1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 #define DEBUG_TYPE "codegenprepare"
104 
105 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
109                       "sunken Cmps");
110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
111                        "of sunken Casts");
112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
113                           "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated,
115           "Number of phis created when address "
116           "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated,
118           "Number of select created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded,
123           "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
129 
130 static cl::opt<bool> DisableBranchOpts(
131   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
132   cl::desc("Disable branch optimizations in CodeGenPrepare"));
133 
134 static cl::opt<bool>
135     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
136                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool> DisableSelectToBranch(
139   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
140   cl::desc("Disable select to branch conversion."));
141 
142 static cl::opt<bool> AddrSinkUsingGEPs(
143   "addr-sink-using-gep", cl::Hidden, cl::init(true),
144   cl::desc("Address sinking in CGP using GEPs."));
145 
146 static cl::opt<bool> EnableAndCmpSinking(
147    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
148    cl::desc("Enable sinkinig and/cmp into branches."));
149 
150 static cl::opt<bool> DisableStoreExtract(
151     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
152     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 
154 static cl::opt<bool> StressStoreExtract(
155     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> DisableExtLdPromotion(
159     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
160     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
161              "CodeGenPrepare"));
162 
163 static cl::opt<bool> StressExtLdPromotion(
164     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166              "optimization in CodeGenPrepare"));
167 
168 static cl::opt<bool> DisablePreheaderProtect(
169     "disable-preheader-prot", cl::Hidden, cl::init(false),
170     cl::desc("Disable protection against removing loop preheaders"));
171 
172 static cl::opt<bool> ProfileGuidedSectionPrefix(
173     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
174     cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 
176 static cl::opt<unsigned> FreqRatioToSkipMerge(
177     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
178     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179              "(frequency of destination block) is greater than this ratio"));
180 
181 static cl::opt<bool> ForceSplitStore(
182     "force-split-store", cl::Hidden, cl::init(false),
183     cl::desc("Force store splitting no matter what the target query says."));
184 
185 static cl::opt<bool>
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
187     cl::desc("Enable merging of redundant sexts when one is dominating"
188     " the other."), cl::init(true));
189 
190 static cl::opt<bool> DisableComplexAddrModes(
191     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
192     cl::desc("Disables combining addressing modes with different parts "
193              "in optimizeMemoryInst."));
194 
195 static cl::opt<bool>
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
197                 cl::desc("Allow creation of Phis in Address sinking."));
198 
199 static cl::opt<bool>
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
201                    cl::desc("Allow creation of selects in Address sinking."));
202 
203 static cl::opt<bool> AddrSinkCombineBaseReg(
204     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
205     cl::desc("Allow combining of BaseReg field in Address sinking."));
206 
207 static cl::opt<bool> AddrSinkCombineBaseGV(
208     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
209     cl::desc("Allow combining of BaseGV field in Address sinking."));
210 
211 static cl::opt<bool> AddrSinkCombineBaseOffs(
212     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
213     cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 
215 static cl::opt<bool> AddrSinkCombineScaledReg(
216     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
217     cl::desc("Allow combining of ScaledReg field in Address sinking."));
218 
219 static cl::opt<bool>
220     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
221                          cl::init(true),
222                          cl::desc("Enable splitting large offset of GEP."));
223 
224 namespace {
225 
226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
229 using SExts = SmallVector<Instruction *, 16>;
230 using ValueToSExts = DenseMap<Value *, SExts>;
231 
232 class TypePromotionTransaction;
233 
234   class CodeGenPrepare : public FunctionPass {
235     const TargetMachine *TM = nullptr;
236     const TargetSubtargetInfo *SubtargetInfo;
237     const TargetLowering *TLI = nullptr;
238     const TargetRegisterInfo *TRI;
239     const TargetTransformInfo *TTI = nullptr;
240     const TargetLibraryInfo *TLInfo;
241     const LoopInfo *LI;
242     std::unique_ptr<BlockFrequencyInfo> BFI;
243     std::unique_ptr<BranchProbabilityInfo> BPI;
244 
245     /// As we scan instructions optimizing them, this is the next instruction
246     /// to optimize. Transforms that can invalidate this should update it.
247     BasicBlock::iterator CurInstIterator;
248 
249     /// Keeps track of non-local addresses that have been sunk into a block.
250     /// This allows us to avoid inserting duplicate code for blocks with
251     /// multiple load/stores of the same address. The usage of WeakTrackingVH
252     /// enables SunkAddrs to be treated as a cache whose entries can be
253     /// invalidated if a sunken address computation has been erased.
254     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
255 
256     /// Keeps track of all instructions inserted for the current function.
257     SetOfInstrs InsertedInsts;
258 
259     /// Keeps track of the type of the related instruction before their
260     /// promotion for the current function.
261     InstrToOrigTy PromotedInsts;
262 
263     /// Keep track of instructions removed during promotion.
264     SetOfInstrs RemovedInsts;
265 
266     /// Keep track of sext chains based on their initial value.
267     DenseMap<Value *, Instruction *> SeenChainsForSExt;
268 
269     /// Keep track of GEPs accessing the same data structures such as structs or
270     /// arrays that are candidates to be split later because of their large
271     /// size.
272     DenseMap<
273         AssertingVH<Value>,
274         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
275         LargeOffsetGEPMap;
276 
277     /// Keep track of new GEP base after splitting the GEPs having large offset.
278     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
279 
280     /// Map serial numbers to Large offset GEPs.
281     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
282 
283     /// Keep track of SExt promoted.
284     ValueToSExts ValToSExtendedUses;
285 
286     /// True if CFG is modified in any way.
287     bool ModifiedDT;
288 
289     /// True if optimizing for size.
290     bool OptSize;
291 
292     /// DataLayout for the Function being processed.
293     const DataLayout *DL = nullptr;
294 
295   public:
296     static char ID; // Pass identification, replacement for typeid
297 
298     CodeGenPrepare() : FunctionPass(ID) {
299       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
300     }
301 
302     bool runOnFunction(Function &F) override;
303 
304     StringRef getPassName() const override { return "CodeGen Prepare"; }
305 
306     void getAnalysisUsage(AnalysisUsage &AU) const override {
307       // FIXME: When we can selectively preserve passes, preserve the domtree.
308       AU.addRequired<ProfileSummaryInfoWrapperPass>();
309       AU.addRequired<TargetLibraryInfoWrapperPass>();
310       AU.addRequired<TargetTransformInfoWrapperPass>();
311       AU.addRequired<LoopInfoWrapperPass>();
312     }
313 
314   private:
315     bool eliminateFallThrough(Function &F);
316     bool eliminateMostlyEmptyBlocks(Function &F);
317     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
318     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
319     void eliminateMostlyEmptyBlock(BasicBlock *BB);
320     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
321                                        bool isPreheader);
322     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
323     bool optimizeInst(Instruction *I, bool &ModifiedDT);
324     bool optimizeMemoryInst(Instruction *I, Value *Addr,
325                             Type *AccessTy, unsigned AS);
326     bool optimizeInlineAsmInst(CallInst *CS);
327     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
328     bool optimizeExt(Instruction *&I);
329     bool optimizeExtUses(Instruction *I);
330     bool optimizeLoadExt(LoadInst *I);
331     bool optimizeSelectInst(SelectInst *SI);
332     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
333     bool optimizeSwitchInst(SwitchInst *CI);
334     bool optimizeExtractElementInst(Instruction *Inst);
335     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
336     bool placeDbgValues(Function &F);
337     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
338                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
339     bool tryToPromoteExts(TypePromotionTransaction &TPT,
340                           const SmallVectorImpl<Instruction *> &Exts,
341                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
342                           unsigned CreatedInstsCost = 0);
343     bool mergeSExts(Function &F);
344     bool splitLargeGEPOffsets();
345     bool performAddressTypePromotion(
346         Instruction *&Inst,
347         bool AllowPromotionWithoutCommonHeader,
348         bool HasPromoted, TypePromotionTransaction &TPT,
349         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
350     bool splitBranchCondition(Function &F);
351     bool simplifyOffsetableRelocate(Instruction &I);
352   };
353 
354 } // end anonymous namespace
355 
356 char CodeGenPrepare::ID = 0;
357 
358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
359                       "Optimize for code generation", false, false)
360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
362                     "Optimize for code generation", false, false)
363 
364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
365 
366 bool CodeGenPrepare::runOnFunction(Function &F) {
367   if (skipFunction(F))
368     return false;
369 
370   DL = &F.getParent()->getDataLayout();
371 
372   bool EverMadeChange = false;
373   // Clear per function information.
374   InsertedInsts.clear();
375   PromotedInsts.clear();
376 
377   ModifiedDT = false;
378   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
379     TM = &TPC->getTM<TargetMachine>();
380     SubtargetInfo = TM->getSubtargetImpl(F);
381     TLI = SubtargetInfo->getTargetLowering();
382     TRI = SubtargetInfo->getRegisterInfo();
383   }
384   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
385   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
386   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
387   BPI.reset(new BranchProbabilityInfo(F, *LI));
388   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
389   OptSize = F.optForSize();
390 
391   ProfileSummaryInfo *PSI =
392       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
393   if (ProfileGuidedSectionPrefix) {
394     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
395       F.setSectionPrefix(".hot");
396     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
397       F.setSectionPrefix(".unlikely");
398   }
399 
400   /// This optimization identifies DIV instructions that can be
401   /// profitably bypassed and carried out with a shorter, faster divide.
402   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
403       TLI->isSlowDivBypassed()) {
404     const DenseMap<unsigned int, unsigned int> &BypassWidths =
405        TLI->getBypassSlowDivWidths();
406     BasicBlock* BB = &*F.begin();
407     while (BB != nullptr) {
408       // bypassSlowDivision may create new BBs, but we don't want to reapply the
409       // optimization to those blocks.
410       BasicBlock* Next = BB->getNextNode();
411       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
412       BB = Next;
413     }
414   }
415 
416   // Eliminate blocks that contain only PHI nodes and an
417   // unconditional branch.
418   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
419 
420   // llvm.dbg.value is far away from the value then iSel may not be able
421   // handle it properly. iSel will drop llvm.dbg.value if it can not
422   // find a node corresponding to the value.
423   EverMadeChange |= placeDbgValues(F);
424 
425   if (!DisableBranchOpts)
426     EverMadeChange |= splitBranchCondition(F);
427 
428   // Split some critical edges where one of the sources is an indirect branch,
429   // to help generate sane code for PHIs involving such edges.
430   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
431 
432   bool MadeChange = true;
433   while (MadeChange) {
434     MadeChange = false;
435     SeenChainsForSExt.clear();
436     ValToSExtendedUses.clear();
437     RemovedInsts.clear();
438     LargeOffsetGEPMap.clear();
439     LargeOffsetGEPID.clear();
440     for (Function::iterator I = F.begin(); I != F.end(); ) {
441       BasicBlock *BB = &*I++;
442       bool ModifiedDTOnIteration = false;
443       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
444 
445       // Restart BB iteration if the dominator tree of the Function was changed
446       if (ModifiedDTOnIteration)
447         break;
448     }
449     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
450       MadeChange |= mergeSExts(F);
451     if (!LargeOffsetGEPMap.empty())
452       MadeChange |= splitLargeGEPOffsets();
453 
454     // Really free removed instructions during promotion.
455     for (Instruction *I : RemovedInsts)
456       I->deleteValue();
457 
458     EverMadeChange |= MadeChange;
459   }
460 
461   SunkAddrs.clear();
462 
463   if (!DisableBranchOpts) {
464     MadeChange = false;
465     SmallPtrSet<BasicBlock*, 8> WorkList;
466     for (BasicBlock &BB : F) {
467       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
468       MadeChange |= ConstantFoldTerminator(&BB, true);
469       if (!MadeChange) continue;
470 
471       for (SmallVectorImpl<BasicBlock*>::iterator
472              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
473         if (pred_begin(*II) == pred_end(*II))
474           WorkList.insert(*II);
475     }
476 
477     // Delete the dead blocks and any of their dead successors.
478     MadeChange |= !WorkList.empty();
479     while (!WorkList.empty()) {
480       BasicBlock *BB = *WorkList.begin();
481       WorkList.erase(BB);
482       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
483 
484       DeleteDeadBlock(BB);
485 
486       for (SmallVectorImpl<BasicBlock*>::iterator
487              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
488         if (pred_begin(*II) == pred_end(*II))
489           WorkList.insert(*II);
490     }
491 
492     // Merge pairs of basic blocks with unconditional branches, connected by
493     // a single edge.
494     if (EverMadeChange || MadeChange)
495       MadeChange |= eliminateFallThrough(F);
496 
497     EverMadeChange |= MadeChange;
498   }
499 
500   if (!DisableGCOpts) {
501     SmallVector<Instruction *, 2> Statepoints;
502     for (BasicBlock &BB : F)
503       for (Instruction &I : BB)
504         if (isStatepoint(I))
505           Statepoints.push_back(&I);
506     for (auto &I : Statepoints)
507       EverMadeChange |= simplifyOffsetableRelocate(*I);
508   }
509 
510   return EverMadeChange;
511 }
512 
513 /// Merge basic blocks which are connected by a single edge, where one of the
514 /// basic blocks has a single successor pointing to the other basic block,
515 /// which has a single predecessor.
516 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
517   bool Changed = false;
518   // Scan all of the blocks in the function, except for the entry block.
519   // Use a temporary array to avoid iterator being invalidated when
520   // deleting blocks.
521   SmallVector<WeakTrackingVH, 16> Blocks;
522   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
523     Blocks.push_back(&Block);
524 
525   for (auto &Block : Blocks) {
526     auto *BB = cast_or_null<BasicBlock>(Block);
527     if (!BB)
528       continue;
529     // If the destination block has a single pred, then this is a trivial
530     // edge, just collapse it.
531     BasicBlock *SinglePred = BB->getSinglePredecessor();
532 
533     // Don't merge if BB's address is taken.
534     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
535 
536     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
537     if (Term && !Term->isConditional()) {
538       Changed = true;
539       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
540 
541       // Merge BB into SinglePred and delete it.
542       MergeBlockIntoPredecessor(BB);
543     }
544   }
545   return Changed;
546 }
547 
548 /// Find a destination block from BB if BB is mergeable empty block.
549 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
550   // If this block doesn't end with an uncond branch, ignore it.
551   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
552   if (!BI || !BI->isUnconditional())
553     return nullptr;
554 
555   // If the instruction before the branch (skipping debug info) isn't a phi
556   // node, then other stuff is happening here.
557   BasicBlock::iterator BBI = BI->getIterator();
558   if (BBI != BB->begin()) {
559     --BBI;
560     while (isa<DbgInfoIntrinsic>(BBI)) {
561       if (BBI == BB->begin())
562         break;
563       --BBI;
564     }
565     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
566       return nullptr;
567   }
568 
569   // Do not break infinite loops.
570   BasicBlock *DestBB = BI->getSuccessor(0);
571   if (DestBB == BB)
572     return nullptr;
573 
574   if (!canMergeBlocks(BB, DestBB))
575     DestBB = nullptr;
576 
577   return DestBB;
578 }
579 
580 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
581 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
582 /// edges in ways that are non-optimal for isel. Start by eliminating these
583 /// blocks so we can split them the way we want them.
584 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
585   SmallPtrSet<BasicBlock *, 16> Preheaders;
586   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
587   while (!LoopList.empty()) {
588     Loop *L = LoopList.pop_back_val();
589     LoopList.insert(LoopList.end(), L->begin(), L->end());
590     if (BasicBlock *Preheader = L->getLoopPreheader())
591       Preheaders.insert(Preheader);
592   }
593 
594   bool MadeChange = false;
595   // Copy blocks into a temporary array to avoid iterator invalidation issues
596   // as we remove them.
597   // Note that this intentionally skips the entry block.
598   SmallVector<WeakTrackingVH, 16> Blocks;
599   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
600     Blocks.push_back(&Block);
601 
602   for (auto &Block : Blocks) {
603     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
604     if (!BB)
605       continue;
606     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
607     if (!DestBB ||
608         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
609       continue;
610 
611     eliminateMostlyEmptyBlock(BB);
612     MadeChange = true;
613   }
614   return MadeChange;
615 }
616 
617 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
618                                                    BasicBlock *DestBB,
619                                                    bool isPreheader) {
620   // Do not delete loop preheaders if doing so would create a critical edge.
621   // Loop preheaders can be good locations to spill registers. If the
622   // preheader is deleted and we create a critical edge, registers may be
623   // spilled in the loop body instead.
624   if (!DisablePreheaderProtect && isPreheader &&
625       !(BB->getSinglePredecessor() &&
626         BB->getSinglePredecessor()->getSingleSuccessor()))
627     return false;
628 
629   // Try to skip merging if the unique predecessor of BB is terminated by a
630   // switch or indirect branch instruction, and BB is used as an incoming block
631   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
632   // add COPY instructions in the predecessor of BB instead of BB (if it is not
633   // merged). Note that the critical edge created by merging such blocks wont be
634   // split in MachineSink because the jump table is not analyzable. By keeping
635   // such empty block (BB), ISel will place COPY instructions in BB, not in the
636   // predecessor of BB.
637   BasicBlock *Pred = BB->getUniquePredecessor();
638   if (!Pred ||
639       !(isa<SwitchInst>(Pred->getTerminator()) ||
640         isa<IndirectBrInst>(Pred->getTerminator())))
641     return true;
642 
643   if (BB->getTerminator() != BB->getFirstNonPHI())
644     return true;
645 
646   // We use a simple cost heuristic which determine skipping merging is
647   // profitable if the cost of skipping merging is less than the cost of
648   // merging : Cost(skipping merging) < Cost(merging BB), where the
649   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
650   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
651   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
652   //   Freq(Pred) / Freq(BB) > 2.
653   // Note that if there are multiple empty blocks sharing the same incoming
654   // value for the PHIs in the DestBB, we consider them together. In such
655   // case, Cost(merging BB) will be the sum of their frequencies.
656 
657   if (!isa<PHINode>(DestBB->begin()))
658     return true;
659 
660   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
661 
662   // Find all other incoming blocks from which incoming values of all PHIs in
663   // DestBB are the same as the ones from BB.
664   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
665        ++PI) {
666     BasicBlock *DestBBPred = *PI;
667     if (DestBBPred == BB)
668       continue;
669 
670     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
671           return DestPN.getIncomingValueForBlock(BB) ==
672                  DestPN.getIncomingValueForBlock(DestBBPred);
673         }))
674       SameIncomingValueBBs.insert(DestBBPred);
675   }
676 
677   // See if all BB's incoming values are same as the value from Pred. In this
678   // case, no reason to skip merging because COPYs are expected to be place in
679   // Pred already.
680   if (SameIncomingValueBBs.count(Pred))
681     return true;
682 
683   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
684   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
685 
686   for (auto SameValueBB : SameIncomingValueBBs)
687     if (SameValueBB->getUniquePredecessor() == Pred &&
688         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
689       BBFreq += BFI->getBlockFreq(SameValueBB);
690 
691   return PredFreq.getFrequency() <=
692          BBFreq.getFrequency() * FreqRatioToSkipMerge;
693 }
694 
695 /// Return true if we can merge BB into DestBB if there is a single
696 /// unconditional branch between them, and BB contains no other non-phi
697 /// instructions.
698 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
699                                     const BasicBlock *DestBB) const {
700   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
701   // the successor.  If there are more complex condition (e.g. preheaders),
702   // don't mess around with them.
703   for (const PHINode &PN : BB->phis()) {
704     for (const User *U : PN.users()) {
705       const Instruction *UI = cast<Instruction>(U);
706       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
707         return false;
708       // If User is inside DestBB block and it is a PHINode then check
709       // incoming value. If incoming value is not from BB then this is
710       // a complex condition (e.g. preheaders) we want to avoid here.
711       if (UI->getParent() == DestBB) {
712         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
713           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
714             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
715             if (Insn && Insn->getParent() == BB &&
716                 Insn->getParent() != UPN->getIncomingBlock(I))
717               return false;
718           }
719       }
720     }
721   }
722 
723   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
724   // and DestBB may have conflicting incoming values for the block.  If so, we
725   // can't merge the block.
726   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
727   if (!DestBBPN) return true;  // no conflict.
728 
729   // Collect the preds of BB.
730   SmallPtrSet<const BasicBlock*, 16> BBPreds;
731   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
732     // It is faster to get preds from a PHI than with pred_iterator.
733     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
734       BBPreds.insert(BBPN->getIncomingBlock(i));
735   } else {
736     BBPreds.insert(pred_begin(BB), pred_end(BB));
737   }
738 
739   // Walk the preds of DestBB.
740   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
741     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
742     if (BBPreds.count(Pred)) {   // Common predecessor?
743       for (const PHINode &PN : DestBB->phis()) {
744         const Value *V1 = PN.getIncomingValueForBlock(Pred);
745         const Value *V2 = PN.getIncomingValueForBlock(BB);
746 
747         // If V2 is a phi node in BB, look up what the mapped value will be.
748         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
749           if (V2PN->getParent() == BB)
750             V2 = V2PN->getIncomingValueForBlock(Pred);
751 
752         // If there is a conflict, bail out.
753         if (V1 != V2) return false;
754       }
755     }
756   }
757 
758   return true;
759 }
760 
761 /// Eliminate a basic block that has only phi's and an unconditional branch in
762 /// it.
763 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
764   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
765   BasicBlock *DestBB = BI->getSuccessor(0);
766 
767   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
768                     << *BB << *DestBB);
769 
770   // If the destination block has a single pred, then this is a trivial edge,
771   // just collapse it.
772   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
773     if (SinglePred != DestBB) {
774       assert(SinglePred == BB &&
775              "Single predecessor not the same as predecessor");
776       // Merge DestBB into SinglePred/BB and delete it.
777       MergeBlockIntoPredecessor(DestBB);
778       // Note: BB(=SinglePred) will not be deleted on this path.
779       // DestBB(=its single successor) is the one that was deleted.
780       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
781       return;
782     }
783   }
784 
785   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
786   // to handle the new incoming edges it is about to have.
787   for (PHINode &PN : DestBB->phis()) {
788     // Remove the incoming value for BB, and remember it.
789     Value *InVal = PN.removeIncomingValue(BB, false);
790 
791     // Two options: either the InVal is a phi node defined in BB or it is some
792     // value that dominates BB.
793     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
794     if (InValPhi && InValPhi->getParent() == BB) {
795       // Add all of the input values of the input PHI as inputs of this phi.
796       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
797         PN.addIncoming(InValPhi->getIncomingValue(i),
798                        InValPhi->getIncomingBlock(i));
799     } else {
800       // Otherwise, add one instance of the dominating value for each edge that
801       // we will be adding.
802       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
803         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
804           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
805       } else {
806         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
807           PN.addIncoming(InVal, *PI);
808       }
809     }
810   }
811 
812   // The PHIs are now updated, change everything that refers to BB to use
813   // DestBB and remove BB.
814   BB->replaceAllUsesWith(DestBB);
815   BB->eraseFromParent();
816   ++NumBlocksElim;
817 
818   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
819 }
820 
821 // Computes a map of base pointer relocation instructions to corresponding
822 // derived pointer relocation instructions given a vector of all relocate calls
823 static void computeBaseDerivedRelocateMap(
824     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
825     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
826         &RelocateInstMap) {
827   // Collect information in two maps: one primarily for locating the base object
828   // while filling the second map; the second map is the final structure holding
829   // a mapping between Base and corresponding Derived relocate calls
830   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
831   for (auto *ThisRelocate : AllRelocateCalls) {
832     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
833                             ThisRelocate->getDerivedPtrIndex());
834     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
835   }
836   for (auto &Item : RelocateIdxMap) {
837     std::pair<unsigned, unsigned> Key = Item.first;
838     if (Key.first == Key.second)
839       // Base relocation: nothing to insert
840       continue;
841 
842     GCRelocateInst *I = Item.second;
843     auto BaseKey = std::make_pair(Key.first, Key.first);
844 
845     // We're iterating over RelocateIdxMap so we cannot modify it.
846     auto MaybeBase = RelocateIdxMap.find(BaseKey);
847     if (MaybeBase == RelocateIdxMap.end())
848       // TODO: We might want to insert a new base object relocate and gep off
849       // that, if there are enough derived object relocates.
850       continue;
851 
852     RelocateInstMap[MaybeBase->second].push_back(I);
853   }
854 }
855 
856 // Accepts a GEP and extracts the operands into a vector provided they're all
857 // small integer constants
858 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
859                                           SmallVectorImpl<Value *> &OffsetV) {
860   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
861     // Only accept small constant integer operands
862     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
863     if (!Op || Op->getZExtValue() > 20)
864       return false;
865   }
866 
867   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
868     OffsetV.push_back(GEP->getOperand(i));
869   return true;
870 }
871 
872 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
873 // replace, computes a replacement, and affects it.
874 static bool
875 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
876                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
877   bool MadeChange = false;
878   // We must ensure the relocation of derived pointer is defined after
879   // relocation of base pointer. If we find a relocation corresponding to base
880   // defined earlier than relocation of base then we move relocation of base
881   // right before found relocation. We consider only relocation in the same
882   // basic block as relocation of base. Relocations from other basic block will
883   // be skipped by optimization and we do not care about them.
884   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
885        &*R != RelocatedBase; ++R)
886     if (auto RI = dyn_cast<GCRelocateInst>(R))
887       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
888         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
889           RelocatedBase->moveBefore(RI);
890           break;
891         }
892 
893   for (GCRelocateInst *ToReplace : Targets) {
894     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
895            "Not relocating a derived object of the original base object");
896     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
897       // A duplicate relocate call. TODO: coalesce duplicates.
898       continue;
899     }
900 
901     if (RelocatedBase->getParent() != ToReplace->getParent()) {
902       // Base and derived relocates are in different basic blocks.
903       // In this case transform is only valid when base dominates derived
904       // relocate. However it would be too expensive to check dominance
905       // for each such relocate, so we skip the whole transformation.
906       continue;
907     }
908 
909     Value *Base = ToReplace->getBasePtr();
910     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
911     if (!Derived || Derived->getPointerOperand() != Base)
912       continue;
913 
914     SmallVector<Value *, 2> OffsetV;
915     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
916       continue;
917 
918     // Create a Builder and replace the target callsite with a gep
919     assert(RelocatedBase->getNextNode() &&
920            "Should always have one since it's not a terminator");
921 
922     // Insert after RelocatedBase
923     IRBuilder<> Builder(RelocatedBase->getNextNode());
924     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
925 
926     // If gc_relocate does not match the actual type, cast it to the right type.
927     // In theory, there must be a bitcast after gc_relocate if the type does not
928     // match, and we should reuse it to get the derived pointer. But it could be
929     // cases like this:
930     // bb1:
931     //  ...
932     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
933     //  br label %merge
934     //
935     // bb2:
936     //  ...
937     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
938     //  br label %merge
939     //
940     // merge:
941     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
942     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
943     //
944     // In this case, we can not find the bitcast any more. So we insert a new bitcast
945     // no matter there is already one or not. In this way, we can handle all cases, and
946     // the extra bitcast should be optimized away in later passes.
947     Value *ActualRelocatedBase = RelocatedBase;
948     if (RelocatedBase->getType() != Base->getType()) {
949       ActualRelocatedBase =
950           Builder.CreateBitCast(RelocatedBase, Base->getType());
951     }
952     Value *Replacement = Builder.CreateGEP(
953         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
954     Replacement->takeName(ToReplace);
955     // If the newly generated derived pointer's type does not match the original derived
956     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
957     Value *ActualReplacement = Replacement;
958     if (Replacement->getType() != ToReplace->getType()) {
959       ActualReplacement =
960           Builder.CreateBitCast(Replacement, ToReplace->getType());
961     }
962     ToReplace->replaceAllUsesWith(ActualReplacement);
963     ToReplace->eraseFromParent();
964 
965     MadeChange = true;
966   }
967   return MadeChange;
968 }
969 
970 // Turns this:
971 //
972 // %base = ...
