   if (NewCost < OldCost)
3111     return true;
3112   // The promotion is neutral but it may help folding the sign extension in
3113   // loads for instance.
3114   // Check that we did not create an illegal instruction.
3115   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3116 }
3117 
3118 /// Given an instruction or constant expr, see if we can fold the operation
3119 /// into the addressing mode. If so, update the addressing mode and return
3120 /// true, otherwise return false without modifying AddrMode.
3121 /// If \p MovedAway is not NULL, it contains the information of whether or
3122 /// not AddrInst has to be folded into the addressing mode on success.
3123 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3124 /// because it has been moved away.
3125 /// Thus AddrInst must not be added in the matched instructions.
3126 /// This state can happen when AddrInst is a sext, since it may be moved away.
3127 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3128 /// not be referenced anymore.
3129 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3130                                                unsigned Depth,
3131                                                bool *MovedAway) {
3132   // Avoid exponential behavior on extremely deep expression trees.
3133   if (Depth >= 5) return false;
3134 
3135   // By default, all matched instructions stay in place.
3136   if (MovedAway)
3137     *MovedAway = false;
3138 
3139   switch (Opcode) {
3140   case Instruction::PtrToInt:
3141     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3142     return matchAddr(AddrInst->getOperand(0), Depth);
3143   case Instruction::IntToPtr: {
3144     auto AS = AddrInst->getType()->getPointerAddressSpace();
3145     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3146     // This inttoptr is a no-op if the integer type is pointer sized.
3147     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3148       return matchAddr(AddrInst->getOperand(0), Depth);
3149     return false;
3150   }
3151   case Instruction::BitCast:
3152     // BitCast is always a noop, and we can handle it as long as it is
3153     // int->int or pointer->pointer (we don't want int<->fp or something).
3154     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3155          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3156         // Don't touch identity bitcasts.  These were probably put here by LSR,
3157         // and we don't want to mess around with them.  Assume it knows what it
3158         // is doing.
3159         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3160       return matchAddr(AddrInst->getOperand(0), Depth);
3161     return false;
3162   case Instruction::AddrSpaceCast: {
3163     unsigned SrcAS
3164       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3165     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3166     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3167       return matchAddr(AddrInst->getOperand(0), Depth);
3168     return false;
3169   }
3170   case Instruction::Add: {
3171     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3172     ExtAddrMode BackupAddrMode = AddrMode;
3173     unsigned OldSize = AddrModeInsts.size();
3174     // Start a transaction at this point.
3175     // The LHS may match but not the RHS.
3176     // Therefore, we need a higher level restoration point to undo partially
3177     // matched operation.
3178     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3179         TPT.getRestorationPoint();
3180 
3181     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3182         matchAddr(AddrInst->getOperand(0), Depth+1))
3183       return true;
3184 
3185     // Restore the old addr mode info.
3186     AddrMode = BackupAddrMode;
3187     AddrModeInsts.resize(OldSize);
3188     TPT.rollback(LastKnownGood);
3189 
3190     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3191     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3192         matchAddr(AddrInst->getOperand(1), Depth+1))
3193       return true;
3194 
3195     // Otherwise we definitely can't merge the ADD in.
3196     AddrMode = BackupAddrMode;
3197     AddrModeInsts.resize(OldSize);
3198     TPT.rollback(LastKnownGood);
3199     break;
3200   }
3201   //case Instruction::Or:
3202   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3203   //break;
3204   case Instruction::Mul:
3205   case Instruction::Shl: {
3206     // Can only handle X*C and X << C.
3207     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3208     if (!RHS)
3209       return false;
3210     int64_t Scale = RHS->getSExtValue();
3211     if (Opcode == Instruction::Shl)
3212       Scale = 1LL << Scale;
3213 
3214     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3215   }
3216   case Instruction::GetElementPtr: {
3217     // Scan the GEP.  We check it if it contains constant offsets and at most
3218     // one variable offset.
3219     int VariableOperand = -1;
3220     unsigned VariableScale = 0;
3221 
3222     int64_t ConstantOffset = 0;
3223     gep_type_iterator GTI = gep_type_begin(AddrInst);
3224     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3225       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
3226         const StructLayout *SL = DL.getStructLayout(STy);
3227         unsigned Idx =
3228           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3229         ConstantOffset += SL->getElementOffset(Idx);
3230       } else {
3231         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3232         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3233           ConstantOffset += CI->getSExtValue()*TypeSize;
3234         } else if (TypeSize) {  // Scales of zero don't do anything.
3235           // We only allow one variable index at the moment.
3236           if (VariableOperand != -1)
3237             return false;
3238 
3239           // Remember the variable index.
3240           VariableOperand = i;
3241           VariableScale = TypeSize;
3242         }
3243       }
3244     }
3245 
3246     // A common case is for the GEP to only do a constant offset.  In this case,
3247     // just add it to the disp field and check validity.
3248     if (VariableOperand == -1) {
3249       AddrMode.BaseOffs += ConstantOffset;
3250       if (ConstantOffset == 0 ||
3251           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3252         // Check to see if we can fold the base pointer in too.
3253         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3254           return true;
3255       }
3256       AddrMode.BaseOffs -= ConstantOffset;
3257       return false;
3258     }
3259 
3260     // Save the valid addressing mode in case we can't match.
3261     ExtAddrMode BackupAddrMode = AddrMode;
3262     unsigned OldSize = AddrModeInsts.size();
3263 
3264     // See if the scale and offset amount is valid for this target.
3265     AddrMode.BaseOffs += ConstantOffset;
3266 
3267     // Match the base operand of the GEP.
3268     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3269       // If it couldn't be matched, just stuff the value in a register.
3270       if (AddrMode.HasBaseReg) {
3271         AddrMode = BackupAddrMode;
3272         AddrModeInsts.resize(OldSize);
3273         return false;
3274       }
3275       AddrMode.HasBaseReg = true;
3276       AddrMode.BaseReg = AddrInst->getOperand(0);
3277     }
3278 
3279     // Match the remaining variable portion of the GEP.
3280     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3281                           Depth)) {
3282       // If it couldn't be matched, try stuffing the base into a register
3283       // instead of matching it, and retrying the match of the scale.
3284       AddrMode = BackupAddrMode;
3285       AddrModeInsts.resize(OldSize);
3286       if (AddrMode.HasBaseReg)
3287         return false;
3288       AddrMode.HasBaseReg = true;
3289       AddrMode.BaseReg = AddrInst->getOperand(0);
3290       AddrMode.BaseOffs += ConstantOffset;
3291       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3292                             VariableScale, Depth)) {
3293         // If even that didn't work, bail.
3294         AddrMode = BackupAddrMode;
3295         AddrModeInsts.resize(OldSize);
3296         return false;
3297       }
3298     }
3299 
3300     return true;
3301   }
3302   case Instruction::SExt:
3303   case Instruction::ZExt: {
3304     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3305     if (!Ext)
3306       return false;
3307 
3308     // Try to move this ext out of the way of the addressing mode.
3309     // Ask for a method for doing so.
3310     TypePromotionHelper::Action TPH =
3311         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3312     if (!TPH)
3313       return false;
3314 
3315     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3316         TPT.getRestorationPoint();
3317     unsigned CreatedInstsCost = 0;
3318     unsigned ExtCost = !TLI.isExtFree(Ext);
3319     Value *PromotedOperand =
3320         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3321     // SExt has been moved away.
3322     // Thus either it will be rematched later in the recursive calls or it is
3323     // gone. Anyway, we must not fold it into the addressing mode at this point.
3324     // E.g.,
3325     // op = add opnd, 1
3326     // idx = ext op
3327     // addr = gep base, idx
3328     // is now:
3329     // promotedOpnd = ext opnd            <- no match here
3330     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3331     // addr = gep base, op                <- match
3332     if (MovedAway)
3333       *MovedAway = true;
3334 
3335     assert(PromotedOperand &&
3336            "TypePromotionHelper should have filtered out those cases");
3337 
3338     ExtAddrMode BackupAddrMode = AddrMode;
3339     unsigned OldSize = AddrModeInsts.size();
3340 
3341     if (!matchAddr(PromotedOperand, Depth) ||
3342         // The total of the new cost is equal to the cost of the created
3343         // instructions.
3344         // The total of the old cost is equal to the cost of the extension plus
3345         // what we have saved in the addressing mode.
3346         !isPromotionProfitable(CreatedInstsCost,
3347                                ExtCost + (AddrModeInsts.size() - OldSize),
3348                                PromotedOperand)) {
3349       AddrMode = BackupAddrMode;
3350       AddrModeInsts.resize(OldSize);
3351       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3352       TPT.rollback(LastKnownGood);
3353       return false;
3354     }
3355     return true;
3356   }
3357   }
3358   return false;
3359 }
3360 
3361 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3362 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3363 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3364 /// for the target.
3365 ///
3366 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3367   // Start a transaction at this point that we will rollback if the matching
3368   // fails.
3369   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3370       TPT.getRestorationPoint();
3371   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3372     // Fold in immediates if legal for the target.
3373     AddrMode.BaseOffs += CI->getSExtValue();
3374     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3375       return true;
3376     AddrMode.BaseOffs -= CI->getSExtValue();
3377   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3378     // If this is a global variable, try to fold it into the addressing mode.
3379     if (!AddrMode.BaseGV) {
3380       AddrMode.BaseGV = GV;
3381       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3382         return true;
3383       AddrMode.BaseGV = nullptr;
3384     }
3385   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3386     ExtAddrMode BackupAddrMode = AddrMode;
3387     unsigned OldSize = AddrModeInsts.size();
3388 
3389     // Check to see if it is possible to fold this operation.
3390     bool MovedAway = false;
3391     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3392       // This instruction may have been moved away. If so, there is nothing
3393       // to check here.
3394       if (MovedAway)
3395         return true;
3396       // Okay, it's possible to fold this.  Check to see if it is actually
3397       // *profitable* to do so.  We use a simple cost model to avoid increasing
3398       // register pressure too much.
3399       if (I->hasOneUse() ||
3400           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3401         AddrModeInsts.push_back(I);
3402         return true;
3403       }
3404 
3405       // It isn't profitable to do this, roll back.
3406       //cerr << "NOT FOLDING: " << *I;
3407       AddrMode = BackupAddrMode;
3408       AddrModeInsts.resize(OldSize);
3409       TPT.rollback(LastKnownGood);
3410     }
3411   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3412     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3413       return true;
3414     TPT.rollback(LastKnownGood);
3415   } else if (isa<ConstantPointerNull>(Addr)) {
3416     // Null pointer gets folded without affecting the addressing mode.
3417     return true;
3418   }
3419 
3420   // Worse case, the target should support [reg] addressing modes. :)
3421   if (!AddrMode.HasBaseReg) {
3422     AddrMode.HasBaseReg = true;
3423     AddrMode.BaseReg = Addr;
3424     // Still check for legality in case the target supports [imm] but not [i+r].
