1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/Analysis.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetPassConfig.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/IR/ValueMap.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
58 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
62 #include "llvm/Transforms/Utils/ValueMapper.h"
63 
64 using namespace llvm;
65 using namespace llvm::PatternMatch;
66 
67 #define DEBUG_TYPE "codegenprepare"
68 
69 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
70 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
71 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
73                       "sunken Cmps");
74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
75                        "of sunken Casts");
76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
77                           "computations were sunk");
78 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
79 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
80 STATISTIC(NumAndsAdded,
81           "Number of and mask instructions added to form ext loads");
82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
83 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
87 
88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
90 STATISTIC(NumMemCmpGreaterThanMax,
91           "Number of memcmp calls with size greater than max size");
92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
93 
94 static cl::opt<bool> DisableBranchOpts(
95   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
96   cl::desc("Disable branch optimizations in CodeGenPrepare"));
97 
98 static cl::opt<bool>
99     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
100                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
101 
102 static cl::opt<bool> DisableSelectToBranch(
103   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
104   cl::desc("Disable select to branch conversion."));
105 
106 static cl::opt<bool> AddrSinkUsingGEPs(
107   "addr-sink-using-gep", cl::Hidden, cl::init(true),
108   cl::desc("Address sinking in CGP using GEPs."));
109 
110 static cl::opt<bool> EnableAndCmpSinking(
111    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
112    cl::desc("Enable sinkinig and/cmp into branches."));
113 
114 static cl::opt<bool> DisableStoreExtract(
115     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
116     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
117 
118 static cl::opt<bool> StressStoreExtract(
119     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
120     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
121 
122 static cl::opt<bool> DisableExtLdPromotion(
123     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
124     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
125              "CodeGenPrepare"));
126 
127 static cl::opt<bool> StressExtLdPromotion(
128     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
129     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
130              "optimization in CodeGenPrepare"));
131 
132 static cl::opt<bool> DisablePreheaderProtect(
133     "disable-preheader-prot", cl::Hidden, cl::init(false),
134     cl::desc("Disable protection against removing loop preheaders"));
135 
136 static cl::opt<bool> ProfileGuidedSectionPrefix(
137     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
138     cl::desc("Use profile info to add section prefix for hot/cold functions"));
139 
140 static cl::opt<unsigned> FreqRatioToSkipMerge(
141     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
142     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
143              "(frequency of destination block) is greater than this ratio"));
144 
145 static cl::opt<bool> ForceSplitStore(
146     "force-split-store", cl::Hidden, cl::init(false),
147     cl::desc("Force store splitting no matter what the target query says."));
148 
149 static cl::opt<bool>
150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
151     cl::desc("Enable merging of redundant sexts when one is dominating"
152     " the other."), cl::init(true));
153 
154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
155     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
156     cl::desc("The number of loads per basic block for inline expansion of "
157              "memcmp that is only being compared against zero."));
158 
159 namespace {
160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
163 typedef SmallVector<Instruction *, 16> SExts;
164 typedef DenseMap<Value *, SExts> ValueToSExts;
165 class TypePromotionTransaction;
166 
167   class CodeGenPrepare : public FunctionPass {
168     const TargetMachine *TM;
169     const TargetSubtargetInfo *SubtargetInfo;
170     const TargetLowering *TLI;
171     const TargetRegisterInfo *TRI;
172     const TargetTransformInfo *TTI;
173     const TargetLibraryInfo *TLInfo;
174     const LoopInfo *LI;
175     std::unique_ptr<BlockFrequencyInfo> BFI;
176     std::unique_ptr<BranchProbabilityInfo> BPI;
177 
178     /// As we scan instructions optimizing them, this is the next instruction
179     /// to optimize. Transforms that can invalidate this should update it.
180     BasicBlock::iterator CurInstIterator;
181 
182     /// Keeps track of non-local addresses that have been sunk into a block.
183     /// This allows us to avoid inserting duplicate code for blocks with
184     /// multiple load/stores of the same address.
185     ValueMap<Value*, Value*> SunkAddrs;
186 
187     /// Keeps track of all instructions inserted for the current function.
188     SetOfInstrs InsertedInsts;
189     /// Keeps track of the type of the related instruction before their
190     /// promotion for the current function.
191     InstrToOrigTy PromotedInsts;
192 
193     /// Keep track of instructions removed during promotion.
194     SetOfInstrs RemovedInsts;
195 
196     /// Keep track of sext chains based on their initial value.
197     DenseMap<Value *, Instruction *> SeenChainsForSExt;
198 
199     /// Keep track of SExt promoted.
200     ValueToSExts ValToSExtendedUses;
201 
202     /// True if CFG is modified in any way.
203     bool ModifiedDT;
204 
205     /// True if optimizing for size.
206     bool OptSize;
207 
208     /// DataLayout for the Function being processed.
209     const DataLayout *DL;
210 
211   public:
212     static char ID; // Pass identification, replacement for typeid
213     CodeGenPrepare()
214         : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr),
215           DL(nullptr) {
216       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
217     }
218     bool runOnFunction(Function &F) override;
219 
220     StringRef getPassName() const override { return "CodeGen Prepare"; }
221 
222     void getAnalysisUsage(AnalysisUsage &AU) const override {
223       // FIXME: When we can selectively preserve passes, preserve the domtree.
224       AU.addRequired<ProfileSummaryInfoWrapperPass>();
225       AU.addRequired<TargetLibraryInfoWrapperPass>();
226       AU.addRequired<TargetTransformInfoWrapperPass>();
227       AU.addRequired<LoopInfoWrapperPass>();
228     }
229 
230   private:
231     bool eliminateFallThrough(Function &F);
232     bool eliminateMostlyEmptyBlocks(Function &F);
233     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
234     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
235     void eliminateMostlyEmptyBlock(BasicBlock *BB);
236     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
237                                        bool isPreheader);
238     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
239     bool optimizeInst(Instruction *I, bool &ModifiedDT);
240     bool optimizeMemoryInst(Instruction *I, Value *Addr,
241                             Type *AccessTy, unsigned AS);
242     bool optimizeInlineAsmInst(CallInst *CS);
243     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
244     bool optimizeExt(Instruction *&I);
245     bool optimizeExtUses(Instruction *I);
246     bool optimizeLoadExt(LoadInst *I);
247     bool optimizeSelectInst(SelectInst *SI);
248     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
249     bool optimizeSwitchInst(SwitchInst *CI);
250     bool optimizeExtractElementInst(Instruction *Inst);
251     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
252     bool placeDbgValues(Function &F);
253     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
254                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
255     bool tryToPromoteExts(TypePromotionTransaction &TPT,
256                           const SmallVectorImpl<Instruction *> &Exts,
257                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
258                           unsigned CreatedInstsCost = 0);
259     bool mergeSExts(Function &F);
260     bool performAddressTypePromotion(
261         Instruction *&Inst,
262         bool AllowPromotionWithoutCommonHeader,
263         bool HasPromoted, TypePromotionTransaction &TPT,
264         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
265     bool splitBranchCondition(Function &F);
266     bool simplifyOffsetableRelocate(Instruction &I);
267     bool splitIndirectCriticalEdges(Function &F);
268   };
269 }
270 
271 char CodeGenPrepare::ID = 0;
272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
273                       "Optimize for code generation", false, false)
274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
276                     "Optimize for code generation", false, false)
277 
278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
279 
280 bool CodeGenPrepare::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283 
284   DL = &F.getParent()->getDataLayout();
285 
286   bool EverMadeChange = false;
287   // Clear per function information.
288   InsertedInsts.clear();
289   PromotedInsts.clear();
290   BFI.reset();
291   BPI.reset();
292 
293   ModifiedDT = false;
294   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
295     TM = &TPC->getTM<TargetMachine>();
296     SubtargetInfo = TM->getSubtargetImpl(F);
297     TLI = SubtargetInfo->getTargetLowering();
298     TRI = SubtargetInfo->getRegisterInfo();
299   }
300   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
301   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
302   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
303   OptSize = F.optForSize();
304 
305   if (ProfileGuidedSectionPrefix) {
306     ProfileSummaryInfo *PSI =
307         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
308     if (PSI->isFunctionHotInCallGraph(&F))
309       F.setSectionPrefix(".hot");
310     else if (PSI->isFunctionColdInCallGraph(&F))
311       F.setSectionPrefix(".unlikely");
312   }
313 
314   /// This optimization identifies DIV instructions that can be
315   /// profitably bypassed and carried out with a shorter, faster divide.
316   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
317     const DenseMap<unsigned int, unsigned int> &BypassWidths =
318        TLI->getBypassSlowDivWidths();
319     BasicBlock* BB = &*F.begin();
320     while (BB != nullptr) {
321       // bypassSlowDivision may create new BBs, but we don't want to reapply the
322       // optimization to those blocks.
323       BasicBlock* Next = BB->getNextNode();
324       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
325       BB = Next;
326     }
327   }
328 
329   // Eliminate blocks that contain only PHI nodes and an
330   // unconditional branch.
331   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
332 
333   // llvm.dbg.value is far away from the value then iSel may not be able
334   // handle it properly. iSel will drop llvm.dbg.value if it can not
335   // find a node corresponding to the value.
336   EverMadeChange |= placeDbgValues(F);
337 
338   if (!DisableBranchOpts)
339     EverMadeChange |= splitBranchCondition(F);
340 
341   // Split some critical edges where one of the sources is an indirect branch,
342   // to help generate sane code for PHIs involving such edges.
343   EverMadeChange |= splitIndirectCriticalEdges(F);
344 
345   bool MadeChange = true;
346   while (MadeChange) {
347     MadeChange = false;
348     SeenChainsForSExt.clear();
349     ValToSExtendedUses.clear();
350     RemovedInsts.clear();
351     for (Function::iterator I = F.begin(); I != F.end(); ) {
352       BasicBlock *BB = &*I++;
353       bool ModifiedDTOnIteration = false;
354       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
355 
356       // Restart BB iteration if the dominator tree of the Function was changed
357       if (ModifiedDTOnIteration)
358         break;
359     }
360     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
361       MadeChange |= mergeSExts(F);
362 
363     // Really free removed instructions during promotion.
364     for (Instruction *I : RemovedInsts)
365       I->deleteValue();
366 
367     EverMadeChange |= MadeChange;
368   }
369 
370   SunkAddrs.clear();
371 
372   if (!DisableBranchOpts) {
373     MadeChange = false;
374     SmallPtrSet<BasicBlock*, 8> WorkList;
375     for (BasicBlock &BB : F) {
376       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
377       MadeChange |= ConstantFoldTerminator(&BB, true);
378       if (!MadeChange) continue;
379 
380       for (SmallVectorImpl<BasicBlock*>::iterator
381              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
382         if (pred_begin(*II) == pred_end(*II))
383           WorkList.insert(*II);
384     }
385 
386     // Delete the dead blocks and any of their dead successors.
387     MadeChange |= !WorkList.empty();
388     while (!WorkList.empty()) {
389       BasicBlock *BB = *WorkList.begin();
390       WorkList.erase(BB);
391       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
392 
393       DeleteDeadBlock(BB);
394 
395       for (SmallVectorImpl<BasicBlock*>::iterator
396              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
397         if (pred_begin(*II) == pred_end(*II))
398           WorkList.insert(*II);
399     }
400 
401     // Merge pairs of basic blocks with unconditional branches, connected by
402     // a single edge.
403     if (EverMadeChange || MadeChange)
404       MadeChange |= eliminateFallThrough(F);
405 
406     EverMadeChange |= MadeChange;
407   }
408 
409   if (!DisableGCOpts) {
410     SmallVector<Instruction *, 2> Statepoints;
411     for (BasicBlock &BB : F)
412       for (Instruction &I : BB)
413         if (isStatepoint(I))
414           Statepoints.push_back(&I);
415     for (auto &I : Statepoints)
416       EverMadeChange |= simplifyOffsetableRelocate(*I);
417   }
418 
419   return EverMadeChange;
420 }
421 
422 /// Merge basic blocks which are connected by a single edge, where one of the
423 /// basic blocks has a single successor pointing to the other basic block,
424 /// which has a single predecessor.
425 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
426   bool Changed = false;
427   // Scan all of the blocks in the function, except for the entry block.
428   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
429     BasicBlock *BB = &*I++;
430     // If the destination block has a single pred, then this is a trivial
431     // edge, just collapse it.
432     BasicBlock *SinglePred = BB->getSinglePredecessor();
433 
434     // Don't merge if BB's address is taken.
435     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
436 
437     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
438     if (Term && !Term->isConditional()) {
439       Changed = true;
440       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
441       // Remember if SinglePred was the entry block of the function.
442       // If so, we will need to move BB back to the entry position.
443       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
444       MergeBasicBlockIntoOnlyPred(BB, nullptr);
445 
446       if (isEntry && BB != &BB->getParent()->getEntryBlock())
447         BB->moveBefore(&BB->getParent()->getEntryBlock());
448 
449       // We have erased a block. Update the iterator.
450       I = BB->getIterator();
451     }
452   }
453   return Changed;
454 }
455 
456 /// Find a destination block from BB if BB is mergeable empty block.
457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
458   // If this block doesn't end with an uncond branch, ignore it.
459   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
460   if (!BI || !BI->isUnconditional())
461     return nullptr;
462 
463   // If the instruction before the branch (skipping debug info) isn't a phi
464   // node, then other stuff is happening here.
465   BasicBlock::iterator BBI = BI->getIterator();
466   if (BBI != BB->begin()) {
467     --BBI;
468     while (isa<DbgInfoIntrinsic>(BBI)) {
469       if (BBI == BB->begin())
470         break;
471       --BBI;
472     }
473     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
474       return nullptr;
475   }
476 
477   // Do not break infinite loops.
478   BasicBlock *DestBB = BI->getSuccessor(0);
479   if (DestBB == BB)
480     return nullptr;
481 
482   if (!canMergeBlocks(BB, DestBB))
483     DestBB = nullptr;
484 
485   return DestBB;
486 }
487 
488 // Return the unique indirectbr predecessor of a block. This may return null
489 // even if such a predecessor exists, if it's not useful for splitting.
490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
491 // predecessors of BB.
492 static BasicBlock *
493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
494   // If the block doesn't have any PHIs, we don't care about it, since there's
495   // no point in splitting it.
496   PHINode *PN = dyn_cast<PHINode>(BB->begin());
497   if (!PN)
498     return nullptr;
499 
500   // Verify we have exactly one IBR predecessor.
501   // Conservatively bail out if one of the other predecessors is not a "regular"
502   // terminator (that is, not a switch or a br).
503   BasicBlock *IBB = nullptr;
504   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
505     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
506     TerminatorInst *PredTerm = PredBB->getTerminator();
507     switch (PredTerm->getOpcode()) {
508     case Instruction::IndirectBr:
509       if (IBB)
510         return nullptr;
511       IBB = PredBB;
512       break;
513     case Instruction::Br:
514     case Instruction::Switch:
515       OtherPreds.push_back(PredBB);
516       continue;
517     default:
518       return nullptr;
519     }
520   }
521 
522   return IBB;
523 }
524 
525 // Split critical edges where the source of the edge is an indirectbr
526 // instruction. This isn't always possible, but we can handle some easy cases.
527 // This is useful because MI is unable to split such critical edges,
528 // which means it will not be able to sink instructions along those edges.
529 // This is especially painful for indirect branches with many successors, where
530 // we end up having to prepare all outgoing values in the origin block.
531 //
532 // Our normal algorithm for splitting critical edges requires us to update
533 // the outgoing edges of the edge origin block, but for an indirectbr this
534 // is hard, since it would require finding and updating the block addresses
535 // the indirect branch uses. But if a block only has a single indirectbr
536 // predecessor, with the others being regular branches, we can do it in a
537 // different way.
538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
539 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
541 // create the following structure:
542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
544   // Check whether the function has any indirectbrs, and collect which blocks
545   // they may jump to. Since most functions don't have indirect branches,
546   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
547   SmallSetVector<BasicBlock *, 16> Targets;
548   for (auto &BB : F) {
549     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
550     if (!IBI)
551       continue;
552 
553     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
554       Targets.insert(IBI->getSuccessor(Succ));
555   }
556 
557   if (Targets.empty())
558     return false;
559 
560   bool Changed = false;
561   for (BasicBlock *Target : Targets) {
562     SmallVector<BasicBlock *, 16> OtherPreds;
563     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
564     // If we did not found an indirectbr, or the indirectbr is the only
565     // incoming edge, this isn't the kind of edge we're looking for.
566     if (!IBRPred || OtherPreds.empty())
567       continue;
568 
569     // Don't even think about ehpads/landingpads.
570     Instruction *FirstNonPHI = Target->getFirstNonPHI();
571     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
572       continue;
573 
574     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
575     // It's possible Target was its own successor through an indirectbr.
576     // In this case, the indirectbr now comes from BodyBlock.
577     if (IBRPred == Target)
578       IBRPred = BodyBlock;
579 
580     // At this point Target only has PHIs, and BodyBlock has the rest of the
581     // block's body. Create a copy of Target that will be used by the "direct"
582     // preds.
583     ValueToValueMapTy VMap;
584     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
585 
586     for (BasicBlock *Pred : OtherPreds) {
587       // If the target is a loop to itself, then the terminator of the split
588       // block needs to be updated.
589       if (Pred == Target)
590         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
591       else
592         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
593     }
594 
595     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
596     // they are clones, so the number of PHIs are the same.
597     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
598     // (b) Leave that as the only edge in the "Indirect" PHI.
599     // (c) Merge the two in the body block.
600     BasicBlock::iterator Indirect = Target->begin(),
601                          End = Target->getFirstNonPHI()->getIterator();
602     BasicBlock::iterator Direct = DirectSucc->begin();
603     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
604 
605     assert(&*End == Target->getTerminator() &&
606            "Block was expected to only contain PHIs");
607 
608     while (Indirect != End) {
609       PHINode *DirPHI = cast<PHINode>(Direct);
610       PHINode *IndPHI = cast<PHINode>(Indirect);
611 
612       // Now, clean up - the direct block shouldn't get the indirect value,
613       // and vice versa.
614       DirPHI->removeIncomingValue(IBRPred);
615       Direct++;
616 
617       // Advance the pointer here, to avoid invalidation issues when the old
618       // PHI is erased.
619       Indirect++;
620 
621       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
622       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
623                              IBRPred);
624 
625       // Create a PHI in the body block, to merge the direct and indirect
626       // predecessors.
627       PHINode *MergePHI =
628           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
629       MergePHI->addIncoming(NewIndPHI, Target);
630       MergePHI->addIncoming(DirPHI, DirectSucc);
631 
632       IndPHI->replaceAllUsesWith(MergePHI);
633       IndPHI->eraseFromParent();
634     }
635 
636     Changed = true;
637   }
638 
639   return Changed;
640 }
641 
642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
644 /// edges in ways that are non-optimal for isel. Start by eliminating these
645 /// blocks so we can split them the way we want them.
646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
647   SmallPtrSet<BasicBlock *, 16> Preheaders;
648   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
649   while (!LoopList.empty()) {
650     Loop *L = LoopList.pop_back_val();
651     LoopList.insert(LoopList.end(), L->begin(), L->end());
652     if (BasicBlock *Preheader = L->getLoopPreheader())
653       Preheaders.insert(Preheader);
654   }
655 
656   bool MadeChange = false;
657   // Note that this intentionally skips the entry block.
658   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
659     BasicBlock *BB = &*I++;
660     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
661     if (!DestBB ||
662         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
663       continue;
664 
665     eliminateMostlyEmptyBlock(BB);
666     MadeChange = true;
667   }
668   return MadeChange;
669 }
670 
671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
672                                                    BasicBlock *DestBB,
673                                                    bool isPreheader) {
674   // Do not delete loop preheaders if doing so would create a critical edge.
675   // Loop preheaders can be good locations to spill registers. If the
676   // preheader is deleted and we create a critical edge, registers may be
677   // spilled in the loop body instead.
678   if (!DisablePreheaderProtect && isPreheader &&
679       !(BB->getSinglePredecessor() &&
680         BB->getSinglePredecessor()->getSingleSuccessor()))
681     return false;
682 
683   // Try to skip merging if the unique predecessor of BB is terminated by a
684   // switch or indirect branch instruction, and BB is used as an incoming block
685   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
686   // add COPY instructions in the predecessor of BB instead of BB (if it is not
687   // merged). Note that the critical edge created by merging such blocks wont be
688   // split in MachineSink because the jump table is not analyzable. By keeping
689   // such empty block (BB), ISel will place COPY instructions in BB, not in the
690   // predecessor of BB.
691   BasicBlock *Pred = BB->getUniquePredecessor();
692   if (!Pred ||
693       !(isa<SwitchInst>(Pred->getTerminator()) ||
694         isa<IndirectBrInst>(Pred->getTerminator())))
695     return true;
696 
697   if (BB->getTerminator() != BB->getFirstNonPHI())
698     return true;
699 
700   // We use a simple cost heuristic which determine skipping merging is
701   // profitable if the cost of skipping merging is less than the cost of
702   // merging : Cost(skipping merging) < Cost(merging BB), where the
703   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
704   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
705   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
706   //   Freq(Pred) / Freq(BB) > 2.
707   // Note that if there are multiple empty blocks sharing the same incoming
708   // value for the PHIs in the DestBB, we consider them together. In such
709   // case, Cost(merging BB) will be the sum of their frequencies.
710 
711   if (!isa<PHINode>(DestBB->begin()))
712     return true;
713 
714   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
715 
716   // Find all other incoming blocks from which incoming values of all PHIs in
717   // DestBB are the same as the ones from BB.
718   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
719        ++PI) {
720     BasicBlock *DestBBPred = *PI;
721     if (DestBBPred == BB)
722       continue;
723 
724     bool HasAllSameValue = true;
725     BasicBlock::const_iterator DestBBI = DestBB->begin();
726     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
727       if (DestPN->getIncomingValueForBlock(BB) !=
728           DestPN->getIncomingValueForBlock(DestBBPred)) {
729         HasAllSameValue = false;
730         break;
731       }
732     }
733     if (HasAllSameValue)
734       SameIncomingValueBBs.insert(DestBBPred);
735   }
736 
737   // See if all BB's incoming values are same as the value from Pred. In this
738   // case, no reason to skip merging because COPYs are expected to be place in
739   // Pred already.
740   if (SameIncomingValueBBs.count(Pred))
741     return true;
742 
743   if (!BFI) {
744     Function &F = *BB->getParent();
745     LoopInfo LI{DominatorTree(F)};
746     BPI.reset(new BranchProbabilityInfo(F, LI));
747     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
748   }
749 
750   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
751   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
752 
753   for (auto SameValueBB : SameIncomingValueBBs)
754     if (SameValueBB->getUniquePredecessor() == Pred &&
755         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
756       BBFreq += BFI->getBlockFreq(SameValueBB);
757 
758   return PredFreq.getFrequency() <=
759          BBFreq.getFrequency() * FreqRatioToSkipMerge;
760 }
761 
762 /// Return true if we can merge BB into DestBB if there is a single
763 /// unconditional branch between them, and BB contains no other non-phi
764 /// instructions.
765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
766                                     const BasicBlock *DestBB) const {
767   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
768   // the successor.  If there are more complex condition (e.g. preheaders),
769   // don't mess around with them.
770   BasicBlock::const_iterator BBI = BB->begin();
771   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
772     for (const User *U : PN->users()) {
773       const Instruction *UI = cast<Instruction>(U);
774       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
775         return false;
776       // If User is inside DestBB block and it is a PHINode then check
777       // incoming value. If incoming value is not from BB then this is
778       // a complex condition (e.g. preheaders) we want to avoid here.
779       if (UI->getParent() == DestBB) {
780         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
781           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
782             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
783             if (Insn && Insn->getParent() == BB &&
784                 Insn->getParent() != UPN->getIncomingBlock(I))
785               return false;
786           }
787       }
788     }
789   }
790 
791   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
792   // and DestBB may have conflicting incoming values for the block.  If so, we
793   // can't merge the block.
794   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
795   if (!DestBBPN) return true;  // no conflict.
796 
797   // Collect the preds of BB.
798   SmallPtrSet<const BasicBlock*, 16> BBPreds;
799   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
800     // It is faster to get preds from a PHI than with pred_iterator.
801     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
802       BBPreds.insert(BBPN->getIncomingBlock(i));
803   } else {
804     BBPreds.insert(pred_begin(BB), pred_end(BB));
805   }
806 
807   // Walk the preds of DestBB.
808   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
809     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
810     if (BBPreds.count(Pred)) {   // Common predecessor?
811       BBI = DestBB->begin();
812       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
813         const Value *V1 = PN->getIncomingValueForBlock(Pred);
814         const Value *V2 = PN->getIncomingValueForBlock(BB);
815 
816         // If V2 is a phi node in BB, look up what the mapped value will be.
817         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
818           if (V2PN->getParent() == BB)
819             V2 = V2PN->getIncomingValueForBlock(Pred);
820 
821         // If there is a conflict, bail out.
822         if (V1 != V2) return false;
823       }
824     }
825   }
826 
827   return true;
828 }
829 
830 
831 /// Eliminate a basic block that has only phi's and an unconditional branch in
832 /// it.
833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
834   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
835   BasicBlock *DestBB = BI->getSuccessor(0);
836 
837   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
838 
839   // If the destination block has a single pred, then this is a trivial edge,
840   // just collapse it.
841   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
842     if (SinglePred != DestBB) {
843       // Remember if SinglePred was the entry block of the function.  If so, we
844       // will need to move BB back to the entry position.
845       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
846       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
847 
848       if (isEntry && BB != &BB->getParent()->getEntryBlock())
849         BB->moveBefore(&BB->getParent()->getEntryBlock());
850 
851       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
852       return;
853     }
854   }
855 
856   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
857   // to handle the new incoming edges it is about to have.
858   PHINode *PN;
859   for (BasicBlock::iterator BBI = DestBB->begin();
860        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
861     // Remove the incoming value for BB, and remember it.
862     Value *InVal = PN->removeIncomingValue(BB, false);
863 
864     // Two options: either the InVal is a phi node defined in BB or it is some
865     // value that dominates BB.
866     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
867     if (InValPhi && InValPhi->getParent() == BB) {
868       // Add all of the input values of the input PHI as inputs of this phi.
869       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
870         PN->addIncoming(InValPhi->getIncomingValue(i),
871                         InValPhi->getIncomingBlock(i));
872     } else {
873       // Otherwise, add one instance of the dominating value for each edge that
874       // we will be adding.
