1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 229 using SExts = SmallVector<Instruction *, 16>; 230 using ValueToSExts = DenseMap<Value *, SExts>; 231 232 class TypePromotionTransaction; 233 234 class CodeGenPrepare : public FunctionPass { 235 const TargetMachine *TM = nullptr; 236 const TargetSubtargetInfo *SubtargetInfo; 237 const TargetLowering *TLI = nullptr; 238 const TargetRegisterInfo *TRI; 239 const TargetTransformInfo *TTI = nullptr; 240 const TargetLibraryInfo *TLInfo; 241 const LoopInfo *LI; 242 std::unique_ptr<BlockFrequencyInfo> BFI; 243 std::unique_ptr<BranchProbabilityInfo> BPI; 244 245 /// As we scan instructions optimizing them, this is the next instruction 246 /// to optimize. Transforms that can invalidate this should update it. 247 BasicBlock::iterator CurInstIterator; 248 249 /// Keeps track of non-local addresses that have been sunk into a block. 250 /// This allows us to avoid inserting duplicate code for blocks with 251 /// multiple load/stores of the same address. The usage of WeakTrackingVH 252 /// enables SunkAddrs to be treated as a cache whose entries can be 253 /// invalidated if a sunken address computation has been erased. 254 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 255 256 /// Keeps track of all instructions inserted for the current function. 257 SetOfInstrs InsertedInsts; 258 259 /// Keeps track of the type of the related instruction before their 260 /// promotion for the current function. 261 InstrToOrigTy PromotedInsts; 262 263 /// Keep track of instructions removed during promotion. 264 SetOfInstrs RemovedInsts; 265 266 /// Keep track of sext chains based on their initial value. 267 DenseMap<Value *, Instruction *> SeenChainsForSExt; 268 269 /// Keep track of GEPs accessing the same data structures such as structs or 270 /// arrays that are candidates to be split later because of their large 271 /// size. 272 DenseMap< 273 AssertingVH<Value>, 274 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 275 LargeOffsetGEPMap; 276 277 /// Keep track of new GEP base after splitting the GEPs having large offset. 278 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 279 280 /// Map serial numbers to Large offset GEPs. 281 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 282 283 /// Keep track of SExt promoted. 284 ValueToSExts ValToSExtendedUses; 285 286 /// True if CFG is modified in any way. 287 bool ModifiedDT; 288 289 /// True if optimizing for size. 290 bool OptSize; 291 292 /// DataLayout for the Function being processed. 293 const DataLayout *DL = nullptr; 294 295 public: 296 static char ID; // Pass identification, replacement for typeid 297 298 CodeGenPrepare() : FunctionPass(ID) { 299 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 300 } 301 302 bool runOnFunction(Function &F) override; 303 304 StringRef getPassName() const override { return "CodeGen Prepare"; } 305 306 void getAnalysisUsage(AnalysisUsage &AU) const override { 307 // FIXME: When we can selectively preserve passes, preserve the domtree. 308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 309 AU.addRequired<TargetLibraryInfoWrapperPass>(); 310 AU.addRequired<TargetTransformInfoWrapperPass>(); 311 AU.addRequired<LoopInfoWrapperPass>(); 312 } 313 314 private: 315 bool eliminateFallThrough(Function &F); 316 bool eliminateMostlyEmptyBlocks(Function &F); 317 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 318 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 319 void eliminateMostlyEmptyBlock(BasicBlock *BB); 320 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 321 bool isPreheader); 322 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 323 bool optimizeInst(Instruction *I, bool &ModifiedDT); 324 bool optimizeMemoryInst(Instruction *I, Value *Addr, 325 Type *AccessTy, unsigned AS); 326 bool optimizeInlineAsmInst(CallInst *CS); 327 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 328 bool optimizeExt(Instruction *&I); 329 bool optimizeExtUses(Instruction *I); 330 bool optimizeLoadExt(LoadInst *I); 331 bool optimizeSelectInst(SelectInst *SI); 332 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 333 bool optimizeSwitchInst(SwitchInst *CI); 334 bool optimizeExtractElementInst(Instruction *Inst); 335 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 336 bool placeDbgValues(Function &F); 337 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 338 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 339 bool tryToPromoteExts(TypePromotionTransaction &TPT, 340 const SmallVectorImpl<Instruction *> &Exts, 341 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 342 unsigned CreatedInstsCost = 0); 343 bool mergeSExts(Function &F); 344 bool splitLargeGEPOffsets(); 345 bool performAddressTypePromotion( 346 Instruction *&Inst, 347 bool AllowPromotionWithoutCommonHeader, 348 bool HasPromoted, TypePromotionTransaction &TPT, 349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 350 bool splitBranchCondition(Function &F); 351 bool simplifyOffsetableRelocate(Instruction &I); 352 }; 353 354 } // end anonymous namespace 355 356 char CodeGenPrepare::ID = 0; 357 358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 359 "Optimize for code generation", false, false) 360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 362 "Optimize for code generation", false, false) 363 364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 365 366 bool CodeGenPrepare::runOnFunction(Function &F) { 367 if (skipFunction(F)) 368 return false; 369 370 DL = &F.getParent()->getDataLayout(); 371 372 bool EverMadeChange = false; 373 // Clear per function information. 374 InsertedInsts.clear(); 375 PromotedInsts.clear(); 376 377 ModifiedDT = false; 378 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 379 TM = &TPC->getTM<TargetMachine>(); 380 SubtargetInfo = TM->getSubtargetImpl(F); 381 TLI = SubtargetInfo->getTargetLowering(); 382 TRI = SubtargetInfo->getRegisterInfo(); 383 } 384 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 385 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 386 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 387 BPI.reset(new BranchProbabilityInfo(F, *LI)); 388 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 389 OptSize = F.optForSize(); 390 391 ProfileSummaryInfo *PSI = 392 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 393 if (ProfileGuidedSectionPrefix) { 394 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 395 F.setSectionPrefix(".hot"); 396 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 397 F.setSectionPrefix(".unlikely"); 398 } 399 400 /// This optimization identifies DIV instructions that can be 401 /// profitably bypassed and carried out with a shorter, faster divide. 402 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 403 TLI->isSlowDivBypassed()) { 404 const DenseMap<unsigned int, unsigned int> &BypassWidths = 405 TLI->getBypassSlowDivWidths(); 406 BasicBlock* BB = &*F.begin(); 407 while (BB != nullptr) { 408 // bypassSlowDivision may create new BBs, but we don't want to reapply the 409 // optimization to those blocks. 410 BasicBlock* Next = BB->getNextNode(); 411 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 412 BB = Next; 413 } 414 } 415 416 // Eliminate blocks that contain only PHI nodes and an 417 // unconditional branch. 418 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 419 420 // llvm.dbg.value is far away from the value then iSel may not be able 421 // handle it properly. iSel will drop llvm.dbg.value if it can not 422 // find a node corresponding to the value. 423 EverMadeChange |= placeDbgValues(F); 424 425 if (!DisableBranchOpts) 426 EverMadeChange |= splitBranchCondition(F); 427 428 // Split some critical edges where one of the sources is an indirect branch, 429 // to help generate sane code for PHIs involving such edges. 430 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 431 432 bool MadeChange = true; 433 while (MadeChange) { 434 MadeChange = false; 435 SeenChainsForSExt.clear(); 436 ValToSExtendedUses.clear(); 437 RemovedInsts.clear(); 438 LargeOffsetGEPMap.clear(); 439 LargeOffsetGEPID.clear(); 440 for (Function::iterator I = F.begin(); I != F.end(); ) { 441 BasicBlock *BB = &*I++; 442 bool ModifiedDTOnIteration = false; 443 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 444 445 // Restart BB iteration if the dominator tree of the Function was changed 446 if (ModifiedDTOnIteration) 447 break; 448 } 449 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 450 MadeChange |= mergeSExts(F); 451 if (!LargeOffsetGEPMap.empty()) 452 MadeChange |= splitLargeGEPOffsets(); 453 454 // Really free removed instructions during promotion. 455 for (Instruction *I : RemovedInsts) 456 I->deleteValue(); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 SunkAddrs.clear(); 462 463 if (!DisableBranchOpts) { 464 MadeChange = false; 465 SmallPtrSet<BasicBlock*, 8> WorkList; 466 for (BasicBlock &BB : F) { 467 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 468 MadeChange |= ConstantFoldTerminator(&BB, true); 469 if (!MadeChange) continue; 470 471 for (SmallVectorImpl<BasicBlock*>::iterator 472 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 473 if (pred_begin(*II) == pred_end(*II)) 474 WorkList.insert(*II); 475 } 476 477 // Delete the dead blocks and any of their dead successors. 478 MadeChange |= !WorkList.empty(); 479 while (!WorkList.empty()) { 480 BasicBlock *BB = *WorkList.begin(); 481 WorkList.erase(BB); 482 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 483 484 DeleteDeadBlock(BB); 485 486 for (SmallVectorImpl<BasicBlock*>::iterator 487 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 488 if (pred_begin(*II) == pred_end(*II)) 489 WorkList.insert(*II); 490 } 491 492 // Merge pairs of basic blocks with unconditional branches, connected by 493 // a single edge. 494 if (EverMadeChange || MadeChange) 495 MadeChange |= eliminateFallThrough(F); 496 497 EverMadeChange |= MadeChange; 498 } 499 500 if (!DisableGCOpts) { 501 SmallVector<Instruction *, 2> Statepoints; 502 for (BasicBlock &BB : F) 503 for (Instruction &I : BB) 504 if (isStatepoint(I)) 505 Statepoints.push_back(&I); 506 for (auto &I : Statepoints) 507 EverMadeChange |= simplifyOffsetableRelocate(*I); 508 } 509 510 return EverMadeChange; 511 } 512 513 /// Merge basic blocks which are connected by a single edge, where one of the 514 /// basic blocks has a single successor pointing to the other basic block, 515 /// which has a single predecessor. 516 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 517 bool Changed = false; 518 // Scan all of the blocks in the function, except for the entry block. 519 // Use a temporary array to avoid iterator being invalidated when 520 // deleting blocks. 521 SmallVector<WeakTrackingVH, 16> Blocks; 522 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 523 Blocks.push_back(&Block); 524 525 for (auto &Block : Blocks) { 526 auto *BB = cast_or_null<BasicBlock>(Block); 527 if (!BB) 528 continue; 529 // If the destination block has a single pred, then this is a trivial 530 // edge, just collapse it. 531 BasicBlock *SinglePred = BB->getSinglePredecessor(); 532 533 // Don't merge if BB's address is taken. 534 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 535 536 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 537 if (Term && !Term->isConditional()) { 538 Changed = true; 539 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 540 541 // Merge BB into SinglePred and delete it. 542 MergeBlockIntoPredecessor(BB); 543 } 544 } 545 return Changed; 546 } 547 548 /// Find a destination block from BB if BB is mergeable empty block. 549 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 550 // If this block doesn't end with an uncond branch, ignore it. 551 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 552 if (!BI || !BI->isUnconditional()) 553 return nullptr; 554 555 // If the instruction before the branch (skipping debug info) isn't a phi 556 // node, then other stuff is happening here. 557 BasicBlock::iterator BBI = BI->getIterator(); 558 if (BBI != BB->begin()) { 559 --BBI; 560 while (isa<DbgInfoIntrinsic>(BBI)) { 561 if (BBI == BB->begin()) 562 break; 563 --BBI; 564 } 565 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 566 return nullptr; 567 } 568 569 // Do not break infinite loops. 570 BasicBlock *DestBB = BI->getSuccessor(0); 571 if (DestBB == BB) 572 return nullptr; 573 574 if (!canMergeBlocks(BB, DestBB)) 575 DestBB = nullptr; 576 577 return DestBB; 578 } 579 580 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 581 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 582 /// edges in ways that are non-optimal for isel. Start by eliminating these 583 /// blocks so we can split them the way we want them. 584 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 585 SmallPtrSet<BasicBlock *, 16> Preheaders; 586 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 587 while (!LoopList.empty()) { 588 Loop *L = LoopList.pop_back_val(); 589 LoopList.insert(LoopList.end(), L->begin(), L->end()); 590 if (BasicBlock *Preheader = L->getLoopPreheader()) 591 Preheaders.insert(Preheader); 592 } 593 594 bool MadeChange = false; 595 // Copy blocks into a temporary array to avoid iterator invalidation issues 596 // as we remove them. 597 // Note that this intentionally skips the entry block. 598 SmallVector<WeakTrackingVH, 16> Blocks; 599 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 600 Blocks.push_back(&Block); 601 602 for (auto &Block : Blocks) { 603 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 604 if (!BB) 605 continue; 606 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 607 if (!DestBB || 608 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 609 continue; 610 611 eliminateMostlyEmptyBlock(BB); 612 MadeChange = true; 613 } 614 return MadeChange; 615 } 616 617 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 618 BasicBlock *DestBB, 619 bool isPreheader) { 620 // Do not delete loop preheaders if doing so would create a critical edge. 621 // Loop preheaders can be good locations to spill registers. If the 622 // preheader is deleted and we create a critical edge, registers may be 623 // spilled in the loop body instead. 624 if (!DisablePreheaderProtect && isPreheader && 625 !(BB->getSinglePredecessor() && 626 BB->getSinglePredecessor()->getSingleSuccessor())) 627 return false; 628 629 // Try to skip merging if the unique predecessor of BB is terminated by a 630 // switch or indirect branch instruction, and BB is used as an incoming block 631 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 632 // add COPY instructions in the predecessor of BB instead of BB (if it is not 633 // merged). Note that the critical edge created by merging such blocks wont be 634 // split in MachineSink because the jump table is not analyzable. By keeping 635 // such empty block (BB), ISel will place COPY instructions in BB, not in the 636 // predecessor of BB. 637 BasicBlock *Pred = BB->getUniquePredecessor(); 638 if (!Pred || 639 !(isa<SwitchInst>(Pred->getTerminator()) || 640 isa<IndirectBrInst>(Pred->getTerminator()))) 641 return true; 642 643 if (BB->getTerminator() != BB->getFirstNonPHI()) 644 return true; 645 646 // We use a simple cost heuristic which determine skipping merging is 647 // profitable if the cost of skipping merging is less than the cost of 648 // merging : Cost(skipping merging) < Cost(merging BB), where the 649 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 650 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 651 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 652 // Freq(Pred) / Freq(BB) > 2. 653 // Note that if there are multiple empty blocks sharing the same incoming 654 // value for the PHIs in the DestBB, we consider them together. In such 655 // case, Cost(merging BB) will be the sum of their frequencies. 656 657 if (!isa<PHINode>(DestBB->begin())) 658 return true; 659 660 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 661 662 // Find all other incoming blocks from which incoming values of all PHIs in 663 // DestBB are the same as the ones from BB. 664 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 665 ++PI) { 666 BasicBlock *DestBBPred = *PI; 667 if (DestBBPred == BB) 668 continue; 669 670 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 671 return DestPN.getIncomingValueForBlock(BB) == 672 DestPN.getIncomingValueForBlock(DestBBPred); 673 })) 674 SameIncomingValueBBs.insert(DestBBPred); 675 } 676 677 // See if all BB's incoming values are same as the value from Pred. In this 678 // case, no reason to skip merging because COPYs are expected to be place in 679 // Pred already. 680 if (SameIncomingValueBBs.count(Pred)) 681 return true; 682 683 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 684 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 685 686 for (auto SameValueBB : SameIncomingValueBBs) 687 if (SameValueBB->getUniquePredecessor() == Pred && 688 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 689 BBFreq += BFI->getBlockFreq(SameValueBB); 690 691 return PredFreq.getFrequency() <= 692 BBFreq.getFrequency() * FreqRatioToSkipMerge; 693 } 694 695 /// Return true if we can merge BB into DestBB if there is a single 696 /// unconditional branch between them, and BB contains no other non-phi 697 /// instructions. 698 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 699 const BasicBlock *DestBB) const { 700 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 701 // the successor. If there are more complex condition (e.g. preheaders), 702 // don't mess around with them. 703 for (const PHINode &PN : BB->phis()) { 704 for (const User *U : PN.users()) { 705 const Instruction *UI = cast<Instruction>(U); 706 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 707 return false; 708 // If User is inside DestBB block and it is a PHINode then check 709 // incoming value. If incoming value is not from BB then this is 710 // a complex condition (e.g. preheaders) we want to avoid here. 711 if (UI->getParent() == DestBB) { 712 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 713 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 714 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 715 if (Insn && Insn->getParent() == BB && 716 Insn->getParent() != UPN->getIncomingBlock(I)) 717 return false; 718 } 719 } 720 } 721 } 722 723 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 724 // and DestBB may have conflicting incoming values for the block. If so, we 725 // can't merge the block. 726 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 727 if (!DestBBPN) return true; // no conflict. 728 729 // Collect the preds of BB. 730 SmallPtrSet<const BasicBlock*, 16> BBPreds; 731 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 732 // It is faster to get preds from a PHI than with pred_iterator. 733 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 734 BBPreds.insert(BBPN->getIncomingBlock(i)); 735 } else { 736 BBPreds.insert(pred_begin(BB), pred_end(BB)); 737 } 738 739 // Walk the preds of DestBB. 740 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 741 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 742 if (BBPreds.count(Pred)) { // Common predecessor? 743 for (const PHINode &PN : DestBB->phis()) { 744 const Value *V1 = PN.getIncomingValueForBlock(Pred); 745 const Value *V2 = PN.getIncomingValueForBlock(BB); 746 747 // If V2 is a phi node in BB, look up what the mapped value will be. 748 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 749 if (V2PN->getParent() == BB) 750 V2 = V2PN->getIncomingValueForBlock(Pred); 751 752 // If there is a conflict, bail out. 753 if (V1 != V2) return false; 754 } 755 } 756 } 757 758 return true; 759 } 760 761 /// Eliminate a basic block that has only phi's and an unconditional branch in 762 /// it. 763 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 764 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 765 BasicBlock *DestBB = BI->getSuccessor(0); 766 767 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 768 << *BB << *DestBB); 769 770 // If the destination block has a single pred, then this is a trivial edge, 771 // just collapse it. 772 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 773 if (SinglePred != DestBB) { 774 assert(SinglePred == BB && 775 "Single predecessor not the same as predecessor"); 776 // Merge DestBB into SinglePred/BB and delete it. 777 MergeBlockIntoPredecessor(DestBB); 778 // Note: BB(=SinglePred) will not be deleted on this path. 779 // DestBB(=its single successor) is the one that was deleted. 780 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 781 return; 782 } 783 } 784 785 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 786 // to handle the new incoming edges it is about to have. 787 for (PHINode &PN : DestBB->phis()) { 788 // Remove the incoming value for BB, and remember it. 789 Value *InVal = PN.removeIncomingValue(BB, false); 790 791 // Two options: either the InVal is a phi node defined in BB or it is some 792 // value that dominates BB. 793 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 794 if (InValPhi && InValPhi->getParent() == BB) { 795 // Add all of the input values of the input PHI as inputs of this phi. 796 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 797 PN.addIncoming(InValPhi->getIncomingValue(i), 798 InValPhi->getIncomingBlock(i)); 799 } else { 800 // Otherwise, add one instance of the dominating value for each edge that 801 // we will be adding. 802 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 803 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 804 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 805 } else { 806 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 807 PN.addIncoming(InVal, *PI); 808 } 809 } 810 } 811 812 // The PHIs are now updated, change everything that refers to BB to use 813 // DestBB and remove BB. 814 BB->replaceAllUsesWith(DestBB); 815 BB->eraseFromParent(); 816 ++NumBlocksElim; 817 818 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 819 } 820 821 // Computes a map of base pointer relocation instructions to corresponding 822 // derived pointer relocation instructions given a vector of all relocate calls 823 static void computeBaseDerivedRelocateMap( 824 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 825 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 826 &RelocateInstMap) { 827 // Collect information in two maps: one primarily for locating the base object 828 // while filling the second map; the second map is the final structure holding 829 // a mapping between Base and corresponding Derived relocate calls 830 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 831 for (auto *ThisRelocate : AllRelocateCalls) { 832 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 833 ThisRelocate->getDerivedPtrIndex()); 834 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 835 } 836 for (auto &Item : RelocateIdxMap) { 837 std::pair<unsigned, unsigned> Key = Item.first; 838 if (Key.first == Key.second) 839 // Base relocation: nothing to insert 840 continue; 841 842 GCRelocateInst *I = Item.second; 843 auto BaseKey = std::make_pair(Key.first, Key.first); 844 845 // We're iterating over RelocateIdxMap so we cannot modify it. 846 auto MaybeBase = RelocateIdxMap.find(BaseKey); 847 if (MaybeBase == RelocateIdxMap.end()) 848 // TODO: We might want to insert a new base object relocate and gep off 849 // that, if there are enough derived object relocates. 850 continue; 851 852 RelocateInstMap[MaybeBase->second].push_back(I); 853 } 854 } 855 856 // Accepts a GEP and extracts the operands into a vector provided they're all 857 // small integer constants 858 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 859 SmallVectorImpl<Value *> &OffsetV) { 860 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 861 // Only accept small constant integer operands 862 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 863 if (!Op || Op->getZExtValue() > 20) 864 return false; 865 } 866 867 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 868 OffsetV.push_back(GEP->getOperand(i)); 869 return true; 870 } 871 872 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 873 // replace, computes a replacement, and affects it. 874 static bool 875 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 876 const SmallVectorImpl<GCRelocateInst *> &Targets) { 877 bool MadeChange = false; 878 // We must ensure the relocation of derived pointer is defined after 879 // relocation of base pointer. If we find a relocation corresponding to base 880 // defined earlier than relocation of base then we move relocation of base 881 // right before found relocation. We consider only relocation in the same 882 // basic block as relocation of base. Relocations from other basic block will 883 // be skipped by optimization and we do not care about them. 884 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 885 &*R != RelocatedBase; ++R) 886 if (auto RI = dyn_cast<GCRelocateInst>(R)) 887 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 888 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 889 RelocatedBase->moveBefore(RI); 890 break; 891 } 892 893 for (GCRelocateInst *ToReplace : Targets) { 894 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 895 "Not relocating a derived object of the original base object"); 896 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 897 // A duplicate relocate call. TODO: coalesce duplicates. 898 continue; 899 } 900 901 if (RelocatedBase->getParent() != ToReplace->getParent()) { 902 // Base and derived relocates are in different basic blocks. 903 // In this case transform is only valid when base dominates derived 904 // relocate. However it would be too expensive to check dominance 905 // for each such relocate, so we skip the whole transformation. 906 continue; 907 } 908 909 Value *Base = ToReplace->getBasePtr(); 910 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 911 if (!Derived || Derived->getPointerOperand() != Base) 912 continue; 913 914 SmallVector<Value *, 2> OffsetV; 915 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 916 continue; 917 918 // Create a Builder and replace the target callsite with a gep 919 assert(RelocatedBase->getNextNode() && 920 "Should always have one since it's not a terminator"); 921 922 // Insert after RelocatedBase 923 IRBuilder<> Builder(RelocatedBase->getNextNode()); 924 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 925 926 // If gc_relocate does not match the actual type, cast it to the right type. 927 // In theory, there must be a bitcast after gc_relocate if the type does not 928 // match, and we should reuse it to get the derived pointer. But it could be 929 // cases like this: 930 // bb1: 931 // ... 932 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 933 // br label %merge 934 // 935 // bb2: 936 // ... 937 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 938 // br label %merge 939 // 940 // merge: 941 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 942 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 943 // 944 // In this case, we can not find the bitcast any more. So we insert a new bitcast 945 // no matter there is already one or not. In this way, we can handle all cases, and 946 // the extra bitcast should be optimized away in later passes. 947 Value *ActualRelocatedBase = RelocatedBase; 948 if (RelocatedBase->getType() != Base->getType()) { 949 ActualRelocatedBase = 950 Builder.CreateBitCast(RelocatedBase, Base->getType()); 951 } 952 Value *Replacement = Builder.CreateGEP( 953 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 954 Replacement->takeName(ToReplace); 955 // If the newly generated derived pointer's type does not match the original derived 956 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 957 Value *ActualReplacement = Replacement; 958 if (Replacement->getType() != ToReplace->getType()) { 959 ActualReplacement = 960 Builder.CreateBitCast(Replacement, ToReplace->getType()); 961 } 962 ToReplace->replaceAllUsesWith(ActualReplacement); 963 ToReplace->eraseFromParent(); 964 965 MadeChange = true; 966 } 967 return MadeChange; 968 } 969 970 // Turns this: 971 // 972 // %base = ... 973 // %ptr = gep %base + 15 974 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 975 // %base' = relocate(%tok, i32 4, i32 4) 976 // %ptr' = relocate(%tok, i32 4, i32 5) 977 // %val = load %ptr' 978 // 979 // into this: 980 // 981 // %base = ... 982 // %ptr = gep %base + 15 983 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 984 // %base' = gc.relocate(%tok, i32 4, i32 4) 985 // %ptr' = gep %base' + 15 986 // %val = load %ptr' 987 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 988 bool MadeChange = false; 989 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 990 991 for (auto *U : I.users()) 992 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 993 // Collect all the relocate calls associated with a statepoint 994 AllRelocateCalls.push_back(Relocate); 995 996 // We need atleast one base pointer relocation + one derived pointer 997 // relocation to mangle 998 if (AllRelocateCalls.size() < 2) 999 return false; 1000 1001 // RelocateInstMap is a mapping from the base relocate instruction to the 1002 // corresponding derived relocate instructions 1003 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1004 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1005 if (RelocateInstMap.empty()) 1006 return false; 1007 1008 for (auto &Item : RelocateInstMap) 1009 // Item.first is the RelocatedBase to offset against 1010 // Item.second is the vector of Targets to replace 1011 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1012 return MadeChange; 1013 } 1014 1015 /// SinkCast - Sink the specified cast instruction into its user blocks 1016 static bool SinkCast(CastInst *CI) { 1017 BasicBlock *DefBB = CI->getParent(); 1018 1019 /// InsertedCasts - Only insert a cast in each block once. 1020 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1021 1022 bool MadeChange = false; 1023 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1024 UI != E; ) { 1025 Use &TheUse = UI.getUse(); 1026 Instruction *User = cast<Instruction>(*UI); 1027 1028 // Figure out which BB this cast is used in. For PHI's this is the 1029 // appropriate predecessor block. 