3425     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3426       return true;
3427     AddrMode.HasBaseReg = false;
3428     AddrMode.BaseReg = nullptr;
3429   }
3430 
3431   // If the base register is already taken, see if we can do [r+r].
3432   if (AddrMode.Scale == 0) {
3433     AddrMode.Scale = 1;
3434     AddrMode.ScaledReg = Addr;
3435     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3436       return true;
3437     AddrMode.Scale = 0;
3438     AddrMode.ScaledReg = nullptr;
3439   }
3440   // Couldn't match.
3441   TPT.rollback(LastKnownGood);
3442   return false;
3443 }
3444 
3445 /// Check to see if all uses of OpVal by the specified inline asm call are due
3446 /// to memory operands. If so, return true, otherwise return false.
3447 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3448                                     const TargetMachine &TM) {
3449   const Function *F = CI->getParent()->getParent();
3450   const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
3451   const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
3452   TargetLowering::AsmOperandInfoVector TargetConstraints =
3453       TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
3454                             ImmutableCallSite(CI));
3455   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3456     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3457 
3458     // Compute the constraint code and ConstraintType to use.
3459     TLI->ComputeConstraintToUse(OpInfo, SDValue());
3460 
3461     // If this asm operand is our Value*, and if it isn't an indirect memory
3462     // operand, we can't fold it!
3463     if (OpInfo.CallOperandVal == OpVal &&
3464         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
3465          !OpInfo.isIndirect))
3466       return false;
3467   }
3468 
3469   return true;
3470 }
3471 
3472 /// Recursively walk all the uses of I until we find a memory use.
3473 /// If we find an obviously non-foldable instruction, return true.
3474 /// Add the ultimately found memory instructions to MemoryUses.
3475 static bool FindAllMemoryUses(
3476     Instruction *I,
3477     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
3478     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
3479   // If we already considered this instruction, we're done.
3480   if (!ConsideredInsts.insert(I).second)
3481     return false;
3482 
3483   // If this is an obviously unfoldable instruction, bail out.
3484   if (!MightBeFoldableInst(I))
3485     return true;
3486 
3487   const bool OptSize = I->getFunction()->optForSize();
3488 
3489   // Loop over all the uses, recursively processing them.
3490   for (Use &U : I->uses()) {
3491     Instruction *UserI = cast<Instruction>(U.getUser());
3492 
3493     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
3494       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
3495       continue;
3496     }
3497 
3498     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
3499       unsigned opNo = U.getOperandNo();
3500       if (opNo == 0) return true; // Storing addr, not into addr.
3501       MemoryUses.push_back(std::make_pair(SI, opNo));
3502       continue;
3503     }
3504 
3505     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
3506       // If this is a cold call, we can sink the addressing calculation into
3507       // the cold path.  See optimizeCallInst
3508       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
3509         continue;
3510 
3511       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
3512       if (!IA) return true;
3513 
3514       // If this is a memory operand, we're cool, otherwise bail out.
3515       if (!IsOperandAMemoryOperand(CI, IA, I, TM))
3516         return true;
3517       continue;
3518     }
3519 
3520     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
3521       return true;
3522   }
3523 
3524   return false;
3525 }
3526 
3527 /// Return true if Val is already known to be live at the use site that we're
3528 /// folding it into. If so, there is no cost to include it in the addressing
3529 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
3530 /// instruction already.
3531 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
3532                                                    Value *KnownLive2) {
3533   // If Val is either of the known-live values, we know it is live!
3534   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
3535     return true;
3536 
3537   // All values other than instructions and arguments (e.g. constants) are live.
3538   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3539 
3540   // If Val is a constant sized alloca in the entry block, it is live, this is
3541   // true because it is just a reference to the stack/frame pointer, which is
3542   // live for the whole function.
3543   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3544     if (AI->isStaticAlloca())
3545       return true;
3546 
3547   // Check to see if this value is already used in the memory instruction's
3548   // block.  If so, it's already live into the block at the very least, so we
3549   // can reasonably fold it.
3550   return Val->isUsedInBasicBlock(MemoryInst->getParent());
3551 }
3552 
3553 /// It is possible for the addressing mode of the machine to fold the specified
3554 /// instruction into a load or store that ultimately uses it.
3555 /// However, the specified instruction has multiple uses.
3556 /// Given this, it may actually increase register pressure to fold it
3557 /// into the load. For example, consider this code:
3558 ///
3559 ///     X = ...
3560 ///     Y = X+1
3561 ///     use(Y)   -> nonload/store
3562 ///     Z = Y+1
3563 ///     load Z
3564 ///
3565 /// In this case, Y has multiple uses, and can be folded into the load of Z
3566 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
3567 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
3568 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
3569 /// number of computations either.
3570 ///
3571 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
3572 /// X was live across 'load Z' for other reasons, we actually *would* want to
3573 /// fold the addressing mode in the Z case.  This would make Y die earlier.
3574 bool AddressingModeMatcher::
3575 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3576                                      ExtAddrMode &AMAfter) {
3577   if (IgnoreProfitability) return true;
3578 
3579   // AMBefore is the addressing mode before this instruction was folded into it,
3580   // and AMAfter is the addressing mode after the instruction was folded.  Get
3581   // the set of registers referenced by AMAfter and subtract out those
3582   // referenced by AMBefore: this is the set of values which folding in this
3583   // address extends the lifetime of.
3584   //
3585   // Note that there are only two potential values being referenced here,
3586   // BaseReg and ScaleReg (global addresses are always available, as are any
3587   // folded immediates).
3588   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3589 
3590   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3591   // lifetime wasn't extended by adding this instruction.
3592   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3593     BaseReg = nullptr;
3594   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3595     ScaledReg = nullptr;
3596 
3597   // If folding this instruction (and it's subexprs) didn't extend any live
3598   // ranges, we're ok with it.
3599   if (!BaseReg && !ScaledReg)
3600     return true;
3601 
3602   // If all uses of this instruction can have the address mode sunk into them,
3603   // we can remove the addressing mode and effectively trade one live register
3604   // for another (at worst.)  In this context, folding an addressing mode into
3605   // the use is just a particularly nice way of sinking it.
3606   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3607   SmallPtrSet<Instruction*, 16> ConsideredInsts;
3608   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3609     return false;  // Has a non-memory, non-foldable use!
3610 
3611   // Now that we know that all uses of this instruction are part of a chain of
3612   // computation involving only operations that could theoretically be folded
3613   // into a memory use, loop over each of these memory operation uses and see
3614   // if they could  *actually* fold the instruction.  The assumption is that
3615   // addressing modes are cheap and that duplicating the computation involved
3616   // many times is worthwhile, even on a fastpath. For sinking candidates
3617   // (i.e. cold call sites), this serves as a way to prevent excessive code
3618   // growth since most architectures have some reasonable small and fast way to
3619   // compute an effective address.  (i.e LEA on x86)
3620   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3621   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3622     Instruction *User = MemoryUses[i].first;
3623     unsigned OpNo = MemoryUses[i].second;
3624 
3625     // Get the access type of this use.  If the use isn't a pointer, we don't
3626     // know what it accesses.
3627     Value *Address = User->getOperand(OpNo);
3628     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
3629     if (!AddrTy)
3630       return false;
3631     Type *AddressAccessTy = AddrTy->getElementType();
3632     unsigned AS = AddrTy->getAddressSpace();
3633 
3634     // Do a match against the root of this address, ignoring profitability. This
3635     // will tell us if the addressing mode for the memory operation will
3636     // *actually* cover the shared instruction.
3637     ExtAddrMode Result;
3638     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3639         TPT.getRestorationPoint();
3640     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
3641                                   MemoryInst, Result, InsertedInsts,
3642                                   PromotedInsts, TPT);
3643     Matcher.IgnoreProfitability = true;
3644     bool Success = Matcher.matchAddr(Address, 0);
3645     (void)Success; assert(Success && "Couldn't select *anything*?");
3646 
3647     // The match was to check the profitability, the changes made are not
3648     // part of the original matcher. Therefore, they should be dropped
3649     // otherwise the original matcher will not present the right state.
3650     TPT.rollback(LastKnownGood);
3651 
3652     // If the match didn't cover I, then it won't be shared by it.
3653     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3654                   I) == MatchedAddrModeInsts.end())
3655       return false;
3656 
3657     MatchedAddrModeInsts.clear();
3658   }
3659 
3660   return true;
3661 }
3662 
3663 } // end anonymous namespace
3664 
3665 /// Return true if the specified values are defined in a
3666 /// different basic block than BB.
3667 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3668   if (Instruction *I = dyn_cast<Instruction>(V))
3669     return I->getParent() != BB;
3670   return false;
3671 }
3672 
3673 /// Sink addressing mode computation immediate before MemoryInst if doing so
3674 /// can be done without increasing register pressure.  The need for the
3675 /// register pressure constraint means this can end up being an all or nothing
3676 /// decision for all uses of the same addressing computation.
3677 ///
3678 /// Load and Store Instructions often have addressing modes that can do
3679 /// significant amounts of computation. As such, instruction selection will try
3680 /// to get the load or store to do as much computation as possible for the
3681 /// program. The problem is that isel can only see within a single block. As
3682 /// such, we sink as much legal addressing mode work into the block as possible.
3683 ///
3684 /// This method is used to optimize both load/store and inline asms with memory
3685 /// operands.  It's also used to sink addressing computations feeding into cold
3686 /// call sites into their (cold) basic block.
3687 ///
3688 /// The motivation for handling sinking into cold blocks is that doing so can
3689 /// both enable other address mode sinking (by satisfying the register pressure
3690 /// constraint above), and reduce register pressure globally (by removing the
3691 /// addressing mode computation from the fast path entirely.).
3692 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3693                                         Type *AccessTy, unsigned AddrSpace) {
3694   Value *Repl = Addr;
3695 
3696   // Try to collapse single-value PHI nodes.  This is necessary to undo
3697   // unprofitable PRE transformations.
3698   SmallVector<Value*, 8> worklist;
3699   SmallPtrSet<Value*, 16> Visited;
3700   worklist.push_back(Addr);
3701 
3702   // Use a worklist to iteratively look through PHI nodes, and ensure that
3703   // the addressing mode obtained from the non-PHI roots of the graph
3704   // are equivalent.
3705   Value *Consensus = nullptr;
3706   unsigned NumUsesConsensus = 0;
3707   bool IsNumUsesConsensusValid = false;
3708   SmallVector<Instruction*, 16> AddrModeInsts;
3709   ExtAddrMode AddrMode;
3710   TypePromotionTransaction TPT;
3711   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3712       TPT.getRestorationPoint();
3713   while (!worklist.empty()) {
3714     Value *V = worklist.back();
3715     worklist.pop_back();
3716 
3717     // Break use-def graph loops.
3718     if (!Visited.insert(V).second) {
3719       Consensus = nullptr;
3720       break;
3721     }
3722 
3723     // For a PHI node, push all of its incoming values.