875       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
876         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
877           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
878       } else {
879         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
880           PN->addIncoming(InVal, *PI);
881       }
882     }
883   }
884 
885   // The PHIs are now updated, change everything that refers to BB to use
886   // DestBB and remove BB.
887   BB->replaceAllUsesWith(DestBB);
888   BB->eraseFromParent();
889   ++NumBlocksElim;
890 
891   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
892 }
893 
894 // Computes a map of base pointer relocation instructions to corresponding
895 // derived pointer relocation instructions given a vector of all relocate calls
896 static void computeBaseDerivedRelocateMap(
897     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
898     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
899         &RelocateInstMap) {
900   // Collect information in two maps: one primarily for locating the base object
901   // while filling the second map; the second map is the final structure holding
902   // a mapping between Base and corresponding Derived relocate calls
903   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
904   for (auto *ThisRelocate : AllRelocateCalls) {
905     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
906                             ThisRelocate->getDerivedPtrIndex());
907     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
908   }
909   for (auto &Item : RelocateIdxMap) {
910     std::pair<unsigned, unsigned> Key = Item.first;
911     if (Key.first == Key.second)
912       // Base relocation: nothing to insert
913       continue;
914 
915     GCRelocateInst *I = Item.second;
916     auto BaseKey = std::make_pair(Key.first, Key.first);
917 
918     // We're iterating over RelocateIdxMap so we cannot modify it.
919     auto MaybeBase = RelocateIdxMap.find(BaseKey);
920     if (MaybeBase == RelocateIdxMap.end())
921       // TODO: We might want to insert a new base object relocate and gep off
922       // that, if there are enough derived object relocates.
923       continue;
924 
925     RelocateInstMap[MaybeBase->second].push_back(I);
926   }
927 }
928 
929 // Accepts a GEP and extracts the operands into a vector provided they're all
930 // small integer constants
931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
932                                           SmallVectorImpl<Value *> &OffsetV) {
933   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
934     // Only accept small constant integer operands
935     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
936     if (!Op || Op->getZExtValue() > 20)
937       return false;
938   }
939 
940   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
941     OffsetV.push_back(GEP->getOperand(i));
942   return true;
943 }
944 
945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
946 // replace, computes a replacement, and affects it.
947 static bool
948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
949                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
950   bool MadeChange = false;
951   for (GCRelocateInst *ToReplace : Targets) {
952     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
953            "Not relocating a derived object of the original base object");
954     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
955       // A duplicate relocate call. TODO: coalesce duplicates.
956       continue;
957     }
958 
959     if (RelocatedBase->getParent() != ToReplace->getParent()) {
960       // Base and derived relocates are in different basic blocks.
961       // In this case transform is only valid when base dominates derived
962       // relocate. However it would be too expensive to check dominance
963       // for each such relocate, so we skip the whole transformation.
964       continue;
965     }
966 
967     Value *Base = ToReplace->getBasePtr();
968     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
969     if (!Derived || Derived->getPointerOperand() != Base)
970       continue;
971 
972     SmallVector<Value *, 2> OffsetV;
973     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
974       continue;
975 
976     // Create a Builder and replace the target callsite with a gep
977     assert(RelocatedBase->getNextNode() &&
978            "Should always have one since it's not a terminator");
979 
980     // Insert after RelocatedBase
981     IRBuilder<> Builder(RelocatedBase->getNextNode());
982     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
983 
984     // If gc_relocate does not match the actual type, cast it to the right type.
985     // In theory, there must be a bitcast after gc_relocate if the type does not
986     // match, and we should reuse it to get the derived pointer. But it could be
987     // cases like this:
988     // bb1:
989     //  ...
990     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
991     //  br label %merge
992     //
993     // bb2:
994     //  ...
995     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
996     //  br label %merge
997     //
998     // merge:
999     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1000     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1001     //
1002     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1003     // no matter there is already one or not. In this way, we can handle all cases, and
1004     // the extra bitcast should be optimized away in later passes.
1005     Value *ActualRelocatedBase = RelocatedBase;
1006     if (RelocatedBase->getType() != Base->getType()) {
1007       ActualRelocatedBase =
1008           Builder.CreateBitCast(RelocatedBase, Base->getType());
1009     }
1010     Value *Replacement = Builder.CreateGEP(
1011         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1012     Replacement->takeName(ToReplace);
1013     // If the newly generated derived pointer's type does not match the original derived
1014     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1015     Value *ActualReplacement = Replacement;
1016     if (Replacement->getType() != ToReplace->getType()) {
1017       ActualReplacement =
1018           Builder.CreateBitCast(Replacement, ToReplace->getType());
1019     }
1020     ToReplace->replaceAllUsesWith(ActualReplacement);
1021     ToReplace->eraseFromParent();
1022 
1023     MadeChange = true;
1024   }
1025   return MadeChange;
1026 }
1027 
1028 // Turns this:
1029 //
1030 // %base = ...
1031 // %ptr = gep %base + 15
1032 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1033 // %base' = relocate(%tok, i32 4, i32 4)
1034 // %ptr' = relocate(%tok, i32 4, i32 5)
1035 // %val = load %ptr'
1036 //
1037 // into this:
1038 //
1039 // %base = ...
1040 // %ptr = gep %base + 15
1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1042 // %base' = gc.relocate(%tok, i32 4, i32 4)
1043 // %ptr' = gep %base' + 15
1044 // %val = load %ptr'
1045 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1046   bool MadeChange = false;
1047   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1048 
1049   for (auto *U : I.users())
1050     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1051       // Collect all the relocate calls associated with a statepoint
1052       AllRelocateCalls.push_back(Relocate);
1053 
1054   // We need atleast one base pointer relocation + one derived pointer
1055   // relocation to mangle
1056   if (AllRelocateCalls.size() < 2)
1057     return false;
1058 
1059   // RelocateInstMap is a mapping from the base relocate instruction to the
1060   // corresponding derived relocate instructions
1061   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1062   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1063   if (RelocateInstMap.empty())
1064     return false;
1065 
1066   for (auto &Item : RelocateInstMap)
1067     // Item.first is the RelocatedBase to offset against
1068     // Item.second is the vector of Targets to replace
1069     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1070   return MadeChange;
1071 }
1072 
1073 /// SinkCast - Sink the specified cast instruction into its user blocks
1074 static bool SinkCast(CastInst *CI) {
1075   BasicBlock *DefBB = CI->getParent();
1076 
1077   /// InsertedCasts - Only insert a cast in each block once.
1078   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1079 
1080   bool MadeChange = false;
1081   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1082        UI != E; ) {
1083     Use &TheUse = UI.getUse();
1084     Instruction *User = cast<Instruction>(*UI);
1085 
1086     // Figure out which BB this cast is used in.  For PHI's this is the
1087     // appropriate predecessor block.
1088     BasicBlock *UserBB = User->getParent();
1089     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1090       UserBB = PN->getIncomingBlock(TheUse);
1091     }
1092 
1093     // Preincrement use iterator so we don't invalidate it.
1094     ++UI;
1095 
1096     // The first insertion point of a block containing an EH pad is after the
1097     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1098     if (User->isEHPad())
1099       continue;
1100 
1101     // If the block selected to receive the cast is an EH pad that does not
1102     // allow non-PHI instructions before the terminator, we can't sink the
1103     // cast.
1104     if (UserBB->getTerminator()->isEHPad())
1105       continue;
1106 
1107     // If this user is in the same block as the cast, don't change the cast.
1108     if (UserBB == DefBB) continue;
1109 
1110     // If we have already inserted a cast into this block, use it.
1111     CastInst *&InsertedCast = InsertedCasts[UserBB];
1112 
1113     if (!InsertedCast) {
1114       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1115       assert(InsertPt != UserBB->end());
1116       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1117                                       CI->getType(), "", &*InsertPt);
1118     }
1119 
1120     // Replace a use of the cast with a use of the new cast.
1121     TheUse = InsertedCast;
1122     MadeChange = true;
1123     ++NumCastUses;
1124   }
1125 
1126   // If we removed all uses, nuke the cast.
1127   if (CI->use_empty()) {
1128     CI->eraseFromParent();
1129     MadeChange = true;
1130   }
1131 
1132   return MadeChange;
1133 }
1134 
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1138 ///
1139 /// Return true if any changes are made.
1140 ///
1141 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1142                                        const DataLayout &DL) {
1143   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1144   // than sinking only nop casts, but is helpful on some platforms.
1145   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1146     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1147                                   ASC->getDestAddressSpace()))
1148       return false;
1149   }
1150 
1151   // If this is a noop copy,
1152   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1153   EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 
1155   // This is an fp<->int conversion?
1156   if (SrcVT.isInteger() != DstVT.isInteger())
1157     return false;
1158 
1159   // If this is an extension, it will be a zero or sign extension, which
1160   // isn't a noop.
1161   if (SrcVT.bitsLT(DstVT)) return false;
1162 
1163   // If these values will be promoted, find out what they will be promoted
1164   // to.  This helps us consider truncates on PPC as noop copies when they
1165   // are.
1166   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1167       TargetLowering::TypePromoteInteger)
1168     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1169   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1170       TargetLowering::TypePromoteInteger)
1171     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 
1173   // If, after promotion, these are the same types, this is a noop copy.
1174   if (SrcVT != DstVT)
1175     return false;
1176 
1177   return SinkCast(CI);
1178 }
1179 
1180 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1181 /// possible.
1182 ///
1183 /// Return true if any changes were made.
1184 static bool CombineUAddWithOverflow(CmpInst *CI) {
1185   Value *A, *B;
1186   Instruction *AddI;
1187   if (!match(CI,
1188              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1189     return false;
1190 
1191   Type *Ty = AddI->getType();
1192   if (!isa<IntegerType>(Ty))
1193     return false;
1194 
1195   // We don't want to move around uses of condition values this late, so we we
1196   // check if it is legal to create the call to the intrinsic in the basic
1197   // block containing the icmp:
1198 
1199   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1200     return false;
1201 
1202 #ifndef NDEBUG
1203   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1204   // for now:
1205   if (AddI->hasOneUse())
1206     assert(*AddI->user_begin() == CI && "expected!");
1207 #endif
1208 
1209   Module *M = CI->getModule();
1210   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1211 
1212   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1213 
1214   auto *UAddWithOverflow =
1215       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1216   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1217   auto *Overflow =
1218       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1219 
1220   CI->replaceAllUsesWith(Overflow);
1221   AddI->replaceAllUsesWith(UAdd);
1222   CI->eraseFromParent();
1223   AddI->eraseFromParent();
1224   return true;
1225 }
1226 
1227 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1228 /// registers that must be created and coalesced. This is a clear win except on
1229 /// targets with multiple condition code registers (PowerPC), where it might
1230 /// lose; some adjustment may be wanted there.
1231 ///
1232 /// Return true if any changes are made.
1233 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1234   BasicBlock *DefBB = CI->getParent();
1235 
1236   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1237   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1238     return false;
1239 
1240   // Only insert a cmp in each block once.
1241   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1242 
1243   bool MadeChange = false;
1244   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1245        UI != E; ) {
1246     Use &TheUse = UI.getUse();
1247     Instruction *User = cast<Instruction>(*UI);
1248 
1249     // Preincrement use iterator so we don't invalidate it.
1250     ++UI;
1251 
1252     // Don't bother for PHI nodes.
1253     if (isa<PHINode>(User))
1254       continue;
1255 
1256     // Figure out which BB this cmp is used in.
1257     BasicBlock *UserBB = User->getParent();
1258 
1259     // If this user is in the same block as the cmp, don't change the cmp.
1260     if (UserBB == DefBB) continue;
1261 
1262     // If we have already inserted a cmp into this block, use it.
1263     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1264 
1265     if (!InsertedCmp) {
1266       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1267       assert(InsertPt != UserBB->end());
1268       InsertedCmp =
1269           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1270                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1271       // Propagate the debug info.
1272       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1273     }
1274 
1275     // Replace a use of the cmp with a use of the new cmp.
1276     TheUse = InsertedCmp;
1277     MadeChange = true;
1278     ++NumCmpUses;
1279   }
1280 
1281   // If we removed all uses, nuke the cmp.
1282   if (CI->use_empty()) {
1283     CI->eraseFromParent();
1284     MadeChange = true;
1285   }
1286 
1287   return MadeChange;
1288 }
1289 
1290 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1291   if (SinkCmpExpression(CI, TLI))
1292     return true;
1293 
1294   if (CombineUAddWithOverflow(CI))
1295     return true;
1296 
1297   return false;
1298 }
1299 
1300 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1301 /// used in a compare to allow isel to generate better code for targets where
1302 /// this operation can be combined.
1303 ///
1304 /// Return true if any changes are made.
1305 static bool sinkAndCmp0Expression(Instruction *AndI,
1306                                   const TargetLowering &TLI,
1307                                   SetOfInstrs &InsertedInsts) {
1308   // Double-check that we're not trying to optimize an instruction that was
1309   // already optimized by some other part of this pass.
1310   assert(!InsertedInsts.count(AndI) &&
1311          "Attempting to optimize already optimized and instruction");
1312   (void) InsertedInsts;
1313 
1314   // Nothing to do for single use in same basic block.
1315   if (AndI->hasOneUse() &&
1316       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1317     return false;
1318 
1319   // Try to avoid cases where sinking/duplicating is likely to increase register
1320   // pressure.
1321   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1322       !isa<ConstantInt>(AndI->getOperand(1)) &&
1323       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1324     return false;
1325 
1326   for (auto *U : AndI->users()) {
1327     Instruction *User = cast<Instruction>(U);
1328 
1329     // Only sink for and mask feeding icmp with 0.
1330     if (!isa<ICmpInst>(User))
1331       return false;
1332 
1333     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1334     if (!CmpC || !CmpC->isZero())
1335       return false;
1336   }
1337 
1338   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1339     return false;
1340 
1341   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1342   DEBUG(AndI->getParent()->dump());
1343 
1344   // Push the 'and' into the same block as the icmp 0.  There should only be
1345   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1346   // others, so we don't need to keep track of which BBs we insert into.
1347   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1348        UI != E; ) {
1349     Use &TheUse = UI.getUse();
1350     Instruction *User = cast<Instruction>(*UI);
1351 
1352     // Preincrement use iterator so we don't invalidate it.
1353     ++UI;
1354 
1355     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1356 
1357     // Keep the 'and' in the same place if the use is already in the same block.
1358     Instruction *InsertPt =
1359         User->getParent() == AndI->getParent() ? AndI : User;
1360     Instruction *InsertedAnd =
1361         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1362                                AndI->getOperand(1), "", InsertPt);
1363     // Propagate the debug info.
1364     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1365 
1366     // Replace a use of the 'and' with a use of the new 'and'.
1367     TheUse = InsertedAnd;
1368     ++NumAndUses;
1369     DEBUG(User->getParent()->dump());
1370   }
1371 
1372   // We removed all uses, nuke the and.
1373   AndI->eraseFromParent();
1374   return true;
1375 }
1376 
1377 /// Check if the candidates could be combined with a shift instruction, which
1378 /// includes:
1379 /// 1. Truncate instruction
1380 /// 2. And instruction and the imm is a mask of the low bits:
1381 /// imm & (imm+1) == 0
1382 static bool isExtractBitsCandidateUse(Instruction *User) {
1383   if (!isa<TruncInst>(User)) {
1384     if (User->getOpcode() != Instruction::And ||
1385         !isa<ConstantInt>(User->getOperand(1)))
1386       return false;
1387 
1388     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1389 
1390     if ((Cimm & (Cimm + 1)).getBoolValue())
1391       return false;
1392   }
1393   return true;
1394 }
1395 
1396 /// Sink both shift and truncate instruction to the use of truncate's BB.
1397 static bool
1398 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1399                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1400                      const TargetLowering &TLI, const DataLayout &DL) {
1401   BasicBlock *UserBB = User->getParent();
1402   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1403   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1404   bool MadeChange = false;
1405 
1406   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1407                             TruncE = TruncI->user_end();
1408        TruncUI != TruncE;) {
1409 
1410     Use &TruncTheUse = TruncUI.getUse();
1411     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1412     // Preincrement use iterator so we don't invalidate it.
1413 
1414     ++TruncUI;
1415 
1416     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1417     if (!ISDOpcode)
1418       continue;
1419 
1420     // If the use is actually a legal node, there will not be an
1421     // implicit truncate.
1422     // FIXME: always querying the result type is just an
1423     // approximation; some nodes' legality is determined by the
1424     // operand or other means. There's no good way to find out though.
1425     if (TLI.isOperationLegalOrCustom(
1426             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1427       continue;
1428 
1429     // Don't bother for PHI nodes.
1430     if (isa<PHINode>(TruncUser))
1431       continue;
1432 
1433     BasicBlock *TruncUserBB = TruncUser->getParent();
1434 
1435     if (UserBB == TruncUserBB)
1436       continue;
1437 
1438     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1439     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1440 
1441     if (!InsertedShift && !InsertedTrunc) {
1442       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1443       assert(InsertPt != TruncUserBB->end());
1444       // Sink the shift
1445       if (ShiftI->getOpcode() == Instruction::AShr)
1446         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1447                                                    "", &*InsertPt);
1448       else
1449         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1450                                                    "", &*InsertPt);
1451 
1452       // Sink the trunc
1453       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1454       TruncInsertPt++;
1455       assert(TruncInsertPt != TruncUserBB->end());
1456 
1457       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1458                                        TruncI->getType(), "", &*TruncInsertPt);
1459 
1460       MadeChange = true;
1461 
1462       TruncTheUse = InsertedTrunc;
1463     }
1464   }
1465   return MadeChange;
1466 }
1467 
1468 /// Sink the shift *right* instruction into user blocks if the uses could
1469 /// potentially be combined with this shift instruction and generate BitExtract
1470 /// instruction. It will only be applied if the architecture supports BitExtract
1471 /// instruction. Here is an example:
1472 /// BB1:
1473 ///   %x.extract.shift = lshr i64 %arg1, 32
1474 /// BB2:
1475 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1476 /// ==>
1477 ///
1478 /// BB2:
1479 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1480 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1481 ///
1482 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1483 /// instruction.
1484 /// Return true if any changes are made.
1485 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1486                                 const TargetLowering &TLI,
1487                                 const DataLayout &DL) {
1488   BasicBlock *DefBB = ShiftI->getParent();
1489 
1490   /// Only insert instructions in each block once.
1491   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1492 
1493   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1494 
1495   bool MadeChange = false;
1496   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1497        UI != E;) {
1498     Use &TheUse = UI.getUse();
1499     Instruction *User = cast<Instruction>(*UI);
1500     // Preincrement use iterator so we don't invalidate it.
1501     ++UI;
1502 
1503     // Don't bother for PHI nodes.
1504     if (isa<PHINode>(User))
1505       continue;
1506 
1507     if (!isExtractBitsCandidateUse(User))
1508       continue;
1509 
1510     BasicBlock *UserBB = User->getParent();
1511 
1512     if (UserBB == DefBB) {
1513       // If the shift and truncate instruction are in the same BB. The use of
1514       // the truncate(TruncUse) may still introduce another truncate if not
1515       // legal. In this case, we would like to sink both shift and truncate
1516       // instruction to the BB of TruncUse.
1517       // for example:
1518       // BB1:
1519       // i64 shift.result = lshr i64 opnd, imm
1520       // trunc.result = trunc shift.result to i16
1521       //
1522       // BB2:
1523       //   ----> We will have an implicit truncate here if the architecture does
1524       //   not have i16 compare.
1525       // cmp i16 trunc.result, opnd2
1526       //
1527       if (isa<TruncInst>(User) && shiftIsLegal
1528           // If the type of the truncate is legal, no trucate will be
1529           // introduced in other basic blocks.
1530           &&
1531           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1532         MadeChange =
1533             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1534 
1535       continue;
1536     }
1537     // If we have already inserted a shift into this block, use it.
1538     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1539 
1540     if (!InsertedShift) {
1541       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1542       assert(InsertPt != UserBB->end());
1543 
1544       if (ShiftI->getOpcode() == Instruction::AShr)
1545         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1546                                                    "", &*InsertPt);
1547       else
1548         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1549                                                    "", &*InsertPt);
1550 
1551       MadeChange = true;
1552     }
1553 
1554     // Replace a use of the shift with a use of the new shift.
1555     TheUse = InsertedShift;
1556   }
1557 
1558   // If we removed all uses, nuke the shift.
1559   if (ShiftI->use_empty())
1560     ShiftI->eraseFromParent();
1561 
1562   return MadeChange;
1563 }
1564 
1565 /// If counting leading or trailing zeros is an expensive operation and a zero
1566 /// input is defined, add a check for zero to avoid calling the intrinsic.
1567 ///
1568 /// We want to transform:
1569 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1570 ///
1571 /// into:
1572 ///   entry:
1573 ///     %cmpz = icmp eq i64 %A, 0
1574 ///     br i1 %cmpz, label %cond.end, label %cond.false
1575 ///   cond.false:
1576 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1577 ///     br label %cond.end
1578 ///   cond.end:
1579 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1580 ///
1581 /// If the transform is performed, return true and set ModifiedDT to true.
1582 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1583                                   const TargetLowering *TLI,
1584                                   const DataLayout *DL,
1585                                   bool &ModifiedDT) {
1586   if (!TLI || !DL)
1587     return false;
1588 
1589   // If a zero input is undefined, it doesn't make sense to despeculate that.
1590   if (match(CountZeros->getOperand(1), m_One()))
1591     return false;
1592 
1593   // If it's cheap to speculate, there's nothing to do.
1594   auto IntrinsicID = CountZeros->getIntrinsicID();
1595   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1596       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1597     return false;
1598 
1599   // Only handle legal scalar cases. Anything else requires too much work.
1600   Type *Ty = CountZeros->getType();
1601   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1602   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1603     return false;
1604 
1605   // The intrinsic will be sunk behind a compare against zero and branch.
1606   BasicBlock *StartBlock = CountZeros->getParent();
1607   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1608 
1609   // Create another block after the count zero intrinsic. A PHI will be added
1610   // in this block to select the result of the intrinsic or the bit-width
1611   // constant if the input to the intrinsic is zero.
1612   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1613   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1614 
1615   // Set up a builder to create a compare, conditional branch, and PHI.
1616   IRBuilder<> Builder(CountZeros->getContext());
1617   Builder.SetInsertPoint(StartBlock->getTerminator());
1618   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1619 
1620   // Replace the unconditional branch that was created by the first split with
1621   // a compare against zero and a conditional branch.
1622   Value *Zero = Constant::getNullValue(Ty);
1623   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1624   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1625   StartBlock->getTerminator()->eraseFromParent();
1626 
1627   // Create a PHI in the end block to select either the output of the intrinsic
1628   // or the bit width of the operand.
1629   Builder.SetInsertPoint(&EndBlock->front());
1630   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1631   CountZeros->replaceAllUsesWith(PN);
1632   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1633   PN->addIncoming(BitWidth, StartBlock);
1634   PN->addIncoming(CountZeros, CallBlock);
1635 
1636   // We are explicitly handling the zero case, so we can set the intrinsic's
1637   // undefined zero argument to 'true'. This will also prevent reprocessing the
1638   // intrinsic; we only despeculate when a zero input is defined.
1639   CountZeros->setArgOperand(1, Builder.getTrue());
1640   ModifiedDT = true;
1641   return true;
1642 }
1643 
1644 // This class provides helper functions to expand a memcmp library call into an
1645 // inline expansion.
1646 class MemCmpExpansion {
1647   struct ResultBlock {
1648     BasicBlock *BB;
1649     PHINode *PhiSrc1;
1650     PHINode *PhiSrc2;
1651     ResultBlock();
1652   };
1653 
1654   CallInst *CI;
1655   ResultBlock ResBlock;
1656   unsigned MaxLoadSize;
1657   unsigned NumBlocks;
1658   unsigned NumBlocksNonOneByte;
1659   unsigned NumLoadsPerBlock;
1660   std::vector<BasicBlock *> LoadCmpBlocks;
1661   BasicBlock *EndBlock;
1662   PHINode *PhiRes;
1663   bool IsUsedForZeroCmp;
1664   const DataLayout &DL;
1665   IRBuilder<> Builder;
1666 
1667   unsigned calculateNumBlocks(unsigned Size);
1668   void createLoadCmpBlocks();
1669   void createResultBlock();
1670   void setupResultBlockPHINodes();
1671   void setupEndBlockPHINodes();
1672   void emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1673                             unsigned GEPIndex);
1674   Value *getCompareLoadPairs(unsigned Index, unsigned Size,
1675                              unsigned &NumBytesProcessed);
1676   void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size,
1677                                          unsigned &NumBytesProcessed);
1678   void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex);
1679   void emitMemCmpResultBlock();
1680   Value *getMemCmpExpansionZeroCase(unsigned Size);
1681   Value *getMemCmpEqZeroOneBlock(unsigned Size);
1682   Value *getMemCmpOneBlock(unsigned Size);
1683   unsigned getLoadSize(unsigned Size);
1684   unsigned getNumLoads(unsigned Size);
1685 
1686 public:
1687   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
1688                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1689   Value *getMemCmpExpansion(uint64_t Size);
1690 };
1691 
1692 MemCmpExpansion::ResultBlock::ResultBlock()
1693     : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {}
1694 
1695 // Initialize the basic block structure required for expansion of memcmp call
1696 // with given maximum load size and memcmp size parameter.
1697 // This structure includes:
1698 // 1. A list of load compare blocks - LoadCmpBlocks.
1699 // 2. An EndBlock, split from original instruction point, which is the block to
1700 // return from.
1701 // 3. ResultBlock, block to branch to for early exit when a
1702 // LoadCmpBlock finds a difference.
1703 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size,
1704                                  unsigned MaxLoadSize, unsigned LoadsPerBlock,
1705                                  const DataLayout &TheDataLayout)
1706     : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock),
1707       DL(TheDataLayout), Builder(CI) {
1708 
1709   // A memcmp with zero-comparison with only one block of load and compare does
1710   // not need to set up any extra blocks. This case could be handled in the DAG,
1711   // but since we have all of the machinery to flexibly expand any memcpy here,
1712   // we choose to handle this case too to avoid fragmented lowering.
1713   IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
1714   NumBlocks = calculateNumBlocks(Size);
1715   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) {
1716     BasicBlock *StartBlock = CI->getParent();
1717     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
1718     setupEndBlockPHINodes();
1719     createResultBlock();
1720 
1721     // If return value of memcmp is not used in a zero equality, we need to
1722     // calculate which source was larger. The calculation requires the
1723     // two loaded source values of each load compare block.