1030 BasicBlock *UserBB = User->getParent(); 1031 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1032 UserBB = PN->getIncomingBlock(TheUse); 1033 } 1034 1035 // Preincrement use iterator so we don't invalidate it. 1036 ++UI; 1037 1038 // The first insertion point of a block containing an EH pad is after the 1039 // pad. If the pad is the user, we cannot sink the cast past the pad. 1040 if (User->isEHPad()) 1041 continue; 1042 1043 // If the block selected to receive the cast is an EH pad that does not 1044 // allow non-PHI instructions before the terminator, we can't sink the 1045 // cast. 1046 if (UserBB->getTerminator()->isEHPad()) 1047 continue; 1048 1049 // If this user is in the same block as the cast, don't change the cast. 1050 if (UserBB == DefBB) continue; 1051 1052 // If we have already inserted a cast into this block, use it. 1053 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1054 1055 if (!InsertedCast) { 1056 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1057 assert(InsertPt != UserBB->end()); 1058 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1059 CI->getType(), "", &*InsertPt); 1060 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1061 } 1062 1063 // Replace a use of the cast with a use of the new cast. 1064 TheUse = InsertedCast; 1065 MadeChange = true; 1066 ++NumCastUses; 1067 } 1068 1069 // If we removed all uses, nuke the cast. 1070 if (CI->use_empty()) { 1071 salvageDebugInfo(*CI); 1072 CI->eraseFromParent(); 1073 MadeChange = true; 1074 } 1075 1076 return MadeChange; 1077 } 1078 1079 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1080 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1081 /// reduce the number of virtual registers that must be created and coalesced. 1082 /// 1083 /// Return true if any changes are made. 1084 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1085 const DataLayout &DL) { 1086 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1087 // than sinking only nop casts, but is helpful on some platforms. 1088 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1089 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1090 ASC->getDestAddressSpace())) 1091 return false; 1092 } 1093 1094 // If this is a noop copy, 1095 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1096 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1097 1098 // This is an fp<->int conversion? 1099 if (SrcVT.isInteger() != DstVT.isInteger()) 1100 return false; 1101 1102 // If this is an extension, it will be a zero or sign extension, which 1103 // isn't a noop. 1104 if (SrcVT.bitsLT(DstVT)) return false; 1105 1106 // If these values will be promoted, find out what they will be promoted 1107 // to. This helps us consider truncates on PPC as noop copies when they 1108 // are. 1109 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1110 TargetLowering::TypePromoteInteger) 1111 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1112 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1113 TargetLowering::TypePromoteInteger) 1114 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1115 1116 // If, after promotion, these are the same types, this is a noop copy. 1117 if (SrcVT != DstVT) 1118 return false; 1119 1120 return SinkCast(CI); 1121 } 1122 1123 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1124 /// possible. 1125 /// 1126 /// Return true if any changes were made. 1127 static bool CombineUAddWithOverflow(CmpInst *CI) { 1128 Value *A, *B; 1129 Instruction *AddI; 1130 if (!match(CI, 1131 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1132 return false; 1133 1134 Type *Ty = AddI->getType(); 1135 if (!isa<IntegerType>(Ty)) 1136 return false; 1137 1138 // We don't want to move around uses of condition values this late, so we we 1139 // check if it is legal to create the call to the intrinsic in the basic 1140 // block containing the icmp: 1141 1142 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1143 return false; 1144 1145 #ifndef NDEBUG 1146 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1147 // for now: 1148 if (AddI->hasOneUse()) 1149 assert(*AddI->user_begin() == CI && "expected!"); 1150 #endif 1151 1152 Module *M = CI->getModule(); 1153 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1154 1155 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1156 1157 auto *UAddWithOverflow = 1158 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1159 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1160 auto *Overflow = 1161 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1162 1163 CI->replaceAllUsesWith(Overflow); 1164 AddI->replaceAllUsesWith(UAdd); 1165 CI->eraseFromParent(); 1166 AddI->eraseFromParent(); 1167 return true; 1168 } 1169 1170 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1171 /// registers that must be created and coalesced. This is a clear win except on 1172 /// targets with multiple condition code registers (PowerPC), where it might 1173 /// lose; some adjustment may be wanted there. 1174 /// 1175 /// Return true if any changes are made. 1176 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1177 BasicBlock *DefBB = CI->getParent(); 1178 1179 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1180 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1181 return false; 1182 1183 // Only insert a cmp in each block once. 1184 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1185 1186 bool MadeChange = false; 1187 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1188 UI != E; ) { 1189 Use &TheUse = UI.getUse(); 1190 Instruction *User = cast<Instruction>(*UI); 1191 1192 // Preincrement use iterator so we don't invalidate it. 1193 ++UI; 1194 1195 // Don't bother for PHI nodes. 1196 if (isa<PHINode>(User)) 1197 continue; 1198 1199 // Figure out which BB this cmp is used in. 1200 BasicBlock *UserBB = User->getParent(); 1201 1202 // If this user is in the same block as the cmp, don't change the cmp. 1203 if (UserBB == DefBB) continue; 1204 1205 // If we have already inserted a cmp into this block, use it. 1206 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1207 1208 if (!InsertedCmp) { 1209 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1210 assert(InsertPt != UserBB->end()); 1211 InsertedCmp = 1212 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1213 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1214 // Propagate the debug info. 1215 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1216 } 1217 1218 // Replace a use of the cmp with a use of the new cmp. 1219 TheUse = InsertedCmp; 1220 MadeChange = true; 1221 ++NumCmpUses; 1222 } 1223 1224 // If we removed all uses, nuke the cmp. 1225 if (CI->use_empty()) { 1226 CI->eraseFromParent(); 1227 MadeChange = true; 1228 } 1229 1230 return MadeChange; 1231 } 1232 1233 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1234 if (SinkCmpExpression(CI, TLI)) 1235 return true; 1236 1237 if (CombineUAddWithOverflow(CI)) 1238 return true; 1239 1240 return false; 1241 } 1242 1243 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1244 /// used in a compare to allow isel to generate better code for targets where 1245 /// this operation can be combined. 1246 /// 1247 /// Return true if any changes are made. 1248 static bool sinkAndCmp0Expression(Instruction *AndI, 1249 const TargetLowering &TLI, 1250 SetOfInstrs &InsertedInsts) { 1251 // Double-check that we're not trying to optimize an instruction that was 1252 // already optimized by some other part of this pass. 1253 assert(!InsertedInsts.count(AndI) && 1254 "Attempting to optimize already optimized and instruction"); 1255 (void) InsertedInsts; 1256 1257 // Nothing to do for single use in same basic block. 1258 if (AndI->hasOneUse() && 1259 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1260 return false; 1261 1262 // Try to avoid cases where sinking/duplicating is likely to increase register 1263 // pressure. 1264 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1265 !isa<ConstantInt>(AndI->getOperand(1)) && 1266 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1267 return false; 1268 1269 for (auto *U : AndI->users()) { 1270 Instruction *User = cast<Instruction>(U); 1271 1272 // Only sink for and mask feeding icmp with 0. 1273 if (!isa<ICmpInst>(User)) 1274 return false; 1275 1276 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1277 if (!CmpC || !CmpC->isZero()) 1278 return false; 1279 } 1280 1281 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1282 return false; 1283 1284 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1285 LLVM_DEBUG(AndI->getParent()->dump()); 1286 1287 // Push the 'and' into the same block as the icmp 0. There should only be 1288 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1289 // others, so we don't need to keep track of which BBs we insert into. 1290 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1291 UI != E; ) { 1292 Use &TheUse = UI.getUse(); 1293 Instruction *User = cast<Instruction>(*UI); 1294 1295 // Preincrement use iterator so we don't invalidate it. 1296 ++UI; 1297 1298 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1299 1300 // Keep the 'and' in the same place if the use is already in the same block. 1301 Instruction *InsertPt = 1302 User->getParent() == AndI->getParent() ? AndI : User; 1303 Instruction *InsertedAnd = 1304 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1305 AndI->getOperand(1), "", InsertPt); 1306 // Propagate the debug info. 1307 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1308 1309 // Replace a use of the 'and' with a use of the new 'and'. 1310 TheUse = InsertedAnd; 1311 ++NumAndUses; 1312 LLVM_DEBUG(User->getParent()->dump()); 1313 } 1314 1315 // We removed all uses, nuke the and. 1316 AndI->eraseFromParent(); 1317 return true; 1318 } 1319 1320 /// Check if the candidates could be combined with a shift instruction, which 1321 /// includes: 1322 /// 1. Truncate instruction 1323 /// 2. And instruction and the imm is a mask of the low bits: 1324 /// imm & (imm+1) == 0 1325 static bool isExtractBitsCandidateUse(Instruction *User) { 1326 if (!isa<TruncInst>(User)) { 1327 if (User->getOpcode() != Instruction::And || 1328 !isa<ConstantInt>(User->getOperand(1))) 1329 return false; 1330 1331 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1332 1333 if ((Cimm & (Cimm + 1)).getBoolValue()) 1334 return false; 1335 } 1336 return true; 1337 } 1338 1339 /// Sink both shift and truncate instruction to the use of truncate's BB. 1340 static bool 1341 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1342 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1343 const TargetLowering &TLI, const DataLayout &DL) { 1344 BasicBlock *UserBB = User->getParent(); 1345 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1346 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1347 bool MadeChange = false; 1348 1349 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1350 TruncE = TruncI->user_end(); 1351 TruncUI != TruncE;) { 1352 1353 Use &TruncTheUse = TruncUI.getUse(); 1354 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1355 // Preincrement use iterator so we don't invalidate it. 1356 1357 ++TruncUI; 1358 1359 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1360 if (!ISDOpcode) 1361 continue; 1362 1363 // If the use is actually a legal node, there will not be an 1364 // implicit truncate. 1365 // FIXME: always querying the result type is just an 1366 // approximation; some nodes' legality is determined by the 1367 // operand or other means. There's no good way to find out though. 1368 if (TLI.isOperationLegalOrCustom( 1369 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1370 continue; 1371 1372 // Don't bother for PHI nodes. 1373 if (isa<PHINode>(TruncUser)) 1374 continue; 1375 1376 BasicBlock *TruncUserBB = TruncUser->getParent(); 1377 1378 if (UserBB == TruncUserBB) 1379 continue; 1380 1381 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1382 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1383 1384 if (!InsertedShift && !InsertedTrunc) { 1385 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1386 assert(InsertPt != TruncUserBB->end()); 1387 // Sink the shift 1388 if (ShiftI->getOpcode() == Instruction::AShr) 1389 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1390 "", &*InsertPt); 1391 else 1392 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1393 "", &*InsertPt); 1394 1395 // Sink the trunc 1396 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1397 TruncInsertPt++; 1398 assert(TruncInsertPt != TruncUserBB->end()); 1399 1400 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1401 TruncI->getType(), "", &*TruncInsertPt); 1402 1403 MadeChange = true; 1404 1405 TruncTheUse = InsertedTrunc; 1406 } 1407 } 1408 return MadeChange; 1409 } 1410 1411 /// Sink the shift *right* instruction into user blocks if the uses could 1412 /// potentially be combined with this shift instruction and generate BitExtract 1413 /// instruction. It will only be applied if the architecture supports BitExtract 1414 /// instruction. Here is an example: 1415 /// BB1: 1416 /// %x.extract.shift = lshr i64 %arg1, 32 1417 /// BB2: 1418 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1419 /// ==> 1420 /// 1421 /// BB2: 1422 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1423 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1424 /// 1425 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1426 /// instruction. 1427 /// Return true if any changes are made. 1428 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1429 const TargetLowering &TLI, 1430 const DataLayout &DL) { 1431 BasicBlock *DefBB = ShiftI->getParent(); 1432 1433 /// Only insert instructions in each block once. 1434 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1435 1436 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1437 1438 bool MadeChange = false; 1439 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1440 UI != E;) { 1441 Use &TheUse = UI.getUse(); 1442 Instruction *User = cast<Instruction>(*UI); 1443 // Preincrement use iterator so we don't invalidate it. 1444 ++UI; 1445 1446 // Don't bother for PHI nodes. 1447 if (isa<PHINode>(User)) 1448 continue; 1449 1450 if (!isExtractBitsCandidateUse(User)) 1451 continue; 1452 1453 BasicBlock *UserBB = User->getParent(); 1454 1455 if (UserBB == DefBB) { 1456 // If the shift and truncate instruction are in the same BB. The use of 1457 // the truncate(TruncUse) may still introduce another truncate if not 1458 // legal. In this case, we would like to sink both shift and truncate 1459 // instruction to the BB of TruncUse. 1460 // for example: 1461 // BB1: 1462 // i64 shift.result = lshr i64 opnd, imm 1463 // trunc.result = trunc shift.result to i16 1464 // 1465 // BB2: 1466 // ----> We will have an implicit truncate here if the architecture does 1467 // not have i16 compare. 1468 // cmp i16 trunc.result, opnd2 1469 // 1470 if (isa<TruncInst>(User) && shiftIsLegal 1471 // If the type of the truncate is legal, no truncate will be 1472 // introduced in other basic blocks. 1473 && 1474 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1475 MadeChange = 1476 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1477 1478 continue; 1479 } 1480 // If we have already inserted a shift into this block, use it. 1481 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1482 1483 if (!InsertedShift) { 1484 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1485 assert(InsertPt != UserBB->end()); 1486 1487 if (ShiftI->getOpcode() == Instruction::AShr) 1488 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1489 "", &*InsertPt); 1490 else 1491 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1492 "", &*InsertPt); 1493 1494 MadeChange = true; 1495 } 1496 1497 // Replace a use of the shift with a use of the new shift. 1498 TheUse = InsertedShift; 1499 } 1500 1501 // If we removed all uses, nuke the shift. 1502 if (ShiftI->use_empty()) 1503 ShiftI->eraseFromParent(); 1504 1505 return MadeChange; 1506 } 1507 1508 /// If counting leading or trailing zeros is an expensive operation and a zero 1509 /// input is defined, add a check for zero to avoid calling the intrinsic. 1510 /// 1511 /// We want to transform: 1512 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1513 /// 1514 /// into: 1515 /// entry: 1516 /// %cmpz = icmp eq i64 %A, 0 1517 /// br i1 %cmpz, label %cond.end, label %cond.false 1518 /// cond.false: 1519 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1520 /// br label %cond.end 1521 /// cond.end: 1522 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1523 /// 1524 /// If the transform is performed, return true and set ModifiedDT to true. 1525 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1526 const TargetLowering *TLI, 1527 const DataLayout *DL, 1528 bool &ModifiedDT) { 1529 if (!TLI || !DL) 1530 return false; 1531 1532 // If a zero input is undefined, it doesn't make sense to despeculate that. 1533 if (match(CountZeros->getOperand(1), m_One())) 1534 return false; 1535 1536 // If it's cheap to speculate, there's nothing to do. 1537 auto IntrinsicID = CountZeros->getIntrinsicID(); 1538 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1539 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1540 return false; 1541 1542 // Only handle legal scalar cases. Anything else requires too much work. 1543 Type *Ty = CountZeros->getType(); 1544 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1545 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1546 return false; 1547 1548 // The intrinsic will be sunk behind a compare against zero and branch. 1549 BasicBlock *StartBlock = CountZeros->getParent(); 1550 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1551 1552 // Create another block after the count zero intrinsic. A PHI will be added 1553 // in this block to select the result of the intrinsic or the bit-width 1554 // constant if the input to the intrinsic is zero. 1555 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1556 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1557 1558 // Set up a builder to create a compare, conditional branch, and PHI. 1559 IRBuilder<> Builder(CountZeros->getContext()); 1560 Builder.SetInsertPoint(StartBlock->getTerminator()); 1561 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1562 1563 // Replace the unconditional branch that was created by the first split with 1564 // a compare against zero and a conditional branch. 1565 Value *Zero = Constant::getNullValue(Ty); 1566 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1567 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1568 StartBlock->getTerminator()->eraseFromParent(); 1569 1570 // Create a PHI in the end block to select either the output of the intrinsic 1571 // or the bit width of the operand. 1572 Builder.SetInsertPoint(&EndBlock->front()); 1573 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1574 CountZeros->replaceAllUsesWith(PN); 1575 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1576 PN->addIncoming(BitWidth, StartBlock); 1577 PN->addIncoming(CountZeros, CallBlock); 1578 1579 // We are explicitly handling the zero case, so we can set the intrinsic's 1580 // undefined zero argument to 'true'. This will also prevent reprocessing the 1581 // intrinsic; we only despeculate when a zero input is defined. 1582 CountZeros->setArgOperand(1, Builder.getTrue()); 1583 ModifiedDT = true; 1584 return true; 1585 } 1586 1587 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1588 BasicBlock *BB = CI->getParent(); 1589 1590 // Lower inline assembly if we can. 1591 // If we found an inline asm expession, and if the target knows how to 1592 // lower it to normal LLVM code, do so now. 1593 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1594 if (TLI->ExpandInlineAsm(CI)) { 1595 // Avoid invalidating the iterator. 1596 CurInstIterator = BB->begin(); 1597 // Avoid processing instructions out of order, which could cause 1598 // reuse before a value is defined. 1599 SunkAddrs.clear(); 1600 return true; 1601 } 1602 // Sink address computing for memory operands into the block. 1603 if (optimizeInlineAsmInst(CI)) 1604 return true; 1605 } 1606 1607 // Align the pointer arguments to this call if the target thinks it's a good 1608 // idea 1609 unsigned MinSize, PrefAlign; 1610 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1611 for (auto &Arg : CI->arg_operands()) { 1612 // We want to align both objects whose address is used directly and 1613 // objects whose address is used in casts and GEPs, though it only makes 1614 // sense for GEPs if the offset is a multiple of the desired alignment and 1615 // if size - offset meets the size threshold. 1616 if (!Arg->getType()->isPointerTy()) 1617 continue; 1618 APInt Offset(DL->getIndexSizeInBits( 1619 cast<PointerType>(Arg->getType())->getAddressSpace()), 1620 0); 1621 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1622 uint64_t Offset2 = Offset.getLimitedValue(); 1623 if ((Offset2 & (PrefAlign-1)) != 0) 1624 continue; 1625 AllocaInst *AI; 1626 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1627 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1628 AI->setAlignment(PrefAlign); 1629 // Global variables can only be aligned if they are defined in this 1630 // object (i.e. they are uniquely initialized in this object), and 1631 // over-aligning global variables that have an explicit section is 1632 // forbidden. 1633 GlobalVariable *GV; 1634 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1635 GV->getPointerAlignment(*DL) < PrefAlign && 1636 DL->getTypeAllocSize(GV->getValueType()) >= 1637 MinSize + Offset2) 1638 GV->setAlignment(PrefAlign); 1639 } 1640 // If this is a memcpy (or similar) then we may be able to improve the 1641 // alignment 1642 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1643 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1644 if (DestAlign > MI->getDestAlignment()) 1645 MI->setDestAlignment(DestAlign); 1646 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1647 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1648 if (SrcAlign > MTI->getSourceAlignment()) 1649 MTI->setSourceAlignment(SrcAlign); 1650 } 1651 } 1652 } 1653 1654 // If we have a cold call site, try to sink addressing computation into the 1655 // cold block. This interacts with our handling for loads and stores to 1656 // ensure that we can fold all uses of a potential addressing computation 1657 // into their uses. TODO: generalize this to work over profiling data 1658 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1659 for (auto &Arg : CI->arg_operands()) { 1660 if (!Arg->getType()->isPointerTy()) 1661 continue; 1662 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1663 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1664 } 1665 1666 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1667 if (II) { 1668 switch (II->getIntrinsicID()) { 1669 default: break; 1670 case Intrinsic::objectsize: { 1671 // Lower all uses of llvm.objectsize.* 1672 ConstantInt *RetVal = 1673 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1674 // Substituting this can cause recursive simplifications, which can 1675 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1676 // this 1677 // happens. 1678 Value *CurValue = &*CurInstIterator; 1679 WeakTrackingVH IterHandle(CurValue); 1680 1681 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1682 1683 // If the iterator instruction was recursively deleted, start over at the 1684 // start of the block. 1685 if (IterHandle != CurValue) { 1686 CurInstIterator = BB->begin(); 1687 SunkAddrs.clear(); 1688 } 1689 return true; 1690 } 1691 case Intrinsic::aarch64_stlxr: 1692 case Intrinsic::aarch64_stxr: { 1693 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1694 if (!ExtVal || !ExtVal->hasOneUse() || 1695 ExtVal->getParent() == CI->getParent()) 1696 return false; 1697 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1698 ExtVal->moveBefore(CI); 1699 // Mark this instruction as "inserted by CGP", so that other 1700 // optimizations don't touch it. 1701 InsertedInsts.insert(ExtVal); 1702 return true; 1703 } 1704 case Intrinsic::launder_invariant_group: 1705 II->replaceAllUsesWith(II->getArgOperand(0)); 1706 II->eraseFromParent(); 1707 return true; 1708 1709 case Intrinsic::cttz: 1710 case Intrinsic::ctlz: 1711 // If counting zeros is expensive, try to avoid it. 1712 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1713 } 1714 1715 if (TLI) { 1716 SmallVector<Value*, 2> PtrOps; 1717 Type *AccessTy; 1718 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1719 while (!PtrOps.empty()) { 1720 Value *PtrVal = PtrOps.pop_back_val(); 1721 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1722 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1723 return true; 1724 } 1725 } 1726 } 1727 1728 // From here on out we're working with named functions. 1729 if (!CI->getCalledFunction()) return false; 1730 1731 // Lower all default uses of _chk calls. This is very similar 1732 // to what InstCombineCalls does, but here we are only lowering calls 1733 // to fortified library functions (e.g. __memcpy_chk) that have the default 1734 // "don't know" as the objectsize. Anything else should be left alone. 1735 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1736 if (Value *V = Simplifier.optimizeCall(CI)) { 1737 CI->replaceAllUsesWith(V); 1738 CI->eraseFromParent(); 1739 return true; 1740 } 1741 1742 return false; 1743 } 1744 1745 /// Look for opportunities to duplicate return instructions to the predecessor 1746 /// to enable tail call optimizations. The case it is currently looking for is: 1747 /// @code 1748 /// bb0: 1749 /// %tmp0 = tail call i32 @f0() 1750 /// br label %return 1751 /// bb1: 1752 /// %tmp1 = tail call i32 @f1() 1753 /// br label %return 1754 /// bb2: 1755 /// %tmp2 = tail call i32 @f2() 1756 /// br label %return 1757 /// return: 1758 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1759 /// ret i32 %retval 1760 /// @endcode 1761 /// 1762 /// => 1763 /// 1764 /// @code 1765 /// bb0: 1766 /// %tmp0 = tail call i32 @f0() 1767 /// ret i32 %tmp0 1768 /// bb1: 1769 /// %tmp1 = tail call i32 @f1() 1770 /// ret i32 %tmp1 1771 /// bb2: 1772 /// %tmp2 = tail call i32 @f2() 1773 /// ret i32 %tmp2 1774 /// @endcode 1775 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1776 if (!TLI) 1777 return false; 1778 1779 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1780 if (!RetI) 1781 return false; 1782 1783 PHINode *PN = nullptr; 1784 BitCastInst *BCI = nullptr; 1785 Value *V = RetI->getReturnValue(); 1786 if (V) { 1787 BCI = dyn_cast<BitCastInst>(V); 1788 if (BCI) 1789 V = BCI->getOperand(0); 1790 1791 PN = dyn_cast<PHINode>(V); 1792 if (!PN) 1793 return false; 1794 } 1795 1796 if (PN && PN->getParent() != BB) 1797 return false; 1798 1799 // Make sure there are no instructions between the PHI and return, or that the 1800 // return is the first instruction in the block. 1801 if (PN) { 1802 BasicBlock::iterator BI = BB->begin(); 1803 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1804 if (&*BI == BCI) 1805 // Also skip over the bitcast. 1806 ++BI; 1807 if (&*BI != RetI) 1808 return false; 1809 } else { 1810 BasicBlock::iterator BI = BB->begin(); 1811 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1812 if (&*BI != RetI) 1813 return false; 1814 } 1815 1816 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1817 /// call. 1818 const Function *F = BB->getParent(); 1819 SmallVector<CallInst*, 4> TailCalls; 1820 if (PN) { 1821 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1822 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1823 // Make sure the phi value is indeed produced by the tail call. 1824 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1825 TLI->mayBeEmittedAsTailCall(CI) && 1826 attributesPermitTailCall(F, CI, RetI, *TLI)) 1827 TailCalls.push_back(CI); 1828 } 1829 } else { 1830 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1831 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1832 if (!VisitedBBs.insert(*PI).second) 1833 continue; 1834 1835 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1836 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1837 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1838 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1839 if (RI == RE) 1840 continue; 1841 1842 CallInst *CI = dyn_cast<CallInst>(&*RI); 1843 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1844 attributesPermitTailCall(F, CI, RetI, *TLI)) 1845 TailCalls.push_back(CI); 1846 } 1847 } 1848 1849 bool Changed = false; 1850 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1851 CallInst *CI = TailCalls[i]; 1852 CallSite CS(CI); 1853 1854 // Conservatively require the attributes of the call to match those of the 1855 // return. Ignore noalias because it doesn't affect the call sequence. 1856 AttributeList CalleeAttrs = CS.getAttributes(); 1857 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1858 .removeAttribute(Attribute::NoAlias) != 1859 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1860 .removeAttribute(Attribute::NoAlias)) 1861 continue; 1862 1863 // Make sure the call instruction is followed by an unconditional branch to 1864 // the return block. 1865 BasicBlock *CallBB = CI->getParent(); 1866 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1867 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1868 continue; 1869 1870 // Duplicate the return into CallBB. 1871 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1872 ModifiedDT = Changed = true; 1873 ++NumRetsDup; 1874 } 1875 1876 // If we eliminated all predecessors of the block, delete the block now. 1877 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1878 BB->eraseFromParent(); 1879 1880 return Changed; 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // Memory Optimization 1885 //===----------------------------------------------------------------------===// 1886 1887 namespace { 1888 1889 /// This is an extended version of TargetLowering::AddrMode 1890 /// which holds actual Value*'s for register values. 1891 struct ExtAddrMode : public TargetLowering::AddrMode { 1892 Value *BaseReg = nullptr; 1893 Value *ScaledReg = nullptr; 1894 Value *OriginalValue = nullptr; 1895 1896 enum FieldName { 1897 NoField = 0x00, 1898 BaseRegField = 0x01, 1899 BaseGVField = 0x02, 1900 BaseOffsField = 0x04, 1901 ScaledRegField = 0x08, 1902 ScaleField = 0x10, 1903 MultipleFields = 0xff 1904 }; 1905 1906 ExtAddrMode() = default; 1907 1908 void print(raw_ostream &OS) const; 1909 void dump() const; 1910 1911 FieldName compare(const ExtAddrMode &other) { 1912 // First check that the types are the same on each field, as differing types 1913 // is something we can't cope with later on. 1914 if (BaseReg && other.BaseReg && 1915 BaseReg->getType() != other.BaseReg->getType()) 1916 return MultipleFields; 1917 if (BaseGV && other.BaseGV && 1918 BaseGV->getType() != other.BaseGV->getType()) 1919 return MultipleFields; 1920 if (ScaledReg && other.ScaledReg && 1921 ScaledReg->getType() != other.ScaledReg->getType()) 1922 return MultipleFields; 1923 1924 // Check each field to see if it differs. 