1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetPassConfig>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<LoopInfoWrapperPass>(); 333 } 334 335 private: 336 template <typename F> 337 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 338 // Substituting can cause recursive simplifications, which can invalidate 339 // our iterator. Use a WeakTrackingVH to hold onto it in case this 340 // happens. 341 Value *CurValue = &*CurInstIterator; 342 WeakTrackingVH IterHandle(CurValue); 343 344 f(); 345 346 // If the iterator instruction was recursively deleted, start over at the 347 // start of the block. 348 if (IterHandle != CurValue) { 349 CurInstIterator = BB->begin(); 350 SunkAddrs.clear(); 351 } 352 } 353 354 // Get the DominatorTree, building if necessary. 355 DominatorTree &getDT(Function &F) { 356 if (!DT) 357 DT = std::make_unique<DominatorTree>(F); 358 return *DT; 359 } 360 361 bool eliminateFallThrough(Function &F); 362 bool eliminateMostlyEmptyBlocks(Function &F); 363 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 364 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 365 void eliminateMostlyEmptyBlock(BasicBlock *BB); 366 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 367 bool isPreheader); 368 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 369 bool optimizeInst(Instruction *I, bool &ModifiedDT); 370 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 371 Type *AccessTy, unsigned AddrSpace); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 403 Value *Arg1, CmpInst *Cmp, 404 Intrinsic::ID IID); 405 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 408 }; 409 410 } // end anonymous namespace 411 412 char CodeGenPrepare::ID = 0; 413 414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 415 "Optimize for code generation", false, false) 416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 418 "Optimize for code generation", false, false) 419 420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 421 422 bool CodeGenPrepare::runOnFunction(Function &F) { 423 if (skipFunction(F)) 424 return false; 425 426 DL = &F.getParent()->getDataLayout(); 427 428 bool EverMadeChange = false; 429 // Clear per function information. 430 InsertedInsts.clear(); 431 PromotedInsts.clear(); 432 433 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 434 SubtargetInfo = TM->getSubtargetImpl(F); 435 TLI = SubtargetInfo->getTargetLowering(); 436 TRI = SubtargetInfo->getRegisterInfo(); 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 454 const DenseMap<unsigned int, unsigned int> &BypassWidths = 455 TLI->getBypassSlowDivWidths(); 456 BasicBlock* BB = &*F.begin(); 457 while (BB != nullptr) { 458 // bypassSlowDivision may create new BBs, but we don't want to reapply the 459 // optimization to those blocks. 460 BasicBlock* Next = BB->getNextNode(); 461 // F.hasOptSize is already checked in the outer if statement. 462 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 463 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 464 BB = Next; 465 } 466 } 467 468 // Eliminate blocks that contain only PHI nodes and an 469 // unconditional branch. 470 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 471 472 bool ModifiedDT = false; 473 if (!DisableBranchOpts) 474 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 475 476 // Split some critical edges where one of the sources is an indirect branch, 477 // to help generate sane code for PHIs involving such edges. 478 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 479 480 bool MadeChange = true; 481 while (MadeChange) { 482 MadeChange = false; 483 DT.reset(); 484 for (Function::iterator I = F.begin(); I != F.end(); ) { 485 BasicBlock *BB = &*I++; 486 bool ModifiedDTOnIteration = false; 487 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 488 489 // Restart BB iteration if the dominator tree of the Function was changed 490 if (ModifiedDTOnIteration) 491 break; 492 } 493 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 494 MadeChange |= mergeSExts(F); 495 if (!LargeOffsetGEPMap.empty()) 496 MadeChange |= splitLargeGEPOffsets(); 497 498 if (MadeChange) 499 eliminateFallThrough(F); 500 501 // Really free removed instructions during promotion. 502 for (Instruction *I : RemovedInsts) 503 I->deleteValue(); 504 505 EverMadeChange |= MadeChange; 506 SeenChainsForSExt.clear(); 507 ValToSExtendedUses.clear(); 508 RemovedInsts.clear(); 509 LargeOffsetGEPMap.clear(); 510 LargeOffsetGEPID.clear(); 511 } 512 513 SunkAddrs.clear(); 514 515 if (!DisableBranchOpts) { 516 MadeChange = false; 517 // Use a set vector to get deterministic iteration order. The order the 518 // blocks are removed may affect whether or not PHI nodes in successors 519 // are removed. 520 SmallSetVector<BasicBlock*, 8> WorkList; 521 for (BasicBlock &BB : F) { 522 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 523 MadeChange |= ConstantFoldTerminator(&BB, true); 524 if (!MadeChange) continue; 525 526 for (SmallVectorImpl<BasicBlock*>::iterator 527 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 528 if (pred_begin(*II) == pred_end(*II)) 529 WorkList.insert(*II); 530 } 531 532 // Delete the dead blocks and any of their dead successors. 