1724     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
1725     if (!IsUsedForZeroCmp)
1726       setupResultBlockPHINodes();
1727 
1728     // Create the number of required load compare basic blocks.
1729     createLoadCmpBlocks();
1730 
1731     // Update the terminator added by splitBasicBlock to branch to the first
1732     // LoadCmpBlock.
1733     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
1734   }
1735 
1736   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1737 }
1738 
1739 void MemCmpExpansion::createLoadCmpBlocks() {
1740   for (unsigned i = 0; i < NumBlocks; i++) {
1741     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1742                                         EndBlock->getParent(), EndBlock);
1743     LoadCmpBlocks.push_back(BB);
1744   }
1745 }
1746 
1747 void MemCmpExpansion::createResultBlock() {
1748   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1749                                    EndBlock->getParent(), EndBlock);
1750 }
1751 
1752 // This function creates the IR instructions for loading and comparing 1 byte.
1753 // It loads 1 byte from each source of the memcmp parameters with the given
1754 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1755 // final phi node for selecting the memcmp result.
1756 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index,
1757                                                unsigned GEPIndex) {
1758   Value *Source1 = CI->getArgOperand(0);
1759   Value *Source2 = CI->getArgOperand(1);
1760 
1761   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1762   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1763   // Cast source to LoadSizeType*.
1764   if (Source1->getType() != LoadSizeType)
1765     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1766   if (Source2->getType() != LoadSizeType)
1767     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1768 
1769   // Get the base address using the GEPIndex.
1770   if (GEPIndex != 0) {
1771     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1772                                 ConstantInt::get(LoadSizeType, GEPIndex));
1773     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1774                                 ConstantInt::get(LoadSizeType, GEPIndex));
1775   }
1776 
1777   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1778   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1779 
1780   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1781   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1782   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1783 
1784   PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]);
1785 
1786   if (Index < (LoadCmpBlocks.size() - 1)) {
1787     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1788     // next LoadCmpBlock,
1789     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1790                                     ConstantInt::get(Diff->getType(), 0));
1791     BranchInst *CmpBr =
1792         BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp);
1793     Builder.Insert(CmpBr);
1794   } else {
1795     // The last block has an unconditional branch to EndBlock.
1796     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1797     Builder.Insert(CmpBr);
1798   }
1799 }
1800 
1801 unsigned MemCmpExpansion::getNumLoads(unsigned Size) {
1802   return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize);
1803 }
1804 
1805 unsigned MemCmpExpansion::getLoadSize(unsigned Size) {
1806   return MinAlign(PowerOf2Floor(Size), MaxLoadSize);
1807 }
1808 
1809 /// Generate an equality comparison for one or more pairs of loaded values.
1810 /// This is used in the case where the memcmp() call is compared equal or not
1811 /// equal to zero.
1812 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size,
1813                                             unsigned &NumBytesProcessed) {
1814   std::vector<Value *> XorList, OrList;
1815   Value *Diff;
1816 
1817   unsigned RemainingBytes = Size - NumBytesProcessed;
1818   unsigned NumLoadsRemaining = getNumLoads(RemainingBytes);
1819   unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock);
1820 
1821   // For a single-block expansion, start inserting before the memcmp call.
1822   if (LoadCmpBlocks.empty())
1823     Builder.SetInsertPoint(CI);
1824   else
1825     Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1826 
1827   Value *Cmp = nullptr;
1828   for (unsigned i = 0; i < NumLoads; ++i) {
1829     unsigned LoadSize = getLoadSize(RemainingBytes);
1830     unsigned GEPIndex = NumBytesProcessed / LoadSize;
1831     NumBytesProcessed += LoadSize;
1832     RemainingBytes -= LoadSize;
1833 
1834     Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1835     Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1836     assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1837 
1838     Value *Source1 = CI->getArgOperand(0);
1839     Value *Source2 = CI->getArgOperand(1);
1840 
1841     // Cast source to LoadSizeType*.
1842     if (Source1->getType() != LoadSizeType)
1843       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1844     if (Source2->getType() != LoadSizeType)
1845       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1846 
1847     // Get the base address using the GEPIndex.
1848     if (GEPIndex != 0) {
1849       Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1850                                   ConstantInt::get(LoadSizeType, GEPIndex));
1851       Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1852                                   ConstantInt::get(LoadSizeType, GEPIndex));
1853     }
1854 
1855     // Get a constant or load a value for each source address.
1856     Value *LoadSrc1 = nullptr;
1857     if (auto *Source1C = dyn_cast<Constant>(Source1))
1858       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1859     if (!LoadSrc1)
1860       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1861 
1862     Value *LoadSrc2 = nullptr;
1863     if (auto *Source2C = dyn_cast<Constant>(Source2))
1864       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1865     if (!LoadSrc2)
1866       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1867 
1868     if (NumLoads != 1) {
1869       if (LoadSizeType != MaxLoadType) {
1870         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1871         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1872       }
1873       // If we have multiple loads per block, we need to generate a composite
1874       // comparison using xor+or.
1875       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1876       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1877       XorList.push_back(Diff);
1878     } else {
1879       // If there's only one load per block, we just compare the loaded values.
1880       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1881     }
1882   }
1883 
1884   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1885     std::vector<Value *> OutList;
1886     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1887       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
1888       OutList.push_back(Or);
1889     }
1890     if (InList.size() % 2 != 0)
1891       OutList.push_back(InList.back());
1892     return OutList;
1893   };
1894 
1895   if (!Cmp) {
1896     // Pairwise OR the XOR results.
1897     OrList = pairWiseOr(XorList);
1898 
1899     // Pairwise OR the OR results until one result left.
1900     while (OrList.size() != 1) {
1901       OrList = pairWiseOr(OrList);
1902     }
1903     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
1904   }
1905 
1906   return Cmp;
1907 }
1908 
1909 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(
1910     unsigned Index, unsigned Size, unsigned &NumBytesProcessed) {
1911   Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed);
1912 
1913   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1914                            ? EndBlock
1915                            : LoadCmpBlocks[Index + 1];
1916   // Early exit branch if difference found to ResultBlock. Otherwise,
1917   // continue to next LoadCmpBlock or EndBlock.
1918   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
1919   Builder.Insert(CmpBr);
1920 
1921   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
1922   // since early exit to ResultBlock was not taken (no difference was found in
1923   // any of the bytes).
1924   if (Index == LoadCmpBlocks.size() - 1) {
1925     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
1926     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
1927   }
1928 }
1929 
1930 // This function creates the IR intructions for loading and comparing using the
1931 // given LoadSize. It loads the number of bytes specified by LoadSize from each
1932 // source of the memcmp parameters. It then does a subtract to see if there was
1933 // a difference in the loaded values. If a difference is found, it branches
1934 // with an early exit to the ResultBlock for calculating which source was
1935 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
1936 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
1937 // a special case through emitLoadCompareByteBlock. The special handling can
1938 // simply subtract the loaded values and add it to the result phi node.
1939 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1940                                            unsigned GEPIndex) {
1941   if (LoadSize == 1) {
1942     MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex);
1943     return;
1944   }
1945 
1946   Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1947   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1948   assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1949 
1950   Value *Source1 = CI->getArgOperand(0);
1951   Value *Source2 = CI->getArgOperand(1);
1952 
1953   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1954   // Cast source to LoadSizeType*.
1955   if (Source1->getType() != LoadSizeType)
1956     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1957   if (Source2->getType() != LoadSizeType)
1958     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1959 
1960   // Get the base address using the GEPIndex.
1961   if (GEPIndex != 0) {
1962     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1963                                 ConstantInt::get(LoadSizeType, GEPIndex));
1964     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1965                                 ConstantInt::get(LoadSizeType, GEPIndex));
1966   }
1967 
1968   // Load LoadSizeType from the base address.
1969   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1970   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1971 
1972   if (DL.isLittleEndian()) {
1973     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
1974                                                 Intrinsic::bswap, LoadSizeType);
1975     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
1976     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
1977   }
1978 
1979   if (LoadSizeType != MaxLoadType) {
1980     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1981     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1982   }
1983 
1984   // Add the loaded values to the phi nodes for calculating memcmp result only
1985   // if result is not used in a zero equality.
1986   if (!IsUsedForZeroCmp) {
1987     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]);
1988     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]);
1989   }
1990 
1991   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
1992   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1993                            ? EndBlock
1994                            : LoadCmpBlocks[Index + 1];
1995   // Early exit branch if difference found to ResultBlock. Otherwise, continue
1996   // to next LoadCmpBlock or EndBlock.
1997   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
1998   Builder.Insert(CmpBr);
1999 
2000   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2001   // since early exit to ResultBlock was not taken (no difference was found in
2002   // any of the bytes).
2003   if (Index == LoadCmpBlocks.size() - 1) {
2004     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2005     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
2006   }
2007 }
2008 
2009 // This function populates the ResultBlock with a sequence to calculate the
2010 // memcmp result. It compares the two loaded source values and returns -1 if
2011 // src1 < src2 and 1 if src1 > src2.
2012 void MemCmpExpansion::emitMemCmpResultBlock() {
2013   // Special case: if memcmp result is used in a zero equality, result does not
2014   // need to be calculated and can simply return 1.
2015   if (IsUsedForZeroCmp) {
2016     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2017     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2018     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2019     PhiRes->addIncoming(Res, ResBlock.BB);
2020     BranchInst *NewBr = BranchInst::Create(EndBlock);
2021     Builder.Insert(NewBr);
2022     return;
2023   }
2024   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2025   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2026 
2027   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2028                                   ResBlock.PhiSrc2);
2029 
2030   Value *Res =
2031       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2032                            ConstantInt::get(Builder.getInt32Ty(), 1));
2033 
2034   BranchInst *NewBr = BranchInst::Create(EndBlock);
2035   Builder.Insert(NewBr);
2036   PhiRes->addIncoming(Res, ResBlock.BB);
2037 }
2038 
2039 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) {
2040   unsigned NumBlocks = 0;
2041   bool HaveOneByteLoad = false;
2042   unsigned RemainingSize = Size;
2043   unsigned LoadSize = MaxLoadSize;
2044   while (RemainingSize) {
2045     if (LoadSize == 1)
2046       HaveOneByteLoad = true;
2047     NumBlocks += RemainingSize / LoadSize;
2048     RemainingSize = RemainingSize % LoadSize;
2049     LoadSize = LoadSize / 2;
2050   }
2051   NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks;
2052 
2053   if (IsUsedForZeroCmp)
2054     NumBlocks = NumBlocks / NumLoadsPerBlock +
2055                 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0);
2056 
2057   return NumBlocks;
2058 }
2059 
2060 void MemCmpExpansion::setupResultBlockPHINodes() {
2061   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2062   Builder.SetInsertPoint(ResBlock.BB);
2063   ResBlock.PhiSrc1 =
2064       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1");
2065   ResBlock.PhiSrc2 =
2066       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2");
2067 }
2068 
2069 void MemCmpExpansion::setupEndBlockPHINodes() {
2070   Builder.SetInsertPoint(&EndBlock->front());
2071   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2072 }
2073 
2074 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) {
2075   unsigned NumBytesProcessed = 0;
2076   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2077   // handle multiple loads per block.
2078   for (unsigned i = 0; i < NumBlocks; ++i)
2079     emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed);
2080 
2081   emitMemCmpResultBlock();
2082   return PhiRes;
2083 }
2084 
2085 /// A memcmp expansion that compares equality with 0 and only has one block of
2086 /// load and compare can bypass the compare, branch, and phi IR that is required
2087 /// in the general case.
2088 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) {
2089   unsigned NumBytesProcessed = 0;
2090   Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed);
2091   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2092 }
2093 
2094 /// A memcmp expansion that only has one block of load and compare can bypass
2095 /// the compare, branch, and phi IR that is required in the general case.
2096 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) {
2097   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2098 
2099   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2100   Value *Source1 = CI->getArgOperand(0);
2101   Value *Source2 = CI->getArgOperand(1);
2102 
2103   // Cast source to LoadSizeType*.
2104   if (Source1->getType() != LoadSizeType)
2105     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2106   if (Source2->getType() != LoadSizeType)
2107     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2108 
2109   // Load LoadSizeType from the base address.
2110   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2111   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2112 
2113   if (DL.isLittleEndian() && Size != 1) {
2114     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2115                                                 Intrinsic::bswap, LoadSizeType);
2116     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2117     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2118   }
2119 
2120   if (Size < 4) {
2121     // The i8 and i16 cases don't need compares. We zext the loaded values and
2122     // subtract them to get the suitable negative, zero, or positive i32 result.
2123     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
2124     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
2125     return Builder.CreateSub(LoadSrc1, LoadSrc2);
2126   }
2127 
2128   // The result of memcmp is negative, zero, or positive, so produce that by
2129   // subtracting 2 extended compare bits: sub (ugt, ult).
2130   // If a target prefers to use selects to get -1/0/1, they should be able
2131   // to transform this later. The inverse transform (going from selects to math)
2132   // may not be possible in the DAG because the selects got converted into
2133   // branches before we got there.
2134   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
2135   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2136   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
2137   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
2138   return Builder.CreateSub(ZextUGT, ZextULT);
2139 }
2140 
2141 // This function expands the memcmp call into an inline expansion and returns
2142 // the memcmp result.
2143 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) {
2144   if (IsUsedForZeroCmp)
2145     return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) :
2146                             getMemCmpExpansionZeroCase(Size);
2147 
2148   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2149   if (NumBlocks == 1 && NumLoadsPerBlock == 1)
2150     return getMemCmpOneBlock(Size);
2151 
2152   // This loop calls emitLoadCompareBlock for comparing Size bytes of the two
2153   // memcmp sources. It starts with loading using the maximum load size set by
2154   // the target. It processes any remaining bytes using a load size which is the
2155   // next smallest power of 2.
2156   unsigned LoadSize = MaxLoadSize;
2157   unsigned NumBytesToBeProcessed = Size;
2158   unsigned Index = 0;
2159   while (NumBytesToBeProcessed) {
2160     // Calculate how many blocks we can create with the current load size.
2161     unsigned NumBlocks = NumBytesToBeProcessed / LoadSize;
2162     unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize;
2163     NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize;
2164 
2165     // For each NumBlocks, populate the instruction sequence for loading and
2166     // comparing LoadSize bytes.
2167     while (NumBlocks--) {
2168       emitLoadCompareBlock(Index, LoadSize, GEPIndex);
2169       Index++;
2170       GEPIndex++;
2171     }
2172     // Get the next LoadSize to use.
2173     LoadSize = LoadSize / 2;
2174   }
2175 
2176   emitMemCmpResultBlock();
2177   return PhiRes;
2178 }
2179 
2180 // This function checks to see if an expansion of memcmp can be generated.
2181 // It checks for constant compare size that is less than the max inline size.
2182 // If an expansion cannot occur, returns false to leave as a library call.
2183 // Otherwise, the library call is replaced with a new IR instruction sequence.
2184 /// We want to transform:
2185 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2186 /// To:
2187 /// loadbb:
2188 ///  %0 = bitcast i32* %buffer2 to i8*
2189 ///  %1 = bitcast i32* %buffer1 to i8*
2190 ///  %2 = bitcast i8* %1 to i64*
2191 ///  %3 = bitcast i8* %0 to i64*
2192 ///  %4 = load i64, i64* %2
2193 ///  %5 = load i64, i64* %3
2194 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2195 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2196 ///  %8 = sub i64 %6, %7
2197 ///  %9 = icmp ne i64 %8, 0
2198 ///  br i1 %9, label %res_block, label %loadbb1
2199 /// res_block:                                        ; preds = %loadbb2,
2200 /// %loadbb1, %loadbb
2201 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2202 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2203 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2204 ///  %11 = select i1 %10, i32 -1, i32 1
2205 ///  br label %endblock
2206 /// loadbb1:                                          ; preds = %loadbb
2207 ///  %12 = bitcast i32* %buffer2 to i8*
2208 ///  %13 = bitcast i32* %buffer1 to i8*
2209 ///  %14 = bitcast i8* %13 to i32*
2210 ///  %15 = bitcast i8* %12 to i32*
2211 ///  %16 = getelementptr i32, i32* %14, i32 2
2212 ///  %17 = getelementptr i32, i32* %15, i32 2
2213 ///  %18 = load i32, i32* %16
2214 ///  %19 = load i32, i32* %17
2215 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2216 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2217 ///  %22 = zext i32 %20 to i64
2218 ///  %23 = zext i32 %21 to i64
2219 ///  %24 = sub i64 %22, %23
2220 ///  %25 = icmp ne i64 %24, 0
2221 ///  br i1 %25, label %res_block, label %loadbb2
2222 /// loadbb2:                                          ; preds = %loadbb1
2223 ///  %26 = bitcast i32* %buffer2 to i8*
2224 ///  %27 = bitcast i32* %buffer1 to i8*
2225 ///  %28 = bitcast i8* %27 to i16*
2226 ///  %29 = bitcast i8* %26 to i16*
2227 ///  %30 = getelementptr i16, i16* %28, i16 6
2228 ///  %31 = getelementptr i16, i16* %29, i16 6
2229 ///  %32 = load i16, i16* %30
2230 ///  %33 = load i16, i16* %31
2231 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2232 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2233 ///  %36 = zext i16 %34 to i64
2234 ///  %37 = zext i16 %35 to i64
2235 ///  %38 = sub i64 %36, %37
2236 ///  %39 = icmp ne i64 %38, 0
2237 ///  br i1 %39, label %res_block, label %loadbb3
2238 /// loadbb3:                                          ; preds = %loadbb2
2239 ///  %40 = bitcast i32* %buffer2 to i8*
2240 ///  %41 = bitcast i32* %buffer1 to i8*
2241 ///  %42 = getelementptr i8, i8* %41, i8 14
2242 ///  %43 = getelementptr i8, i8* %40, i8 14
2243 ///  %44 = load i8, i8* %42
2244 ///  %45 = load i8, i8* %43
2245 ///  %46 = zext i8 %44 to i32
2246 ///  %47 = zext i8 %45 to i32
2247 ///  %48 = sub i32 %46, %47
2248 ///  br label %endblock
2249 /// endblock:                                         ; preds = %res_block,
2250 /// %loadbb3
2251 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2252 ///  ret i32 %phi.res
2253 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2254                          const TargetLowering *TLI, const DataLayout *DL) {
2255   NumMemCmpCalls++;
2256 
2257   // TTI call to check if target would like to expand memcmp. Also, get the
2258   // MaxLoadSize.
2259   unsigned MaxLoadSize;
2260   if (!TTI->expandMemCmp(CI, MaxLoadSize))
2261     return false;
2262 
2263   // Early exit from expansion if -Oz.
2264   if (CI->getFunction()->optForMinSize())
2265     return false;
2266 
2267   // Early exit from expansion if size is not a constant.
2268   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2269   if (!SizeCast) {
2270     NumMemCmpNotConstant++;
2271     return false;
2272   }
2273 
2274   // Scale the max size down if the target can load more bytes than we need.
2275   uint64_t SizeVal = SizeCast->getZExtValue();
2276   if (MaxLoadSize > SizeVal)
2277     MaxLoadSize = 1 << SizeCast->getValue().logBase2();
2278 
2279   // Calculate how many load pairs are needed for the constant size.
2280   unsigned NumLoads = 0;
2281   unsigned RemainingSize = SizeVal;
2282   unsigned LoadSize = MaxLoadSize;
2283   while (RemainingSize) {
2284     NumLoads += RemainingSize / LoadSize;
2285     RemainingSize = RemainingSize % LoadSize;
2286     LoadSize = LoadSize / 2;
2287   }
2288 
2289   // Don't expand if this will require more loads than desired by the target.
2290   if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
2291     NumMemCmpGreaterThanMax++;
2292     return false;
2293   }
2294 
2295   NumMemCmpInlined++;
2296 
2297   // MemCmpHelper object creates and sets up basic blocks required for
2298   // expanding memcmp with size SizeVal.
2299   unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock;
2300   MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL);
2301 
2302   Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal);
2303 
2304   // Replace call with result of expansion and erase call.
2305   CI->replaceAllUsesWith(Res);
2306   CI->eraseFromParent();
2307 
2308   return true;
2309 }
2310 
2311 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2312   BasicBlock *BB = CI->getParent();
2313 
2314   // Lower inline assembly if we can.
2315   // If we found an inline asm expession, and if the target knows how to
2316   // lower it to normal LLVM code, do so now.
2317   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2318     if (TLI->ExpandInlineAsm(CI)) {
2319       // Avoid invalidating the iterator.
2320       CurInstIterator = BB->begin();
2321       // Avoid processing instructions out of order, which could cause
2322       // reuse before a value is defined.
2323       SunkAddrs.clear();
2324       return true;
2325     }
2326     // Sink address computing for memory operands into the block.
2327     if (optimizeInlineAsmInst(CI))
2328       return true;
2329   }
2330 
2331   // Align the pointer arguments to this call if the target thinks it's a good
2332   // idea
2333   unsigned MinSize, PrefAlign;
2334   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2335     for (auto &Arg : CI->arg_operands()) {
2336       // We want to align both objects whose address is used directly and
2337       // objects whose address is used in casts and GEPs, though it only makes
2338       // sense for GEPs if the offset is a multiple of the desired alignment and
2339       // if size - offset meets the size threshold.
2340       if (!Arg->getType()->isPointerTy())
2341         continue;
2342       APInt Offset(DL->getPointerSizeInBits(
2343                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2344                    0);
2345       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2346       uint64_t Offset2 = Offset.getLimitedValue();
2347       if ((Offset2 & (PrefAlign-1)) != 0)
2348         continue;
2349       AllocaInst *AI;
2350       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2351           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2352         AI->setAlignment(PrefAlign);
2353       // Global variables can only be aligned if they are defined in this
2354       // object (i.e. they are uniquely initialized in this object), and
2355       // over-aligning global variables that have an explicit section is
2356       // forbidden.
2357       GlobalVariable *GV;
2358       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2359           GV->getPointerAlignment(*DL) < PrefAlign &&
2360           DL->getTypeAllocSize(GV->getValueType()) >=
2361               MinSize + Offset2)
2362         GV->setAlignment(PrefAlign);
2363     }
2364     // If this is a memcpy (or similar) then we may be able to improve the
2365     // alignment
2366     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2367       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2368       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2369         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2370       if (Align > MI->getAlignment())
2371         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2372     }
2373   }
2374 
2375   // If we have a cold call site, try to sink addressing computation into the
2376   // cold block.  This interacts with our handling for loads and stores to
2377   // ensure that we can fold all uses of a potential addressing computation
2378   // into their uses.  TODO: generalize this to work over profiling data
2379   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2380     for (auto &Arg : CI->arg_operands()) {
2381       if (!Arg->getType()->isPointerTy())
2382         continue;
2383       unsigned AS = Arg->getType()->getPointerAddressSpace();
2384       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2385     }
2386 
2387   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2388   if (II) {
2389     switch (II->getIntrinsicID()) {
2390     default: break;
2391     case Intrinsic::objectsize: {
2392       // Lower all uses of llvm.objectsize.*
2393       ConstantInt *RetVal =
2394           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2395       // Substituting this can cause recursive simplifications, which can
2396       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2397       // this
2398       // happens.
2399       Value *CurValue = &*CurInstIterator;
2400       WeakTrackingVH IterHandle(CurValue);
2401 
2402       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2403 
2404       // If the iterator instruction was recursively deleted, start over at the
2405       // start of the block.
2406       if (IterHandle != CurValue) {
2407         CurInstIterator = BB->begin();
2408         SunkAddrs.clear();
2409       }
2410       return true;
2411     }
2412     case Intrinsic::aarch64_stlxr:
2413     case Intrinsic::aarch64_stxr: {
2414       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2415       if (!ExtVal || !ExtVal->hasOneUse() ||
2416           ExtVal->getParent() == CI->getParent())
2417         return false;
2418       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2419       ExtVal->moveBefore(CI);
2420       // Mark this instruction as "inserted by CGP", so that other
2421       // optimizations don't touch it.
2422       InsertedInsts.insert(ExtVal);
2423       return true;
2424     }
2425     case Intrinsic::invariant_group_barrier:
2426       II->replaceAllUsesWith(II->getArgOperand(0));
2427       II->eraseFromParent();
2428       return true;
2429 
2430     case Intrinsic::cttz:
2431     case Intrinsic::ctlz:
2432       // If counting zeros is expensive, try to avoid it.
2433       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2434     }
2435 
2436     if (TLI) {
2437       SmallVector<Value*, 2> PtrOps;
2438       Type *AccessTy;
2439       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2440         while (!PtrOps.empty()) {
2441           Value *PtrVal = PtrOps.pop_back_val();
2442           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2443           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2444             return true;
2445         }
2446     }
2447   }
2448 
2449   // From here on out we're working with named functions.
2450   if (!CI->getCalledFunction()) return false;
2451 
2452   // Lower all default uses of _chk calls.  This is very similar
2453   // to what InstCombineCalls does, but here we are only lowering calls
2454   // to fortified library functions (e.g. __memcpy_chk) that have the default
2455   // "don't know" as the objectsize.  Anything else should be left alone.
2456   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2457   if (Value *V = Simplifier.optimizeCall(CI)) {
2458     CI->replaceAllUsesWith(V);
2459     CI->eraseFromParent();
2460     return true;
2461   }
2462 
2463   LibFunc Func;
2464   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2465       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2466     ModifiedDT = true;
2467     return true;
2468   }
2469   return false;
2470 }
2471 
2472 /// Look for opportunities to duplicate return instructions to the predecessor
2473 /// to enable tail call optimizations. The case it is currently looking for is:
2474 /// @code
2475 /// bb0:
2476 ///   %tmp0 = tail call i32 @f0()
2477 ///   br label %return
2478 /// bb1:
2479 ///   %tmp1 = tail call i32 @f1()
2480 ///   br label %return
2481 /// bb2:
2482 ///   %tmp2 = tail call i32 @f2()
2483 ///   br label %return
2484 /// return:
2485 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2486 ///   ret i32 %retval
2487 /// @endcode
2488 ///
2489 /// =>
2490 ///
2491 /// @code
2492 /// bb0:
2493 ///   %tmp0 = tail call i32 @f0()
2494 ///   ret i32 %tmp0
2495 /// bb1:
2496 ///   %tmp1 = tail call i32 @f1()
2497 ///   ret i32 %tmp1
2498 /// bb2:
2499 ///   %tmp2 = tail call i32 @f2()
2500 ///   ret i32 %tmp2
2501 /// @endcode
2502 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2503   if (!TLI)
2504     return false;
2505 
2506   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2507   if (!RetI)
2508     return false;
2509 
2510   PHINode *PN = nullptr;
2511   BitCastInst *BCI = nullptr;
2512   Value *V = RetI->getReturnValue();
2513   if (V) {
2514     BCI = dyn_cast<BitCastInst>(V);
2515     if (BCI)
2516       V = BCI->getOperand(0);
2517 
2518     PN = dyn_cast<PHINode>(V);
2519     if (!PN)
2520       return false;
2521   }
2522 
2523   if (PN && PN->getParent() != BB)
2524     return false;
2525 
2526   // Make sure there are no instructions between the PHI and return, or that the
2527   // return is the first instruction in the block.