973 // %ptr = gep %base + 15
974 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
975 // %base' = relocate(%tok, i32 4, i32 4)
976 // %ptr' = relocate(%tok, i32 4, i32 5)
977 // %val = load %ptr'
978 //
979 // into this:
980 //
981 // %base = ...
982 // %ptr = gep %base + 15
983 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
984 // %base' = gc.relocate(%tok, i32 4, i32 4)
985 // %ptr' = gep %base' + 15
986 // %val = load %ptr'
987 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
988   bool MadeChange = false;
989   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
990 
991   for (auto *U : I.users())
992     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
993       // Collect all the relocate calls associated with a statepoint
994       AllRelocateCalls.push_back(Relocate);
995 
996   // We need atleast one base pointer relocation + one derived pointer
997   // relocation to mangle
998   if (AllRelocateCalls.size() < 2)
999     return false;
1000 
1001   // RelocateInstMap is a mapping from the base relocate instruction to the
1002   // corresponding derived relocate instructions
1003   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1004   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1005   if (RelocateInstMap.empty())
1006     return false;
1007 
1008   for (auto &Item : RelocateInstMap)
1009     // Item.first is the RelocatedBase to offset against
1010     // Item.second is the vector of Targets to replace
1011     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1012   return MadeChange;
1013 }
1014 
1015 /// SinkCast - Sink the specified cast instruction into its user blocks
1016 static bool SinkCast(CastInst *CI) {
1017   BasicBlock *DefBB = CI->getParent();
1018 
1019   /// InsertedCasts - Only insert a cast in each block once.
1020   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1021 
1022   bool MadeChange = false;
1023   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1024        UI != E; ) {
1025     Use &TheUse = UI.getUse();
1026     Instruction *User = cast<Instruction>(*UI);
1027 
1028     // Figure out which BB this cast is used in.  For PHI's this is the
1029     // appropriate predecessor block.
1030     BasicBlock *UserBB = User->getParent();
1031     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1032       UserBB = PN->getIncomingBlock(TheUse);
1033     }
1034 
1035     // Preincrement use iterator so we don't invalidate it.
1036     ++UI;
1037 
1038     // The first insertion point of a block containing an EH pad is after the
1039     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1040     if (User->isEHPad())
1041       continue;
1042 
1043     // If the block selected to receive the cast is an EH pad that does not
1044     // allow non-PHI instructions before the terminator, we can't sink the
1045     // cast.
1046     if (UserBB->getTerminator()->isEHPad())
1047       continue;
1048 
1049     // If this user is in the same block as the cast, don't change the cast.
1050     if (UserBB == DefBB) continue;
1051 
1052     // If we have already inserted a cast into this block, use it.
1053     CastInst *&InsertedCast = InsertedCasts[UserBB];
1054 
1055     if (!InsertedCast) {
1056       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1057       assert(InsertPt != UserBB->end());
1058       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1059                                       CI->getType(), "", &*InsertPt);
1060       InsertedCast->setDebugLoc(CI->getDebugLoc());
1061     }
1062 
1063     // Replace a use of the cast with a use of the new cast.
1064     TheUse = InsertedCast;
1065     MadeChange = true;
1066     ++NumCastUses;
1067   }
1068 
1069   // If we removed all uses, nuke the cast.
1070   if (CI->use_empty()) {
1071     salvageDebugInfo(*CI);
1072     CI->eraseFromParent();
1073     MadeChange = true;
1074   }
1075 
1076   return MadeChange;
1077 }
1078 
1079 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1080 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1081 /// reduce the number of virtual registers that must be created and coalesced.
1082 ///
1083 /// Return true if any changes are made.
1084 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1085                                        const DataLayout &DL) {
1086   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1087   // than sinking only nop casts, but is helpful on some platforms.
1088   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1089     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1090                                   ASC->getDestAddressSpace()))
1091       return false;
1092   }
1093 
1094   // If this is a noop copy,
1095   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1096   EVT DstVT = TLI.getValueType(DL, CI->getType());
1097 
1098   // This is an fp<->int conversion?
1099   if (SrcVT.isInteger() != DstVT.isInteger())
1100     return false;
1101 
1102   // If this is an extension, it will be a zero or sign extension, which
1103   // isn't a noop.
1104   if (SrcVT.bitsLT(DstVT)) return false;
1105 
1106   // If these values will be promoted, find out what they will be promoted
1107   // to.  This helps us consider truncates on PPC as noop copies when they
1108   // are.
1109   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1110       TargetLowering::TypePromoteInteger)
1111     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1112   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1113       TargetLowering::TypePromoteInteger)
1114     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1115 
1116   // If, after promotion, these are the same types, this is a noop copy.
1117   if (SrcVT != DstVT)
1118     return false;
1119 
1120   return SinkCast(CI);
1121 }
1122 
1123 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1124 /// possible.
1125 ///
1126 /// Return true if any changes were made.
1127 static bool CombineUAddWithOverflow(CmpInst *CI) {
1128   Value *A, *B;
1129   Instruction *AddI;
1130   if (!match(CI,
1131              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1132     return false;
1133 
1134   Type *Ty = AddI->getType();
1135   if (!isa<IntegerType>(Ty))
1136     return false;
1137 
1138   // We don't want to move around uses of condition values this late, so we we
1139   // check if it is legal to create the call to the intrinsic in the basic
1140   // block containing the icmp:
1141 
1142   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1143     return false;
1144 
1145 #ifndef NDEBUG
1146   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1147   // for now:
1148   if (AddI->hasOneUse())
1149     assert(*AddI->user_begin() == CI && "expected!");
1150 #endif
1151 
1152   Module *M = CI->getModule();
1153   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1154 
1155   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1156 
1157   auto *UAddWithOverflow =
1158       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1159   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1160   auto *Overflow =
1161       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1162 
1163   CI->replaceAllUsesWith(Overflow);
1164   AddI->replaceAllUsesWith(UAdd);
1165   CI->eraseFromParent();
1166   AddI->eraseFromParent();
1167   return true;
1168 }
1169 
1170 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1171 /// registers that must be created and coalesced. This is a clear win except on
1172 /// targets with multiple condition code registers (PowerPC), where it might
1173 /// lose; some adjustment may be wanted there.
1174 ///
1175 /// Return true if any changes are made.
1176 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1177   BasicBlock *DefBB = CI->getParent();
1178 
1179   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1180   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1181     return false;
1182 
1183   // Only insert a cmp in each block once.
1184   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1185 
1186   bool MadeChange = false;
1187   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1188        UI != E; ) {
1189     Use &TheUse = UI.getUse();
1190     Instruction *User = cast<Instruction>(*UI);
1191 
1192     // Preincrement use iterator so we don't invalidate it.
1193     ++UI;
1194 
1195     // Don't bother for PHI nodes.
1196     if (isa<PHINode>(User))
1197       continue;
1198 
1199     // Figure out which BB this cmp is used in.
1200     BasicBlock *UserBB = User->getParent();
1201 
1202     // If this user is in the same block as the cmp, don't change the cmp.
1203     if (UserBB == DefBB) continue;
1204 
1205     // If we have already inserted a cmp into this block, use it.
1206     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1207 
1208     if (!InsertedCmp) {
1209       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1210       assert(InsertPt != UserBB->end());
1211       InsertedCmp =
1212           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1213                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1214       // Propagate the debug info.
1215       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1216     }
1217 
1218     // Replace a use of the cmp with a use of the new cmp.
1219     TheUse = InsertedCmp;
1220     MadeChange = true;
1221     ++NumCmpUses;
1222   }
1223 
1224   // If we removed all uses, nuke the cmp.
1225   if (CI->use_empty()) {
1226     CI->eraseFromParent();
1227     MadeChange = true;
1228   }
1229 
1230   return MadeChange;
1231 }
1232 
1233 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1234   if (SinkCmpExpression(CI, TLI))
1235     return true;
1236 
1237   if (CombineUAddWithOverflow(CI))
1238     return true;
1239 
1240   return false;
1241 }
1242 
1243 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1244 /// used in a compare to allow isel to generate better code for targets where
1245 /// this operation can be combined.
1246 ///
1247 /// Return true if any changes are made.
1248 static bool sinkAndCmp0Expression(Instruction *AndI,
1249                                   const TargetLowering &TLI,
1250                                   SetOfInstrs &InsertedInsts) {
1251   // Double-check that we're not trying to optimize an instruction that was
1252   // already optimized by some other part of this pass.
1253   assert(!InsertedInsts.count(AndI) &&
1254          "Attempting to optimize already optimized and instruction");
1255   (void) InsertedInsts;
1256 
1257   // Nothing to do for single use in same basic block.
1258   if (AndI->hasOneUse() &&
1259       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1260     return false;
1261 
1262   // Try to avoid cases where sinking/duplicating is likely to increase register
1263   // pressure.
1264   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1265       !isa<ConstantInt>(AndI->getOperand(1)) &&
1266       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1267     return false;
1268 
1269   for (auto *U : AndI->users()) {
1270     Instruction *User = cast<Instruction>(U);
1271 
1272     // Only sink for and mask feeding icmp with 0.
1273     if (!isa<ICmpInst>(User))
1274       return false;
1275 
1276     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1277     if (!CmpC || !CmpC->isZero())
1278       return false;
1279   }
1280 
1281   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1282     return false;
1283 
1284   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1285   LLVM_DEBUG(AndI->getParent()->dump());
1286 
1287   // Push the 'and' into the same block as the icmp 0.  There should only be
1288   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1289   // others, so we don't need to keep track of which BBs we insert into.
1290   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1291        UI != E; ) {
1292     Use &TheUse = UI.getUse();
1293     Instruction *User = cast<Instruction>(*UI);
1294 
1295     // Preincrement use iterator so we don't invalidate it.
1296     ++UI;
1297 
1298     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1299 
1300     // Keep the 'and' in the same place if the use is already in the same block.
1301     Instruction *InsertPt =
1302         User->getParent() == AndI->getParent() ? AndI : User;
1303     Instruction *InsertedAnd =
1304         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1305                                AndI->getOperand(1), "", InsertPt);
1306     // Propagate the debug info.
1307     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1308 
1309     // Replace a use of the 'and' with a use of the new 'and'.
1310     TheUse = InsertedAnd;
1311     ++NumAndUses;
1312     LLVM_DEBUG(User->getParent()->dump());
1313   }
1314 
1315   // We removed all uses, nuke the and.
1316   AndI->eraseFromParent();
1317   return true;
1318 }
1319 
1320 /// Check if the candidates could be combined with a shift instruction, which
1321 /// includes:
1322 /// 1. Truncate instruction
1323 /// 2. And instruction and the imm is a mask of the low bits:
1324 /// imm & (imm+1) == 0
1325 static bool isExtractBitsCandidateUse(Instruction *User) {
1326   if (!isa<TruncInst>(User)) {
1327     if (User->getOpcode() != Instruction::And ||
1328         !isa<ConstantInt>(User->getOperand(1)))
1329       return false;
1330 
1331     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1332 
1333     if ((Cimm & (Cimm + 1)).getBoolValue())
1334       return false;
1335   }
1336   return true;
1337 }
1338 
1339 /// Sink both shift and truncate instruction to the use of truncate's BB.
1340 static bool
1341 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1342                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1343                      const TargetLowering &TLI, const DataLayout &DL) {
1344   BasicBlock *UserBB = User->getParent();
1345   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1346   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1347   bool MadeChange = false;
1348 
1349   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1350                             TruncE = TruncI->user_end();
1351        TruncUI != TruncE;) {
1352 
1353     Use &TruncTheUse = TruncUI.getUse();
1354     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1355     // Preincrement use iterator so we don't invalidate it.
1356 
1357     ++TruncUI;
1358 
1359     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1360     if (!ISDOpcode)
1361       continue;
1362 
1363     // If the use is actually a legal node, there will not be an
1364     // implicit truncate.
1365     // FIXME: always querying the result type is just an
1366     // approximation; some nodes' legality is determined by the
1367     // operand or other means. There's no good way to find out though.
1368     if (TLI.isOperationLegalOrCustom(
1369             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1370       continue;
1371 
1372     // Don't bother for PHI nodes.
1373     if (isa<PHINode>(TruncUser))
1374       continue;
1375 
1376     BasicBlock *TruncUserBB = TruncUser->getParent();
1377 
1378     if (UserBB == TruncUserBB)
1379       continue;
1380 
1381     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1382     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1383 
1384     if (!InsertedShift && !InsertedTrunc) {
1385       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1386       assert(InsertPt != TruncUserBB->end());
1387       // Sink the shift
1388       if (ShiftI->getOpcode() == Instruction::AShr)
1389         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1390                                                    "", &*InsertPt);
1391       else
1392         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1393                                                    "", &*InsertPt);
1394 
1395       // Sink the trunc
1396       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1397       TruncInsertPt++;
1398       assert(TruncInsertPt != TruncUserBB->end());
1399 
1400       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1401                                        TruncI->getType(), "", &*TruncInsertPt);
1402 
1403       MadeChange = true;
1404 
1405       TruncTheUse = InsertedTrunc;
1406     }
1407   }
1408   return MadeChange;
1409 }
1410 
1411 /// Sink the shift *right* instruction into user blocks if the uses could
1412 /// potentially be combined with this shift instruction and generate BitExtract
1413 /// instruction. It will only be applied if the architecture supports BitExtract
1414 /// instruction. Here is an example:
1415 /// BB1:
1416 ///   %x.extract.shift = lshr i64 %arg1, 32
1417 /// BB2:
1418 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1419 /// ==>
1420 ///
1421 /// BB2:
1422 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1423 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1424 ///
1425 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1426 /// instruction.
1427 /// Return true if any changes are made.
1428 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1429                                 const TargetLowering &TLI,
1430                                 const DataLayout &DL) {
1431   BasicBlock *DefBB = ShiftI->getParent();
1432 
1433   /// Only insert instructions in each block once.
1434   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1435 
1436   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1437 
1438   bool MadeChange = false;
1439   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1440        UI != E;) {
1441     Use &TheUse = UI.getUse();
1442     Instruction *User = cast<Instruction>(*UI);
1443     // Preincrement use iterator so we don't invalidate it.
1444     ++UI;
1445 
1446     // Don't bother for PHI nodes.
1447     if (isa<PHINode>(User))
1448       continue;
1449 
1450     if (!isExtractBitsCandidateUse(User))
1451       continue;
1452 
1453     BasicBlock *UserBB = User->getParent();
1454 
1455     if (UserBB == DefBB) {
1456       // If the shift and truncate instruction are in the same BB. The use of
1457       // the truncate(TruncUse) may still introduce another truncate if not
1458       // legal. In this case, we would like to sink both shift and truncate
1459       // instruction to the BB of TruncUse.
1460       // for example:
1461       // BB1:
1462       // i64 shift.result = lshr i64 opnd, imm
1463       // trunc.result = trunc shift.result to i16
1464       //
1465       // BB2:
1466       //   ----> We will have an implicit truncate here if the architecture does
1467       //   not have i16 compare.
1468       // cmp i16 trunc.result, opnd2
1469       //
1470       if (isa<TruncInst>(User) && shiftIsLegal
1471           // If the type of the truncate is legal, no truncate will be
1472           // introduced in other basic blocks.
1473           &&
1474           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1475         MadeChange =
1476             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1477 
1478       continue;
1479     }
1480     // If we have already inserted a shift into this block, use it.
1481     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1482 
1483     if (!InsertedShift) {
1484       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1485       assert(InsertPt != UserBB->end());
1486 
1487       if (ShiftI->getOpcode() == Instruction::AShr)
1488         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1489                                                    "", &*InsertPt);
1490       else
1491         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1492                                                    "", &*InsertPt);
1493 
1494       MadeChange = true;
1495     }
1496 
1497     // Replace a use of the shift with a use of the new shift.
1498     TheUse = InsertedShift;
1499   }
1500 
1501   // If we removed all uses, nuke the shift.
1502   if (ShiftI->use_empty())
1503     ShiftI->eraseFromParent();
1504 
1505   return MadeChange;
1506 }
1507 
1508 /// If counting leading or trailing zeros is an expensive operation and a zero
1509 /// input is defined, add a check for zero to avoid calling the intrinsic.
1510 ///
1511 /// We want to transform:
1512 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1513 ///
1514 /// into:
1515 ///   entry:
1516 ///     %cmpz = icmp eq i64 %A, 0
1517 ///     br i1 %cmpz, label %cond.end, label %cond.false
1518 ///   cond.false:
1519 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1520 ///     br label %cond.end
1521 ///   cond.end:
1522 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1523 ///
1524 /// If the transform is performed, return true and set ModifiedDT to true.
1525 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1526                                   const TargetLowering *TLI,
1527                                   const DataLayout *DL,
1528                                   bool &ModifiedDT) {
1529   if (!TLI || !DL)
1530     return false;
1531 
1532   // If a zero input is undefined, it doesn't make sense to despeculate that.
1533   if (match(CountZeros->getOperand(1), m_One()))
1534     return false;
1535 
1536   // If it's cheap to speculate, there's nothing to do.
1537   auto IntrinsicID = CountZeros->getIntrinsicID();
1538   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1539       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1540     return false;
1541 
1542   // Only handle legal scalar cases. Anything else requires too much work.
1543   Type *Ty = CountZeros->getType();
1544   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1545   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1546     return false;
1547 
1548   // The intrinsic will be sunk behind a compare against zero and branch.
1549   BasicBlock *StartBlock = CountZeros->getParent();
1550   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1551 
1552   // Create another block after the count zero intrinsic. A PHI will be added
1553   // in this block to select the result of the intrinsic or the bit-width
1554   // constant if the input to the intrinsic is zero.
1555   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1556   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1557 
1558   // Set up a builder to create a compare, conditional branch, and PHI.
1559   IRBuilder<> Builder(CountZeros->getContext());
1560   Builder.SetInsertPoint(StartBlock->getTerminator());
1561   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1562 
1563   // Replace the unconditional branch that was created by the first split with
1564   // a compare against zero and a conditional branch.
1565   Value *Zero = Constant::getNullValue(Ty);
1566   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1567   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1568   StartBlock->getTerminator()->eraseFromParent();
1569 
1570   // Create a PHI in the end block to select either the output of the intrinsic
1571   // or the bit width of the operand.
1572   Builder.SetInsertPoint(&EndBlock->front());
1573   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1574   CountZeros->replaceAllUsesWith(PN);
1575   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1576   PN->addIncoming(BitWidth, StartBlock);
1577   PN->addIncoming(CountZeros, CallBlock);
1578 
1579   // We are explicitly handling the zero case, so we can set the intrinsic's
1580   // undefined zero argument to 'true'. This will also prevent reprocessing the
1581   // intrinsic; we only despeculate when a zero input is defined.
1582   CountZeros->setArgOperand(1, Builder.getTrue());
1583   ModifiedDT = true;
1584   return true;
1585 }
1586 
1587 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1588   BasicBlock *BB = CI->getParent();
1589 
1590   // Lower inline assembly if we can.
1591   // If we found an inline asm expession, and if the target knows how to
1592   // lower it to normal LLVM code, do so now.
1593   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1594     if (TLI->ExpandInlineAsm(CI)) {
1595       // Avoid invalidating the iterator.
1596       CurInstIterator = BB->begin();
1597       // Avoid processing instructions out of order, which could cause
1598       // reuse before a value is defined.
1599       SunkAddrs.clear();
1600       return true;
1601     }
1602     // Sink address computing for memory operands into the block.
1603     if (optimizeInlineAsmInst(CI))
1604       return true;
1605   }
1606 
1607   // Align the pointer arguments to this call if the target thinks it's a good
1608   // idea
1609   unsigned MinSize, PrefAlign;
1610   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1611     for (auto &Arg : CI->arg_operands()) {
1612       // We want to align both objects whose address is used directly and
1613       // objects whose address is used in casts and GEPs, though it only makes
1614       // sense for GEPs if the offset is a multiple of the desired alignment and
1615       // if size - offset meets the size threshold.
1616       if (!Arg->getType()->isPointerTy())
1617         continue;
1618       APInt Offset(DL->getIndexSizeInBits(
1619                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1620                    0);
1621       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1622       uint64_t Offset2 = Offset.getLimitedValue();
1623       if ((Offset2 & (PrefAlign-1)) != 0)
1624         continue;
1625       AllocaInst *AI;
1626       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1627           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1628         AI->setAlignment(PrefAlign);
1629       // Global variables can only be aligned if they are defined in this
1630       // object (i.e. they are uniquely initialized in this object), and
1631       // over-aligning global variables that have an explicit section is
1632       // forbidden.
1633       GlobalVariable *GV;
1634       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1635           GV->getPointerAlignment(*DL) < PrefAlign &&
1636           DL->getTypeAllocSize(GV->getValueType()) >=
1637               MinSize + Offset2)
1638         GV->setAlignment(PrefAlign);
1639     }
1640     // If this is a memcpy (or similar) then we may be able to improve the
1641     // alignment
1642     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1643       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1644       if (DestAlign > MI->getDestAlignment())
1645         MI->setDestAlignment(DestAlign);
1646       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1647         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1648         if (SrcAlign > MTI->getSourceAlignment())
1649           MTI->setSourceAlignment(SrcAlign);
1650       }
1651     }
1652   }
1653 
1654   // If we have a cold call site, try to sink addressing computation into the
1655   // cold block.  This interacts with our handling for loads and stores to
1656   // ensure that we can fold all uses of a potential addressing computation
1657   // into their uses.  TODO: generalize this to work over profiling data
1658   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1659     for (auto &Arg : CI->arg_operands()) {
1660       if (!Arg->getType()->isPointerTy())
1661         continue;
1662       unsigned AS = Arg->getType()->getPointerAddressSpace();
1663       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1664     }
1665 
1666   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1667   if (II) {
1668     switch (II->getIntrinsicID()) {
1669     default: break;
1670     case Intrinsic::objectsize: {
1671       // Lower all uses of llvm.objectsize.*
1672       ConstantInt *RetVal =
1673           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1674       // Substituting this can cause recursive simplifications, which can
1675       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
1676       // this
1677       // happens.
1678       Value *CurValue = &*CurInstIterator;
1679       WeakTrackingVH IterHandle(CurValue);
1680 
1681       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1682 
1683       // If the iterator instruction was recursively deleted, start over at the
1684       // start of the block.
1685       if (IterHandle != CurValue) {
1686         CurInstIterator = BB->begin();
1687         SunkAddrs.clear();
1688       }
1689       return true;
1690     }
1691     case Intrinsic::aarch64_stlxr:
1692     case Intrinsic::aarch64_stxr: {
1693       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1694       if (!ExtVal || !ExtVal->hasOneUse() ||
1695           ExtVal->getParent() == CI->getParent())
1696         return false;
1697       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1698       ExtVal->moveBefore(CI);
1699       // Mark this instruction as "inserted by CGP", so that other
1700       // optimizations don't touch it.
1701       InsertedInsts.insert(ExtVal);
1702       return true;
1703     }
1704     case Intrinsic::launder_invariant_group:
1705       II->replaceAllUsesWith(II->getArgOperand(0));
1706       II->eraseFromParent();
1707       return true;
1708 
1709     case Intrinsic::cttz:
1710     case Intrinsic::ctlz:
1711       // If counting zeros is expensive, try to avoid it.
1712       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1713     }
1714 
1715     if (TLI) {
1716       SmallVector<Value*, 2> PtrOps;
1717       Type *AccessTy;
1718       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1719         while (!PtrOps.empty()) {
1720           Value *PtrVal = PtrOps.pop_back_val();
1721           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1722           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1723             return true;
1724         }
1725     }
1726   }
1727 
1728   // From here on out we're working with named functions.
1729   if (!CI->getCalledFunction()) return false;
1730 
1731   // Lower all default uses of _chk calls.  This is very similar
1732   // to what InstCombineCalls does, but here we are only lowering calls
1733   // to fortified library functions (e.g. __memcpy_chk) that have the default
1734   // "don't know" as the objectsize.  Anything else should be left alone.
1735   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1736   if (Value *V = Simplifier.optimizeCall(CI)) {
1737     CI->replaceAllUsesWith(V);
1738     CI->eraseFromParent();
1739     return true;
1740   }
1741 
1742   return false;
1743 }
1744 
1745 /// Look for opportunities to duplicate return instructions to the predecessor
1746 /// to enable tail call optimizations. The case it is currently looking for is:
1747 /// @code
1748 /// bb0:
1749 ///   %tmp0 = tail call i32 @f0()
1750 ///   br label %return
1751 /// bb1:
1752 ///   %tmp1 = tail call i32 @f1()
1753 ///   br label %return
1754 /// bb2:
1755 ///   %tmp2 = tail call i32 @f2()
1756 ///   br label %return
1757 /// return:
1758 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1759 ///   ret i32 %retval
1760 /// @endcode
1761 ///
1762 /// =>
1763 ///
1764 /// @code
1765 /// bb0:
1766 ///   %tmp0 = tail call i32 @f0()
1767 ///   ret i32 %tmp0
1768 /// bb1:
1769 ///   %tmp1 = tail call i32 @f1()
1770 ///   ret i32 %tmp1
1771 /// bb2:
1772 ///   %tmp2 = tail call i32 @f2()
1773 ///   ret i32 %tmp2
1774 /// @endcode
1775 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1776   if (!TLI)
1777     return false;
1778 
1779   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1780   if (!RetI)
1781     return false;
1782 
1783   PHINode *PN = nullptr;
1784   BitCastInst *BCI = nullptr;
1785   Value *V = RetI->getReturnValue();
1786   if (V) {
1787     BCI = dyn_cast<BitCastInst>(V);
1788     if (BCI)
1789       V = BCI->getOperand(0);
1790 
1791     PN = dyn_cast<PHINode>(V);
1792     if (!PN)
1793       return false;
1794   }
1795 
1796   if (PN && PN->getParent() != BB)
1797     return false;
1798 
1799   // Make sure there are no instructions between the PHI and return, or that the
1800   // return is the first instruction in the block.
1801   if (PN) {
1802     BasicBlock::iterator BI = BB->begin();
1803     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1804     if (&*BI == BCI)
1805       // Also skip over the bitcast.
1806       ++BI;
1807     if (&*BI != RetI)
1808       return false;
1809   } else {
1810     BasicBlock::iterator BI = BB->begin();
1811     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1812     if (&*BI != RetI)
1813       return false;
1814   }
1815 
1816   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1817   /// call.
1818   const Function *F = BB->getParent();
1819   SmallVector<CallInst*, 4> TailCalls;
1820   if (PN) {
1821     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1822       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1823       // Make sure the phi value is indeed produced by the tail call.
1824       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1825           TLI->mayBeEmittedAsTailCall(CI) &&
1826           attributesPermitTailCall(F, CI, RetI, *TLI))
1827         TailCalls.push_back(CI);
1828     }
1829   } else {
1830     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1831     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1832       if (!VisitedBBs.insert(*PI).second)
1833         continue;
1834 
1835       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1836       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1837       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1838       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1839       if (RI == RE)
1840         continue;
1841 
1842       CallInst *CI = dyn_cast<CallInst>(&*RI);
1843       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1844           attributesPermitTailCall(F, CI, RetI, *TLI))
1845         TailCalls.push_back(CI);
1846     }
1847   }
1848 
1849   bool Changed = false;
1850   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1851     CallInst *CI = TailCalls[i];
1852     CallSite CS(CI);
1853 
1854     // Conservatively require the attributes of the call to match those of the
1855     // return. Ignore noalias because it doesn't affect the call sequence.