3724     if (PHINode *P = dyn_cast<PHINode>(V)) {
3725       for (Value *IncValue : P->incoming_values())
3726         worklist.push_back(IncValue);
3727       continue;
3728     }
3729 
3730     // For non-PHIs, determine the addressing mode being computed.  Note that
3731     // the result may differ depending on what other uses our candidate
3732     // addressing instructions might have.
3733     SmallVector<Instruction*, 16> NewAddrModeInsts;
3734     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3735       V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
3736       InsertedInsts, PromotedInsts, TPT);
3737 
3738     // This check is broken into two cases with very similar code to avoid using
3739     // getNumUses() as much as possible. Some values have a lot of uses, so
3740     // calling getNumUses() unconditionally caused a significant compile-time
3741     // regression.
3742     if (!Consensus) {
3743       Consensus = V;
3744       AddrMode = NewAddrMode;
3745       AddrModeInsts = NewAddrModeInsts;
3746       continue;
3747     } else if (NewAddrMode == AddrMode) {
3748       if (!IsNumUsesConsensusValid) {
3749         NumUsesConsensus = Consensus->getNumUses();
3750         IsNumUsesConsensusValid = true;
3751       }
3752 
3753       // Ensure that the obtained addressing mode is equivalent to that obtained
3754       // for all other roots of the PHI traversal.  Also, when choosing one
3755       // such root as representative, select the one with the most uses in order
3756       // to keep the cost modeling heuristics in AddressingModeMatcher
3757       // applicable.
3758       unsigned NumUses = V->getNumUses();
3759       if (NumUses > NumUsesConsensus) {
3760         Consensus = V;
3761         NumUsesConsensus = NumUses;
3762         AddrModeInsts = NewAddrModeInsts;
3763       }
3764       continue;
3765     }
3766 
3767     Consensus = nullptr;
3768     break;
3769   }
3770 
3771   // If the addressing mode couldn't be determined, or if multiple different
3772   // ones were determined, bail out now.
3773   if (!Consensus) {
3774     TPT.rollback(LastKnownGood);
3775     return false;
3776   }
3777   TPT.commit();
3778 
3779   // Check to see if any of the instructions supersumed by this addr mode are
3780   // non-local to I's BB.
3781   bool AnyNonLocal = false;
3782   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3783     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3784       AnyNonLocal = true;
3785       break;
3786     }
3787   }
3788 
3789   // If all the instructions matched are already in this BB, don't do anything.
3790   if (!AnyNonLocal) {
3791     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
3792     return false;
3793   }
3794 
3795   // Insert this computation right after this user.  Since our caller is
3796   // scanning from the top of the BB to the bottom, reuse of the expr are
3797   // guaranteed to happen later.
3798   IRBuilder<> Builder(MemoryInst);
3799 
3800   // Now that we determined the addressing expression we want to use and know
3801   // that we have to sink it into this block.  Check to see if we have already
3802   // done this for some other load/store instr in this block.  If so, reuse the
3803   // computation.
3804   Value *&SunkAddr = SunkAddrs[Addr];
3805   if (SunkAddr) {
3806     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3807                  << *MemoryInst << "\n");
3808     if (SunkAddr->getType() != Addr->getType())
3809       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3810   } else if (AddrSinkUsingGEPs ||
3811              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3812               TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3813                   ->useAA())) {
3814     // By default, we use the GEP-based method when AA is used later. This
3815     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3816     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3817                  << *MemoryInst << "\n");
3818     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3819     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3820 
3821     // First, find the pointer.
3822     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3823       ResultPtr = AddrMode.BaseReg;
3824       AddrMode.BaseReg = nullptr;
3825     }
3826 
3827     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3828       // We can't add more than one pointer together, nor can we scale a
3829       // pointer (both of which seem meaningless).
3830       if (ResultPtr || AddrMode.Scale != 1)
3831         return false;
3832 
3833       ResultPtr = AddrMode.ScaledReg;
3834       AddrMode.Scale = 0;
3835     }
3836 
3837     if (AddrMode.BaseGV) {
3838       if (ResultPtr)
3839         return false;
3840 
3841       ResultPtr = AddrMode.BaseGV;
3842     }
3843 
3844     // If the real base value actually came from an inttoptr, then the matcher
3845     // will look through it and provide only the integer value. In that case,
3846     // use it here.
3847     if (!ResultPtr && AddrMode.BaseReg) {
3848       ResultPtr =
3849         Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3850       AddrMode.BaseReg = nullptr;
3851     } else if (!ResultPtr && AddrMode.Scale == 1) {
3852       ResultPtr =
3853         Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3854       AddrMode.Scale = 0;
3855     }
3856 
3857     if (!ResultPtr &&
3858         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3859       SunkAddr = Constant::getNullValue(Addr->getType());
3860     } else if (!ResultPtr) {
3861       return false;
3862     } else {
3863       Type *I8PtrTy =
3864           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3865       Type *I8Ty = Builder.getInt8Ty();
3866 
3867       // Start with the base register. Do this first so that subsequent address
3868       // matching finds it last, which will prevent it from trying to match it
3869       // as the scaled value in case it happens to be a mul. That would be
3870       // problematic if we've sunk a different mul for the scale, because then
3871       // we'd end up sinking both muls.
3872       if (AddrMode.BaseReg) {
3873         Value *V = AddrMode.BaseReg;
3874         if (V->getType() != IntPtrTy)
3875           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3876 
3877         ResultIndex = V;
3878       }
3879 
3880       // Add the scale value.
3881       if (AddrMode.Scale) {
3882         Value *V = AddrMode.ScaledReg;
3883         if (V->getType() == IntPtrTy) {
3884           // done.
3885         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3886                    cast<IntegerType>(V->getType())->getBitWidth()) {
3887           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3888         } else {
3889           // It is only safe to sign extend the BaseReg if we know that the math
3890           // required to create it did not overflow before we extend it. Since
3891           // the original IR value was tossed in favor of a constant back when
3892           // the AddrMode was created we need to bail out gracefully if widths
3893           // do not match instead of extending it.
3894           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3895           if (I && (ResultIndex != AddrMode.BaseReg))
3896             I->eraseFromParent();
3897           return false;
3898         }
3899 
3900         if (AddrMode.Scale != 1)
3901           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3902                                 "sunkaddr");
3903         if (ResultIndex)
3904           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3905         else
3906           ResultIndex = V;
3907       }
3908 
3909       // Add in the Base Offset if present.
3910       if (AddrMode.BaseOffs) {
3911         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3912         if (ResultIndex) {
3913           // We need to add this separately from the scale above to help with
3914           // SDAG consecutive load/store merging.
3915           if (ResultPtr->getType() != I8PtrTy)
3916             ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3917           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3918         }
3919 
3920         ResultIndex = V;
3921       }
3922 
3923       if (!ResultIndex) {
3924         SunkAddr = ResultPtr;
3925       } else {
3926         if (ResultPtr->getType() != I8PtrTy)
3927           ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3928         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3929       }
3930 
3931       if (SunkAddr->getType() != Addr->getType())
3932         SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3933     }
3934   } else {
3935     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3936                  << *MemoryInst << "\n");
3937     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3938     Value *Result = nullptr;
3939 
3940     // Start with the base register. Do this first so that subsequent address
3941     // matching finds it last, which will prevent it from trying to match it
3942     // as the scaled value in case it happens to be a mul. That would be
3943     // problematic if we've sunk a different mul for the scale, because then
3944     // we'd end up sinking both muls.
3945     if (AddrMode.BaseReg) {
3946       Value *V = AddrMode.BaseReg;
3947       if (V->getType()->isPointerTy())
3948         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3949       if (V->getType() != IntPtrTy)
3950         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3951       Result = V;
3952     }
3953 
3954     // Add the scale value.
3955     if (AddrMode.Scale) {
3956       Value *V = AddrMode.ScaledReg;
3957       if (V->getType() == IntPtrTy) {
3958         // done.
3959       } else if (V->getType()->isPointerTy()) {
3960         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3961       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3962                  cast<IntegerType>(V->getType())->getBitWidth()) {
3963         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3964       } else {
3965         // It is only safe to sign extend the BaseReg if we know that the math
3966         // required to create it did not overflow before we extend it. Since
3967         // the original IR value was tossed in favor of a constant back when
3968         // the AddrMode was created we need to bail out gracefully if widths
3969         // do not match instead of extending it.
3970         Instruction *I = dyn_cast_or_null<Instruction>(Result);
3971         if (I && (Result != AddrMode.BaseReg))
3972           I->eraseFromParent();
3973         return false;
3974       }
3975       if (AddrMode.Scale != 1)
3976         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3977                               "sunkaddr");
3978       if (Result)
3979         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3980       else
3981         Result = V;
3982     }
3983 
3984     // Add in the BaseGV if present.
3985     if (AddrMode.BaseGV) {
3986       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3987       if (Result)
3988         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3989       else
3990         Result = V;
3991     }
3992 
3993     // Add in the Base Offset if present.
3994     if (AddrMode.BaseOffs) {
3995       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3996       if (Result)
3997         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3998       else
3999         Result = V;
4000     }
4001 
4002     if (!Result)
4003       SunkAddr = Constant::getNullValue(Addr->getType());
4004     else
4005       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4006   }
4007 
4008   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4009 
4010   // If we have no uses, recursively delete the value and all dead instructions
4011   // using it.
4012   if (Repl->use_empty()) {
4013     // This can cause recursive deletion, which can invalidate our iterator.
4014     // Use a WeakVH to hold onto it in case this happens.
4015     Value *CurValue = &*CurInstIterator;
4016     WeakVH IterHandle(CurValue);
4017     BasicBlock *BB = CurInstIterator->getParent();
4018 
4019     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4020 
4021     if (IterHandle != CurValue) {
4022       // If the iterator instruction was recursively deleted, start over at the
4023       // start of the block.
4024       CurInstIterator = BB->begin();
4025       SunkAddrs.clear();
4026     }
4027   }
4028   ++NumMemoryInsts;
4029   return true;
4030 }
4031 
4032 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4033 /// address computing into the block when possible / profitable.
4034 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4035   bool MadeChange = false;
4036 
4037   const TargetRegisterInfo *TRI =
4038       TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
4039   TargetLowering::AsmOperandInfoVector TargetConstraints =
4040       TLI->ParseConstraints(*DL, TRI, CS);
4041   unsigned ArgNo = 0;
4042   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4043     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4044 
4045     // Compute the constraint code and ConstraintType to use.
4046     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4047 
4048     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4049         OpInfo.isIndirect) {
4050       Value *OpVal = CS->getArgOperand(ArgNo++);
4051       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4052     } else if (OpInfo.Type == InlineAsm::isInput)
4053       ArgNo++;
4054   }
4055 
4056   return MadeChange;
4057 }
4058 
4059 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
4060 /// sign extensions.
4061 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
4062   assert(!Inst->use_empty() && "Input must have at least one use");
4063   const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
4064   bool IsSExt = isa<SExtInst>(FirstUser);
4065   Type *ExtTy = FirstUser->getType();
4066   for (const User *U : Inst->users()) {
4067     const Instruction *UI = cast<Instruction>(U);
4068     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4069       return false;
4070     Type *CurTy = UI->getType();
4071     // Same input and output types: Same instruction after CSE.