2528   if (PN) {
2529     BasicBlock::iterator BI = BB->begin();
2530     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2531     if (&*BI == BCI)
2532       // Also skip over the bitcast.
2533       ++BI;
2534     if (&*BI != RetI)
2535       return false;
2536   } else {
2537     BasicBlock::iterator BI = BB->begin();
2538     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2539     if (&*BI != RetI)
2540       return false;
2541   }
2542 
2543   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2544   /// call.
2545   const Function *F = BB->getParent();
2546   SmallVector<CallInst*, 4> TailCalls;
2547   if (PN) {
2548     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2549       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2550       // Make sure the phi value is indeed produced by the tail call.
2551       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2552           TLI->mayBeEmittedAsTailCall(CI) &&
2553           attributesPermitTailCall(F, CI, RetI, *TLI))
2554         TailCalls.push_back(CI);
2555     }
2556   } else {
2557     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2558     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2559       if (!VisitedBBs.insert(*PI).second)
2560         continue;
2561 
2562       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2563       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2564       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2565       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2566       if (RI == RE)
2567         continue;
2568 
2569       CallInst *CI = dyn_cast<CallInst>(&*RI);
2570       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2571           attributesPermitTailCall(F, CI, RetI, *TLI))
2572         TailCalls.push_back(CI);
2573     }
2574   }
2575 
2576   bool Changed = false;
2577   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2578     CallInst *CI = TailCalls[i];
2579     CallSite CS(CI);
2580 
2581     // Conservatively require the attributes of the call to match those of the
2582     // return. Ignore noalias because it doesn't affect the call sequence.
2583     AttributeList CalleeAttrs = CS.getAttributes();
2584     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2585             .removeAttribute(Attribute::NoAlias) !=
2586         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2587             .removeAttribute(Attribute::NoAlias))
2588       continue;
2589 
2590     // Make sure the call instruction is followed by an unconditional branch to
2591     // the return block.
2592     BasicBlock *CallBB = CI->getParent();
2593     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2594     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2595       continue;
2596 
2597     // Duplicate the return into CallBB.
2598     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2599     ModifiedDT = Changed = true;
2600     ++NumRetsDup;
2601   }
2602 
2603   // If we eliminated all predecessors of the block, delete the block now.
2604   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2605     BB->eraseFromParent();
2606 
2607   return Changed;
2608 }
2609 
2610 //===----------------------------------------------------------------------===//
2611 // Memory Optimization
2612 //===----------------------------------------------------------------------===//
2613 
2614 namespace {
2615 
2616 /// This is an extended version of TargetLowering::AddrMode
2617 /// which holds actual Value*'s for register values.
2618 struct ExtAddrMode : public TargetLowering::AddrMode {
2619   Value *BaseReg;
2620   Value *ScaledReg;
2621   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2622   void print(raw_ostream &OS) const;
2623   void dump() const;
2624 
2625   bool operator==(const ExtAddrMode& O) const {
2626     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2627            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2628            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2629   }
2630 };
2631 
2632 #ifndef NDEBUG
2633 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2634   AM.print(OS);
2635   return OS;
2636 }
2637 #endif
2638 
2639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2640 void ExtAddrMode::print(raw_ostream &OS) const {
2641   bool NeedPlus = false;
2642   OS << "[";
2643   if (BaseGV) {
2644     OS << (NeedPlus ? " + " : "")
2645        << "GV:";
2646     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2647     NeedPlus = true;
2648   }
2649 
2650   if (BaseOffs) {
2651     OS << (NeedPlus ? " + " : "")
2652        << BaseOffs;
2653     NeedPlus = true;
2654   }
2655 
2656   if (BaseReg) {
2657     OS << (NeedPlus ? " + " : "")
2658        << "Base:";
2659     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2660     NeedPlus = true;
2661   }
2662   if (Scale) {
2663     OS << (NeedPlus ? " + " : "")
2664        << Scale << "*";
2665     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2666   }
2667 
2668   OS << ']';
2669 }
2670 
2671 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2672   print(dbgs());
2673   dbgs() << '\n';
2674 }
2675 #endif
2676 
2677 /// \brief This class provides transaction based operation on the IR.
2678 /// Every change made through this class is recorded in the internal state and
2679 /// can be undone (rollback) until commit is called.
2680 class TypePromotionTransaction {
2681 
2682   /// \brief This represents the common interface of the individual transaction.
2683   /// Each class implements the logic for doing one specific modification on
2684   /// the IR via the TypePromotionTransaction.
2685   class TypePromotionAction {
2686   protected:
2687     /// The Instruction modified.
2688     Instruction *Inst;
2689 
2690   public:
2691     /// \brief Constructor of the action.
2692     /// The constructor performs the related action on the IR.
2693     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2694 
2695     virtual ~TypePromotionAction() {}
2696 
2697     /// \brief Undo the modification done by this action.
2698     /// When this method is called, the IR must be in the same state as it was
2699     /// before this action was applied.
2700     /// \pre Undoing the action works if and only if the IR is in the exact same
2701     /// state as it was directly after this action was applied.
2702     virtual void undo() = 0;
2703 
2704     /// \brief Advocate every change made by this action.
2705     /// When the results on the IR of the action are to be kept, it is important
2706     /// to call this function, otherwise hidden information may be kept forever.
2707     virtual void commit() {
2708       // Nothing to be done, this action is not doing anything.
2709     }
2710   };
2711 
2712   /// \brief Utility to remember the position of an instruction.
2713   class InsertionHandler {
2714     /// Position of an instruction.
2715     /// Either an instruction:
2716     /// - Is the first in a basic block: BB is used.
2717     /// - Has a previous instructon: PrevInst is used.
2718     union {
2719       Instruction *PrevInst;
2720       BasicBlock *BB;
2721     } Point;
2722     /// Remember whether or not the instruction had a previous instruction.
2723     bool HasPrevInstruction;
2724 
2725   public:
2726     /// \brief Record the position of \p Inst.
2727     InsertionHandler(Instruction *Inst) {
2728       BasicBlock::iterator It = Inst->getIterator();
2729       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2730       if (HasPrevInstruction)
2731         Point.PrevInst = &*--It;
2732       else
2733         Point.BB = Inst->getParent();
2734     }
2735 
2736     /// \brief Insert \p Inst at the recorded position.
2737     void insert(Instruction *Inst) {
2738       if (HasPrevInstruction) {
2739         if (Inst->getParent())
2740           Inst->removeFromParent();
2741         Inst->insertAfter(Point.PrevInst);
2742       } else {
2743         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2744         if (Inst->getParent())
2745           Inst->moveBefore(Position);
2746         else
2747           Inst->insertBefore(Position);
2748       }
2749     }
2750   };
2751 
2752   /// \brief Move an instruction before another.
2753   class InstructionMoveBefore : public TypePromotionAction {
2754     /// Original position of the instruction.
2755     InsertionHandler Position;
2756 
2757   public:
2758     /// \brief Move \p Inst before \p Before.
2759     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2760         : TypePromotionAction(Inst), Position(Inst) {
2761       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2762       Inst->moveBefore(Before);
2763     }
2764 
2765     /// \brief Move the instruction back to its original position.
2766     void undo() override {
2767       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2768       Position.insert(Inst);
2769     }
2770   };
2771 
2772   /// \brief Set the operand of an instruction with a new value.
2773   class OperandSetter : public TypePromotionAction {
2774     /// Original operand of the instruction.
2775     Value *Origin;
2776     /// Index of the modified instruction.
2777     unsigned Idx;
2778 
2779   public:
2780     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2781     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2782         : TypePromotionAction(Inst), Idx(Idx) {
2783       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2784                    << "for:" << *Inst << "\n"
2785                    << "with:" << *NewVal << "\n");
2786       Origin = Inst->getOperand(Idx);
2787       Inst->setOperand(Idx, NewVal);
2788     }
2789 
2790     /// \brief Restore the original value of the instruction.
2791     void undo() override {
2792       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2793                    << "for: " << *Inst << "\n"
2794                    << "with: " << *Origin << "\n");
2795       Inst->setOperand(Idx, Origin);
2796     }
2797   };
2798 
2799   /// \brief Hide the operands of an instruction.
2800   /// Do as if this instruction was not using any of its operands.
2801   class OperandsHider : public TypePromotionAction {
2802     /// The list of original operands.
2803     SmallVector<Value *, 4> OriginalValues;
2804 
2805   public:
2806     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2807     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2808       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2809       unsigned NumOpnds = Inst->getNumOperands();
2810       OriginalValues.reserve(NumOpnds);
2811       for (unsigned It = 0; It < NumOpnds; ++It) {
2812         // Save the current operand.
2813         Value *Val = Inst->getOperand(It);
2814         OriginalValues.push_back(Val);
2815         // Set a dummy one.
2816         // We could use OperandSetter here, but that would imply an overhead
2817         // that we are not willing to pay.
2818         Inst->setOperand(It, UndefValue::get(Val->getType()));
2819       }
2820     }
2821 
2822     /// \brief Restore the original list of uses.
2823     void undo() override {
2824       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2825       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2826         Inst->setOperand(It, OriginalValues[It]);
2827     }
2828   };
2829 
2830   /// \brief Build a truncate instruction.
2831   class TruncBuilder : public TypePromotionAction {
2832     Value *Val;
2833   public:
2834     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2835     /// result.
2836     /// trunc Opnd to Ty.
2837     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2838       IRBuilder<> Builder(Opnd);
2839       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2840       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2841     }
2842 
2843     /// \brief Get the built value.
2844     Value *getBuiltValue() { return Val; }
2845 
2846     /// \brief Remove the built instruction.
2847     void undo() override {
2848       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2849       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2850         IVal->eraseFromParent();
2851     }
2852   };
2853 
2854   /// \brief Build a sign extension instruction.
2855   class SExtBuilder : public TypePromotionAction {
2856     Value *Val;
2857   public:
2858     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2859     /// result.
2860     /// sext Opnd to Ty.
2861     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2862         : TypePromotionAction(InsertPt) {
2863       IRBuilder<> Builder(InsertPt);
2864       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2865       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2866     }
2867 
2868     /// \brief Get the built value.
2869     Value *getBuiltValue() { return Val; }
2870 
2871     /// \brief Remove the built instruction.
2872     void undo() override {
2873       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2874       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2875         IVal->eraseFromParent();
2876     }
2877   };
2878 
2879   /// \brief Build a zero extension instruction.
2880   class ZExtBuilder : public TypePromotionAction {
2881     Value *Val;
2882   public:
2883     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2884     /// result.
2885     /// zext Opnd to Ty.
2886     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2887         : TypePromotionAction(InsertPt) {
2888       IRBuilder<> Builder(InsertPt);
2889       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2890       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2891     }
2892 
2893     /// \brief Get the built value.
2894     Value *getBuiltValue() { return Val; }
2895 
2896     /// \brief Remove the built instruction.
2897     void undo() override {
2898       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2899       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2900         IVal->eraseFromParent();
2901     }
2902   };
2903 
2904   /// \brief Mutate an instruction to another type.
2905   class TypeMutator : public TypePromotionAction {
2906     /// Record the original type.
2907     Type *OrigTy;
2908 
2909   public:
2910     /// \brief Mutate the type of \p Inst into \p NewTy.
2911     TypeMutator(Instruction *Inst, Type *NewTy)
2912         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2913       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2914                    << "\n");
2915       Inst->mutateType(NewTy);
2916     }
2917 
2918     /// \brief Mutate the instruction back to its original type.
2919     void undo() override {
2920       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2921                    << "\n");
2922       Inst->mutateType(OrigTy);
2923     }
2924   };
2925 
2926   /// \brief Replace the uses of an instruction by another instruction.
2927   class UsesReplacer : public TypePromotionAction {
2928     /// Helper structure to keep track of the replaced uses.
2929     struct InstructionAndIdx {
2930       /// The instruction using the instruction.
2931       Instruction *Inst;
2932       /// The index where this instruction is used for Inst.
2933       unsigned Idx;
2934       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2935           : Inst(Inst), Idx(Idx) {}
2936     };
2937 
2938     /// Keep track of the original uses (pair Instruction, Index).
2939     SmallVector<InstructionAndIdx, 4> OriginalUses;
2940     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2941 
2942   public:
2943     /// \brief Replace all the use of \p Inst by \p New.
2944     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2945       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2946                    << "\n");
2947       // Record the original uses.
2948       for (Use &U : Inst->uses()) {
2949         Instruction *UserI = cast<Instruction>(U.getUser());
2950         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2951       }
2952       // Now, we can replace the uses.
2953       Inst->replaceAllUsesWith(New);
2954     }
2955 
2956     /// \brief Reassign the original uses of Inst to Inst.
2957     void undo() override {
2958       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2959       for (use_iterator UseIt = OriginalUses.begin(),
2960                         EndIt = OriginalUses.end();
2961            UseIt != EndIt; ++UseIt) {
2962         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2963       }
2964     }
2965   };
2966 
2967   /// \brief Remove an instruction from the IR.
2968   class InstructionRemover : public TypePromotionAction {
2969     /// Original position of the instruction.
2970     InsertionHandler Inserter;
2971     /// Helper structure to hide all the link to the instruction. In other
2972     /// words, this helps to do as if the instruction was removed.
2973     OperandsHider Hider;
2974     /// Keep track of the uses replaced, if any.
2975     UsesReplacer *Replacer;
2976     /// Keep track of instructions removed.
2977     SetOfInstrs &RemovedInsts;
2978 
2979   public:
2980     /// \brief Remove all reference of \p Inst and optinally replace all its
2981     /// uses with New.
2982     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2983     /// \pre If !Inst->use_empty(), then New != nullptr
2984     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2985                        Value *New = nullptr)
2986         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2987           Replacer(nullptr), RemovedInsts(RemovedInsts) {
2988       if (New)
2989         Replacer = new UsesReplacer(Inst, New);
2990       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2991       RemovedInsts.insert(Inst);
2992       /// The instructions removed here will be freed after completing
2993       /// optimizeBlock() for all blocks as we need to keep track of the
2994       /// removed instructions during promotion.
2995       Inst->removeFromParent();
2996     }
2997 
2998     ~InstructionRemover() override { delete Replacer; }
2999 
3000     /// \brief Resurrect the instruction and reassign it to the proper uses if
3001     /// new value was provided when build this action.
3002     void undo() override {
3003       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3004       Inserter.insert(Inst);
3005       if (Replacer)
3006         Replacer->undo();
3007       Hider.undo();
3008       RemovedInsts.erase(Inst);
3009     }
3010   };
3011 
3012 public:
3013   /// Restoration point.
3014   /// The restoration point is a pointer to an action instead of an iterator
3015   /// because the iterator may be invalidated but not the pointer.
3016   typedef const TypePromotionAction *ConstRestorationPt;
3017 
3018   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3019       : RemovedInsts(RemovedInsts) {}
3020 
3021   /// Advocate every changes made in that transaction.
3022   void commit();
3023   /// Undo all the changes made after the given point.
3024   void rollback(ConstRestorationPt Point);
3025   /// Get the current restoration point.
3026   ConstRestorationPt getRestorationPoint() const;
3027 
3028   /// \name API for IR modification with state keeping to support rollback.
3029   /// @{
3030   /// Same as Instruction::setOperand.
3031   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3032   /// Same as Instruction::eraseFromParent.
3033   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3034   /// Same as Value::replaceAllUsesWith.
3035   void replaceAllUsesWith(Instruction *Inst, Value *New);
3036   /// Same as Value::mutateType.
3037   void mutateType(Instruction *Inst, Type *NewTy);
3038   /// Same as IRBuilder::createTrunc.
3039   Value *createTrunc(Instruction *Opnd, Type *Ty);
3040   /// Same as IRBuilder::createSExt.
3041   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3042   /// Same as IRBuilder::createZExt.
3043   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3044   /// Same as Instruction::moveBefore.
3045   void moveBefore(Instruction *Inst, Instruction *Before);
3046   /// @}
3047 
3048 private:
3049   /// The ordered list of actions made so far.
3050   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3051   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
3052   SetOfInstrs &RemovedInsts;
3053 };
3054 
3055 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3056                                           Value *NewVal) {
3057   Actions.push_back(
3058       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
3059 }
3060 
3061 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3062                                                 Value *NewVal) {
3063   Actions.push_back(
3064       make_unique<TypePromotionTransaction::InstructionRemover>(Inst,
3065                                                          RemovedInsts, NewVal));
3066 }
3067 
3068 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3069                                                   Value *New) {
3070   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3071 }
3072 
3073 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3074   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3075 }
3076 
3077 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3078                                              Type *Ty) {
3079   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3080   Value *Val = Ptr->getBuiltValue();
3081   Actions.push_back(std::move(Ptr));
3082   return Val;
3083 }
3084 
3085 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3086                                             Value *Opnd, Type *Ty) {
3087   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3088   Value *Val = Ptr->getBuiltValue();
3089   Actions.push_back(std::move(Ptr));
3090   return Val;
3091 }
3092 
3093 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3094                                             Value *Opnd, Type *Ty) {
3095   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3096   Value *Val = Ptr->getBuiltValue();
3097   Actions.push_back(std::move(Ptr));
3098   return Val;
3099 }
3100 
3101 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3102                                           Instruction *Before) {
3103   Actions.push_back(
3104       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
3105 }
3106 
3107 TypePromotionTransaction::ConstRestorationPt
3108 TypePromotionTransaction::getRestorationPoint() const {
3109   return !Actions.empty() ? Actions.back().get() : nullptr;
3110 }
3111 
3112 void TypePromotionTransaction::commit() {
3113   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3114        ++It)
3115     (*It)->commit();
3116   Actions.clear();
3117 }
3118 
3119 void TypePromotionTransaction::rollback(
3120     TypePromotionTransaction::ConstRestorationPt Point) {
3121   while (!Actions.empty() && Point != Actions.back().get()) {
3122     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3123     Curr->undo();
3124   }
3125 }
3126 
3127 /// \brief A helper class for matching addressing modes.
3128 ///
3129 /// This encapsulates the logic for matching the target-legal addressing modes.
3130 class AddressingModeMatcher {
3131   SmallVectorImpl<Instruction*> &AddrModeInsts;
3132   const TargetLowering &TLI;
3133   const TargetRegisterInfo &TRI;
3134   const DataLayout &DL;
3135 
3136   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3137   /// the memory instruction that we're computing this address for.
3138   Type *AccessTy;
3139   unsigned AddrSpace;
3140   Instruction *MemoryInst;
3141 
3142   /// This is the addressing mode that we're building up. This is
3143   /// part of the return value of this addressing mode matching stuff.
3144   ExtAddrMode &AddrMode;
3145 
3146   /// The instructions inserted by other CodeGenPrepare optimizations.
3147   const SetOfInstrs &InsertedInsts;
3148   /// A map from the instructions to their type before promotion.
3149   InstrToOrigTy &PromotedInsts;
3150   /// The ongoing transaction where every action should be registered.
3151   TypePromotionTransaction &TPT;
3152 
3153   /// This is set to true when we should not do profitability checks.
3154   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3155   bool IgnoreProfitability;
3156 
3157   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3158                         const TargetLowering &TLI,
3159                         const TargetRegisterInfo &TRI,
3160                         Type *AT, unsigned AS,
3161                         Instruction *MI, ExtAddrMode &AM,
3162                         const SetOfInstrs &InsertedInsts,
3163                         InstrToOrigTy &PromotedInsts,
3164                         TypePromotionTransaction &TPT)
3165       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3166         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3167         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3168         PromotedInsts(PromotedInsts), TPT(TPT) {
3169     IgnoreProfitability = false;
3170   }
3171 public:
3172 
3173   /// Find the maximal addressing mode that a load/store of V can fold,
3174   /// give an access type of AccessTy.  This returns a list of involved
3175   /// instructions in AddrModeInsts.
3176   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3177   /// optimizations.
3178   /// \p PromotedInsts maps the instructions to their type before promotion.
3179   /// \p The ongoing transaction where every action should be registered.
3180   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3181                            Instruction *MemoryInst,
3182                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3183                            const TargetLowering &TLI,
3184                            const TargetRegisterInfo &TRI,
3185                            const SetOfInstrs &InsertedInsts,
3186                            InstrToOrigTy &PromotedInsts,
3187                            TypePromotionTransaction &TPT) {
3188     ExtAddrMode Result;
3189 
3190     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3191                                          AccessTy, AS,
3192                                          MemoryInst, Result, InsertedInsts,
3193                                          PromotedInsts, TPT).matchAddr(V, 0);
3194     (void)Success; assert(Success && "Couldn't select *anything*?");
3195     return Result;
3196   }
3197 private:
3198   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3199   bool matchAddr(Value *V, unsigned Depth);
3200   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3201                           bool *MovedAway = nullptr);
3202   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3203                                             ExtAddrMode &AMBefore,
3204                                             ExtAddrMode &AMAfter);
3205   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3206   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3207                              Value *PromotedOperand) const;
3208 };
3209 
3210 /// Try adding ScaleReg*Scale to the current addressing mode.
3211 /// Return true and update AddrMode if this addr mode is legal for the target,
3212 /// false if not.
3213 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3214                                              unsigned Depth) {
3215   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3216   // mode.  Just process that directly.
3217   if (Scale == 1)
3218     return matchAddr(ScaleReg, Depth);
3219 
3220   // If the scale is 0, it takes nothing to add this.
3221   if (Scale == 0)
3222     return true;
3223 
3224   // If we already have a scale of this value, we can add to it, otherwise, we
3225   // need an available scale field.
3226   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3227     return false;
3228 
3229   ExtAddrMode TestAddrMode = AddrMode;
3230 
3231   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3232   // [A+B + A*7] -> [B+A*8].
3233   TestAddrMode.Scale += Scale;
3234   TestAddrMode.ScaledReg = ScaleReg;
3235 
3236   // If the new address isn't legal, bail out.
3237   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3238     return false;
3239 
3240   // It was legal, so commit it.
3241   AddrMode = TestAddrMode;
3242 
3243   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3244   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3245   // X*Scale + C*Scale to addr mode.
3246   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3247   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3248       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3249     TestAddrMode.ScaledReg = AddLHS;
3250     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3251 
3252     // If this addressing mode is legal, commit it and remember that we folded
3253     // this instruction.
3254     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3255       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3256       AddrMode = TestAddrMode;
3257       return true;
3258     }
3259   }
3260 
3261   // Otherwise, not (x+c)*scale, just return what we have.
3262   return true;
3263 }
3264 
3265 /// This is a little filter, which returns true if an addressing computation
3266 /// involving I might be folded into a load/store accessing it.
3267 /// This doesn't need to be perfect, but needs to accept at least
3268 /// the set of instructions that MatchOperationAddr can.
3269 static bool MightBeFoldableInst(Instruction *I) {
3270   switch (I->getOpcode()) {
3271   case Instruction::BitCast:
3272   case Instruction::AddrSpaceCast:
3273     // Don't touch identity bitcasts.
3274     if (I->getType() == I->getOperand(0)->getType())
3275       return false;
3276     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3277   case Instruction::PtrToInt:
3278     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3279     return true;
3280   case Instruction::IntToPtr:
3281     // We know the input is intptr_t, so this is foldable.
3282     return true;
3283   case Instruction::Add:
3284     return true;
3285   case Instruction::Mul:
3286   case Instruction::Shl:
3287     // Can only handle X*C and X << C.
3288     return isa<ConstantInt>(I->getOperand(1));
3289   case Instruction::GetElementPtr:
3290     return true;
3291   default:
3292     return false;
3293   }
3294 }
3295 
3296 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3297 /// \note \p Val is assumed to be the product of some type promotion.
3298 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3299 /// to be legal, as the non-promoted value would have had the same state.
3300 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3301                                        const DataLayout &DL, Value *Val) {
3302   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3303   if (!PromotedInst)
3304     return false;
3305   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3306   // If the ISDOpcode is undefined, it was undefined before the promotion.
3307   if (!ISDOpcode)
3308     return true;
3309   // Otherwise, check if the promoted instruction is legal or not.
3310   return TLI.isOperationLegalOrCustom(
3311       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3312 }
3313 
3314 /// \brief Hepler class to perform type promotion.
3315 class TypePromotionHelper {
3316   /// \brief Utility function to check whether or not a sign or zero extension
3317   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3318   /// either using the operands of \p Inst or promoting \p Inst.
3319   /// The type of the extension is defined by \p IsSExt.
3320   /// In other words, check if:
3321   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3322   /// #1 Promotion applies:
3323   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3324   /// #2 Operand reuses:
3325   /// ext opnd1 to ConsideredExtType.
3326   /// \p PromotedInsts maps the instructions to their type before promotion.
3327   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3328                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3329 
3330   /// \brief Utility function to determine if \p OpIdx should be promoted when
3331   /// promoting \p Inst.
3332   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3333     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3334   }
3335 
3336   /// \brief Utility function to promote the operand of \p Ext when this
3337   /// operand is a promotable trunc or sext or zext.
3338   /// \p PromotedInsts maps the instructions to their type before promotion.
3339   /// \p CreatedInstsCost[out] contains the cost of all instructions
3340   /// created to promote the operand of Ext.
3341   /// Newly added extensions are inserted in \p Exts.
3342   /// Newly added truncates are inserted in \p Truncs.
3343   /// Should never be called directly.
3344   /// \return The promoted value which is used instead of Ext.
3345   static Value *promoteOperandForTruncAndAnyExt(
3346       Instruction *Ext, TypePromotionTransaction &TPT,
3347       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3348       SmallVectorImpl<Instruction *> *Exts,
3349       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3350 
3351   /// \brief Utility function to promote the operand of \p Ext when this
3352   /// operand is promotable and is not a supported trunc or sext.
3353   /// \p PromotedInsts maps the instructions to their type before promotion.
3354   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3355   /// created to promote the operand of Ext.
3356   /// Newly added extensions are inserted in \p Exts.