1925 unsigned Result = NoField; 1926 if (BaseReg != other.BaseReg) 1927 Result |= BaseRegField; 1928 if (BaseGV != other.BaseGV) 1929 Result |= BaseGVField; 1930 if (BaseOffs != other.BaseOffs) 1931 Result |= BaseOffsField; 1932 if (ScaledReg != other.ScaledReg) 1933 Result |= ScaledRegField; 1934 // Don't count 0 as being a different scale, because that actually means 1935 // unscaled (which will already be counted by having no ScaledReg). 1936 if (Scale && other.Scale && Scale != other.Scale) 1937 Result |= ScaleField; 1938 1939 if (countPopulation(Result) > 1) 1940 return MultipleFields; 1941 else 1942 return static_cast<FieldName>(Result); 1943 } 1944 1945 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1946 // with no offset. 1947 bool isTrivial() { 1948 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1949 // trivial if at most one of these terms is nonzero, except that BaseGV and 1950 // BaseReg both being zero actually means a null pointer value, which we 1951 // consider to be 'non-zero' here. 1952 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1953 } 1954 1955 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1956 switch (Field) { 1957 default: 1958 return nullptr; 1959 case BaseRegField: 1960 return BaseReg; 1961 case BaseGVField: 1962 return BaseGV; 1963 case ScaledRegField: 1964 return ScaledReg; 1965 case BaseOffsField: 1966 return ConstantInt::get(IntPtrTy, BaseOffs); 1967 } 1968 } 1969 1970 void SetCombinedField(FieldName Field, Value *V, 1971 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1972 switch (Field) { 1973 default: 1974 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1975 break; 1976 case ExtAddrMode::BaseRegField: 1977 BaseReg = V; 1978 break; 1979 case ExtAddrMode::BaseGVField: 1980 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1981 // in the BaseReg field. 1982 assert(BaseReg == nullptr); 1983 BaseReg = V; 1984 BaseGV = nullptr; 1985 break; 1986 case ExtAddrMode::ScaledRegField: 1987 ScaledReg = V; 1988 // If we have a mix of scaled and unscaled addrmodes then we want scale 1989 // to be the scale and not zero. 1990 if (!Scale) 1991 for (const ExtAddrMode &AM : AddrModes) 1992 if (AM.Scale) { 1993 Scale = AM.Scale; 1994 break; 1995 } 1996 break; 1997 case ExtAddrMode::BaseOffsField: 1998 // The offset is no longer a constant, so it goes in ScaledReg with a 1999 // scale of 1. 2000 assert(ScaledReg == nullptr); 2001 ScaledReg = V; 2002 Scale = 1; 2003 BaseOffs = 0; 2004 break; 2005 } 2006 } 2007 }; 2008 2009 } // end anonymous namespace 2010 2011 #ifndef NDEBUG 2012 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2013 AM.print(OS); 2014 return OS; 2015 } 2016 #endif 2017 2018 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2019 void ExtAddrMode::print(raw_ostream &OS) const { 2020 bool NeedPlus = false; 2021 OS << "["; 2022 if (BaseGV) { 2023 OS << (NeedPlus ? " + " : "") 2024 << "GV:"; 2025 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2026 NeedPlus = true; 2027 } 2028 2029 if (BaseOffs) { 2030 OS << (NeedPlus ? " + " : "") 2031 << BaseOffs; 2032 NeedPlus = true; 2033 } 2034 2035 if (BaseReg) { 2036 OS << (NeedPlus ? " + " : "") 2037 << "Base:"; 2038 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2039 NeedPlus = true; 2040 } 2041 if (Scale) { 2042 OS << (NeedPlus ? " + " : "") 2043 << Scale << "*"; 2044 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2045 } 2046 2047 OS << ']'; 2048 } 2049 2050 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2051 print(dbgs()); 2052 dbgs() << '\n'; 2053 } 2054 #endif 2055 2056 namespace { 2057 2058 /// This class provides transaction based operation on the IR. 2059 /// Every change made through this class is recorded in the internal state and 2060 /// can be undone (rollback) until commit is called. 2061 class TypePromotionTransaction { 2062 /// This represents the common interface of the individual transaction. 2063 /// Each class implements the logic for doing one specific modification on 2064 /// the IR via the TypePromotionTransaction. 2065 class TypePromotionAction { 2066 protected: 2067 /// The Instruction modified. 2068 Instruction *Inst; 2069 2070 public: 2071 /// Constructor of the action. 2072 /// The constructor performs the related action on the IR. 2073 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2074 2075 virtual ~TypePromotionAction() = default; 2076 2077 /// Undo the modification done by this action. 2078 /// When this method is called, the IR must be in the same state as it was 2079 /// before this action was applied. 2080 /// \pre Undoing the action works if and only if the IR is in the exact same 2081 /// state as it was directly after this action was applied. 2082 virtual void undo() = 0; 2083 2084 /// Advocate every change made by this action. 2085 /// When the results on the IR of the action are to be kept, it is important 2086 /// to call this function, otherwise hidden information may be kept forever. 2087 virtual void commit() { 2088 // Nothing to be done, this action is not doing anything. 2089 } 2090 }; 2091 2092 /// Utility to remember the position of an instruction. 2093 class InsertionHandler { 2094 /// Position of an instruction. 2095 /// Either an instruction: 2096 /// - Is the first in a basic block: BB is used. 2097 /// - Has a previous instruction: PrevInst is used. 2098 union { 2099 Instruction *PrevInst; 2100 BasicBlock *BB; 2101 } Point; 2102 2103 /// Remember whether or not the instruction had a previous instruction. 2104 bool HasPrevInstruction; 2105 2106 public: 2107 /// Record the position of \p Inst. 2108 InsertionHandler(Instruction *Inst) { 2109 BasicBlock::iterator It = Inst->getIterator(); 2110 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2111 if (HasPrevInstruction) 2112 Point.PrevInst = &*--It; 2113 else 2114 Point.BB = Inst->getParent(); 2115 } 2116 2117 /// Insert \p Inst at the recorded position. 2118 void insert(Instruction *Inst) { 2119 if (HasPrevInstruction) { 2120 if (Inst->getParent()) 2121 Inst->removeFromParent(); 2122 Inst->insertAfter(Point.PrevInst); 2123 } else { 2124 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2125 if (Inst->getParent()) 2126 Inst->moveBefore(Position); 2127 else 2128 Inst->insertBefore(Position); 2129 } 2130 } 2131 }; 2132 2133 /// Move an instruction before another. 2134 class InstructionMoveBefore : public TypePromotionAction { 2135 /// Original position of the instruction. 2136 InsertionHandler Position; 2137 2138 public: 2139 /// Move \p Inst before \p Before. 2140 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2141 : TypePromotionAction(Inst), Position(Inst) { 2142 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2143 << "\n"); 2144 Inst->moveBefore(Before); 2145 } 2146 2147 /// Move the instruction back to its original position. 2148 void undo() override { 2149 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2150 Position.insert(Inst); 2151 } 2152 }; 2153 2154 /// Set the operand of an instruction with a new value. 2155 class OperandSetter : public TypePromotionAction { 2156 /// Original operand of the instruction. 2157 Value *Origin; 2158 2159 /// Index of the modified instruction. 2160 unsigned Idx; 2161 2162 public: 2163 /// Set \p Idx operand of \p Inst with \p NewVal. 2164 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2165 : TypePromotionAction(Inst), Idx(Idx) { 2166 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2167 << "for:" << *Inst << "\n" 2168 << "with:" << *NewVal << "\n"); 2169 Origin = Inst->getOperand(Idx); 2170 Inst->setOperand(Idx, NewVal); 2171 } 2172 2173 /// Restore the original value of the instruction. 2174 void undo() override { 2175 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2176 << "for: " << *Inst << "\n" 2177 << "with: " << *Origin << "\n"); 2178 Inst->setOperand(Idx, Origin); 2179 } 2180 }; 2181 2182 /// Hide the operands of an instruction. 2183 /// Do as if this instruction was not using any of its operands. 2184 class OperandsHider : public TypePromotionAction { 2185 /// The list of original operands. 2186 SmallVector<Value *, 4> OriginalValues; 2187 2188 public: 2189 /// Remove \p Inst from the uses of the operands of \p Inst. 2190 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2191 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2192 unsigned NumOpnds = Inst->getNumOperands(); 2193 OriginalValues.reserve(NumOpnds); 2194 for (unsigned It = 0; It < NumOpnds; ++It) { 2195 // Save the current operand. 2196 Value *Val = Inst->getOperand(It); 2197 OriginalValues.push_back(Val); 2198 // Set a dummy one. 2199 // We could use OperandSetter here, but that would imply an overhead 2200 // that we are not willing to pay. 2201 Inst->setOperand(It, UndefValue::get(Val->getType())); 2202 } 2203 } 2204 2205 /// Restore the original list of uses. 2206 void undo() override { 2207 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2208 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2209 Inst->setOperand(It, OriginalValues[It]); 2210 } 2211 }; 2212 2213 /// Build a truncate instruction. 2214 class TruncBuilder : public TypePromotionAction { 2215 Value *Val; 2216 2217 public: 2218 /// Build a truncate instruction of \p Opnd producing a \p Ty 2219 /// result. 2220 /// trunc Opnd to Ty. 2221 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2222 IRBuilder<> Builder(Opnd); 2223 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2224 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2225 } 2226 2227 /// Get the built value. 2228 Value *getBuiltValue() { return Val; } 2229 2230 /// Remove the built instruction. 2231 void undo() override { 2232 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2233 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2234 IVal->eraseFromParent(); 2235 } 2236 }; 2237 2238 /// Build a sign extension instruction. 2239 class SExtBuilder : public TypePromotionAction { 2240 Value *Val; 2241 2242 public: 2243 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2244 /// result. 2245 /// sext Opnd to Ty. 2246 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2247 : TypePromotionAction(InsertPt) { 2248 IRBuilder<> Builder(InsertPt); 2249 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2250 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2251 } 2252 2253 /// Get the built value. 2254 Value *getBuiltValue() { return Val; } 2255 2256 /// Remove the built instruction. 2257 void undo() override { 2258 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2259 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2260 IVal->eraseFromParent(); 2261 } 2262 }; 2263 2264 /// Build a zero extension instruction. 2265 class ZExtBuilder : public TypePromotionAction { 2266 Value *Val; 2267 2268 public: 2269 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2270 /// result. 2271 /// zext Opnd to Ty. 2272 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2273 : TypePromotionAction(InsertPt) { 2274 IRBuilder<> Builder(InsertPt); 2275 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2276 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2277 } 2278 2279 /// Get the built value. 2280 Value *getBuiltValue() { return Val; } 2281 2282 /// Remove the built instruction. 2283 void undo() override { 2284 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2285 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2286 IVal->eraseFromParent(); 2287 } 2288 }; 2289 2290 /// Mutate an instruction to another type. 2291 class TypeMutator : public TypePromotionAction { 2292 /// Record the original type. 2293 Type *OrigTy; 2294 2295 public: 2296 /// Mutate the type of \p Inst into \p NewTy. 2297 TypeMutator(Instruction *Inst, Type *NewTy) 2298 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2299 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2300 << "\n"); 2301 Inst->mutateType(NewTy); 2302 } 2303 2304 /// Mutate the instruction back to its original type. 2305 void undo() override { 2306 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2307 << "\n"); 2308 Inst->mutateType(OrigTy); 2309 } 2310 }; 2311 2312 /// Replace the uses of an instruction by another instruction. 2313 class UsesReplacer : public TypePromotionAction { 2314 /// Helper structure to keep track of the replaced uses. 2315 struct InstructionAndIdx { 2316 /// The instruction using the instruction. 2317 Instruction *Inst; 2318 2319 /// The index where this instruction is used for Inst. 2320 unsigned Idx; 2321 2322 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2323 : Inst(Inst), Idx(Idx) {} 2324 }; 2325 2326 /// Keep track of the original uses (pair Instruction, Index). 2327 SmallVector<InstructionAndIdx, 4> OriginalUses; 2328 2329 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2330 2331 public: 2332 /// Replace all the use of \p Inst by \p New. 2333 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2334 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2335 << "\n"); 2336 // Record the original uses. 2337 for (Use &U : Inst->uses()) { 2338 Instruction *UserI = cast<Instruction>(U.getUser()); 2339 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2340 } 2341 // Now, we can replace the uses. 2342 Inst->replaceAllUsesWith(New); 2343 } 2344 2345 /// Reassign the original uses of Inst to Inst. 2346 void undo() override { 2347 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2348 for (use_iterator UseIt = OriginalUses.begin(), 2349 EndIt = OriginalUses.end(); 2350 UseIt != EndIt; ++UseIt) { 2351 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2352 } 2353 } 2354 }; 2355 2356 /// Remove an instruction from the IR. 2357 class InstructionRemover : public TypePromotionAction { 2358 /// Original position of the instruction. 2359 InsertionHandler Inserter; 2360 2361 /// Helper structure to hide all the link to the instruction. In other 2362 /// words, this helps to do as if the instruction was removed. 2363 OperandsHider Hider; 2364 2365 /// Keep track of the uses replaced, if any. 2366 UsesReplacer *Replacer = nullptr; 2367 2368 /// Keep track of instructions removed. 2369 SetOfInstrs &RemovedInsts; 2370 2371 public: 2372 /// Remove all reference of \p Inst and optionally replace all its 2373 /// uses with New. 2374 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2375 /// \pre If !Inst->use_empty(), then New != nullptr 2376 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2377 Value *New = nullptr) 2378 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2379 RemovedInsts(RemovedInsts) { 2380 if (New) 2381 Replacer = new UsesReplacer(Inst, New); 2382 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2383 RemovedInsts.insert(Inst); 2384 /// The instructions removed here will be freed after completing 2385 /// optimizeBlock() for all blocks as we need to keep track of the 2386 /// removed instructions during promotion. 2387 Inst->removeFromParent(); 2388 } 2389 2390 ~InstructionRemover() override { delete Replacer; } 2391 2392 /// Resurrect the instruction and reassign it to the proper uses if 2393 /// new value was provided when build this action. 2394 void undo() override { 2395 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2396 Inserter.insert(Inst); 2397 if (Replacer) 2398 Replacer->undo(); 2399 Hider.undo(); 2400 RemovedInsts.erase(Inst); 2401 } 2402 }; 2403 2404 public: 2405 /// Restoration point. 2406 /// The restoration point is a pointer to an action instead of an iterator 2407 /// because the iterator may be invalidated but not the pointer. 2408 using ConstRestorationPt = const TypePromotionAction *; 2409 2410 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2411 : RemovedInsts(RemovedInsts) {} 2412 2413 /// Advocate every changes made in that transaction. 2414 void commit(); 2415 2416 /// Undo all the changes made after the given point. 2417 void rollback(ConstRestorationPt Point); 2418 2419 /// Get the current restoration point. 2420 ConstRestorationPt getRestorationPoint() const; 2421 2422 /// \name API for IR modification with state keeping to support rollback. 2423 /// @{ 2424 /// Same as Instruction::setOperand. 2425 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2426 2427 /// Same as Instruction::eraseFromParent. 2428 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2429 2430 /// Same as Value::replaceAllUsesWith. 2431 void replaceAllUsesWith(Instruction *Inst, Value *New); 2432 2433 /// Same as Value::mutateType. 2434 void mutateType(Instruction *Inst, Type *NewTy); 2435 2436 /// Same as IRBuilder::createTrunc. 2437 Value *createTrunc(Instruction *Opnd, Type *Ty); 2438 2439 /// Same as IRBuilder::createSExt. 2440 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2441 2442 /// Same as IRBuilder::createZExt. 2443 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2444 2445 /// Same as Instruction::moveBefore. 2446 void moveBefore(Instruction *Inst, Instruction *Before); 2447 /// @} 2448 2449 private: 2450 /// The ordered list of actions made so far. 2451 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2452 2453 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2454 2455 SetOfInstrs &RemovedInsts; 2456 }; 2457 2458 } // end anonymous namespace 2459 2460 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2461 Value *NewVal) { 2462 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2463 Inst, Idx, NewVal)); 2464 } 2465 2466 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2467 Value *NewVal) { 2468 Actions.push_back( 2469 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2470 Inst, RemovedInsts, NewVal)); 2471 } 2472 2473 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2474 Value *New) { 2475 Actions.push_back( 2476 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2477 } 2478 2479 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2480 Actions.push_back( 2481 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2482 } 2483 2484 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2485 Type *Ty) { 2486 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2487 Value *Val = Ptr->getBuiltValue(); 2488 Actions.push_back(std::move(Ptr)); 2489 return Val; 2490 } 2491 2492 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2493 Value *Opnd, Type *Ty) { 2494 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2495 Value *Val = Ptr->getBuiltValue(); 2496 Actions.push_back(std::move(Ptr)); 2497 return Val; 2498 } 2499 2500 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2501 Value *Opnd, Type *Ty) { 2502 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2503 Value *Val = Ptr->getBuiltValue(); 2504 Actions.push_back(std::move(Ptr)); 2505 return Val; 2506 } 2507 2508 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2509 Instruction *Before) { 2510 Actions.push_back( 2511 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2512 Inst, Before)); 2513 } 2514 2515 TypePromotionTransaction::ConstRestorationPt 2516 TypePromotionTransaction::getRestorationPoint() const { 2517 return !Actions.empty() ? Actions.back().get() : nullptr; 2518 } 2519 2520 void TypePromotionTransaction::commit() { 2521 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2522 ++It) 2523 (*It)->commit(); 2524 Actions.clear(); 2525 } 2526 2527 void TypePromotionTransaction::rollback( 2528 TypePromotionTransaction::ConstRestorationPt Point) { 2529 while (!Actions.empty() && Point != Actions.back().get()) { 2530 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2531 Curr->undo(); 2532 } 2533 } 2534 2535 namespace { 2536 2537 /// A helper class for matching addressing modes. 2538 /// 2539 /// This encapsulates the logic for matching the target-legal addressing modes. 2540 class AddressingModeMatcher { 2541 SmallVectorImpl<Instruction*> &AddrModeInsts; 2542 const TargetLowering &TLI; 2543 const TargetRegisterInfo &TRI; 2544 const DataLayout &DL; 2545 2546 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2547 /// the memory instruction that we're computing this address for. 2548 Type *AccessTy; 2549 unsigned AddrSpace; 2550 Instruction *MemoryInst; 2551 2552 /// This is the addressing mode that we're building up. This is 2553 /// part of the return value of this addressing mode matching stuff. 2554 ExtAddrMode &AddrMode; 2555 2556 /// The instructions inserted by other CodeGenPrepare optimizations. 2557 const SetOfInstrs &InsertedInsts; 2558 2559 /// A map from the instructions to their type before promotion. 2560 InstrToOrigTy &PromotedInsts; 2561 2562 /// The ongoing transaction where every action should be registered. 2563 TypePromotionTransaction &TPT; 2564 2565 // A GEP which has too large offset to be folded into the addressing mode. 2566 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2567 2568 /// This is set to true when we should not do profitability checks. 2569 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2570 bool IgnoreProfitability; 2571 2572 AddressingModeMatcher( 2573 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2574 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2575 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2576 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2577 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2578 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2579 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2580 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2581 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2582 IgnoreProfitability = false; 2583 } 2584 2585 public: 2586 /// Find the maximal addressing mode that a load/store of V can fold, 2587 /// give an access type of AccessTy. This returns a list of involved 2588 /// instructions in AddrModeInsts. 2589 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2590 /// optimizations. 2591 /// \p PromotedInsts maps the instructions to their type before promotion. 2592 /// \p The ongoing transaction where every action should be registered. 2593 static ExtAddrMode 2594 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2595 SmallVectorImpl<Instruction *> &AddrModeInsts, 2596 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2597 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2598 TypePromotionTransaction &TPT, 2599 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2600 ExtAddrMode Result; 2601 2602 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2603 MemoryInst, Result, InsertedInsts, 2604 PromotedInsts, TPT, LargeOffsetGEP) 2605 .matchAddr(V, 0); 2606 (void)Success; assert(Success && "Couldn't select *anything*?"); 2607 return Result; 2608 } 2609 2610 private: 2611 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2612 bool matchAddr(Value *V, unsigned Depth); 2613 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2614 bool *MovedAway = nullptr); 2615 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2616 ExtAddrMode &AMBefore, 2617 ExtAddrMode &AMAfter); 2618 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2619 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2620 Value *PromotedOperand) const; 2621 }; 2622 2623 /// Keep track of simplification of Phi nodes. 2624 /// Accept the set of all phi nodes and erase phi node from this set 2625 /// if it is simplified. 2626 class SimplificationTracker { 2627 DenseMap<Value *, Value *> Storage; 2628 const SimplifyQuery &SQ; 2629 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2630 // order when iterating over the set in MatchPhiSet. 2631 SmallSetVector<PHINode *, 32> AllPhiNodes; 2632 // Tracks newly created Select nodes. 2633 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2634 2635 public: 2636 SimplificationTracker(const SimplifyQuery &sq) 2637 : SQ(sq) {} 2638 2639 Value *Get(Value *V) { 2640 do { 2641 auto SV = Storage.find(V); 2642 if (SV == Storage.end()) 2643 return V; 2644 V = SV->second; 2645 } while (true); 2646 } 2647 2648 Value *Simplify(Value *Val) { 2649 SmallVector<Value *, 32> WorkList; 2650 SmallPtrSet<Value *, 32> Visited; 2651 WorkList.push_back(Val); 2652 while (!WorkList.empty()) { 2653 auto P = WorkList.pop_back_val(); 2654 if (!Visited.insert(P).second) 2655 continue; 2656 if (auto *PI = dyn_cast<Instruction>(P)) 2657 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2658 for (auto *U : PI->users()) 2659 WorkList.push_back(cast<Value>(U)); 2660 Put(PI, V); 2661 PI->replaceAllUsesWith(V); 2662 if (auto *PHI = dyn_cast<PHINode>(PI)) 2663 AllPhiNodes.remove(PHI); 2664 if (auto *Select = dyn_cast<SelectInst>(PI)) 2665 AllSelectNodes.erase(Select); 2666 PI->eraseFromParent(); 2667 } 2668 } 2669 return Get(Val); 2670 } 2671 2672 void Put(Value *From, Value *To) { 2673 Storage.insert({ From, To }); 2674 } 2675 2676 void ReplacePhi(PHINode *From, PHINode *To) { 2677 Value* OldReplacement = Get(From); 2678 while (OldReplacement != From) { 2679 From = To; 2680 To = dyn_cast<PHINode>(OldReplacement); 2681 OldReplacement = Get(From); 2682 } 2683 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2684 Put(From, To); 2685 From->replaceAllUsesWith(To); 2686 AllPhiNodes.remove(From); 2687 From->eraseFromParent(); 2688 } 2689 2690 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2691 2692 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2693 2694 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2695 2696 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2697 2698 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2699 2700 void destroyNewNodes(Type *CommonType) { 2701 // For safe erasing, replace the uses with dummy value first. 2702 auto Dummy = UndefValue::get(CommonType); 2703 for (auto I : AllPhiNodes) { 2704 I->replaceAllUsesWith(Dummy); 2705 I->eraseFromParent(); 2706 } 2707 AllPhiNodes.clear(); 2708 for (auto I : AllSelectNodes) { 2709 I->replaceAllUsesWith(Dummy); 2710 I->eraseFromParent(); 2711 } 2712 AllSelectNodes.clear(); 2713 } 2714 }; 2715 2716 /// A helper class for combining addressing modes. 2717 class AddressingModeCombiner { 2718 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2719 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2720 typedef std::pair<PHINode *, PHINode *> PHIPair; 2721 2722 private: 2723 /// The addressing modes we've collected. 2724 SmallVector<ExtAddrMode, 16> AddrModes; 2725 2726 /// The field in which the AddrModes differ, when we have more than one. 2727 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2728 2729 /// Are the AddrModes that we have all just equal to their original values? 2730 bool AllAddrModesTrivial = true; 2731 2732 /// Common Type for all different fields in addressing modes. 2733 Type *CommonType; 2734 2735 /// SimplifyQuery for simplifyInstruction utility. 2736 const SimplifyQuery &SQ; 2737 2738 /// Original Address. 2739 ValueInBB Original; 2740 2741 public: 2742 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2743 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2744 2745 /// Get the combined AddrMode 2746 const ExtAddrMode &getAddrMode() const { 2747 return AddrModes[0]; 2748 } 2749 2750 /// Add a new AddrMode if it's compatible with the AddrModes we already 2751 /// have. 2752 /// \return True iff we succeeded in doing so. 2753 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2754 // Take note of if we have any non-trivial AddrModes, as we need to detect 2755 // when all AddrModes are trivial as then we would introduce a phi or select 2756 // which just duplicates what's already there. 2757 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2758 2759 // If this is the first addrmode then everything is fine. 2760 if (AddrModes.empty()) { 2761 AddrModes.emplace_back(NewAddrMode); 2762 return true; 2763 } 2764 2765 // Figure out how different this is from the other address modes, which we 2766 // can do just by comparing against the first one given that we only care 2767 // about the cumulative difference. 2768 ExtAddrMode::FieldName ThisDifferentField = 2769 AddrModes[0].compare(NewAddrMode); 2770 if (DifferentField == ExtAddrMode::NoField) 2771 DifferentField = ThisDifferentField; 2772 else if (DifferentField != ThisDifferentField) 2773 DifferentField = ExtAddrMode::MultipleFields; 2774 2775 // If NewAddrMode differs in more than one dimension we cannot handle it. 2776 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2777 2778 // If Scale Field is different then we reject. 2779 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2780 2781 // We also must reject the case when base offset is different and 2782 // scale reg is not null, we cannot handle this case due to merge of 2783 // different offsets will be used as ScaleReg. 2784 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2785 !NewAddrMode.ScaledReg); 2786 2787 // We also must reject the case when GV is different and BaseReg installed 2788 // due to we want to use base reg as a merge of GV values. 2789 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2790 !NewAddrMode.HasBaseReg); 2791 2792 // Even if NewAddMode is the same we still need to collect it due to 2793 // original value is different. And later we will need all original values 2794 // as anchors during finding the common Phi node. 2795 if (CanHandle) 2796 AddrModes.emplace_back(NewAddrMode); 2797 else 2798 AddrModes.clear(); 2799 2800 return CanHandle; 2801 } 2802 2803 /// Combine the addressing modes we've collected into a single 2804 /// addressing mode. 2805 /// \return True iff we successfully combined them or we only had one so 2806 /// didn't need to combine them anyway. 2807 bool combineAddrModes() { 2808 // If we have no AddrModes then they can't be combined. 2809 if (AddrModes.size() == 0) 2810 return false; 2811 2812 // A single AddrMode can trivially be combined. 2813 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2814 return true; 2815 2816 // If the AddrModes we collected are all just equal to the value they are 2817 // derived from then combining them wouldn't do anything useful. 2818 if (AllAddrModesTrivial) 2819 return false; 2820 2821 if (!addrModeCombiningAllowed()) 2822 return false; 2823 2824 // Build a map between <original value, basic block where we saw it> to 2825 // value of base register. 2826 // Bail out if there is no common type. 2827 FoldAddrToValueMapping Map; 2828 if (!initializeMap(Map)) 2829 return false; 2830 2831 Value *CommonValue = findCommon(Map); 2832 if (CommonValue) 2833 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2834 return CommonValue != nullptr; 2835 } 2836 2837 private: 2838 /// Initialize Map with anchor values. For address seen in some BB 2839 /// we set the value of different field saw in this address. 2840 /// If address is not an instruction than basic block is set to null. 2841 /// At the same time we find a common type for different field we will 2842 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2843 /// Return false if there is no common type found. 