4072     if (CurTy == ExtTy)
4073       continue;
4074 
4075     // If IsSExt is true, we are in this situation:
4076     // a = Inst
4077     // b = sext ty1 a to ty2
4078     // c = sext ty1 a to ty3
4079     // Assuming ty2 is shorter than ty3, this could be turned into:
4080     // a = Inst
4081     // b = sext ty1 a to ty2
4082     // c = sext ty2 b to ty3
4083     // However, the last sext is not free.
4084     if (IsSExt)
4085       return false;
4086 
4087     // This is a ZExt, maybe this is free to extend from one type to another.
4088     // In that case, we would not account for a different use.
4089     Type *NarrowTy;
4090     Type *LargeTy;
4091     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4092         CurTy->getScalarType()->getIntegerBitWidth()) {
4093       NarrowTy = CurTy;
4094       LargeTy = ExtTy;
4095     } else {
4096       NarrowTy = ExtTy;
4097       LargeTy = CurTy;
4098     }
4099 
4100     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4101       return false;
4102   }
4103   // All uses are the same or can be derived from one another for free.
4104   return true;
4105 }
4106 
4107 /// \brief Try to form ExtLd by promoting \p Exts until they reach a
4108 /// load instruction.
4109 /// If an ext(load) can be formed, it is returned via \p LI for the load
4110 /// and \p Inst for the extension.
4111 /// Otherwise LI == nullptr and Inst == nullptr.
4112 /// When some promotion happened, \p TPT contains the proper state to
4113 /// revert them.
4114 ///
4115 /// \return true when promoting was necessary to expose the ext(load)
4116 /// opportunity, false otherwise.
4117 ///
4118 /// Example:
4119 /// \code
4120 /// %ld = load i32* %addr
4121 /// %add = add nuw i32 %ld, 4
4122 /// %zext = zext i32 %add to i64
4123 /// \endcode
4124 /// =>
4125 /// \code
4126 /// %ld = load i32* %addr
4127 /// %zext = zext i32 %ld to i64
4128 /// %add = add nuw i64 %zext, 4
4129 /// \encode
4130 /// Thanks to the promotion, we can match zext(load i32*) to i64.
4131 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
4132                                     LoadInst *&LI, Instruction *&Inst,
4133                                     const SmallVectorImpl<Instruction *> &Exts,
4134                                     unsigned CreatedInstsCost = 0) {
4135   // Iterate over all the extensions to see if one form an ext(load).
4136   for (auto I : Exts) {
4137     // Check if we directly have ext(load).
4138     if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
4139       Inst = I;
4140       // No promotion happened here.
4141       return false;
4142     }
4143     // Check whether or not we want to do any promotion.
4144     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4145       continue;
4146     // Get the action to perform the promotion.
4147     TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
4148         I, InsertedInsts, *TLI, PromotedInsts);
4149     // Check if we can promote.
4150     if (!TPH)
4151       continue;
4152     // Save the current state.
4153     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4154         TPT.getRestorationPoint();
4155     SmallVector<Instruction *, 4> NewExts;
4156     unsigned NewCreatedInstsCost = 0;
4157     unsigned ExtCost = !TLI->isExtFree(I);
4158     // Promote.
4159     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4160                              &NewExts, nullptr, *TLI);
4161     assert(PromotedVal &&
4162            "TypePromotionHelper should have filtered out those cases");
4163 
4164     // We would be able to merge only one extension in a load.
4165     // Therefore, if we have more than 1 new extension we heuristically
4166     // cut this search path, because it means we degrade the code quality.
4167     // With exactly 2, the transformation is neutral, because we will merge
4168     // one extension but leave one. However, we optimistically keep going,
4169     // because the new extension may be removed too.
4170     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4171     TotalCreatedInstsCost -= ExtCost;
4172     if (!StressExtLdPromotion &&
4173         (TotalCreatedInstsCost > 1 ||
4174          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4175       // The promotion is not profitable, rollback to the previous state.
4176       TPT.rollback(LastKnownGood);
4177       continue;
4178     }
4179     // The promotion is profitable.
4180     // Check if it exposes an ext(load).
4181     (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
4182     if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4183                // If we have created a new extension, i.e., now we have two
4184                // extensions. We must make sure one of them is merged with
4185                // the load, otherwise we may degrade the code quality.
4186                (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
4187       // Promotion happened.
4188       return true;
4189     // If this does not help to expose an ext(load) then, rollback.
4190     TPT.rollback(LastKnownGood);
4191   }
4192   // None of the extension can form an ext(load).
4193   LI = nullptr;
4194   Inst = nullptr;
4195   return false;
4196 }
4197 
4198 /// Move a zext or sext fed by a load into the same basic block as the load,
4199 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4200 /// extend into the load.
4201 /// \p I[in/out] the extension may be modified during the process if some
4202 /// promotions apply.
4203 ///
4204 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
4205   // Try to promote a chain of computation if it allows to form
4206   // an extended load.
4207   TypePromotionTransaction TPT;
4208   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4209     TPT.getRestorationPoint();
4210   SmallVector<Instruction *, 1> Exts;
4211   Exts.push_back(I);
4212   // Look for a load being extended.
4213   LoadInst *LI = nullptr;
4214   Instruction *OldExt = I;
4215   bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
4216   if (!LI || !I) {
4217     assert(!HasPromoted && !LI && "If we did not match any load instruction "
4218                                   "the code must remain the same");
4219     I = OldExt;
4220     return false;
4221   }
4222 
4223   // If they're already in the same block, there's nothing to do.
4224   // Make the cheap checks first if we did not promote.
4225   // If we promoted, we need to check if it is indeed profitable.
4226   if (!HasPromoted && LI->getParent() == I->getParent())
4227     return false;
4228 
4229   EVT VT = TLI->getValueType(*DL, I->getType());
4230   EVT LoadVT = TLI->getValueType(*DL, LI->getType());
4231 
4232   // If the load has other users and the truncate is not free, this probably
4233   // isn't worthwhile.
4234   if (!LI->hasOneUse() && TLI &&
4235       (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
4236       !TLI->isTruncateFree(I->getType(), LI->getType())) {
4237     I = OldExt;
4238     TPT.rollback(LastKnownGood);
4239     return false;
4240   }
4241 
4242   // Check whether the target supports casts folded into loads.
4243   unsigned LType;
4244   if (isa<ZExtInst>(I))
4245     LType = ISD::ZEXTLOAD;
4246   else {
4247     assert(isa<SExtInst>(I) && "Unexpected ext type!");
4248     LType = ISD::SEXTLOAD;
4249   }
4250   if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
4251     I = OldExt;
4252     TPT.rollback(LastKnownGood);
4253     return false;
4254   }
4255 
4256   // Move the extend into the same block as the load, so that SelectionDAG
4257   // can fold it.
4258   TPT.commit();
4259   I->removeFromParent();
4260   I->insertAfter(LI);
4261   ++NumExtsMoved;
4262   return true;
4263 }
4264 
4265 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
4266   BasicBlock *DefBB = I->getParent();
4267 
4268   // If the result of a {s|z}ext and its source are both live out, rewrite all
4269   // other uses of the source with result of extension.
4270   Value *Src = I->getOperand(0);
4271   if (Src->hasOneUse())
4272     return false;
4273 
4274   // Only do this xform if truncating is free.
4275   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
4276     return false;
4277 
4278   // Only safe to perform the optimization if the source is also defined in
4279   // this block.
4280   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
4281     return false;
4282 
4283   bool DefIsLiveOut = false;
4284   for (User *U : I->users()) {
4285     Instruction *UI = cast<Instruction>(U);
4286 
4287     // Figure out which BB this ext is used in.
4288     BasicBlock *UserBB = UI->getParent();
4289     if (UserBB == DefBB) continue;
4290     DefIsLiveOut = true;
4291     break;
4292   }
4293   if (!DefIsLiveOut)
4294     return false;
4295 
4296   // Make sure none of the uses are PHI nodes.
4297   for (User *U : Src->users()) {
4298     Instruction *UI = cast<Instruction>(U);
4299     BasicBlock *UserBB = UI->getParent();
4300     if (UserBB == DefBB) continue;
4301     // Be conservative. We don't want this xform to end up introducing
4302     // reloads just before load / store instructions.
4303     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
4304       return false;
4305   }
4306 
4307   // InsertedTruncs - Only insert one trunc in each block once.
4308   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
4309 
4310   bool MadeChange = false;
4311   for (Use &U : Src->uses()) {
4312     Instruction *User = cast<Instruction>(U.getUser());
4313 
4314     // Figure out which BB this ext is used in.
4315     BasicBlock *UserBB = User->getParent();
4316     if (UserBB == DefBB) continue;
4317 
4318     // Both src and def are live in this block. Rewrite the use.
4319     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
4320 
4321     if (!InsertedTrunc) {
4322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4323       assert(InsertPt != UserBB->end());
4324       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
4325       InsertedInsts.insert(InsertedTrunc);
4326     }
4327 
4328     // Replace a use of the {s|z}ext source with a use of the result.
4329     U = InsertedTrunc;
4330     ++NumExtUses;
4331     MadeChange = true;
4332   }
4333 
4334   return MadeChange;
4335 }
4336 
4337 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
4338 // just after the load if the target can fold this into one extload instruction,
4339 // with the hope of eliminating some of the other later "and" instructions using
4340 // the loaded value.  "and"s that are made trivially redundant by the insertion
4341 // of the new "and" are removed by this function, while others (e.g. those whose
4342 // path from the load goes through a phi) are left for isel to potentially
4343 // remove.
4344 //
4345 // For example:
4346 //
4347 // b0:
4348 //   x = load i32
4349 //   ...
4350 // b1:
4351 //   y = and x, 0xff
4352 //   z = use y
4353 //
4354 // becomes:
4355 //
4356 // b0:
4357 //   x = load i32
4358 //   x' = and x, 0xff
4359 //   ...
4360 // b1:
4361 //   z = use x'
4362 //
4363 // whereas:
4364 //
4365 // b0:
4366 //   x1 = load i32
4367 //   ...
4368 // b1:
4369 //   x2 = load i32
4370 //   ...
4371 // b2:
4372 //   x = phi x1, x2
4373 //   y = and x, 0xff
4374 //
4375 // becomes (after a call to optimizeLoadExt for each load):
4376 //
4377 // b0:
4378 //   x1 = load i32
4379 //   x1' = and x1, 0xff
4380 //   ...
4381 // b1:
4382 //   x2 = load i32
4383 //   x2' = and x2, 0xff
4384 //   ...
4385 // b2:
4386 //   x = phi x1', x2'
4387 //   y = and x, 0xff
4388 //
4389 
4390 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
4391 
4392   if (!Load->isSimple() ||
4393       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
4394     return false;
4395 
4396   // Skip loads we've already transformed or have no reason to transform.