3357   /// Newly added truncates are inserted in \p Truncs.
3358   /// Should never be called directly.
3359   /// \return The promoted value which is used instead of Ext.
3360   static Value *promoteOperandForOther(Instruction *Ext,
3361                                        TypePromotionTransaction &TPT,
3362                                        InstrToOrigTy &PromotedInsts,
3363                                        unsigned &CreatedInstsCost,
3364                                        SmallVectorImpl<Instruction *> *Exts,
3365                                        SmallVectorImpl<Instruction *> *Truncs,
3366                                        const TargetLowering &TLI, bool IsSExt);
3367 
3368   /// \see promoteOperandForOther.
3369   static Value *signExtendOperandForOther(
3370       Instruction *Ext, TypePromotionTransaction &TPT,
3371       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3372       SmallVectorImpl<Instruction *> *Exts,
3373       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3374     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3375                                   Exts, Truncs, TLI, true);
3376   }
3377 
3378   /// \see promoteOperandForOther.
3379   static Value *zeroExtendOperandForOther(
3380       Instruction *Ext, TypePromotionTransaction &TPT,
3381       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3382       SmallVectorImpl<Instruction *> *Exts,
3383       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3384     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3385                                   Exts, Truncs, TLI, false);
3386   }
3387 
3388 public:
3389   /// Type for the utility function that promotes the operand of Ext.
3390   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
3391                            InstrToOrigTy &PromotedInsts,
3392                            unsigned &CreatedInstsCost,
3393                            SmallVectorImpl<Instruction *> *Exts,
3394                            SmallVectorImpl<Instruction *> *Truncs,
3395                            const TargetLowering &TLI);
3396   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3397   /// action to promote the operand of \p Ext instead of using Ext.
3398   /// \return NULL if no promotable action is possible with the current
3399   /// sign extension.
3400   /// \p InsertedInsts keeps track of all the instructions inserted by the
3401   /// other CodeGenPrepare optimizations. This information is important
3402   /// because we do not want to promote these instructions as CodeGenPrepare
3403   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3404   /// \p PromotedInsts maps the instructions to their type before promotion.
3405   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3406                           const TargetLowering &TLI,
3407                           const InstrToOrigTy &PromotedInsts);
3408 };
3409 
3410 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3411                                         Type *ConsideredExtType,
3412                                         const InstrToOrigTy &PromotedInsts,
3413                                         bool IsSExt) {
3414   // The promotion helper does not know how to deal with vector types yet.
3415   // To be able to fix that, we would need to fix the places where we
3416   // statically extend, e.g., constants and such.
3417   if (Inst->getType()->isVectorTy())
3418     return false;
3419 
3420   // We can always get through zext.
3421   if (isa<ZExtInst>(Inst))
3422     return true;
3423 
3424   // sext(sext) is ok too.
3425   if (IsSExt && isa<SExtInst>(Inst))
3426     return true;
3427 
3428   // We can get through binary operator, if it is legal. In other words, the
3429   // binary operator must have a nuw or nsw flag.
3430   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3431   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3432       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3433        (IsSExt && BinOp->hasNoSignedWrap())))
3434     return true;
3435 
3436   // Check if we can do the following simplification.
3437   // ext(trunc(opnd)) --> ext(opnd)
3438   if (!isa<TruncInst>(Inst))
3439     return false;
3440 
3441   Value *OpndVal = Inst->getOperand(0);
3442   // Check if we can use this operand in the extension.
3443   // If the type is larger than the result type of the extension, we cannot.
3444   if (!OpndVal->getType()->isIntegerTy() ||
3445       OpndVal->getType()->getIntegerBitWidth() >
3446           ConsideredExtType->getIntegerBitWidth())
3447     return false;
3448 
3449   // If the operand of the truncate is not an instruction, we will not have
3450   // any information on the dropped bits.
3451   // (Actually we could for constant but it is not worth the extra logic).
3452   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3453   if (!Opnd)
3454     return false;
3455 
3456   // Check if the source of the type is narrow enough.
3457   // I.e., check that trunc just drops extended bits of the same kind of
3458   // the extension.
3459   // #1 get the type of the operand and check the kind of the extended bits.
3460   const Type *OpndType;
3461   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3462   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3463     OpndType = It->second.getPointer();
3464   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3465     OpndType = Opnd->getOperand(0)->getType();
3466   else
3467     return false;
3468 
3469   // #2 check that the truncate just drops extended bits.
3470   return Inst->getType()->getIntegerBitWidth() >=
3471          OpndType->getIntegerBitWidth();
3472 }
3473 
3474 TypePromotionHelper::Action TypePromotionHelper::getAction(
3475     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3476     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3477   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3478          "Unexpected instruction type");
3479   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3480   Type *ExtTy = Ext->getType();
3481   bool IsSExt = isa<SExtInst>(Ext);
3482   // If the operand of the extension is not an instruction, we cannot
3483   // get through.
3484   // If it, check we can get through.
3485   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3486     return nullptr;
3487 
3488   // Do not promote if the operand has been added by codegenprepare.
3489   // Otherwise, it means we are undoing an optimization that is likely to be
3490   // redone, thus causing potential infinite loop.
3491   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3492     return nullptr;
3493 
3494   // SExt or Trunc instructions.
3495   // Return the related handler.
3496   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3497       isa<ZExtInst>(ExtOpnd))
3498     return promoteOperandForTruncAndAnyExt;
3499 
3500   // Regular instruction.
3501   // Abort early if we will have to insert non-free instructions.
3502   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3503     return nullptr;
3504   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3505 }
3506 
3507 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3508     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
3509     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3510     SmallVectorImpl<Instruction *> *Exts,
3511     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3512   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3513   // get through it and this method should not be called.
3514   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3515   Value *ExtVal = SExt;
3516   bool HasMergedNonFreeExt = false;
3517   if (isa<ZExtInst>(SExtOpnd)) {
3518     // Replace s|zext(zext(opnd))
3519     // => zext(opnd).
3520     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3521     Value *ZExt =
3522         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3523     TPT.replaceAllUsesWith(SExt, ZExt);
3524     TPT.eraseInstruction(SExt);
3525     ExtVal = ZExt;
3526   } else {
3527     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3528     // => z|sext(opnd).
3529     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3530   }
3531   CreatedInstsCost = 0;
3532 
3533   // Remove dead code.
3534   if (SExtOpnd->use_empty())
3535     TPT.eraseInstruction(SExtOpnd);
3536 
3537   // Check if the extension is still needed.
3538   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3539   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3540     if (ExtInst) {
3541       if (Exts)
3542         Exts->push_back(ExtInst);
3543       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3544     }
3545     return ExtVal;
3546   }
3547 
3548   // At this point we have: ext ty opnd to ty.
3549   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3550   Value *NextVal = ExtInst->getOperand(0);
3551   TPT.eraseInstruction(ExtInst, NextVal);
3552   return NextVal;
3553 }
3554 
3555 Value *TypePromotionHelper::promoteOperandForOther(
3556     Instruction *Ext, TypePromotionTransaction &TPT,
3557     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3558     SmallVectorImpl<Instruction *> *Exts,
3559     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3560     bool IsSExt) {
3561   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3562   // get through it and this method should not be called.
3563   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3564   CreatedInstsCost = 0;
3565   if (!ExtOpnd->hasOneUse()) {
3566     // ExtOpnd will be promoted.
3567     // All its uses, but Ext, will need to use a truncated value of the
3568     // promoted version.
3569     // Create the truncate now.
3570     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3571     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3572       ITrunc->removeFromParent();
3573       // Insert it just after the definition.
3574       ITrunc->insertAfter(ExtOpnd);
3575       if (Truncs)
3576         Truncs->push_back(ITrunc);
3577     }
3578 
3579     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3580     // Restore the operand of Ext (which has been replaced by the previous call
3581     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3582     TPT.setOperand(Ext, 0, ExtOpnd);
3583   }
3584 
3585   // Get through the Instruction:
3586   // 1. Update its type.
3587   // 2. Replace the uses of Ext by Inst.
3588   // 3. Extend each operand that needs to be extended.
3589 
3590   // Remember the original type of the instruction before promotion.
3591   // This is useful to know that the high bits are sign extended bits.
3592   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3593       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3594   // Step #1.
3595   TPT.mutateType(ExtOpnd, Ext->getType());
3596   // Step #2.
3597   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3598   // Step #3.
3599   Instruction *ExtForOpnd = Ext;
3600 
3601   DEBUG(dbgs() << "Propagate Ext to operands\n");
3602   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3603        ++OpIdx) {
3604     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3605     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3606         !shouldExtOperand(ExtOpnd, OpIdx)) {
3607       DEBUG(dbgs() << "No need to propagate\n");
3608       continue;
3609     }
3610     // Check if we can statically extend the operand.
3611     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3612     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3613       DEBUG(dbgs() << "Statically extend\n");
3614       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3615       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3616                             : Cst->getValue().zext(BitWidth);
3617       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3618       continue;
3619     }
3620     // UndefValue are typed, so we have to statically sign extend them.
3621     if (isa<UndefValue>(Opnd)) {
3622       DEBUG(dbgs() << "Statically extend\n");
3623       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3624       continue;
3625     }
3626 
3627     // Otherwise we have to explicity sign extend the operand.
3628     // Check if Ext was reused to extend an operand.
3629     if (!ExtForOpnd) {
3630       // If yes, create a new one.
3631       DEBUG(dbgs() << "More operands to ext\n");
3632       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3633         : TPT.createZExt(Ext, Opnd, Ext->getType());
3634       if (!isa<Instruction>(ValForExtOpnd)) {
3635         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3636         continue;
3637       }
3638       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3639     }
3640     if (Exts)
3641       Exts->push_back(ExtForOpnd);
3642     TPT.setOperand(ExtForOpnd, 0, Opnd);
3643 
3644     // Move the sign extension before the insertion point.
3645     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3646     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3647     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3648     // If more sext are required, new instructions will have to be created.
3649     ExtForOpnd = nullptr;
3650   }
3651   if (ExtForOpnd == Ext) {
3652     DEBUG(dbgs() << "Extension is useless now\n");
3653     TPT.eraseInstruction(Ext);
3654   }
3655   return ExtOpnd;
3656 }
3657 
3658 /// Check whether or not promoting an instruction to a wider type is profitable.
3659 /// \p NewCost gives the cost of extension instructions created by the
3660 /// promotion.
3661 /// \p OldCost gives the cost of extension instructions before the promotion
3662 /// plus the number of instructions that have been
3663 /// matched in the addressing mode the promotion.
3664 /// \p PromotedOperand is the value that has been promoted.
3665 /// \return True if the promotion is profitable, false otherwise.
3666 bool AddressingModeMatcher::isPromotionProfitable(
3667     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3668   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3669   // The cost of the new extensions is greater than the cost of the
3670   // old extension plus what we folded.
3671   // This is not profitable.
3672   if (NewCost > OldCost)
3673     return false;
3674   if (NewCost < OldCost)
3675     return true;
3676   // The promotion is neutral but it may help folding the sign extension in
3677   // loads for instance.
3678   // Check that we did not create an illegal instruction.
3679   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3680 }
3681 
3682 /// Given an instruction or constant expr, see if we can fold the operation
3683 /// into the addressing mode. If so, update the addressing mode and return
3684 /// true, otherwise return false without modifying AddrMode.
3685 /// If \p MovedAway is not NULL, it contains the information of whether or
3686 /// not AddrInst has to be folded into the addressing mode on success.
3687 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3688 /// because it has been moved away.
3689 /// Thus AddrInst must not be added in the matched instructions.
3690 /// This state can happen when AddrInst is a sext, since it may be moved away.
3691 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3692 /// not be referenced anymore.
3693 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3694                                                unsigned Depth,
3695                                                bool *MovedAway) {
3696   // Avoid exponential behavior on extremely deep expression trees.
3697   if (Depth >= 5) return false;
3698 
3699   // By default, all matched instructions stay in place.
3700   if (MovedAway)
3701     *MovedAway = false;
3702 
3703   switch (Opcode) {
3704   case Instruction::PtrToInt:
3705     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3706     return matchAddr(AddrInst->getOperand(0), Depth);
3707   case Instruction::IntToPtr: {
3708     auto AS = AddrInst->getType()->getPointerAddressSpace();
3709     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3710     // This inttoptr is a no-op if the integer type is pointer sized.
3711     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3712       return matchAddr(AddrInst->getOperand(0), Depth);
3713     return false;
3714   }
3715   case Instruction::BitCast:
3716     // BitCast is always a noop, and we can handle it as long as it is
3717     // int->int or pointer->pointer (we don't want int<->fp or something).
3718     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3719          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3720         // Don't touch identity bitcasts.  These were probably put here by LSR,
3721         // and we don't want to mess around with them.  Assume it knows what it
3722         // is doing.
3723         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3724       return matchAddr(AddrInst->getOperand(0), Depth);
3725     return false;
3726   case Instruction::AddrSpaceCast: {
3727     unsigned SrcAS
3728       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3729     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3730     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3731       return matchAddr(AddrInst->getOperand(0), Depth);
3732     return false;
3733   }
3734   case Instruction::Add: {
3735     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3736     ExtAddrMode BackupAddrMode = AddrMode;
3737     unsigned OldSize = AddrModeInsts.size();
3738     // Start a transaction at this point.
3739     // The LHS may match but not the RHS.
3740     // Therefore, we need a higher level restoration point to undo partially
3741     // matched operation.
3742     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3743         TPT.getRestorationPoint();
3744 
3745     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3746         matchAddr(AddrInst->getOperand(0), Depth+1))
3747       return true;
3748 
3749     // Restore the old addr mode info.
3750     AddrMode = BackupAddrMode;
3751     AddrModeInsts.resize(OldSize);
3752     TPT.rollback(LastKnownGood);
3753 
3754     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3755     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3756         matchAddr(AddrInst->getOperand(1), Depth+1))
3757       return true;
3758 
3759     // Otherwise we definitely can't merge the ADD in.
3760     AddrMode = BackupAddrMode;
3761     AddrModeInsts.resize(OldSize);
3762     TPT.rollback(LastKnownGood);
3763     break;
3764   }
3765   //case Instruction::Or:
3766   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3767   //break;
3768   case Instruction::Mul:
3769   case Instruction::Shl: {
3770     // Can only handle X*C and X << C.
3771     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3772     if (!RHS)
3773       return false;
3774     int64_t Scale = RHS->getSExtValue();
3775     if (Opcode == Instruction::Shl)
3776       Scale = 1LL << Scale;
3777 
3778     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3779   }
3780   case Instruction::GetElementPtr: {
3781     // Scan the GEP.  We check it if it contains constant offsets and at most
3782     // one variable offset.
3783     int VariableOperand = -1;
3784     unsigned VariableScale = 0;
3785 
3786     int64_t ConstantOffset = 0;
3787     gep_type_iterator GTI = gep_type_begin(AddrInst);
3788     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3789       if (StructType *STy = GTI.getStructTypeOrNull()) {
3790         const StructLayout *SL = DL.getStructLayout(STy);
3791         unsigned Idx =
3792           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3793         ConstantOffset += SL->getElementOffset(Idx);
3794       } else {
3795         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3796         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3797           ConstantOffset += CI->getSExtValue()*TypeSize;
3798         } else if (TypeSize) {  // Scales of zero don't do anything.
3799           // We only allow one variable index at the moment.
3800           if (VariableOperand != -1)
3801             return false;
3802 
3803           // Remember the variable index.
3804           VariableOperand = i;
3805           VariableScale = TypeSize;
3806         }
3807       }
3808     }
3809 
3810     // A common case is for the GEP to only do a constant offset.  In this case,
3811     // just add it to the disp field and check validity.
3812     if (VariableOperand == -1) {
3813       AddrMode.BaseOffs += ConstantOffset;
3814       if (ConstantOffset == 0 ||
3815           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3816         // Check to see if we can fold the base pointer in too.
3817         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3818           return true;
3819       }
3820       AddrMode.BaseOffs -= ConstantOffset;
3821       return false;
3822     }
3823 
3824     // Save the valid addressing mode in case we can't match.
3825     ExtAddrMode BackupAddrMode = AddrMode;
3826     unsigned OldSize = AddrModeInsts.size();
3827 
3828     // See if the scale and offset amount is valid for this target.
3829     AddrMode.BaseOffs += ConstantOffset;
3830 
3831     // Match the base operand of the GEP.
3832     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3833       // If it couldn't be matched, just stuff the value in a register.
3834       if (AddrMode.HasBaseReg) {
3835         AddrMode = BackupAddrMode;
3836         AddrModeInsts.resize(OldSize);
3837         return false;
3838       }
3839       AddrMode.HasBaseReg = true;
3840       AddrMode.BaseReg = AddrInst->getOperand(0);
3841     }
3842 
3843     // Match the remaining variable portion of the GEP.
3844     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3845                           Depth)) {
3846       // If it couldn't be matched, try stuffing the base into a register
3847       // instead of matching it, and retrying the match of the scale.
3848       AddrMode = BackupAddrMode;
3849       AddrModeInsts.resize(OldSize);
3850       if (AddrMode.HasBaseReg)
3851         return false;
3852       AddrMode.HasBaseReg = true;
3853       AddrMode.BaseReg = AddrInst->getOperand(0);
3854       AddrMode.BaseOffs += ConstantOffset;
3855       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3856                             VariableScale, Depth)) {
3857         // If even that didn't work, bail.
3858         AddrMode = BackupAddrMode;
3859         AddrModeInsts.resize(OldSize);
3860         return false;
3861       }
3862     }
3863 
3864     return true;
3865   }
3866   case Instruction::SExt:
3867   case Instruction::ZExt: {
3868     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3869     if (!Ext)
3870       return false;
3871 
3872     // Try to move this ext out of the way of the addressing mode.
3873     // Ask for a method for doing so.
3874     TypePromotionHelper::Action TPH =
3875         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3876     if (!TPH)
3877       return false;
3878 
3879     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3880         TPT.getRestorationPoint();
3881     unsigned CreatedInstsCost = 0;
3882     unsigned ExtCost = !TLI.isExtFree(Ext);
3883     Value *PromotedOperand =
3884         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3885     // SExt has been moved away.
3886     // Thus either it will be rematched later in the recursive calls or it is
3887     // gone. Anyway, we must not fold it into the addressing mode at this point.
3888     // E.g.,
3889     // op = add opnd, 1
3890     // idx = ext op
3891     // addr = gep base, idx
3892     // is now:
3893     // promotedOpnd = ext opnd            <- no match here
3894     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3895     // addr = gep base, op                <- match
3896     if (MovedAway)
3897       *MovedAway = true;
3898 
3899     assert(PromotedOperand &&
3900            "TypePromotionHelper should have filtered out those cases");
3901 
3902     ExtAddrMode BackupAddrMode = AddrMode;
3903     unsigned OldSize = AddrModeInsts.size();
3904 
3905     if (!matchAddr(PromotedOperand, Depth) ||
3906         // The total of the new cost is equal to the cost of the created
3907         // instructions.
3908         // The total of the old cost is equal to the cost of the extension plus
3909         // what we have saved in the addressing mode.
3910         !isPromotionProfitable(CreatedInstsCost,
3911                                ExtCost + (AddrModeInsts.size() - OldSize),
3912                                PromotedOperand)) {
3913       AddrMode = BackupAddrMode;
3914       AddrModeInsts.resize(OldSize);
3915       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3916       TPT.rollback(LastKnownGood);
3917       return false;
3918     }
3919     return true;
3920   }
3921   }
3922   return false;
3923 }
3924 
3925 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3926 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3927 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3928 /// for the target.
3929 ///
3930 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3931   // Start a transaction at this point that we will rollback if the matching
3932   // fails.
3933   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3934       TPT.getRestorationPoint();
3935   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3936     // Fold in immediates if legal for the target.
3937     AddrMode.BaseOffs += CI->getSExtValue();
3938     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3939       return true;
3940     AddrMode.BaseOffs -= CI->getSExtValue();
3941   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3942     // If this is a global variable, try to fold it into the addressing mode.
3943     if (!AddrMode.BaseGV) {
3944       AddrMode.BaseGV = GV;
3945       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3946         return true;
3947       AddrMode.BaseGV = nullptr;
3948     }
3949   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3950     ExtAddrMode BackupAddrMode = AddrMode;
3951     unsigned OldSize = AddrModeInsts.size();
3952 
3953     // Check to see if it is possible to fold this operation.
3954     bool MovedAway = false;
3955     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3956       // This instruction may have been moved away. If so, there is nothing
3957       // to check here.
3958       if (MovedAway)
3959         return true;
3960       // Okay, it's possible to fold this.  Check to see if it is actually
3961       // *profitable* to do so.  We use a simple cost model to avoid increasing
3962       // register pressure too much.
3963       if (I->hasOneUse() ||
3964           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3965         AddrModeInsts.push_back(I);
3966         return true;
3967       }
3968 
3969       // It isn't profitable to do this, roll back.
3970       //cerr << "NOT FOLDING: " << *I;
3971       AddrMode = BackupAddrMode;
3972       AddrModeInsts.resize(OldSize);
3973       TPT.rollback(LastKnownGood);
3974     }
3975   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3976     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3977       return true;
3978     TPT.rollback(LastKnownGood);
3979   } else if (isa<ConstantPointerNull>(Addr)) {
3980     // Null pointer gets folded without affecting the addressing mode.
3981     return true;
3982   }
3983 
3984   // Worse case, the target should support [reg] addressing modes. :)
3985   if (!AddrMode.HasBaseReg) {
3986     AddrMode.HasBaseReg = true;
3987     AddrMode.BaseReg = Addr;
3988     // Still check for legality in case the target supports [imm] but not [i+r].
3989     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3990       return true;
3991     AddrMode.HasBaseReg = false;
3992     AddrMode.BaseReg = nullptr;
3993   }
3994 
3995   // If the base register is already taken, see if we can do [r+r].
3996   if (AddrMode.Scale == 0) {
3997     AddrMode.Scale = 1;
3998     AddrMode.ScaledReg = Addr;
3999     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4000       return true;
4001     AddrMode.Scale = 0;
4002     AddrMode.ScaledReg = nullptr;
4003   }
4004   // Couldn't match.
4005   TPT.rollback(LastKnownGood);
4006   return false;
4007 }
4008 
4009 /// Check to see if all uses of OpVal by the specified inline asm call are due
4010 /// to memory operands. If so, return true, otherwise return false.
4011 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4012                                     const TargetLowering &TLI,
4013                                     const TargetRegisterInfo &TRI) {
4014   const Function *F = CI->getFunction();
4015   TargetLowering::AsmOperandInfoVector TargetConstraints =
4016       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4017                             ImmutableCallSite(CI));
4018 
4019   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4020     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4021 
4022     // Compute the constraint code and ConstraintType to use.
4023     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4024 
4025     // If this asm operand is our Value*, and if it isn't an indirect memory
4026     // operand, we can't fold it!
4027     if (OpInfo.CallOperandVal == OpVal &&
4028         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4029          !OpInfo.isIndirect))
4030       return false;
4031   }
4032 
4033   return true;
4034 }
4035 
4036 // Max number of memory uses to look at before aborting the search to conserve
4037 // compile time.
4038 static constexpr int MaxMemoryUsesToScan = 20;
4039 
4040 /// Recursively walk all the uses of I until we find a memory use.
4041 /// If we find an obviously non-foldable instruction, return true.
4042 /// Add the ultimately found memory instructions to MemoryUses.
4043 static bool FindAllMemoryUses(
4044     Instruction *I,
4045     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4046     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4047     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4048   // If we already considered this instruction, we're done.
4049   if (!ConsideredInsts.insert(I).second)
4050     return false;
4051 
4052   // If this is an obviously unfoldable instruction, bail out.
4053   if (!MightBeFoldableInst(I))
4054     return true;
4055 
4056   const bool OptSize = I->getFunction()->optForSize();
4057 
4058   // Loop over all the uses, recursively processing them.
4059   for (Use &U : I->uses()) {
4060     // Conservatively return true if we're seeing a large number or a deep chain
4061     // of users. This avoids excessive compilation times in pathological cases.
4062     if (SeenInsts++ >= MaxMemoryUsesToScan)
4063       return true;
4064 
4065     Instruction *UserI = cast<Instruction>(U.getUser());
4066     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4067       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4068       continue;
4069     }
4070 
4071     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4072       unsigned opNo = U.getOperandNo();
4073       if (opNo != StoreInst::getPointerOperandIndex())
4074         return true; // Storing addr, not into addr.
4075       MemoryUses.push_back(std::make_pair(SI, opNo));
4076       continue;
4077     }
4078 
4079     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4080       unsigned opNo = U.getOperandNo();
4081       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4082         return true; // Storing addr, not into addr.
4083       MemoryUses.push_back(std::make_pair(RMW, opNo));
4084       continue;
4085     }
4086 
4087     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4088       unsigned opNo = U.getOperandNo();
4089       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4090         return true; // Storing addr, not into addr.
4091       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4092       continue;
4093     }
4094 
4095     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4096       // If this is a cold call, we can sink the addressing calculation into
4097       // the cold path.  See optimizeCallInst
4098       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4099         continue;
4100 
4101       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4102       if (!IA) return true;
4103 
4104       // If this is a memory operand, we're cool, otherwise bail out.
4105       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4106         return true;
4107       continue;
4108     }
4109 
4110     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4111                           SeenInsts))
4112       return true;
4113   }
4114 
4115   return false;
4116 }
4117 
4118 /// Return true if Val is already known to be live at the use site that we're
4119 /// folding it into. If so, there is no cost to include it in the addressing
4120 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4121 /// instruction already.
4122 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4123                                                    Value *KnownLive2) {
4124   // If Val is either of the known-live values, we know it is live!
4125   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4126     return true;
4127 
4128   // All values other than instructions and arguments (e.g. constants) are live.
4129   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4130 
4131   // If Val is a constant sized alloca in the entry block, it is live, this is
4132   // true because it is just a reference to the stack/frame pointer, which is
4133   // live for the whole function.
4134   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4135     if (AI->isStaticAlloca())
4136       return true;
4137 
4138   // Check to see if this value is already used in the memory instruction's
4139   // block.  If so, it's already live into the block at the very least, so we
4140   // can reasonably fold it.
4141   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4142 }
4143 
4144 /// It is possible for the addressing mode of the machine to fold the specified
4145 /// instruction into a load or store that ultimately uses it.
4146 /// However, the specified instruction has multiple uses.
4147 /// Given this, it may actually increase register pressure to fold it
4148 /// into the load. For example, consider this code:
4149 ///
4150 ///     X = ...