533 MadeChange |= !WorkList.empty(); 534 while (!WorkList.empty()) { 535 BasicBlock *BB = WorkList.pop_back_val(); 536 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 537 538 DeleteDeadBlock(BB); 539 540 for (SmallVectorImpl<BasicBlock*>::iterator 541 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 542 if (pred_begin(*II) == pred_end(*II)) 543 WorkList.insert(*II); 544 } 545 546 // Merge pairs of basic blocks with unconditional branches, connected by 547 // a single edge. 548 if (EverMadeChange || MadeChange) 549 MadeChange |= eliminateFallThrough(F); 550 551 EverMadeChange |= MadeChange; 552 } 553 554 if (!DisableGCOpts) { 555 SmallVector<Instruction *, 2> Statepoints; 556 for (BasicBlock &BB : F) 557 for (Instruction &I : BB) 558 if (isStatepoint(I)) 559 Statepoints.push_back(&I); 560 for (auto &I : Statepoints) 561 EverMadeChange |= simplifyOffsetableRelocate(*I); 562 } 563 564 // Do this last to clean up use-before-def scenarios introduced by other 565 // preparatory transforms. 566 EverMadeChange |= placeDbgValues(F); 567 568 return EverMadeChange; 569 } 570 571 /// Merge basic blocks which are connected by a single edge, where one of the 572 /// basic blocks has a single successor pointing to the other basic block, 573 /// which has a single predecessor. 574 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 575 bool Changed = false; 576 // Scan all of the blocks in the function, except for the entry block. 577 // Use a temporary array to avoid iterator being invalidated when 578 // deleting blocks. 579 SmallVector<WeakTrackingVH, 16> Blocks; 580 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 581 Blocks.push_back(&Block); 582 583 for (auto &Block : Blocks) { 584 auto *BB = cast_or_null<BasicBlock>(Block); 585 if (!BB) 586 continue; 587 // If the destination block has a single pred, then this is a trivial 588 // edge, just collapse it. 589 BasicBlock *SinglePred = BB->getSinglePredecessor(); 590 591 // Don't merge if BB's address is taken. 592 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 593 594 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 595 if (Term && !Term->isConditional()) { 596 Changed = true; 597 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 598 599 // Merge BB into SinglePred and delete it. 600 MergeBlockIntoPredecessor(BB); 601 } 602 } 603 return Changed; 604 } 605 606 /// Find a destination block from BB if BB is mergeable empty block. 607 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 608 // If this block doesn't end with an uncond branch, ignore it. 609 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 610 if (!BI || !BI->isUnconditional()) 611 return nullptr; 612 613 // If the instruction before the branch (skipping debug info) isn't a phi 614 // node, then other stuff is happening here. 615 BasicBlock::iterator BBI = BI->getIterator(); 616 if (BBI != BB->begin()) { 617 --BBI; 618 while (isa<DbgInfoIntrinsic>(BBI)) { 619 if (BBI == BB->begin()) 620 break; 621 --BBI; 622 } 623 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 624 return nullptr; 625 } 626 627 // Do not break infinite loops. 628 BasicBlock *DestBB = BI->getSuccessor(0); 629 if (DestBB == BB) 630 return nullptr; 631 632 if (!canMergeBlocks(BB, DestBB)) 633 DestBB = nullptr; 634 635 return DestBB; 636 } 637 638 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 639 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 640 /// edges in ways that are non-optimal for isel. Start by eliminating these 641 /// blocks so we can split them the way we want them. 642 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 643 SmallPtrSet<BasicBlock *, 16> Preheaders; 644 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 645 while (!LoopList.empty()) { 646 Loop *L = LoopList.pop_back_val(); 647 LoopList.insert(LoopList.end(), L->begin(), L->end()); 648 if (BasicBlock *Preheader = L->getLoopPreheader()) 649 Preheaders.insert(Preheader); 650 } 651 652 bool MadeChange = false; 653 // Copy blocks into a temporary array to avoid iterator invalidation issues 654 // as we remove them. 655 // Note that this intentionally skips the entry block. 656 SmallVector<WeakTrackingVH, 16> Blocks; 657 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 658 Blocks.push_back(&Block); 659 660 for (auto &Block : Blocks) { 661 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 662 if (!BB) 663 continue; 664 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 665 if (!DestBB || 666 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 667 continue; 668 669 eliminateMostlyEmptyBlock(BB); 670 MadeChange = true; 671 } 672 return MadeChange; 673 } 674 675 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 676 BasicBlock *DestBB, 677 bool isPreheader) { 678 // Do not delete loop preheaders if doing so would create a critical edge. 679 // Loop preheaders can be good locations to spill registers. If the 680 // preheader is deleted and we create a critical edge, registers may be 681 // spilled in the loop body instead. 682 if (!DisablePreheaderProtect && isPreheader && 683 !(BB->getSinglePredecessor() && 684 BB->getSinglePredecessor()->getSingleSuccessor())) 685 return false; 686 687 // Skip merging if the block's successor is also a successor to any callbr 688 // that leads to this block. 