4397   if (Load->hasOneUse()) {
4398     User *LoadUser = *Load->user_begin();
4399     if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() &&
4400         !dyn_cast<PHINode>(LoadUser))
4401       return false;
4402   }
4403 
4404   // Look at all uses of Load, looking through phis, to determine how many bits
4405   // of the loaded value are needed.
4406   SmallVector<Instruction *, 8> WorkList;
4407   SmallPtrSet<Instruction *, 16> Visited;
4408   SmallVector<Instruction *, 8> AndsToMaybeRemove;
4409   for (auto *U : Load->users())
4410     WorkList.push_back(cast<Instruction>(U));
4411 
4412   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
4413   unsigned BitWidth = LoadResultVT.getSizeInBits();
4414   APInt DemandBits(BitWidth, 0);
4415   APInt WidestAndBits(BitWidth, 0);
4416 
4417   while (!WorkList.empty()) {
4418     Instruction *I = WorkList.back();
4419     WorkList.pop_back();
4420 
4421     // Break use-def graph loops.
4422     if (!Visited.insert(I).second)
4423       continue;
4424 
4425     // For a PHI node, push all of its users.
4426     if (auto *Phi = dyn_cast<PHINode>(I)) {
4427       for (auto *U : Phi->users())
4428         WorkList.push_back(cast<Instruction>(U));
4429       continue;
4430     }
4431 
4432     switch (I->getOpcode()) {
4433     case llvm::Instruction::And: {
4434       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
4435       if (!AndC)
4436         return false;
4437       APInt AndBits = AndC->getValue();
4438       DemandBits |= AndBits;
4439       // Keep track of the widest and mask we see.
4440       if (AndBits.ugt(WidestAndBits))
4441         WidestAndBits = AndBits;
4442       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
4443         AndsToMaybeRemove.push_back(I);
4444       break;
4445     }
4446 
4447     case llvm::Instruction::Shl: {
4448       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
4449       if (!ShlC)
4450         return false;
4451       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
4452       auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt);
4453       DemandBits |= ShlDemandBits;
4454       break;
4455     }
4456 
4457     case llvm::Instruction::Trunc: {
4458       EVT TruncVT = TLI->getValueType(*DL, I->getType());
4459       unsigned TruncBitWidth = TruncVT.getSizeInBits();
4460       auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth);
4461       DemandBits |= TruncBits;
4462       break;
4463     }
4464 
4465     default:
4466       return false;
4467     }
4468   }
4469 
4470   uint32_t ActiveBits = DemandBits.getActiveBits();
4471   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
4472   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
4473   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
4474   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
4475   // followed by an AND.
4476   // TODO: Look into removing this restriction by fixing backends to either
4477   // return false for isLoadExtLegal for i1 or have them select this pattern to
4478   // a single instruction.
4479   //
4480   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
4481   // mask, since these are the only ands that will be removed by isel.
4482   if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) ||
4483       WidestAndBits != DemandBits)
4484     return false;
4485 
4486   LLVMContext &Ctx = Load->getType()->getContext();
4487   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
4488   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
4489 
4490   // Reject cases that won't be matched as extloads.
4491   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
4492       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
4493     return false;
4494 
4495   IRBuilder<> Builder(Load->getNextNode());
4496   auto *NewAnd = dyn_cast<Instruction>(
4497       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
4498 
4499   // Replace all uses of load with new and (except for the use of load in the
4500   // new and itself).
4501   Load->replaceAllUsesWith(NewAnd);
4502   NewAnd->setOperand(0, Load);
4503 
4504   // Remove any and instructions that are now redundant.
4505   for (auto *And : AndsToMaybeRemove)
4506     // Check that the and mask is the same as the one we decided to put on the
4507     // new and.
4508     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
4509       And->replaceAllUsesWith(NewAnd);
4510       if (&*CurInstIterator == And)
4511         CurInstIterator = std::next(And->getIterator());
4512       And->eraseFromParent();
4513       ++NumAndUses;
4514     }
4515 
4516   ++NumAndsAdded;
4517   return true;
4518 }
4519 
4520 /// Check if V (an operand of a select instruction) is an expensive instruction
4521 /// that is only used once.
4522 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
4523   auto *I = dyn_cast<Instruction>(V);
4524   // If it's safe to speculatively execute, then it should not have side
4525   // effects; therefore, it's safe to sink and possibly *not* execute.
4526   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
4527          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
4528 }
4529 
4530 /// Returns true if a SelectInst should be turned into an explicit branch.
4531 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
4532                                                 SelectInst *SI) {
4533   // FIXME: This should use the same heuristics as IfConversion to determine
4534   // whether a select is better represented as a branch.  This requires that
4535   // branch probability metadata is preserved for the select, which is not the
4536   // case currently.
4537 
4538   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
4539 
4540   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
4541   // comparison condition. If the compare has more than one use, there's
4542   // probably another cmov or setcc around, so it's not worth emitting a branch.
4543   if (!Cmp || !Cmp->hasOneUse())
4544     return false;
4545 
4546   // If either operand of the select is expensive and only needed on one side
4547   // of the select, we should form a branch.
4548   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
4549       sinkSelectOperand(TTI, SI->getFalseValue()))
4550     return true;
4551 
4552   return false;
4553 }
4554 
4555 
4556 /// If we have a SelectInst that will likely profit from branch prediction,
4557 /// turn it into a branch.
4558 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
4559   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
4560 
4561   // Can we convert the 'select' to CF ?
4562   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
4563     return false;
4564 
4565   TargetLowering::SelectSupportKind SelectKind;
4566   if (VectorCond)
4567     SelectKind = TargetLowering::VectorMaskSelect;
4568   else if (SI->getType()->isVectorTy())
4569     SelectKind = TargetLowering::ScalarCondVectorVal;
4570   else
4571     SelectKind = TargetLowering::ScalarValSelect;
4572 
4573   // Do we have efficient codegen support for this kind of 'selects' ?
4574   if (TLI->isSelectSupported(SelectKind)) {
4575     // We have efficient codegen support for the select instruction.
4576     // Check if it is profitable to keep this 'select'.
4577     if (!TLI->isPredictableSelectExpensive() ||
4578         !isFormingBranchFromSelectProfitable(TTI, SI))
4579       return false;
4580   }
4581 
4582   ModifiedDT = true;
4583 
4584   // Transform a sequence like this:
4585   //    start:
4586   //       %cmp = cmp uge i32 %a, %b
4587   //       %sel = select i1 %cmp, i32 %c, i32 %d
4588   //
4589   // Into:
4590   //    start:
4591   //       %cmp = cmp uge i32 %a, %b
4592   //       br i1 %cmp, label %select.true, label %select.false
4593   //    select.true:
4594   //       br label %select.end
4595   //    select.false:
4596   //       br label %select.end
4597   //    select.end:
4598   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
4599   //
4600   // In addition, we may sink instructions that produce %c or %d from
4601   // the entry block into the destination(s) of the new branch.
4602   // If the true or false blocks do not contain a sunken instruction, that
4603   // block and its branch may be optimized away. In that case, one side of the
4604   // first branch will point directly to select.end, and the corresponding PHI
4605   // predecessor block will be the start block.
4606 
4607   // First, we split the block containing the select into 2 blocks.
4608   BasicBlock *StartBlock = SI->getParent();
4609   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
4610   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
4611 
4612   // Delete the unconditional branch that was just created by the split.
4613   StartBlock->getTerminator()->eraseFromParent();
4614 
4615   // These are the new basic blocks for the conditional branch.
4616   // At least one will become an actual new basic block.
4617   BasicBlock *TrueBlock = nullptr;
4618   BasicBlock *FalseBlock = nullptr;
4619 
4620   // Sink expensive instructions into the conditional blocks to avoid executing
4621   // them speculatively.
4622   if (sinkSelectOperand(TTI, SI->getTrueValue())) {
4623     TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
4624                                    EndBlock->getParent(), EndBlock);
4625     auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
4626     auto *TrueInst = cast<Instruction>(SI->getTrueValue());
4627     TrueInst->moveBefore(TrueBranch);
4628   }
4629   if (sinkSelectOperand(TTI, SI->getFalseValue())) {
4630     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
4631                                     EndBlock->getParent(), EndBlock);
4632     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
4633     auto *FalseInst = cast<Instruction>(SI->getFalseValue());
4634     FalseInst->moveBefore(FalseBranch);
4635   }
4636 
4637   // If there was nothing to sink, then arbitrarily choose the 'false' side
4638   // for a new input value to the PHI.
4639   if (TrueBlock == FalseBlock) {
4640     assert(TrueBlock == nullptr &&
4641            "Unexpected basic block transform while optimizing select");
4642 
4643     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
4644                                     EndBlock->getParent(), EndBlock);
4645     BranchInst::Create(EndBlock, FalseBlock);
4646   }
4647 
4648   // Insert the real conditional branch based on the original condition.
4649   // If we did not create a new block for one of the 'true' or 'false' paths
4650   // of the condition, it means that side of the branch goes to the end block
4651   // directly and the path originates from the start block from the point of
4652   // view of the new PHI.
4653   if (TrueBlock == nullptr) {
4654     BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
4655     TrueBlock = StartBlock;
4656   } else if (FalseBlock == nullptr) {
4657     BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
4658     FalseBlock = StartBlock;
4659   } else {
4660     BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
4661   }
4662 
4663   // The select itself is replaced with a PHI Node.
4664   PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
4665   PN->takeName(SI);
4666   PN->addIncoming(SI->getTrueValue(), TrueBlock);
4667   PN->addIncoming(SI->getFalseValue(), FalseBlock);
4668 
4669   SI->replaceAllUsesWith(PN);
4670   SI->eraseFromParent();
4671 
4672   // Instruct OptimizeBlock to skip to the next block.
4673   CurInstIterator = StartBlock->end();
4674   ++NumSelectsExpanded;
4675   return true;
4676 }
4677 
4678 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
4679   SmallVector<int, 16> Mask(SVI->getShuffleMask());
4680   int SplatElem = -1;
4681   for (unsigned i = 0; i < Mask.size(); ++i) {
4682     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
4683       return false;
4684     SplatElem = Mask[i];
4685   }
4686 
4687   return true;
4688 }
4689 
4690 /// Some targets have expensive vector shifts if the lanes aren't all the same
4691 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
4692 /// it's often worth sinking a shufflevector splat down to its use so that
4693 /// codegen can spot all lanes are identical.
4694 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
4695   BasicBlock *DefBB = SVI->getParent();
4696 
4697   // Only do this xform if variable vector shifts are particularly expensive.
4698   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
4699     return false;
4700 
4701   // We only expect better codegen by sinking a shuffle if we can recognise a
4702   // constant splat.
4703   if (!isBroadcastShuffle(SVI))
4704     return false;
4705 
4706   // InsertedShuffles - Only insert a shuffle in each block once.
4707   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
4708 
4709   bool MadeChange = false;
4710   for (User *U : SVI->users()) {
4711     Instruction *UI = cast<Instruction>(U);
4712 
4713     // Figure out which BB this ext is used in.