4151 ///     Y = X+1
4152 ///     use(Y)   -> nonload/store
4153 ///     Z = Y+1
4154 ///     load Z
4155 ///
4156 /// In this case, Y has multiple uses, and can be folded into the load of Z
4157 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4158 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4159 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4160 /// number of computations either.
4161 ///
4162 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4163 /// X was live across 'load Z' for other reasons, we actually *would* want to
4164 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4165 bool AddressingModeMatcher::
4166 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4167                                      ExtAddrMode &AMAfter) {
4168   if (IgnoreProfitability) return true;
4169 
4170   // AMBefore is the addressing mode before this instruction was folded into it,
4171   // and AMAfter is the addressing mode after the instruction was folded.  Get
4172   // the set of registers referenced by AMAfter and subtract out those
4173   // referenced by AMBefore: this is the set of values which folding in this
4174   // address extends the lifetime of.
4175   //
4176   // Note that there are only two potential values being referenced here,
4177   // BaseReg and ScaleReg (global addresses are always available, as are any
4178   // folded immediates).
4179   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4180 
4181   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4182   // lifetime wasn't extended by adding this instruction.
4183   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4184     BaseReg = nullptr;
4185   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4186     ScaledReg = nullptr;
4187 
4188   // If folding this instruction (and it's subexprs) didn't extend any live
4189   // ranges, we're ok with it.
4190   if (!BaseReg && !ScaledReg)
4191     return true;
4192 
4193   // If all uses of this instruction can have the address mode sunk into them,
4194   // we can remove the addressing mode and effectively trade one live register
4195   // for another (at worst.)  In this context, folding an addressing mode into
4196   // the use is just a particularly nice way of sinking it.
4197   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4198   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4199   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4200     return false;  // Has a non-memory, non-foldable use!
4201 
4202   // Now that we know that all uses of this instruction are part of a chain of
4203   // computation involving only operations that could theoretically be folded
4204   // into a memory use, loop over each of these memory operation uses and see
4205   // if they could  *actually* fold the instruction.  The assumption is that
4206   // addressing modes are cheap and that duplicating the computation involved
4207   // many times is worthwhile, even on a fastpath. For sinking candidates
4208   // (i.e. cold call sites), this serves as a way to prevent excessive code
4209   // growth since most architectures have some reasonable small and fast way to
4210   // compute an effective address.  (i.e LEA on x86)
4211   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4212   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4213     Instruction *User = MemoryUses[i].first;
4214     unsigned OpNo = MemoryUses[i].second;
4215 
4216     // Get the access type of this use.  If the use isn't a pointer, we don't
4217     // know what it accesses.
4218     Value *Address = User->getOperand(OpNo);
4219     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4220     if (!AddrTy)
4221       return false;
4222     Type *AddressAccessTy = AddrTy->getElementType();
4223     unsigned AS = AddrTy->getAddressSpace();
4224 
4225     // Do a match against the root of this address, ignoring profitability. This
4226     // will tell us if the addressing mode for the memory operation will
4227     // *actually* cover the shared instruction.
4228     ExtAddrMode Result;
4229     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4230         TPT.getRestorationPoint();
4231     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4232                                   AddressAccessTy, AS,
4233                                   MemoryInst, Result, InsertedInsts,
4234                                   PromotedInsts, TPT);
4235     Matcher.IgnoreProfitability = true;
4236     bool Success = Matcher.matchAddr(Address, 0);
4237     (void)Success; assert(Success && "Couldn't select *anything*?");
4238 
4239     // The match was to check the profitability, the changes made are not
4240     // part of the original matcher. Therefore, they should be dropped
4241     // otherwise the original matcher will not present the right state.
4242     TPT.rollback(LastKnownGood);
4243 
4244     // If the match didn't cover I, then it won't be shared by it.
4245     if (!is_contained(MatchedAddrModeInsts, I))
4246       return false;
4247 
4248     MatchedAddrModeInsts.clear();
4249   }
4250 
4251   return true;
4252 }
4253 
4254 } // end anonymous namespace
4255 
4256 /// Return true if the specified values are defined in a
4257 /// different basic block than BB.
4258 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4259   if (Instruction *I = dyn_cast<Instruction>(V))
4260     return I->getParent() != BB;
4261   return false;
4262 }
4263 
4264 /// Sink addressing mode computation immediate before MemoryInst if doing so
4265 /// can be done without increasing register pressure.  The need for the
4266 /// register pressure constraint means this can end up being an all or nothing
4267 /// decision for all uses of the same addressing computation.
4268 ///
4269 /// Load and Store Instructions often have addressing modes that can do
4270 /// significant amounts of computation. As such, instruction selection will try
4271 /// to get the load or store to do as much computation as possible for the
4272 /// program. The problem is that isel can only see within a single block. As
4273 /// such, we sink as much legal addressing mode work into the block as possible.
4274 ///
4275 /// This method is used to optimize both load/store and inline asms with memory
4276 /// operands.  It's also used to sink addressing computations feeding into cold
4277 /// call sites into their (cold) basic block.
4278 ///
4279 /// The motivation for handling sinking into cold blocks is that doing so can
4280 /// both enable other address mode sinking (by satisfying the register pressure
4281 /// constraint above), and reduce register pressure globally (by removing the
4282 /// addressing mode computation from the fast path entirely.).
4283 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4284                                         Type *AccessTy, unsigned AddrSpace) {
4285   Value *Repl = Addr;
4286 
4287   // Try to collapse single-value PHI nodes.  This is necessary to undo
4288   // unprofitable PRE transformations.
4289   SmallVector<Value*, 8> worklist;
4290   SmallPtrSet<Value*, 16> Visited;
4291   worklist.push_back(Addr);
4292 
4293   // Use a worklist to iteratively look through PHI nodes, and ensure that
4294   // the addressing mode obtained from the non-PHI roots of the graph
4295   // are equivalent.
4296   bool AddrModeFound = false;
4297   bool PhiSeen = false;
4298   SmallVector<Instruction*, 16> AddrModeInsts;
4299   ExtAddrMode AddrMode;
4300   TypePromotionTransaction TPT(RemovedInsts);
4301   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4302       TPT.getRestorationPoint();
4303   while (!worklist.empty()) {
4304     Value *V = worklist.back();
4305     worklist.pop_back();
4306 
4307     // We allow traversing cyclic Phi nodes.
4308     // In case of success after this loop we ensure that traversing through
4309     // Phi nodes ends up with all cases to compute address of the form
4310     //    BaseGV + Base + Scale * Index + Offset
4311     // where Scale and Offset are constans and BaseGV, Base and Index
4312     // are exactly the same Values in all cases.
4313     // It means that BaseGV, Scale and Offset dominate our memory instruction
4314     // and have the same value as they had in address computation represented
4315     // as Phi. So we can safely sink address computation to memory instruction.
4316     if (!Visited.insert(V).second)
4317       continue;
4318 
4319     // For a PHI node, push all of its incoming values.
4320     if (PHINode *P = dyn_cast<PHINode>(V)) {
4321       for (Value *IncValue : P->incoming_values())
4322         worklist.push_back(IncValue);
4323       PhiSeen = true;
4324       continue;
4325     }
4326 
4327     // For non-PHIs, determine the addressing mode being computed.  Note that
4328     // the result may differ depending on what other uses our candidate
4329     // addressing instructions might have.
4330     AddrModeInsts.clear();
4331     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4332         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4333         InsertedInsts, PromotedInsts, TPT);
4334 
4335     if (!AddrModeFound) {
4336       AddrModeFound = true;
4337       AddrMode = NewAddrMode;
4338       continue;
4339     }
4340     if (NewAddrMode == AddrMode)
4341       continue;
4342 
4343     AddrModeFound = false;
4344     break;
4345   }
4346 
4347   // If the addressing mode couldn't be determined, or if multiple different
4348   // ones were determined, bail out now.
4349   if (!AddrModeFound) {
4350     TPT.rollback(LastKnownGood);
4351     return false;
4352   }
4353   TPT.commit();
4354 
4355   // If all the instructions matched are already in this BB, don't do anything.
4356   // If we saw Phi node then it is not local definitely.
4357   if (!PhiSeen && none_of(AddrModeInsts, [&](Value *V) {
4358         return IsNonLocalValue(V, MemoryInst->getParent());
4359                   })) {
4360     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4361     return false;
4362   }
4363 
4364   // Insert this computation right after this user.  Since our caller is
4365   // scanning from the top of the BB to the bottom, reuse of the expr are
4366   // guaranteed to happen later.
4367   IRBuilder<> Builder(MemoryInst);
4368 
4369   // Now that we determined the addressing expression we want to use and know
4370   // that we have to sink it into this block.  Check to see if we have already
4371   // done this for some other load/store instr in this block.  If so, reuse the
4372   // computation.
4373   Value *&SunkAddr = SunkAddrs[Addr];
4374   if (SunkAddr) {
4375     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4376                  << *MemoryInst << "\n");
4377     if (SunkAddr->getType() != Addr->getType())
4378       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4379   } else if (AddrSinkUsingGEPs ||
4380              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4381               SubtargetInfo->useAA())) {
4382     // By default, we use the GEP-based method when AA is used later. This
4383     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4384     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4385                  << *MemoryInst << "\n");
4386     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4387     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4388 
4389     // First, find the pointer.
4390     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4391       ResultPtr = AddrMode.BaseReg;
4392       AddrMode.BaseReg = nullptr;
4393     }
4394 
4395     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4396       // We can't add more than one pointer together, nor can we scale a
4397       // pointer (both of which seem meaningless).
4398       if (ResultPtr || AddrMode.Scale != 1)
4399         return false;
4400 
4401       ResultPtr = AddrMode.ScaledReg;
4402       AddrMode.Scale = 0;
4403     }
4404 
4405     // It is only safe to sign extend the BaseReg if we know that the math
4406     // required to create it did not overflow before we extend it. Since
4407     // the original IR value was tossed in favor of a constant back when
4408     // the AddrMode was created we need to bail out gracefully if widths
4409     // do not match instead of extending it.
4410     //
4411     // (See below for code to add the scale.)
4412     if (AddrMode.Scale) {
4413       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4414       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4415           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4416         return false;
4417     }
4418 
4419     if (AddrMode.BaseGV) {
4420       if (ResultPtr)
4421         return false;
4422 
4423       ResultPtr = AddrMode.BaseGV;
4424     }
4425 
4426     // If the real base value actually came from an inttoptr, then the matcher
4427     // will look through it and provide only the integer value. In that case,
4428     // use it here.
4429     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4430       if (!ResultPtr && AddrMode.BaseReg) {
4431         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4432                                            "sunkaddr");
4433         AddrMode.BaseReg = nullptr;
4434       } else if (!ResultPtr && AddrMode.Scale == 1) {
4435         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4436                                            "sunkaddr");
4437         AddrMode.Scale = 0;
4438       }
4439     }
4440 
4441     if (!ResultPtr &&
4442         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4443       SunkAddr = Constant::getNullValue(Addr->getType());
4444     } else if (!ResultPtr) {
4445       return false;
4446     } else {
4447       Type *I8PtrTy =
4448           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4449       Type *I8Ty = Builder.getInt8Ty();
4450 
4451       // Start with the base register. Do this first so that subsequent address
4452       // matching finds it last, which will prevent it from trying to match it
4453       // as the scaled value in case it happens to be a mul. That would be
4454       // problematic if we've sunk a different mul for the scale, because then
4455       // we'd end up sinking both muls.
4456       if (AddrMode.BaseReg) {
4457         Value *V = AddrMode.BaseReg;
4458         if (V->getType() != IntPtrTy)
4459           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4460 
4461         ResultIndex = V;
4462       }
4463 
4464       // Add the scale value.
4465       if (AddrMode.Scale) {
4466         Value *V = AddrMode.ScaledReg;
4467         if (V->getType() == IntPtrTy) {
4468           // done.
4469         } else {
4470           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4471                  cast<IntegerType>(V->getType())->getBitWidth() &&
4472                  "We can't transform if ScaledReg is too narrow");
4473           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4474         }
4475 
4476         if (AddrMode.Scale != 1)
4477           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4478                                 "sunkaddr");
4479         if (ResultIndex)
4480           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4481         else
4482           ResultIndex = V;
4483       }
4484 
4485       // Add in the Base Offset if present.
4486       if (AddrMode.BaseOffs) {
4487         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4488         if (ResultIndex) {
4489           // We need to add this separately from the scale above to help with
4490           // SDAG consecutive load/store merging.
4491           if (ResultPtr->getType() != I8PtrTy)
4492             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4493           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4494         }
4495 
4496         ResultIndex = V;
4497       }
4498 
4499       if (!ResultIndex) {
4500         SunkAddr = ResultPtr;
4501       } else {
4502         if (ResultPtr->getType() != I8PtrTy)
4503           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4504         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4505       }
4506 
4507       if (SunkAddr->getType() != Addr->getType())
4508         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4509     }
4510   } else {
4511     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4512     // non-integral pointers, so in that case bail out now.
4513     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4514     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4515     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4516     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4517     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4518         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4519         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4520         (AddrMode.BaseGV &&
4521          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4522       return false;
4523 
4524     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4525                  << *MemoryInst << "\n");
4526     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4527     Value *Result = nullptr;
4528 
4529     // Start with the base register. Do this first so that subsequent address
4530     // matching finds it last, which will prevent it from trying to match it
4531     // as the scaled value in case it happens to be a mul. That would be
4532     // problematic if we've sunk a different mul for the scale, because then
4533     // we'd end up sinking both muls.
4534     if (AddrMode.BaseReg) {
4535       Value *V = AddrMode.BaseReg;
4536       if (V->getType()->isPointerTy())
4537         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4538       if (V->getType() != IntPtrTy)
4539         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4540       Result = V;
4541     }
4542 
4543     // Add the scale value.
4544     if (AddrMode.Scale) {
4545       Value *V = AddrMode.ScaledReg;
4546       if (V->getType() == IntPtrTy) {
4547         // done.
4548       } else if (V->getType()->isPointerTy()) {
4549         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4550       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4551                  cast<IntegerType>(V->getType())->getBitWidth()) {
4552         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4553       } else {
4554         // It is only safe to sign extend the BaseReg if we know that the math
4555         // required to create it did not overflow before we extend it. Since
4556         // the original IR value was tossed in favor of a constant back when
4557         // the AddrMode was created we need to bail out gracefully if widths
4558         // do not match instead of extending it.
4559         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4560         if (I && (Result != AddrMode.BaseReg))
4561           I->eraseFromParent();
4562         return false;
4563       }
4564       if (AddrMode.Scale != 1)
4565         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4566                               "sunkaddr");
4567       if (Result)
4568         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4569       else
4570         Result = V;
4571     }
4572 
4573     // Add in the BaseGV if present.
4574     if (AddrMode.BaseGV) {
4575       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4576       if (Result)
4577         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4578       else
4579         Result = V;
4580     }
4581 
4582     // Add in the Base Offset if present.
4583     if (AddrMode.BaseOffs) {
4584       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4585       if (Result)
4586         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4587       else
4588         Result = V;
4589     }
4590 
4591     if (!Result)
4592       SunkAddr = Constant::getNullValue(Addr->getType());
4593     else
4594       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4595   }
4596 
4597   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4598 
4599   // If we have no uses, recursively delete the value and all dead instructions
4600   // using it.
4601   if (Repl->use_empty()) {
4602     // This can cause recursive deletion, which can invalidate our iterator.
4603     // Use a WeakTrackingVH to hold onto it in case this happens.
4604     Value *CurValue = &*CurInstIterator;
4605     WeakTrackingVH IterHandle(CurValue);
4606     BasicBlock *BB = CurInstIterator->getParent();
4607 
4608     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4609 
4610     if (IterHandle != CurValue) {
4611       // If the iterator instruction was recursively deleted, start over at the
4612       // start of the block.
4613       CurInstIterator = BB->begin();
4614       SunkAddrs.clear();
4615     }
4616   }
4617   ++NumMemoryInsts;
4618   return true;
4619 }
4620 
4621 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4622 /// address computing into the block when possible / profitable.
4623 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4624   bool MadeChange = false;
4625 
4626   const TargetRegisterInfo *TRI =
4627       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4628   TargetLowering::AsmOperandInfoVector TargetConstraints =
4629       TLI->ParseConstraints(*DL, TRI, CS);
4630   unsigned ArgNo = 0;
4631   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4632     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4633 
4634     // Compute the constraint code and ConstraintType to use.
4635     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4636 
4637     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4638         OpInfo.isIndirect) {
4639       Value *OpVal = CS->getArgOperand(ArgNo++);
4640       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4641     } else if (OpInfo.Type == InlineAsm::isInput)
4642       ArgNo++;
4643   }
4644 
4645   return MadeChange;
4646 }
4647 
4648 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4649 /// sign extensions.
4650 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4651   assert(!Val->use_empty() && "Input must have at least one use");
4652   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4653   bool IsSExt = isa<SExtInst>(FirstUser);
4654   Type *ExtTy = FirstUser->getType();
4655   for (const User *U : Val->users()) {
4656     const Instruction *UI = cast<Instruction>(U);
4657     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4658       return false;
4659     Type *CurTy = UI->getType();
4660     // Same input and output types: Same instruction after CSE.
4661     if (CurTy == ExtTy)
4662       continue;
4663 
4664     // If IsSExt is true, we are in this situation:
4665     // a = Val
4666     // b = sext ty1 a to ty2
4667     // c = sext ty1 a to ty3
4668     // Assuming ty2 is shorter than ty3, this could be turned into:
4669     // a = Val
4670     // b = sext ty1 a to ty2
4671     // c = sext ty2 b to ty3
4672     // However, the last sext is not free.
4673     if (IsSExt)
4674       return false;
4675 
4676     // This is a ZExt, maybe this is free to extend from one type to another.
4677     // In that case, we would not account for a different use.
4678     Type *NarrowTy;
4679     Type *LargeTy;
4680     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4681         CurTy->getScalarType()->getIntegerBitWidth()) {
4682       NarrowTy = CurTy;
4683       LargeTy = ExtTy;
4684     } else {
4685       NarrowTy = ExtTy;
4686       LargeTy = CurTy;
4687     }
4688 
4689     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4690       return false;
4691   }
4692   // All uses are the same or can be derived from one another for free.
4693   return true;
4694 }
4695 
4696 /// \brief Try to speculatively promote extensions in \p Exts and continue
4697 /// promoting through newly promoted operands recursively as far as doing so is
4698 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4699 /// When some promotion happened, \p TPT contains the proper state to revert
4700 /// them.
4701 ///
4702 /// \return true if some promotion happened, false otherwise.
4703 bool CodeGenPrepare::tryToPromoteExts(
4704     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4705     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4706     unsigned CreatedInstsCost) {
4707   bool Promoted = false;
4708 
4709   // Iterate over all the extensions to try to promote them.
4710   for (auto I : Exts) {
4711     // Early check if we directly have ext(load).
4712     if (isa<LoadInst>(I->getOperand(0))) {
4713       ProfitablyMovedExts.push_back(I);
4714       continue;
4715     }
4716 
4717     // Check whether or not we want to do any promotion.  The reason we have
4718     // this check inside the for loop is to catch the case where an extension
4719     // is directly fed by a load because in such case the extension can be moved
4720     // up without any promotion on its operands.
4721     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4722       return false;
4723 
4724     // Get the action to perform the promotion.
4725     TypePromotionHelper::Action TPH =
4726         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4727     // Check if we can promote.
4728     if (!TPH) {
4729       // Save the current extension as we cannot move up through its operand.
4730       ProfitablyMovedExts.push_back(I);
4731       continue;
4732     }
4733 
4734     // Save the current state.
4735     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4736         TPT.getRestorationPoint();
4737     SmallVector<Instruction *, 4> NewExts;
4738     unsigned NewCreatedInstsCost = 0;
4739     unsigned ExtCost = !TLI->isExtFree(I);
4740     // Promote.
4741     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4742                              &NewExts, nullptr, *TLI);
4743     assert(PromotedVal &&
4744            "TypePromotionHelper should have filtered out those cases");
4745 
4746     // We would be able to merge only one extension in a load.
4747     // Therefore, if we have more than 1 new extension we heuristically
4748     // cut this search path, because it means we degrade the code quality.
4749     // With exactly 2, the transformation is neutral, because we will merge
4750     // one extension but leave one. However, we optimistically keep going,
4751     // because the new extension may be removed too.
4752     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4753     // FIXME: It would be possible to propagate a negative value instead of
4754     // conservatively ceiling it to 0.
4755     TotalCreatedInstsCost =
4756         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4757     if (!StressExtLdPromotion &&
4758         (TotalCreatedInstsCost > 1 ||
4759          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4760       // This promotion is not profitable, rollback to the previous state, and
4761       // save the current extension in ProfitablyMovedExts as the latest
4762       // speculative promotion turned out to be unprofitable.
4763       TPT.rollback(LastKnownGood);
4764       ProfitablyMovedExts.push_back(I);
4765       continue;
4766     }
4767     // Continue promoting NewExts as far as doing so is profitable.
4768     SmallVector<Instruction *, 2> NewlyMovedExts;
4769     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4770     bool NewPromoted = false;
4771     for (auto ExtInst : NewlyMovedExts) {
4772       Instruction *MovedExt = cast<Instruction>(ExtInst);
4773       Value *ExtOperand = MovedExt->getOperand(0);
4774       // If we have reached to a load, we need this extra profitability check
4775       // as it could potentially be merged into an ext(load).
4776       if (isa<LoadInst>(ExtOperand) &&
4777           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4778             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4779         continue;
4780 
4781       ProfitablyMovedExts.push_back(MovedExt);
4782       NewPromoted = true;
4783     }
4784 
4785     // If none of speculative promotions for NewExts is profitable, rollback
4786     // and save the current extension (I) as the last profitable extension.
4787     if (!NewPromoted) {
4788       TPT.rollback(LastKnownGood);
4789       ProfitablyMovedExts.push_back(I);
4790       continue;
4791     }
4792     // The promotion is profitable.
4793     Promoted = true;
4794   }
4795   return Promoted;
4796 }
4797 
4798 /// Merging redundant sexts when one is dominating the other.
4799 bool CodeGenPrepare::mergeSExts(Function &F) {
4800   DominatorTree DT(F);
4801   bool Changed = false;
4802   for (auto &Entry : ValToSExtendedUses) {
4803     SExts &Insts = Entry.second;
4804     SExts CurPts;
4805     for (Instruction *Inst : Insts) {
4806       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4807           Inst->getOperand(0) != Entry.first)
4808         continue;
4809       bool inserted = false;
4810       for (auto &Pt : CurPts) {
4811         if (DT.dominates(Inst, Pt)) {
4812           Pt->replaceAllUsesWith(Inst);
4813           RemovedInsts.insert(Pt);
4814           Pt->removeFromParent();
4815           Pt = Inst;
4816           inserted = true;
4817           Changed = true;
4818           break;
4819         }
4820         if (!DT.dominates(Pt, Inst))
4821           // Give up if we need to merge in a common dominator as the
4822           // expermients show it is not profitable.
4823           continue;
4824         Inst->replaceAllUsesWith(Pt);
4825         RemovedInsts.insert(Inst);
4826         Inst->removeFromParent();
4827         inserted = true;
4828         Changed = true;
4829         break;
4830       }
4831       if (!inserted)
4832         CurPts.push_back(Inst);
4833     }
4834   }
4835   return Changed;
4836 }
4837 
4838 /// Return true, if an ext(load) can be formed from an extension in
4839 /// \p MovedExts.
4840 bool CodeGenPrepare::canFormExtLd(
4841     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
4842     Instruction *&Inst, bool HasPromoted) {
4843   for (auto *MovedExtInst : MovedExts) {
4844     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
4845       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
4846       Inst = MovedExtInst;
4847       break;
4848     }
4849   }
4850   if (!LI)
4851     return false;
4852 
4853   // If they're already in the same block, there's nothing to do.
4854   // Make the cheap checks first if we did not promote.
4855   // If we promoted, we need to check if it is indeed profitable.
4856   if (!HasPromoted && LI->getParent() == Inst->getParent())
4857     return false;
4858 
4859   return TLI->isExtLoad(LI, Inst, *DL);
4860 }
4861 
4862 /// Move a zext or sext fed by a load into the same basic block as the load,
4863 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4864 /// extend into the load.
4865 ///
4866 /// E.g.,
4867 /// \code
4868 /// %ld = load i32* %addr
4869 /// %add = add nuw i32 %ld, 4
4870 /// %zext = zext i32 %add to i64
4871 // \endcode
4872 /// =>
4873 /// \code
4874 /// %ld = load i32* %addr
4875 /// %zext = zext i32 %ld to i64
4876 /// %add = add nuw i64 %zext, 4
4877 /// \encode
4878 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
4879 /// allow us to match zext(load i32*) to i64.
4880 ///
4881 /// Also, try to promote the computations used to obtain a sign extended
4882 /// value used into memory accesses.
4883 /// E.g.,
4884 /// \code
4885 /// a = add nsw i32 b, 3
4886 /// d = sext i32 a to i64
4887 /// e = getelementptr ..., i64 d
4888 /// \endcode
4889 /// =>
4890 /// \code
4891 /// f = sext i32 b to i64
4892 /// a = add nsw i64 f, 3
4893 /// e = getelementptr ..., i64 a
4894 /// \endcode
4895 ///
4896 /// \p Inst[in/out] the extension may be modified during the process if some
4897 /// promotions apply.
4898 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
4899   // ExtLoad formation and address type promotion infrastructure requires TLI to
4900   // be effective.
4901   if (!TLI)
4902     return false;
4903 
4904   bool AllowPromotionWithoutCommonHeader = false;
4905   /// See if it is an interesting sext operations for the address type
4906   /// promotion before trying to promote it, e.g., the ones with the right
4907   /// type and used in memory accesses.
4908   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
4909       *Inst, AllowPromotionWithoutCommonHeader);
4910   TypePromotionTransaction TPT(RemovedInsts);
4911   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4912       TPT.getRestorationPoint();
4913   SmallVector<Instruction *, 1> Exts;
4914   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
4915   Exts.push_back(Inst);
4916 
4917   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
4918 
4919   // Look for a load being extended.
4920   LoadInst *LI = nullptr;
4921   Instruction *ExtFedByLoad;
4922 
4923   // Try to promote a chain of computation if it allows to form an extended
4924   // load.