689 // FIXME: Is this really needed? Is this a correctness issue? 690 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 691 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 692 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 693 if (DestBB == CBI->getSuccessor(i)) 694 return false; 695 } 696 697 // Try to skip merging if the unique predecessor of BB is terminated by a 698 // switch or indirect branch instruction, and BB is used as an incoming block 699 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 700 // add COPY instructions in the predecessor of BB instead of BB (if it is not 701 // merged). Note that the critical edge created by merging such blocks wont be 702 // split in MachineSink because the jump table is not analyzable. By keeping 703 // such empty block (BB), ISel will place COPY instructions in BB, not in the 704 // predecessor of BB. 705 BasicBlock *Pred = BB->getUniquePredecessor(); 706 if (!Pred || 707 !(isa<SwitchInst>(Pred->getTerminator()) || 708 isa<IndirectBrInst>(Pred->getTerminator()))) 709 return true; 710 711 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 712 return true; 713 714 // We use a simple cost heuristic which determine skipping merging is 715 // profitable if the cost of skipping merging is less than the cost of 716 // merging : Cost(skipping merging) < Cost(merging BB), where the 717 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 718 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 719 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 720 // Freq(Pred) / Freq(BB) > 2. 721 // Note that if there are multiple empty blocks sharing the same incoming 722 // value for the PHIs in the DestBB, we consider them together. In such 723 // case, Cost(merging BB) will be the sum of their frequencies. 724 725 if (!isa<PHINode>(DestBB->begin())) 726 return true; 727 728 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 729 730 // Find all other incoming blocks from which incoming values of all PHIs in 731 // DestBB are the same as the ones from BB. 732 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 733 ++PI) { 734 BasicBlock *DestBBPred = *PI; 735 if (DestBBPred == BB) 736 continue; 737 738 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 739 return DestPN.getIncomingValueForBlock(BB) == 740 DestPN.getIncomingValueForBlock(DestBBPred); 741 })) 742 SameIncomingValueBBs.insert(DestBBPred); 743 } 744 745 // See if all BB's incoming values are same as the value from Pred. In this 746 // case, no reason to skip merging because COPYs are expected to be place in 747 // Pred already. 748 if (SameIncomingValueBBs.count(Pred)) 749 return true; 750 751 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 752 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 753 754 for (auto SameValueBB : SameIncomingValueBBs) 755 if (SameValueBB->getUniquePredecessor() == Pred && 756 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 757 BBFreq += BFI->getBlockFreq(SameValueBB); 758 759 return PredFreq.getFrequency() <= 760 BBFreq.getFrequency() * FreqRatioToSkipMerge; 761 } 762 763 /// Return true if we can merge BB into DestBB if there is a single 764 /// unconditional branch between them, and BB contains no other non-phi 765 /// instructions. 766 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 767 const BasicBlock *DestBB) const { 768 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 769 // the successor. If there are more complex condition (e.g. preheaders), 770 // don't mess around with them. 771 for (const PHINode &PN : BB->phis()) { 772 for (const User *U : PN.users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 for (const PHINode &PN : DestBB->phis()) { 812 const Value *V1 = PN.getIncomingValueForBlock(Pred); 813 const Value *V2 = PN.getIncomingValueForBlock(BB); 814 815 // If V2 is a phi node in BB, look up what the mapped value will be. 816 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 817 if (V2PN->getParent() == BB) 818 V2 = V2PN->getIncomingValueForBlock(Pred); 819 820 // If there is a conflict, bail out. 821 if (V1 != V2) return false; 822 } 823 } 824 } 825 826 return true; 827 } 828 829 /// Eliminate a basic block that has only phi's and an unconditional branch in 830 /// it. 831 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 832 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 833 BasicBlock *DestBB = BI->getSuccessor(0); 834 835 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 836 << *BB << *DestBB); 837 838 // If the destination block has a single pred, then this is a trivial edge, 839 // just collapse it. 840 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 841 if (SinglePred != DestBB) { 842 assert(SinglePred == BB && 843 "Single predecessor not the same as predecessor"); 844 // Merge DestBB into SinglePred/BB and delete it. 845 MergeBlockIntoPredecessor(DestBB); 846 // Note: BB(=SinglePred) will not be deleted on this path. 847 // DestBB(=its single successor) is the one that was deleted. 