2844 bool initializeMap(FoldAddrToValueMapping &Map) { 2845 // Keep track of keys where the value is null. We will need to replace it 2846 // with constant null when we know the common type. 2847 SmallVector<ValueInBB, 2> NullValue; 2848 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2849 for (auto &AM : AddrModes) { 2850 BasicBlock *BB = nullptr; 2851 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2852 BB = I->getParent(); 2853 2854 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2855 if (DV) { 2856 auto *Type = DV->getType(); 2857 if (CommonType && CommonType != Type) 2858 return false; 2859 CommonType = Type; 2860 Map[{ AM.OriginalValue, BB }] = DV; 2861 } else { 2862 NullValue.push_back({ AM.OriginalValue, BB }); 2863 } 2864 } 2865 assert(CommonType && "At least one non-null value must be!"); 2866 for (auto VIBB : NullValue) 2867 Map[VIBB] = Constant::getNullValue(CommonType); 2868 return true; 2869 } 2870 2871 /// We have mapping between value A and basic block where value A 2872 /// seen to other value B where B was a field in addressing mode represented 2873 /// by A. Also we have an original value C representing an address in some 2874 /// basic block. Traversing from C through phi and selects we ended up with 2875 /// A's in a map. This utility function tries to find a value V which is a 2876 /// field in addressing mode C and traversing through phi nodes and selects 2877 /// we will end up in corresponded values B in a map. 2878 /// The utility will create a new Phi/Selects if needed. 2879 // The simple example looks as follows: 2880 // BB1: 2881 // p1 = b1 + 40 2882 // br cond BB2, BB3 2883 // BB2: 2884 // p2 = b2 + 40 2885 // br BB3 2886 // BB3: 2887 // p = phi [p1, BB1], [p2, BB2] 2888 // v = load p 2889 // Map is 2890 // <p1, BB1> -> b1 2891 // <p2, BB2> -> b2 2892 // Request is 2893 // <p, BB3> -> ? 2894 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2895 Value *findCommon(FoldAddrToValueMapping &Map) { 2896 // Tracks the simplification of newly created phi nodes. The reason we use 2897 // this mapping is because we will add new created Phi nodes in AddrToBase. 2898 // Simplification of Phi nodes is recursive, so some Phi node may 2899 // be simplified after we added it to AddrToBase. 2900 // Using this mapping we can find the current value in AddrToBase. 2901 SimplificationTracker ST(SQ); 2902 2903 // First step, DFS to create PHI nodes for all intermediate blocks. 2904 // Also fill traverse order for the second step. 2905 SmallVector<ValueInBB, 32> TraverseOrder; 2906 InsertPlaceholders(Map, TraverseOrder, ST); 2907 2908 // Second Step, fill new nodes by merged values and simplify if possible. 2909 FillPlaceholders(Map, TraverseOrder, ST); 2910 2911 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2912 ST.destroyNewNodes(CommonType); 2913 return nullptr; 2914 } 2915 2916 // Now we'd like to match New Phi nodes to existed ones. 2917 unsigned PhiNotMatchedCount = 0; 2918 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2919 ST.destroyNewNodes(CommonType); 2920 return nullptr; 2921 } 2922 2923 auto *Result = ST.Get(Map.find(Original)->second); 2924 if (Result) { 2925 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2926 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2927 } 2928 return Result; 2929 } 2930 2931 /// Try to match PHI node to Candidate. 2932 /// Matcher tracks the matched Phi nodes. 2933 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2934 SmallSetVector<PHIPair, 8> &Matcher, 2935 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2936 SmallVector<PHIPair, 8> WorkList; 2937 Matcher.insert({ PHI, Candidate }); 2938 WorkList.push_back({ PHI, Candidate }); 2939 SmallSet<PHIPair, 8> Visited; 2940 while (!WorkList.empty()) { 2941 auto Item = WorkList.pop_back_val(); 2942 if (!Visited.insert(Item).second) 2943 continue; 2944 // We iterate over all incoming values to Phi to compare them. 2945 // If values are different and both of them Phi and the first one is a 2946 // Phi we added (subject to match) and both of them is in the same basic 2947 // block then we can match our pair if values match. So we state that 2948 // these values match and add it to work list to verify that. 2949 for (auto B : Item.first->blocks()) { 2950 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2951 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2952 if (FirstValue == SecondValue) 2953 continue; 2954 2955 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2956 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2957 2958 // One of them is not Phi or 2959 // The first one is not Phi node from the set we'd like to match or 2960 // Phi nodes from different basic blocks then 2961 // we will not be able to match. 2962 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2963 FirstPhi->getParent() != SecondPhi->getParent()) 2964 return false; 2965 2966 // If we already matched them then continue. 2967 if (Matcher.count({ FirstPhi, SecondPhi })) 2968 continue; 2969 // So the values are different and does not match. So we need them to 2970 // match. 2971 Matcher.insert({ FirstPhi, SecondPhi }); 2972 // But me must check it. 2973 WorkList.push_back({ FirstPhi, SecondPhi }); 2974 } 2975 } 2976 return true; 2977 } 2978 2979 /// For the given set of PHI nodes (in the SimplificationTracker) try 2980 /// to find their equivalents. 2981 /// Returns false if this matching fails and creation of new Phi is disabled. 2982 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2983 unsigned &PhiNotMatchedCount) { 2984 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2985 // in a deterministic order below. 2986 SmallSetVector<PHIPair, 8> Matched; 2987 SmallPtrSet<PHINode *, 8> WillNotMatch; 2988 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2989 while (PhiNodesToMatch.size()) { 2990 PHINode *PHI = *PhiNodesToMatch.begin(); 2991 2992 // Add us, if no Phi nodes in the basic block we do not match. 2993 WillNotMatch.clear(); 2994 WillNotMatch.insert(PHI); 2995 2996 // Traverse all Phis until we found equivalent or fail to do that. 2997 bool IsMatched = false; 2998 for (auto &P : PHI->getParent()->phis()) { 2999 if (&P == PHI) 3000 continue; 3001 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3002 break; 3003 // If it does not match, collect all Phi nodes from matcher. 3004 // if we end up with no match, them all these Phi nodes will not match 3005 // later. 3006 for (auto M : Matched) 3007 WillNotMatch.insert(M.first); 3008 Matched.clear(); 3009 } 3010 if (IsMatched) { 3011 // Replace all matched values and erase them. 3012 for (auto MV : Matched) 3013 ST.ReplacePhi(MV.first, MV.second); 3014 Matched.clear(); 3015 continue; 3016 } 3017 // If we are not allowed to create new nodes then bail out. 3018 if (!AllowNewPhiNodes) 3019 return false; 3020 // Just remove all seen values in matcher. They will not match anything. 3021 PhiNotMatchedCount += WillNotMatch.size(); 3022 for (auto *P : WillNotMatch) 3023 PhiNodesToMatch.remove(P); 3024 } 3025 return true; 3026 } 3027 /// Fill the placeholder with values from predecessors and simplify it. 3028 void FillPlaceholders(FoldAddrToValueMapping &Map, 3029 SmallVectorImpl<ValueInBB> &TraverseOrder, 3030 SimplificationTracker &ST) { 3031 while (!TraverseOrder.empty()) { 3032 auto Current = TraverseOrder.pop_back_val(); 3033 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3034 Value *CurrentValue = Current.first; 3035 BasicBlock *CurrentBlock = Current.second; 3036 Value *V = Map[Current]; 3037 3038 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3039 // CurrentValue also must be Select. 3040 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3041 auto *TrueValue = CurrentSelect->getTrueValue(); 3042 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3043 ? CurrentBlock 3044 : nullptr }; 3045 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3046 Select->setTrueValue(ST.Get(Map[TrueItem])); 3047 auto *FalseValue = CurrentSelect->getFalseValue(); 3048 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3049 ? CurrentBlock 3050 : nullptr }; 3051 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3052 Select->setFalseValue(ST.Get(Map[FalseItem])); 3053 } else { 3054 // Must be a Phi node then. 3055 PHINode *PHI = cast<PHINode>(V); 3056 // Fill the Phi node with values from predecessors. 3057 bool IsDefinedInThisBB = 3058 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3059 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3060 for (auto B : predecessors(CurrentBlock)) { 3061 Value *PV = IsDefinedInThisBB 3062 ? CurrentPhi->getIncomingValueForBlock(B) 3063 : CurrentValue; 3064 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3065 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3066 PHI->addIncoming(ST.Get(Map[item]), B); 3067 } 3068 } 3069 // Simplify if possible. 3070 Map[Current] = ST.Simplify(V); 3071 } 3072 } 3073 3074 /// Starting from value recursively iterates over predecessors up to known 3075 /// ending values represented in a map. For each traversed block inserts 3076 /// a placeholder Phi or Select. 3077 /// Reports all new created Phi/Select nodes by adding them to set. 3078 /// Also reports and order in what basic blocks have been traversed. 3079 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3080 SmallVectorImpl<ValueInBB> &TraverseOrder, 3081 SimplificationTracker &ST) { 3082 SmallVector<ValueInBB, 32> Worklist; 3083 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3084 "Address must be a Phi or Select node"); 3085 auto *Dummy = UndefValue::get(CommonType); 3086 Worklist.push_back(Original); 3087 while (!Worklist.empty()) { 3088 auto Current = Worklist.pop_back_val(); 3089 // If value is not an instruction it is something global, constant, 3090 // parameter and we can say that this value is observable in any block. 3091 // Set block to null to denote it. 3092 // Also please take into account that it is how we build anchors. 3093 if (!isa<Instruction>(Current.first)) 3094 Current.second = nullptr; 3095 // if it is already visited or it is an ending value then skip it. 3096 if (Map.find(Current) != Map.end()) 3097 continue; 3098 TraverseOrder.push_back(Current); 3099 3100 Value *CurrentValue = Current.first; 3101 BasicBlock *CurrentBlock = Current.second; 3102 // CurrentValue must be a Phi node or select. All others must be covered 3103 // by anchors. 3104 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3105 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3106 3107 unsigned PredCount = pred_size(CurrentBlock); 3108 // if Current Value is not defined in this basic block we are interested 3109 // in values in predecessors. 3110 if (!IsDefinedInThisBB) { 3111 assert(PredCount && "Unreachable block?!"); 3112 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3113 &CurrentBlock->front()); 3114 Map[Current] = PHI; 3115 ST.insertNewPhi(PHI); 3116 // Add all predecessors in work list. 3117 for (auto B : predecessors(CurrentBlock)) 3118 Worklist.push_back({ CurrentValue, B }); 3119 continue; 3120 } 3121 // Value is defined in this basic block. 3122 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3123 // Is it OK to get metadata from OrigSelect?! 3124 // Create a Select placeholder with dummy value. 3125 SelectInst *Select = 3126 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3127 OrigSelect->getName(), OrigSelect, OrigSelect); 3128 Map[Current] = Select; 3129 ST.insertNewSelect(Select); 3130 // We are interested in True and False value in this basic block. 3131 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3132 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3133 } else { 3134 // It must be a Phi node then. 3135 auto *CurrentPhi = cast<PHINode>(CurrentI); 3136 // Create new Phi node for merge of bases. 3137 assert(PredCount && "Unreachable block?!"); 3138 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3139 &CurrentBlock->front()); 3140 Map[Current] = PHI; 3141 ST.insertNewPhi(PHI); 3142 3143 // Add all predecessors in work list. 3144 for (auto B : predecessors(CurrentBlock)) 3145 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3146 } 3147 } 3148 } 3149 3150 bool addrModeCombiningAllowed() { 3151 if (DisableComplexAddrModes) 3152 return false; 3153 switch (DifferentField) { 3154 default: 3155 return false; 3156 case ExtAddrMode::BaseRegField: 3157 return AddrSinkCombineBaseReg; 3158 case ExtAddrMode::BaseGVField: 3159 return AddrSinkCombineBaseGV; 3160 case ExtAddrMode::BaseOffsField: 3161 return AddrSinkCombineBaseOffs; 3162 case ExtAddrMode::ScaledRegField: 3163 return AddrSinkCombineScaledReg; 3164 } 3165 } 3166 }; 3167 } // end anonymous namespace 3168 3169 /// Try adding ScaleReg*Scale to the current addressing mode. 3170 /// Return true and update AddrMode if this addr mode is legal for the target, 3171 /// false if not. 3172 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3173 unsigned Depth) { 3174 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3175 // mode. Just process that directly. 3176 if (Scale == 1) 3177 return matchAddr(ScaleReg, Depth); 3178 3179 // If the scale is 0, it takes nothing to add this. 3180 if (Scale == 0) 3181 return true; 3182 3183 // If we already have a scale of this value, we can add to it, otherwise, we 3184 // need an available scale field. 3185 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3186 return false; 3187 3188 ExtAddrMode TestAddrMode = AddrMode; 3189 3190 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3191 // [A+B + A*7] -> [B+A*8]. 3192 TestAddrMode.Scale += Scale; 3193 TestAddrMode.ScaledReg = ScaleReg; 3194 3195 // If the new address isn't legal, bail out. 3196 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3197 return false; 3198 3199 // It was legal, so commit it. 3200 AddrMode = TestAddrMode; 3201 3202 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3203 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3204 // X*Scale + C*Scale to addr mode. 3205 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3206 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3207 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3208 TestAddrMode.ScaledReg = AddLHS; 3209 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3210 3211 // If this addressing mode is legal, commit it and remember that we folded 3212 // this instruction. 3213 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3214 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3215 AddrMode = TestAddrMode; 3216 return true; 3217 } 3218 } 3219 3220 // Otherwise, not (x+c)*scale, just return what we have. 3221 return true; 3222 } 3223 3224 /// This is a little filter, which returns true if an addressing computation 3225 /// involving I might be folded into a load/store accessing it. 3226 /// This doesn't need to be perfect, but needs to accept at least 3227 /// the set of instructions that MatchOperationAddr can. 3228 static bool MightBeFoldableInst(Instruction *I) { 3229 switch (I->getOpcode()) { 3230 case Instruction::BitCast: 3231 case Instruction::AddrSpaceCast: 3232 // Don't touch identity bitcasts. 3233 if (I->getType() == I->getOperand(0)->getType()) 3234 return false; 3235 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3236 case Instruction::PtrToInt: 3237 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3238 return true; 3239 case Instruction::IntToPtr: 3240 // We know the input is intptr_t, so this is foldable. 3241 return true; 3242 case Instruction::Add: 3243 return true; 3244 case Instruction::Mul: 3245 case Instruction::Shl: 3246 // Can only handle X*C and X << C. 3247 return isa<ConstantInt>(I->getOperand(1)); 3248 case Instruction::GetElementPtr: 3249 return true; 3250 default: 3251 return false; 3252 } 3253 } 3254 3255 /// Check whether or not \p Val is a legal instruction for \p TLI. 3256 /// \note \p Val is assumed to be the product of some type promotion. 3257 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3258 /// to be legal, as the non-promoted value would have had the same state. 3259 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3260 const DataLayout &DL, Value *Val) { 3261 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3262 if (!PromotedInst) 3263 return false; 3264 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3265 // If the ISDOpcode is undefined, it was undefined before the promotion. 3266 if (!ISDOpcode) 3267 return true; 3268 // Otherwise, check if the promoted instruction is legal or not. 3269 return TLI.isOperationLegalOrCustom( 3270 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3271 } 3272 3273 namespace { 3274 3275 /// Hepler class to perform type promotion. 3276 class TypePromotionHelper { 3277 /// Utility function to check whether or not a sign or zero extension 3278 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3279 /// either using the operands of \p Inst or promoting \p Inst. 3280 /// The type of the extension is defined by \p IsSExt. 3281 /// In other words, check if: 3282 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3283 /// #1 Promotion applies: 3284 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3285 /// #2 Operand reuses: 3286 /// ext opnd1 to ConsideredExtType. 3287 /// \p PromotedInsts maps the instructions to their type before promotion. 3288 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3289 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3290 3291 /// Utility function to determine if \p OpIdx should be promoted when 3292 /// promoting \p Inst. 3293 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3294 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3295 } 3296 3297 /// Utility function to promote the operand of \p Ext when this 3298 /// operand is a promotable trunc or sext or zext. 3299 /// \p PromotedInsts maps the instructions to their type before promotion. 3300 /// \p CreatedInstsCost[out] contains the cost of all instructions 3301 /// created to promote the operand of Ext. 3302 /// Newly added extensions are inserted in \p Exts. 3303 /// Newly added truncates are inserted in \p Truncs. 3304 /// Should never be called directly. 3305 /// \return The promoted value which is used instead of Ext. 3306 static Value *promoteOperandForTruncAndAnyExt( 3307 Instruction *Ext, TypePromotionTransaction &TPT, 3308 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3309 SmallVectorImpl<Instruction *> *Exts, 3310 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3311 3312 /// Utility function to promote the operand of \p Ext when this 3313 /// operand is promotable and is not a supported trunc or sext. 3314 /// \p PromotedInsts maps the instructions to their type before promotion. 3315 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3316 /// created to promote the operand of Ext. 3317 /// Newly added extensions are inserted in \p Exts. 3318 /// Newly added truncates are inserted in \p Truncs. 3319 /// Should never be called directly. 3320 /// \return The promoted value which is used instead of Ext. 3321 static Value *promoteOperandForOther(Instruction *Ext, 3322 TypePromotionTransaction &TPT, 3323 InstrToOrigTy &PromotedInsts, 3324 unsigned &CreatedInstsCost, 3325 SmallVectorImpl<Instruction *> *Exts, 3326 SmallVectorImpl<Instruction *> *Truncs, 3327 const TargetLowering &TLI, bool IsSExt); 3328 3329 /// \see promoteOperandForOther. 3330 static Value *signExtendOperandForOther( 3331 Instruction *Ext, TypePromotionTransaction &TPT, 3332 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3333 SmallVectorImpl<Instruction *> *Exts, 3334 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3335 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3336 Exts, Truncs, TLI, true); 3337 } 3338 3339 /// \see promoteOperandForOther. 3340 static Value *zeroExtendOperandForOther( 3341 Instruction *Ext, TypePromotionTransaction &TPT, 3342 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3343 SmallVectorImpl<Instruction *> *Exts, 3344 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3345 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3346 Exts, Truncs, TLI, false); 3347 } 3348 3349 public: 3350 /// Type for the utility function that promotes the operand of Ext. 3351 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3352 InstrToOrigTy &PromotedInsts, 3353 unsigned &CreatedInstsCost, 3354 SmallVectorImpl<Instruction *> *Exts, 3355 SmallVectorImpl<Instruction *> *Truncs, 3356 const TargetLowering &TLI); 3357 3358 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3359 /// action to promote the operand of \p Ext instead of using Ext. 3360 /// \return NULL if no promotable action is possible with the current 3361 /// sign extension. 3362 /// \p InsertedInsts keeps track of all the instructions inserted by the 3363 /// other CodeGenPrepare optimizations. This information is important 3364 /// because we do not want to promote these instructions as CodeGenPrepare 3365 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3366 /// \p PromotedInsts maps the instructions to their type before promotion. 3367 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3368 const TargetLowering &TLI, 3369 const InstrToOrigTy &PromotedInsts); 3370 }; 3371 3372 } // end anonymous namespace 3373 3374 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3375 Type *ConsideredExtType, 3376 const InstrToOrigTy &PromotedInsts, 3377 bool IsSExt) { 3378 // The promotion helper does not know how to deal with vector types yet. 3379 // To be able to fix that, we would need to fix the places where we 3380 // statically extend, e.g., constants and such. 3381 if (Inst->getType()->isVectorTy()) 3382 return false; 3383 3384 // We can always get through zext. 3385 if (isa<ZExtInst>(Inst)) 3386 return true; 3387 3388 // sext(sext) is ok too. 3389 if (IsSExt && isa<SExtInst>(Inst)) 3390 return true; 3391 3392 // We can get through binary operator, if it is legal. In other words, the 3393 // binary operator must have a nuw or nsw flag. 3394 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3395 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3396 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3397 (IsSExt && BinOp->hasNoSignedWrap()))) 3398 return true; 3399 3400 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3401 if ((Inst->getOpcode() == Instruction::And || 3402 Inst->getOpcode() == Instruction::Or)) 3403 return true; 3404 3405 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3406 if (Inst->getOpcode() == Instruction::Xor) { 3407 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3408 // Make sure it is not a NOT. 3409 if (Cst && !Cst->getValue().isAllOnesValue()) 3410 return true; 3411 } 3412 3413 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3414 // It may change a poisoned value into a regular value, like 3415 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3416 // poisoned value regular value 3417 // It should be OK since undef covers valid value. 3418 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3419 return true; 3420 3421 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3422 // It may change a poisoned value into a regular value, like 3423 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3424 // poisoned value regular value 3425 // It should be OK since undef covers valid value. 3426 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3427 const Instruction *ExtInst = 3428 dyn_cast<const Instruction>(*Inst->user_begin()); 3429 if (ExtInst->hasOneUse()) { 3430 const Instruction *AndInst = 3431 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3432 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3433 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3434 if (Cst && 3435 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3436 return true; 3437 } 3438 } 3439 } 3440 3441 // Check if we can do the following simplification. 3442 // ext(trunc(opnd)) --> ext(opnd) 3443 if (!isa<TruncInst>(Inst)) 3444 return false; 3445 3446 Value *OpndVal = Inst->getOperand(0); 3447 // Check if we can use this operand in the extension. 3448 // If the type is larger than the result type of the extension, we cannot. 3449 if (!OpndVal->getType()->isIntegerTy() || 3450 OpndVal->getType()->getIntegerBitWidth() > 3451 ConsideredExtType->getIntegerBitWidth()) 3452 return false; 3453 3454 // If the operand of the truncate is not an instruction, we will not have 3455 // any information on the dropped bits. 3456 // (Actually we could for constant but it is not worth the extra logic). 3457 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3458 if (!Opnd) 3459 return false; 3460 3461 // Check if the source of the type is narrow enough. 3462 // I.e., check that trunc just drops extended bits of the same kind of 3463 // the extension. 3464 // #1 get the type of the operand and check the kind of the extended bits. 3465 const Type *OpndType; 3466 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3467 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3468 OpndType = It->second.getPointer(); 3469 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3470 OpndType = Opnd->getOperand(0)->getType(); 3471 else 3472 return false; 3473 3474 // #2 check that the truncate just drops extended bits. 3475 return Inst->getType()->getIntegerBitWidth() >= 3476 OpndType->getIntegerBitWidth(); 3477 } 3478 3479 TypePromotionHelper::Action TypePromotionHelper::getAction( 3480 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3481 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3482 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3483 "Unexpected instruction type"); 3484 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3485 Type *ExtTy = Ext->getType(); 3486 bool IsSExt = isa<SExtInst>(Ext); 3487 // If the operand of the extension is not an instruction, we cannot 3488 // get through. 3489 // If it, check we can get through. 3490 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3491 return nullptr; 3492 3493 // Do not promote if the operand has been added by codegenprepare. 3494 // Otherwise, it means we are undoing an optimization that is likely to be 3495 // redone, thus causing potential infinite loop. 3496 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3497 return nullptr; 3498 3499 // SExt or Trunc instructions. 3500 // Return the related handler. 3501 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3502 isa<ZExtInst>(ExtOpnd)) 3503 return promoteOperandForTruncAndAnyExt; 3504 3505 // Regular instruction. 3506 // Abort early if we will have to insert non-free instructions. 3507 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3508 return nullptr; 3509 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3510 } 3511 3512 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3513 Instruction *SExt, TypePromotionTransaction &TPT, 3514 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3515 SmallVectorImpl<Instruction *> *Exts, 3516 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3517 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3518 // get through it and this method should not be called. 3519 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3520 Value *ExtVal = SExt; 3521 bool HasMergedNonFreeExt = false; 3522 if (isa<ZExtInst>(SExtOpnd)) { 3523 // Replace s|zext(zext(opnd)) 3524 // => zext(opnd). 3525 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3526 Value *ZExt = 3527 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3528 TPT.replaceAllUsesWith(SExt, ZExt); 3529 TPT.eraseInstruction(SExt); 3530 ExtVal = ZExt; 3531 } else { 3532 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3533 // => z|sext(opnd). 3534 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3535 } 3536 CreatedInstsCost = 0; 3537 3538 // Remove dead code. 3539 if (SExtOpnd->use_empty()) 3540 TPT.eraseInstruction(SExtOpnd); 3541 3542 // Check if the extension is still needed. 3543 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3544 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3545 if (ExtInst) { 3546 if (Exts) 3547 Exts->push_back(ExtInst); 3548 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3549 } 3550 return ExtVal; 3551 } 3552 3553 // At this point we have: ext ty opnd to ty. 3554 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3555 Value *NextVal = ExtInst->getOperand(0); 3556 TPT.eraseInstruction(ExtInst, NextVal); 3557 return NextVal; 3558 } 3559 3560 Value *TypePromotionHelper::promoteOperandForOther( 3561 Instruction *Ext, TypePromotionTransaction &TPT, 3562 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3563 SmallVectorImpl<Instruction *> *Exts, 3564 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3565 bool IsSExt) { 3566 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3567 // get through it and this method should not be called. 3568 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3569 CreatedInstsCost = 0; 3570 if (!ExtOpnd->hasOneUse()) { 3571 // ExtOpnd will be promoted. 3572 // All its uses, but Ext, will need to use a truncated value of the 3573 // promoted version. 3574 // Create the truncate now. 3575 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3576 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3577 // Insert it just after the definition. 3578 ITrunc->moveAfter(ExtOpnd); 3579 if (Truncs) 3580 Truncs->push_back(ITrunc); 3581 } 3582 3583 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3584 // Restore the operand of Ext (which has been replaced by the previous call 3585 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3586 TPT.setOperand(Ext, 0, ExtOpnd); 3587 } 3588 3589 // Get through the Instruction: 3590 // 1. Update its type. 3591 // 2. Replace the uses of Ext by Inst. 3592 // 3. Extend each operand that needs to be extended. 3593 3594 // Remember the original type of the instruction before promotion. 3595 // This is useful to know that the high bits are sign extended bits. 3596 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3597 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3598 // Step #1. 3599 TPT.mutateType(ExtOpnd, Ext->getType()); 3600 // Step #2. 3601 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3602 // Step #3. 3603 Instruction *ExtForOpnd = Ext; 3604 3605 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3606 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3607 ++OpIdx) { 3608 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3609 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3610 !shouldExtOperand(ExtOpnd, OpIdx)) { 3611 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3612 continue; 3613 } 3614 // Check if we can statically extend the operand. 