4925   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
4926     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
4927     TPT.commit();
4928     // Move the extend into the same block as the load
4929     ExtFedByLoad->removeFromParent();
4930     ExtFedByLoad->insertAfter(LI);
4931     // CGP does not check if the zext would be speculatively executed when moved
4932     // to the same basic block as the load. Preserving its original location
4933     // would pessimize the debugging experience, as well as negatively impact
4934     // the quality of sample pgo. We don't want to use "line 0" as that has a
4935     // size cost in the line-table section and logically the zext can be seen as
4936     // part of the load. Therefore we conservatively reuse the same debug
4937     // location for the load and the zext.
4938     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
4939     ++NumExtsMoved;
4940     Inst = ExtFedByLoad;
4941     return true;
4942   }
4943 
4944   // Continue promoting SExts if known as considerable depending on targets.
4945   if (ATPConsiderable &&
4946       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
4947                                   HasPromoted, TPT, SpeculativelyMovedExts))
4948     return true;
4949 
4950   TPT.rollback(LastKnownGood);
4951   return false;
4952 }
4953 
4954 // Perform address type promotion if doing so is profitable.
4955 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
4956 // instructions that sign extended the same initial value. However, if
4957 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
4958 // extension is just profitable.
4959 bool CodeGenPrepare::performAddressTypePromotion(
4960     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
4961     bool HasPromoted, TypePromotionTransaction &TPT,
4962     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
4963   bool Promoted = false;
4964   SmallPtrSet<Instruction *, 1> UnhandledExts;
4965   bool AllSeenFirst = true;
4966   for (auto I : SpeculativelyMovedExts) {
4967     Value *HeadOfChain = I->getOperand(0);
4968     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
4969         SeenChainsForSExt.find(HeadOfChain);
4970     // If there is an unhandled SExt which has the same header, try to promote
4971     // it as well.
4972     if (AlreadySeen != SeenChainsForSExt.end()) {
4973       if (AlreadySeen->second != nullptr)
4974         UnhandledExts.insert(AlreadySeen->second);
4975       AllSeenFirst = false;
4976     }
4977   }
4978 
4979   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
4980                         SpeculativelyMovedExts.size() == 1)) {
4981     TPT.commit();
4982     if (HasPromoted)
4983       Promoted = true;
4984     for (auto I : SpeculativelyMovedExts) {
4985       Value *HeadOfChain = I->getOperand(0);
4986       SeenChainsForSExt[HeadOfChain] = nullptr;
4987       ValToSExtendedUses[HeadOfChain].push_back(I);
4988     }
4989     // Update Inst as promotion happen.
4990     Inst = SpeculativelyMovedExts.pop_back_val();
4991   } else {
4992     // This is the first chain visited from the header, keep the current chain
4993     // as unhandled. Defer to promote this until we encounter another SExt
4994     // chain derived from the same header.
4995     for (auto I : SpeculativelyMovedExts) {
4996       Value *HeadOfChain = I->getOperand(0);
4997       SeenChainsForSExt[HeadOfChain] = Inst;
4998     }
4999     return false;
5000   }
5001 
5002   if (!AllSeenFirst && !UnhandledExts.empty())
5003     for (auto VisitedSExt : UnhandledExts) {
5004       if (RemovedInsts.count(VisitedSExt))
5005         continue;
5006       TypePromotionTransaction TPT(RemovedInsts);
5007       SmallVector<Instruction *, 1> Exts;
5008       SmallVector<Instruction *, 2> Chains;
5009       Exts.push_back(VisitedSExt);
5010       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5011       TPT.commit();
5012       if (HasPromoted)
5013         Promoted = true;
5014       for (auto I : Chains) {
5015         Value *HeadOfChain = I->getOperand(0);
5016         // Mark this as handled.
5017         SeenChainsForSExt[HeadOfChain] = nullptr;
5018         ValToSExtendedUses[HeadOfChain].push_back(I);
5019       }
5020     }
5021   return Promoted;
5022 }
5023 
5024 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5025   BasicBlock *DefBB = I->getParent();
5026 
5027   // If the result of a {s|z}ext and its source are both live out, rewrite all
5028   // other uses of the source with result of extension.
5029   Value *Src = I->getOperand(0);
5030   if (Src->hasOneUse())
5031     return false;
5032 
5033   // Only do this xform if truncating is free.
5034   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5035     return false;
5036 
5037   // Only safe to perform the optimization if the source is also defined in
5038   // this block.
5039   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5040     return false;
5041 
5042   bool DefIsLiveOut = false;
5043   for (User *U : I->users()) {
5044     Instruction *UI = cast<Instruction>(U);
5045 
5046     // Figure out which BB this ext is used in.
5047     BasicBlock *UserBB = UI->getParent();
5048     if (UserBB == DefBB) continue;
5049     DefIsLiveOut = true;
5050     break;
5051   }
5052   if (!DefIsLiveOut)
5053     return false;
5054 
5055   // Make sure none of the uses are PHI nodes.
5056   for (User *U : Src->users()) {
5057     Instruction *UI = cast<Instruction>(U);
5058     BasicBlock *UserBB = UI->getParent();
5059     if (UserBB == DefBB) continue;
5060     // Be conservative. We don't want this xform to end up introducing
5061     // reloads just before load / store instructions.
5062     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5063       return false;
5064   }
5065 
5066   // InsertedTruncs - Only insert one trunc in each block once.
5067   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5068 
5069   bool MadeChange = false;
5070   for (Use &U : Src->uses()) {
5071     Instruction *User = cast<Instruction>(U.getUser());
5072 
5073     // Figure out which BB this ext is used in.
5074     BasicBlock *UserBB = User->getParent();
5075     if (UserBB == DefBB) continue;
5076 
5077     // Both src and def are live in this block. Rewrite the use.
5078     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5079 
5080     if (!InsertedTrunc) {
5081       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5082       assert(InsertPt != UserBB->end());
5083       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5084       InsertedInsts.insert(InsertedTrunc);
5085     }
5086 
5087     // Replace a use of the {s|z}ext source with a use of the result.
5088     U = InsertedTrunc;
5089     ++NumExtUses;
5090     MadeChange = true;
5091   }
5092 
5093   return MadeChange;
5094 }
5095 
5096 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5097 // just after the load if the target can fold this into one extload instruction,
5098 // with the hope of eliminating some of the other later "and" instructions using
5099 // the loaded value.  "and"s that are made trivially redundant by the insertion
5100 // of the new "and" are removed by this function, while others (e.g. those whose
5101 // path from the load goes through a phi) are left for isel to potentially
5102 // remove.
5103 //
5104 // For example:
5105 //
5106 // b0:
5107 //   x = load i32
5108 //   ...
5109 // b1:
5110 //   y = and x, 0xff
5111 //   z = use y
5112 //
5113 // becomes:
5114 //
5115 // b0:
5116 //   x = load i32
5117 //   x' = and x, 0xff
5118 //   ...
5119 // b1:
5120 //   z = use x'
5121 //
5122 // whereas:
5123 //
5124 // b0:
5125 //   x1 = load i32
5126 //   ...
5127 // b1:
5128 //   x2 = load i32
5129 //   ...
5130 // b2:
5131 //   x = phi x1, x2
5132 //   y = and x, 0xff
5133 //
5134 // becomes (after a call to optimizeLoadExt for each load):
5135 //
5136 // b0:
5137 //   x1 = load i32
5138 //   x1' = and x1, 0xff
5139 //   ...
5140 // b1:
5141 //   x2 = load i32
5142 //   x2' = and x2, 0xff
5143 //   ...
5144 // b2:
5145 //   x = phi x1', x2'
5146 //   y = and x, 0xff
5147 //
5148 
5149 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5150 
5151   if (!Load->isSimple() ||
5152       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5153     return false;
5154 
5155   // Skip loads we've already transformed.
5156   if (Load->hasOneUse() &&
5157       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5158     return false;
5159 
5160   // Look at all uses of Load, looking through phis, to determine how many bits
5161   // of the loaded value are needed.
5162   SmallVector<Instruction *, 8> WorkList;
5163   SmallPtrSet<Instruction *, 16> Visited;
5164   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5165   for (auto *U : Load->users())
5166     WorkList.push_back(cast<Instruction>(U));
5167 
5168   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5169   unsigned BitWidth = LoadResultVT.getSizeInBits();
5170   APInt DemandBits(BitWidth, 0);
5171   APInt WidestAndBits(BitWidth, 0);
5172 
5173   while (!WorkList.empty()) {
5174     Instruction *I = WorkList.back();
5175     WorkList.pop_back();
5176 
5177     // Break use-def graph loops.
5178     if (!Visited.insert(I).second)
5179       continue;
5180 
5181     // For a PHI node, push all of its users.
5182     if (auto *Phi = dyn_cast<PHINode>(I)) {
5183       for (auto *U : Phi->users())
5184         WorkList.push_back(cast<Instruction>(U));
5185       continue;
5186     }
5187 
5188     switch (I->getOpcode()) {
5189     case llvm::Instruction::And: {
5190       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5191       if (!AndC)
5192         return false;
5193       APInt AndBits = AndC->getValue();
5194       DemandBits |= AndBits;
5195       // Keep track of the widest and mask we see.
5196       if (AndBits.ugt(WidestAndBits))
5197         WidestAndBits = AndBits;
5198       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5199         AndsToMaybeRemove.push_back(I);
5200       break;
5201     }
5202 
5203     case llvm::Instruction::Shl: {
5204       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5205       if (!ShlC)
5206         return false;
5207       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5208       DemandBits.setLowBits(BitWidth - ShiftAmt);
5209       break;
5210     }
5211 
5212     case llvm::Instruction::Trunc: {
5213       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5214       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5215       DemandBits.setLowBits(TruncBitWidth);
5216       break;
5217     }
5218 
5219     default:
5220       return false;
5221     }
5222   }
5223 
5224   uint32_t ActiveBits = DemandBits.getActiveBits();
5225   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5226   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5227   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5228   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5229   // followed by an AND.
5230   // TODO: Look into removing this restriction by fixing backends to either
5231   // return false for isLoadExtLegal for i1 or have them select this pattern to
5232   // a single instruction.
5233   //
5234   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5235   // mask, since these are the only ands that will be removed by isel.
5236   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5237       WidestAndBits != DemandBits)
5238     return false;
5239 
5240   LLVMContext &Ctx = Load->getType()->getContext();
5241   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5242   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5243 
5244   // Reject cases that won't be matched as extloads.
5245   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5246       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5247     return false;
5248 
5249   IRBuilder<> Builder(Load->getNextNode());
5250   auto *NewAnd = dyn_cast<Instruction>(
5251       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5252   // Mark this instruction as "inserted by CGP", so that other
5253   // optimizations don't touch it.
5254   InsertedInsts.insert(NewAnd);
5255 
5256   // Replace all uses of load with new and (except for the use of load in the
5257   // new and itself).
5258   Load->replaceAllUsesWith(NewAnd);
5259   NewAnd->setOperand(0, Load);
5260 
5261   // Remove any and instructions that are now redundant.
5262   for (auto *And : AndsToMaybeRemove)
5263     // Check that the and mask is the same as the one we decided to put on the
5264     // new and.
5265     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5266       And->replaceAllUsesWith(NewAnd);
5267       if (&*CurInstIterator == And)
5268         CurInstIterator = std::next(And->getIterator());
5269       And->eraseFromParent();
5270       ++NumAndUses;
5271     }
5272 
5273   ++NumAndsAdded;
5274   return true;
5275 }
5276 
5277 /// Check if V (an operand of a select instruction) is an expensive instruction
5278 /// that is only used once.
5279 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5280   auto *I = dyn_cast<Instruction>(V);
5281   // If it's safe to speculatively execute, then it should not have side
5282   // effects; therefore, it's safe to sink and possibly *not* execute.
5283   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5284          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5285 }
5286 
5287 /// Returns true if a SelectInst should be turned into an explicit branch.
5288 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5289                                                 const TargetLowering *TLI,
5290                                                 SelectInst *SI) {
5291   // If even a predictable select is cheap, then a branch can't be cheaper.
5292   if (!TLI->isPredictableSelectExpensive())
5293     return false;
5294 
5295   // FIXME: This should use the same heuristics as IfConversion to determine
5296   // whether a select is better represented as a branch.
5297 
5298   // If metadata tells us that the select condition is obviously predictable,
5299   // then we want to replace the select with a branch.
5300   uint64_t TrueWeight, FalseWeight;
5301   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5302     uint64_t Max = std::max(TrueWeight, FalseWeight);
5303     uint64_t Sum = TrueWeight + FalseWeight;
5304     if (Sum != 0) {
5305       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5306       if (Probability > TLI->getPredictableBranchThreshold())
5307         return true;
5308     }
5309   }
5310 
5311   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5312 
5313   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5314   // comparison condition. If the compare has more than one use, there's
5315   // probably another cmov or setcc around, so it's not worth emitting a branch.
5316   if (!Cmp || !Cmp->hasOneUse())
5317     return false;
5318 
5319   // If either operand of the select is expensive and only needed on one side
5320   // of the select, we should form a branch.
5321   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5322       sinkSelectOperand(TTI, SI->getFalseValue()))
5323     return true;
5324 
5325   return false;
5326 }
5327 
5328 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5329 /// false value of \p SI. If the true/false value of \p SI is defined by any
5330 /// select instructions in \p Selects, look through the defining select
5331 /// instruction until the true/false value is not defined in \p Selects.
5332 static Value *getTrueOrFalseValue(
5333     SelectInst *SI, bool isTrue,
5334     const SmallPtrSet<const Instruction *, 2> &Selects) {
5335   Value *V;
5336 
5337   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5338        DefSI = dyn_cast<SelectInst>(V)) {
5339     assert(DefSI->getCondition() == SI->getCondition() &&
5340            "The condition of DefSI does not match with SI");
5341     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5342   }
5343   return V;
5344 }
5345 
5346 /// If we have a SelectInst that will likely profit from branch prediction,
5347 /// turn it into a branch.
5348 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5349   // Find all consecutive select instructions that share the same condition.
5350   SmallVector<SelectInst *, 2> ASI;
5351   ASI.push_back(SI);
5352   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5353        It != SI->getParent()->end(); ++It) {
5354     SelectInst *I = dyn_cast<SelectInst>(&*It);
5355     if (I && SI->getCondition() == I->getCondition()) {
5356       ASI.push_back(I);
5357     } else {
5358       break;
5359     }
5360   }
5361 
5362   SelectInst *LastSI = ASI.back();
5363   // Increment the current iterator to skip all the rest of select instructions
5364   // because they will be either "not lowered" or "all lowered" to branch.
5365   CurInstIterator = std::next(LastSI->getIterator());
5366 
5367   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5368 
5369   // Can we convert the 'select' to CF ?
5370   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5371       SI->getMetadata(LLVMContext::MD_unpredictable))
5372     return false;
5373 
5374   TargetLowering::SelectSupportKind SelectKind;
5375   if (VectorCond)
5376     SelectKind = TargetLowering::VectorMaskSelect;
5377   else if (SI->getType()->isVectorTy())
5378     SelectKind = TargetLowering::ScalarCondVectorVal;
5379   else
5380     SelectKind = TargetLowering::ScalarValSelect;
5381 
5382   if (TLI->isSelectSupported(SelectKind) &&
5383       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5384     return false;
5385 
5386   ModifiedDT = true;
5387 
5388   // Transform a sequence like this:
5389   //    start:
5390   //       %cmp = cmp uge i32 %a, %b
5391   //       %sel = select i1 %cmp, i32 %c, i32 %d
5392   //
5393   // Into:
5394   //    start:
5395   //       %cmp = cmp uge i32 %a, %b
5396   //       br i1 %cmp, label %select.true, label %select.false
5397   //    select.true:
5398   //       br label %select.end
5399   //    select.false:
5400   //       br label %select.end
5401   //    select.end:
5402   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5403   //
5404   // In addition, we may sink instructions that produce %c or %d from
5405   // the entry block into the destination(s) of the new branch.
5406   // If the true or false blocks do not contain a sunken instruction, that
5407   // block and its branch may be optimized away. In that case, one side of the
5408   // first branch will point directly to select.end, and the corresponding PHI
5409   // predecessor block will be the start block.
5410 
5411   // First, we split the block containing the select into 2 blocks.
5412   BasicBlock *StartBlock = SI->getParent();
5413   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5414   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5415 
5416   // Delete the unconditional branch that was just created by the split.
5417   StartBlock->getTerminator()->eraseFromParent();
5418 
5419   // These are the new basic blocks for the conditional branch.
5420   // At least one will become an actual new basic block.
5421   BasicBlock *TrueBlock = nullptr;
5422   BasicBlock *FalseBlock = nullptr;
5423   BranchInst *TrueBranch = nullptr;
5424   BranchInst *FalseBranch = nullptr;
5425 
5426   // Sink expensive instructions into the conditional blocks to avoid executing
5427   // them speculatively.
5428   for (SelectInst *SI : ASI) {
5429     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5430       if (TrueBlock == nullptr) {
5431         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5432                                        EndBlock->getParent(), EndBlock);
5433         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5434       }
5435       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5436       TrueInst->moveBefore(TrueBranch);
5437     }
5438     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5439       if (FalseBlock == nullptr) {
5440         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5441                                         EndBlock->getParent(), EndBlock);
5442         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5443       }
5444       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5445       FalseInst->moveBefore(FalseBranch);
5446     }
5447   }
5448 
5449   // If there was nothing to sink, then arbitrarily choose the 'false' side
5450   // for a new input value to the PHI.
5451   if (TrueBlock == FalseBlock) {
5452     assert(TrueBlock == nullptr &&
5453            "Unexpected basic block transform while optimizing select");
5454 
5455     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5456                                     EndBlock->getParent(), EndBlock);
5457     BranchInst::Create(EndBlock, FalseBlock);
5458   }
5459 
5460   // Insert the real conditional branch based on the original condition.
5461   // If we did not create a new block for one of the 'true' or 'false' paths
5462   // of the condition, it means that side of the branch goes to the end block
5463   // directly and the path originates from the start block from the point of
5464   // view of the new PHI.
5465   BasicBlock *TT, *FT;
5466   if (TrueBlock == nullptr) {
5467     TT = EndBlock;
5468     FT = FalseBlock;
5469     TrueBlock = StartBlock;
5470   } else if (FalseBlock == nullptr) {
5471     TT = TrueBlock;
5472     FT = EndBlock;
5473     FalseBlock = StartBlock;
5474   } else {
5475     TT = TrueBlock;
5476     FT = FalseBlock;
5477   }
5478   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5479 
5480   SmallPtrSet<const Instruction *, 2> INS;
5481   INS.insert(ASI.begin(), ASI.end());
5482   // Use reverse iterator because later select may use the value of the
5483   // earlier select, and we need to propagate value through earlier select
5484   // to get the PHI operand.
5485   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5486     SelectInst *SI = *It;
5487     // The select itself is replaced with a PHI Node.
5488     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5489     PN->takeName(SI);
5490     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5491     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5492 
5493     SI->replaceAllUsesWith(PN);
5494     SI->eraseFromParent();
5495     INS.erase(SI);
5496     ++NumSelectsExpanded;
5497   }
5498 
5499   // Instruct OptimizeBlock to skip to the next block.
5500   CurInstIterator = StartBlock->end();
5501   return true;
5502 }
5503 
5504 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5505   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5506   int SplatElem = -1;
5507   for (unsigned i = 0; i < Mask.size(); ++i) {
5508     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5509       return false;
5510     SplatElem = Mask[i];
5511   }
5512 
5513   return true;
5514 }
5515 
5516 /// Some targets have expensive vector shifts if the lanes aren't all the same
5517 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5518 /// it's often worth sinking a shufflevector splat down to its use so that
5519 /// codegen can spot all lanes are identical.
5520 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5521   BasicBlock *DefBB = SVI->getParent();
5522 
5523   // Only do this xform if variable vector shifts are particularly expensive.
5524   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5525     return false;
5526 
5527   // We only expect better codegen by sinking a shuffle if we can recognise a
5528   // constant splat.
5529   if (!isBroadcastShuffle(SVI))
5530     return false;
5531 
5532   // InsertedShuffles - Only insert a shuffle in each block once.
5533   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5534 
5535   bool MadeChange = false;
5536   for (User *U : SVI->users()) {
5537     Instruction *UI = cast<Instruction>(U);
5538 
5539     // Figure out which BB this ext is used in.
5540     BasicBlock *UserBB = UI->getParent();
5541     if (UserBB == DefBB) continue;
5542 
5543     // For now only apply this when the splat is used by a shift instruction.
5544     if (!UI->isShift()) continue;
5545 
5546     // Everything checks out, sink the shuffle if the user's block doesn't
5547     // already have a copy.
5548     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5549 
5550     if (!InsertedShuffle) {
5551       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5552       assert(InsertPt != UserBB->end());
5553       InsertedShuffle =
5554           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5555                                 SVI->getOperand(2), "", &*InsertPt);
5556     }
5557 
5558     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5559     MadeChange = true;
5560   }
5561 
5562   // If we removed all uses, nuke the shuffle.
5563   if (SVI->use_empty()) {
5564     SVI->eraseFromParent();
5565     MadeChange = true;
5566   }
5567 
5568   return MadeChange;
5569 }
5570 
5571 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5572   if (!TLI || !DL)
5573     return false;
5574 
5575   Value *Cond = SI->getCondition();
5576   Type *OldType = Cond->getType();
5577   LLVMContext &Context = Cond->getContext();
5578   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5579   unsigned RegWidth = RegType.getSizeInBits();
5580 
5581   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5582     return false;
5583 
5584   // If the register width is greater than the type width, expand the condition
5585   // of the switch instruction and each case constant to the width of the
5586   // register. By widening the type of the switch condition, subsequent
5587   // comparisons (for case comparisons) will not need to be extended to the
5588   // preferred register width, so we will potentially eliminate N-1 extends,
5589   // where N is the number of cases in the switch.
5590   auto *NewType = Type::getIntNTy(Context, RegWidth);
5591 
5592   // Zero-extend the switch condition and case constants unless the switch
5593   // condition is a function argument that is already being sign-extended.
5594   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5595   // everything instead.
5596   Instruction::CastOps ExtType = Instruction::ZExt;
5597   if (auto *Arg = dyn_cast<Argument>(Cond))
5598     if (Arg->hasSExtAttr())
5599       ExtType = Instruction::SExt;
5600 
5601   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5602   ExtInst->insertBefore(SI);
5603   SI->setCondition(ExtInst);
5604   for (auto Case : SI->cases()) {
5605     APInt NarrowConst = Case.getCaseValue()->getValue();
5606     APInt WideConst = (ExtType == Instruction::ZExt) ?
5607                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5608     Case.setValue(ConstantInt::get(Context, WideConst));
5609   }
5610 
5611   return true;
5612 }
5613 
5614 
5615 namespace {
5616 /// \brief Helper class to promote a scalar operation to a vector one.
5617 /// This class is used to move downward extractelement transition.
5618 /// E.g.,
5619 /// a = vector_op <2 x i32>
5620 /// b = extractelement <2 x i32> a, i32 0
5621 /// c = scalar_op b
5622 /// store c
5623 ///
5624 /// =>
5625 /// a = vector_op <2 x i32>
5626 /// c = vector_op a (equivalent to scalar_op on the related lane)
5627 /// * d = extractelement <2 x i32> c, i32 0
5628 /// * store d
5629 /// Assuming both extractelement and store can be combine, we get rid of the
5630 /// transition.
5631 class VectorPromoteHelper {
5632   /// DataLayout associated with the current module.
5633   const DataLayout &DL;
5634 
5635   /// Used to perform some checks on the legality of vector operations.
5636   const TargetLowering &TLI;
5637 
5638   /// Used to estimated the cost of the promoted chain.
5639   const TargetTransformInfo &TTI;
5640 
5641   /// The transition being moved downwards.
5642   Instruction *Transition;
5643   /// The sequence of instructions to be promoted.
5644   SmallVector<Instruction *, 4> InstsToBePromoted;
5645   /// Cost of combining a store and an extract.
5646   unsigned StoreExtractCombineCost;
5647   /// Instruction that will be combined with the transition.
5648   Instruction *CombineInst;
5649 
5650   /// \brief The instruction that represents the current end of the transition.
5651   /// Since we are faking the promotion until we reach the end of the chain
5652   /// of computation, we need a way to get the current end of the transition.
5653   Instruction *getEndOfTransition() const {
5654     if (InstsToBePromoted.empty())
5655       return Transition;
5656     return InstsToBePromoted.back();
5657   }
5658 
5659   /// \brief Return the index of the original value in the transition.
5660   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5661   /// c, is at index 0.
5662   unsigned getTransitionOriginalValueIdx() const {
5663     assert(isa<ExtractElementInst>(Transition) &&
5664            "Other kind of transitions are not supported yet");
5665     return 0;
5666   }
5667 
5668   /// \brief Return the index of the index in the transition.
5669   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5670   /// is at index 1.
5671   unsigned getTransitionIdx() const {
5672     assert(isa<ExtractElementInst>(Transition) &&
5673            "Other kind of transitions are not supported yet");
5674     return 1;
5675   }
5676 
5677   /// \brief Get the type of the transition.
5678   /// This is the type of the original value.
5679   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5680   /// transition is <2 x i32>.
5681   Type *getTransitionType() const {
5682     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5683   }
5684 
5685   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5686   /// I.e., we have the following sequence:
5687   /// Def = Transition <ty1> a to <ty2>
5688   /// b = ToBePromoted <ty2> Def, ...
5689   /// =>
5690   /// b = ToBePromoted <ty1> a, ...
5691   /// Def = Transition <ty1> ToBePromoted to <ty2>
5692   void promoteImpl(Instruction *ToBePromoted);
5693 
5694   /// \brief Check whether or not it is profitable to promote all the
5695   /// instructions enqueued to be promoted.
5696   bool isProfitableToPromote() {
5697     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5698     unsigned Index = isa<ConstantInt>(ValIdx)
5699                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5700                          : -1;
5701     Type *PromotedType = getTransitionType();
5702 
5703     StoreInst *ST = cast<StoreInst>(CombineInst);
5704     unsigned AS = ST->getPointerAddressSpace();
5705     unsigned Align = ST->getAlignment();
5706     // Check if this store is supported.
5707     if (!TLI.allowsMisalignedMemoryAccesses(
5708             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5709             Align)) {
5710       // If this is not supported, there is no way we can combine
5711       // the extract with the store.
5712       return false;
5713     }
5714 
5715     // The scalar chain of computation has to pay for the transition
5716     // scalar to vector.
5717     // The vector chain has to account for the combining cost.