1856     AttributeList CalleeAttrs = CS.getAttributes();
1857     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1858             .removeAttribute(Attribute::NoAlias) !=
1859         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1860             .removeAttribute(Attribute::NoAlias))
1861       continue;
1862 
1863     // Make sure the call instruction is followed by an unconditional branch to
1864     // the return block.
1865     BasicBlock *CallBB = CI->getParent();
1866     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1867     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1868       continue;
1869 
1870     // Duplicate the return into CallBB.
1871     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1872     ModifiedDT = Changed = true;
1873     ++NumRetsDup;
1874   }
1875 
1876   // If we eliminated all predecessors of the block, delete the block now.
1877   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1878     BB->eraseFromParent();
1879 
1880   return Changed;
1881 }
1882 
1883 //===----------------------------------------------------------------------===//
1884 // Memory Optimization
1885 //===----------------------------------------------------------------------===//
1886 
1887 namespace {
1888 
1889 /// This is an extended version of TargetLowering::AddrMode
1890 /// which holds actual Value*'s for register values.
1891 struct ExtAddrMode : public TargetLowering::AddrMode {
1892   Value *BaseReg = nullptr;
1893   Value *ScaledReg = nullptr;
1894   Value *OriginalValue = nullptr;
1895 
1896   enum FieldName {
1897     NoField        = 0x00,
1898     BaseRegField   = 0x01,
1899     BaseGVField    = 0x02,
1900     BaseOffsField  = 0x04,
1901     ScaledRegField = 0x08,
1902     ScaleField     = 0x10,
1903     MultipleFields = 0xff
1904   };
1905 
1906   ExtAddrMode() = default;
1907 
1908   void print(raw_ostream &OS) const;
1909   void dump() const;
1910 
1911   FieldName compare(const ExtAddrMode &other) {
1912     // First check that the types are the same on each field, as differing types
1913     // is something we can't cope with later on.
1914     if (BaseReg && other.BaseReg &&
1915         BaseReg->getType() != other.BaseReg->getType())
1916       return MultipleFields;
1917     if (BaseGV && other.BaseGV &&
1918         BaseGV->getType() != other.BaseGV->getType())
1919       return MultipleFields;
1920     if (ScaledReg && other.ScaledReg &&
1921         ScaledReg->getType() != other.ScaledReg->getType())
1922       return MultipleFields;
1923 
1924     // Check each field to see if it differs.
1925     unsigned Result = NoField;
1926     if (BaseReg != other.BaseReg)
1927       Result |= BaseRegField;
1928     if (BaseGV != other.BaseGV)
1929       Result |= BaseGVField;
1930     if (BaseOffs != other.BaseOffs)
1931       Result |= BaseOffsField;
1932     if (ScaledReg != other.ScaledReg)
1933       Result |= ScaledRegField;
1934     // Don't count 0 as being a different scale, because that actually means
1935     // unscaled (which will already be counted by having no ScaledReg).
1936     if (Scale && other.Scale && Scale != other.Scale)
1937       Result |= ScaleField;
1938 
1939     if (countPopulation(Result) > 1)
1940       return MultipleFields;
1941     else
1942       return static_cast<FieldName>(Result);
1943   }
1944 
1945   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1946   // with no offset.
1947   bool isTrivial() {
1948     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1949     // trivial if at most one of these terms is nonzero, except that BaseGV and
1950     // BaseReg both being zero actually means a null pointer value, which we
1951     // consider to be 'non-zero' here.
1952     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1953   }
1954 
1955   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1956     switch (Field) {
1957     default:
1958       return nullptr;
1959     case BaseRegField:
1960       return BaseReg;
1961     case BaseGVField:
1962       return BaseGV;
1963     case ScaledRegField:
1964       return ScaledReg;
1965     case BaseOffsField:
1966       return ConstantInt::get(IntPtrTy, BaseOffs);
1967     }
1968   }
1969 
1970   void SetCombinedField(FieldName Field, Value *V,
1971                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
1972     switch (Field) {
1973     default:
1974       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1975       break;
1976     case ExtAddrMode::BaseRegField:
1977       BaseReg = V;
1978       break;
1979     case ExtAddrMode::BaseGVField:
1980       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
1981       // in the BaseReg field.
1982       assert(BaseReg == nullptr);
1983       BaseReg = V;
1984       BaseGV = nullptr;
1985       break;
1986     case ExtAddrMode::ScaledRegField:
1987       ScaledReg = V;
1988       // If we have a mix of scaled and unscaled addrmodes then we want scale
1989       // to be the scale and not zero.
1990       if (!Scale)
1991         for (const ExtAddrMode &AM : AddrModes)
1992           if (AM.Scale) {
1993             Scale = AM.Scale;
1994             break;
1995           }
1996       break;
1997     case ExtAddrMode::BaseOffsField:
1998       // The offset is no longer a constant, so it goes in ScaledReg with a
1999       // scale of 1.
2000       assert(ScaledReg == nullptr);
2001       ScaledReg = V;
2002       Scale = 1;
2003       BaseOffs = 0;
2004       break;
2005     }
2006   }
2007 };
2008 
2009 } // end anonymous namespace
2010 
2011 #ifndef NDEBUG
2012 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2013   AM.print(OS);
2014   return OS;
2015 }
2016 #endif
2017 
2018 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2019 void ExtAddrMode::print(raw_ostream &OS) const {
2020   bool NeedPlus = false;
2021   OS << "[";
2022   if (BaseGV) {
2023     OS << (NeedPlus ? " + " : "")
2024        << "GV:";
2025     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2026     NeedPlus = true;
2027   }
2028 
2029   if (BaseOffs) {
2030     OS << (NeedPlus ? " + " : "")
2031        << BaseOffs;
2032     NeedPlus = true;
2033   }
2034 
2035   if (BaseReg) {
2036     OS << (NeedPlus ? " + " : "")
2037        << "Base:";
2038     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2039     NeedPlus = true;
2040   }
2041   if (Scale) {
2042     OS << (NeedPlus ? " + " : "")
2043        << Scale << "*";
2044     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2045   }
2046 
2047   OS << ']';
2048 }
2049 
2050 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2051   print(dbgs());
2052   dbgs() << '\n';
2053 }
2054 #endif
2055 
2056 namespace {
2057 
2058 /// This class provides transaction based operation on the IR.
2059 /// Every change made through this class is recorded in the internal state and
2060 /// can be undone (rollback) until commit is called.
2061 class TypePromotionTransaction {
2062   /// This represents the common interface of the individual transaction.
2063   /// Each class implements the logic for doing one specific modification on
2064   /// the IR via the TypePromotionTransaction.
2065   class TypePromotionAction {
2066   protected:
2067     /// The Instruction modified.
2068     Instruction *Inst;
2069 
2070   public:
2071     /// Constructor of the action.
2072     /// The constructor performs the related action on the IR.
2073     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2074 
2075     virtual ~TypePromotionAction() = default;
2076 
2077     /// Undo the modification done by this action.
2078     /// When this method is called, the IR must be in the same state as it was
2079     /// before this action was applied.
2080     /// \pre Undoing the action works if and only if the IR is in the exact same
2081     /// state as it was directly after this action was applied.
2082     virtual void undo() = 0;
2083 
2084     /// Advocate every change made by this action.
2085     /// When the results on the IR of the action are to be kept, it is important
2086     /// to call this function, otherwise hidden information may be kept forever.
2087     virtual void commit() {
2088       // Nothing to be done, this action is not doing anything.
2089     }
2090   };
2091 
2092   /// Utility to remember the position of an instruction.
2093   class InsertionHandler {
2094     /// Position of an instruction.
2095     /// Either an instruction:
2096     /// - Is the first in a basic block: BB is used.
2097     /// - Has a previous instruction: PrevInst is used.
2098     union {
2099       Instruction *PrevInst;
2100       BasicBlock *BB;
2101     } Point;
2102 
2103     /// Remember whether or not the instruction had a previous instruction.
2104     bool HasPrevInstruction;
2105 
2106   public:
2107     /// Record the position of \p Inst.
2108     InsertionHandler(Instruction *Inst) {
2109       BasicBlock::iterator It = Inst->getIterator();
2110       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2111       if (HasPrevInstruction)
2112         Point.PrevInst = &*--It;
2113       else
2114         Point.BB = Inst->getParent();
2115     }
2116 
2117     /// Insert \p Inst at the recorded position.
2118     void insert(Instruction *Inst) {
2119       if (HasPrevInstruction) {
2120         if (Inst->getParent())
2121           Inst->removeFromParent();
2122         Inst->insertAfter(Point.PrevInst);
2123       } else {
2124         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2125         if (Inst->getParent())
2126           Inst->moveBefore(Position);
2127         else
2128           Inst->insertBefore(Position);
2129       }
2130     }
2131   };
2132 
2133   /// Move an instruction before another.
2134   class InstructionMoveBefore : public TypePromotionAction {
2135     /// Original position of the instruction.
2136     InsertionHandler Position;
2137 
2138   public:
2139     /// Move \p Inst before \p Before.
2140     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2141         : TypePromotionAction(Inst), Position(Inst) {
2142       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2143                         << "\n");
2144       Inst->moveBefore(Before);
2145     }
2146 
2147     /// Move the instruction back to its original position.
2148     void undo() override {
2149       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2150       Position.insert(Inst);
2151     }
2152   };
2153 
2154   /// Set the operand of an instruction with a new value.
2155   class OperandSetter : public TypePromotionAction {
2156     /// Original operand of the instruction.
2157     Value *Origin;
2158 
2159     /// Index of the modified instruction.
2160     unsigned Idx;
2161 
2162   public:
2163     /// Set \p Idx operand of \p Inst with \p NewVal.
2164     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2165         : TypePromotionAction(Inst), Idx(Idx) {
2166       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2167                         << "for:" << *Inst << "\n"
2168                         << "with:" << *NewVal << "\n");
2169       Origin = Inst->getOperand(Idx);
2170       Inst->setOperand(Idx, NewVal);
2171     }
2172 
2173     /// Restore the original value of the instruction.
2174     void undo() override {
2175       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2176                         << "for: " << *Inst << "\n"
2177                         << "with: " << *Origin << "\n");
2178       Inst->setOperand(Idx, Origin);
2179     }
2180   };
2181 
2182   /// Hide the operands of an instruction.
2183   /// Do as if this instruction was not using any of its operands.
2184   class OperandsHider : public TypePromotionAction {
2185     /// The list of original operands.
2186     SmallVector<Value *, 4> OriginalValues;
2187 
2188   public:
2189     /// Remove \p Inst from the uses of the operands of \p Inst.
2190     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2191       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2192       unsigned NumOpnds = Inst->getNumOperands();
2193       OriginalValues.reserve(NumOpnds);
2194       for (unsigned It = 0; It < NumOpnds; ++It) {
2195         // Save the current operand.
2196         Value *Val = Inst->getOperand(It);
2197         OriginalValues.push_back(Val);
2198         // Set a dummy one.
2199         // We could use OperandSetter here, but that would imply an overhead
2200         // that we are not willing to pay.
2201         Inst->setOperand(It, UndefValue::get(Val->getType()));
2202       }
2203     }
2204 
2205     /// Restore the original list of uses.
2206     void undo() override {
2207       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2208       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2209         Inst->setOperand(It, OriginalValues[It]);
2210     }
2211   };
2212 
2213   /// Build a truncate instruction.
2214   class TruncBuilder : public TypePromotionAction {
2215     Value *Val;
2216 
2217   public:
2218     /// Build a truncate instruction of \p Opnd producing a \p Ty
2219     /// result.
2220     /// trunc Opnd to Ty.
2221     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2222       IRBuilder<> Builder(Opnd);
2223       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2224       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2225     }
2226 
2227     /// Get the built value.
2228     Value *getBuiltValue() { return Val; }
2229 
2230     /// Remove the built instruction.
2231     void undo() override {
2232       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2233       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2234         IVal->eraseFromParent();
2235     }
2236   };
2237 
2238   /// Build a sign extension instruction.
2239   class SExtBuilder : public TypePromotionAction {
2240     Value *Val;
2241 
2242   public:
2243     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2244     /// result.
2245     /// sext Opnd to Ty.
2246     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2247         : TypePromotionAction(InsertPt) {
2248       IRBuilder<> Builder(InsertPt);
2249       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2250       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2251     }
2252 
2253     /// Get the built value.
2254     Value *getBuiltValue() { return Val; }
2255 
2256     /// Remove the built instruction.
2257     void undo() override {
2258       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2259       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2260         IVal->eraseFromParent();
2261     }
2262   };
2263 
2264   /// Build a zero extension instruction.
2265   class ZExtBuilder : public TypePromotionAction {
2266     Value *Val;
2267 
2268   public:
2269     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2270     /// result.
2271     /// zext Opnd to Ty.
2272     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2273         : TypePromotionAction(InsertPt) {
2274       IRBuilder<> Builder(InsertPt);
2275       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2276       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2277     }
2278 
2279     /// Get the built value.
2280     Value *getBuiltValue() { return Val; }
2281 
2282     /// Remove the built instruction.
2283     void undo() override {
2284       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2285       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2286         IVal->eraseFromParent();
2287     }
2288   };
2289 
2290   /// Mutate an instruction to another type.
2291   class TypeMutator : public TypePromotionAction {
2292     /// Record the original type.
2293     Type *OrigTy;
2294 
2295   public:
2296     /// Mutate the type of \p Inst into \p NewTy.
2297     TypeMutator(Instruction *Inst, Type *NewTy)
2298         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2299       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2300                         << "\n");
2301       Inst->mutateType(NewTy);
2302     }
2303 
2304     /// Mutate the instruction back to its original type.
2305     void undo() override {
2306       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2307                         << "\n");
2308       Inst->mutateType(OrigTy);
2309     }
2310   };
2311 
2312   /// Replace the uses of an instruction by another instruction.
2313   class UsesReplacer : public TypePromotionAction {
2314     /// Helper structure to keep track of the replaced uses.
2315     struct InstructionAndIdx {
2316       /// The instruction using the instruction.
2317       Instruction *Inst;
2318 
2319       /// The index where this instruction is used for Inst.
2320       unsigned Idx;
2321 
2322       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2323           : Inst(Inst), Idx(Idx) {}
2324     };
2325 
2326     /// Keep track of the original uses (pair Instruction, Index).
2327     SmallVector<InstructionAndIdx, 4> OriginalUses;
2328 
2329     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2330 
2331   public:
2332     /// Replace all the use of \p Inst by \p New.
2333     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2334       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2335                         << "\n");
2336       // Record the original uses.
2337       for (Use &U : Inst->uses()) {
2338         Instruction *UserI = cast<Instruction>(U.getUser());
2339         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2340       }
2341       // Now, we can replace the uses.
2342       Inst->replaceAllUsesWith(New);
2343     }
2344 
2345     /// Reassign the original uses of Inst to Inst.
2346     void undo() override {
2347       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2348       for (use_iterator UseIt = OriginalUses.begin(),
2349                         EndIt = OriginalUses.end();
2350            UseIt != EndIt; ++UseIt) {
2351         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2352       }
2353     }
2354   };
2355 
2356   /// Remove an instruction from the IR.
2357   class InstructionRemover : public TypePromotionAction {
2358     /// Original position of the instruction.
2359     InsertionHandler Inserter;
2360 
2361     /// Helper structure to hide all the link to the instruction. In other
2362     /// words, this helps to do as if the instruction was removed.
2363     OperandsHider Hider;
2364 
2365     /// Keep track of the uses replaced, if any.
2366     UsesReplacer *Replacer = nullptr;
2367 
2368     /// Keep track of instructions removed.
2369     SetOfInstrs &RemovedInsts;
2370 
2371   public:
2372     /// Remove all reference of \p Inst and optionally replace all its
2373     /// uses with New.
2374     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2375     /// \pre If !Inst->use_empty(), then New != nullptr
2376     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2377                        Value *New = nullptr)
2378         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2379           RemovedInsts(RemovedInsts) {
2380       if (New)
2381         Replacer = new UsesReplacer(Inst, New);
2382       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2383       RemovedInsts.insert(Inst);
2384       /// The instructions removed here will be freed after completing
2385       /// optimizeBlock() for all blocks as we need to keep track of the
2386       /// removed instructions during promotion.
2387       Inst->removeFromParent();
2388     }
2389 
2390     ~InstructionRemover() override { delete Replacer; }
2391 
2392     /// Resurrect the instruction and reassign it to the proper uses if
2393     /// new value was provided when build this action.
2394     void undo() override {
2395       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2396       Inserter.insert(Inst);
2397       if (Replacer)
2398         Replacer->undo();
2399       Hider.undo();
2400       RemovedInsts.erase(Inst);
2401     }
2402   };
2403 
2404 public:
2405   /// Restoration point.
2406   /// The restoration point is a pointer to an action instead of an iterator
2407   /// because the iterator may be invalidated but not the pointer.
2408   using ConstRestorationPt = const TypePromotionAction *;
2409 
2410   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2411       : RemovedInsts(RemovedInsts) {}
2412 
2413   /// Advocate every changes made in that transaction.
2414   void commit();
2415 
2416   /// Undo all the changes made after the given point.
2417   void rollback(ConstRestorationPt Point);
2418 
2419   /// Get the current restoration point.
2420   ConstRestorationPt getRestorationPoint() const;
2421 
2422   /// \name API for IR modification with state keeping to support rollback.
2423   /// @{
2424   /// Same as Instruction::setOperand.
2425   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2426 
2427   /// Same as Instruction::eraseFromParent.
2428   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2429 
2430   /// Same as Value::replaceAllUsesWith.
2431   void replaceAllUsesWith(Instruction *Inst, Value *New);
2432 
2433   /// Same as Value::mutateType.
2434   void mutateType(Instruction *Inst, Type *NewTy);
2435 
2436   /// Same as IRBuilder::createTrunc.
2437   Value *createTrunc(Instruction *Opnd, Type *Ty);
2438 
2439   /// Same as IRBuilder::createSExt.
2440   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2441 
2442   /// Same as IRBuilder::createZExt.
2443   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2444 
2445   /// Same as Instruction::moveBefore.
2446   void moveBefore(Instruction *Inst, Instruction *Before);
2447   /// @}
2448 
2449 private:
2450   /// The ordered list of actions made so far.
2451   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2452 
2453   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2454 
2455   SetOfInstrs &RemovedInsts;
2456 };
2457 
2458 } // end anonymous namespace
2459 
2460 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2461                                           Value *NewVal) {
2462   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2463       Inst, Idx, NewVal));
2464 }
2465 
2466 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2467                                                 Value *NewVal) {
2468   Actions.push_back(
2469       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2470           Inst, RemovedInsts, NewVal));
2471 }
2472 
2473 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2474                                                   Value *New) {
2475   Actions.push_back(
2476       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2477 }
2478 
2479 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2480   Actions.push_back(
2481       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2482 }
2483 
2484 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2485                                              Type *Ty) {
2486   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2487   Value *Val = Ptr->getBuiltValue();
2488   Actions.push_back(std::move(Ptr));
2489   return Val;
2490 }
2491 
2492 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2493                                             Value *Opnd, Type *Ty) {
2494   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2495   Value *Val = Ptr->getBuiltValue();
2496   Actions.push_back(std::move(Ptr));
2497   return Val;
2498 }
2499 
2500 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2501                                             Value *Opnd, Type *Ty) {
2502   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2503   Value *Val = Ptr->getBuiltValue();
2504   Actions.push_back(std::move(Ptr));
2505   return Val;
2506 }
2507 
2508 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2509                                           Instruction *Before) {
2510   Actions.push_back(
2511       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2512           Inst, Before));
2513 }
2514 
2515 TypePromotionTransaction::ConstRestorationPt
2516 TypePromotionTransaction::getRestorationPoint() const {
2517   return !Actions.empty() ? Actions.back().get() : nullptr;
2518 }
2519 
2520 void TypePromotionTransaction::commit() {
2521   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2522        ++It)
2523     (*It)->commit();
2524   Actions.clear();
2525 }
2526 
2527 void TypePromotionTransaction::rollback(
2528     TypePromotionTransaction::ConstRestorationPt Point) {
2529   while (!Actions.empty() && Point != Actions.back().get()) {
2530     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2531     Curr->undo();
2532   }
2533 }
2534 
2535 namespace {
2536 
2537 /// A helper class for matching addressing modes.
2538 ///
2539 /// This encapsulates the logic for matching the target-legal addressing modes.
2540 class AddressingModeMatcher {
2541   SmallVectorImpl<Instruction*> &AddrModeInsts;
2542   const TargetLowering &TLI;
2543   const TargetRegisterInfo &TRI;
2544   const DataLayout &DL;
2545 
2546   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2547   /// the memory instruction that we're computing this address for.
2548   Type *AccessTy;
2549   unsigned AddrSpace;
2550   Instruction *MemoryInst;
2551 
2552   /// This is the addressing mode that we're building up. This is
2553   /// part of the return value of this addressing mode matching stuff.
2554   ExtAddrMode &AddrMode;
2555 
2556   /// The instructions inserted by other CodeGenPrepare optimizations.
2557   const SetOfInstrs &InsertedInsts;
2558 
2559   /// A map from the instructions to their type before promotion.
2560   InstrToOrigTy &PromotedInsts;
2561 
2562   /// The ongoing transaction where every action should be registered.
2563   TypePromotionTransaction &TPT;
2564 
2565   // A GEP which has too large offset to be folded into the addressing mode.
2566   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2567 
2568   /// This is set to true when we should not do profitability checks.
2569   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2570   bool IgnoreProfitability;
2571 
2572   AddressingModeMatcher(
2573       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2574       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2575       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2576       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2577       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2578       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2579         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2580         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2581         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2582     IgnoreProfitability = false;
2583   }
2584 
2585 public:
2586   /// Find the maximal addressing mode that a load/store of V can fold,
2587   /// give an access type of AccessTy.  This returns a list of involved
2588   /// instructions in AddrModeInsts.
2589   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2590   /// optimizations.
2591   /// \p PromotedInsts maps the instructions to their type before promotion.
2592   /// \p The ongoing transaction where every action should be registered.
2593   static ExtAddrMode
2594   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2595         SmallVectorImpl<Instruction *> &AddrModeInsts,
2596         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2597         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2598         TypePromotionTransaction &TPT,
2599         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2600     ExtAddrMode Result;
2601 
2602     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2603                                          MemoryInst, Result, InsertedInsts,
2604                                          PromotedInsts, TPT, LargeOffsetGEP)
2605                        .matchAddr(V, 0);
2606     (void)Success; assert(Success && "Couldn't select *anything*?");
2607     return Result;
2608   }
2609 
2610 private:
2611   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2612   bool matchAddr(Value *V, unsigned Depth);
2613   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2614                           bool *MovedAway = nullptr);
2615   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2616                                             ExtAddrMode &AMBefore,
2617                                             ExtAddrMode &AMAfter);
2618   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2619   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2620                              Value *PromotedOperand) const;
2621 };
2622 
2623 /// Keep track of simplification of Phi nodes.
2624 /// Accept the set of all phi nodes and erase phi node from this set
2625 /// if it is simplified.
2626 class SimplificationTracker {
2627   DenseMap<Value *, Value *> Storage;
2628   const SimplifyQuery &SQ;
2629   // Tracks newly created Phi nodes. We use a SetVector to get deterministic
2630   // order when iterating over the set in MatchPhiSet.
2631   SmallSetVector<PHINode *, 32> AllPhiNodes;
2632   // Tracks newly created Select nodes.
2633   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2634 
2635 public:
2636   SimplificationTracker(const SimplifyQuery &sq)
2637       : SQ(sq) {}
2638 
2639   Value *Get(Value *V) {
2640     do {
2641       auto SV = Storage.find(V);
2642       if (SV == Storage.end())
2643         return V;
2644       V = SV->second;
2645     } while (true);
2646   }
2647 
2648   Value *Simplify(Value *Val) {
2649     SmallVector<Value *, 32> WorkList;
2650     SmallPtrSet<Value *, 32> Visited;
2651     WorkList.push_back(Val);
2652     while (!WorkList.empty()) {
2653       auto P = WorkList.pop_back_val();
2654       if (!Visited.insert(P).second)
2655         continue;
2656       if (auto *PI = dyn_cast<Instruction>(P))
2657         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2658           for (auto *U : PI->users())
2659             WorkList.push_back(cast<Value>(U));
2660           Put(PI, V);
2661           PI->replaceAllUsesWith(V);
2662           if (auto *PHI = dyn_cast<PHINode>(PI))
2663             AllPhiNodes.remove(PHI);
2664           if (auto *Select = dyn_cast<SelectInst>(PI))
2665             AllSelectNodes.erase(Select);
2666           PI->eraseFromParent();
2667         }
2668     }
2669     return Get(Val);
2670   }
2671 
2672   void Put(Value *From, Value *To) {
2673     Storage.insert({ From, To });
2674   }
2675 
2676   void ReplacePhi(PHINode *From, PHINode *To) {
2677     Value* OldReplacement = Get(From);
2678     while (OldReplacement != From) {
2679       From = To;
2680       To = dyn_cast<PHINode>(OldReplacement);
2681       OldReplacement = Get(From);
2682     }
2683     assert(Get(To) == To && "Replacement PHI node is already replaced.");
2684     Put(From, To);
2685     From->replaceAllUsesWith(To);
2686     AllPhiNodes.remove(From);
2687     From->eraseFromParent();
2688   }
2689 
2690   SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; }
2691 
2692   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2693 
2694   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2695 
2696   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2697 
2698   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2699 
2700   void destroyNewNodes(Type *CommonType) {
2701     // For safe erasing, replace the uses with dummy value first.
2702     auto Dummy = UndefValue::get(CommonType);
2703     for (auto I : AllPhiNodes) {
2704       I->replaceAllUsesWith(Dummy);
2705       I->eraseFromParent();
2706     }
2707     AllPhiNodes.clear();
2708     for (auto I : AllSelectNodes) {
2709       I->replaceAllUsesWith(Dummy);
2710       I->eraseFromParent();
2711     }
2712     AllSelectNodes.clear();
2713   }
2714 };
2715 
2716 /// A helper class for combining addressing modes.
2717 class AddressingModeCombiner {
2718   typedef std::pair<Value *, BasicBlock *> ValueInBB;
2719   typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping;
2720   typedef std::pair<PHINode *, PHINode *> PHIPair;
2721 
2722 private:
2723   /// The addressing modes we've collected.
2724   SmallVector<ExtAddrMode, 16> AddrModes;
2725 
2726   /// The field in which the AddrModes differ, when we have more than one.
2727   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2728 
2729   /// Are the AddrModes that we have all just equal to their original values?
2730   bool AllAddrModesTrivial = true;
2731 
2732   /// Common Type for all different fields in addressing modes.
2733   Type *CommonType;
2734 
2735   /// SimplifyQuery for simplifyInstruction utility.
2736   const SimplifyQuery &SQ;
2737 
2738   /// Original Address.
2739   ValueInBB Original;
2740 
2741 public:
2742   AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue)
2743       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2744 
2745   /// Get the combined AddrMode
2746   const ExtAddrMode &getAddrMode() const {
2747     return AddrModes[0];
2748   }
2749 
2750   /// Add a new AddrMode if it's compatible with the AddrModes we already
2751   /// have.
2752   /// \return True iff we succeeded in doing so.
2753   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2754     // Take note of if we have any non-trivial AddrModes, as we need to detect
2755     // when all AddrModes are trivial as then we would introduce a phi or select
2756     // which just duplicates what's already there.
2757     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2758 
2759     // If this is the first addrmode then everything is fine.
2760     if (AddrModes.empty()) {
2761       AddrModes.emplace_back(NewAddrMode);
2762       return true;
2763     }
2764 
2765     // Figure out how different this is from the other address modes, which we
2766     // can do just by comparing against the first one given that we only care
2767     // about the cumulative difference.