3615 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3616 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3617 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3618 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3619 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3620 : Cst->getValue().zext(BitWidth); 3621 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3622 continue; 3623 } 3624 // UndefValue are typed, so we have to statically sign extend them. 3625 if (isa<UndefValue>(Opnd)) { 3626 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3627 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3628 continue; 3629 } 3630 3631 // Otherwise we have to explicitly sign extend the operand. 3632 // Check if Ext was reused to extend an operand. 3633 if (!ExtForOpnd) { 3634 // If yes, create a new one. 3635 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3636 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3637 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3638 if (!isa<Instruction>(ValForExtOpnd)) { 3639 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3640 continue; 3641 } 3642 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3643 } 3644 if (Exts) 3645 Exts->push_back(ExtForOpnd); 3646 TPT.setOperand(ExtForOpnd, 0, Opnd); 3647 3648 // Move the sign extension before the insertion point. 3649 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3650 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3651 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3652 // If more sext are required, new instructions will have to be created. 3653 ExtForOpnd = nullptr; 3654 } 3655 if (ExtForOpnd == Ext) { 3656 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3657 TPT.eraseInstruction(Ext); 3658 } 3659 return ExtOpnd; 3660 } 3661 3662 /// Check whether or not promoting an instruction to a wider type is profitable. 3663 /// \p NewCost gives the cost of extension instructions created by the 3664 /// promotion. 3665 /// \p OldCost gives the cost of extension instructions before the promotion 3666 /// plus the number of instructions that have been 3667 /// matched in the addressing mode the promotion. 3668 /// \p PromotedOperand is the value that has been promoted. 3669 /// \return True if the promotion is profitable, false otherwise. 3670 bool AddressingModeMatcher::isPromotionProfitable( 3671 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3672 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3673 << '\n'); 3674 // The cost of the new extensions is greater than the cost of the 3675 // old extension plus what we folded. 3676 // This is not profitable. 3677 if (NewCost > OldCost) 3678 return false; 3679 if (NewCost < OldCost) 3680 return true; 3681 // The promotion is neutral but it may help folding the sign extension in 3682 // loads for instance. 3683 // Check that we did not create an illegal instruction. 3684 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3685 } 3686 3687 /// Given an instruction or constant expr, see if we can fold the operation 3688 /// into the addressing mode. If so, update the addressing mode and return 3689 /// true, otherwise return false without modifying AddrMode. 3690 /// If \p MovedAway is not NULL, it contains the information of whether or 3691 /// not AddrInst has to be folded into the addressing mode on success. 3692 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3693 /// because it has been moved away. 3694 /// Thus AddrInst must not be added in the matched instructions. 3695 /// This state can happen when AddrInst is a sext, since it may be moved away. 3696 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3697 /// not be referenced anymore. 3698 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3699 unsigned Depth, 3700 bool *MovedAway) { 3701 // Avoid exponential behavior on extremely deep expression trees. 3702 if (Depth >= 5) return false; 3703 3704 // By default, all matched instructions stay in place. 3705 if (MovedAway) 3706 *MovedAway = false; 3707 3708 switch (Opcode) { 3709 case Instruction::PtrToInt: 3710 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3711 return matchAddr(AddrInst->getOperand(0), Depth); 3712 case Instruction::IntToPtr: { 3713 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3714 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3715 // This inttoptr is a no-op if the integer type is pointer sized. 3716 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3717 return matchAddr(AddrInst->getOperand(0), Depth); 3718 return false; 3719 } 3720 case Instruction::BitCast: 3721 // BitCast is always a noop, and we can handle it as long as it is 3722 // int->int or pointer->pointer (we don't want int<->fp or something). 3723 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3724 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3725 // Don't touch identity bitcasts. These were probably put here by LSR, 3726 // and we don't want to mess around with them. Assume it knows what it 3727 // is doing. 3728 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3729 return matchAddr(AddrInst->getOperand(0), Depth); 3730 return false; 3731 case Instruction::AddrSpaceCast: { 3732 unsigned SrcAS 3733 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3734 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3735 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3736 return matchAddr(AddrInst->getOperand(0), Depth); 3737 return false; 3738 } 3739 case Instruction::Add: { 3740 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3741 ExtAddrMode BackupAddrMode = AddrMode; 3742 unsigned OldSize = AddrModeInsts.size(); 3743 // Start a transaction at this point. 3744 // The LHS may match but not the RHS. 3745 // Therefore, we need a higher level restoration point to undo partially 3746 // matched operation. 3747 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3748 TPT.getRestorationPoint(); 3749 3750 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3751 matchAddr(AddrInst->getOperand(0), Depth+1)) 3752 return true; 3753 3754 // Restore the old addr mode info. 3755 AddrMode = BackupAddrMode; 3756 AddrModeInsts.resize(OldSize); 3757 TPT.rollback(LastKnownGood); 3758 3759 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3760 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3761 matchAddr(AddrInst->getOperand(1), Depth+1)) 3762 return true; 3763 3764 // Otherwise we definitely can't merge the ADD in. 3765 AddrMode = BackupAddrMode; 3766 AddrModeInsts.resize(OldSize); 3767 TPT.rollback(LastKnownGood); 3768 break; 3769 } 3770 //case Instruction::Or: 3771 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3772 //break; 3773 case Instruction::Mul: 3774 case Instruction::Shl: { 3775 // Can only handle X*C and X << C. 3776 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3777 if (!RHS || RHS->getBitWidth() > 64) 3778 return false; 3779 int64_t Scale = RHS->getSExtValue(); 3780 if (Opcode == Instruction::Shl) 3781 Scale = 1LL << Scale; 3782 3783 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3784 } 3785 case Instruction::GetElementPtr: { 3786 // Scan the GEP. We check it if it contains constant offsets and at most 3787 // one variable offset. 3788 int VariableOperand = -1; 3789 unsigned VariableScale = 0; 3790 3791 int64_t ConstantOffset = 0; 3792 gep_type_iterator GTI = gep_type_begin(AddrInst); 3793 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3794 if (StructType *STy = GTI.getStructTypeOrNull()) { 3795 const StructLayout *SL = DL.getStructLayout(STy); 3796 unsigned Idx = 3797 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3798 ConstantOffset += SL->getElementOffset(Idx); 3799 } else { 3800 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3801 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3802 ConstantOffset += CI->getSExtValue() * TypeSize; 3803 } else if (TypeSize) { // Scales of zero don't do anything. 3804 // We only allow one variable index at the moment. 3805 if (VariableOperand != -1) 3806 return false; 3807 3808 // Remember the variable index. 3809 VariableOperand = i; 3810 VariableScale = TypeSize; 3811 } 3812 } 3813 } 3814 3815 // A common case is for the GEP to only do a constant offset. In this case, 3816 // just add it to the disp field and check validity. 3817 if (VariableOperand == -1) { 3818 AddrMode.BaseOffs += ConstantOffset; 3819 if (ConstantOffset == 0 || 3820 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3821 // Check to see if we can fold the base pointer in too. 3822 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3823 return true; 3824 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3825 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3826 ConstantOffset > 0) { 3827 // Record GEPs with non-zero offsets as candidates for splitting in the 3828 // event that the offset cannot fit into the r+i addressing mode. 3829 // Simple and common case that only one GEP is used in calculating the 3830 // address for the memory access. 3831 Value *Base = AddrInst->getOperand(0); 3832 auto *BaseI = dyn_cast<Instruction>(Base); 3833 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3834 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3835 (BaseI && !isa<CastInst>(BaseI) && 3836 !isa<GetElementPtrInst>(BaseI))) { 3837 // If the base is an instruction, make sure the GEP is not in the same 3838 // basic block as the base. If the base is an argument or global 3839 // value, make sure the GEP is not in the entry block. Otherwise, 3840 // instruction selection can undo the split. Also make sure the 3841 // parent block allows inserting non-PHI instructions before the 3842 // terminator. 3843 BasicBlock *Parent = 3844 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3845 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3846 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3847 } 3848 } 3849 AddrMode.BaseOffs -= ConstantOffset; 3850 return false; 3851 } 3852 3853 // Save the valid addressing mode in case we can't match. 3854 ExtAddrMode BackupAddrMode = AddrMode; 3855 unsigned OldSize = AddrModeInsts.size(); 3856 3857 // See if the scale and offset amount is valid for this target. 3858 AddrMode.BaseOffs += ConstantOffset; 3859 3860 // Match the base operand of the GEP. 3861 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3862 // If it couldn't be matched, just stuff the value in a register. 3863 if (AddrMode.HasBaseReg) { 3864 AddrMode = BackupAddrMode; 3865 AddrModeInsts.resize(OldSize); 3866 return false; 3867 } 3868 AddrMode.HasBaseReg = true; 3869 AddrMode.BaseReg = AddrInst->getOperand(0); 3870 } 3871 3872 // Match the remaining variable portion of the GEP. 3873 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3874 Depth)) { 3875 // If it couldn't be matched, try stuffing the base into a register 3876 // instead of matching it, and retrying the match of the scale. 3877 AddrMode = BackupAddrMode; 3878 AddrModeInsts.resize(OldSize); 3879 if (AddrMode.HasBaseReg) 3880 return false; 3881 AddrMode.HasBaseReg = true; 3882 AddrMode.BaseReg = AddrInst->getOperand(0); 3883 AddrMode.BaseOffs += ConstantOffset; 3884 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3885 VariableScale, Depth)) { 3886 // If even that didn't work, bail. 3887 AddrMode = BackupAddrMode; 3888 AddrModeInsts.resize(OldSize); 3889 return false; 3890 } 3891 } 3892 3893 return true; 3894 } 3895 case Instruction::SExt: 3896 case Instruction::ZExt: { 3897 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3898 if (!Ext) 3899 return false; 3900 3901 // Try to move this ext out of the way of the addressing mode. 3902 // Ask for a method for doing so. 3903 TypePromotionHelper::Action TPH = 3904 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3905 if (!TPH) 3906 return false; 3907 3908 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3909 TPT.getRestorationPoint(); 3910 unsigned CreatedInstsCost = 0; 3911 unsigned ExtCost = !TLI.isExtFree(Ext); 3912 Value *PromotedOperand = 3913 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3914 // SExt has been moved away. 3915 // Thus either it will be rematched later in the recursive calls or it is 3916 // gone. Anyway, we must not fold it into the addressing mode at this point. 3917 // E.g., 3918 // op = add opnd, 1 3919 // idx = ext op 3920 // addr = gep base, idx 3921 // is now: 3922 // promotedOpnd = ext opnd <- no match here 3923 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3924 // addr = gep base, op <- match 3925 if (MovedAway) 3926 *MovedAway = true; 3927 3928 assert(PromotedOperand && 3929 "TypePromotionHelper should have filtered out those cases"); 3930 3931 ExtAddrMode BackupAddrMode = AddrMode; 3932 unsigned OldSize = AddrModeInsts.size(); 3933 3934 if (!matchAddr(PromotedOperand, Depth) || 3935 // The total of the new cost is equal to the cost of the created 3936 // instructions. 3937 // The total of the old cost is equal to the cost of the extension plus 3938 // what we have saved in the addressing mode. 3939 !isPromotionProfitable(CreatedInstsCost, 3940 ExtCost + (AddrModeInsts.size() - OldSize), 3941 PromotedOperand)) { 3942 AddrMode = BackupAddrMode; 3943 AddrModeInsts.resize(OldSize); 3944 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3945 TPT.rollback(LastKnownGood); 3946 return false; 3947 } 3948 return true; 3949 } 3950 } 3951 return false; 3952 } 3953 3954 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3955 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3956 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3957 /// for the target. 3958 /// 3959 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3960 // Start a transaction at this point that we will rollback if the matching 3961 // fails. 3962 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3963 TPT.getRestorationPoint(); 3964 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3965 // Fold in immediates if legal for the target. 3966 AddrMode.BaseOffs += CI->getSExtValue(); 3967 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3968 return true; 3969 AddrMode.BaseOffs -= CI->getSExtValue(); 3970 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3971 // If this is a global variable, try to fold it into the addressing mode. 3972 if (!AddrMode.BaseGV) { 3973 AddrMode.BaseGV = GV; 3974 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3975 return true; 3976 AddrMode.BaseGV = nullptr; 3977 } 3978 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3979 ExtAddrMode BackupAddrMode = AddrMode; 3980 unsigned OldSize = AddrModeInsts.size(); 3981 3982 // Check to see if it is possible to fold this operation. 3983 bool MovedAway = false; 3984 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3985 // This instruction may have been moved away. If so, there is nothing 3986 // to check here. 3987 if (MovedAway) 3988 return true; 3989 // Okay, it's possible to fold this. Check to see if it is actually 3990 // *profitable* to do so. We use a simple cost model to avoid increasing 3991 // register pressure too much. 3992 if (I->hasOneUse() || 3993 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3994 AddrModeInsts.push_back(I); 3995 return true; 3996 } 3997 3998 // It isn't profitable to do this, roll back. 3999 //cerr << "NOT FOLDING: " << *I; 4000 AddrMode = BackupAddrMode; 4001 AddrModeInsts.resize(OldSize); 4002 TPT.rollback(LastKnownGood); 4003 } 4004 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4005 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4006 return true; 4007 TPT.rollback(LastKnownGood); 4008 } else if (isa<ConstantPointerNull>(Addr)) { 4009 // Null pointer gets folded without affecting the addressing mode. 4010 return true; 4011 } 4012 4013 // Worse case, the target should support [reg] addressing modes. :) 4014 if (!AddrMode.HasBaseReg) { 4015 AddrMode.HasBaseReg = true; 4016 AddrMode.BaseReg = Addr; 4017 // Still check for legality in case the target supports [imm] but not [i+r]. 4018 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4019 return true; 4020 AddrMode.HasBaseReg = false; 4021 AddrMode.BaseReg = nullptr; 4022 } 4023 4024 // If the base register is already taken, see if we can do [r+r]. 4025 if (AddrMode.Scale == 0) { 4026 AddrMode.Scale = 1; 4027 AddrMode.ScaledReg = Addr; 4028 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4029 return true; 4030 AddrMode.Scale = 0; 4031 AddrMode.ScaledReg = nullptr; 4032 } 4033 // Couldn't match. 4034 TPT.rollback(LastKnownGood); 4035 return false; 4036 } 4037 4038 /// Check to see if all uses of OpVal by the specified inline asm call are due 4039 /// to memory operands. If so, return true, otherwise return false. 4040 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4041 const TargetLowering &TLI, 4042 const TargetRegisterInfo &TRI) { 4043 const Function *F = CI->getFunction(); 4044 TargetLowering::AsmOperandInfoVector TargetConstraints = 4045 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4046 ImmutableCallSite(CI)); 4047 4048 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4049 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4050 4051 // Compute the constraint code and ConstraintType to use. 4052 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4053 4054 // If this asm operand is our Value*, and if it isn't an indirect memory 4055 // operand, we can't fold it! 4056 if (OpInfo.CallOperandVal == OpVal && 4057 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4058 !OpInfo.isIndirect)) 4059 return false; 4060 } 4061 4062 return true; 4063 } 4064 4065 // Max number of memory uses to look at before aborting the search to conserve 4066 // compile time. 4067 static constexpr int MaxMemoryUsesToScan = 20; 4068 4069 /// Recursively walk all the uses of I until we find a memory use. 4070 /// If we find an obviously non-foldable instruction, return true. 4071 /// Add the ultimately found memory instructions to MemoryUses. 4072 static bool FindAllMemoryUses( 4073 Instruction *I, 4074 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4075 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4076 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4077 // If we already considered this instruction, we're done. 4078 if (!ConsideredInsts.insert(I).second) 4079 return false; 4080 4081 // If this is an obviously unfoldable instruction, bail out. 4082 if (!MightBeFoldableInst(I)) 4083 return true; 4084 4085 const bool OptSize = I->getFunction()->optForSize(); 4086 4087 // Loop over all the uses, recursively processing them. 4088 for (Use &U : I->uses()) { 4089 // Conservatively return true if we're seeing a large number or a deep chain 4090 // of users. This avoids excessive compilation times in pathological cases. 4091 if (SeenInsts++ >= MaxMemoryUsesToScan) 4092 return true; 4093 4094 Instruction *UserI = cast<Instruction>(U.getUser()); 4095 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4096 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4097 continue; 4098 } 4099 4100 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4101 unsigned opNo = U.getOperandNo(); 4102 if (opNo != StoreInst::getPointerOperandIndex()) 4103 return true; // Storing addr, not into addr. 4104 MemoryUses.push_back(std::make_pair(SI, opNo)); 4105 continue; 4106 } 4107 4108 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4109 unsigned opNo = U.getOperandNo(); 4110 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4111 return true; // Storing addr, not into addr. 4112 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4113 continue; 4114 } 4115 4116 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4117 unsigned opNo = U.getOperandNo(); 4118 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4119 return true; // Storing addr, not into addr. 4120 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4121 continue; 4122 } 4123 4124 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4125 // If this is a cold call, we can sink the addressing calculation into 4126 // the cold path. See optimizeCallInst 4127 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4128 continue; 4129 4130 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4131 if (!IA) return true; 4132 4133 // If this is a memory operand, we're cool, otherwise bail out. 4134 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4135 return true; 4136 continue; 4137 } 4138 4139 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4140 SeenInsts)) 4141 return true; 4142 } 4143 4144 return false; 4145 } 4146 4147 /// Return true if Val is already known to be live at the use site that we're 4148 /// folding it into. If so, there is no cost to include it in the addressing 4149 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4150 /// instruction already. 4151 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4152 Value *KnownLive2) { 4153 // If Val is either of the known-live values, we know it is live! 4154 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4155 return true; 4156 4157 // All values other than instructions and arguments (e.g. constants) are live. 4158 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4159 4160 // If Val is a constant sized alloca in the entry block, it is live, this is 4161 // true because it is just a reference to the stack/frame pointer, which is 4162 // live for the whole function. 4163 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4164 if (AI->isStaticAlloca()) 4165 return true; 4166 4167 // Check to see if this value is already used in the memory instruction's 4168 // block. If so, it's already live into the block at the very least, so we 4169 // can reasonably fold it. 4170 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4171 } 4172 4173 /// It is possible for the addressing mode of the machine to fold the specified 4174 /// instruction into a load or store that ultimately uses it. 4175 /// However, the specified instruction has multiple uses. 4176 /// Given this, it may actually increase register pressure to fold it 4177 /// into the load. For example, consider this code: 4178 /// 4179 /// X = ... 4180 /// Y = X+1 4181 /// use(Y) -> nonload/store 4182 /// Z = Y+1 4183 /// load Z 4184 /// 4185 /// In this case, Y has multiple uses, and can be folded into the load of Z 4186 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4187 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4188 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4189 /// number of computations either. 4190 /// 4191 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4192 /// X was live across 'load Z' for other reasons, we actually *would* want to 4193 /// fold the addressing mode in the Z case. This would make Y die earlier. 4194 bool AddressingModeMatcher:: 4195 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4196 ExtAddrMode &AMAfter) { 4197 if (IgnoreProfitability) return true; 4198 4199 // AMBefore is the addressing mode before this instruction was folded into it, 4200 // and AMAfter is the addressing mode after the instruction was folded. Get 4201 // the set of registers referenced by AMAfter and subtract out those 4202 // referenced by AMBefore: this is the set of values which folding in this 4203 // address extends the lifetime of. 4204 // 4205 // Note that there are only two potential values being referenced here, 4206 // BaseReg and ScaleReg (global addresses are always available, as are any 4207 // folded immediates). 4208 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4209 4210 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4211 // lifetime wasn't extended by adding this instruction. 4212 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4213 BaseReg = nullptr; 4214 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4215 ScaledReg = nullptr; 4216 4217 // If folding this instruction (and it's subexprs) didn't extend any live 4218 // ranges, we're ok with it. 4219 if (!BaseReg && !ScaledReg) 4220 return true; 4221 4222 // If all uses of this instruction can have the address mode sunk into them, 4223 // we can remove the addressing mode and effectively trade one live register 4224 // for another (at worst.) In this context, folding an addressing mode into 4225 // the use is just a particularly nice way of sinking it. 4226 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4227 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4228 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4229 return false; // Has a non-memory, non-foldable use! 4230 4231 // Now that we know that all uses of this instruction are part of a chain of 4232 // computation involving only operations that could theoretically be folded 4233 // into a memory use, loop over each of these memory operation uses and see 4234 // if they could *actually* fold the instruction. The assumption is that 4235 // addressing modes are cheap and that duplicating the computation involved 4236 // many times is worthwhile, even on a fastpath. For sinking candidates 4237 // (i.e. cold call sites), this serves as a way to prevent excessive code 4238 // growth since most architectures have some reasonable small and fast way to 4239 // compute an effective address. (i.e LEA on x86) 4240 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4241 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4242 Instruction *User = MemoryUses[i].first; 4243 unsigned OpNo = MemoryUses[i].second; 4244 4245 // Get the access type of this use. If the use isn't a pointer, we don't 4246 // know what it accesses. 4247 Value *Address = User->getOperand(OpNo); 4248 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4249 if (!AddrTy) 4250 return false; 4251 Type *AddressAccessTy = AddrTy->getElementType(); 4252 unsigned AS = AddrTy->getAddressSpace(); 4253 4254 // Do a match against the root of this address, ignoring profitability. This 4255 // will tell us if the addressing mode for the memory operation will 4256 // *actually* cover the shared instruction. 4257 ExtAddrMode Result; 4258 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4259 0); 4260 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4261 TPT.getRestorationPoint(); 4262 AddressingModeMatcher Matcher( 4263 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4264 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4265 Matcher.IgnoreProfitability = true; 4266 bool Success = Matcher.matchAddr(Address, 0); 4267 (void)Success; assert(Success && "Couldn't select *anything*?"); 4268 4269 // The match was to check the profitability, the changes made are not 4270 // part of the original matcher. Therefore, they should be dropped 4271 // otherwise the original matcher will not present the right state. 4272 TPT.rollback(LastKnownGood); 4273 4274 // If the match didn't cover I, then it won't be shared by it. 4275 if (!is_contained(MatchedAddrModeInsts, I)) 4276 return false; 4277 4278 MatchedAddrModeInsts.clear(); 4279 } 4280 4281 return true; 4282 } 4283 4284 /// Return true if the specified values are defined in a 4285 /// different basic block than BB. 4286 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4287 if (Instruction *I = dyn_cast<Instruction>(V)) 4288 return I->getParent() != BB; 4289 return false; 4290 } 4291 4292 /// Sink addressing mode computation immediate before MemoryInst if doing so 4293 /// can be done without increasing register pressure. The need for the 4294 /// register pressure constraint means this can end up being an all or nothing 4295 /// decision for all uses of the same addressing computation. 4296 /// 4297 /// Load and Store Instructions often have addressing modes that can do 4298 /// significant amounts of computation. As such, instruction selection will try 4299 /// to get the load or store to do as much computation as possible for the 4300 /// program. The problem is that isel can only see within a single block. As 4301 /// such, we sink as much legal addressing mode work into the block as possible. 4302 /// 4303 /// This method is used to optimize both load/store and inline asms with memory 4304 /// operands. It's also used to sink addressing computations feeding into cold 4305 /// call sites into their (cold) basic block. 4306 /// 4307 /// The motivation for handling sinking into cold blocks is that doing so can 4308 /// both enable other address mode sinking (by satisfying the register pressure 4309 /// constraint above), and reduce register pressure globally (by removing the 4310 /// addressing mode computation from the fast path entirely.). 4311 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4312 Type *AccessTy, unsigned AddrSpace) { 4313 Value *Repl = Addr; 4314 4315 // Try to collapse single-value PHI nodes. This is necessary to undo 4316 // unprofitable PRE transformations. 4317 SmallVector<Value*, 8> worklist; 4318 SmallPtrSet<Value*, 16> Visited; 4319 worklist.push_back(Addr); 4320 4321 // Use a worklist to iteratively look through PHI and select nodes, and 4322 // ensure that the addressing mode obtained from the non-PHI/select roots of 4323 // the graph are compatible. 4324 bool PhiOrSelectSeen = false; 4325 SmallVector<Instruction*, 16> AddrModeInsts; 4326 const SimplifyQuery SQ(*DL, TLInfo); 4327 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4328 TypePromotionTransaction TPT(RemovedInsts); 4329 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4330 TPT.getRestorationPoint(); 4331 while (!worklist.empty()) { 4332 Value *V = worklist.back(); 4333 worklist.pop_back(); 4334 4335 // We allow traversing cyclic Phi nodes. 4336 // In case of success after this loop we ensure that traversing through 4337 // Phi nodes ends up with all cases to compute address of the form 4338 // BaseGV + Base + Scale * Index + Offset 4339 // where Scale and Offset are constans and BaseGV, Base and Index 4340 // are exactly the same Values in all cases. 4341 // It means that BaseGV, Scale and Offset dominate our memory instruction 4342 // and have the same value as they had in address computation represented 4343 // as Phi. So we can safely sink address computation to memory instruction. 4344 if (!Visited.insert(V).second) 4345 continue; 4346 4347 // For a PHI node, push all of its incoming values. 4348 if (PHINode *P = dyn_cast<PHINode>(V)) { 4349 for (Value *IncValue : P->incoming_values()) 4350 worklist.push_back(IncValue); 4351 PhiOrSelectSeen = true; 4352 continue; 4353 } 4354 // Similar for select. 4355 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4356 worklist.push_back(SI->getFalseValue()); 4357 worklist.push_back(SI->getTrueValue()); 4358 PhiOrSelectSeen = true; 4359 continue; 4360 } 4361 4362 // For non-PHIs, determine the addressing mode being computed. Note that 4363 // the result may differ depending on what other uses our candidate 4364 // addressing instructions might have. 4365 AddrModeInsts.clear(); 4366 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4367 0); 4368 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4369 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4370 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4371 4372 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4373 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4374 !NewGEPBases.count(GEP)) { 4375 // If splitting the underlying data structure can reduce the offset of a 4376 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4377 // previously split data structures. 