4714     BasicBlock *UserBB = UI->getParent();
4715     if (UserBB == DefBB) continue;
4716 
4717     // For now only apply this when the splat is used by a shift instruction.
4718     if (!UI->isShift()) continue;
4719 
4720     // Everything checks out, sink the shuffle if the user's block doesn't
4721     // already have a copy.
4722     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
4723 
4724     if (!InsertedShuffle) {
4725       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4726       assert(InsertPt != UserBB->end());
4727       InsertedShuffle =
4728           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4729                                 SVI->getOperand(2), "", &*InsertPt);
4730     }
4731 
4732     UI->replaceUsesOfWith(SVI, InsertedShuffle);
4733     MadeChange = true;
4734   }
4735 
4736   // If we removed all uses, nuke the shuffle.
4737   if (SVI->use_empty()) {
4738     SVI->eraseFromParent();
4739     MadeChange = true;
4740   }
4741 
4742   return MadeChange;
4743 }
4744 
4745 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
4746   if (!TLI || !DL)
4747     return false;
4748 
4749   Value *Cond = SI->getCondition();
4750   Type *OldType = Cond->getType();
4751   LLVMContext &Context = Cond->getContext();
4752   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
4753   unsigned RegWidth = RegType.getSizeInBits();
4754 
4755   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
4756     return false;
4757 
4758   // If the register width is greater than the type width, expand the condition
4759   // of the switch instruction and each case constant to the width of the
4760   // register. By widening the type of the switch condition, subsequent
4761   // comparisons (for case comparisons) will not need to be extended to the
4762   // preferred register width, so we will potentially eliminate N-1 extends,
4763   // where N is the number of cases in the switch.
4764   auto *NewType = Type::getIntNTy(Context, RegWidth);
4765 
4766   // Zero-extend the switch condition and case constants unless the switch
4767   // condition is a function argument that is already being sign-extended.
4768   // In that case, we can avoid an unnecessary mask/extension by sign-extending
4769   // everything instead.
4770   Instruction::CastOps ExtType = Instruction::ZExt;
4771   if (auto *Arg = dyn_cast<Argument>(Cond))
4772     if (Arg->hasSExtAttr())
4773       ExtType = Instruction::SExt;
4774 
4775   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
4776   ExtInst->insertBefore(SI);
4777   SI->setCondition(ExtInst);
4778   for (SwitchInst::CaseIt Case : SI->cases()) {
4779     APInt NarrowConst = Case.getCaseValue()->getValue();
4780     APInt WideConst = (ExtType == Instruction::ZExt) ?
4781                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
4782     Case.setValue(ConstantInt::get(Context, WideConst));
4783   }
4784 
4785   return true;
4786 }
4787 
4788 namespace {
4789 /// \brief Helper class to promote a scalar operation to a vector one.
4790 /// This class is used to move downward extractelement transition.
4791 /// E.g.,
4792 /// a = vector_op <2 x i32>
4793 /// b = extractelement <2 x i32> a, i32 0
4794 /// c = scalar_op b
4795 /// store c
4796 ///
4797 /// =>
4798 /// a = vector_op <2 x i32>
4799 /// c = vector_op a (equivalent to scalar_op on the related lane)
4800 /// * d = extractelement <2 x i32> c, i32 0
4801 /// * store d
4802 /// Assuming both extractelement and store can be combine, we get rid of the
4803 /// transition.
4804 class VectorPromoteHelper {
4805   /// DataLayout associated with the current module.
4806   const DataLayout &DL;
4807 
4808   /// Used to perform some checks on the legality of vector operations.
4809   const TargetLowering &TLI;
4810 
4811   /// Used to estimated the cost of the promoted chain.
4812   const TargetTransformInfo &TTI;
4813 
4814   /// The transition being moved downwards.
4815   Instruction *Transition;
4816   /// The sequence of instructions to be promoted.
4817   SmallVector<Instruction *, 4> InstsToBePromoted;
4818   /// Cost of combining a store and an extract.
4819   unsigned StoreExtractCombineCost;
4820   /// Instruction that will be combined with the transition.
4821   Instruction *CombineInst;
4822 
4823   /// \brief The instruction that represents the current end of the transition.
4824   /// Since we are faking the promotion until we reach the end of the chain
4825   /// of computation, we need a way to get the current end of the transition.
4826   Instruction *getEndOfTransition() const {
4827     if (InstsToBePromoted.empty())
4828       return Transition;
4829     return InstsToBePromoted.back();
4830   }
4831 
4832   /// \brief Return the index of the original value in the transition.
4833   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
4834   /// c, is at index 0.
4835   unsigned getTransitionOriginalValueIdx() const {
4836     assert(isa<ExtractElementInst>(Transition) &&
4837            "Other kind of transitions are not supported yet");
4838     return 0;
4839   }
4840 
4841   /// \brief Return the index of the index in the transition.
4842   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
4843   /// is at index 1.
4844   unsigned getTransitionIdx() const {
4845     assert(isa<ExtractElementInst>(Transition) &&
4846            "Other kind of transitions are not supported yet");
4847     return 1;
4848   }
4849 
4850   /// \brief Get the type of the transition.
4851   /// This is the type of the original value.
4852   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
4853   /// transition is <2 x i32>.
4854   Type *getTransitionType() const {
4855     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4856   }
4857 
4858   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4859   /// I.e., we have the following sequence:
4860   /// Def = Transition <ty1> a to <ty2>
4861   /// b = ToBePromoted <ty2> Def, ...
4862   /// =>
4863   /// b = ToBePromoted <ty1> a, ...
4864   /// Def = Transition <ty1> ToBePromoted to <ty2>
4865   void promoteImpl(Instruction *ToBePromoted);
4866 
4867   /// \brief Check whether or not it is profitable to promote all the
4868   /// instructions enqueued to be promoted.
4869   bool isProfitableToPromote() {
4870     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4871     unsigned Index = isa<ConstantInt>(ValIdx)
4872                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
4873                          : -1;
4874     Type *PromotedType = getTransitionType();
4875 
4876     StoreInst *ST = cast<StoreInst>(CombineInst);
4877     unsigned AS = ST->getPointerAddressSpace();
4878     unsigned Align = ST->getAlignment();
4879     // Check if this store is supported.
4880     if (!TLI.allowsMisalignedMemoryAccesses(
4881             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
4882             Align)) {
4883       // If this is not supported, there is no way we can combine
4884       // the extract with the store.
4885       return false;
4886     }
4887 
4888     // The scalar chain of computation has to pay for the transition
4889     // scalar to vector.
4890     // The vector chain has to account for the combining cost.
4891     uint64_t ScalarCost =
4892         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4893     uint64_t VectorCost = StoreExtractCombineCost;
4894     for (const auto &Inst : InstsToBePromoted) {
4895       // Compute the cost.
4896       // By construction, all instructions being promoted are arithmetic ones.
4897       // Moreover, one argument is a constant that can be viewed as a splat
4898       // constant.
4899       Value *Arg0 = Inst->getOperand(0);
4900       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4901                             isa<ConstantFP>(Arg0);
4902       TargetTransformInfo::OperandValueKind Arg0OVK =
4903           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4904                          : TargetTransformInfo::OK_AnyValue;
4905       TargetTransformInfo::OperandValueKind Arg1OVK =
4906           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4907                           : TargetTransformInfo::OK_AnyValue;
4908       ScalarCost += TTI.getArithmeticInstrCost(
4909           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4910       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4911                                                Arg0OVK, Arg1OVK);
4912     }
4913     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4914                  << ScalarCost << "\nVector: " << VectorCost << '\n');
4915     return ScalarCost > VectorCost;
4916   }
4917 
4918   /// \brief Generate a constant vector with \p Val with the same
4919   /// number of elements as the transition.
4920   /// \p UseSplat defines whether or not \p Val should be replicated
4921   /// across the whole vector.
4922   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4923   /// otherwise we generate a vector with as many undef as possible:
4924   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4925   /// used at the index of the extract.
4926   Value *getConstantVector(Constant *Val, bool UseSplat) const {
4927     unsigned ExtractIdx = UINT_MAX;
4928     if (!UseSplat) {
4929       // If we cannot determine where the constant must be, we have to
4930       // use a splat constant.
4931       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4932       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4933         ExtractIdx = CstVal->getSExtValue();
4934       else
4935         UseSplat = true;
4936     }
4937 
4938     unsigned End = getTransitionType()->getVectorNumElements();
4939     if (UseSplat)
4940       return ConstantVector::getSplat(End, Val);
4941 
4942     SmallVector<Constant *, 4> ConstVec;
4943     UndefValue *UndefVal = UndefValue::get(Val->getType());
4944     for (unsigned Idx = 0; Idx != End; ++Idx) {
4945       if (Idx == ExtractIdx)
4946         ConstVec.push_back(Val);
4947       else
4948         ConstVec.push_back(UndefVal);
4949     }
4950     return ConstantVector::get(ConstVec);
4951   }
4952 
4953   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4954   /// in \p Use can trigger undefined behavior.
4955   static bool canCauseUndefinedBehavior(const Instruction *Use,
4956                                         unsigned OperandIdx) {
4957     // This is not safe to introduce undef when the operand is on
4958     // the right hand side of a division-like instruction.
4959     if (OperandIdx != 1)
4960       return false;
4961     switch (Use->getOpcode()) {
4962     default:
4963       return false;
4964     case Instruction::SDiv:
4965     case Instruction::UDiv:
4966     case Instruction::SRem:
4967     case Instruction::URem:
4968       return true;
4969     case Instruction::FDiv:
4970     case Instruction::FRem:
4971       return !Use->hasNoNaNs();
4972     }
4973     llvm_unreachable(nullptr);
4974   }
4975 
4976 public:
4977   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
4978                       const TargetTransformInfo &TTI, Instruction *Transition,
4979                       unsigned CombineCost)
4980       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
4981         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4982     assert(Transition && "Do not know how to promote null");
4983   }
4984 
4985   /// \brief Check if we can promote \p ToBePromoted to \p Type.
4986   bool canPromote(const Instruction *ToBePromoted) const {
4987     // We could support CastInst too.
4988     return isa<BinaryOperator>(ToBePromoted);
4989   }
4990 
4991   /// \brief Check if it is profitable to promote \p ToBePromoted
4992   /// by moving downward the transition through.
4993   bool shouldPromote(const Instruction *ToBePromoted) const {
4994     // Promote only if all the operands can be statically expanded.
4995     // Indeed, we do not want to introduce any new kind of transitions.
4996     for (const Use &U : ToBePromoted->operands()) {
4997       const Value *Val = U.get();
4998       if (Val == getEndOfTransition()) {
4999         // If the use is a division and the transition is on the rhs,
5000         // we cannot promote the operation, otherwise we may create a
5001         // division by zero.
5002         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
5003           return false;
5004         continue;
5005       }
5006       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
5007           !isa<ConstantFP>(Val))
5008         return false;
5009     }
5010     // Check that the resulting operation is legal.