2768     ExtAddrMode::FieldName ThisDifferentField =
2769       AddrModes[0].compare(NewAddrMode);
2770     if (DifferentField == ExtAddrMode::NoField)
2771       DifferentField = ThisDifferentField;
2772     else if (DifferentField != ThisDifferentField)
2773       DifferentField = ExtAddrMode::MultipleFields;
2774 
2775     // If NewAddrMode differs in more than one dimension we cannot handle it.
2776     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2777 
2778     // If Scale Field is different then we reject.
2779     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2780 
2781     // We also must reject the case when base offset is different and
2782     // scale reg is not null, we cannot handle this case due to merge of
2783     // different offsets will be used as ScaleReg.
2784     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2785                               !NewAddrMode.ScaledReg);
2786 
2787     // We also must reject the case when GV is different and BaseReg installed
2788     // due to we want to use base reg as a merge of GV values.
2789     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2790                               !NewAddrMode.HasBaseReg);
2791 
2792     // Even if NewAddMode is the same we still need to collect it due to
2793     // original value is different. And later we will need all original values
2794     // as anchors during finding the common Phi node.
2795     if (CanHandle)
2796       AddrModes.emplace_back(NewAddrMode);
2797     else
2798       AddrModes.clear();
2799 
2800     return CanHandle;
2801   }
2802 
2803   /// Combine the addressing modes we've collected into a single
2804   /// addressing mode.
2805   /// \return True iff we successfully combined them or we only had one so
2806   /// didn't need to combine them anyway.
2807   bool combineAddrModes() {
2808     // If we have no AddrModes then they can't be combined.
2809     if (AddrModes.size() == 0)
2810       return false;
2811 
2812     // A single AddrMode can trivially be combined.
2813     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2814       return true;
2815 
2816     // If the AddrModes we collected are all just equal to the value they are
2817     // derived from then combining them wouldn't do anything useful.
2818     if (AllAddrModesTrivial)
2819       return false;
2820 
2821     if (!addrModeCombiningAllowed())
2822       return false;
2823 
2824     // Build a map between <original value, basic block where we saw it> to
2825     // value of base register.
2826     // Bail out if there is no common type.
2827     FoldAddrToValueMapping Map;
2828     if (!initializeMap(Map))
2829       return false;
2830 
2831     Value *CommonValue = findCommon(Map);
2832     if (CommonValue)
2833       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
2834     return CommonValue != nullptr;
2835   }
2836 
2837 private:
2838   /// Initialize Map with anchor values. For address seen in some BB
2839   /// we set the value of different field saw in this address.
2840   /// If address is not an instruction than basic block is set to null.
2841   /// At the same time we find a common type for different field we will
2842   /// use to create new Phi/Select nodes. Keep it in CommonType field.
2843   /// Return false if there is no common type found.
2844   bool initializeMap(FoldAddrToValueMapping &Map) {
2845     // Keep track of keys where the value is null. We will need to replace it
2846     // with constant null when we know the common type.
2847     SmallVector<ValueInBB, 2> NullValue;
2848     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
2849     for (auto &AM : AddrModes) {
2850       BasicBlock *BB = nullptr;
2851       if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue))
2852         BB = I->getParent();
2853 
2854       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
2855       if (DV) {
2856         auto *Type = DV->getType();
2857         if (CommonType && CommonType != Type)
2858           return false;
2859         CommonType = Type;
2860         Map[{ AM.OriginalValue, BB }] = DV;
2861       } else {
2862         NullValue.push_back({ AM.OriginalValue, BB });
2863       }
2864     }
2865     assert(CommonType && "At least one non-null value must be!");
2866     for (auto VIBB : NullValue)
2867       Map[VIBB] = Constant::getNullValue(CommonType);
2868     return true;
2869   }
2870 
2871   /// We have mapping between value A and basic block where value A
2872   /// seen to other value B where B was a field in addressing mode represented
2873   /// by A. Also we have an original value C representing an address in some
2874   /// basic block. Traversing from C through phi and selects we ended up with
2875   /// A's in a map. This utility function tries to find a value V which is a
2876   /// field in addressing mode C and traversing through phi nodes and selects
2877   /// we will end up in corresponded values B in a map.
2878   /// The utility will create a new Phi/Selects if needed.
2879   // The simple example looks as follows:
2880   // BB1:
2881   //   p1 = b1 + 40
2882   //   br cond BB2, BB3
2883   // BB2:
2884   //   p2 = b2 + 40
2885   //   br BB3
2886   // BB3:
2887   //   p = phi [p1, BB1], [p2, BB2]
2888   //   v = load p
2889   // Map is
2890   //   <p1, BB1> -> b1
2891   //   <p2, BB2> -> b2
2892   // Request is
2893   //   <p, BB3> -> ?
2894   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2895   Value *findCommon(FoldAddrToValueMapping &Map) {
2896     // Tracks the simplification of newly created phi nodes. The reason we use
2897     // this mapping is because we will add new created Phi nodes in AddrToBase.
2898     // Simplification of Phi nodes is recursive, so some Phi node may
2899     // be simplified after we added it to AddrToBase.
2900     // Using this mapping we can find the current value in AddrToBase.
2901     SimplificationTracker ST(SQ);
2902 
2903     // First step, DFS to create PHI nodes for all intermediate blocks.
2904     // Also fill traverse order for the second step.
2905     SmallVector<ValueInBB, 32> TraverseOrder;
2906     InsertPlaceholders(Map, TraverseOrder, ST);
2907 
2908     // Second Step, fill new nodes by merged values and simplify if possible.
2909     FillPlaceholders(Map, TraverseOrder, ST);
2910 
2911     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
2912       ST.destroyNewNodes(CommonType);
2913       return nullptr;
2914     }
2915 
2916     // Now we'd like to match New Phi nodes to existed ones.
2917     unsigned PhiNotMatchedCount = 0;
2918     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
2919       ST.destroyNewNodes(CommonType);
2920       return nullptr;
2921     }
2922 
2923     auto *Result = ST.Get(Map.find(Original)->second);
2924     if (Result) {
2925       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
2926       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
2927     }
2928     return Result;
2929   }
2930 
2931   /// Try to match PHI node to Candidate.
2932   /// Matcher tracks the matched Phi nodes.
2933   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
2934                     SmallSetVector<PHIPair, 8> &Matcher,
2935                     SmallSetVector<PHINode *, 32> &PhiNodesToMatch) {
2936     SmallVector<PHIPair, 8> WorkList;
2937     Matcher.insert({ PHI, Candidate });
2938     WorkList.push_back({ PHI, Candidate });
2939     SmallSet<PHIPair, 8> Visited;
2940     while (!WorkList.empty()) {
2941       auto Item = WorkList.pop_back_val();
2942       if (!Visited.insert(Item).second)
2943         continue;
2944       // We iterate over all incoming values to Phi to compare them.
2945       // If values are different and both of them Phi and the first one is a
2946       // Phi we added (subject to match) and both of them is in the same basic
2947       // block then we can match our pair if values match. So we state that
2948       // these values match and add it to work list to verify that.
2949       for (auto B : Item.first->blocks()) {
2950         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
2951         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
2952         if (FirstValue == SecondValue)
2953           continue;
2954 
2955         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
2956         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
2957 
2958         // One of them is not Phi or
2959         // The first one is not Phi node from the set we'd like to match or
2960         // Phi nodes from different basic blocks then
2961         // we will not be able to match.
2962         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
2963             FirstPhi->getParent() != SecondPhi->getParent())
2964           return false;
2965 
2966         // If we already matched them then continue.
2967         if (Matcher.count({ FirstPhi, SecondPhi }))
2968           continue;
2969         // So the values are different and does not match. So we need them to
2970         // match.
2971         Matcher.insert({ FirstPhi, SecondPhi });
2972         // But me must check it.
2973         WorkList.push_back({ FirstPhi, SecondPhi });
2974       }
2975     }
2976     return true;
2977   }
2978 
2979   /// For the given set of PHI nodes (in the SimplificationTracker) try
2980   /// to find their equivalents.
2981   /// Returns false if this matching fails and creation of new Phi is disabled.
2982   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
2983                    unsigned &PhiNotMatchedCount) {
2984     // Use a SetVector for Matched to make sure we do replacements (ReplacePhi)
2985     // in a deterministic order below.
2986     SmallSetVector<PHIPair, 8> Matched;
2987     SmallPtrSet<PHINode *, 8> WillNotMatch;
2988     SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes();
2989     while (PhiNodesToMatch.size()) {
2990       PHINode *PHI = *PhiNodesToMatch.begin();
2991 
2992       // Add us, if no Phi nodes in the basic block we do not match.
2993       WillNotMatch.clear();
2994       WillNotMatch.insert(PHI);
2995 
2996       // Traverse all Phis until we found equivalent or fail to do that.
2997       bool IsMatched = false;
2998       for (auto &P : PHI->getParent()->phis()) {
2999         if (&P == PHI)
3000           continue;
3001         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3002           break;
3003         // If it does not match, collect all Phi nodes from matcher.
3004         // if we end up with no match, them all these Phi nodes will not match
3005         // later.
3006         for (auto M : Matched)
3007           WillNotMatch.insert(M.first);
3008         Matched.clear();
3009       }
3010       if (IsMatched) {
3011         // Replace all matched values and erase them.
3012         for (auto MV : Matched)
3013           ST.ReplacePhi(MV.first, MV.second);
3014         Matched.clear();
3015         continue;
3016       }
3017       // If we are not allowed to create new nodes then bail out.
3018       if (!AllowNewPhiNodes)
3019         return false;
3020       // Just remove all seen values in matcher. They will not match anything.
3021       PhiNotMatchedCount += WillNotMatch.size();
3022       for (auto *P : WillNotMatch)
3023         PhiNodesToMatch.remove(P);
3024     }
3025     return true;
3026   }
3027   /// Fill the placeholder with values from predecessors and simplify it.
3028   void FillPlaceholders(FoldAddrToValueMapping &Map,
3029                         SmallVectorImpl<ValueInBB> &TraverseOrder,
3030                         SimplificationTracker &ST) {
3031     while (!TraverseOrder.empty()) {
3032       auto Current = TraverseOrder.pop_back_val();
3033       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3034       Value *CurrentValue = Current.first;
3035       BasicBlock *CurrentBlock = Current.second;
3036       Value *V = Map[Current];
3037 
3038       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3039         // CurrentValue also must be Select.
3040         auto *CurrentSelect = cast<SelectInst>(CurrentValue);
3041         auto *TrueValue = CurrentSelect->getTrueValue();
3042         ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue)
3043                                               ? CurrentBlock
3044                                               : nullptr };
3045         assert(Map.find(TrueItem) != Map.end() && "No True Value!");
3046         Select->setTrueValue(ST.Get(Map[TrueItem]));
3047         auto *FalseValue = CurrentSelect->getFalseValue();
3048         ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue)
3049                                                 ? CurrentBlock
3050                                                 : nullptr };
3051         assert(Map.find(FalseItem) != Map.end() && "No False Value!");
3052         Select->setFalseValue(ST.Get(Map[FalseItem]));
3053       } else {
3054         // Must be a Phi node then.
3055         PHINode *PHI = cast<PHINode>(V);
3056         // Fill the Phi node with values from predecessors.
3057         bool IsDefinedInThisBB =
3058             cast<Instruction>(CurrentValue)->getParent() == CurrentBlock;
3059         auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue);
3060         for (auto B : predecessors(CurrentBlock)) {
3061           Value *PV = IsDefinedInThisBB
3062                           ? CurrentPhi->getIncomingValueForBlock(B)
3063                           : CurrentValue;
3064           ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr };
3065           assert(Map.find(item) != Map.end() && "No predecessor Value!");
3066           PHI->addIncoming(ST.Get(Map[item]), B);
3067         }
3068       }
3069       // Simplify if possible.
3070       Map[Current] = ST.Simplify(V);
3071     }
3072   }
3073 
3074   /// Starting from value recursively iterates over predecessors up to known
3075   /// ending values represented in a map. For each traversed block inserts
3076   /// a placeholder Phi or Select.
3077   /// Reports all new created Phi/Select nodes by adding them to set.
3078   /// Also reports and order in what basic blocks have been traversed.
3079   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3080                           SmallVectorImpl<ValueInBB> &TraverseOrder,
3081                           SimplificationTracker &ST) {
3082     SmallVector<ValueInBB, 32> Worklist;
3083     assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) &&
3084            "Address must be a Phi or Select node");
3085     auto *Dummy = UndefValue::get(CommonType);
3086     Worklist.push_back(Original);
3087     while (!Worklist.empty()) {
3088       auto Current = Worklist.pop_back_val();
3089       // If value is not an instruction it is something global, constant,
3090       // parameter and we can say that this value is observable in any block.
3091       // Set block to null to denote it.
3092       // Also please take into account that it is how we build anchors.
3093       if (!isa<Instruction>(Current.first))
3094         Current.second = nullptr;
3095       // if it is already visited or it is an ending value then skip it.
3096       if (Map.find(Current) != Map.end())
3097         continue;
3098       TraverseOrder.push_back(Current);
3099 
3100       Value *CurrentValue = Current.first;
3101       BasicBlock *CurrentBlock = Current.second;
3102       // CurrentValue must be a Phi node or select. All others must be covered
3103       // by anchors.
3104       Instruction *CurrentI = cast<Instruction>(CurrentValue);
3105       bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock;
3106 
3107       unsigned PredCount = pred_size(CurrentBlock);
3108       // if Current Value is not defined in this basic block we are interested
3109       // in values in predecessors.
3110       if (!IsDefinedInThisBB) {
3111         assert(PredCount && "Unreachable block?!");
3112         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3113                                        &CurrentBlock->front());
3114         Map[Current] = PHI;
3115         ST.insertNewPhi(PHI);
3116         // Add all predecessors in work list.
3117         for (auto B : predecessors(CurrentBlock))
3118           Worklist.push_back({ CurrentValue, B });
3119         continue;
3120       }
3121       // Value is defined in this basic block.
3122       if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) {
3123         // Is it OK to get metadata from OrigSelect?!
3124         // Create a Select placeholder with dummy value.
3125         SelectInst *Select =
3126             SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy,
3127                                OrigSelect->getName(), OrigSelect, OrigSelect);
3128         Map[Current] = Select;
3129         ST.insertNewSelect(Select);
3130         // We are interested in True and False value in this basic block.
3131         Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock });
3132         Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock });
3133       } else {
3134         // It must be a Phi node then.
3135         auto *CurrentPhi = cast<PHINode>(CurrentI);
3136         // Create new Phi node for merge of bases.
3137         assert(PredCount && "Unreachable block?!");
3138         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3139                                        &CurrentBlock->front());
3140         Map[Current] = PHI;
3141         ST.insertNewPhi(PHI);
3142 
3143         // Add all predecessors in work list.
3144         for (auto B : predecessors(CurrentBlock))
3145           Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B });
3146       }
3147     }
3148   }
3149 
3150   bool addrModeCombiningAllowed() {
3151     if (DisableComplexAddrModes)
3152       return false;
3153     switch (DifferentField) {
3154     default:
3155       return false;
3156     case ExtAddrMode::BaseRegField:
3157       return AddrSinkCombineBaseReg;
3158     case ExtAddrMode::BaseGVField:
3159       return AddrSinkCombineBaseGV;
3160     case ExtAddrMode::BaseOffsField:
3161       return AddrSinkCombineBaseOffs;
3162     case ExtAddrMode::ScaledRegField:
3163       return AddrSinkCombineScaledReg;
3164     }
3165   }
3166 };
3167 } // end anonymous namespace
3168 
3169 /// Try adding ScaleReg*Scale to the current addressing mode.
3170 /// Return true and update AddrMode if this addr mode is legal for the target,
3171 /// false if not.
3172 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3173                                              unsigned Depth) {
3174   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3175   // mode.  Just process that directly.
3176   if (Scale == 1)
3177     return matchAddr(ScaleReg, Depth);
3178 
3179   // If the scale is 0, it takes nothing to add this.
3180   if (Scale == 0)
3181     return true;
3182 
3183   // If we already have a scale of this value, we can add to it, otherwise, we
3184   // need an available scale field.
3185   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3186     return false;
3187 
3188   ExtAddrMode TestAddrMode = AddrMode;
3189 
3190   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3191   // [A+B + A*7] -> [B+A*8].
3192   TestAddrMode.Scale += Scale;
3193   TestAddrMode.ScaledReg = ScaleReg;
3194 
3195   // If the new address isn't legal, bail out.
3196   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3197     return false;
3198 
3199   // It was legal, so commit it.
3200   AddrMode = TestAddrMode;
3201 
3202   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3203   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3204   // X*Scale + C*Scale to addr mode.
3205   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3206   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3207       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3208     TestAddrMode.ScaledReg = AddLHS;
3209     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3210 
3211     // If this addressing mode is legal, commit it and remember that we folded
3212     // this instruction.
3213     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3214       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3215       AddrMode = TestAddrMode;
3216       return true;
3217     }
3218   }
3219 
3220   // Otherwise, not (x+c)*scale, just return what we have.
3221   return true;
3222 }
3223 
3224 /// This is a little filter, which returns true if an addressing computation
3225 /// involving I might be folded into a load/store accessing it.
3226 /// This doesn't need to be perfect, but needs to accept at least
3227 /// the set of instructions that MatchOperationAddr can.
3228 static bool MightBeFoldableInst(Instruction *I) {
3229   switch (I->getOpcode()) {
3230   case Instruction::BitCast:
3231   case Instruction::AddrSpaceCast:
3232     // Don't touch identity bitcasts.
3233     if (I->getType() == I->getOperand(0)->getType())
3234       return false;
3235     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3236   case Instruction::PtrToInt:
3237     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3238     return true;
3239   case Instruction::IntToPtr:
3240     // We know the input is intptr_t, so this is foldable.
3241     return true;
3242   case Instruction::Add:
3243     return true;
3244   case Instruction::Mul:
3245   case Instruction::Shl:
3246     // Can only handle X*C and X << C.
3247     return isa<ConstantInt>(I->getOperand(1));
3248   case Instruction::GetElementPtr:
3249     return true;
3250   default:
3251     return false;
3252   }
3253 }
3254 
3255 /// Check whether or not \p Val is a legal instruction for \p TLI.
3256 /// \note \p Val is assumed to be the product of some type promotion.
3257 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3258 /// to be legal, as the non-promoted value would have had the same state.
3259 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3260                                        const DataLayout &DL, Value *Val) {
3261   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3262   if (!PromotedInst)
3263     return false;
3264   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3265   // If the ISDOpcode is undefined, it was undefined before the promotion.
3266   if (!ISDOpcode)
3267     return true;
3268   // Otherwise, check if the promoted instruction is legal or not.
3269   return TLI.isOperationLegalOrCustom(
3270       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3271 }
3272 
3273 namespace {
3274 
3275 /// Hepler class to perform type promotion.
3276 class TypePromotionHelper {
3277   /// Utility function to check whether or not a sign or zero extension
3278   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3279   /// either using the operands of \p Inst or promoting \p Inst.
3280   /// The type of the extension is defined by \p IsSExt.
3281   /// In other words, check if:
3282   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3283   /// #1 Promotion applies:
3284   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3285   /// #2 Operand reuses:
3286   /// ext opnd1 to ConsideredExtType.
3287   /// \p PromotedInsts maps the instructions to their type before promotion.
3288   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3289                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3290 
3291   /// Utility function to determine if \p OpIdx should be promoted when
3292   /// promoting \p Inst.
3293   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3294     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3295   }
3296 
3297   /// Utility function to promote the operand of \p Ext when this
3298   /// operand is a promotable trunc or sext or zext.
3299   /// \p PromotedInsts maps the instructions to their type before promotion.
3300   /// \p CreatedInstsCost[out] contains the cost of all instructions
3301   /// created to promote the operand of Ext.
3302   /// Newly added extensions are inserted in \p Exts.
3303   /// Newly added truncates are inserted in \p Truncs.
3304   /// Should never be called directly.
3305   /// \return The promoted value which is used instead of Ext.
3306   static Value *promoteOperandForTruncAndAnyExt(
3307       Instruction *Ext, TypePromotionTransaction &TPT,
3308       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3309       SmallVectorImpl<Instruction *> *Exts,
3310       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3311 
3312   /// Utility function to promote the operand of \p Ext when this
3313   /// operand is promotable and is not a supported trunc or sext.
3314   /// \p PromotedInsts maps the instructions to their type before promotion.
3315   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3316   /// created to promote the operand of Ext.
3317   /// Newly added extensions are inserted in \p Exts.
3318   /// Newly added truncates are inserted in \p Truncs.
3319   /// Should never be called directly.
3320   /// \return The promoted value which is used instead of Ext.
3321   static Value *promoteOperandForOther(Instruction *Ext,
3322                                        TypePromotionTransaction &TPT,
3323                                        InstrToOrigTy &PromotedInsts,
3324                                        unsigned &CreatedInstsCost,
3325                                        SmallVectorImpl<Instruction *> *Exts,
3326                                        SmallVectorImpl<Instruction *> *Truncs,
3327                                        const TargetLowering &TLI, bool IsSExt);
3328 
3329   /// \see promoteOperandForOther.
3330   static Value *signExtendOperandForOther(
3331       Instruction *Ext, TypePromotionTransaction &TPT,
3332       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3333       SmallVectorImpl<Instruction *> *Exts,
3334       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3335     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3336                                   Exts, Truncs, TLI, true);
3337   }
3338 
3339   /// \see promoteOperandForOther.
3340   static Value *zeroExtendOperandForOther(
3341       Instruction *Ext, TypePromotionTransaction &TPT,
3342       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3343       SmallVectorImpl<Instruction *> *Exts,
3344       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3345     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3346                                   Exts, Truncs, TLI, false);
3347   }
3348 
3349 public:
3350   /// Type for the utility function that promotes the operand of Ext.
3351   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3352                             InstrToOrigTy &PromotedInsts,
3353                             unsigned &CreatedInstsCost,
3354                             SmallVectorImpl<Instruction *> *Exts,
3355                             SmallVectorImpl<Instruction *> *Truncs,
3356                             const TargetLowering &TLI);
3357 
3358   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3359   /// action to promote the operand of \p Ext instead of using Ext.
3360   /// \return NULL if no promotable action is possible with the current
3361   /// sign extension.
3362   /// \p InsertedInsts keeps track of all the instructions inserted by the
3363   /// other CodeGenPrepare optimizations. This information is important
3364   /// because we do not want to promote these instructions as CodeGenPrepare
3365   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3366   /// \p PromotedInsts maps the instructions to their type before promotion.
3367   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3368                           const TargetLowering &TLI,
3369                           const InstrToOrigTy &PromotedInsts);
3370 };
3371 
3372 } // end anonymous namespace
3373 
3374 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3375                                         Type *ConsideredExtType,
3376                                         const InstrToOrigTy &PromotedInsts,
3377                                         bool IsSExt) {
3378   // The promotion helper does not know how to deal with vector types yet.
3379   // To be able to fix that, we would need to fix the places where we
3380   // statically extend, e.g., constants and such.
3381   if (Inst->getType()->isVectorTy())
3382     return false;
3383 
3384   // We can always get through zext.
3385   if (isa<ZExtInst>(Inst))
3386     return true;
3387 
3388   // sext(sext) is ok too.
3389   if (IsSExt && isa<SExtInst>(Inst))
3390     return true;
3391 
3392   // We can get through binary operator, if it is legal. In other words, the
3393   // binary operator must have a nuw or nsw flag.
3394   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3395   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3396       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3397        (IsSExt && BinOp->hasNoSignedWrap())))
3398     return true;
3399 
3400   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3401   if ((Inst->getOpcode() == Instruction::And ||
3402        Inst->getOpcode() == Instruction::Or))
3403     return true;
3404 
3405   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3406   if (Inst->getOpcode() == Instruction::Xor) {
3407     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3408     // Make sure it is not a NOT.
3409     if (Cst && !Cst->getValue().isAllOnesValue())
3410       return true;
3411   }
3412 
3413   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3414   // It may change a poisoned value into a regular value, like
3415   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3416   //          poisoned value                    regular value
3417   // It should be OK since undef covers valid value.
3418   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3419     return true;
3420 
3421   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3422   // It may change a poisoned value into a regular value, like
3423   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3424   //          poisoned value                    regular value
3425   // It should be OK since undef covers valid value.
3426   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3427     const Instruction *ExtInst =
3428         dyn_cast<const Instruction>(*Inst->user_begin());
3429     if (ExtInst->hasOneUse()) {
3430       const Instruction *AndInst =
3431           dyn_cast<const Instruction>(*ExtInst->user_begin());
3432       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3433         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3434         if (Cst &&
3435             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3436           return true;
3437       }
3438     }
3439   }
3440 
3441   // Check if we can do the following simplification.
3442   // ext(trunc(opnd)) --> ext(opnd)
3443   if (!isa<TruncInst>(Inst))
3444     return false;
3445 
3446   Value *OpndVal = Inst->getOperand(0);
3447   // Check if we can use this operand in the extension.
3448   // If the type is larger than the result type of the extension, we cannot.
3449   if (!OpndVal->getType()->isIntegerTy() ||
3450       OpndVal->getType()->getIntegerBitWidth() >
3451           ConsideredExtType->getIntegerBitWidth())
3452     return false;
3453 
3454   // If the operand of the truncate is not an instruction, we will not have
3455   // any information on the dropped bits.
3456   // (Actually we could for constant but it is not worth the extra logic).
3457   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3458   if (!Opnd)
3459     return false;
3460 
3461   // Check if the source of the type is narrow enough.
3462   // I.e., check that trunc just drops extended bits of the same kind of
3463   // the extension.
3464   // #1 get the type of the operand and check the kind of the extended bits.
3465   const Type *OpndType;
3466   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3467   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3468     OpndType = It->second.getPointer();
3469   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3470     OpndType = Opnd->getOperand(0)->getType();
3471   else
3472     return false;
3473 
3474   // #2 check that the truncate just drops extended bits.
3475   return Inst->getType()->getIntegerBitWidth() >=
3476          OpndType->getIntegerBitWidth();
3477 }
3478 
3479 TypePromotionHelper::Action TypePromotionHelper::getAction(
3480     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3481     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3482   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3483          "Unexpected instruction type");
3484   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3485   Type *ExtTy = Ext->getType();
3486   bool IsSExt = isa<SExtInst>(Ext);
3487   // If the operand of the extension is not an instruction, we cannot
3488   // get through.
3489   // If it, check we can get through.
3490   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3491     return nullptr;
3492 
3493   // Do not promote if the operand has been added by codegenprepare.
3494   // Otherwise, it means we are undoing an optimization that is likely to be
3495   // redone, thus causing potential infinite loop.
3496   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3497     return nullptr;
3498 
3499   // SExt or Trunc instructions.
3500   // Return the related handler.
3501   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3502       isa<ZExtInst>(ExtOpnd))
3503     return promoteOperandForTruncAndAnyExt;
3504 
3505   // Regular instruction.
3506   // Abort early if we will have to insert non-free instructions.
3507   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3508     return nullptr;
3509   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3510 }
3511 
3512 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3513     Instruction *SExt, TypePromotionTransaction &TPT,
3514     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3515     SmallVectorImpl<Instruction *> *Exts,
3516     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3517   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3518   // get through it and this method should not be called.
3519   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3520   Value *ExtVal = SExt;
3521   bool HasMergedNonFreeExt = false;
3522   if (isa<ZExtInst>(SExtOpnd)) {
3523     // Replace s|zext(zext(opnd))
3524     // => zext(opnd).