4378 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4379 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4380 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4381 } 4382 4383 NewAddrMode.OriginalValue = V; 4384 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4385 break; 4386 } 4387 4388 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4389 // or we have multiple but either couldn't combine them or combining them 4390 // wouldn't do anything useful, bail out now. 4391 if (!AddrModes.combineAddrModes()) { 4392 TPT.rollback(LastKnownGood); 4393 return false; 4394 } 4395 TPT.commit(); 4396 4397 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4398 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4399 4400 // If all the instructions matched are already in this BB, don't do anything. 4401 // If we saw a Phi node then it is not local definitely, and if we saw a select 4402 // then we want to push the address calculation past it even if it's already 4403 // in this BB. 4404 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4405 return IsNonLocalValue(V, MemoryInst->getParent()); 4406 })) { 4407 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4408 << "\n"); 4409 return false; 4410 } 4411 4412 // Insert this computation right after this user. Since our caller is 4413 // scanning from the top of the BB to the bottom, reuse of the expr are 4414 // guaranteed to happen later. 4415 IRBuilder<> Builder(MemoryInst); 4416 4417 // Now that we determined the addressing expression we want to use and know 4418 // that we have to sink it into this block. Check to see if we have already 4419 // done this for some other load/store instr in this block. If so, reuse 4420 // the computation. Before attempting reuse, check if the address is valid 4421 // as it may have been erased. 4422 4423 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4424 4425 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4426 if (SunkAddr) { 4427 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4428 << " for " << *MemoryInst << "\n"); 4429 if (SunkAddr->getType() != Addr->getType()) 4430 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4431 } else if (AddrSinkUsingGEPs || 4432 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4433 // By default, we use the GEP-based method when AA is used later. This 4434 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4435 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4436 << " for " << *MemoryInst << "\n"); 4437 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4438 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4439 4440 // First, find the pointer. 4441 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4442 ResultPtr = AddrMode.BaseReg; 4443 AddrMode.BaseReg = nullptr; 4444 } 4445 4446 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4447 // We can't add more than one pointer together, nor can we scale a 4448 // pointer (both of which seem meaningless). 4449 if (ResultPtr || AddrMode.Scale != 1) 4450 return false; 4451 4452 ResultPtr = AddrMode.ScaledReg; 4453 AddrMode.Scale = 0; 4454 } 4455 4456 // It is only safe to sign extend the BaseReg if we know that the math 4457 // required to create it did not overflow before we extend it. Since 4458 // the original IR value was tossed in favor of a constant back when 4459 // the AddrMode was created we need to bail out gracefully if widths 4460 // do not match instead of extending it. 4461 // 4462 // (See below for code to add the scale.) 4463 if (AddrMode.Scale) { 4464 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4465 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4466 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4467 return false; 4468 } 4469 4470 if (AddrMode.BaseGV) { 4471 if (ResultPtr) 4472 return false; 4473 4474 ResultPtr = AddrMode.BaseGV; 4475 } 4476 4477 // If the real base value actually came from an inttoptr, then the matcher 4478 // will look through it and provide only the integer value. In that case, 4479 // use it here. 4480 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4481 if (!ResultPtr && AddrMode.BaseReg) { 4482 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4483 "sunkaddr"); 4484 AddrMode.BaseReg = nullptr; 4485 } else if (!ResultPtr && AddrMode.Scale == 1) { 4486 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4487 "sunkaddr"); 4488 AddrMode.Scale = 0; 4489 } 4490 } 4491 4492 if (!ResultPtr && 4493 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4494 SunkAddr = Constant::getNullValue(Addr->getType()); 4495 } else if (!ResultPtr) { 4496 return false; 4497 } else { 4498 Type *I8PtrTy = 4499 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4500 Type *I8Ty = Builder.getInt8Ty(); 4501 4502 // Start with the base register. Do this first so that subsequent address 4503 // matching finds it last, which will prevent it from trying to match it 4504 // as the scaled value in case it happens to be a mul. That would be 4505 // problematic if we've sunk a different mul for the scale, because then 4506 // we'd end up sinking both muls. 4507 if (AddrMode.BaseReg) { 4508 Value *V = AddrMode.BaseReg; 4509 if (V->getType() != IntPtrTy) 4510 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4511 4512 ResultIndex = V; 4513 } 4514 4515 // Add the scale value. 4516 if (AddrMode.Scale) { 4517 Value *V = AddrMode.ScaledReg; 4518 if (V->getType() == IntPtrTy) { 4519 // done. 4520 } else { 4521 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4522 cast<IntegerType>(V->getType())->getBitWidth() && 4523 "We can't transform if ScaledReg is too narrow"); 4524 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4525 } 4526 4527 if (AddrMode.Scale != 1) 4528 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4529 "sunkaddr"); 4530 if (ResultIndex) 4531 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4532 else 4533 ResultIndex = V; 4534 } 4535 4536 // Add in the Base Offset if present. 4537 if (AddrMode.BaseOffs) { 4538 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4539 if (ResultIndex) { 4540 // We need to add this separately from the scale above to help with 4541 // SDAG consecutive load/store merging. 4542 if (ResultPtr->getType() != I8PtrTy) 4543 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4544 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4545 } 4546 4547 ResultIndex = V; 4548 } 4549 4550 if (!ResultIndex) { 4551 SunkAddr = ResultPtr; 4552 } else { 4553 if (ResultPtr->getType() != I8PtrTy) 4554 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4555 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4556 } 4557 4558 if (SunkAddr->getType() != Addr->getType()) 4559 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4560 } 4561 } else { 4562 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4563 // non-integral pointers, so in that case bail out now. 4564 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4565 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4566 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4567 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4568 if (DL->isNonIntegralPointerType(Addr->getType()) || 4569 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4570 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4571 (AddrMode.BaseGV && 4572 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4573 return false; 4574 4575 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4576 << " for " << *MemoryInst << "\n"); 4577 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4578 Value *Result = nullptr; 4579 4580 // Start with the base register. Do this first so that subsequent address 4581 // matching finds it last, which will prevent it from trying to match it 4582 // as the scaled value in case it happens to be a mul. That would be 4583 // problematic if we've sunk a different mul for the scale, because then 4584 // we'd end up sinking both muls. 4585 if (AddrMode.BaseReg) { 4586 Value *V = AddrMode.BaseReg; 4587 if (V->getType()->isPointerTy()) 4588 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4589 if (V->getType() != IntPtrTy) 4590 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4591 Result = V; 4592 } 4593 4594 // Add the scale value. 4595 if (AddrMode.Scale) { 4596 Value *V = AddrMode.ScaledReg; 4597 if (V->getType() == IntPtrTy) { 4598 // done. 4599 } else if (V->getType()->isPointerTy()) { 4600 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4601 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4602 cast<IntegerType>(V->getType())->getBitWidth()) { 4603 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4604 } else { 4605 // It is only safe to sign extend the BaseReg if we know that the math 4606 // required to create it did not overflow before we extend it. Since 4607 // the original IR value was tossed in favor of a constant back when 4608 // the AddrMode was created we need to bail out gracefully if widths 4609 // do not match instead of extending it. 4610 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4611 if (I && (Result != AddrMode.BaseReg)) 4612 I->eraseFromParent(); 4613 return false; 4614 } 4615 if (AddrMode.Scale != 1) 4616 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4617 "sunkaddr"); 4618 if (Result) 4619 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4620 else 4621 Result = V; 4622 } 4623 4624 // Add in the BaseGV if present. 4625 if (AddrMode.BaseGV) { 4626 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4627 if (Result) 4628 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4629 else 4630 Result = V; 4631 } 4632 4633 // Add in the Base Offset if present. 4634 if (AddrMode.BaseOffs) { 4635 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4636 if (Result) 4637 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4638 else 4639 Result = V; 4640 } 4641 4642 if (!Result) 4643 SunkAddr = Constant::getNullValue(Addr->getType()); 4644 else 4645 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4646 } 4647 4648 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4649 // Store the newly computed address into the cache. In the case we reused a 4650 // value, this should be idempotent. 4651 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4652 4653 // If we have no uses, recursively delete the value and all dead instructions 4654 // using it. 4655 if (Repl->use_empty()) { 4656 // This can cause recursive deletion, which can invalidate our iterator. 4657 // Use a WeakTrackingVH to hold onto it in case this happens. 4658 Value *CurValue = &*CurInstIterator; 4659 WeakTrackingVH IterHandle(CurValue); 4660 BasicBlock *BB = CurInstIterator->getParent(); 4661 4662 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4663 4664 if (IterHandle != CurValue) { 4665 // If the iterator instruction was recursively deleted, start over at the 4666 // start of the block. 4667 CurInstIterator = BB->begin(); 4668 SunkAddrs.clear(); 4669 } 4670 } 4671 ++NumMemoryInsts; 4672 return true; 4673 } 4674 4675 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4676 /// address computing into the block when possible / profitable. 4677 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4678 bool MadeChange = false; 4679 4680 const TargetRegisterInfo *TRI = 4681 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4682 TargetLowering::AsmOperandInfoVector TargetConstraints = 4683 TLI->ParseConstraints(*DL, TRI, CS); 4684 unsigned ArgNo = 0; 4685 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4686 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4687 4688 // Compute the constraint code and ConstraintType to use. 4689 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4690 4691 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4692 OpInfo.isIndirect) { 4693 Value *OpVal = CS->getArgOperand(ArgNo++); 4694 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4695 } else if (OpInfo.Type == InlineAsm::isInput) 4696 ArgNo++; 4697 } 4698 4699 return MadeChange; 4700 } 4701 4702 /// Check if all the uses of \p Val are equivalent (or free) zero or 4703 /// sign extensions. 4704 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4705 assert(!Val->use_empty() && "Input must have at least one use"); 4706 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4707 bool IsSExt = isa<SExtInst>(FirstUser); 4708 Type *ExtTy = FirstUser->getType(); 4709 for (const User *U : Val->users()) { 4710 const Instruction *UI = cast<Instruction>(U); 4711 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4712 return false; 4713 Type *CurTy = UI->getType(); 4714 // Same input and output types: Same instruction after CSE. 4715 if (CurTy == ExtTy) 4716 continue; 4717 4718 // If IsSExt is true, we are in this situation: 4719 // a = Val 4720 // b = sext ty1 a to ty2 4721 // c = sext ty1 a to ty3 4722 // Assuming ty2 is shorter than ty3, this could be turned into: 4723 // a = Val 4724 // b = sext ty1 a to ty2 4725 // c = sext ty2 b to ty3 4726 // However, the last sext is not free. 4727 if (IsSExt) 4728 return false; 4729 4730 // This is a ZExt, maybe this is free to extend from one type to another. 4731 // In that case, we would not account for a different use. 4732 Type *NarrowTy; 4733 Type *LargeTy; 4734 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4735 CurTy->getScalarType()->getIntegerBitWidth()) { 4736 NarrowTy = CurTy; 4737 LargeTy = ExtTy; 4738 } else { 4739 NarrowTy = ExtTy; 4740 LargeTy = CurTy; 4741 } 4742 4743 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4744 return false; 4745 } 4746 // All uses are the same or can be derived from one another for free. 4747 return true; 4748 } 4749 4750 /// Try to speculatively promote extensions in \p Exts and continue 4751 /// promoting through newly promoted operands recursively as far as doing so is 4752 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4753 /// When some promotion happened, \p TPT contains the proper state to revert 4754 /// them. 4755 /// 4756 /// \return true if some promotion happened, false otherwise. 4757 bool CodeGenPrepare::tryToPromoteExts( 4758 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4759 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4760 unsigned CreatedInstsCost) { 4761 bool Promoted = false; 4762 4763 // Iterate over all the extensions to try to promote them. 4764 for (auto I : Exts) { 4765 // Early check if we directly have ext(load). 4766 if (isa<LoadInst>(I->getOperand(0))) { 4767 ProfitablyMovedExts.push_back(I); 4768 continue; 4769 } 4770 4771 // Check whether or not we want to do any promotion. The reason we have 4772 // this check inside the for loop is to catch the case where an extension 4773 // is directly fed by a load because in such case the extension can be moved 4774 // up without any promotion on its operands. 4775 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4776 return false; 4777 4778 // Get the action to perform the promotion. 4779 TypePromotionHelper::Action TPH = 4780 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4781 // Check if we can promote. 4782 if (!TPH) { 4783 // Save the current extension as we cannot move up through its operand. 4784 ProfitablyMovedExts.push_back(I); 4785 continue; 4786 } 4787 4788 // Save the current state. 4789 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4790 TPT.getRestorationPoint(); 4791 SmallVector<Instruction *, 4> NewExts; 4792 unsigned NewCreatedInstsCost = 0; 4793 unsigned ExtCost = !TLI->isExtFree(I); 4794 // Promote. 4795 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4796 &NewExts, nullptr, *TLI); 4797 assert(PromotedVal && 4798 "TypePromotionHelper should have filtered out those cases"); 4799 4800 // We would be able to merge only one extension in a load. 4801 // Therefore, if we have more than 1 new extension we heuristically 4802 // cut this search path, because it means we degrade the code quality. 4803 // With exactly 2, the transformation is neutral, because we will merge 4804 // one extension but leave one. However, we optimistically keep going, 4805 // because the new extension may be removed too. 4806 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4807 // FIXME: It would be possible to propagate a negative value instead of 4808 // conservatively ceiling it to 0. 4809 TotalCreatedInstsCost = 4810 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4811 if (!StressExtLdPromotion && 4812 (TotalCreatedInstsCost > 1 || 4813 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4814 // This promotion is not profitable, rollback to the previous state, and 4815 // save the current extension in ProfitablyMovedExts as the latest 4816 // speculative promotion turned out to be unprofitable. 4817 TPT.rollback(LastKnownGood); 4818 ProfitablyMovedExts.push_back(I); 4819 continue; 4820 } 4821 // Continue promoting NewExts as far as doing so is profitable. 4822 SmallVector<Instruction *, 2> NewlyMovedExts; 4823 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4824 bool NewPromoted = false; 4825 for (auto ExtInst : NewlyMovedExts) { 4826 Instruction *MovedExt = cast<Instruction>(ExtInst); 4827 Value *ExtOperand = MovedExt->getOperand(0); 4828 // If we have reached to a load, we need this extra profitability check 4829 // as it could potentially be merged into an ext(load). 4830 if (isa<LoadInst>(ExtOperand) && 4831 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4832 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4833 continue; 4834 4835 ProfitablyMovedExts.push_back(MovedExt); 4836 NewPromoted = true; 4837 } 4838 4839 // If none of speculative promotions for NewExts is profitable, rollback 4840 // and save the current extension (I) as the last profitable extension. 4841 if (!NewPromoted) { 4842 TPT.rollback(LastKnownGood); 4843 ProfitablyMovedExts.push_back(I); 4844 continue; 4845 } 4846 // The promotion is profitable. 4847 Promoted = true; 4848 } 4849 return Promoted; 4850 } 4851 4852 /// Merging redundant sexts when one is dominating the other. 4853 bool CodeGenPrepare::mergeSExts(Function &F) { 4854 DominatorTree DT(F); 4855 bool Changed = false; 4856 for (auto &Entry : ValToSExtendedUses) { 4857 SExts &Insts = Entry.second; 4858 SExts CurPts; 4859 for (Instruction *Inst : Insts) { 4860 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4861 Inst->getOperand(0) != Entry.first) 4862 continue; 4863 bool inserted = false; 4864 for (auto &Pt : CurPts) { 4865 if (DT.dominates(Inst, Pt)) { 4866 Pt->replaceAllUsesWith(Inst); 4867 RemovedInsts.insert(Pt); 4868 Pt->removeFromParent(); 4869 Pt = Inst; 4870 inserted = true; 4871 Changed = true; 4872 break; 4873 } 4874 if (!DT.dominates(Pt, Inst)) 4875 // Give up if we need to merge in a common dominator as the 4876 // experiments show it is not profitable. 4877 continue; 4878 Inst->replaceAllUsesWith(Pt); 4879 RemovedInsts.insert(Inst); 4880 Inst->removeFromParent(); 4881 inserted = true; 4882 Changed = true; 4883 break; 4884 } 4885 if (!inserted) 4886 CurPts.push_back(Inst); 4887 } 4888 } 4889 return Changed; 4890 } 4891 4892 // Spliting large data structures so that the GEPs accessing them can have 4893 // smaller offsets so that they can be sunk to the same blocks as their users. 4894 // For example, a large struct starting from %base is splitted into two parts 4895 // where the second part starts from %new_base. 4896 // 4897 // Before: 4898 // BB0: 4899 // %base = 4900 // 4901 // BB1: 4902 // %gep0 = gep %base, off0 4903 // %gep1 = gep %base, off1 4904 // %gep2 = gep %base, off2 4905 // 4906 // BB2: 4907 // %load1 = load %gep0 4908 // %load2 = load %gep1 4909 // %load3 = load %gep2 4910 // 4911 // After: 4912 // BB0: 4913 // %base = 4914 // %new_base = gep %base, off0 4915 // 4916 // BB1: 4917 // %new_gep0 = %new_base 4918 // %new_gep1 = gep %new_base, off1 - off0 4919 // %new_gep2 = gep %new_base, off2 - off0 4920 // 4921 // BB2: 4922 // %load1 = load i32, i32* %new_gep0 4923 // %load2 = load i32, i32* %new_gep1 4924 // %load3 = load i32, i32* %new_gep2 4925 // 4926 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4927 // their offsets are smaller enough to fit into the addressing mode. 4928 bool CodeGenPrepare::splitLargeGEPOffsets() { 4929 bool Changed = false; 4930 for (auto &Entry : LargeOffsetGEPMap) { 4931 Value *OldBase = Entry.first; 4932 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4933 &LargeOffsetGEPs = Entry.second; 4934 auto compareGEPOffset = 4935 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4936 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4937 if (LHS.first == RHS.first) 4938 return false; 4939 if (LHS.second != RHS.second) 4940 return LHS.second < RHS.second; 4941 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4942 }; 4943 // Sorting all the GEPs of the same data structures based on the offsets. 4944 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4945 compareGEPOffset); 4946 LargeOffsetGEPs.erase( 4947 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 4948 LargeOffsetGEPs.end()); 4949 // Skip if all the GEPs have the same offsets. 4950 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 4951 continue; 4952 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 4953 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 4954 Value *NewBaseGEP = nullptr; 4955 4956 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 4957 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 4958 GetElementPtrInst *GEP = LargeOffsetGEP->first; 4959 int64_t Offset = LargeOffsetGEP->second; 4960 if (Offset != BaseOffset) { 4961 TargetLowering::AddrMode AddrMode; 4962 AddrMode.BaseOffs = Offset - BaseOffset; 4963 // The result type of the GEP might not be the type of the memory 4964 // access. 4965 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 4966 GEP->getResultElementType(), 4967 GEP->getAddressSpace())) { 4968 // We need to create a new base if the offset to the current base is 4969 // too large to fit into the addressing mode. So, a very large struct 4970 // may be splitted into several parts. 4971 BaseGEP = GEP; 4972 BaseOffset = Offset; 4973 NewBaseGEP = nullptr; 4974 } 4975 } 4976 4977 // Generate a new GEP to replace the current one. 4978 IRBuilder<> Builder(GEP); 4979 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 4980 Type *I8PtrTy = 4981 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 4982 Type *I8Ty = Builder.getInt8Ty(); 4983 4984 if (!NewBaseGEP) { 4985 // Create a new base if we don't have one yet. Find the insertion 4986 // pointer for the new base first. 4987 BasicBlock::iterator NewBaseInsertPt; 4988 BasicBlock *NewBaseInsertBB; 4989 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 4990 // If the base of the struct is an instruction, the new base will be 4991 // inserted close to it. 4992 NewBaseInsertBB = BaseI->getParent(); 4993 if (isa<PHINode>(BaseI)) 4994 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4995 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 4996 NewBaseInsertBB = 4997 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 4998 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4999 } else 5000 NewBaseInsertPt = std::next(BaseI->getIterator()); 5001 } else { 5002 // If the current base is an argument or global value, the new base 5003 // will be inserted to the entry block. 5004 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5005 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5006 } 5007 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5008 // Create a new base. 5009 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5010 NewBaseGEP = OldBase; 5011 if (NewBaseGEP->getType() != I8PtrTy) 5012 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5013 NewBaseGEP = 5014 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5015 NewGEPBases.insert(NewBaseGEP); 5016 } 5017 5018 Value *NewGEP = NewBaseGEP; 5019 if (Offset == BaseOffset) { 5020 if (GEP->getType() != I8PtrTy) 5021 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5022 } else { 5023 // Calculate the new offset for the new GEP. 5024 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5025 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5026 5027 if (GEP->getType() != I8PtrTy) 5028 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5029 } 5030 GEP->replaceAllUsesWith(NewGEP); 5031 LargeOffsetGEPID.erase(GEP); 5032 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5033 GEP->eraseFromParent(); 5034 Changed = true; 5035 } 5036 } 5037 return Changed; 5038 } 5039 5040 /// Return true, if an ext(load) can be formed from an extension in 5041 /// \p MovedExts. 5042 bool CodeGenPrepare::canFormExtLd( 5043 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5044 Instruction *&Inst, bool HasPromoted) { 5045 for (auto *MovedExtInst : MovedExts) { 5046 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5047 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5048 Inst = MovedExtInst; 5049 break; 5050 } 5051 } 5052 if (!LI) 5053 return false; 5054 5055 // If they're already in the same block, there's nothing to do. 5056 // Make the cheap checks first if we did not promote. 5057 // If we promoted, we need to check if it is indeed profitable. 5058 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5059 return false; 5060 5061 return TLI->isExtLoad(LI, Inst, *DL); 5062 } 5063 5064 /// Move a zext or sext fed by a load into the same basic block as the load, 5065 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5066 /// extend into the load. 5067 /// 5068 /// E.g., 5069 /// \code 5070 /// %ld = load i32* %addr 5071 /// %add = add nuw i32 %ld, 4 5072 /// %zext = zext i32 %add to i64 5073 // \endcode 5074 /// => 5075 /// \code 5076 /// %ld = load i32* %addr 5077 /// %zext = zext i32 %ld to i64 5078 /// %add = add nuw i64 %zext, 4 5079 /// \encode 5080 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5081 /// allow us to match zext(load i32*) to i64. 5082 /// 5083 /// Also, try to promote the computations used to obtain a sign extended 5084 /// value used into memory accesses. 5085 /// E.g., 5086 /// \code 5087 /// a = add nsw i32 b, 3 5088 /// d = sext i32 a to i64 5089 /// e = getelementptr ..., i64 d 5090 /// \endcode 5091 /// => 5092 /// \code 5093 /// f = sext i32 b to i64 5094 /// a = add nsw i64 f, 3 5095 /// e = getelementptr ..., i64 a 5096 /// \endcode 5097 /// 5098 /// \p Inst[in/out] the extension may be modified during the process if some 5099 /// promotions apply. 5100 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5101 // ExtLoad formation and address type promotion infrastructure requires TLI to 5102 // be effective. 5103 if (!TLI) 5104 return false; 5105 5106 bool AllowPromotionWithoutCommonHeader = false; 5107 /// See if it is an interesting sext operations for the address type 5108 /// promotion before trying to promote it, e.g., the ones with the right 5109 /// type and used in memory accesses. 5110 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5111 *Inst, AllowPromotionWithoutCommonHeader); 5112 TypePromotionTransaction TPT(RemovedInsts); 5113 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5114 TPT.getRestorationPoint(); 5115 SmallVector<Instruction *, 1> Exts; 5116 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5117 Exts.push_back(Inst); 5118 5119 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5120 5121 // Look for a load being extended. 5122 LoadInst *LI = nullptr; 5123 Instruction *ExtFedByLoad; 5124 5125 // Try to promote a chain of computation if it allows to form an extended 5126 // load. 5127 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5128 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5129 TPT.commit(); 5130 // Move the extend into the same block as the load 5131 ExtFedByLoad->moveAfter(LI); 5132 // CGP does not check if the zext would be speculatively executed when moved 5133 // to the same basic block as the load. Preserving its original location 5134 // would pessimize the debugging experience, as well as negatively impact 5135 // the quality of sample pgo. We don't want to use "line 0" as that has a 5136 // size cost in the line-table section and logically the zext can be seen as 5137 // part of the load. Therefore we conservatively reuse the same debug 5138 // location for the load and the zext. 5139 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5140 ++NumExtsMoved; 5141 Inst = ExtFedByLoad; 5142 return true; 5143 } 5144 5145 // Continue promoting SExts if known as considerable depending on targets. 5146 if (ATPConsiderable && 5147 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5148 HasPromoted, TPT, SpeculativelyMovedExts)) 5149 return true; 5150 5151 TPT.rollback(LastKnownGood); 5152 return false; 5153 } 5154 5155 // Perform address type promotion if doing so is profitable. 5156 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5157 // instructions that sign extended the same initial value. However, if 5158 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5159 // extension is just profitable. 5160 bool CodeGenPrepare::performAddressTypePromotion( 5161 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5162 bool HasPromoted, TypePromotionTransaction &TPT, 5163 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5164 bool Promoted = false; 5165 SmallPtrSet<Instruction *, 1> UnhandledExts; 5166 bool AllSeenFirst = true; 5167 for (auto I : SpeculativelyMovedExts) { 5168 Value *HeadOfChain = I->getOperand(0); 5169 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5170 SeenChainsForSExt.find(HeadOfChain); 5171 // If there is an unhandled SExt which has the same header, try to promote 5172 // it as well. 5173 if (AlreadySeen != SeenChainsForSExt.end()) { 5174 if (AlreadySeen->second != nullptr) 5175 UnhandledExts.insert(AlreadySeen->second); 5176 AllSeenFirst = false; 5177 } 5178 } 5179 5180 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5181 SpeculativelyMovedExts.size() == 1)) { 5182 TPT.commit(); 5183 if (HasPromoted) 5184 Promoted = true; 5185 for (auto I : SpeculativelyMovedExts) { 5186 Value *HeadOfChain = I->getOperand(0); 5187 SeenChainsForSExt[HeadOfChain] = nullptr; 5188 ValToSExtendedUses[HeadOfChain].push_back(I); 5189 } 5190 // Update Inst as promotion happen. 5191 Inst = SpeculativelyMovedExts.pop_back_val(); 5192 } else { 5193 // This is the first chain visited from the header, keep the current chain 5194 // as unhandled. Defer to promote this until we encounter another SExt 5195 // chain derived from the same header. 