5011     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
5012     if (!ISDOpcode)
5013       return false;
5014     return StressStoreExtract ||
5015            TLI.isOperationLegalOrCustom(
5016                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
5017   }
5018 
5019   /// \brief Check whether or not \p Use can be combined
5020   /// with the transition.
5021   /// I.e., is it possible to do Use(Transition) => AnotherUse?
5022   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
5023 
5024   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
5025   void enqueueForPromotion(Instruction *ToBePromoted) {
5026     InstsToBePromoted.push_back(ToBePromoted);
5027   }
5028 
5029   /// \brief Set the instruction that will be combined with the transition.
5030   void recordCombineInstruction(Instruction *ToBeCombined) {
5031     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
5032     CombineInst = ToBeCombined;
5033   }
5034 
5035   /// \brief Promote all the instructions enqueued for promotion if it is
5036   /// is profitable.
5037   /// \return True if the promotion happened, false otherwise.
5038   bool promote() {
5039     // Check if there is something to promote.
5040     // Right now, if we do not have anything to combine with,
5041     // we assume the promotion is not profitable.
5042     if (InstsToBePromoted.empty() || !CombineInst)
5043       return false;
5044 
5045     // Check cost.
5046     if (!StressStoreExtract && !isProfitableToPromote())
5047       return false;
5048 
5049     // Promote.
5050     for (auto &ToBePromoted : InstsToBePromoted)
5051       promoteImpl(ToBePromoted);
5052     InstsToBePromoted.clear();
5053     return true;
5054   }
5055 };
5056 } // End of anonymous namespace.
5057 
5058 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5059   // At this point, we know that all the operands of ToBePromoted but Def
5060   // can be statically promoted.
5061   // For Def, we need to use its parameter in ToBePromoted:
5062   // b = ToBePromoted ty1 a
5063   // Def = Transition ty1 b to ty2
5064   // Move the transition down.
5065   // 1. Replace all uses of the promoted operation by the transition.
5066   // = ... b => = ... Def.
5067   assert(ToBePromoted->getType() == Transition->getType() &&
5068          "The type of the result of the transition does not match "
5069          "the final type");
5070   ToBePromoted->replaceAllUsesWith(Transition);
5071   // 2. Update the type of the uses.
5072   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5073   Type *TransitionTy = getTransitionType();
5074   ToBePromoted->mutateType(TransitionTy);
5075   // 3. Update all the operands of the promoted operation with promoted
5076   // operands.
5077   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5078   for (Use &U : ToBePromoted->operands()) {
5079     Value *Val = U.get();
5080     Value *NewVal = nullptr;
5081     if (Val == Transition)
5082       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5083     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5084              isa<ConstantFP>(Val)) {
5085       // Use a splat constant if it is not safe to use undef.
5086       NewVal = getConstantVector(
5087           cast<Constant>(Val),
5088           isa<UndefValue>(Val) ||
5089               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5090     } else
5091       llvm_unreachable("Did you modified shouldPromote and forgot to update "
5092                        "this?");
5093     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5094   }
5095   Transition->removeFromParent();
5096   Transition->insertAfter(ToBePromoted);
5097   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5098 }
5099 
5100 /// Some targets can do store(extractelement) with one instruction.
5101 /// Try to push the extractelement towards the stores when the target
5102 /// has this feature and this is profitable.
5103 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5104   unsigned CombineCost = UINT_MAX;
5105   if (DisableStoreExtract || !TLI ||
5106       (!StressStoreExtract &&
5107        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5108                                        Inst->getOperand(1), CombineCost)))
5109     return false;
5110 
5111   // At this point we know that Inst is a vector to scalar transition.
5112   // Try to move it down the def-use chain, until:
5113   // - We can combine the transition with its single use
5114   //   => we got rid of the transition.
5115   // - We escape the current basic block
5116   //   => we would need to check that we are moving it at a cheaper place and
5117   //      we do not do that for now.
5118   BasicBlock *Parent = Inst->getParent();
5119   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5120   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5121   // If the transition has more than one use, assume this is not going to be
5122   // beneficial.
5123   while (Inst->hasOneUse()) {
5124     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5125     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5126 
5127     if (ToBePromoted->getParent() != Parent) {
5128       DEBUG(dbgs() << "Instruction to promote is in a different block ("
5129                    << ToBePromoted->getParent()->getName()
5130                    << ") than the transition (" << Parent->getName() << ").\n");
5131       return false;
5132     }
5133 
5134     if (VPH.canCombine(ToBePromoted)) {
5135       DEBUG(dbgs() << "Assume " << *Inst << '\n'
5136                    << "will be combined with: " << *ToBePromoted << '\n');
5137       VPH.recordCombineInstruction(ToBePromoted);
5138       bool Changed = VPH.promote();
5139       NumStoreExtractExposed += Changed;
5140       return Changed;
5141     }
5142 
5143     DEBUG(dbgs() << "Try promoting.\n");
5144     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5145       return false;
5146 
5147     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5148 
5149     VPH.enqueueForPromotion(ToBePromoted);
5150     Inst = ToBePromoted;
5151   }
5152   return false;
5153 }
5154 
5155 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
5156   // Bail out if we inserted the instruction to prevent optimizations from
5157   // stepping on each other's toes.
5158   if (InsertedInsts.count(I))
5159     return false;
5160 
5161   if (PHINode *P = dyn_cast<PHINode>(I)) {
5162     // It is possible for very late stage optimizations (such as SimplifyCFG)
5163     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
5164     // trivial PHI, go ahead and zap it here.
5165     if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
5166       P->replaceAllUsesWith(V);
5167       P->eraseFromParent();
5168       ++NumPHIsElim;
5169       return true;
5170     }
5171     return false;
5172   }
5173 
5174   if (CastInst *CI = dyn_cast<CastInst>(I)) {
5175     // If the source of the cast is a constant, then this should have
5176     // already been constant folded.  The only reason NOT to constant fold
5177     // it is if something (e.g. LSR) was careful to place the constant
5178     // evaluation in a block other than then one that uses it (e.g. to hoist
5179     // the address of globals out of a loop).  If this is the case, we don't
5180     // want to forward-subst the cast.
5181     if (isa<Constant>(CI->getOperand(0)))
5182       return false;
5183 
5184     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
5185       return true;
5186 
5187     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
5188       /// Sink a zext or sext into its user blocks if the target type doesn't
5189       /// fit in one register
5190       if (TLI &&
5191           TLI->getTypeAction(CI->getContext(),
5192                              TLI->getValueType(*DL, CI->getType())) ==
5193               TargetLowering::TypeExpandInteger) {
5194         return SinkCast(CI);
5195       } else {
5196         bool MadeChange = moveExtToFormExtLoad(I);
5197         return MadeChange | optimizeExtUses(I);
5198       }
5199     }
5200     return false;
5201   }
5202 
5203   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5204     if (!TLI || !TLI->hasMultipleConditionRegisters())
5205       return OptimizeCmpExpression(CI, TLI);
5206 
5207   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5208     stripInvariantGroupMetadata(*LI);
5209     if (TLI) {
5210       bool Modified = optimizeLoadExt(LI);
5211       unsigned AS = LI->getPointerAddressSpace();
5212       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
5213       return Modified;
5214     }
5215     return false;
5216   }
5217 
5218   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
5219     stripInvariantGroupMetadata(*SI);
5220     if (TLI) {
5221       unsigned AS = SI->getPointerAddressSpace();
5222       return optimizeMemoryInst(I, SI->getOperand(1),
5223                                 SI->getOperand(0)->getType(), AS);
5224     }
5225     return false;
5226   }
5227 
5228   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
5229 
5230   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
5231                 BinOp->getOpcode() == Instruction::LShr)) {
5232     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
5233     if (TLI && CI && TLI->hasExtractBitsInsn())
5234       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
5235 
5236     return false;
5237   }
5238 
5239   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
5240     if (GEPI->hasAllZeroIndices()) {
5241       /// The GEP operand must be a pointer, so must its result -> BitCast
5242       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
5243                                         GEPI->getName(), GEPI);
5244       GEPI->replaceAllUsesWith(NC);
5245       GEPI->eraseFromParent();
5246       ++NumGEPsElim;
5247       optimizeInst(NC, ModifiedDT);
5248       return true;
5249     }
5250     return false;
5251   }
5252 
5253   if (CallInst *CI = dyn_cast<CallInst>(I))
5254     return optimizeCallInst(CI, ModifiedDT);
5255 
5256   if (SelectInst *SI = dyn_cast<SelectInst>(I))
5257     return optimizeSelectInst(SI);
5258 
5259   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
5260     return optimizeShuffleVectorInst(SVI);
5261 
5262   if (auto *Switch = dyn_cast<SwitchInst>(I))
5263     return optimizeSwitchInst(Switch);
5264 
5265   if (isa<ExtractElementInst>(I))
5266     return optimizeExtractElementInst(I);
5267 
5268   return false;
5269 }
5270 
5271 /// Given an OR instruction, check to see if this is a bitreverse
5272 /// idiom. If so, insert the new intrinsic and return true.
5273 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
5274                            const TargetLowering &TLI) {
5275   if (!I.getType()->isIntegerTy() ||
5276       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
5277                                     TLI.getValueType(DL, I.getType(), true)))
5278     return false;
5279 
5280   SmallVector<Instruction*, 4> Insts;
5281   if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts))
5282     return false;
5283   Instruction *LastInst = Insts.back();
5284   I.replaceAllUsesWith(LastInst);
5285   RecursivelyDeleteTriviallyDeadInstructions(&I);
5286   return true;
5287 }
5288 
5289 // In this pass we look for GEP and cast instructions that are used
5290 // across basic blocks and rewrite them to improve basic-block-at-a-time
5291 // selection.
5292 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
5293   SunkAddrs.clear();
5294   bool MadeChange = false;
5295 
5296   CurInstIterator = BB.begin();
5297   while (CurInstIterator != BB.end()) {
5298     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
5299     if (ModifiedDT)
5300       return true;
5301   }
5302 
5303   bool MadeBitReverse = true;
5304   while (TLI && MadeBitReverse) {
5305     MadeBitReverse = false;
5306     for (auto &I : reverse(BB)) {
5307       if (makeBitReverse(I, *DL, *TLI)) {
5308         MadeBitReverse = MadeChange = true;
5309         ModifiedDT = true;
5310         break;
5311       }
5312     }
5313   }
5314   MadeChange |= dupRetToEnableTailCallOpts(&BB);
5315 
5316   return MadeChange;
5317 }
5318 
5319 // llvm.dbg.value is far away from the value then iSel may not be able
5320 // handle it properly. iSel will drop llvm.dbg.value if it can not
5321 // find a node corresponding to the value.