3525     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3526     Value *ZExt =
3527         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3528     TPT.replaceAllUsesWith(SExt, ZExt);
3529     TPT.eraseInstruction(SExt);
3530     ExtVal = ZExt;
3531   } else {
3532     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3533     // => z|sext(opnd).
3534     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3535   }
3536   CreatedInstsCost = 0;
3537 
3538   // Remove dead code.
3539   if (SExtOpnd->use_empty())
3540     TPT.eraseInstruction(SExtOpnd);
3541 
3542   // Check if the extension is still needed.
3543   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3544   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3545     if (ExtInst) {
3546       if (Exts)
3547         Exts->push_back(ExtInst);
3548       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3549     }
3550     return ExtVal;
3551   }
3552 
3553   // At this point we have: ext ty opnd to ty.
3554   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3555   Value *NextVal = ExtInst->getOperand(0);
3556   TPT.eraseInstruction(ExtInst, NextVal);
3557   return NextVal;
3558 }
3559 
3560 Value *TypePromotionHelper::promoteOperandForOther(
3561     Instruction *Ext, TypePromotionTransaction &TPT,
3562     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3563     SmallVectorImpl<Instruction *> *Exts,
3564     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3565     bool IsSExt) {
3566   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3567   // get through it and this method should not be called.
3568   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3569   CreatedInstsCost = 0;
3570   if (!ExtOpnd->hasOneUse()) {
3571     // ExtOpnd will be promoted.
3572     // All its uses, but Ext, will need to use a truncated value of the
3573     // promoted version.
3574     // Create the truncate now.
3575     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3576     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3577       // Insert it just after the definition.
3578       ITrunc->moveAfter(ExtOpnd);
3579       if (Truncs)
3580         Truncs->push_back(ITrunc);
3581     }
3582 
3583     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3584     // Restore the operand of Ext (which has been replaced by the previous call
3585     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3586     TPT.setOperand(Ext, 0, ExtOpnd);
3587   }
3588 
3589   // Get through the Instruction:
3590   // 1. Update its type.
3591   // 2. Replace the uses of Ext by Inst.
3592   // 3. Extend each operand that needs to be extended.
3593 
3594   // Remember the original type of the instruction before promotion.
3595   // This is useful to know that the high bits are sign extended bits.
3596   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3597       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3598   // Step #1.
3599   TPT.mutateType(ExtOpnd, Ext->getType());
3600   // Step #2.
3601   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3602   // Step #3.
3603   Instruction *ExtForOpnd = Ext;
3604 
3605   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3606   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3607        ++OpIdx) {
3608     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3609     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3610         !shouldExtOperand(ExtOpnd, OpIdx)) {
3611       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3612       continue;
3613     }
3614     // Check if we can statically extend the operand.
3615     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3616     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3617       LLVM_DEBUG(dbgs() << "Statically extend\n");
3618       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3619       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3620                             : Cst->getValue().zext(BitWidth);
3621       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3622       continue;
3623     }
3624     // UndefValue are typed, so we have to statically sign extend them.
3625     if (isa<UndefValue>(Opnd)) {
3626       LLVM_DEBUG(dbgs() << "Statically extend\n");
3627       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3628       continue;
3629     }
3630 
3631     // Otherwise we have to explicitly sign extend the operand.
3632     // Check if Ext was reused to extend an operand.
3633     if (!ExtForOpnd) {
3634       // If yes, create a new one.
3635       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3636       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3637         : TPT.createZExt(Ext, Opnd, Ext->getType());
3638       if (!isa<Instruction>(ValForExtOpnd)) {
3639         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3640         continue;
3641       }
3642       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3643     }
3644     if (Exts)
3645       Exts->push_back(ExtForOpnd);
3646     TPT.setOperand(ExtForOpnd, 0, Opnd);
3647 
3648     // Move the sign extension before the insertion point.
3649     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3650     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3651     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3652     // If more sext are required, new instructions will have to be created.
3653     ExtForOpnd = nullptr;
3654   }
3655   if (ExtForOpnd == Ext) {
3656     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3657     TPT.eraseInstruction(Ext);
3658   }
3659   return ExtOpnd;
3660 }
3661 
3662 /// Check whether or not promoting an instruction to a wider type is profitable.
3663 /// \p NewCost gives the cost of extension instructions created by the
3664 /// promotion.
3665 /// \p OldCost gives the cost of extension instructions before the promotion
3666 /// plus the number of instructions that have been
3667 /// matched in the addressing mode the promotion.
3668 /// \p PromotedOperand is the value that has been promoted.
3669 /// \return True if the promotion is profitable, false otherwise.
3670 bool AddressingModeMatcher::isPromotionProfitable(
3671     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3672   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3673                     << '\n');
3674   // The cost of the new extensions is greater than the cost of the
3675   // old extension plus what we folded.
3676   // This is not profitable.
3677   if (NewCost > OldCost)
3678     return false;
3679   if (NewCost < OldCost)
3680     return true;
3681   // The promotion is neutral but it may help folding the sign extension in
3682   // loads for instance.
3683   // Check that we did not create an illegal instruction.
3684   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3685 }
3686 
3687 /// Given an instruction or constant expr, see if we can fold the operation
3688 /// into the addressing mode. If so, update the addressing mode and return
3689 /// true, otherwise return false without modifying AddrMode.
3690 /// If \p MovedAway is not NULL, it contains the information of whether or
3691 /// not AddrInst has to be folded into the addressing mode on success.
3692 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3693 /// because it has been moved away.
3694 /// Thus AddrInst must not be added in the matched instructions.
3695 /// This state can happen when AddrInst is a sext, since it may be moved away.
3696 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3697 /// not be referenced anymore.
3698 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3699                                                unsigned Depth,
3700                                                bool *MovedAway) {
3701   // Avoid exponential behavior on extremely deep expression trees.
3702   if (Depth >= 5) return false;
3703 
3704   // By default, all matched instructions stay in place.
3705   if (MovedAway)
3706     *MovedAway = false;
3707 
3708   switch (Opcode) {
3709   case Instruction::PtrToInt:
3710     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3711     return matchAddr(AddrInst->getOperand(0), Depth);
3712   case Instruction::IntToPtr: {
3713     auto AS = AddrInst->getType()->getPointerAddressSpace();
3714     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3715     // This inttoptr is a no-op if the integer type is pointer sized.
3716     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3717       return matchAddr(AddrInst->getOperand(0), Depth);
3718     return false;
3719   }
3720   case Instruction::BitCast:
3721     // BitCast is always a noop, and we can handle it as long as it is
3722     // int->int or pointer->pointer (we don't want int<->fp or something).
3723     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3724          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3725         // Don't touch identity bitcasts.  These were probably put here by LSR,
3726         // and we don't want to mess around with them.  Assume it knows what it
3727         // is doing.
3728         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3729       return matchAddr(AddrInst->getOperand(0), Depth);
3730     return false;
3731   case Instruction::AddrSpaceCast: {
3732     unsigned SrcAS
3733       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3734     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3735     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3736       return matchAddr(AddrInst->getOperand(0), Depth);
3737     return false;
3738   }
3739   case Instruction::Add: {
3740     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3741     ExtAddrMode BackupAddrMode = AddrMode;
3742     unsigned OldSize = AddrModeInsts.size();
3743     // Start a transaction at this point.
3744     // The LHS may match but not the RHS.
3745     // Therefore, we need a higher level restoration point to undo partially
3746     // matched operation.
3747     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3748         TPT.getRestorationPoint();
3749 
3750     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3751         matchAddr(AddrInst->getOperand(0), Depth+1))
3752       return true;
3753 
3754     // Restore the old addr mode info.
3755     AddrMode = BackupAddrMode;
3756     AddrModeInsts.resize(OldSize);
3757     TPT.rollback(LastKnownGood);
3758 
3759     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3760     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3761         matchAddr(AddrInst->getOperand(1), Depth+1))
3762       return true;
3763 
3764     // Otherwise we definitely can't merge the ADD in.
3765     AddrMode = BackupAddrMode;
3766     AddrModeInsts.resize(OldSize);
3767     TPT.rollback(LastKnownGood);
3768     break;
3769   }
3770   //case Instruction::Or:
3771   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3772   //break;
3773   case Instruction::Mul:
3774   case Instruction::Shl: {
3775     // Can only handle X*C and X << C.
3776     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3777     if (!RHS || RHS->getBitWidth() > 64)
3778       return false;
3779     int64_t Scale = RHS->getSExtValue();
3780     if (Opcode == Instruction::Shl)
3781       Scale = 1LL << Scale;
3782 
3783     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3784   }
3785   case Instruction::GetElementPtr: {
3786     // Scan the GEP.  We check it if it contains constant offsets and at most
3787     // one variable offset.
3788     int VariableOperand = -1;
3789     unsigned VariableScale = 0;
3790 
3791     int64_t ConstantOffset = 0;
3792     gep_type_iterator GTI = gep_type_begin(AddrInst);
3793     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3794       if (StructType *STy = GTI.getStructTypeOrNull()) {
3795         const StructLayout *SL = DL.getStructLayout(STy);
3796         unsigned Idx =
3797           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3798         ConstantOffset += SL->getElementOffset(Idx);
3799       } else {
3800         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3801         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3802           ConstantOffset += CI->getSExtValue() * TypeSize;
3803         } else if (TypeSize) {  // Scales of zero don't do anything.
3804           // We only allow one variable index at the moment.
3805           if (VariableOperand != -1)
3806             return false;
3807 
3808           // Remember the variable index.
3809           VariableOperand = i;
3810           VariableScale = TypeSize;
3811         }
3812       }
3813     }
3814 
3815     // A common case is for the GEP to only do a constant offset.  In this case,
3816     // just add it to the disp field and check validity.
3817     if (VariableOperand == -1) {
3818       AddrMode.BaseOffs += ConstantOffset;
3819       if (ConstantOffset == 0 ||
3820           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3821         // Check to see if we can fold the base pointer in too.
3822         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3823           return true;
3824       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
3825                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
3826                  ConstantOffset > 0) {
3827         // Record GEPs with non-zero offsets as candidates for splitting in the
3828         // event that the offset cannot fit into the r+i addressing mode.
3829         // Simple and common case that only one GEP is used in calculating the
3830         // address for the memory access.
3831         Value *Base = AddrInst->getOperand(0);
3832         auto *BaseI = dyn_cast<Instruction>(Base);
3833         auto *GEP = cast<GetElementPtrInst>(AddrInst);
3834         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
3835             (BaseI && !isa<CastInst>(BaseI) &&
3836              !isa<GetElementPtrInst>(BaseI))) {
3837           // If the base is an instruction, make sure the GEP is not in the same
3838           // basic block as the base. If the base is an argument or global
3839           // value, make sure the GEP is not in the entry block.  Otherwise,
3840           // instruction selection can undo the split.  Also make sure the
3841           // parent block allows inserting non-PHI instructions before the
3842           // terminator.
3843           BasicBlock *Parent =
3844               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
3845           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
3846             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
3847         }
3848       }
3849       AddrMode.BaseOffs -= ConstantOffset;
3850       return false;
3851     }
3852 
3853     // Save the valid addressing mode in case we can't match.
3854     ExtAddrMode BackupAddrMode = AddrMode;
3855     unsigned OldSize = AddrModeInsts.size();
3856 
3857     // See if the scale and offset amount is valid for this target.
3858     AddrMode.BaseOffs += ConstantOffset;
3859 
3860     // Match the base operand of the GEP.
3861     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3862       // If it couldn't be matched, just stuff the value in a register.
3863       if (AddrMode.HasBaseReg) {
3864         AddrMode = BackupAddrMode;
3865         AddrModeInsts.resize(OldSize);
3866         return false;
3867       }
3868       AddrMode.HasBaseReg = true;
3869       AddrMode.BaseReg = AddrInst->getOperand(0);
3870     }
3871 
3872     // Match the remaining variable portion of the GEP.
3873     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3874                           Depth)) {
3875       // If it couldn't be matched, try stuffing the base into a register
3876       // instead of matching it, and retrying the match of the scale.
3877       AddrMode = BackupAddrMode;
3878       AddrModeInsts.resize(OldSize);
3879       if (AddrMode.HasBaseReg)
3880         return false;
3881       AddrMode.HasBaseReg = true;
3882       AddrMode.BaseReg = AddrInst->getOperand(0);
3883       AddrMode.BaseOffs += ConstantOffset;
3884       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3885                             VariableScale, Depth)) {
3886         // If even that didn't work, bail.
3887         AddrMode = BackupAddrMode;
3888         AddrModeInsts.resize(OldSize);
3889         return false;
3890       }
3891     }
3892 
3893     return true;
3894   }
3895   case Instruction::SExt:
3896   case Instruction::ZExt: {
3897     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3898     if (!Ext)
3899       return false;
3900 
3901     // Try to move this ext out of the way of the addressing mode.
3902     // Ask for a method for doing so.
3903     TypePromotionHelper::Action TPH =
3904         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3905     if (!TPH)
3906       return false;
3907 
3908     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3909         TPT.getRestorationPoint();
3910     unsigned CreatedInstsCost = 0;
3911     unsigned ExtCost = !TLI.isExtFree(Ext);
3912     Value *PromotedOperand =
3913         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3914     // SExt has been moved away.
3915     // Thus either it will be rematched later in the recursive calls or it is
3916     // gone. Anyway, we must not fold it into the addressing mode at this point.
3917     // E.g.,
3918     // op = add opnd, 1
3919     // idx = ext op
3920     // addr = gep base, idx
3921     // is now:
3922     // promotedOpnd = ext opnd            <- no match here
3923     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3924     // addr = gep base, op                <- match
3925     if (MovedAway)
3926       *MovedAway = true;
3927 
3928     assert(PromotedOperand &&
3929            "TypePromotionHelper should have filtered out those cases");
3930 
3931     ExtAddrMode BackupAddrMode = AddrMode;
3932     unsigned OldSize = AddrModeInsts.size();
3933 
3934     if (!matchAddr(PromotedOperand, Depth) ||
3935         // The total of the new cost is equal to the cost of the created
3936         // instructions.
3937         // The total of the old cost is equal to the cost of the extension plus
3938         // what we have saved in the addressing mode.
3939         !isPromotionProfitable(CreatedInstsCost,
3940                                ExtCost + (AddrModeInsts.size() - OldSize),
3941                                PromotedOperand)) {
3942       AddrMode = BackupAddrMode;
3943       AddrModeInsts.resize(OldSize);
3944       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3945       TPT.rollback(LastKnownGood);
3946       return false;
3947     }
3948     return true;
3949   }
3950   }
3951   return false;
3952 }
3953 
3954 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3955 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3956 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3957 /// for the target.
3958 ///
3959 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3960   // Start a transaction at this point that we will rollback if the matching
3961   // fails.
3962   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3963       TPT.getRestorationPoint();
3964   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3965     // Fold in immediates if legal for the target.
3966     AddrMode.BaseOffs += CI->getSExtValue();
3967     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3968       return true;
3969     AddrMode.BaseOffs -= CI->getSExtValue();
3970   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3971     // If this is a global variable, try to fold it into the addressing mode.
3972     if (!AddrMode.BaseGV) {
3973       AddrMode.BaseGV = GV;
3974       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3975         return true;
3976       AddrMode.BaseGV = nullptr;
3977     }
3978   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3979     ExtAddrMode BackupAddrMode = AddrMode;
3980     unsigned OldSize = AddrModeInsts.size();
3981 
3982     // Check to see if it is possible to fold this operation.
3983     bool MovedAway = false;
3984     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3985       // This instruction may have been moved away. If so, there is nothing
3986       // to check here.
3987       if (MovedAway)
3988         return true;
3989       // Okay, it's possible to fold this.  Check to see if it is actually
3990       // *profitable* to do so.  We use a simple cost model to avoid increasing
3991       // register pressure too much.
3992       if (I->hasOneUse() ||
3993           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3994         AddrModeInsts.push_back(I);
3995         return true;
3996       }
3997 
3998       // It isn't profitable to do this, roll back.
3999       //cerr << "NOT FOLDING: " << *I;
4000       AddrMode = BackupAddrMode;
4001       AddrModeInsts.resize(OldSize);
4002       TPT.rollback(LastKnownGood);
4003     }
4004   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4005     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4006       return true;
4007     TPT.rollback(LastKnownGood);
4008   } else if (isa<ConstantPointerNull>(Addr)) {
4009     // Null pointer gets folded without affecting the addressing mode.
4010     return true;
4011   }
4012 
4013   // Worse case, the target should support [reg] addressing modes. :)
4014   if (!AddrMode.HasBaseReg) {
4015     AddrMode.HasBaseReg = true;
4016     AddrMode.BaseReg = Addr;
4017     // Still check for legality in case the target supports [imm] but not [i+r].
4018     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4019       return true;
4020     AddrMode.HasBaseReg = false;
4021     AddrMode.BaseReg = nullptr;
4022   }
4023 
4024   // If the base register is already taken, see if we can do [r+r].
4025   if (AddrMode.Scale == 0) {
4026     AddrMode.Scale = 1;
4027     AddrMode.ScaledReg = Addr;
4028     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4029       return true;
4030     AddrMode.Scale = 0;
4031     AddrMode.ScaledReg = nullptr;
4032   }
4033   // Couldn't match.
4034   TPT.rollback(LastKnownGood);
4035   return false;
4036 }
4037 
4038 /// Check to see if all uses of OpVal by the specified inline asm call are due
4039 /// to memory operands. If so, return true, otherwise return false.
4040 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4041                                     const TargetLowering &TLI,
4042                                     const TargetRegisterInfo &TRI) {
4043   const Function *F = CI->getFunction();
4044   TargetLowering::AsmOperandInfoVector TargetConstraints =
4045       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4046                             ImmutableCallSite(CI));
4047 
4048   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4049     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4050 
4051     // Compute the constraint code and ConstraintType to use.
4052     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4053 
4054     // If this asm operand is our Value*, and if it isn't an indirect memory
4055     // operand, we can't fold it!
4056     if (OpInfo.CallOperandVal == OpVal &&
4057         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4058          !OpInfo.isIndirect))
4059       return false;
4060   }
4061 
4062   return true;
4063 }
4064 
4065 // Max number of memory uses to look at before aborting the search to conserve
4066 // compile time.
4067 static constexpr int MaxMemoryUsesToScan = 20;
4068 
4069 /// Recursively walk all the uses of I until we find a memory use.
4070 /// If we find an obviously non-foldable instruction, return true.
4071 /// Add the ultimately found memory instructions to MemoryUses.
4072 static bool FindAllMemoryUses(
4073     Instruction *I,
4074     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4075     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4076     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4077   // If we already considered this instruction, we're done.
4078   if (!ConsideredInsts.insert(I).second)
4079     return false;
4080 
4081   // If this is an obviously unfoldable instruction, bail out.
4082   if (!MightBeFoldableInst(I))
4083     return true;
4084 
4085   const bool OptSize = I->getFunction()->optForSize();
4086 
4087   // Loop over all the uses, recursively processing them.
4088   for (Use &U : I->uses()) {
4089     // Conservatively return true if we're seeing a large number or a deep chain
4090     // of users. This avoids excessive compilation times in pathological cases.
4091     if (SeenInsts++ >= MaxMemoryUsesToScan)
4092       return true;
4093 
4094     Instruction *UserI = cast<Instruction>(U.getUser());
4095     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4096       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4097       continue;
4098     }
4099 
4100     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4101       unsigned opNo = U.getOperandNo();
4102       if (opNo != StoreInst::getPointerOperandIndex())
4103         return true; // Storing addr, not into addr.
4104       MemoryUses.push_back(std::make_pair(SI, opNo));
4105       continue;
4106     }
4107 
4108     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4109       unsigned opNo = U.getOperandNo();
4110       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4111         return true; // Storing addr, not into addr.
4112       MemoryUses.push_back(std::make_pair(RMW, opNo));
4113       continue;
4114     }
4115 
4116     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4117       unsigned opNo = U.getOperandNo();
4118       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4119         return true; // Storing addr, not into addr.
4120       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4121       continue;
4122     }
4123 
4124     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4125       // If this is a cold call, we can sink the addressing calculation into
4126       // the cold path.  See optimizeCallInst
4127       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4128         continue;
4129 
4130       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4131       if (!IA) return true;
4132 
4133       // If this is a memory operand, we're cool, otherwise bail out.
4134       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4135         return true;
4136       continue;
4137     }
4138 
4139     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4140                           SeenInsts))
4141       return true;
4142   }
4143 
4144   return false;
4145 }
4146 
4147 /// Return true if Val is already known to be live at the use site that we're
4148 /// folding it into. If so, there is no cost to include it in the addressing
4149 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4150 /// instruction already.
4151 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4152                                                    Value *KnownLive2) {
4153   // If Val is either of the known-live values, we know it is live!
4154   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4155     return true;
4156 
4157   // All values other than instructions and arguments (e.g. constants) are live.
4158   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4159 
4160   // If Val is a constant sized alloca in the entry block, it is live, this is
4161   // true because it is just a reference to the stack/frame pointer, which is
4162   // live for the whole function.
4163   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4164     if (AI->isStaticAlloca())
4165       return true;
4166 
4167   // Check to see if this value is already used in the memory instruction's
4168   // block.  If so, it's already live into the block at the very least, so we
4169   // can reasonably fold it.
4170   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4171 }
4172 
4173 /// It is possible for the addressing mode of the machine to fold the specified
4174 /// instruction into a load or store that ultimately uses it.
4175 /// However, the specified instruction has multiple uses.
4176 /// Given this, it may actually increase register pressure to fold it
4177 /// into the load. For example, consider this code:
4178 ///
4179 ///     X = ...
4180 ///     Y = X+1
4181 ///     use(Y)   -> nonload/store
4182 ///     Z = Y+1
4183 ///     load Z
4184 ///
4185 /// In this case, Y has multiple uses, and can be folded into the load of Z
4186 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4187 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4188 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4189 /// number of computations either.
4190 ///
4191 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4192 /// X was live across 'load Z' for other reasons, we actually *would* want to
4193 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4194 bool AddressingModeMatcher::
4195 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4196                                      ExtAddrMode &AMAfter) {
4197   if (IgnoreProfitability) return true;
4198 
4199   // AMBefore is the addressing mode before this instruction was folded into it,
4200   // and AMAfter is the addressing mode after the instruction was folded.  Get
4201   // the set of registers referenced by AMAfter and subtract out those
4202   // referenced by AMBefore: this is the set of values which folding in this
4203   // address extends the lifetime of.
4204   //
4205   // Note that there are only two potential values being referenced here,
4206   // BaseReg and ScaleReg (global addresses are always available, as are any
4207   // folded immediates).
4208   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4209 
4210   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4211   // lifetime wasn't extended by adding this instruction.
4212   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4213     BaseReg = nullptr;
4214   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4215     ScaledReg = nullptr;
4216 
4217   // If folding this instruction (and it's subexprs) didn't extend any live
4218   // ranges, we're ok with it.
4219   if (!BaseReg && !ScaledReg)
4220     return true;
4221 
4222   // If all uses of this instruction can have the address mode sunk into them,
4223   // we can remove the addressing mode and effectively trade one live register
4224   // for another (at worst.)  In this context, folding an addressing mode into
4225   // the use is just a particularly nice way of sinking it.
4226   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4227   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4228   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4229     return false;  // Has a non-memory, non-foldable use!
4230 
4231   // Now that we know that all uses of this instruction are part of a chain of
4232   // computation involving only operations that could theoretically be folded
4233   // into a memory use, loop over each of these memory operation uses and see
4234   // if they could  *actually* fold the instruction.  The assumption is that
4235   // addressing modes are cheap and that duplicating the computation involved
4236   // many times is worthwhile, even on a fastpath. For sinking candidates
4237   // (i.e. cold call sites), this serves as a way to prevent excessive code
4238   // growth since most architectures have some reasonable small and fast way to
4239   // compute an effective address.  (i.e LEA on x86)
4240   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4241   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4242     Instruction *User = MemoryUses[i].first;
4243     unsigned OpNo = MemoryUses[i].second;
4244 
4245     // Get the access type of this use.  If the use isn't a pointer, we don't
4246     // know what it accesses.
4247     Value *Address = User->getOperand(OpNo);
4248     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4249     if (!AddrTy)
4250       return false;
4251     Type *AddressAccessTy = AddrTy->getElementType();
4252     unsigned AS = AddrTy->getAddressSpace();
4253 
4254     // Do a match against the root of this address, ignoring profitability. This
4255     // will tell us if the addressing mode for the memory operation will
4256     // *actually* cover the shared instruction.
4257     ExtAddrMode Result;
4258     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4259                                                                       0);
4260     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4261         TPT.getRestorationPoint();
4262     AddressingModeMatcher Matcher(
4263         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4264         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4265     Matcher.IgnoreProfitability = true;
4266     bool Success = Matcher.matchAddr(Address, 0);
4267     (void)Success; assert(Success && "Couldn't select *anything*?");
4268 
4269     // The match was to check the profitability, the changes made are not
4270     // part of the original matcher. Therefore, they should be dropped
4271     // otherwise the original matcher will not present the right state.
4272     TPT.rollback(LastKnownGood);
4273 
4274     // If the match didn't cover I, then it won't be shared by it.
4275     if (!is_contained(MatchedAddrModeInsts, I))
4276       return false;
4277 
4278     MatchedAddrModeInsts.clear();
4279   }
4280 
4281   return true;
4282 }
4283 
4284 /// Return true if the specified values are defined in a
4285 /// different basic block than BB.
4286 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4287   if (Instruction *I = dyn_cast<Instruction>(V))
4288     return I->getParent() != BB;
4289   return false;
4290 }
4291 
4292 /// Sink addressing mode computation immediate before MemoryInst if doing so
4293 /// can be done without increasing register pressure.  The need for the
4294 /// register pressure constraint means this can end up being an all or nothing
4295 /// decision for all uses of the same addressing computation.
4296 ///
4297 /// Load and Store Instructions often have addressing modes that can do
4298 /// significant amounts of computation. As such, instruction selection will try
4299 /// to get the load or store to do as much computation as possible for the
4300 /// program. The problem is that isel can only see within a single block. As
4301 /// such, we sink as much legal addressing mode work into the block as possible.
4302 ///
4303 /// This method is used to optimize both load/store and inline asms with memory
4304 /// operands.  It's also used to sink addressing computations feeding into cold
4305 /// call sites into their (cold) basic block.
4306 ///
4307 /// The motivation for handling sinking into cold blocks is that doing so can
4308 /// both enable other address mode sinking (by satisfying the register pressure
4309 /// constraint above), and reduce register pressure globally (by removing the
4310 /// addressing mode computation from the fast path entirely.).
4311 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4312                                         Type *AccessTy, unsigned AddrSpace) {
4313   Value *Repl = Addr;
4314 
4315   // Try to collapse single-value PHI nodes.  This is necessary to undo
4316   // unprofitable PRE transformations.
4317   SmallVector<Value*, 8> worklist;
4318   SmallPtrSet<Value*, 16> Visited;
4319   worklist.push_back(Addr);
4320 
4321   // Use a worklist to iteratively look through PHI and select nodes, and
4322   // ensure that the addressing mode obtained from the non-PHI/select roots of
4323   // the graph are compatible.
4324   bool PhiOrSelectSeen = false;
4325   SmallVector<Instruction*, 16> AddrModeInsts;
4326   const SimplifyQuery SQ(*DL, TLInfo);
4327   AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() });
4328   TypePromotionTransaction TPT(RemovedInsts);
4329   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4330       TPT.getRestorationPoint();
4331   while (!worklist.empty()) {
4332     Value *V = worklist.back();
4333     worklist.pop_back();
4334 
4335     // We allow traversing cyclic Phi nodes.