848 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 849 return; 850 } 851 } 852 853 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 854 // to handle the new incoming edges it is about to have. 855 for (PHINode &PN : DestBB->phis()) { 856 // Remove the incoming value for BB, and remember it. 857 Value *InVal = PN.removeIncomingValue(BB, false); 858 859 // Two options: either the InVal is a phi node defined in BB or it is some 860 // value that dominates BB. 861 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 862 if (InValPhi && InValPhi->getParent() == BB) { 863 // Add all of the input values of the input PHI as inputs of this phi. 864 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 865 PN.addIncoming(InValPhi->getIncomingValue(i), 866 InValPhi->getIncomingBlock(i)); 867 } else { 868 // Otherwise, add one instance of the dominating value for each edge that 869 // we will be adding. 870 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 871 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 872 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 873 } else { 874 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 875 PN.addIncoming(InVal, *PI); 876 } 877 } 878 } 879 880 // The PHIs are now updated, change everything that refers to BB to use 881 // DestBB and remove BB. 882 BB->replaceAllUsesWith(DestBB); 883 BB->eraseFromParent(); 884 ++NumBlocksElim; 885 886 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 887 } 888 889 // Computes a map of base pointer relocation instructions to corresponding 890 // derived pointer relocation instructions given a vector of all relocate calls 891 static void computeBaseDerivedRelocateMap( 892 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 893 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 894 &RelocateInstMap) { 895 // Collect information in two maps: one primarily for locating the base object 896 // while filling the second map; the second map is the final structure holding 897 // a mapping between Base and corresponding Derived relocate calls 898 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 899 for (auto *ThisRelocate : AllRelocateCalls) { 900 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 901 ThisRelocate->getDerivedPtrIndex()); 902 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 903 } 904 for (auto &Item : RelocateIdxMap) { 905 std::pair<unsigned, unsigned> Key = Item.first; 906 if (Key.first == Key.second) 907 // Base relocation: nothing to insert 908 continue; 909 910 GCRelocateInst *I = Item.second; 911 auto BaseKey = std::make_pair(Key.first, Key.first); 912 913 // We're iterating over RelocateIdxMap so we cannot modify it. 914 auto MaybeBase = RelocateIdxMap.find(BaseKey); 915 if (MaybeBase == RelocateIdxMap.end()) 916 // TODO: We might want to insert a new base object relocate and gep off 917 // that, if there are enough derived object relocates. 918 continue; 919 920 RelocateInstMap[MaybeBase->second].push_back(I); 921 } 922 } 923 924 // Accepts a GEP and extracts the operands into a vector provided they're all 925 // small integer constants 926 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 927 SmallVectorImpl<Value *> &OffsetV) { 928 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 929 // Only accept small constant integer operands 930 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 931 if (!Op || Op->getZExtValue() > 20) 932 return false; 933 } 934 935 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 936 OffsetV.push_back(GEP->getOperand(i)); 937 return true; 938 } 939 940 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 941 // replace, computes a replacement, and affects it. 942 static bool 943 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 944 const SmallVectorImpl<GCRelocateInst *> &Targets) { 945 bool MadeChange = false; 946 // We must ensure the relocation of derived pointer is defined after 947 // relocation of base pointer. If we find a relocation corresponding to base 948 // defined earlier than relocation of base then we move relocation of base 949 // right before found relocation. We consider only relocation in the same 950 // basic block as relocation of base. Relocations from other basic block will 951 // be skipped by optimization and we do not care about them. 952 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 953 &*R != RelocatedBase; ++R) 954 if (auto RI = dyn_cast<GCRelocateInst>(R)) 955 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 956 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 957 RelocatedBase->moveBefore(RI); 958 break; 959 } 960 961 for (GCRelocateInst *ToReplace : Targets) { 962 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 963 "Not relocating a derived object of the original base object"); 964 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 965 // A duplicate relocate call. TODO: coalesce duplicates. 966 continue; 967 } 968 969 if (RelocatedBase->getParent() != ToReplace->getParent()) { 970 // Base and derived relocates are in different basic blocks. 971 // In this case transform is only valid when base dominates derived 972 // relocate. However it would be too expensive to check dominance 973 // for each such relocate, so we skip the whole transformation. 