5196 for (auto I : SpeculativelyMovedExts) { 5197 Value *HeadOfChain = I->getOperand(0); 5198 SeenChainsForSExt[HeadOfChain] = Inst; 5199 } 5200 return false; 5201 } 5202 5203 if (!AllSeenFirst && !UnhandledExts.empty()) 5204 for (auto VisitedSExt : UnhandledExts) { 5205 if (RemovedInsts.count(VisitedSExt)) 5206 continue; 5207 TypePromotionTransaction TPT(RemovedInsts); 5208 SmallVector<Instruction *, 1> Exts; 5209 SmallVector<Instruction *, 2> Chains; 5210 Exts.push_back(VisitedSExt); 5211 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5212 TPT.commit(); 5213 if (HasPromoted) 5214 Promoted = true; 5215 for (auto I : Chains) { 5216 Value *HeadOfChain = I->getOperand(0); 5217 // Mark this as handled. 5218 SeenChainsForSExt[HeadOfChain] = nullptr; 5219 ValToSExtendedUses[HeadOfChain].push_back(I); 5220 } 5221 } 5222 return Promoted; 5223 } 5224 5225 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5226 BasicBlock *DefBB = I->getParent(); 5227 5228 // If the result of a {s|z}ext and its source are both live out, rewrite all 5229 // other uses of the source with result of extension. 5230 Value *Src = I->getOperand(0); 5231 if (Src->hasOneUse()) 5232 return false; 5233 5234 // Only do this xform if truncating is free. 5235 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5236 return false; 5237 5238 // Only safe to perform the optimization if the source is also defined in 5239 // this block. 5240 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5241 return false; 5242 5243 bool DefIsLiveOut = false; 5244 for (User *U : I->users()) { 5245 Instruction *UI = cast<Instruction>(U); 5246 5247 // Figure out which BB this ext is used in. 5248 BasicBlock *UserBB = UI->getParent(); 5249 if (UserBB == DefBB) continue; 5250 DefIsLiveOut = true; 5251 break; 5252 } 5253 if (!DefIsLiveOut) 5254 return false; 5255 5256 // Make sure none of the uses are PHI nodes. 5257 for (User *U : Src->users()) { 5258 Instruction *UI = cast<Instruction>(U); 5259 BasicBlock *UserBB = UI->getParent(); 5260 if (UserBB == DefBB) continue; 5261 // Be conservative. We don't want this xform to end up introducing 5262 // reloads just before load / store instructions. 5263 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5264 return false; 5265 } 5266 5267 // InsertedTruncs - Only insert one trunc in each block once. 5268 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5269 5270 bool MadeChange = false; 5271 for (Use &U : Src->uses()) { 5272 Instruction *User = cast<Instruction>(U.getUser()); 5273 5274 // Figure out which BB this ext is used in. 5275 BasicBlock *UserBB = User->getParent(); 5276 if (UserBB == DefBB) continue; 5277 5278 // Both src and def are live in this block. Rewrite the use. 5279 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5280 5281 if (!InsertedTrunc) { 5282 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5283 assert(InsertPt != UserBB->end()); 5284 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5285 InsertedInsts.insert(InsertedTrunc); 5286 } 5287 5288 // Replace a use of the {s|z}ext source with a use of the result. 5289 U = InsertedTrunc; 5290 ++NumExtUses; 5291 MadeChange = true; 5292 } 5293 5294 return MadeChange; 5295 } 5296 5297 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5298 // just after the load if the target can fold this into one extload instruction, 5299 // with the hope of eliminating some of the other later "and" instructions using 5300 // the loaded value. "and"s that are made trivially redundant by the insertion 5301 // of the new "and" are removed by this function, while others (e.g. those whose 5302 // path from the load goes through a phi) are left for isel to potentially 5303 // remove. 5304 // 5305 // For example: 5306 // 5307 // b0: 5308 // x = load i32 5309 // ... 5310 // b1: 5311 // y = and x, 0xff 5312 // z = use y 5313 // 5314 // becomes: 5315 // 5316 // b0: 5317 // x = load i32 5318 // x' = and x, 0xff 5319 // ... 5320 // b1: 5321 // z = use x' 5322 // 5323 // whereas: 5324 // 5325 // b0: 5326 // x1 = load i32 5327 // ... 5328 // b1: 5329 // x2 = load i32 5330 // ... 5331 // b2: 5332 // x = phi x1, x2 5333 // y = and x, 0xff 5334 // 5335 // becomes (after a call to optimizeLoadExt for each load): 5336 // 5337 // b0: 5338 // x1 = load i32 5339 // x1' = and x1, 0xff 5340 // ... 5341 // b1: 5342 // x2 = load i32 5343 // x2' = and x2, 0xff 5344 // ... 5345 // b2: 5346 // x = phi x1', x2' 5347 // y = and x, 0xff 5348 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5349 if (!Load->isSimple() || 5350 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5351 return false; 5352 5353 // Skip loads we've already transformed. 5354 if (Load->hasOneUse() && 5355 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5356 return false; 5357 5358 // Look at all uses of Load, looking through phis, to determine how many bits 5359 // of the loaded value are needed. 5360 SmallVector<Instruction *, 8> WorkList; 5361 SmallPtrSet<Instruction *, 16> Visited; 5362 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5363 for (auto *U : Load->users()) 5364 WorkList.push_back(cast<Instruction>(U)); 5365 5366 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5367 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5368 APInt DemandBits(BitWidth, 0); 5369 APInt WidestAndBits(BitWidth, 0); 5370 5371 while (!WorkList.empty()) { 5372 Instruction *I = WorkList.back(); 5373 WorkList.pop_back(); 5374 5375 // Break use-def graph loops. 5376 if (!Visited.insert(I).second) 5377 continue; 5378 5379 // For a PHI node, push all of its users. 5380 if (auto *Phi = dyn_cast<PHINode>(I)) { 5381 for (auto *U : Phi->users()) 5382 WorkList.push_back(cast<Instruction>(U)); 5383 continue; 5384 } 5385 5386 switch (I->getOpcode()) { 5387 case Instruction::And: { 5388 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5389 if (!AndC) 5390 return false; 5391 APInt AndBits = AndC->getValue(); 5392 DemandBits |= AndBits; 5393 // Keep track of the widest and mask we see. 5394 if (AndBits.ugt(WidestAndBits)) 5395 WidestAndBits = AndBits; 5396 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5397 AndsToMaybeRemove.push_back(I); 5398 break; 5399 } 5400 5401 case Instruction::Shl: { 5402 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5403 if (!ShlC) 5404 return false; 5405 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5406 DemandBits.setLowBits(BitWidth - ShiftAmt); 5407 break; 5408 } 5409 5410 case Instruction::Trunc: { 5411 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5412 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5413 DemandBits.setLowBits(TruncBitWidth); 5414 break; 5415 } 5416 5417 default: 5418 return false; 5419 } 5420 } 5421 5422 uint32_t ActiveBits = DemandBits.getActiveBits(); 5423 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5424 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5425 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5426 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5427 // followed by an AND. 5428 // TODO: Look into removing this restriction by fixing backends to either 5429 // return false for isLoadExtLegal for i1 or have them select this pattern to 5430 // a single instruction. 5431 // 5432 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5433 // mask, since these are the only ands that will be removed by isel. 5434 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5435 WidestAndBits != DemandBits) 5436 return false; 5437 5438 LLVMContext &Ctx = Load->getType()->getContext(); 5439 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5440 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5441 5442 // Reject cases that won't be matched as extloads. 5443 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5444 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5445 return false; 5446 5447 IRBuilder<> Builder(Load->getNextNode()); 5448 auto *NewAnd = dyn_cast<Instruction>( 5449 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5450 // Mark this instruction as "inserted by CGP", so that other 5451 // optimizations don't touch it. 5452 InsertedInsts.insert(NewAnd); 5453 5454 // Replace all uses of load with new and (except for the use of load in the 5455 // new and itself). 5456 Load->replaceAllUsesWith(NewAnd); 5457 NewAnd->setOperand(0, Load); 5458 5459 // Remove any and instructions that are now redundant. 5460 for (auto *And : AndsToMaybeRemove) 5461 // Check that the and mask is the same as the one we decided to put on the 5462 // new and. 5463 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5464 And->replaceAllUsesWith(NewAnd); 5465 if (&*CurInstIterator == And) 5466 CurInstIterator = std::next(And->getIterator()); 5467 And->eraseFromParent(); 5468 ++NumAndUses; 5469 } 5470 5471 ++NumAndsAdded; 5472 return true; 5473 } 5474 5475 /// Check if V (an operand of a select instruction) is an expensive instruction 5476 /// that is only used once. 5477 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5478 auto *I = dyn_cast<Instruction>(V); 5479 // If it's safe to speculatively execute, then it should not have side 5480 // effects; therefore, it's safe to sink and possibly *not* execute. 5481 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5482 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5483 } 5484 5485 /// Returns true if a SelectInst should be turned into an explicit branch. 5486 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5487 const TargetLowering *TLI, 5488 SelectInst *SI) { 5489 // If even a predictable select is cheap, then a branch can't be cheaper. 5490 if (!TLI->isPredictableSelectExpensive()) 5491 return false; 5492 5493 // FIXME: This should use the same heuristics as IfConversion to determine 5494 // whether a select is better represented as a branch. 5495 5496 // If metadata tells us that the select condition is obviously predictable, 5497 // then we want to replace the select with a branch. 5498 uint64_t TrueWeight, FalseWeight; 5499 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5500 uint64_t Max = std::max(TrueWeight, FalseWeight); 5501 uint64_t Sum = TrueWeight + FalseWeight; 5502 if (Sum != 0) { 5503 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5504 if (Probability > TLI->getPredictableBranchThreshold()) 5505 return true; 5506 } 5507 } 5508 5509 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5510 5511 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5512 // comparison condition. If the compare has more than one use, there's 5513 // probably another cmov or setcc around, so it's not worth emitting a branch. 5514 if (!Cmp || !Cmp->hasOneUse()) 5515 return false; 5516 5517 // If either operand of the select is expensive and only needed on one side 5518 // of the select, we should form a branch. 5519 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5520 sinkSelectOperand(TTI, SI->getFalseValue())) 5521 return true; 5522 5523 return false; 5524 } 5525 5526 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5527 /// false value of \p SI. If the true/false value of \p SI is defined by any 5528 /// select instructions in \p Selects, look through the defining select 5529 /// instruction until the true/false value is not defined in \p Selects. 5530 static Value *getTrueOrFalseValue( 5531 SelectInst *SI, bool isTrue, 5532 const SmallPtrSet<const Instruction *, 2> &Selects) { 5533 Value *V; 5534 5535 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5536 DefSI = dyn_cast<SelectInst>(V)) { 5537 assert(DefSI->getCondition() == SI->getCondition() && 5538 "The condition of DefSI does not match with SI"); 5539 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5540 } 5541 return V; 5542 } 5543 5544 /// If we have a SelectInst that will likely profit from branch prediction, 5545 /// turn it into a branch. 5546 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5547 // Find all consecutive select instructions that share the same condition. 5548 SmallVector<SelectInst *, 2> ASI; 5549 ASI.push_back(SI); 5550 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5551 It != SI->getParent()->end(); ++It) { 5552 SelectInst *I = dyn_cast<SelectInst>(&*It); 5553 if (I && SI->getCondition() == I->getCondition()) { 5554 ASI.push_back(I); 5555 } else { 5556 break; 5557 } 5558 } 5559 5560 SelectInst *LastSI = ASI.back(); 5561 // Increment the current iterator to skip all the rest of select instructions 5562 // because they will be either "not lowered" or "all lowered" to branch. 5563 CurInstIterator = std::next(LastSI->getIterator()); 5564 5565 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5566 5567 // Can we convert the 'select' to CF ? 5568 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5569 SI->getMetadata(LLVMContext::MD_unpredictable)) 5570 return false; 5571 5572 TargetLowering::SelectSupportKind SelectKind; 5573 if (VectorCond) 5574 SelectKind = TargetLowering::VectorMaskSelect; 5575 else if (SI->getType()->isVectorTy()) 5576 SelectKind = TargetLowering::ScalarCondVectorVal; 5577 else 5578 SelectKind = TargetLowering::ScalarValSelect; 5579 5580 if (TLI->isSelectSupported(SelectKind) && 5581 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5582 return false; 5583 5584 ModifiedDT = true; 5585 5586 // Transform a sequence like this: 5587 // start: 5588 // %cmp = cmp uge i32 %a, %b 5589 // %sel = select i1 %cmp, i32 %c, i32 %d 5590 // 5591 // Into: 5592 // start: 5593 // %cmp = cmp uge i32 %a, %b 5594 // br i1 %cmp, label %select.true, label %select.false 5595 // select.true: 5596 // br label %select.end 5597 // select.false: 5598 // br label %select.end 5599 // select.end: 5600 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5601 // 5602 // In addition, we may sink instructions that produce %c or %d from 5603 // the entry block into the destination(s) of the new branch. 5604 // If the true or false blocks do not contain a sunken instruction, that 5605 // block and its branch may be optimized away. In that case, one side of the 5606 // first branch will point directly to select.end, and the corresponding PHI 5607 // predecessor block will be the start block. 5608 5609 // First, we split the block containing the select into 2 blocks. 5610 BasicBlock *StartBlock = SI->getParent(); 5611 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5612 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5613 5614 // Delete the unconditional branch that was just created by the split. 5615 StartBlock->getTerminator()->eraseFromParent(); 5616 5617 // These are the new basic blocks for the conditional branch. 5618 // At least one will become an actual new basic block. 5619 BasicBlock *TrueBlock = nullptr; 5620 BasicBlock *FalseBlock = nullptr; 5621 BranchInst *TrueBranch = nullptr; 5622 BranchInst *FalseBranch = nullptr; 5623 5624 // Sink expensive instructions into the conditional blocks to avoid executing 5625 // them speculatively. 5626 for (SelectInst *SI : ASI) { 5627 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5628 if (TrueBlock == nullptr) { 5629 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5630 EndBlock->getParent(), EndBlock); 5631 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5632 } 5633 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5634 TrueInst->moveBefore(TrueBranch); 5635 } 5636 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5637 if (FalseBlock == nullptr) { 5638 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5639 EndBlock->getParent(), EndBlock); 5640 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5641 } 5642 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5643 FalseInst->moveBefore(FalseBranch); 5644 } 5645 } 5646 5647 // If there was nothing to sink, then arbitrarily choose the 'false' side 5648 // for a new input value to the PHI. 5649 if (TrueBlock == FalseBlock) { 5650 assert(TrueBlock == nullptr && 5651 "Unexpected basic block transform while optimizing select"); 5652 5653 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5654 EndBlock->getParent(), EndBlock); 5655 BranchInst::Create(EndBlock, FalseBlock); 5656 } 5657 5658 // Insert the real conditional branch based on the original condition. 5659 // If we did not create a new block for one of the 'true' or 'false' paths 5660 // of the condition, it means that side of the branch goes to the end block 5661 // directly and the path originates from the start block from the point of 5662 // view of the new PHI. 5663 BasicBlock *TT, *FT; 5664 if (TrueBlock == nullptr) { 5665 TT = EndBlock; 5666 FT = FalseBlock; 5667 TrueBlock = StartBlock; 5668 } else if (FalseBlock == nullptr) { 5669 TT = TrueBlock; 5670 FT = EndBlock; 5671 FalseBlock = StartBlock; 5672 } else { 5673 TT = TrueBlock; 5674 FT = FalseBlock; 5675 } 5676 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5677 5678 SmallPtrSet<const Instruction *, 2> INS; 5679 INS.insert(ASI.begin(), ASI.end()); 5680 // Use reverse iterator because later select may use the value of the 5681 // earlier select, and we need to propagate value through earlier select 5682 // to get the PHI operand. 5683 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5684 SelectInst *SI = *It; 5685 // The select itself is replaced with a PHI Node. 5686 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5687 PN->takeName(SI); 5688 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5689 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5690 5691 SI->replaceAllUsesWith(PN); 5692 SI->eraseFromParent(); 5693 INS.erase(SI); 5694 ++NumSelectsExpanded; 5695 } 5696 5697 // Instruct OptimizeBlock to skip to the next block. 5698 CurInstIterator = StartBlock->end(); 5699 return true; 5700 } 5701 5702 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5703 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5704 int SplatElem = -1; 5705 for (unsigned i = 0; i < Mask.size(); ++i) { 5706 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5707 return false; 5708 SplatElem = Mask[i]; 5709 } 5710 5711 return true; 5712 } 5713 5714 /// Some targets have expensive vector shifts if the lanes aren't all the same 5715 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5716 /// it's often worth sinking a shufflevector splat down to its use so that 5717 /// codegen can spot all lanes are identical. 5718 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5719 BasicBlock *DefBB = SVI->getParent(); 5720 5721 // Only do this xform if variable vector shifts are particularly expensive. 5722 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5723 return false; 5724 5725 // We only expect better codegen by sinking a shuffle if we can recognise a 5726 // constant splat. 5727 if (!isBroadcastShuffle(SVI)) 5728 return false; 5729 5730 // InsertedShuffles - Only insert a shuffle in each block once. 5731 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5732 5733 bool MadeChange = false; 5734 for (User *U : SVI->users()) { 5735 Instruction *UI = cast<Instruction>(U); 5736 5737 // Figure out which BB this ext is used in. 5738 BasicBlock *UserBB = UI->getParent(); 5739 if (UserBB == DefBB) continue; 5740 5741 // For now only apply this when the splat is used by a shift instruction. 5742 if (!UI->isShift()) continue; 5743 5744 // Everything checks out, sink the shuffle if the user's block doesn't 5745 // already have a copy. 5746 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5747 5748 if (!InsertedShuffle) { 5749 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5750 assert(InsertPt != UserBB->end()); 5751 InsertedShuffle = 5752 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5753 SVI->getOperand(2), "", &*InsertPt); 5754 } 5755 5756 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5757 MadeChange = true; 5758 } 5759 5760 // If we removed all uses, nuke the shuffle. 5761 if (SVI->use_empty()) { 5762 SVI->eraseFromParent(); 5763 MadeChange = true; 5764 } 5765 5766 return MadeChange; 5767 } 5768 5769 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5770 if (!TLI || !DL) 5771 return false; 5772 5773 Value *Cond = SI->getCondition(); 5774 Type *OldType = Cond->getType(); 5775 LLVMContext &Context = Cond->getContext(); 5776 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5777 unsigned RegWidth = RegType.getSizeInBits(); 5778 5779 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5780 return false; 5781 5782 // If the register width is greater than the type width, expand the condition 5783 // of the switch instruction and each case constant to the width of the 5784 // register. By widening the type of the switch condition, subsequent 5785 // comparisons (for case comparisons) will not need to be extended to the 5786 // preferred register width, so we will potentially eliminate N-1 extends, 5787 // where N is the number of cases in the switch. 5788 auto *NewType = Type::getIntNTy(Context, RegWidth); 5789 5790 // Zero-extend the switch condition and case constants unless the switch 5791 // condition is a function argument that is already being sign-extended. 5792 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5793 // everything instead. 5794 Instruction::CastOps ExtType = Instruction::ZExt; 5795 if (auto *Arg = dyn_cast<Argument>(Cond)) 5796 if (Arg->hasSExtAttr()) 5797 ExtType = Instruction::SExt; 5798 5799 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5800 ExtInst->insertBefore(SI); 5801 SI->setCondition(ExtInst); 5802 for (auto Case : SI->cases()) { 5803 APInt NarrowConst = Case.getCaseValue()->getValue(); 5804 APInt WideConst = (ExtType == Instruction::ZExt) ? 5805 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5806 Case.setValue(ConstantInt::get(Context, WideConst)); 5807 } 5808 5809 return true; 5810 } 5811 5812 5813 namespace { 5814 5815 /// Helper class to promote a scalar operation to a vector one. 5816 /// This class is used to move downward extractelement transition. 5817 /// E.g., 5818 /// a = vector_op <2 x i32> 5819 /// b = extractelement <2 x i32> a, i32 0 5820 /// c = scalar_op b 5821 /// store c 5822 /// 5823 /// => 5824 /// a = vector_op <2 x i32> 5825 /// c = vector_op a (equivalent to scalar_op on the related lane) 5826 /// * d = extractelement <2 x i32> c, i32 0 5827 /// * store d 5828 /// Assuming both extractelement and store can be combine, we get rid of the 5829 /// transition. 5830 class VectorPromoteHelper { 5831 /// DataLayout associated with the current module. 5832 const DataLayout &DL; 5833 5834 /// Used to perform some checks on the legality of vector operations. 5835 const TargetLowering &TLI; 5836 5837 /// Used to estimated the cost of the promoted chain. 5838 const TargetTransformInfo &TTI; 5839 5840 /// The transition being moved downwards. 5841 Instruction *Transition; 5842 5843 /// The sequence of instructions to be promoted. 5844 SmallVector<Instruction *, 4> InstsToBePromoted; 5845 5846 /// Cost of combining a store and an extract. 5847 unsigned StoreExtractCombineCost; 5848 5849 /// Instruction that will be combined with the transition. 5850 Instruction *CombineInst = nullptr; 5851 5852 /// The instruction that represents the current end of the transition. 5853 /// Since we are faking the promotion until we reach the end of the chain 5854 /// of computation, we need a way to get the current end of the transition. 5855 Instruction *getEndOfTransition() const { 5856 if (InstsToBePromoted.empty()) 5857 return Transition; 5858 return InstsToBePromoted.back(); 5859 } 5860 5861 /// Return the index of the original value in the transition. 5862 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5863 /// c, is at index 0. 5864 unsigned getTransitionOriginalValueIdx() const { 5865 assert(isa<ExtractElementInst>(Transition) && 5866 "Other kind of transitions are not supported yet"); 5867 return 0; 5868 } 5869 5870 /// Return the index of the index in the transition. 5871 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5872 /// is at index 1. 5873 unsigned getTransitionIdx() const { 5874 assert(isa<ExtractElementInst>(Transition) && 5875 "Other kind of transitions are not supported yet"); 5876 return 1; 5877 } 5878 5879 /// Get the type of the transition. 5880 /// This is the type of the original value. 5881 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5882 /// transition is <2 x i32>. 5883 Type *getTransitionType() const { 5884 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5885 } 5886 5887 /// Promote \p ToBePromoted by moving \p Def downward through. 5888 /// I.e., we have the following sequence: 5889 /// Def = Transition <ty1> a to <ty2> 5890 /// b = ToBePromoted <ty2> Def, ... 5891 /// => 5892 /// b = ToBePromoted <ty1> a, ... 5893 /// Def = Transition <ty1> ToBePromoted to <ty2> 5894 void promoteImpl(Instruction *ToBePromoted); 5895 5896 /// Check whether or not it is profitable to promote all the 5897 /// instructions enqueued to be promoted. 5898 bool isProfitableToPromote() { 5899 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5900 unsigned Index = isa<ConstantInt>(ValIdx) 5901 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5902 : -1; 5903 Type *PromotedType = getTransitionType(); 5904 5905 StoreInst *ST = cast<StoreInst>(CombineInst); 5906 unsigned AS = ST->getPointerAddressSpace(); 5907 unsigned Align = ST->getAlignment(); 5908 // Check if this store is supported. 5909 if (!TLI.allowsMisalignedMemoryAccesses( 5910 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5911 Align)) { 5912 // If this is not supported, there is no way we can combine 5913 // the extract with the store. 5914 return false; 5915 } 5916 5917 // The scalar chain of computation has to pay for the transition 5918 // scalar to vector. 5919 // The vector chain has to account for the combining cost. 5920 uint64_t ScalarCost = 5921 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5922 uint64_t VectorCost = StoreExtractCombineCost; 5923 for (const auto &Inst : InstsToBePromoted) { 5924 // Compute the cost. 5925 // By construction, all instructions being promoted are arithmetic ones. 5926 // Moreover, one argument is a constant that can be viewed as a splat 5927 // constant. 5928 Value *Arg0 = Inst->getOperand(0); 5929 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5930 isa<ConstantFP>(Arg0); 5931 TargetTransformInfo::OperandValueKind Arg0OVK = 5932 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5933 : TargetTransformInfo::OK_AnyValue; 5934 TargetTransformInfo::OperandValueKind Arg1OVK = 5935 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5936 : TargetTransformInfo::OK_AnyValue; 5937 ScalarCost += TTI.getArithmeticInstrCost( 5938 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5939 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5940 Arg0OVK, Arg1OVK); 5941 } 5942 LLVM_DEBUG( 5943 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5944 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5945 return ScalarCost > VectorCost; 5946 } 5947 5948 /// Generate a constant vector with \p Val with the same 5949 /// number of elements as the transition. 5950 /// \p UseSplat defines whether or not \p Val should be replicated 5951 /// across the whole vector. 5952 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5953 /// otherwise we generate a vector with as many undef as possible: 5954 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5955 /// used at the index of the extract. 5956 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5957 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5958 if (!UseSplat) { 5959 // If we cannot determine where the constant must be, we have to 5960 // use a splat constant. 5961 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5962 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5963 ExtractIdx = CstVal->getSExtValue(); 5964 else 5965 UseSplat = true; 5966 } 5967 5968 unsigned End = getTransitionType()->getVectorNumElements(); 5969 if (UseSplat) 5970 return ConstantVector::getSplat(End, Val); 5971 5972 SmallVector<Constant *, 4> ConstVec; 5973 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5974 for (unsigned Idx = 0; Idx != End; ++Idx) { 5975 if (Idx == ExtractIdx) 5976 ConstVec.push_back(Val); 5977 else 5978 ConstVec.push_back(UndefVal); 5979 } 5980 return ConstantVector::get(ConstVec); 5981 } 5982 5983 /// Check if promoting to a vector type an operand at \p OperandIdx 5984 /// in \p Use can trigger undefined behavior. 5985 static bool canCauseUndefinedBehavior(const Instruction *Use, 5986 unsigned OperandIdx) { 5987 // This is not safe to introduce undef when the operand is on 5988 // the right hand side of a division-like instruction. 5989 if (OperandIdx != 1) 5990 return false; 5991 switch (Use->getOpcode()) { 5992 default: 5993 return false; 5994 case Instruction::SDiv: 5995 case Instruction::UDiv: 5996 case Instruction::SRem: 5997 case Instruction::URem: 5998 return true; 5999 case Instruction::FDiv: 6000 case Instruction::FRem: 6001 return !Use->hasNoNaNs(); 6002 } 6003 llvm_unreachable(nullptr); 6004 } 6005 6006 public: 6007 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6008 const TargetTransformInfo &TTI, Instruction *Transition, 6009 unsigned CombineCost) 6010 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6011 StoreExtractCombineCost(CombineCost) { 6012 assert(Transition && "Do not know how to promote null"); 6013 } 6014 6015 /// Check if we can promote \p ToBePromoted to \p Type. 6016 bool canPromote(const Instruction *ToBePromoted) const { 6017 // We could support CastInst too. 6018 return isa<BinaryOperator>(ToBePromoted); 6019 } 6020 6021 /// Check if it is profitable to promote \p ToBePromoted 6022 /// by moving downward the transition through. 6023 bool shouldPromote(const Instruction *ToBePromoted) const { 6024 // Promote only if all the operands can be statically expanded. 6025 // Indeed, we do not want to introduce any new kind of transitions. 6026 for (const Use &U : ToBePromoted->operands()) { 6027 const Value *Val = U.get(); 6028 if (Val == getEndOfTransition()) { 6029 // If the use is a division and the transition is on the rhs, 6030 // we cannot promote the operation, otherwise we may create a 6031 // division by zero. 6032 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6033 return false; 6034 continue; 6035 } 6036 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6037 !isa<ConstantFP>(Val)) 6038 return false; 6039 } 6040 // Check that the resulting operation is legal. 6041 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6042 if (!ISDOpcode) 6043 return false; 6044 return StressStoreExtract || 6045 TLI.isOperationLegalOrCustom( 6046 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6047 } 6048 6049 /// Check whether or not \p Use can be combined 6050 /// with the transition. 6051 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6052 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6053 6054 /// Record \p ToBePromoted as part of the chain to be promoted. 