5718     uint64_t ScalarCost =
5719         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5720     uint64_t VectorCost = StoreExtractCombineCost;
5721     for (const auto &Inst : InstsToBePromoted) {
5722       // Compute the cost.
5723       // By construction, all instructions being promoted are arithmetic ones.
5724       // Moreover, one argument is a constant that can be viewed as a splat
5725       // constant.
5726       Value *Arg0 = Inst->getOperand(0);
5727       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5728                             isa<ConstantFP>(Arg0);
5729       TargetTransformInfo::OperandValueKind Arg0OVK =
5730           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5731                          : TargetTransformInfo::OK_AnyValue;
5732       TargetTransformInfo::OperandValueKind Arg1OVK =
5733           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5734                           : TargetTransformInfo::OK_AnyValue;
5735       ScalarCost += TTI.getArithmeticInstrCost(
5736           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5737       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5738                                                Arg0OVK, Arg1OVK);
5739     }
5740     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5741                  << ScalarCost << "\nVector: " << VectorCost << '\n');
5742     return ScalarCost > VectorCost;
5743   }
5744 
5745   /// \brief Generate a constant vector with \p Val with the same
5746   /// number of elements as the transition.
5747   /// \p UseSplat defines whether or not \p Val should be replicated
5748   /// across the whole vector.
5749   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5750   /// otherwise we generate a vector with as many undef as possible:
5751   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5752   /// used at the index of the extract.
5753   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5754     unsigned ExtractIdx = UINT_MAX;
5755     if (!UseSplat) {
5756       // If we cannot determine where the constant must be, we have to
5757       // use a splat constant.
5758       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5759       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5760         ExtractIdx = CstVal->getSExtValue();
5761       else
5762         UseSplat = true;
5763     }
5764 
5765     unsigned End = getTransitionType()->getVectorNumElements();
5766     if (UseSplat)
5767       return ConstantVector::getSplat(End, Val);
5768 
5769     SmallVector<Constant *, 4> ConstVec;
5770     UndefValue *UndefVal = UndefValue::get(Val->getType());
5771     for (unsigned Idx = 0; Idx != End; ++Idx) {
5772       if (Idx == ExtractIdx)
5773         ConstVec.push_back(Val);
5774       else
5775         ConstVec.push_back(UndefVal);
5776     }
5777     return ConstantVector::get(ConstVec);
5778   }
5779 
5780   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
5781   /// in \p Use can trigger undefined behavior.
5782   static bool canCauseUndefinedBehavior(const Instruction *Use,
5783                                         unsigned OperandIdx) {
5784     // This is not safe to introduce undef when the operand is on
5785     // the right hand side of a division-like instruction.
5786     if (OperandIdx != 1)
5787       return false;
5788     switch (Use->getOpcode()) {
5789     default:
5790       return false;
5791     case Instruction::SDiv:
5792     case Instruction::UDiv:
5793     case Instruction::SRem:
5794     case Instruction::URem:
5795       return true;
5796     case Instruction::FDiv:
5797     case Instruction::FRem:
5798       return !Use->hasNoNaNs();
5799     }
5800     llvm_unreachable(nullptr);
5801   }
5802 
5803 public:
5804   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
5805                       const TargetTransformInfo &TTI, Instruction *Transition,
5806                       unsigned CombineCost)
5807       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
5808         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
5809     assert(Transition && "Do not know how to promote null");
5810   }
5811 
5812   /// \brief Check if we can promote \p ToBePromoted to \p Type.
5813   bool canPromote(const Instruction *ToBePromoted) const {
5814     // We could support CastInst too.
5815     return isa<BinaryOperator>(ToBePromoted);
5816   }
5817 
5818   /// \brief Check if it is profitable to promote \p ToBePromoted
5819   /// by moving downward the transition through.
5820   bool shouldPromote(const Instruction *ToBePromoted) const {
5821     // Promote only if all the operands can be statically expanded.
5822     // Indeed, we do not want to introduce any new kind of transitions.
5823     for (const Use &U : ToBePromoted->operands()) {
5824       const Value *Val = U.get();
5825       if (Val == getEndOfTransition()) {
5826         // If the use is a division and the transition is on the rhs,
5827         // we cannot promote the operation, otherwise we may create a
5828         // division by zero.
5829         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
5830           return false;
5831         continue;
5832       }
5833       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
5834           !isa<ConstantFP>(Val))
5835         return false;
5836     }
5837     // Check that the resulting operation is legal.
5838     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
5839     if (!ISDOpcode)
5840       return false;
5841     return StressStoreExtract ||
5842            TLI.isOperationLegalOrCustom(
5843                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
5844   }
5845 
5846   /// \brief Check whether or not \p Use can be combined
5847   /// with the transition.
5848   /// I.e., is it possible to do Use(Transition) => AnotherUse?
5849   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
5850 
5851   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
5852   void enqueueForPromotion(Instruction *ToBePromoted) {
5853     InstsToBePromoted.push_back(ToBePromoted);
5854   }
5855 
5856   /// \brief Set the instruction that will be combined with the transition.
5857   void recordCombineInstruction(Instruction *ToBeCombined) {
5858     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
5859     CombineInst = ToBeCombined;
5860   }
5861 
5862   /// \brief Promote all the instructions enqueued for promotion if it is
5863   /// is profitable.
5864   /// \return True if the promotion happened, false otherwise.
5865   bool promote() {
5866     // Check if there is something to promote.
5867     // Right now, if we do not have anything to combine with,
5868     // we assume the promotion is not profitable.
5869     if (InstsToBePromoted.empty() || !CombineInst)
5870       return false;
5871 
5872     // Check cost.
5873     if (!StressStoreExtract && !isProfitableToPromote())
5874       return false;
5875 
5876     // Promote.
5877     for (auto &ToBePromoted : InstsToBePromoted)
5878       promoteImpl(ToBePromoted);
5879     InstsToBePromoted.clear();
5880     return true;
5881   }
5882 };
5883 } // End of anonymous namespace.
5884 
5885 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5886   // At this point, we know that all the operands of ToBePromoted but Def
5887   // can be statically promoted.
5888   // For Def, we need to use its parameter in ToBePromoted:
5889   // b = ToBePromoted ty1 a
5890   // Def = Transition ty1 b to ty2
5891   // Move the transition down.
5892   // 1. Replace all uses of the promoted operation by the transition.
5893   // = ... b => = ... Def.
5894   assert(ToBePromoted->getType() == Transition->getType() &&
5895          "The type of the result of the transition does not match "
5896          "the final type");
5897   ToBePromoted->replaceAllUsesWith(Transition);
5898   // 2. Update the type of the uses.
5899   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5900   Type *TransitionTy = getTransitionType();
5901   ToBePromoted->mutateType(TransitionTy);
5902   // 3. Update all the operands of the promoted operation with promoted
5903   // operands.
5904   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5905   for (Use &U : ToBePromoted->operands()) {
5906     Value *Val = U.get();
5907     Value *NewVal = nullptr;
5908     if (Val == Transition)
5909       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5910     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5911              isa<ConstantFP>(Val)) {
5912       // Use a splat constant if it is not safe to use undef.
5913       NewVal = getConstantVector(
5914           cast<Constant>(Val),
5915           isa<UndefValue>(Val) ||
5916               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5917     } else
5918       llvm_unreachable("Did you modified shouldPromote and forgot to update "
5919                        "this?");
5920     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5921   }
5922   Transition->removeFromParent();
5923   Transition->insertAfter(ToBePromoted);
5924   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5925 }
5926 
5927 /// Some targets can do store(extractelement) with one instruction.
5928 /// Try to push the extractelement towards the stores when the target
5929 /// has this feature and this is profitable.
5930 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5931   unsigned CombineCost = UINT_MAX;
5932   if (DisableStoreExtract || !TLI ||
5933       (!StressStoreExtract &&
5934        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5935                                        Inst->getOperand(1), CombineCost)))
5936     return false;
5937 
5938   // At this point we know that Inst is a vector to scalar transition.
5939   // Try to move it down the def-use chain, until:
5940   // - We can combine the transition with its single use
5941   //   => we got rid of the transition.
5942   // - We escape the current basic block
5943   //   => we would need to check that we are moving it at a cheaper place and
5944   //      we do not do that for now.
5945   BasicBlock *Parent = Inst->getParent();
5946   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5947   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5948   // If the transition has more than one use, assume this is not going to be
5949   // beneficial.
5950   while (Inst->hasOneUse()) {
5951     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5952     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5953 
5954     if (ToBePromoted->getParent() != Parent) {
5955       DEBUG(dbgs() << "Instruction to promote is in a different block ("
5956                    << ToBePromoted->getParent()->getName()
5957                    << ") than the transition (" << Parent->getName() << ").\n");
5958       return false;
5959     }
5960 
5961     if (VPH.canCombine(ToBePromoted)) {
5962       DEBUG(dbgs() << "Assume " << *Inst << '\n'
5963                    << "will be combined with: " << *ToBePromoted << '\n');
5964       VPH.recordCombineInstruction(ToBePromoted);
5965       bool Changed = VPH.promote();
5966       NumStoreExtractExposed += Changed;
5967       return Changed;
5968     }
5969 
5970     DEBUG(dbgs() << "Try promoting.\n");
5971     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5972       return false;
5973 
5974     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5975 
5976     VPH.enqueueForPromotion(ToBePromoted);
5977     Inst = ToBePromoted;
5978   }
5979   return false;
5980 }
5981 
5982 /// For the instruction sequence of store below, F and I values
5983 /// are bundled together as an i64 value before being stored into memory.
5984 /// Sometimes it is more efficent to generate separate stores for F and I,
5985 /// which can remove the bitwise instructions or sink them to colder places.
5986 ///
5987 ///   (store (or (zext (bitcast F to i32) to i64),
5988 ///              (shl (zext I to i64), 32)), addr)  -->
5989 ///   (store F, addr) and (store I, addr+4)
5990 ///
5991 /// Similarly, splitting for other merged store can also be beneficial, like:
5992 /// For pair of {i32, i32}, i64 store --> two i32 stores.
5993 /// For pair of {i32, i16}, i64 store --> two i32 stores.
5994 /// For pair of {i16, i16}, i32 store --> two i16 stores.
5995 /// For pair of {i16, i8},  i32 store --> two i16 stores.
5996 /// For pair of {i8, i8},   i16 store --> two i8 stores.
5997 ///
5998 /// We allow each target to determine specifically which kind of splitting is
5999 /// supported.
6000 ///
6001 /// The store patterns are commonly seen from the simple code snippet below
6002 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6003 ///   void goo(const std::pair<int, float> &);
6004 ///   hoo() {
6005 ///     ...
6006 ///     goo(std::make_pair(tmp, ftmp));
6007 ///     ...
6008 ///   }
6009 ///
6010 /// Although we already have similar splitting in DAG Combine, we duplicate
6011 /// it in CodeGenPrepare to catch the case in which pattern is across
6012 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6013 /// during code expansion.
6014 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6015                                 const TargetLowering &TLI) {
6016   // Handle simple but common cases only.
6017   Type *StoreType = SI.getValueOperand()->getType();
6018   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6019       DL.getTypeSizeInBits(StoreType) == 0)
6020     return false;
6021 
6022   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6023   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6024   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6025       DL.getTypeSizeInBits(SplitStoreType))
6026     return false;
6027 
6028   // Match the following patterns:
6029   // (store (or (zext LValue to i64),
6030   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6031   //  or
6032   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6033   //            (zext LValue to i64),
6034   // Expect both operands of OR and the first operand of SHL have only
6035   // one use.
6036   Value *LValue, *HValue;
6037   if (!match(SI.getValueOperand(),
6038              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6039                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6040                                    m_SpecificInt(HalfValBitSize))))))
6041     return false;
6042 
6043   // Check LValue and HValue are int with size less or equal than 32.
6044   if (!LValue->getType()->isIntegerTy() ||
6045       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6046       !HValue->getType()->isIntegerTy() ||
6047       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6048     return false;
6049 
6050   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6051   // as the input of target query.
6052   auto *LBC = dyn_cast<BitCastInst>(LValue);
6053   auto *HBC = dyn_cast<BitCastInst>(HValue);
6054   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6055                   : EVT::getEVT(LValue->getType());
6056   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6057                    : EVT::getEVT(HValue->getType());
6058   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6059     return false;
6060 
6061   // Start to split store.
6062   IRBuilder<> Builder(SI.getContext());
6063   Builder.SetInsertPoint(&SI);
6064 
6065   // If LValue/HValue is a bitcast in another BB, create a new one in current
6066   // BB so it may be merged with the splitted stores by dag combiner.
6067   if (LBC && LBC->getParent() != SI.getParent())
6068     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6069   if (HBC && HBC->getParent() != SI.getParent())
6070     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6071 
6072   auto CreateSplitStore = [&](Value *V, bool Upper) {
6073     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6074     Value *Addr = Builder.CreateBitCast(
6075         SI.getOperand(1),
6076         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6077     if (Upper)
6078       Addr = Builder.CreateGEP(
6079           SplitStoreType, Addr,
6080           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6081     Builder.CreateAlignedStore(
6082         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6083   };
6084 
6085   CreateSplitStore(LValue, false);
6086   CreateSplitStore(HValue, true);
6087 
6088   // Delete the old store.
6089   SI.eraseFromParent();
6090   return true;
6091 }
6092 
6093 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6094   // Bail out if we inserted the instruction to prevent optimizations from
6095   // stepping on each other's toes.
6096   if (InsertedInsts.count(I))
6097     return false;
6098 
6099   if (PHINode *P = dyn_cast<PHINode>(I)) {
6100     // It is possible for very late stage optimizations (such as SimplifyCFG)
6101     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6102     // trivial PHI, go ahead and zap it here.
6103     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6104       P->replaceAllUsesWith(V);
6105       P->eraseFromParent();
6106       ++NumPHIsElim;
6107       return true;
6108     }
6109     return false;
6110   }
6111 
6112   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6113     // If the source of the cast is a constant, then this should have
6114     // already been constant folded.  The only reason NOT to constant fold
6115     // it is if something (e.g. LSR) was careful to place the constant
6116     // evaluation in a block other than then one that uses it (e.g. to hoist
6117     // the address of globals out of a loop).  If this is the case, we don't
6118     // want to forward-subst the cast.
6119     if (isa<Constant>(CI->getOperand(0)))
6120       return false;
6121 
6122     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6123       return true;
6124 
6125     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6126       /// Sink a zext or sext into its user blocks if the target type doesn't
6127       /// fit in one register
6128       if (TLI &&
6129           TLI->getTypeAction(CI->getContext(),
6130                              TLI->getValueType(*DL, CI->getType())) ==
6131               TargetLowering::TypeExpandInteger) {
6132         return SinkCast(CI);
6133       } else {
6134         bool MadeChange = optimizeExt(I);
6135         return MadeChange | optimizeExtUses(I);
6136       }
6137     }
6138     return false;
6139   }
6140 
6141   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6142     if (!TLI || !TLI->hasMultipleConditionRegisters())
6143       return OptimizeCmpExpression(CI, TLI);
6144 
6145   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6146     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6147     if (TLI) {
6148       bool Modified = optimizeLoadExt(LI);
6149       unsigned AS = LI->getPointerAddressSpace();
6150       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6151       return Modified;
6152     }
6153     return false;
6154   }
6155 
6156   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6157     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6158       return true;
6159     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6160     if (TLI) {
6161       unsigned AS = SI->getPointerAddressSpace();
6162       return optimizeMemoryInst(I, SI->getOperand(1),
6163                                 SI->getOperand(0)->getType(), AS);
6164     }
6165     return false;
6166   }
6167 
6168   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6169       unsigned AS = RMW->getPointerAddressSpace();
6170       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6171                                 RMW->getType(), AS);
6172   }
6173 
6174   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6175       unsigned AS = CmpX->getPointerAddressSpace();
6176       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6177                                 CmpX->getCompareOperand()->getType(), AS);
6178   }
6179 
6180   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6181 
6182   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6183       EnableAndCmpSinking && TLI)
6184     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6185 
6186   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6187                 BinOp->getOpcode() == Instruction::LShr)) {
6188     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6189     if (TLI && CI && TLI->hasExtractBitsInsn())
6190       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6191 
6192     return false;
6193   }
6194 
6195   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6196     if (GEPI->hasAllZeroIndices()) {
6197       /// The GEP operand must be a pointer, so must its result -> BitCast
6198       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6199                                         GEPI->getName(), GEPI);
6200       GEPI->replaceAllUsesWith(NC);
6201       GEPI->eraseFromParent();
6202       ++NumGEPsElim;
6203       optimizeInst(NC, ModifiedDT);
6204       return true;
6205     }
6206     return false;
6207   }
6208 
6209   if (CallInst *CI = dyn_cast<CallInst>(I))
6210     return optimizeCallInst(CI, ModifiedDT);
6211 
6212   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6213     return optimizeSelectInst(SI);
6214 
6215   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6216     return optimizeShuffleVectorInst(SVI);
6217 
6218   if (auto *Switch = dyn_cast<SwitchInst>(I))
6219     return optimizeSwitchInst(Switch);
6220 
6221   if (isa<ExtractElementInst>(I))
6222     return optimizeExtractElementInst(I);
6223 
6224   return false;
6225 }
6226 
6227 /// Given an OR instruction, check to see if this is a bitreverse
6228 /// idiom. If so, insert the new intrinsic and return true.
6229 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6230                            const TargetLowering &TLI) {
6231   if (!I.getType()->isIntegerTy() ||
6232       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6233                                     TLI.getValueType(DL, I.getType(), true)))
6234     return false;
6235 
6236   SmallVector<Instruction*, 4> Insts;
6237   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6238     return false;
6239   Instruction *LastInst = Insts.back();
6240   I.replaceAllUsesWith(LastInst);
6241   RecursivelyDeleteTriviallyDeadInstructions(&I);
6242   return true;
6243 }
6244 
6245 // In this pass we look for GEP and cast instructions that are used
6246 // across basic blocks and rewrite them to improve basic-block-at-a-time
6247 // selection.
6248 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6249   SunkAddrs.clear();
6250   bool MadeChange = false;
6251 
6252   CurInstIterator = BB.begin();
6253   while (CurInstIterator != BB.end()) {
6254     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6255     if (ModifiedDT)
6256       return true;
6257   }
6258 
6259   bool MadeBitReverse = true;
6260   while (TLI && MadeBitReverse) {
6261     MadeBitReverse = false;
6262     for (auto &I : reverse(BB)) {
6263       if (makeBitReverse(I, *DL, *TLI)) {
6264         MadeBitReverse = MadeChange = true;
6265         ModifiedDT = true;
6266         break;
6267       }
6268     }
6269   }
6270   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6271 
6272   return MadeChange;
6273 }
6274 
6275 // llvm.dbg.value is far away from the value then iSel may not be able
6276 // handle it properly. iSel will drop llvm.dbg.value if it can not
6277 // find a node corresponding to the value.
6278 bool CodeGenPrepare::placeDbgValues(Function &F) {
6279   bool MadeChange = false;
6280   for (BasicBlock &BB : F) {
6281     Instruction *PrevNonDbgInst = nullptr;
6282     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6283       Instruction *Insn = &*BI++;
6284       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6285       // Leave dbg.values that refer to an alloca alone. These
6286       // instrinsics describe the address of a variable (= the alloca)
6287       // being taken.  They should not be moved next to the alloca
6288       // (and to the beginning of the scope), but rather stay close to
6289       // where said address is used.
6290       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6291         PrevNonDbgInst = Insn;
6292         continue;
6293       }
6294 
6295       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6296       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6297         // If VI is a phi in a block with an EHPad terminator, we can't insert
6298         // after it.
6299         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6300           continue;
6301         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6302         DVI->removeFromParent();
6303         if (isa<PHINode>(VI))
6304           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6305         else
6306           DVI->insertAfter(VI);
6307         MadeChange = true;
6308         ++NumDbgValueMoved;
6309       }
6310     }
6311   }
6312   return MadeChange;
6313 }
6314 
6315 /// \brief Scale down both weights to fit into uint32_t.
6316 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6317   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6318   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
6319   NewTrue = NewTrue / Scale;
6320   NewFalse = NewFalse / Scale;
6321 }
6322 
6323 /// \brief Some targets prefer to split a conditional branch like:
6324 /// \code
6325 ///   %0 = icmp ne i32 %a, 0
6326 ///   %1 = icmp ne i32 %b, 0
6327 ///   %or.cond = or i1 %0, %1
6328 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6329 /// \endcode
6330 /// into multiple branch instructions like:
6331 /// \code
6332 ///   bb1:
6333 ///     %0 = icmp ne i32 %a, 0
6334 ///     br i1 %0, label %TrueBB, label %bb2
6335 ///   bb2:
6336 ///     %1 = icmp ne i32 %b, 0
6337 ///     br i1 %1, label %TrueBB, label %FalseBB
6338 /// \endcode
6339 /// This usually allows instruction selection to do even further optimizations
6340 /// and combine the compare with the branch instruction. Currently this is
6341 /// applied for targets which have "cheap" jump instructions.
6342 ///
6343 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6344 ///
6345 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6346   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6347     return false;
6348 
6349   bool MadeChange = false;
6350   for (auto &BB : F) {
6351     // Does this BB end with the following?
6352     //   %cond1 = icmp|fcmp|binary instruction ...
6353     //   %cond2 = icmp|fcmp|binary instruction ...
6354     //   %cond.or = or|and i1 %cond1, cond2
6355     //   br i1 %cond.or label %dest1, label %dest2"
6356     BinaryOperator *LogicOp;
6357     BasicBlock *TBB, *FBB;
6358     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6359       continue;
6360 
6361     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6362     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6363       continue;
6364 
6365     unsigned Opc;
6366     Value *Cond1, *Cond2;
6367     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6368                              m_OneUse(m_Value(Cond2)))))
6369       Opc = Instruction::And;
6370     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6371                                  m_OneUse(m_Value(Cond2)))))
6372       Opc = Instruction::Or;
6373     else
6374       continue;
6375 
6376     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6377         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6378       continue;
6379 
6380     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6381 
6382     // Create a new BB.
6383     auto TmpBB =
6384         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6385                            BB.getParent(), BB.getNextNode());
6386 
6387     // Update original basic block by using the first condition directly by the
6388     // branch instruction and removing the no longer needed and/or instruction.
6389     Br1->setCondition(Cond1);
6390     LogicOp->eraseFromParent();
6391 
6392     // Depending on the conditon we have to either replace the true or the false
6393     // successor of the original branch instruction.
6394     if (Opc == Instruction::And)
6395       Br1->setSuccessor(0, TmpBB);
6396     else
6397       Br1->setSuccessor(1, TmpBB);
6398 
6399     // Fill in the new basic block.
6400     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6401     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6402       I->removeFromParent();
6403       I->insertBefore(Br2);
6404     }
6405 
6406     // Update PHI nodes in both successors. The original BB needs to be
6407     // replaced in one successor's PHI nodes, because the branch comes now from
6408     // the newly generated BB (NewBB). In the other successor we need to add one
6409     // incoming edge to the PHI nodes, because both branch instructions target
6410     // now the same successor. Depending on the original branch condition
6411     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6412     // we perform the correct update for the PHI nodes.
6413     // This doesn't change the successor order of the just created branch
6414     // instruction (or any other instruction).
6415     if (Opc == Instruction::Or)
6416       std::swap(TBB, FBB);
6417 
6418     // Replace the old BB with the new BB.
6419     for (auto &I : *TBB) {
6420       PHINode *PN = dyn_cast<PHINode>(&I);
6421       if (!PN)
6422         break;
6423       int i;
6424       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6425         PN->setIncomingBlock(i, TmpBB);
6426     }
6427 
6428     // Add another incoming edge form the new BB.
6429     for (auto &I : *FBB) {
6430       PHINode *PN = dyn_cast<PHINode>(&I);
6431       if (!PN)
6432         break;
6433       auto *Val = PN->getIncomingValueForBlock(&BB);
6434       PN->addIncoming(Val, TmpBB);
6435     }
6436 
6437     // Update the branch weights (from SelectionDAGBuilder::
6438     // FindMergedConditions).
6439     if (Opc == Instruction::Or) {
6440       // Codegen X | Y as:
6441       // BB1:
6442       //   jmp_if_X TBB
6443       //   jmp TmpBB
6444       // TmpBB:
6445       //   jmp_if_Y TBB
6446       //   jmp FBB
6447       //
6448 
6449       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6450       // The requirement is that
6451       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6452       //     = TrueProb for orignal BB.
6453       // Assuming the orignal weights are A and B, one choice is to set BB1's
6454       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6455       // assumes that
6456       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6457       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6458       // TmpBB, but the math is more complicated.
6459       uint64_t TrueWeight, FalseWeight;
6460       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6461         uint64_t NewTrueWeight = TrueWeight;
6462         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6463         scaleWeights(NewTrueWeight, NewFalseWeight);
6464         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6465                          .createBranchWeights(TrueWeight, FalseWeight));
6466 
6467         NewTrueWeight = TrueWeight;
6468         NewFalseWeight = 2 * FalseWeight;
6469         scaleWeights(NewTrueWeight, NewFalseWeight);
6470         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6471                          .createBranchWeights(TrueWeight, FalseWeight));
6472       }
6473     } else {
6474       // Codegen X & Y as:
6475       // BB1:
6476       //   jmp_if_X TmpBB
6477       //   jmp FBB
6478       // TmpBB:
6479       //   jmp_if_Y TBB
6480       //   jmp FBB
6481       //
6482       //  This requires creation of TmpBB after CurBB.
6483 
6484       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6485       // The requirement is that
6486       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6487       //     = FalseProb for orignal BB.
6488       // Assuming the orignal weights are A and B, one choice is to set BB1's
6489       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6490       // assumes that
6491       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6492       uint64_t TrueWeight, FalseWeight;
6493       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6494         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6495         uint64_t NewFalseWeight = FalseWeight;
6496         scaleWeights(NewTrueWeight, NewFalseWeight);
6497         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6498                          .createBranchWeights(TrueWeight, FalseWeight));
6499 
6500         NewTrueWeight = 2 * TrueWeight;
6501         NewFalseWeight = FalseWeight;
6502         scaleWeights(NewTrueWeight, NewFalseWeight);
6503         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6504                          .createBranchWeights(TrueWeight, FalseWeight));
6505       }
6506     }
6507 
6508     // Note: No point in getting fancy here, since the DT info is never
6509     // available to CodeGenPrepare.
6510     ModifiedDT = true;
6511 
6512     MadeChange = true;
6513 
6514     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6515           TmpBB->dump());
6516   }
6517   return MadeChange;
6518 }
6519