4336     // In case of success after this loop we ensure that traversing through
4337     // Phi nodes ends up with all cases to compute address of the form
4338     //    BaseGV + Base + Scale * Index + Offset
4339     // where Scale and Offset are constans and BaseGV, Base and Index
4340     // are exactly the same Values in all cases.
4341     // It means that BaseGV, Scale and Offset dominate our memory instruction
4342     // and have the same value as they had in address computation represented
4343     // as Phi. So we can safely sink address computation to memory instruction.
4344     if (!Visited.insert(V).second)
4345       continue;
4346 
4347     // For a PHI node, push all of its incoming values.
4348     if (PHINode *P = dyn_cast<PHINode>(V)) {
4349       for (Value *IncValue : P->incoming_values())
4350         worklist.push_back(IncValue);
4351       PhiOrSelectSeen = true;
4352       continue;
4353     }
4354     // Similar for select.
4355     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4356       worklist.push_back(SI->getFalseValue());
4357       worklist.push_back(SI->getTrueValue());
4358       PhiOrSelectSeen = true;
4359       continue;
4360     }
4361 
4362     // For non-PHIs, determine the addressing mode being computed.  Note that
4363     // the result may differ depending on what other uses our candidate
4364     // addressing instructions might have.
4365     AddrModeInsts.clear();
4366     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4367                                                                       0);
4368     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4369         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4370         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4371 
4372     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4373     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4374         !NewGEPBases.count(GEP)) {
4375       // If splitting the underlying data structure can reduce the offset of a
4376       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4377       // previously split data structures.
4378       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4379       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4380         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4381     }
4382 
4383     NewAddrMode.OriginalValue = V;
4384     if (!AddrModes.addNewAddrMode(NewAddrMode))
4385       break;
4386   }
4387 
4388   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4389   // or we have multiple but either couldn't combine them or combining them
4390   // wouldn't do anything useful, bail out now.
4391   if (!AddrModes.combineAddrModes()) {
4392     TPT.rollback(LastKnownGood);
4393     return false;
4394   }
4395   TPT.commit();
4396 
4397   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4398   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4399 
4400   // If all the instructions matched are already in this BB, don't do anything.
4401   // If we saw a Phi node then it is not local definitely, and if we saw a select
4402   // then we want to push the address calculation past it even if it's already
4403   // in this BB.
4404   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4405         return IsNonLocalValue(V, MemoryInst->getParent());
4406                   })) {
4407     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4408                       << "\n");
4409     return false;
4410   }
4411 
4412   // Insert this computation right after this user.  Since our caller is
4413   // scanning from the top of the BB to the bottom, reuse of the expr are
4414   // guaranteed to happen later.
4415   IRBuilder<> Builder(MemoryInst);
4416 
4417   // Now that we determined the addressing expression we want to use and know
4418   // that we have to sink it into this block.  Check to see if we have already
4419   // done this for some other load/store instr in this block.  If so, reuse
4420   // the computation.  Before attempting reuse, check if the address is valid
4421   // as it may have been erased.
4422 
4423   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4424 
4425   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4426   if (SunkAddr) {
4427     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4428                       << " for " << *MemoryInst << "\n");
4429     if (SunkAddr->getType() != Addr->getType())
4430       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4431   } else if (AddrSinkUsingGEPs ||
4432              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4433     // By default, we use the GEP-based method when AA is used later. This
4434     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4435     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4436                       << " for " << *MemoryInst << "\n");
4437     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4438     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4439 
4440     // First, find the pointer.
4441     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4442       ResultPtr = AddrMode.BaseReg;
4443       AddrMode.BaseReg = nullptr;
4444     }
4445 
4446     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4447       // We can't add more than one pointer together, nor can we scale a
4448       // pointer (both of which seem meaningless).
4449       if (ResultPtr || AddrMode.Scale != 1)
4450         return false;
4451 
4452       ResultPtr = AddrMode.ScaledReg;
4453       AddrMode.Scale = 0;
4454     }
4455 
4456     // It is only safe to sign extend the BaseReg if we know that the math
4457     // required to create it did not overflow before we extend it. Since
4458     // the original IR value was tossed in favor of a constant back when
4459     // the AddrMode was created we need to bail out gracefully if widths
4460     // do not match instead of extending it.
4461     //
4462     // (See below for code to add the scale.)
4463     if (AddrMode.Scale) {
4464       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4465       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4466           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4467         return false;
4468     }
4469 
4470     if (AddrMode.BaseGV) {
4471       if (ResultPtr)
4472         return false;
4473 
4474       ResultPtr = AddrMode.BaseGV;
4475     }
4476 
4477     // If the real base value actually came from an inttoptr, then the matcher
4478     // will look through it and provide only the integer value. In that case,
4479     // use it here.
4480     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4481       if (!ResultPtr && AddrMode.BaseReg) {
4482         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4483                                            "sunkaddr");
4484         AddrMode.BaseReg = nullptr;
4485       } else if (!ResultPtr && AddrMode.Scale == 1) {
4486         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4487                                            "sunkaddr");
4488         AddrMode.Scale = 0;
4489       }
4490     }
4491 
4492     if (!ResultPtr &&
4493         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4494       SunkAddr = Constant::getNullValue(Addr->getType());
4495     } else if (!ResultPtr) {
4496       return false;
4497     } else {
4498       Type *I8PtrTy =
4499           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4500       Type *I8Ty = Builder.getInt8Ty();
4501 
4502       // Start with the base register. Do this first so that subsequent address
4503       // matching finds it last, which will prevent it from trying to match it
4504       // as the scaled value in case it happens to be a mul. That would be
4505       // problematic if we've sunk a different mul for the scale, because then
4506       // we'd end up sinking both muls.
4507       if (AddrMode.BaseReg) {
4508         Value *V = AddrMode.BaseReg;
4509         if (V->getType() != IntPtrTy)
4510           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4511 
4512         ResultIndex = V;
4513       }
4514 
4515       // Add the scale value.
4516       if (AddrMode.Scale) {
4517         Value *V = AddrMode.ScaledReg;
4518         if (V->getType() == IntPtrTy) {
4519           // done.
4520         } else {
4521           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4522                  cast<IntegerType>(V->getType())->getBitWidth() &&
4523                  "We can't transform if ScaledReg is too narrow");
4524           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4525         }
4526 
4527         if (AddrMode.Scale != 1)
4528           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4529                                 "sunkaddr");
4530         if (ResultIndex)
4531           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4532         else
4533           ResultIndex = V;
4534       }
4535 
4536       // Add in the Base Offset if present.
4537       if (AddrMode.BaseOffs) {
4538         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4539         if (ResultIndex) {
4540           // We need to add this separately from the scale above to help with
4541           // SDAG consecutive load/store merging.
4542           if (ResultPtr->getType() != I8PtrTy)
4543             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4544           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4545         }
4546 
4547         ResultIndex = V;
4548       }
4549 
4550       if (!ResultIndex) {
4551         SunkAddr = ResultPtr;
4552       } else {
4553         if (ResultPtr->getType() != I8PtrTy)
4554           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4555         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4556       }
4557 
4558       if (SunkAddr->getType() != Addr->getType())
4559         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4560     }
4561   } else {
4562     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4563     // non-integral pointers, so in that case bail out now.
4564     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4565     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4566     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4567     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4568     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4569         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4570         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4571         (AddrMode.BaseGV &&
4572          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4573       return false;
4574 
4575     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4576                       << " for " << *MemoryInst << "\n");
4577     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4578     Value *Result = nullptr;
4579 
4580     // Start with the base register. Do this first so that subsequent address
4581     // matching finds it last, which will prevent it from trying to match it
4582     // as the scaled value in case it happens to be a mul. That would be
4583     // problematic if we've sunk a different mul for the scale, because then
4584     // we'd end up sinking both muls.
4585     if (AddrMode.BaseReg) {
4586       Value *V = AddrMode.BaseReg;
4587       if (V->getType()->isPointerTy())
4588         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4589       if (V->getType() != IntPtrTy)
4590         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4591       Result = V;
4592     }
4593 
4594     // Add the scale value.
4595     if (AddrMode.Scale) {
4596       Value *V = AddrMode.ScaledReg;
4597       if (V->getType() == IntPtrTy) {
4598         // done.
4599       } else if (V->getType()->isPointerTy()) {
4600         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4601       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4602                  cast<IntegerType>(V->getType())->getBitWidth()) {
4603         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4604       } else {
4605         // It is only safe to sign extend the BaseReg if we know that the math
4606         // required to create it did not overflow before we extend it. Since
4607         // the original IR value was tossed in favor of a constant back when
4608         // the AddrMode was created we need to bail out gracefully if widths
4609         // do not match instead of extending it.
4610         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4611         if (I && (Result != AddrMode.BaseReg))
4612           I->eraseFromParent();
4613         return false;
4614       }
4615       if (AddrMode.Scale != 1)
4616         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4617                               "sunkaddr");
4618       if (Result)
4619         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4620       else
4621         Result = V;
4622     }
4623 
4624     // Add in the BaseGV if present.
4625     if (AddrMode.BaseGV) {
4626       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4627       if (Result)
4628         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4629       else
4630         Result = V;
4631     }
4632 
4633     // Add in the Base Offset if present.
4634     if (AddrMode.BaseOffs) {
4635       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4636       if (Result)
4637         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4638       else
4639         Result = V;
4640     }
4641 
4642     if (!Result)
4643       SunkAddr = Constant::getNullValue(Addr->getType());
4644     else
4645       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4646   }
4647 
4648   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4649   // Store the newly computed address into the cache. In the case we reused a
4650   // value, this should be idempotent.
4651   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4652 
4653   // If we have no uses, recursively delete the value and all dead instructions
4654   // using it.
4655   if (Repl->use_empty()) {
4656     // This can cause recursive deletion, which can invalidate our iterator.
4657     // Use a WeakTrackingVH to hold onto it in case this happens.
4658     Value *CurValue = &*CurInstIterator;
4659     WeakTrackingVH IterHandle(CurValue);
4660     BasicBlock *BB = CurInstIterator->getParent();
4661 
4662     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4663 
4664     if (IterHandle != CurValue) {
4665       // If the iterator instruction was recursively deleted, start over at the
4666       // start of the block.
4667       CurInstIterator = BB->begin();
4668       SunkAddrs.clear();
4669     }
4670   }
4671   ++NumMemoryInsts;
4672   return true;
4673 }
4674 
4675 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4676 /// address computing into the block when possible / profitable.
4677 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4678   bool MadeChange = false;
4679 
4680   const TargetRegisterInfo *TRI =
4681       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4682   TargetLowering::AsmOperandInfoVector TargetConstraints =
4683       TLI->ParseConstraints(*DL, TRI, CS);
4684   unsigned ArgNo = 0;
4685   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4686     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4687 
4688     // Compute the constraint code and ConstraintType to use.
4689     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4690 
4691     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4692         OpInfo.isIndirect) {
4693       Value *OpVal = CS->getArgOperand(ArgNo++);
4694       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4695     } else if (OpInfo.Type == InlineAsm::isInput)
4696       ArgNo++;
4697   }
4698 
4699   return MadeChange;
4700 }
4701 
4702 /// Check if all the uses of \p Val are equivalent (or free) zero or
4703 /// sign extensions.
4704 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4705   assert(!Val->use_empty() && "Input must have at least one use");
4706   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4707   bool IsSExt = isa<SExtInst>(FirstUser);
4708   Type *ExtTy = FirstUser->getType();
4709   for (const User *U : Val->users()) {
4710     const Instruction *UI = cast<Instruction>(U);
4711     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4712       return false;
4713     Type *CurTy = UI->getType();
4714     // Same input and output types: Same instruction after CSE.
4715     if (CurTy == ExtTy)
4716       continue;
4717 
4718     // If IsSExt is true, we are in this situation:
4719     // a = Val
4720     // b = sext ty1 a to ty2
4721     // c = sext ty1 a to ty3
4722     // Assuming ty2 is shorter than ty3, this could be turned into:
4723     // a = Val
4724     // b = sext ty1 a to ty2
4725     // c = sext ty2 b to ty3
4726     // However, the last sext is not free.
4727     if (IsSExt)
4728       return false;
4729 
4730     // This is a ZExt, maybe this is free to extend from one type to another.
4731     // In that case, we would not account for a different use.
4732     Type *NarrowTy;
4733     Type *LargeTy;
4734     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4735         CurTy->getScalarType()->getIntegerBitWidth()) {
4736       NarrowTy = CurTy;
4737       LargeTy = ExtTy;
4738     } else {
4739       NarrowTy = ExtTy;
4740       LargeTy = CurTy;
4741     }
4742 
4743     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4744       return false;
4745   }
4746   // All uses are the same or can be derived from one another for free.
4747   return true;
4748 }
4749 
4750 /// Try to speculatively promote extensions in \p Exts and continue
4751 /// promoting through newly promoted operands recursively as far as doing so is
4752 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4753 /// When some promotion happened, \p TPT contains the proper state to revert
4754 /// them.
4755 ///
4756 /// \return true if some promotion happened, false otherwise.
4757 bool CodeGenPrepare::tryToPromoteExts(
4758     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4759     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4760     unsigned CreatedInstsCost) {
4761   bool Promoted = false;
4762 
4763   // Iterate over all the extensions to try to promote them.
4764   for (auto I : Exts) {
4765     // Early check if we directly have ext(load).
4766     if (isa<LoadInst>(I->getOperand(0))) {
4767       ProfitablyMovedExts.push_back(I);
4768       continue;
4769     }
4770 
4771     // Check whether or not we want to do any promotion.  The reason we have
4772     // this check inside the for loop is to catch the case where an extension
4773     // is directly fed by a load because in such case the extension can be moved
4774     // up without any promotion on its operands.
4775     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4776       return false;
4777 
4778     // Get the action to perform the promotion.
4779     TypePromotionHelper::Action TPH =
4780         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4781     // Check if we can promote.
4782     if (!TPH) {
4783       // Save the current extension as we cannot move up through its operand.
4784       ProfitablyMovedExts.push_back(I);
4785       continue;
4786     }
4787 
4788     // Save the current state.
4789     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4790         TPT.getRestorationPoint();
4791     SmallVector<Instruction *, 4> NewExts;
4792     unsigned NewCreatedInstsCost = 0;
4793     unsigned ExtCost = !TLI->isExtFree(I);
4794     // Promote.
4795     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4796                              &NewExts, nullptr, *TLI);
4797     assert(PromotedVal &&
4798            "TypePromotionHelper should have filtered out those cases");
4799 
4800     // We would be able to merge only one extension in a load.
4801     // Therefore, if we have more than 1 new extension we heuristically
4802     // cut this search path, because it means we degrade the code quality.
4803     // With exactly 2, the transformation is neutral, because we will merge
4804     // one extension but leave one. However, we optimistically keep going,
4805     // because the new extension may be removed too.
4806     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4807     // FIXME: It would be possible to propagate a negative value instead of
4808     // conservatively ceiling it to 0.
4809     TotalCreatedInstsCost =
4810         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4811     if (!StressExtLdPromotion &&
4812         (TotalCreatedInstsCost > 1 ||
4813          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4814       // This promotion is not profitable, rollback to the previous state, and
4815       // save the current extension in ProfitablyMovedExts as the latest
4816       // speculative promotion turned out to be unprofitable.
4817       TPT.rollback(LastKnownGood);
4818       ProfitablyMovedExts.push_back(I);
4819       continue;
4820     }
4821     // Continue promoting NewExts as far as doing so is profitable.
4822     SmallVector<Instruction *, 2> NewlyMovedExts;
4823     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4824     bool NewPromoted = false;
4825     for (auto ExtInst : NewlyMovedExts) {
4826       Instruction *MovedExt = cast<Instruction>(ExtInst);
4827       Value *ExtOperand = MovedExt->getOperand(0);
4828       // If we have reached to a load, we need this extra profitability check
4829       // as it could potentially be merged into an ext(load).
4830       if (isa<LoadInst>(ExtOperand) &&
4831           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4832             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4833         continue;
4834 
4835       ProfitablyMovedExts.push_back(MovedExt);
4836       NewPromoted = true;
4837     }
4838 
4839     // If none of speculative promotions for NewExts is profitable, rollback
4840     // and save the current extension (I) as the last profitable extension.
4841     if (!NewPromoted) {
4842       TPT.rollback(LastKnownGood);
4843       ProfitablyMovedExts.push_back(I);
4844       continue;
4845     }
4846     // The promotion is profitable.
4847     Promoted = true;
4848   }
4849   return Promoted;
4850 }
4851 
4852 /// Merging redundant sexts when one is dominating the other.
4853 bool CodeGenPrepare::mergeSExts(Function &F) {
4854   DominatorTree DT(F);
4855   bool Changed = false;
4856   for (auto &Entry : ValToSExtendedUses) {
4857     SExts &Insts = Entry.second;
4858     SExts CurPts;
4859     for (Instruction *Inst : Insts) {
4860       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4861           Inst->getOperand(0) != Entry.first)
4862         continue;
4863       bool inserted = false;
4864       for (auto &Pt : CurPts) {
4865         if (DT.dominates(Inst, Pt)) {
4866           Pt->replaceAllUsesWith(Inst);
4867           RemovedInsts.insert(Pt);
4868           Pt->removeFromParent();
4869           Pt = Inst;
4870           inserted = true;
4871           Changed = true;
4872           break;
4873         }
4874         if (!DT.dominates(Pt, Inst))
4875           // Give up if we need to merge in a common dominator as the
4876           // experiments show it is not profitable.
4877           continue;
4878         Inst->replaceAllUsesWith(Pt);
4879         RemovedInsts.insert(Inst);
4880         Inst->removeFromParent();
4881         inserted = true;
4882         Changed = true;
4883         break;
4884       }
4885       if (!inserted)
4886         CurPts.push_back(Inst);
4887     }
4888   }
4889   return Changed;
4890 }
4891 
4892 // Spliting large data structures so that the GEPs accessing them can have
4893 // smaller offsets so that they can be sunk to the same blocks as their users.
4894 // For example, a large struct starting from %base is splitted into two parts
4895 // where the second part starts from %new_base.
4896 //
4897 // Before:
4898 // BB0:
4899 //   %base     =
4900 //
4901 // BB1:
4902 //   %gep0     = gep %base, off0
4903 //   %gep1     = gep %base, off1
4904 //   %gep2     = gep %base, off2
4905 //
4906 // BB2:
4907 //   %load1    = load %gep0
4908 //   %load2    = load %gep1
4909 //   %load3    = load %gep2
4910 //
4911 // After:
4912 // BB0:
4913 //   %base     =
4914 //   %new_base = gep %base, off0
4915 //
4916 // BB1:
4917 //   %new_gep0 = %new_base
4918 //   %new_gep1 = gep %new_base, off1 - off0
4919 //   %new_gep2 = gep %new_base, off2 - off0
4920 //
4921 // BB2:
4922 //   %load1    = load i32, i32* %new_gep0
4923 //   %load2    = load i32, i32* %new_gep1
4924 //   %load3    = load i32, i32* %new_gep2
4925 //
4926 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
4927 // their offsets are smaller enough to fit into the addressing mode.
4928 bool CodeGenPrepare::splitLargeGEPOffsets() {
4929   bool Changed = false;
4930   for (auto &Entry : LargeOffsetGEPMap) {
4931     Value *OldBase = Entry.first;
4932     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
4933         &LargeOffsetGEPs = Entry.second;
4934     auto compareGEPOffset =
4935         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
4936             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
4937           if (LHS.first == RHS.first)
4938             return false;
4939           if (LHS.second != RHS.second)
4940             return LHS.second < RHS.second;
4941           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
4942         };
4943     // Sorting all the GEPs of the same data structures based on the offsets.
4944     llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(),
4945                compareGEPOffset);
4946     LargeOffsetGEPs.erase(
4947         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
4948         LargeOffsetGEPs.end());
4949     // Skip if all the GEPs have the same offsets.
4950     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
4951       continue;
4952     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
4953     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
4954     Value *NewBaseGEP = nullptr;
4955 
4956     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
4957     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
4958       GetElementPtrInst *GEP = LargeOffsetGEP->first;
4959       int64_t Offset = LargeOffsetGEP->second;
4960       if (Offset != BaseOffset) {
4961         TargetLowering::AddrMode AddrMode;
4962         AddrMode.BaseOffs = Offset - BaseOffset;
4963         // The result type of the GEP might not be the type of the memory
4964         // access.
4965         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
4966                                         GEP->getResultElementType(),
4967                                         GEP->getAddressSpace())) {
4968           // We need to create a new base if the offset to the current base is
4969           // too large to fit into the addressing mode. So, a very large struct
4970           // may be splitted into several parts.
4971           BaseGEP = GEP;
4972           BaseOffset = Offset;
4973           NewBaseGEP = nullptr;
4974         }
4975       }
4976 
4977       // Generate a new GEP to replace the current one.
4978       IRBuilder<> Builder(GEP);
4979       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
4980       Type *I8PtrTy =
4981           Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace());
4982       Type *I8Ty = Builder.getInt8Ty();
4983 
4984       if (!NewBaseGEP) {
4985         // Create a new base if we don't have one yet.  Find the insertion
4986         // pointer for the new base first.
4987         BasicBlock::iterator NewBaseInsertPt;
4988         BasicBlock *NewBaseInsertBB;
4989         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
4990           // If the base of the struct is an instruction, the new base will be
4991           // inserted close to it.
4992           NewBaseInsertBB = BaseI->getParent();
4993           if (isa<PHINode>(BaseI))
4994             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
4995           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
4996             NewBaseInsertBB =
4997                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
4998             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
4999           } else
5000             NewBaseInsertPt = std::next(BaseI->getIterator());
5001         } else {
5002           // If the current base is an argument or global value, the new base
5003           // will be inserted to the entry block.
5004           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5005           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5006         }
5007         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5008         // Create a new base.
5009         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5010         NewBaseGEP = OldBase;
5011         if (NewBaseGEP->getType() != I8PtrTy)
5012           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5013         NewBaseGEP =
5014             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5015         NewGEPBases.insert(NewBaseGEP);
5016       }
5017 
5018       Value *NewGEP = NewBaseGEP;
5019       if (Offset == BaseOffset) {
5020         if (GEP->getType() != I8PtrTy)
5021           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5022       } else {
5023         // Calculate the new offset for the new GEP.
5024         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5025         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5026 
5027         if (GEP->getType() != I8PtrTy)
5028           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5029       }
5030       GEP->replaceAllUsesWith(NewGEP);
5031       LargeOffsetGEPID.erase(GEP);
5032       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5033       GEP->eraseFromParent();
5034       Changed = true;
5035     }
5036   }
5037   return Changed;
5038 }
5039 
5040 /// Return true, if an ext(load) can be formed from an extension in
5041 /// \p MovedExts.
5042 bool CodeGenPrepare::canFormExtLd(
5043     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5044     Instruction *&Inst, bool HasPromoted) {
5045   for (auto *MovedExtInst : MovedExts) {
5046     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5047       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5048       Inst = MovedExtInst;
5049       break;
5050     }
5051   }
5052   if (!LI)
5053     return false;
5054 
5055   // If they're already in the same block, there's nothing to do.
5056   // Make the cheap checks first if we did not promote.
5057   // If we promoted, we need to check if it is indeed profitable.
5058   if (!HasPromoted && LI->getParent() == Inst->getParent())
5059     return false;
5060 
5061   return TLI->isExtLoad(LI, Inst, *DL);
5062 }
5063 
5064 /// Move a zext or sext fed by a load into the same basic block as the load,
5065 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5066 /// extend into the load.
5067 ///
5068 /// E.g.,
5069 /// \code
5070 /// %ld = load i32* %addr
5071 /// %add = add nuw i32 %ld, 4
5072 /// %zext = zext i32 %add to i64
5073 // \endcode
5074 /// =>
5075 /// \code
5076 /// %ld = load i32* %addr
5077 /// %zext = zext i32 %ld to i64
5078 /// %add = add nuw i64 %zext, 4
5079 /// \encode
5080 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5081 /// allow us to match zext(load i32*) to i64.
5082 ///
5083 /// Also, try to promote the computations used to obtain a sign extended
5084 /// value used into memory accesses.
5085 /// E.g.,
5086 /// \code
5087 /// a = add nsw i32 b, 3
5088 /// d = sext i32 a to i64
5089 /// e = getelementptr ..., i64 d
5090 /// \endcode
5091 /// =>
5092 /// \code
5093 /// f = sext i32 b to i64
5094 /// a = add nsw i64 f, 3
5095 /// e = getelementptr ..., i64 a
5096 /// \endcode
5097 ///
5098 /// \p Inst[in/out] the extension may be modified during the process if some
5099 /// promotions apply.
5100 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5101   // ExtLoad formation and address type promotion infrastructure requires TLI to
5102   // be effective.
5103   if (!TLI)
5104     return false;
5105 
5106   bool AllowPromotionWithoutCommonHeader = false;
5107   /// See if it is an interesting sext operations for the address type
5108   /// promotion before trying to promote it, e.g., the ones with the right
5109   /// type and used in memory accesses.
5110   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5111       *Inst, AllowPromotionWithoutCommonHeader);
5112   TypePromotionTransaction TPT(RemovedInsts);
5113   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5114       TPT.getRestorationPoint();
5115   SmallVector<Instruction *, 1> Exts;
5116   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5117   Exts.push_back(Inst);
5118 
5119   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5120 
5121   // Look for a load being extended.
5122   LoadInst *LI = nullptr;
5123   Instruction *ExtFedByLoad;
5124 
5125   // Try to promote a chain of computation if it allows to form an extended
5126   // load.
5127   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5128     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5129     TPT.commit();
5130     // Move the extend into the same block as the load
5131     ExtFedByLoad->moveAfter(LI);
5132     // CGP does not check if the zext would be speculatively executed when moved
5133     // to the same basic block as the load. Preserving its original location
5134     // would pessimize the debugging experience, as well as negatively impact
5135     // the quality of sample pgo. We don't want to use "line 0" as that has a
5136     // size cost in the line-table section and logically the zext can be seen as
5137     // part of the load. Therefore we conservatively reuse the same debug
5138     // location for the load and the zext.
5139     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5140     ++NumExtsMoved;
5141     Inst = ExtFedByLoad;
5142     return true;
5143   }
5144 
5145   // Continue promoting SExts if known as considerable depending on targets.
5146   if (ATPConsiderable &&
5147       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5148                                   HasPromoted, TPT, SpeculativelyMovedExts))
5149     return true;
5150 
5151   TPT.rollback(LastKnownGood);
5152   return false;
5153 }
5154 
5155 // Perform address type promotion if doing so is profitable.
5156 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5157 // instructions that sign extended the same initial value. However, if
5158 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5159 // extension is just profitable.
5160 bool CodeGenPrepare::performAddressTypePromotion(
5161     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5162     bool HasPromoted, TypePromotionTransaction &TPT,
5163     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5164   bool Promoted = false;
5165   SmallPtrSet<Instruction *, 1> UnhandledExts;
5166   bool AllSeenFirst = true;
5167   for (auto I : SpeculativelyMovedExts) {
5168     Value *HeadOfChain = I->getOperand(0);
5169     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5170         SeenChainsForSExt.find(HeadOfChain);
5171     // If there is an unhandled SExt which has the same header, try to promote
5172     // it as well.
5173     if (AlreadySeen != SeenChainsForSExt.end()) {
5174       if (AlreadySeen->second != nullptr)
5175         UnhandledExts.insert(AlreadySeen->second);
5176       AllSeenFirst = false;
5177     }
5178   }
5179 
5180   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5181                         SpeculativelyMovedExts.size() == 1)) {
5182     TPT.commit();
5183     if (HasPromoted)
5184       Promoted = true;
5185     for (auto I : SpeculativelyMovedExts) {
5186       Value *HeadOfChain = I->getOperand(0);
5187       SeenChainsForSExt[HeadOfChain] = nullptr;
5188       ValToSExtendedUses[HeadOfChain].push_back(I);
5189     }
5190     // Update Inst as promotion happen.