6055 void enqueueForPromotion(Instruction *ToBePromoted) { 6056 InstsToBePromoted.push_back(ToBePromoted); 6057 } 6058 6059 /// Set the instruction that will be combined with the transition. 6060 void recordCombineInstruction(Instruction *ToBeCombined) { 6061 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6062 CombineInst = ToBeCombined; 6063 } 6064 6065 /// Promote all the instructions enqueued for promotion if it is 6066 /// is profitable. 6067 /// \return True if the promotion happened, false otherwise. 6068 bool promote() { 6069 // Check if there is something to promote. 6070 // Right now, if we do not have anything to combine with, 6071 // we assume the promotion is not profitable. 6072 if (InstsToBePromoted.empty() || !CombineInst) 6073 return false; 6074 6075 // Check cost. 6076 if (!StressStoreExtract && !isProfitableToPromote()) 6077 return false; 6078 6079 // Promote. 6080 for (auto &ToBePromoted : InstsToBePromoted) 6081 promoteImpl(ToBePromoted); 6082 InstsToBePromoted.clear(); 6083 return true; 6084 } 6085 }; 6086 6087 } // end anonymous namespace 6088 6089 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6090 // At this point, we know that all the operands of ToBePromoted but Def 6091 // can be statically promoted. 6092 // For Def, we need to use its parameter in ToBePromoted: 6093 // b = ToBePromoted ty1 a 6094 // Def = Transition ty1 b to ty2 6095 // Move the transition down. 6096 // 1. Replace all uses of the promoted operation by the transition. 6097 // = ... b => = ... Def. 6098 assert(ToBePromoted->getType() == Transition->getType() && 6099 "The type of the result of the transition does not match " 6100 "the final type"); 6101 ToBePromoted->replaceAllUsesWith(Transition); 6102 // 2. Update the type of the uses. 6103 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6104 Type *TransitionTy = getTransitionType(); 6105 ToBePromoted->mutateType(TransitionTy); 6106 // 3. Update all the operands of the promoted operation with promoted 6107 // operands. 6108 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6109 for (Use &U : ToBePromoted->operands()) { 6110 Value *Val = U.get(); 6111 Value *NewVal = nullptr; 6112 if (Val == Transition) 6113 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6114 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6115 isa<ConstantFP>(Val)) { 6116 // Use a splat constant if it is not safe to use undef. 6117 NewVal = getConstantVector( 6118 cast<Constant>(Val), 6119 isa<UndefValue>(Val) || 6120 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6121 } else 6122 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6123 "this?"); 6124 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6125 } 6126 Transition->moveAfter(ToBePromoted); 6127 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6128 } 6129 6130 /// Some targets can do store(extractelement) with one instruction. 6131 /// Try to push the extractelement towards the stores when the target 6132 /// has this feature and this is profitable. 6133 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6134 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6135 if (DisableStoreExtract || !TLI || 6136 (!StressStoreExtract && 6137 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6138 Inst->getOperand(1), CombineCost))) 6139 return false; 6140 6141 // At this point we know that Inst is a vector to scalar transition. 6142 // Try to move it down the def-use chain, until: 6143 // - We can combine the transition with its single use 6144 // => we got rid of the transition. 6145 // - We escape the current basic block 6146 // => we would need to check that we are moving it at a cheaper place and 6147 // we do not do that for now. 6148 BasicBlock *Parent = Inst->getParent(); 6149 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6150 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6151 // If the transition has more than one use, assume this is not going to be 6152 // beneficial. 6153 while (Inst->hasOneUse()) { 6154 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6155 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6156 6157 if (ToBePromoted->getParent() != Parent) { 6158 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6159 << ToBePromoted->getParent()->getName() 6160 << ") than the transition (" << Parent->getName() 6161 << ").\n"); 6162 return false; 6163 } 6164 6165 if (VPH.canCombine(ToBePromoted)) { 6166 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6167 << "will be combined with: " << *ToBePromoted << '\n'); 6168 VPH.recordCombineInstruction(ToBePromoted); 6169 bool Changed = VPH.promote(); 6170 NumStoreExtractExposed += Changed; 6171 return Changed; 6172 } 6173 6174 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6175 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6176 return false; 6177 6178 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6179 6180 VPH.enqueueForPromotion(ToBePromoted); 6181 Inst = ToBePromoted; 6182 } 6183 return false; 6184 } 6185 6186 /// For the instruction sequence of store below, F and I values 6187 /// are bundled together as an i64 value before being stored into memory. 6188 /// Sometimes it is more efficient to generate separate stores for F and I, 6189 /// which can remove the bitwise instructions or sink them to colder places. 6190 /// 6191 /// (store (or (zext (bitcast F to i32) to i64), 6192 /// (shl (zext I to i64), 32)), addr) --> 6193 /// (store F, addr) and (store I, addr+4) 6194 /// 6195 /// Similarly, splitting for other merged store can also be beneficial, like: 6196 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6197 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6198 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6199 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6200 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6201 /// 6202 /// We allow each target to determine specifically which kind of splitting is 6203 /// supported. 6204 /// 6205 /// The store patterns are commonly seen from the simple code snippet below 6206 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6207 /// void goo(const std::pair<int, float> &); 6208 /// hoo() { 6209 /// ... 6210 /// goo(std::make_pair(tmp, ftmp)); 6211 /// ... 6212 /// } 6213 /// 6214 /// Although we already have similar splitting in DAG Combine, we duplicate 6215 /// it in CodeGenPrepare to catch the case in which pattern is across 6216 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6217 /// during code expansion. 6218 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6219 const TargetLowering &TLI) { 6220 // Handle simple but common cases only. 6221 Type *StoreType = SI.getValueOperand()->getType(); 6222 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6223 DL.getTypeSizeInBits(StoreType) == 0) 6224 return false; 6225 6226 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6227 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6228 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6229 DL.getTypeSizeInBits(SplitStoreType)) 6230 return false; 6231 6232 // Match the following patterns: 6233 // (store (or (zext LValue to i64), 6234 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6235 // or 6236 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6237 // (zext LValue to i64), 6238 // Expect both operands of OR and the first operand of SHL have only 6239 // one use. 6240 Value *LValue, *HValue; 6241 if (!match(SI.getValueOperand(), 6242 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6243 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6244 m_SpecificInt(HalfValBitSize)))))) 6245 return false; 6246 6247 // Check LValue and HValue are int with size less or equal than 32. 6248 if (!LValue->getType()->isIntegerTy() || 6249 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6250 !HValue->getType()->isIntegerTy() || 6251 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6252 return false; 6253 6254 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6255 // as the input of target query. 6256 auto *LBC = dyn_cast<BitCastInst>(LValue); 6257 auto *HBC = dyn_cast<BitCastInst>(HValue); 6258 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6259 : EVT::getEVT(LValue->getType()); 6260 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6261 : EVT::getEVT(HValue->getType()); 6262 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6263 return false; 6264 6265 // Start to split store. 6266 IRBuilder<> Builder(SI.getContext()); 6267 Builder.SetInsertPoint(&SI); 6268 6269 // If LValue/HValue is a bitcast in another BB, create a new one in current 6270 // BB so it may be merged with the splitted stores by dag combiner. 6271 if (LBC && LBC->getParent() != SI.getParent()) 6272 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6273 if (HBC && HBC->getParent() != SI.getParent()) 6274 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6275 6276 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6277 auto CreateSplitStore = [&](Value *V, bool Upper) { 6278 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6279 Value *Addr = Builder.CreateBitCast( 6280 SI.getOperand(1), 6281 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6282 if ((IsLE && Upper) || (!IsLE && !Upper)) 6283 Addr = Builder.CreateGEP( 6284 SplitStoreType, Addr, 6285 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6286 Builder.CreateAlignedStore( 6287 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6288 }; 6289 6290 CreateSplitStore(LValue, false); 6291 CreateSplitStore(HValue, true); 6292 6293 // Delete the old store. 6294 SI.eraseFromParent(); 6295 return true; 6296 } 6297 6298 // Return true if the GEP has two operands, the first operand is of a sequential 6299 // type, and the second operand is a constant. 6300 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6301 gep_type_iterator I = gep_type_begin(*GEP); 6302 return GEP->getNumOperands() == 2 && 6303 I.isSequential() && 6304 isa<ConstantInt>(GEP->getOperand(1)); 6305 } 6306 6307 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6308 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6309 // reducing liveness interference across those edges benefits global register 6310 // allocation. Currently handles only certain cases. 6311 // 6312 // For example, unmerge %GEPI and %UGEPI as below. 6313 // 6314 // ---------- BEFORE ---------- 6315 // SrcBlock: 6316 // ... 6317 // %GEPIOp = ... 6318 // ... 6319 // %GEPI = gep %GEPIOp, Idx 6320 // ... 6321 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6322 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6323 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6324 // %UGEPI) 6325 // 6326 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6327 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6328 // ... 6329 // 6330 // DstBi: 6331 // ... 6332 // %UGEPI = gep %GEPIOp, UIdx 6333 // ... 6334 // --------------------------- 6335 // 6336 // ---------- AFTER ---------- 6337 // SrcBlock: 6338 // ... (same as above) 6339 // (* %GEPI is still alive on the indirectbr edges) 6340 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6341 // unmerging) 6342 // ... 6343 // 6344 // DstBi: 6345 // ... 6346 // %UGEPI = gep %GEPI, (UIdx-Idx) 6347 // ... 6348 // --------------------------- 6349 // 6350 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6351 // no longer alive on them. 6352 // 6353 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6354 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6355 // not to disable further simplications and optimizations as a result of GEP 6356 // merging. 6357 // 6358 // Note this unmerging may increase the length of the data flow critical path 6359 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6360 // between the register pressure and the length of data-flow critical 6361 // path. Restricting this to the uncommon IndirectBr case would minimize the 6362 // impact of potentially longer critical path, if any, and the impact on compile 6363 // time. 6364 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6365 const TargetTransformInfo *TTI) { 6366 BasicBlock *SrcBlock = GEPI->getParent(); 6367 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6368 // (non-IndirectBr) cases exit early here. 6369 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6370 return false; 6371 // Check that GEPI is a simple gep with a single constant index. 6372 if (!GEPSequentialConstIndexed(GEPI)) 6373 return false; 6374 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6375 // Check that GEPI is a cheap one. 6376 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6377 > TargetTransformInfo::TCC_Basic) 6378 return false; 6379 Value *GEPIOp = GEPI->getOperand(0); 6380 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6381 if (!isa<Instruction>(GEPIOp)) 6382 return false; 6383 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6384 if (GEPIOpI->getParent() != SrcBlock) 6385 return false; 6386 // Check that GEP is used outside the block, meaning it's alive on the 6387 // IndirectBr edge(s). 6388 if (find_if(GEPI->users(), [&](User *Usr) { 6389 if (auto *I = dyn_cast<Instruction>(Usr)) { 6390 if (I->getParent() != SrcBlock) { 6391 return true; 6392 } 6393 } 6394 return false; 6395 }) == GEPI->users().end()) 6396 return false; 6397 // The second elements of the GEP chains to be unmerged. 6398 std::vector<GetElementPtrInst *> UGEPIs; 6399 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6400 // on IndirectBr edges. 6401 for (User *Usr : GEPIOp->users()) { 6402 if (Usr == GEPI) continue; 6403 // Check if Usr is an Instruction. If not, give up. 6404 if (!isa<Instruction>(Usr)) 6405 return false; 6406 auto *UI = cast<Instruction>(Usr); 6407 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6408 if (UI->getParent() == SrcBlock) 6409 continue; 6410 // Check if Usr is a GEP. If not, give up. 6411 if (!isa<GetElementPtrInst>(Usr)) 6412 return false; 6413 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6414 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6415 // the pointer operand to it. If so, record it in the vector. If not, give 6416 // up. 6417 if (!GEPSequentialConstIndexed(UGEPI)) 6418 return false; 6419 if (UGEPI->getOperand(0) != GEPIOp) 6420 return false; 6421 if (GEPIIdx->getType() != 6422 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6423 return false; 6424 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6425 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6426 > TargetTransformInfo::TCC_Basic) 6427 return false; 6428 UGEPIs.push_back(UGEPI); 6429 } 6430 if (UGEPIs.size() == 0) 6431 return false; 6432 // Check the materializing cost of (Uidx-Idx). 6433 for (GetElementPtrInst *UGEPI : UGEPIs) { 6434 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6435 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6436 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6437 if (ImmCost > TargetTransformInfo::TCC_Basic) 6438 return false; 6439 } 6440 // Now unmerge between GEPI and UGEPIs. 6441 for (GetElementPtrInst *UGEPI : UGEPIs) { 6442 UGEPI->setOperand(0, GEPI); 6443 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6444 Constant *NewUGEPIIdx = 6445 ConstantInt::get(GEPIIdx->getType(), 6446 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6447 UGEPI->setOperand(1, NewUGEPIIdx); 6448 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6449 // inbounds to avoid UB. 6450 if (!GEPI->isInBounds()) { 6451 UGEPI->setIsInBounds(false); 6452 } 6453 } 6454 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6455 // alive on IndirectBr edges). 6456 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6457 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6458 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6459 return true; 6460 } 6461 6462 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6463 // Bail out if we inserted the instruction to prevent optimizations from 6464 // stepping on each other's toes. 6465 if (InsertedInsts.count(I)) 6466 return false; 6467 6468 if (PHINode *P = dyn_cast<PHINode>(I)) { 6469 // It is possible for very late stage optimizations (such as SimplifyCFG) 6470 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6471 // trivial PHI, go ahead and zap it here. 6472 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6473 P->replaceAllUsesWith(V); 6474 P->eraseFromParent(); 6475 ++NumPHIsElim; 6476 return true; 6477 } 6478 return false; 6479 } 6480 6481 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6482 // If the source of the cast is a constant, then this should have 6483 // already been constant folded. The only reason NOT to constant fold 6484 // it is if something (e.g. LSR) was careful to place the constant 6485 // evaluation in a block other than then one that uses it (e.g. to hoist 6486 // the address of globals out of a loop). If this is the case, we don't 6487 // want to forward-subst the cast. 6488 if (isa<Constant>(CI->getOperand(0))) 6489 return false; 6490 6491 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6492 return true; 6493 6494 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6495 /// Sink a zext or sext into its user blocks if the target type doesn't 6496 /// fit in one register 6497 if (TLI && 6498 TLI->getTypeAction(CI->getContext(), 6499 TLI->getValueType(*DL, CI->getType())) == 6500 TargetLowering::TypeExpandInteger) { 6501 return SinkCast(CI); 6502 } else { 6503 bool MadeChange = optimizeExt(I); 6504 return MadeChange | optimizeExtUses(I); 6505 } 6506 } 6507 return false; 6508 } 6509 6510 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6511 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6512 return OptimizeCmpExpression(CI, TLI); 6513 6514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6515 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6516 if (TLI) { 6517 bool Modified = optimizeLoadExt(LI); 6518 unsigned AS = LI->getPointerAddressSpace(); 6519 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6520 return Modified; 6521 } 6522 return false; 6523 } 6524 6525 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6526 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6527 return true; 6528 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6529 if (TLI) { 6530 unsigned AS = SI->getPointerAddressSpace(); 6531 return optimizeMemoryInst(I, SI->getOperand(1), 6532 SI->getOperand(0)->getType(), AS); 6533 } 6534 return false; 6535 } 6536 6537 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6538 unsigned AS = RMW->getPointerAddressSpace(); 6539 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6540 RMW->getType(), AS); 6541 } 6542 6543 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6544 unsigned AS = CmpX->getPointerAddressSpace(); 6545 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6546 CmpX->getCompareOperand()->getType(), AS); 6547 } 6548 6549 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6550 6551 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6552 EnableAndCmpSinking && TLI) 6553 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6554 6555 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6556 BinOp->getOpcode() == Instruction::LShr)) { 6557 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6558 if (TLI && CI && TLI->hasExtractBitsInsn()) 6559 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6560 6561 return false; 6562 } 6563 6564 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6565 if (GEPI->hasAllZeroIndices()) { 6566 /// The GEP operand must be a pointer, so must its result -> BitCast 6567 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6568 GEPI->getName(), GEPI); 6569 NC->setDebugLoc(GEPI->getDebugLoc()); 6570 GEPI->replaceAllUsesWith(NC); 6571 GEPI->eraseFromParent(); 6572 ++NumGEPsElim; 6573 optimizeInst(NC, ModifiedDT); 6574 return true; 6575 } 6576 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6577 return true; 6578 } 6579 return false; 6580 } 6581 6582 if (CallInst *CI = dyn_cast<CallInst>(I)) 6583 return optimizeCallInst(CI, ModifiedDT); 6584 6585 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6586 return optimizeSelectInst(SI); 6587 6588 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6589 return optimizeShuffleVectorInst(SVI); 6590 6591 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6592 return optimizeSwitchInst(Switch); 6593 6594 if (isa<ExtractElementInst>(I)) 6595 return optimizeExtractElementInst(I); 6596 6597 return false; 6598 } 6599 6600 /// Given an OR instruction, check to see if this is a bitreverse 6601 /// idiom. If so, insert the new intrinsic and return true. 6602 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6603 const TargetLowering &TLI) { 6604 if (!I.getType()->isIntegerTy() || 6605 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6606 TLI.getValueType(DL, I.getType(), true))) 6607 return false; 6608 6609 SmallVector<Instruction*, 4> Insts; 6610 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6611 return false; 6612 Instruction *LastInst = Insts.back(); 6613 I.replaceAllUsesWith(LastInst); 6614 RecursivelyDeleteTriviallyDeadInstructions(&I); 6615 return true; 6616 } 6617 6618 // In this pass we look for GEP and cast instructions that are used 6619 // across basic blocks and rewrite them to improve basic-block-at-a-time 6620 // selection. 6621 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6622 SunkAddrs.clear(); 6623 bool MadeChange = false; 6624 6625 CurInstIterator = BB.begin(); 6626 while (CurInstIterator != BB.end()) { 6627 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6628 if (ModifiedDT) 6629 return true; 6630 } 6631 6632 bool MadeBitReverse = true; 6633 while (TLI && MadeBitReverse) { 6634 MadeBitReverse = false; 6635 for (auto &I : reverse(BB)) { 6636 if (makeBitReverse(I, *DL, *TLI)) { 6637 MadeBitReverse = MadeChange = true; 6638 ModifiedDT = true; 6639 break; 6640 } 6641 } 6642 } 6643 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6644 6645 return MadeChange; 6646 } 6647 6648 // llvm.dbg.value is far away from the value then iSel may not be able 6649 // handle it properly. iSel will drop llvm.dbg.value if it can not 6650 // find a node corresponding to the value. 6651 bool CodeGenPrepare::placeDbgValues(Function &F) { 6652 bool MadeChange = false; 6653 for (BasicBlock &BB : F) { 6654 Instruction *PrevNonDbgInst = nullptr; 6655 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6656 Instruction *Insn = &*BI++; 6657 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6658 // Leave dbg.values that refer to an alloca alone. These 6659 // intrinsics describe the address of a variable (= the alloca) 6660 // being taken. They should not be moved next to the alloca 6661 // (and to the beginning of the scope), but rather stay close to 6662 // where said address is used. 6663 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6664 PrevNonDbgInst = Insn; 6665 continue; 6666 } 6667 6668 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6669 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6670 // If VI is a phi in a block with an EHPad terminator, we can't insert 6671 // after it. 6672 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6673 continue; 6674 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6675 << *DVI << ' ' << *VI); 6676 DVI->removeFromParent(); 6677 if (isa<PHINode>(VI)) 6678 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6679 else 6680 DVI->insertAfter(VI); 6681 MadeChange = true; 6682 ++NumDbgValueMoved; 6683 } 6684 } 6685 } 6686 return MadeChange; 6687 } 6688 6689 /// Scale down both weights to fit into uint32_t. 6690 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6691 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6692 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6693 NewTrue = NewTrue / Scale; 6694 NewFalse = NewFalse / Scale; 6695 } 6696 6697 /// Some targets prefer to split a conditional branch like: 6698 /// \code 6699 /// %0 = icmp ne i32 %a, 0 6700 /// %1 = icmp ne i32 %b, 0 6701 /// %or.cond = or i1 %0, %1 6702 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6703 /// \endcode 6704 /// into multiple branch instructions like: 6705 /// \code 6706 /// bb1: 6707 /// %0 = icmp ne i32 %a, 0 6708 /// br i1 %0, label %TrueBB, label %bb2 6709 /// bb2: 6710 /// %1 = icmp ne i32 %b, 0 6711 /// br i1 %1, label %TrueBB, label %FalseBB 6712 /// \endcode 6713 /// This usually allows instruction selection to do even further optimizations 6714 /// and combine the compare with the branch instruction. Currently this is 6715 /// applied for targets which have "cheap" jump instructions. 6716 /// 6717 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6718 /// 6719 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6720 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6721 return false; 6722 6723 bool MadeChange = false; 6724 for (auto &BB : F) { 6725 // Does this BB end with the following? 6726 // %cond1 = icmp|fcmp|binary instruction ... 6727 // %cond2 = icmp|fcmp|binary instruction ... 6728 // %cond.or = or|and i1 %cond1, cond2 6729 // br i1 %cond.or label %dest1, label %dest2" 6730 BinaryOperator *LogicOp; 6731 BasicBlock *TBB, *FBB; 6732 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6733 continue; 6734 6735 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6736 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6737 continue; 6738 6739 unsigned Opc; 6740 Value *Cond1, *Cond2; 6741 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6742 m_OneUse(m_Value(Cond2))))) 6743 Opc = Instruction::And; 6744 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6745 m_OneUse(m_Value(Cond2))))) 6746 Opc = Instruction::Or; 6747 else 6748 continue; 6749 6750 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6751 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6752 continue; 6753 6754 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6755 6756 // Create a new BB. 6757 auto TmpBB = 6758 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6759 BB.getParent(), BB.getNextNode()); 6760 6761 // Update original basic block by using the first condition directly by the 6762 // branch instruction and removing the no longer needed and/or instruction. 6763 Br1->setCondition(Cond1); 6764 LogicOp->eraseFromParent(); 6765 6766 // Depending on the condition we have to either replace the true or the 6767 // false successor of the original branch instruction. 6768 if (Opc == Instruction::And) 6769 Br1->setSuccessor(0, TmpBB); 6770 else 6771 Br1->setSuccessor(1, TmpBB); 6772 6773 // Fill in the new basic block. 6774 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6775 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6776 I->removeFromParent(); 6777 I->insertBefore(Br2); 6778 } 6779 6780 // Update PHI nodes in both successors. The original BB needs to be 6781 // replaced in one successor's PHI nodes, because the branch comes now from 6782 // the newly generated BB (NewBB). In the other successor we need to add one 6783 // incoming edge to the PHI nodes, because both branch instructions target 6784 // now the same successor. Depending on the original branch condition 6785 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6786 // we perform the correct update for the PHI nodes. 6787 // This doesn't change the successor order of the just created branch 6788 // instruction (or any other instruction). 6789 if (Opc == Instruction::Or) 6790 std::swap(TBB, FBB); 6791 6792 // Replace the old BB with the new BB. 6793 for (PHINode &PN : TBB->phis()) { 6794 int i; 6795 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6796 PN.setIncomingBlock(i, TmpBB); 6797 } 6798 6799 // Add another incoming edge form the new BB. 6800 for (PHINode &PN : FBB->phis()) { 6801 auto *Val = PN.getIncomingValueForBlock(&BB); 6802 PN.addIncoming(Val, TmpBB); 6803 } 6804 6805 // Update the branch weights (from SelectionDAGBuilder:: 6806 // FindMergedConditions). 6807 if (Opc == Instruction::Or) { 6808 // Codegen X | Y as: 6809 // BB1: 6810 // jmp_if_X TBB 6811 // jmp TmpBB 6812 // TmpBB: 6813 // jmp_if_Y TBB 6814 // jmp FBB 6815 // 6816 6817 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6818 // The requirement is that 6819 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6820 // = TrueProb for original BB. 6821 // Assuming the original weights are A and B, one choice is to set BB1's 6822 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6823 // assumes that 6824 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6825 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6826 // TmpBB, but the math is more complicated. 6827 uint64_t TrueWeight, FalseWeight; 6828 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6829 uint64_t NewTrueWeight = TrueWeight; 6830 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6831 scaleWeights(NewTrueWeight, NewFalseWeight); 6832 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6833 .createBranchWeights(TrueWeight, FalseWeight)); 6834 6835 NewTrueWeight = TrueWeight; 6836 NewFalseWeight = 2 * FalseWeight; 6837 scaleWeights(NewTrueWeight, NewFalseWeight); 6838 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6839 .createBranchWeights(TrueWeight, FalseWeight)); 6840 } 6841 } else { 6842 // Codegen X & Y as: 6843 // BB1: 6844 // jmp_if_X TmpBB 6845 // jmp FBB 6846 // TmpBB: 6847 // jmp_if_Y TBB 6848 // jmp FBB 6849 // 6850 // This requires creation of TmpBB after CurBB. 6851 6852 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6853 // The requirement is that 6854 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6855 // = FalseProb for original BB. 6856 // Assuming the original weights are A and B, one choice is to set BB1's 6857 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6858 // assumes that 6859 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6860 uint64_t TrueWeight, FalseWeight; 6861 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6862 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6863 uint64_t NewFalseWeight = FalseWeight; 6864 scaleWeights(NewTrueWeight, NewFalseWeight); 6865 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6866 .createBranchWeights(TrueWeight, FalseWeight)); 6867 6868 NewTrueWeight = 2 * TrueWeight; 6869 NewFalseWeight = FalseWeight; 6870 scaleWeights(NewTrueWeight, NewFalseWeight); 6871 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6872 .createBranchWeights(TrueWeight, FalseWeight)); 6873 } 6874 } 6875 6876 // Note: No point in getting fancy here, since the DT info is never 6877 // available to CodeGenPrepare. 6878 ModifiedDT = true; 6879 6880 MadeChange = true; 6881 6882 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6883 TmpBB->dump()); 6884 } 6885 return MadeChange; 6886 } 6887