5322 bool CodeGenPrepare::placeDbgValues(Function &F) {
5323   bool MadeChange = false;
5324   for (BasicBlock &BB : F) {
5325     Instruction *PrevNonDbgInst = nullptr;
5326     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
5327       Instruction *Insn = &*BI++;
5328       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
5329       // Leave dbg.values that refer to an alloca alone. These
5330       // instrinsics describe the address of a variable (= the alloca)
5331       // being taken.  They should not be moved next to the alloca
5332       // (and to the beginning of the scope), but rather stay close to
5333       // where said address is used.
5334       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
5335         PrevNonDbgInst = Insn;
5336         continue;
5337       }
5338 
5339       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
5340       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
5341         // If VI is a phi in a block with an EHPad terminator, we can't insert
5342         // after it.
5343         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
5344           continue;
5345         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
5346         DVI->removeFromParent();
5347         if (isa<PHINode>(VI))
5348           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
5349         else
5350           DVI->insertAfter(VI);
5351         MadeChange = true;
5352         ++NumDbgValueMoved;
5353       }
5354     }
5355   }
5356   return MadeChange;
5357 }
5358 
5359 // If there is a sequence that branches based on comparing a single bit
5360 // against zero that can be combined into a single instruction, and the
5361 // target supports folding these into a single instruction, sink the
5362 // mask and compare into the branch uses. Do this before OptimizeBlock ->
5363 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
5364 // searched for.
5365 bool CodeGenPrepare::sinkAndCmp(Function &F) {
5366   if (!EnableAndCmpSinking)
5367     return false;
5368   if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
5369     return false;
5370   bool MadeChange = false;
5371   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
5372     BasicBlock *BB = &*I++;
5373 
5374     // Does this BB end with the following?
5375     //   %andVal = and %val, #single-bit-set
5376     //   %icmpVal = icmp %andResult, 0
5377     //   br i1 %cmpVal label %dest1, label %dest2"
5378     BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
5379     if (!Brcc || !Brcc->isConditional())
5380       continue;
5381     ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
5382     if (!Cmp || Cmp->getParent() != BB)
5383       continue;
5384     ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
5385     if (!Zero || !Zero->isZero())
5386       continue;
5387     Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
5388     if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
5389       continue;
5390     ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
5391     if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
5392       continue;
5393     DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
5394 
5395     // Push the "and; icmp" for any users that are conditional branches.
5396     // Since there can only be one branch use per BB, we don't need to keep
5397     // track of which BBs we insert into.
5398     for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
5399          UI != E; ) {
5400       Use &TheUse = *UI;
5401       // Find brcc use.
5402       BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
5403       ++UI;
5404       if (!BrccUser || !BrccUser->isConditional())
5405         continue;
5406       BasicBlock *UserBB = BrccUser->getParent();
5407       if (UserBB == BB) continue;
5408       DEBUG(dbgs() << "found Brcc use\n");
5409 
5410       // Sink the "and; icmp" to use.
5411       MadeChange = true;
5412       BinaryOperator *NewAnd =
5413         BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
5414                                   BrccUser);
5415       CmpInst *NewCmp =
5416         CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
5417                         "", BrccUser);
5418       TheUse = NewCmp;
5419       ++NumAndCmpsMoved;
5420       DEBUG(BrccUser->getParent()->dump());
5421     }
5422   }
5423   return MadeChange;
5424 }
5425 
5426 /// \brief Retrieve the probabilities of a conditional branch. Returns true on
5427 /// success, or returns false if no or invalid metadata was found.
5428 static bool extractBranchMetadata(BranchInst *BI,
5429                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
5430   assert(BI->isConditional() &&
5431          "Looking for probabilities on unconditional branch?");
5432   auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
5433   if (!ProfileData || ProfileData->getNumOperands() != 3)
5434     return false;
5435 
5436   const auto *CITrue =
5437       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
5438   const auto *CIFalse =
5439       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
5440   if (!CITrue || !CIFalse)
5441     return false;
5442 
5443   ProbTrue = CITrue->getValue().getZExtValue();
5444   ProbFalse = CIFalse->getValue().getZExtValue();
5445 
5446   return true;
5447 }
5448 
5449 /// \brief Scale down both weights to fit into uint32_t.
5450 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
5451   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
5452   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
5453   NewTrue = NewTrue / Scale;
5454   NewFalse = NewFalse / Scale;
5455 }
5456 
5457 /// \brief Some targets prefer to split a conditional branch like:
5458 /// \code
5459 ///   %0 = icmp ne i32 %a, 0
5460 ///   %1 = icmp ne i32 %b, 0
5461 ///   %or.cond = or i1 %0, %1
5462 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
5463 /// \endcode
5464 /// into multiple branch instructions like:
5465 /// \code
5466 ///   bb1:
5467 ///     %0 = icmp ne i32 %a, 0
5468 ///     br i1 %0, label %TrueBB, label %bb2
5469 ///   bb2:
5470 ///     %1 = icmp ne i32 %b, 0
5471 ///     br i1 %1, label %TrueBB, label %FalseBB
5472 /// \endcode
5473 /// This usually allows instruction selection to do even further optimizations
5474 /// and combine the compare with the branch instruction. Currently this is
5475 /// applied for targets which have "cheap" jump instructions.
5476 ///
5477 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
5478 ///
5479 bool CodeGenPrepare::splitBranchCondition(Function &F) {
5480   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
5481     return false;
5482 
5483   bool MadeChange = false;
5484   for (auto &BB : F) {
5485     // Does this BB end with the following?
5486     //   %cond1 = icmp|fcmp|binary instruction ...
5487     //   %cond2 = icmp|fcmp|binary instruction ...
5488     //   %cond.or = or|and i1 %cond1, cond2
5489     //   br i1 %cond.or label %dest1, label %dest2"
5490     BinaryOperator *LogicOp;
5491     BasicBlock *TBB, *FBB;
5492     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
5493       continue;
5494 
5495     auto *Br1 = cast<BranchInst>(BB.getTerminator());
5496     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
5497       continue;
5498 
5499     unsigned Opc;
5500     Value *Cond1, *Cond2;
5501     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
5502                              m_OneUse(m_Value(Cond2)))))
5503       Opc = Instruction::And;
5504     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
5505                                  m_OneUse(m_Value(Cond2)))))
5506       Opc = Instruction::Or;
5507     else
5508       continue;
5509 
5510     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
5511         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
5512       continue;
5513 
5514     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
5515 
5516     // Create a new BB.
5517     auto TmpBB =
5518         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
5519                            BB.getParent(), BB.getNextNode());
5520 
5521     // Update original basic block by using the first condition directly by the
5522     // branch instruction and removing the no longer needed and/or instruction.
5523     Br1->setCondition(Cond1);
5524     LogicOp->eraseFromParent();
5525 
5526     // Depending on the conditon we have to either replace the true or the false
5527     // successor of the original branch instruction.
5528     if (Opc == Instruction::And)
5529       Br1->setSuccessor(0, TmpBB);
5530     else
5531       Br1->setSuccessor(1, TmpBB);
5532 
5533     // Fill in the new basic block.
5534     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
5535     if (auto *I = dyn_cast<Instruction>(Cond2)) {
5536       I->removeFromParent();
5537       I->insertBefore(Br2);
5538     }
5539 
5540     // Update PHI nodes in both successors. The original BB needs to be
5541     // replaced in one succesor's PHI nodes, because the branch comes now from
5542     // the newly generated BB (NewBB). In the other successor we need to add one
5543     // incoming edge to the PHI nodes, because both branch instructions target
5544     // now the same successor. Depending on the original branch condition
5545     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
5546     // we perfrom the correct update for the PHI nodes.
5547     // This doesn't change the successor order of the just created branch
5548     // instruction (or any other instruction).
5549     if (Opc == Instruction::Or)
5550       std::swap(TBB, FBB);
5551 
5552     // Replace the old BB with the new BB.
5553     for (auto &I : *TBB) {
5554       PHINode *PN = dyn_cast<PHINode>(&I);
5555       if (!PN)
5556         break;
5557       int i;
5558       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
5559         PN->setIncomingBlock(i, TmpBB);
5560     }
5561 
5562     // Add another incoming edge form the new BB.
5563     for (auto &I : *FBB) {
5564       PHINode *PN = dyn_cast<PHINode>(&I);
5565       if (!PN)
5566         break;
5567       auto *Val = PN->getIncomingValueForBlock(&BB);
5568       PN->addIncoming(Val, TmpBB);
5569     }
5570 
5571     // Update the branch weights (from SelectionDAGBuilder::
5572     // FindMergedConditions).
5573     if (Opc == Instruction::Or) {
5574       // Codegen X | Y as:
5575       // BB1:
5576       //   jmp_if_X TBB
5577       //   jmp TmpBB
5578       // TmpBB:
5579       //   jmp_if_Y TBB
5580       //   jmp FBB
5581       //
5582 
5583       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
5584       // The requirement is that
5585       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
5586       //     = TrueProb for orignal BB.
5587       // Assuming the orignal weights are A and B, one choice is to set BB1's
5588       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
5589       // assumes that
5590       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
5591       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
5592       // TmpBB, but the math is more complicated.
5593       uint64_t TrueWeight, FalseWeight;
5594       if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5595         uint64_t NewTrueWeight = TrueWeight;
5596         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
5597         scaleWeights(NewTrueWeight, NewFalseWeight);
5598         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5599                          .createBranchWeights(TrueWeight, FalseWeight));
5600 
5601         NewTrueWeight = TrueWeight;
5602         NewFalseWeight = 2 * FalseWeight;
5603         scaleWeights(NewTrueWeight, NewFalseWeight);
5604         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5605                          .createBranchWeights(TrueWeight, FalseWeight));
5606       }
5607     } else {
5608       // Codegen X & Y as:
5609       // BB1:
5610       //   jmp_if_X TmpBB
5611       //   jmp FBB
5612       // TmpBB:
5613       //   jmp_if_Y TBB
5614       //   jmp FBB
5615       //
5616       //  This requires creation of TmpBB after CurBB.
5617 
5618       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
5619       // The requirement is that
5620       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
5621       //     = FalseProb for orignal BB.
5622       // Assuming the orignal weights are A and B, one choice is to set BB1's
5623       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
5624       // assumes that
5625       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
5626       uint64_t TrueWeight, FalseWeight;
5627       if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5628         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
5629         uint64_t NewFalseWeight = FalseWeight;
5630         scaleWeights(NewTrueWeight, NewFalseWeight);
5631         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5632                          .createBranchWeights(TrueWeight, FalseWeight));
5633 
5634         NewTrueWeight = 2 * TrueWeight;
5635         NewFalseWeight = FalseWeight;
5636         scaleWeights(NewTrueWeight, NewFalseWeight);
5637         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5638                          .createBranchWeights(TrueWeight, FalseWeight));
5639       }
5640     }
5641 
5642     // Note: No point in getting fancy here, since the DT info is never
5643     // available to CodeGenPrepare.
5644     ModifiedDT = true;
5645 
5646     MadeChange = true;
5647 
5648     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
5649           TmpBB->dump());
5650   }
5651   return MadeChange;
5652 }
5653 
5654 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
5655   if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
5656     I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
5657 }
5658