5191     Inst = SpeculativelyMovedExts.pop_back_val();
5192   } else {
5193     // This is the first chain visited from the header, keep the current chain
5194     // as unhandled. Defer to promote this until we encounter another SExt
5195     // chain derived from the same header.
5196     for (auto I : SpeculativelyMovedExts) {
5197       Value *HeadOfChain = I->getOperand(0);
5198       SeenChainsForSExt[HeadOfChain] = Inst;
5199     }
5200     return false;
5201   }
5202 
5203   if (!AllSeenFirst && !UnhandledExts.empty())
5204     for (auto VisitedSExt : UnhandledExts) {
5205       if (RemovedInsts.count(VisitedSExt))
5206         continue;
5207       TypePromotionTransaction TPT(RemovedInsts);
5208       SmallVector<Instruction *, 1> Exts;
5209       SmallVector<Instruction *, 2> Chains;
5210       Exts.push_back(VisitedSExt);
5211       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5212       TPT.commit();
5213       if (HasPromoted)
5214         Promoted = true;
5215       for (auto I : Chains) {
5216         Value *HeadOfChain = I->getOperand(0);
5217         // Mark this as handled.
5218         SeenChainsForSExt[HeadOfChain] = nullptr;
5219         ValToSExtendedUses[HeadOfChain].push_back(I);
5220       }
5221     }
5222   return Promoted;
5223 }
5224 
5225 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5226   BasicBlock *DefBB = I->getParent();
5227 
5228   // If the result of a {s|z}ext and its source are both live out, rewrite all
5229   // other uses of the source with result of extension.
5230   Value *Src = I->getOperand(0);
5231   if (Src->hasOneUse())
5232     return false;
5233 
5234   // Only do this xform if truncating is free.
5235   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5236     return false;
5237 
5238   // Only safe to perform the optimization if the source is also defined in
5239   // this block.
5240   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5241     return false;
5242 
5243   bool DefIsLiveOut = false;
5244   for (User *U : I->users()) {
5245     Instruction *UI = cast<Instruction>(U);
5246 
5247     // Figure out which BB this ext is used in.
5248     BasicBlock *UserBB = UI->getParent();
5249     if (UserBB == DefBB) continue;
5250     DefIsLiveOut = true;
5251     break;
5252   }
5253   if (!DefIsLiveOut)
5254     return false;
5255 
5256   // Make sure none of the uses are PHI nodes.
5257   for (User *U : Src->users()) {
5258     Instruction *UI = cast<Instruction>(U);
5259     BasicBlock *UserBB = UI->getParent();
5260     if (UserBB == DefBB) continue;
5261     // Be conservative. We don't want this xform to end up introducing
5262     // reloads just before load / store instructions.
5263     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5264       return false;
5265   }
5266 
5267   // InsertedTruncs - Only insert one trunc in each block once.
5268   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5269 
5270   bool MadeChange = false;
5271   for (Use &U : Src->uses()) {
5272     Instruction *User = cast<Instruction>(U.getUser());
5273 
5274     // Figure out which BB this ext is used in.
5275     BasicBlock *UserBB = User->getParent();
5276     if (UserBB == DefBB) continue;
5277 
5278     // Both src and def are live in this block. Rewrite the use.
5279     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5280 
5281     if (!InsertedTrunc) {
5282       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5283       assert(InsertPt != UserBB->end());
5284       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5285       InsertedInsts.insert(InsertedTrunc);
5286     }
5287 
5288     // Replace a use of the {s|z}ext source with a use of the result.
5289     U = InsertedTrunc;
5290     ++NumExtUses;
5291     MadeChange = true;
5292   }
5293 
5294   return MadeChange;
5295 }
5296 
5297 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5298 // just after the load if the target can fold this into one extload instruction,
5299 // with the hope of eliminating some of the other later "and" instructions using
5300 // the loaded value.  "and"s that are made trivially redundant by the insertion
5301 // of the new "and" are removed by this function, while others (e.g. those whose
5302 // path from the load goes through a phi) are left for isel to potentially
5303 // remove.
5304 //
5305 // For example:
5306 //
5307 // b0:
5308 //   x = load i32
5309 //   ...
5310 // b1:
5311 //   y = and x, 0xff
5312 //   z = use y
5313 //
5314 // becomes:
5315 //
5316 // b0:
5317 //   x = load i32
5318 //   x' = and x, 0xff
5319 //   ...
5320 // b1:
5321 //   z = use x'
5322 //
5323 // whereas:
5324 //
5325 // b0:
5326 //   x1 = load i32
5327 //   ...
5328 // b1:
5329 //   x2 = load i32
5330 //   ...
5331 // b2:
5332 //   x = phi x1, x2
5333 //   y = and x, 0xff
5334 //
5335 // becomes (after a call to optimizeLoadExt for each load):
5336 //
5337 // b0:
5338 //   x1 = load i32
5339 //   x1' = and x1, 0xff
5340 //   ...
5341 // b1:
5342 //   x2 = load i32
5343 //   x2' = and x2, 0xff
5344 //   ...
5345 // b2:
5346 //   x = phi x1', x2'
5347 //   y = and x, 0xff
5348 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5349   if (!Load->isSimple() ||
5350       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5351     return false;
5352 
5353   // Skip loads we've already transformed.
5354   if (Load->hasOneUse() &&
5355       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5356     return false;
5357 
5358   // Look at all uses of Load, looking through phis, to determine how many bits
5359   // of the loaded value are needed.
5360   SmallVector<Instruction *, 8> WorkList;
5361   SmallPtrSet<Instruction *, 16> Visited;
5362   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5363   for (auto *U : Load->users())
5364     WorkList.push_back(cast<Instruction>(U));
5365 
5366   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5367   unsigned BitWidth = LoadResultVT.getSizeInBits();
5368   APInt DemandBits(BitWidth, 0);
5369   APInt WidestAndBits(BitWidth, 0);
5370 
5371   while (!WorkList.empty()) {
5372     Instruction *I = WorkList.back();
5373     WorkList.pop_back();
5374 
5375     // Break use-def graph loops.
5376     if (!Visited.insert(I).second)
5377       continue;
5378 
5379     // For a PHI node, push all of its users.
5380     if (auto *Phi = dyn_cast<PHINode>(I)) {
5381       for (auto *U : Phi->users())
5382         WorkList.push_back(cast<Instruction>(U));
5383       continue;
5384     }
5385 
5386     switch (I->getOpcode()) {
5387     case Instruction::And: {
5388       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5389       if (!AndC)
5390         return false;
5391       APInt AndBits = AndC->getValue();
5392       DemandBits |= AndBits;
5393       // Keep track of the widest and mask we see.
5394       if (AndBits.ugt(WidestAndBits))
5395         WidestAndBits = AndBits;
5396       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5397         AndsToMaybeRemove.push_back(I);
5398       break;
5399     }
5400 
5401     case Instruction::Shl: {
5402       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5403       if (!ShlC)
5404         return false;
5405       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5406       DemandBits.setLowBits(BitWidth - ShiftAmt);
5407       break;
5408     }
5409 
5410     case Instruction::Trunc: {
5411       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5412       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5413       DemandBits.setLowBits(TruncBitWidth);
5414       break;
5415     }
5416 
5417     default:
5418       return false;
5419     }
5420   }
5421 
5422   uint32_t ActiveBits = DemandBits.getActiveBits();
5423   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5424   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5425   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5426   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5427   // followed by an AND.
5428   // TODO: Look into removing this restriction by fixing backends to either
5429   // return false for isLoadExtLegal for i1 or have them select this pattern to
5430   // a single instruction.
5431   //
5432   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5433   // mask, since these are the only ands that will be removed by isel.
5434   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5435       WidestAndBits != DemandBits)
5436     return false;
5437 
5438   LLVMContext &Ctx = Load->getType()->getContext();
5439   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5440   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5441 
5442   // Reject cases that won't be matched as extloads.
5443   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5444       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5445     return false;
5446 
5447   IRBuilder<> Builder(Load->getNextNode());
5448   auto *NewAnd = dyn_cast<Instruction>(
5449       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5450   // Mark this instruction as "inserted by CGP", so that other
5451   // optimizations don't touch it.
5452   InsertedInsts.insert(NewAnd);
5453 
5454   // Replace all uses of load with new and (except for the use of load in the
5455   // new and itself).
5456   Load->replaceAllUsesWith(NewAnd);
5457   NewAnd->setOperand(0, Load);
5458 
5459   // Remove any and instructions that are now redundant.
5460   for (auto *And : AndsToMaybeRemove)
5461     // Check that the and mask is the same as the one we decided to put on the
5462     // new and.
5463     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5464       And->replaceAllUsesWith(NewAnd);
5465       if (&*CurInstIterator == And)
5466         CurInstIterator = std::next(And->getIterator());
5467       And->eraseFromParent();
5468       ++NumAndUses;
5469     }
5470 
5471   ++NumAndsAdded;
5472   return true;
5473 }
5474 
5475 /// Check if V (an operand of a select instruction) is an expensive instruction
5476 /// that is only used once.
5477 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5478   auto *I = dyn_cast<Instruction>(V);
5479   // If it's safe to speculatively execute, then it should not have side
5480   // effects; therefore, it's safe to sink and possibly *not* execute.
5481   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5482          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5483 }
5484 
5485 /// Returns true if a SelectInst should be turned into an explicit branch.
5486 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5487                                                 const TargetLowering *TLI,
5488                                                 SelectInst *SI) {
5489   // If even a predictable select is cheap, then a branch can't be cheaper.
5490   if (!TLI->isPredictableSelectExpensive())
5491     return false;
5492 
5493   // FIXME: This should use the same heuristics as IfConversion to determine
5494   // whether a select is better represented as a branch.
5495 
5496   // If metadata tells us that the select condition is obviously predictable,
5497   // then we want to replace the select with a branch.
5498   uint64_t TrueWeight, FalseWeight;
5499   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5500     uint64_t Max = std::max(TrueWeight, FalseWeight);
5501     uint64_t Sum = TrueWeight + FalseWeight;
5502     if (Sum != 0) {
5503       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5504       if (Probability > TLI->getPredictableBranchThreshold())
5505         return true;
5506     }
5507   }
5508 
5509   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5510 
5511   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5512   // comparison condition. If the compare has more than one use, there's
5513   // probably another cmov or setcc around, so it's not worth emitting a branch.
5514   if (!Cmp || !Cmp->hasOneUse())
5515     return false;
5516 
5517   // If either operand of the select is expensive and only needed on one side
5518   // of the select, we should form a branch.
5519   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5520       sinkSelectOperand(TTI, SI->getFalseValue()))
5521     return true;
5522 
5523   return false;
5524 }
5525 
5526 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5527 /// false value of \p SI. If the true/false value of \p SI is defined by any
5528 /// select instructions in \p Selects, look through the defining select
5529 /// instruction until the true/false value is not defined in \p Selects.
5530 static Value *getTrueOrFalseValue(
5531     SelectInst *SI, bool isTrue,
5532     const SmallPtrSet<const Instruction *, 2> &Selects) {
5533   Value *V;
5534 
5535   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5536        DefSI = dyn_cast<SelectInst>(V)) {
5537     assert(DefSI->getCondition() == SI->getCondition() &&
5538            "The condition of DefSI does not match with SI");
5539     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5540   }
5541   return V;
5542 }
5543 
5544 /// If we have a SelectInst that will likely profit from branch prediction,
5545 /// turn it into a branch.
5546 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5547   // Find all consecutive select instructions that share the same condition.
5548   SmallVector<SelectInst *, 2> ASI;
5549   ASI.push_back(SI);
5550   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5551        It != SI->getParent()->end(); ++It) {
5552     SelectInst *I = dyn_cast<SelectInst>(&*It);
5553     if (I && SI->getCondition() == I->getCondition()) {
5554       ASI.push_back(I);
5555     } else {
5556       break;
5557     }
5558   }
5559 
5560   SelectInst *LastSI = ASI.back();
5561   // Increment the current iterator to skip all the rest of select instructions
5562   // because they will be either "not lowered" or "all lowered" to branch.
5563   CurInstIterator = std::next(LastSI->getIterator());
5564 
5565   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5566 
5567   // Can we convert the 'select' to CF ?
5568   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5569       SI->getMetadata(LLVMContext::MD_unpredictable))
5570     return false;
5571 
5572   TargetLowering::SelectSupportKind SelectKind;
5573   if (VectorCond)
5574     SelectKind = TargetLowering::VectorMaskSelect;
5575   else if (SI->getType()->isVectorTy())
5576     SelectKind = TargetLowering::ScalarCondVectorVal;
5577   else
5578     SelectKind = TargetLowering::ScalarValSelect;
5579 
5580   if (TLI->isSelectSupported(SelectKind) &&
5581       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5582     return false;
5583 
5584   ModifiedDT = true;
5585 
5586   // Transform a sequence like this:
5587   //    start:
5588   //       %cmp = cmp uge i32 %a, %b
5589   //       %sel = select i1 %cmp, i32 %c, i32 %d
5590   //
5591   // Into:
5592   //    start:
5593   //       %cmp = cmp uge i32 %a, %b
5594   //       br i1 %cmp, label %select.true, label %select.false
5595   //    select.true:
5596   //       br label %select.end
5597   //    select.false:
5598   //       br label %select.end
5599   //    select.end:
5600   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5601   //
5602   // In addition, we may sink instructions that produce %c or %d from
5603   // the entry block into the destination(s) of the new branch.
5604   // If the true or false blocks do not contain a sunken instruction, that
5605   // block and its branch may be optimized away. In that case, one side of the
5606   // first branch will point directly to select.end, and the corresponding PHI
5607   // predecessor block will be the start block.
5608 
5609   // First, we split the block containing the select into 2 blocks.
5610   BasicBlock *StartBlock = SI->getParent();
5611   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5612   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5613 
5614   // Delete the unconditional branch that was just created by the split.
5615   StartBlock->getTerminator()->eraseFromParent();
5616 
5617   // These are the new basic blocks for the conditional branch.
5618   // At least one will become an actual new basic block.
5619   BasicBlock *TrueBlock = nullptr;
5620   BasicBlock *FalseBlock = nullptr;
5621   BranchInst *TrueBranch = nullptr;
5622   BranchInst *FalseBranch = nullptr;
5623 
5624   // Sink expensive instructions into the conditional blocks to avoid executing
5625   // them speculatively.
5626   for (SelectInst *SI : ASI) {
5627     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5628       if (TrueBlock == nullptr) {
5629         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5630                                        EndBlock->getParent(), EndBlock);
5631         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5632       }
5633       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5634       TrueInst->moveBefore(TrueBranch);
5635     }
5636     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5637       if (FalseBlock == nullptr) {
5638         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5639                                         EndBlock->getParent(), EndBlock);
5640         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5641       }
5642       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5643       FalseInst->moveBefore(FalseBranch);
5644     }
5645   }
5646 
5647   // If there was nothing to sink, then arbitrarily choose the 'false' side
5648   // for a new input value to the PHI.
5649   if (TrueBlock == FalseBlock) {
5650     assert(TrueBlock == nullptr &&
5651            "Unexpected basic block transform while optimizing select");
5652 
5653     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5654                                     EndBlock->getParent(), EndBlock);
5655     BranchInst::Create(EndBlock, FalseBlock);
5656   }
5657 
5658   // Insert the real conditional branch based on the original condition.
5659   // If we did not create a new block for one of the 'true' or 'false' paths
5660   // of the condition, it means that side of the branch goes to the end block
5661   // directly and the path originates from the start block from the point of
5662   // view of the new PHI.
5663   BasicBlock *TT, *FT;
5664   if (TrueBlock == nullptr) {
5665     TT = EndBlock;
5666     FT = FalseBlock;
5667     TrueBlock = StartBlock;
5668   } else if (FalseBlock == nullptr) {
5669     TT = TrueBlock;
5670     FT = EndBlock;
5671     FalseBlock = StartBlock;
5672   } else {
5673     TT = TrueBlock;
5674     FT = FalseBlock;
5675   }
5676   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5677 
5678   SmallPtrSet<const Instruction *, 2> INS;
5679   INS.insert(ASI.begin(), ASI.end());
5680   // Use reverse iterator because later select may use the value of the
5681   // earlier select, and we need to propagate value through earlier select
5682   // to get the PHI operand.
5683   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5684     SelectInst *SI = *It;
5685     // The select itself is replaced with a PHI Node.
5686     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5687     PN->takeName(SI);
5688     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5689     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5690 
5691     SI->replaceAllUsesWith(PN);
5692     SI->eraseFromParent();
5693     INS.erase(SI);
5694     ++NumSelectsExpanded;
5695   }
5696 
5697   // Instruct OptimizeBlock to skip to the next block.
5698   CurInstIterator = StartBlock->end();
5699   return true;
5700 }
5701 
5702 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5703   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5704   int SplatElem = -1;
5705   for (unsigned i = 0; i < Mask.size(); ++i) {
5706     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5707       return false;
5708     SplatElem = Mask[i];
5709   }
5710 
5711   return true;
5712 }
5713 
5714 /// Some targets have expensive vector shifts if the lanes aren't all the same
5715 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5716 /// it's often worth sinking a shufflevector splat down to its use so that
5717 /// codegen can spot all lanes are identical.
5718 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5719   BasicBlock *DefBB = SVI->getParent();
5720 
5721   // Only do this xform if variable vector shifts are particularly expensive.
5722   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5723     return false;
5724 
5725   // We only expect better codegen by sinking a shuffle if we can recognise a
5726   // constant splat.
5727   if (!isBroadcastShuffle(SVI))
5728     return false;
5729 
5730   // InsertedShuffles - Only insert a shuffle in each block once.
5731   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5732 
5733   bool MadeChange = false;
5734   for (User *U : SVI->users()) {
5735     Instruction *UI = cast<Instruction>(U);
5736 
5737     // Figure out which BB this ext is used in.
5738     BasicBlock *UserBB = UI->getParent();
5739     if (UserBB == DefBB) continue;
5740 
5741     // For now only apply this when the splat is used by a shift instruction.
5742     if (!UI->isShift()) continue;
5743 
5744     // Everything checks out, sink the shuffle if the user's block doesn't
5745     // already have a copy.
5746     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5747 
5748     if (!InsertedShuffle) {
5749       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5750       assert(InsertPt != UserBB->end());
5751       InsertedShuffle =
5752           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5753                                 SVI->getOperand(2), "", &*InsertPt);
5754     }
5755 
5756     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5757     MadeChange = true;
5758   }
5759 
5760   // If we removed all uses, nuke the shuffle.
5761   if (SVI->use_empty()) {
5762     SVI->eraseFromParent();
5763     MadeChange = true;
5764   }
5765 
5766   return MadeChange;
5767 }
5768 
5769 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5770   if (!TLI || !DL)
5771     return false;
5772 
5773   Value *Cond = SI->getCondition();
5774   Type *OldType = Cond->getType();
5775   LLVMContext &Context = Cond->getContext();
5776   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5777   unsigned RegWidth = RegType.getSizeInBits();
5778 
5779   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5780     return false;
5781 
5782   // If the register width is greater than the type width, expand the condition
5783   // of the switch instruction and each case constant to the width of the
5784   // register. By widening the type of the switch condition, subsequent
5785   // comparisons (for case comparisons) will not need to be extended to the
5786   // preferred register width, so we will potentially eliminate N-1 extends,
5787   // where N is the number of cases in the switch.
5788   auto *NewType = Type::getIntNTy(Context, RegWidth);
5789 
5790   // Zero-extend the switch condition and case constants unless the switch
5791   // condition is a function argument that is already being sign-extended.
5792   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5793   // everything instead.
5794   Instruction::CastOps ExtType = Instruction::ZExt;
5795   if (auto *Arg = dyn_cast<Argument>(Cond))
5796     if (Arg->hasSExtAttr())
5797       ExtType = Instruction::SExt;
5798 
5799   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5800   ExtInst->insertBefore(SI);
5801   SI->setCondition(ExtInst);
5802   for (auto Case : SI->cases()) {
5803     APInt NarrowConst = Case.getCaseValue()->getValue();
5804     APInt WideConst = (ExtType == Instruction::ZExt) ?
5805                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5806     Case.setValue(ConstantInt::get(Context, WideConst));
5807   }
5808 
5809   return true;
5810 }
5811 
5812 
5813 namespace {
5814 
5815 /// Helper class to promote a scalar operation to a vector one.
5816 /// This class is used to move downward extractelement transition.
5817 /// E.g.,
5818 /// a = vector_op <2 x i32>
5819 /// b = extractelement <2 x i32> a, i32 0
5820 /// c = scalar_op b
5821 /// store c
5822 ///
5823 /// =>
5824 /// a = vector_op <2 x i32>
5825 /// c = vector_op a (equivalent to scalar_op on the related lane)
5826 /// * d = extractelement <2 x i32> c, i32 0
5827 /// * store d
5828 /// Assuming both extractelement and store can be combine, we get rid of the
5829 /// transition.
5830 class VectorPromoteHelper {
5831   /// DataLayout associated with the current module.
5832   const DataLayout &DL;
5833 
5834   /// Used to perform some checks on the legality of vector operations.
5835   const TargetLowering &TLI;
5836 
5837   /// Used to estimated the cost of the promoted chain.
5838   const TargetTransformInfo &TTI;
5839 
5840   /// The transition being moved downwards.
5841   Instruction *Transition;
5842 
5843   /// The sequence of instructions to be promoted.
5844   SmallVector<Instruction *, 4> InstsToBePromoted;
5845 
5846   /// Cost of combining a store and an extract.
5847   unsigned StoreExtractCombineCost;
5848 
5849   /// Instruction that will be combined with the transition.
5850   Instruction *CombineInst = nullptr;
5851 
5852   /// The instruction that represents the current end of the transition.
5853   /// Since we are faking the promotion until we reach the end of the chain
5854   /// of computation, we need a way to get the current end of the transition.
5855   Instruction *getEndOfTransition() const {
5856     if (InstsToBePromoted.empty())
5857       return Transition;
5858     return InstsToBePromoted.back();
5859   }
5860 
5861   /// Return the index of the original value in the transition.
5862   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5863   /// c, is at index 0.
5864   unsigned getTransitionOriginalValueIdx() const {
5865     assert(isa<ExtractElementInst>(Transition) &&
5866            "Other kind of transitions are not supported yet");
5867     return 0;
5868   }
5869 
5870   /// Return the index of the index in the transition.
5871   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5872   /// is at index 1.
5873   unsigned getTransitionIdx() const {
5874     assert(isa<ExtractElementInst>(Transition) &&
5875            "Other kind of transitions are not supported yet");
5876     return 1;
5877   }
5878 
5879   /// Get the type of the transition.
5880   /// This is the type of the original value.
5881   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5882   /// transition is <2 x i32>.
5883   Type *getTransitionType() const {
5884     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5885   }
5886 
5887   /// Promote \p ToBePromoted by moving \p Def downward through.
5888   /// I.e., we have the following sequence:
5889   /// Def = Transition <ty1> a to <ty2>
5890   /// b = ToBePromoted <ty2> Def, ...
5891   /// =>
5892   /// b = ToBePromoted <ty1> a, ...
5893   /// Def = Transition <ty1> ToBePromoted to <ty2>
5894   void promoteImpl(Instruction *ToBePromoted);
5895 
5896   /// Check whether or not it is profitable to promote all the
5897   /// instructions enqueued to be promoted.
5898   bool isProfitableToPromote() {
5899     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5900     unsigned Index = isa<ConstantInt>(ValIdx)
5901                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5902                          : -1;
5903     Type *PromotedType = getTransitionType();
5904 
5905     StoreInst *ST = cast<StoreInst>(CombineInst);
5906     unsigned AS = ST->getPointerAddressSpace();
5907     unsigned Align = ST->getAlignment();
5908     // Check if this store is supported.
5909     if (!TLI.allowsMisalignedMemoryAccesses(
5910             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5911             Align)) {
5912       // If this is not supported, there is no way we can combine
5913       // the extract with the store.
5914       return false;
5915     }
5916 
5917     // The scalar chain of computation has to pay for the transition
5918     // scalar to vector.
5919     // The vector chain has to account for the combining cost.
5920     uint64_t ScalarCost =
5921         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5922     uint64_t VectorCost = StoreExtractCombineCost;
5923     for (const auto &Inst : InstsToBePromoted) {
5924       // Compute the cost.
5925       // By construction, all instructions being promoted are arithmetic ones.
5926       // Moreover, one argument is a constant that can be viewed as a splat
5927       // constant.
5928       Value *Arg0 = Inst->getOperand(0);
5929       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5930                             isa<ConstantFP>(Arg0);
5931       TargetTransformInfo::OperandValueKind Arg0OVK =
5932           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5933                          : TargetTransformInfo::OK_AnyValue;
5934       TargetTransformInfo::OperandValueKind Arg1OVK =
5935           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5936                           : TargetTransformInfo::OK_AnyValue;
5937       ScalarCost += TTI.getArithmeticInstrCost(
5938           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5939       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5940                                                Arg0OVK, Arg1OVK);
5941     }
5942     LLVM_DEBUG(
5943         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5944                << ScalarCost << "\nVector: " << VectorCost << '\n');
5945     return ScalarCost > VectorCost;
5946   }
5947 
5948   /// Generate a constant vector with \p Val with the same
5949   /// number of elements as the transition.
5950   /// \p UseSplat defines whether or not \p Val should be replicated
5951   /// across the whole vector.
5952   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5953   /// otherwise we generate a vector with as many undef as possible:
5954   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5955   /// used at the index of the extract.
5956   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5957     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
5958     if (!UseSplat) {
5959       // If we cannot determine where the constant must be, we have to
5960       // use a splat constant.
5961       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5962       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5963         ExtractIdx = CstVal->getSExtValue();
5964       else
5965         UseSplat = true;
5966     }
5967 
5968     unsigned End = getTransitionType()->getVectorNumElements();
5969     if (UseSplat)
5970       return ConstantVector::getSplat(End, Val);
5971 
5972     SmallVector<Constant *, 4> ConstVec;
5973     UndefValue *UndefVal = UndefValue::get(Val->getType());
5974     for (unsigned Idx = 0; Idx != End; ++Idx) {
5975       if (Idx == ExtractIdx)
5976         ConstVec.push_back(Val);
5977       else
5978         ConstVec.push_back(UndefVal);
5979     }
5980     return ConstantVector::get(ConstVec);
5981   }
5982 
5983   /// Check if promoting to a vector type an operand at \p OperandIdx
5984   /// in \p Use can trigger undefined behavior.
5985   static bool canCauseUndefinedBehavior(const Instruction *Use,
5986                                         unsigned OperandIdx) {
5987     // This is not safe to introduce undef when the operand is on
5988     // the right hand side of a division-like instruction.
5989     if (OperandIdx != 1)
5990       return false;
5991     switch (Use->getOpcode()) {
5992     default:
5993       return false;
5994     case Instruction::SDiv:
5995     case Instruction::UDiv:
5996     case Instruction::SRem:
5997     case Instruction::URem:
5998       return true;
5999     case Instruction::FDiv:
6000     case Instruction::FRem:
6001       return !Use->hasNoNaNs();
6002     }
6003     llvm_unreachable(nullptr);
6004   }
6005 
6006 public:
6007   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6008                       const TargetTransformInfo &TTI, Instruction *Transition,
6009                       unsigned CombineCost)
6010       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6011         StoreExtractCombineCost(CombineCost) {
6012     assert(Transition && "Do not know how to promote null");
6013   }
6014 
6015   /// Check if we can promote \p ToBePromoted to \p Type.
6016   bool canPromote(const Instruction *ToBePromoted) const {
6017     // We could support CastInst too.
6018     return isa<BinaryOperator>(ToBePromoted);
6019   }
6020 
6021   /// Check if it is profitable to promote \p ToBePromoted
6022   /// by moving downward the transition through.
6023   bool shouldPromote(const Instruction *ToBePromoted) const {
6024     // Promote only if all the operands can be statically expanded.
6025     // Indeed, we do not want to introduce any new kind of transitions.
6026     for (const Use &U : ToBePromoted->operands()) {
6027       const Value *Val = U.get();
6028       if (Val == getEndOfTransition()) {
6029         // If the use is a division and the transition is on the rhs,
6030         // we cannot promote the operation, otherwise we may create a
6031         // division by zero.
6032         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6033           return false;
6034         continue;
6035       }
6036       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6037           !isa<ConstantFP>(Val))
6038         return false;
6039     }
6040     // Check that the resulting operation is legal.
6041     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6042     if (!ISDOpcode)
6043       return false;
6044     return StressStoreExtract ||
6045            TLI.isOperationLegalOrCustom(
6046                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6047   }
6048 
6049   /// Check whether or not \p Use can be combined
6050   /// with the transition.
6051   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6052   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6053 
6054   /// Record \p ToBePromoted as part of the chain to be promoted.
6055   void enqueueForPromotion(Instruction *ToBePromoted) {
6056     InstsToBePromoted.push_back(ToBePromoted);
6057   }
6058 
6059   /// Set the instruction that will be combined with the transition.
6060   void recordCombineInstruction(Instruction *ToBeCombined) {
6061     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6062     CombineInst = ToBeCombined;
6063   }
6064 
6065   /// Promote all the instructions enqueued for promotion if it is
6066   /// is profitable.
6067   /// \return True if the promotion happened, false otherwise.
6068   bool promote() {
6069     // Check if there is something to promote.
6070     // Right now, if we do not have anything to combine with,
6071     // we assume the promotion is not profitable.
6072     if (InstsToBePromoted.empty() || !CombineInst)
6073       return false;
6074 
6075     // Check cost.
6076     if (!StressStoreExtract && !isProfitableToPromote())
6077       return false;
6078 
6079     // Promote.
6080     for (auto &ToBePromoted : InstsToBePromoted)
6081       promoteImpl(ToBePromoted);
6082     InstsToBePromoted.clear();
6083     return true;
6084   }
6085 };
6086 
6087 } // end anonymous namespace
6088 
6089 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6090   // At this point, we know that all the operands of ToBePromoted but Def
6091   // can be statically promoted.
6092   // For Def, we need to use its parameter in ToBePromoted:
6093   // b = ToBePromoted ty1 a
6094   // Def = Transition ty1 b to ty2
6095   // Move the transition down.
6096   // 1. Replace all uses of the promoted operation by the transition.
6097   // = ... b => = ... Def.
6098   assert(ToBePromoted->getType() == Transition->getType() &&
6099          "The type of the result of the transition does not match "
6100          "the final type");
6101   ToBePromoted->replaceAllUsesWith(Transition);
6102   // 2. Update the type of the uses.
6103   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6104   Type *TransitionTy = getTransitionType();
6105   ToBePromoted->mutateType(TransitionTy);
6106   // 3. Update all the operands of the promoted operation with promoted
6107   // operands.
6108   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6109   for (Use &U : ToBePromoted->operands()) {
6110     Value *Val = U.get();
6111     Value *NewVal = nullptr;
6112     if (Val == Transition)
6113       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6114     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6115              isa<ConstantFP>(Val)) {
6116       // Use a splat constant if it is not safe to use undef.
6117       NewVal = getConstantVector(
6118           cast<Constant>(Val),
6119           isa<UndefValue>(Val) ||
6120               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6121     } else
6122       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6123                        "this?");
6124     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6125   }
6126   Transition->moveAfter(ToBePromoted);
6127   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6128 }
6129 
6130 /// Some targets can do store(extractelement) with one instruction.
6131 /// Try to push the extractelement towards the stores when the target
6132 /// has this feature and this is profitable.
6133 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6134   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6135   if (DisableStoreExtract || !TLI ||
6136       (!StressStoreExtract &&
6137        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6138                                        Inst->getOperand(1), CombineCost)))
6139     return false;
6140 
6141   // At this point we know that Inst is a vector to scalar transition.
6142   // Try to move it down the def-use chain, until:
6143   // - We can combine the transition with its single use
6144   //   => we got rid of the transition.
6145   // - We escape the current basic block
6146   //   => we would need to check that we are moving it at a cheaper place and
6147   //      we do not do that for now.
6148   BasicBlock *Parent = Inst->getParent();
6149   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6150   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6151   // If the transition has more than one use, assume this is not going to be
6152   // beneficial.
6153   while (Inst->hasOneUse()) {
6154     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6155     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6156 
6157     if (ToBePromoted->getParent() != Parent) {
6158       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6159                         << ToBePromoted->getParent()->getName()
6160                         << ") than the transition (" << Parent->getName()
6161                         << ").\n");
6162       return false;
6163     }
6164 
6165     if (VPH.canCombine(ToBePromoted)) {
6166       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6167                         << "will be combined with: " << *ToBePromoted << '\n');
6168       VPH.recordCombineInstruction(ToBePromoted);
6169       bool Changed = VPH.promote();
6170       NumStoreExtractExposed += Changed;
6171       return Changed;
6172     }
6173 
6174     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6175     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6176       return false;
6177 
6178     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6179 
6180     VPH.enqueueForPromotion(ToBePromoted);
6181     Inst = ToBePromoted;
6182   }
6183   return false;
6184 }
6185 
6186 /// For the instruction sequence of store below, F and I values
6187 /// are bundled together as an i64 value before being stored into memory.
6188 /// Sometimes it is more efficient to generate separate stores for F and I,
6189 /// which can remove the bitwise instructions or sink them to colder places.
6190 ///
6191 ///   (store (or (zext (bitcast F to i32) to i64),
6192 ///              (shl (zext I to i64), 32)), addr)  -->
6193 ///   (store F, addr) and (store I, addr+4)
6194 ///
6195 /// Similarly, splitting for other merged store can also be beneficial, like:
6196 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6197 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6198 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6199 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6200 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6201 ///
6202 /// We allow each target to determine specifically which kind of splitting is
6203 /// supported.
6204 ///
6205 /// The store patterns are commonly seen from the simple code snippet below
6206 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6207 ///   void goo(const std::pair<int, float> &);
6208 ///   hoo() {
6209 ///     ...
6210 ///     goo(std::make_pair(tmp, ftmp));
6211 ///     ...
6212 ///   }
6213 ///
6214 /// Although we already have similar splitting in DAG Combine, we duplicate
6215 /// it in CodeGenPrepare to catch the case in which pattern is across
6216 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6217 /// during code expansion.
6218 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6219                                 const TargetLowering &TLI) {
6220   // Handle simple but common cases only.
6221   Type *StoreType = SI.getValueOperand()->getType();
6222   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6223       DL.getTypeSizeInBits(StoreType) == 0)
6224     return false;
6225 
6226   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6227   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6228   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6229       DL.getTypeSizeInBits(SplitStoreType))
6230     return false;
6231 
6232   // Match the following patterns:
6233   // (store (or (zext LValue to i64),
6234   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6235   //  or
6236   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6237   //            (zext LValue to i64),
6238   // Expect both operands of OR and the first operand of SHL have only
6239   // one use.
6240   Value *LValue, *HValue;
6241   if (!match(SI.getValueOperand(),
6242              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6243                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6244                                    m_SpecificInt(HalfValBitSize))))))
6245     return false;
6246 
6247   // Check LValue and HValue are int with size less or equal than 32.
6248   if (!LValue->getType()->isIntegerTy() ||
6249       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6250       !HValue->getType()->isIntegerTy() ||
6251       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6252     return false;
6253 
6254   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6255   // as the input of target query.
6256   auto *LBC = dyn_cast<BitCastInst>(LValue);
6257   auto *HBC = dyn_cast<BitCastInst>(HValue);
6258   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6259                   : EVT::getEVT(LValue->getType());
6260   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6261                    : EVT::getEVT(HValue->getType());
6262   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6263     return false;
6264 
6265   // Start to split store.
6266   IRBuilder<> Builder(SI.getContext());
6267   Builder.SetInsertPoint(&SI);
6268 
6269   // If LValue/HValue is a bitcast in another BB, create a new one in current
6270   // BB so it may be merged with the splitted stores by dag combiner.
6271   if (LBC && LBC->getParent() != SI.getParent())
6272     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6273   if (HBC && HBC->getParent() != SI.getParent())
6274     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6275 
6276   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6277   auto CreateSplitStore = [&](Value *V, bool Upper) {
6278     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6279     Value *Addr = Builder.CreateBitCast(
6280         SI.getOperand(1),
6281         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6282     if ((IsLE && Upper) || (!IsLE && !Upper))
6283       Addr = Builder.CreateGEP(
6284           SplitStoreType, Addr,
6285           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6286     Builder.CreateAlignedStore(
6287         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6288   };
6289 
6290   CreateSplitStore(LValue, false);
6291   CreateSplitStore(HValue, true);
6292 
6293   // Delete the old store.
6294   SI.eraseFromParent();
6295   return true;
6296 }
6297 
6298 // Return true if the GEP has two operands, the first operand is of a sequential
6299 // type, and the second operand is a constant.
6300 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6301   gep_type_iterator I = gep_type_begin(*GEP);
6302   return GEP->getNumOperands() == 2 &&
6303       I.isSequential() &&
6304       isa<ConstantInt>(GEP->getOperand(1));
6305 }
6306 
6307 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6308 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6309 // reducing liveness interference across those edges benefits global register
6310 // allocation. Currently handles only certain cases.
6311 //
6312 // For example, unmerge %GEPI and %UGEPI as below.
6313 //
6314 // ---------- BEFORE ----------
6315 // SrcBlock:
6316 //   ...
6317 //   %GEPIOp = ...
6318 //   ...
6319 //   %GEPI = gep %GEPIOp, Idx
6320 //   ...
6321 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6322 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6323 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6324 //   %UGEPI)
6325 //
6326 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6327 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6328 // ...
6329 //
6330 // DstBi:
6331 //   ...
6332 //   %UGEPI = gep %GEPIOp, UIdx
6333 // ...
6334 // ---------------------------
6335 //
6336 // ---------- AFTER ----------
6337 // SrcBlock:
6338 //   ... (same as above)
6339 //    (* %GEPI is still alive on the indirectbr edges)
6340 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6341 //    unmerging)
6342 // ...
6343 //
6344 // DstBi:
6345 //   ...
6346 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6347 //   ...
6348 // ---------------------------
6349 //
6350 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6351 // no longer alive on them.
6352 //
6353 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6354 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6355 // not to disable further simplications and optimizations as a result of GEP
6356 // merging.
6357 //
6358 // Note this unmerging may increase the length of the data flow critical path
6359 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6360 // between the register pressure and the length of data-flow critical
6361 // path. Restricting this to the uncommon IndirectBr case would minimize the
6362 // impact of potentially longer critical path, if any, and the impact on compile
6363 // time.
6364 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6365                                              const TargetTransformInfo *TTI) {
6366   BasicBlock *SrcBlock = GEPI->getParent();
6367   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6368   // (non-IndirectBr) cases exit early here.
6369   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6370     return false;
6371   // Check that GEPI is a simple gep with a single constant index.
6372   if (!GEPSequentialConstIndexed(GEPI))
6373     return false;
6374   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6375   // Check that GEPI is a cheap one.
6376   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6377       > TargetTransformInfo::TCC_Basic)
6378     return false;
6379   Value *GEPIOp = GEPI->getOperand(0);
6380   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6381   if (!isa<Instruction>(GEPIOp))
6382     return false;
6383   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6384   if (GEPIOpI->getParent() != SrcBlock)
6385     return false;
6386   // Check that GEP is used outside the block, meaning it's alive on the
6387   // IndirectBr edge(s).
6388   if (find_if(GEPI->users(), [&](User *Usr) {
6389         if (auto *I = dyn_cast<Instruction>(Usr)) {
6390           if (I->getParent() != SrcBlock) {
6391             return true;
6392           }
6393         }
6394         return false;
6395       }) == GEPI->users().end())
6396     return false;
6397   // The second elements of the GEP chains to be unmerged.
6398   std::vector<GetElementPtrInst *> UGEPIs;
6399   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6400   // on IndirectBr edges.
6401   for (User *Usr : GEPIOp->users()) {
6402     if (Usr == GEPI) continue;
6403     // Check if Usr is an Instruction. If not, give up.
6404     if (!isa<Instruction>(Usr))
6405       return false;
6406     auto *UI = cast<Instruction>(Usr);
6407     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6408     if (UI->getParent() == SrcBlock)
6409       continue;
6410     // Check if Usr is a GEP. If not, give up.
6411     if (!isa<GetElementPtrInst>(Usr))
6412       return false;
6413     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6414     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6415     // the pointer operand to it. If so, record it in the vector. If not, give
6416     // up.
6417     if (!GEPSequentialConstIndexed(UGEPI))
6418       return false;
6419     if (UGEPI->getOperand(0) != GEPIOp)
6420       return false;
6421     if (GEPIIdx->getType() !=
6422         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6423       return false;
6424     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6425     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6426         > TargetTransformInfo::TCC_Basic)
6427       return false;
6428     UGEPIs.push_back(UGEPI);
6429   }
6430   if (UGEPIs.size() == 0)
6431     return false;
6432   // Check the materializing cost of (Uidx-Idx).
6433   for (GetElementPtrInst *UGEPI : UGEPIs) {
6434     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6435     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6436     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6437     if (ImmCost > TargetTransformInfo::TCC_Basic)
6438       return false;
6439   }
6440   // Now unmerge between GEPI and UGEPIs.
6441   for (GetElementPtrInst *UGEPI : UGEPIs) {
6442     UGEPI->setOperand(0, GEPI);
6443     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6444     Constant *NewUGEPIIdx =
6445         ConstantInt::get(GEPIIdx->getType(),
6446                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6447     UGEPI->setOperand(1, NewUGEPIIdx);
6448     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6449     // inbounds to avoid UB.
6450     if (!GEPI->isInBounds()) {
6451       UGEPI->setIsInBounds(false);
6452     }
6453   }
6454   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6455   // alive on IndirectBr edges).
6456   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6457         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6458       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6459   return true;
6460 }
6461 
6462 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6463   // Bail out if we inserted the instruction to prevent optimizations from
6464   // stepping on each other's toes.
6465   if (InsertedInsts.count(I))
6466     return false;
6467 
6468   if (PHINode *P = dyn_cast<PHINode>(I)) {
6469     // It is possible for very late stage optimizations (such as SimplifyCFG)
6470     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6471     // trivial PHI, go ahead and zap it here.
6472     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6473       P->replaceAllUsesWith(V);
6474       P->eraseFromParent();
6475       ++NumPHIsElim;
6476       return true;
6477     }
6478     return false;
6479   }
6480 
6481   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6482     // If the source of the cast is a constant, then this should have
6483     // already been constant folded.  The only reason NOT to constant fold
6484     // it is if something (e.g. LSR) was careful to place the constant
6485     // evaluation in a block other than then one that uses it (e.g. to hoist
6486     // the address of globals out of a loop).  If this is the case, we don't
6487     // want to forward-subst the cast.
6488     if (isa<Constant>(CI->getOperand(0)))
6489       return false;
6490 
6491     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6492       return true;
6493 
6494     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6495       /// Sink a zext or sext into its user blocks if the target type doesn't
6496       /// fit in one register
6497       if (TLI &&
6498           TLI->getTypeAction(CI->getContext(),
6499                              TLI->getValueType(*DL, CI->getType())) ==
6500               TargetLowering::TypeExpandInteger) {
6501         return SinkCast(CI);
6502       } else {
6503         bool MadeChange = optimizeExt(I);
6504         return MadeChange | optimizeExtUses(I);
6505       }
6506     }
6507     return false;
6508   }
6509 
6510   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6511     if (!TLI || !TLI->hasMultipleConditionRegisters())
6512       return OptimizeCmpExpression(CI, TLI);
6513 
6514   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6515     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6516     if (TLI) {
6517       bool Modified = optimizeLoadExt(LI);
6518       unsigned AS = LI->getPointerAddressSpace();
6519       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6520       return Modified;
6521     }
6522     return false;
6523   }
6524 
6525   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6526     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6527       return true;
6528     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6529     if (TLI) {
6530       unsigned AS = SI->getPointerAddressSpace();
6531       return optimizeMemoryInst(I, SI->getOperand(1),
6532                                 SI->getOperand(0)->getType(), AS);
6533     }
6534     return false;
6535   }
6536 
6537   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6538       unsigned AS = RMW->getPointerAddressSpace();
6539       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6540                                 RMW->getType(), AS);
6541   }
6542 
6543   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6544       unsigned AS = CmpX->getPointerAddressSpace();
6545       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6546                                 CmpX->getCompareOperand()->getType(), AS);
6547   }
6548 
6549   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6550 
6551   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6552       EnableAndCmpSinking && TLI)
6553     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6554 
6555   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6556                 BinOp->getOpcode() == Instruction::LShr)) {
6557     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6558     if (TLI && CI && TLI->hasExtractBitsInsn())
6559       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6560 
6561     return false;
6562   }
6563 
6564   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6565     if (GEPI->hasAllZeroIndices()) {
6566       /// The GEP operand must be a pointer, so must its result -> BitCast
6567       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6568                                         GEPI->getName(), GEPI);
6569       NC->setDebugLoc(GEPI->getDebugLoc());
6570       GEPI->replaceAllUsesWith(NC);
6571       GEPI->eraseFromParent();
6572       ++NumGEPsElim;
6573       optimizeInst(NC, ModifiedDT);
6574       return true;
6575     }
6576     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6577       return true;
6578     }
6579     return false;
6580   }
6581 
6582   if (CallInst *CI = dyn_cast<CallInst>(I))
6583     return optimizeCallInst(CI, ModifiedDT);
6584 
6585   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6586     return optimizeSelectInst(SI);
6587 
6588   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6589     return optimizeShuffleVectorInst(SVI);
6590 
6591   if (auto *Switch = dyn_cast<SwitchInst>(I))
6592     return optimizeSwitchInst(Switch);
6593 
6594   if (isa<ExtractElementInst>(I))
6595     return optimizeExtractElementInst(I);
6596 
6597   return false;
6598 }
6599 
6600 /// Given an OR instruction, check to see if this is a bitreverse
6601 /// idiom. If so, insert the new intrinsic and return true.
6602 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6603                            const TargetLowering &TLI) {
6604   if (!I.getType()->isIntegerTy() ||
6605       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6606                                     TLI.getValueType(DL, I.getType(), true)))
6607     return false;
6608 
6609   SmallVector<Instruction*, 4> Insts;
6610   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6611     return false;
6612   Instruction *LastInst = Insts.back();
6613   I.replaceAllUsesWith(LastInst);
6614   RecursivelyDeleteTriviallyDeadInstructions(&I);
6615   return true;
6616 }
6617 
6618 // In this pass we look for GEP and cast instructions that are used
6619 // across basic blocks and rewrite them to improve basic-block-at-a-time
6620 // selection.
6621 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6622   SunkAddrs.clear();
6623   bool MadeChange = false;
6624 
6625   CurInstIterator = BB.begin();
6626   while (CurInstIterator != BB.end()) {
6627     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6628     if (ModifiedDT)
6629       return true;
6630   }
6631 
6632   bool MadeBitReverse = true;
6633   while (TLI && MadeBitReverse) {
6634     MadeBitReverse = false;
6635     for (auto &I : reverse(BB)) {
6636       if (makeBitReverse(I, *DL, *TLI)) {
6637         MadeBitReverse = MadeChange = true;
6638         ModifiedDT = true;
6639         break;
6640       }
6641     }
6642   }
6643   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6644 
6645   return MadeChange;
6646 }
6647 
6648 // llvm.dbg.value is far away from the value then iSel may not be able
6649 // handle it properly. iSel will drop llvm.dbg.value if it can not
6650 // find a node corresponding to the value.
6651 bool CodeGenPrepare::placeDbgValues(Function &F) {
6652   bool MadeChange = false;
6653   for (BasicBlock &BB : F) {
6654     Instruction *PrevNonDbgInst = nullptr;
6655     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6656       Instruction *Insn = &*BI++;
6657       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6658       // Leave dbg.values that refer to an alloca alone. These
6659       // intrinsics describe the address of a variable (= the alloca)
6660       // being taken.  They should not be moved next to the alloca
6661       // (and to the beginning of the scope), but rather stay close to
6662       // where said address is used.
6663       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6664         PrevNonDbgInst = Insn;
6665         continue;
6666       }
6667 
6668       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6669       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6670         // If VI is a phi in a block with an EHPad terminator, we can't insert
6671         // after it.
6672         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6673           continue;
6674         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6675                           << *DVI << ' ' << *VI);
6676         DVI->removeFromParent();
6677         if (isa<PHINode>(VI))
6678           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6679         else
6680           DVI->insertAfter(VI);
6681         MadeChange = true;
6682         ++NumDbgValueMoved;
6683       }
6684     }
6685   }
6686   return MadeChange;
6687 }
6688 
6689 /// Scale down both weights to fit into uint32_t.
6690 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6691   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6692   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6693   NewTrue = NewTrue / Scale;
6694   NewFalse = NewFalse / Scale;
6695 }
6696 
6697 /// Some targets prefer to split a conditional branch like:
6698 /// \code
6699 ///   %0 = icmp ne i32 %a, 0
6700 ///   %1 = icmp ne i32 %b, 0
6701 ///   %or.cond = or i1 %0, %1
6702 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6703 /// \endcode
6704 /// into multiple branch instructions like:
6705 /// \code
6706 ///   bb1:
6707 ///     %0 = icmp ne i32 %a, 0
6708 ///     br i1 %0, label %TrueBB, label %bb2
6709 ///   bb2:
6710 ///     %1 = icmp ne i32 %b, 0
6711 ///     br i1 %1, label %TrueBB, label %FalseBB
6712 /// \endcode
6713 /// This usually allows instruction selection to do even further optimizations
6714 /// and combine the compare with the branch instruction. Currently this is
6715 /// applied for targets which have "cheap" jump instructions.
6716 ///
6717 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6718 ///
6719 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6720   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6721     return false;
6722 
6723   bool MadeChange = false;
6724   for (auto &BB : F) {
6725     // Does this BB end with the following?
6726     //   %cond1 = icmp|fcmp|binary instruction ...
6727     //   %cond2 = icmp|fcmp|binary instruction ...
6728     //   %cond.or = or|and i1 %cond1, cond2
6729     //   br i1 %cond.or label %dest1, label %dest2"
6730     BinaryOperator *LogicOp;
6731     BasicBlock *TBB, *FBB;
6732     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6733       continue;
6734 
6735     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6736     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6737       continue;
6738 
6739     unsigned Opc;
6740     Value *Cond1, *Cond2;
6741     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6742                              m_OneUse(m_Value(Cond2)))))
6743       Opc = Instruction::And;
6744     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6745                                  m_OneUse(m_Value(Cond2)))))
6746       Opc = Instruction::Or;
6747     else
6748       continue;
6749 
6750     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6751         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6752       continue;
6753 
6754     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6755 
6756     // Create a new BB.
6757     auto TmpBB =
6758         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6759                            BB.getParent(), BB.getNextNode());
6760 
6761     // Update original basic block by using the first condition directly by the
6762     // branch instruction and removing the no longer needed and/or instruction.
6763     Br1->setCondition(Cond1);
6764     LogicOp->eraseFromParent();
6765 
6766     // Depending on the condition we have to either replace the true or the
6767     // false successor of the original branch instruction.
6768     if (Opc == Instruction::And)
6769       Br1->setSuccessor(0, TmpBB);
6770     else
6771       Br1->setSuccessor(1, TmpBB);
6772 
6773     // Fill in the new basic block.
6774     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6775     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6776       I->removeFromParent();
6777       I->insertBefore(Br2);
6778     }
6779 
6780     // Update PHI nodes in both successors. The original BB needs to be
6781     // replaced in one successor's PHI nodes, because the branch comes now from
6782     // the newly generated BB (NewBB). In the other successor we need to add one
6783     // incoming edge to the PHI nodes, because both branch instructions target
6784     // now the same successor. Depending on the original branch condition
6785     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6786     // we perform the correct update for the PHI nodes.
6787     // This doesn't change the successor order of the just created branch
6788     // instruction (or any other instruction).
6789     if (Opc == Instruction::Or)
6790       std::swap(TBB, FBB);
6791 
6792     // Replace the old BB with the new BB.
6793     for (PHINode &PN : TBB->phis()) {
6794       int i;
6795       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6796         PN.setIncomingBlock(i, TmpBB);
6797     }
6798 
6799     // Add another incoming edge form the new BB.
6800     for (PHINode &PN : FBB->phis()) {
6801       auto *Val = PN.getIncomingValueForBlock(&BB);
6802       PN.addIncoming(Val, TmpBB);
6803     }
6804 
6805     // Update the branch weights (from SelectionDAGBuilder::
6806     // FindMergedConditions).
6807     if (Opc == Instruction::Or) {
6808       // Codegen X | Y as:
6809       // BB1:
6810       //   jmp_if_X TBB
6811       //   jmp TmpBB
6812       // TmpBB:
6813       //   jmp_if_Y TBB
6814       //   jmp FBB
6815       //
6816 
6817       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6818       // The requirement is that
6819       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6820       //     = TrueProb for original BB.
6821       // Assuming the original weights are A and B, one choice is to set BB1's
6822       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6823       // assumes that
6824       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6825       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6826       // TmpBB, but the math is more complicated.
6827       uint64_t TrueWeight, FalseWeight;
6828       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6829         uint64_t NewTrueWeight = TrueWeight;
6830         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6831         scaleWeights(NewTrueWeight, NewFalseWeight);
6832         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6833                          .createBranchWeights(TrueWeight, FalseWeight));
6834 
6835         NewTrueWeight = TrueWeight;
6836         NewFalseWeight = 2 * FalseWeight;
6837         scaleWeights(NewTrueWeight, NewFalseWeight);
6838         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6839                          .createBranchWeights(TrueWeight, FalseWeight));
6840       }
6841     } else {
6842       // Codegen X & Y as:
6843       // BB1:
6844       //   jmp_if_X TmpBB
6845       //   jmp FBB
6846       // TmpBB:
6847       //   jmp_if_Y TBB
6848       //   jmp FBB
6849       //
6850       //  This requires creation of TmpBB after CurBB.
6851 
6852       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6853       // The requirement is that
6854       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6855       //     = FalseProb for original BB.
6856       // Assuming the original weights are A and B, one choice is to set BB1's
6857       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6858       // assumes that
6859       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6860       uint64_t TrueWeight, FalseWeight;
6861       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6862         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6863         uint64_t NewFalseWeight = FalseWeight;
6864         scaleWeights(NewTrueWeight, NewFalseWeight);
6865         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6866                          .createBranchWeights(TrueWeight, FalseWeight));
6867 
6868         NewTrueWeight = 2 * TrueWeight;
6869         NewFalseWeight = FalseWeight;
6870         scaleWeights(NewTrueWeight, NewFalseWeight);
6871         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6872                          .createBranchWeights(TrueWeight, FalseWeight));
6873       }
6874     }
6875 
6876     // Note: No point in getting fancy here, since the DT info is never
6877     // available to CodeGenPrepare.
6878     ModifiedDT = true;
6879 
6880     MadeChange = true;
6881 
6882     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6883                TmpBB->dump());
6884   }
6885   return MadeChange;
6886 }
6887