974 continue; 975 } 976 977 Value *Base = ToReplace->getBasePtr(); 978 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 979 if (!Derived || Derived->getPointerOperand() != Base) 980 continue; 981 982 SmallVector<Value *, 2> OffsetV; 983 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 984 continue; 985 986 // Create a Builder and replace the target callsite with a gep 987 assert(RelocatedBase->getNextNode() && 988 "Should always have one since it's not a terminator"); 989 990 // Insert after RelocatedBase 991 IRBuilder<> Builder(RelocatedBase->getNextNode()); 992 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 993 994 // If gc_relocate does not match the actual type, cast it to the right type. 995 // In theory, there must be a bitcast after gc_relocate if the type does not 996 // match, and we should reuse it to get the derived pointer. But it could be 997 // cases like this: 998 // bb1: 999 // ... 1000 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1001 // br label %merge 1002 // 1003 // bb2: 1004 // ... 1005 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1006 // br label %merge 1007 // 1008 // merge: 1009 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1010 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1011 // 1012 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1013 // no matter there is already one or not. In this way, we can handle all cases, and 1014 // the extra bitcast should be optimized away in later passes. 1015 Value *ActualRelocatedBase = RelocatedBase; 1016 if (RelocatedBase->getType() != Base->getType()) { 1017 ActualRelocatedBase = 1018 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1019 } 1020 Value *Replacement = Builder.CreateGEP( 1021 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1022 Replacement->takeName(ToReplace); 1023 // If the newly generated derived pointer's type does not match the original derived 1024 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1025 Value *ActualReplacement = Replacement; 1026 if (Replacement->getType() != ToReplace->getType()) { 1027 ActualReplacement = 1028 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1029 } 1030 ToReplace->replaceAllUsesWith(ActualReplacement); 1031 ToReplace->eraseFromParent(); 1032 1033 MadeChange = true; 1034 } 1035 return MadeChange; 1036 } 1037 1038 // Turns this: 1039 // 1040 // %base = ... 1041 // %ptr = gep %base + 15 1042 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1043 // %base' = relocate(%tok, i32 4, i32 4) 1044 // %ptr' = relocate(%tok, i32 4, i32 5) 1045 // %val = load %ptr' 1046 // 1047 // into this: 1048 // 1049 // %base = ... 1050 // %ptr = gep %base + 15 1051 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1052 // %base' = gc.relocate(%tok, i32 4, i32 4) 1053 // %ptr' = gep %base' + 15 1054 // %val = load %ptr' 1055 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1056 bool MadeChange = false; 1057 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1058 1059 for (auto *U : I.users()) 1060 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1061 // Collect all the relocate calls associated with a statepoint 1062 AllRelocateCalls.push_back(Relocate); 1063 1064 // We need at least one base pointer relocation + one derived pointer 1065 // relocation to mangle 1066 if (AllRelocateCalls.size() < 2) 1067 return false; 1068 1069 // RelocateInstMap is a mapping from the base relocate instruction to the 1070 // corresponding derived relocate instructions 1071 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1072 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1073 if (RelocateInstMap.empty()) 1074 return false; 1075 1076 for (auto &Item : RelocateInstMap) 1077 // Item.first is the RelocatedBase to offset against 1078 // Item.second is the vector of Targets to replace 1079 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1080 return MadeChange; 1081 } 1082 1083 /// Sink the specified cast instruction into its user blocks. 1084 static bool SinkCast(CastInst *CI) { 1085 BasicBlock *DefBB = CI->getParent(); 1086 1087 /// InsertedCasts - Only insert a cast in each block once. 1088 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1089 1090 bool MadeChange = false; 1091 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1092 UI != E; ) { 1093 Use &TheUse = UI.getUse(); 1094 Instruction *User = cast<Instruction>(*UI); 1095 1096 // Figure out which BB this cast is used in. For PHI's this is the 1097 // appropriate predecessor block. 1098 BasicBlock *UserBB = User->getParent(); 1099 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1100 UserBB = PN->getIncomingBlock(TheUse); 1101 } 1102 1103 // Preincrement use iterator so we don't invalidate it. 1104 ++UI; 1105 1106 // The first insertion point of a block containing an EH pad is after the 1107 // pad. If the pad is the user, we cannot sink the cast past the pad. 1108 if (User->isEHPad()) 1109 continue; 1110 1111 // If the block selected to receive the cast is an EH pad that does not 1112 // allow non-PHI instructions before the terminator, we can't sink the 1113 // cast. 1114 if (UserBB->getTerminator()->isEHPad()) 1115 continue; 1116 1117 // If this user is in the same block as the cast, don't change the cast. 1118 if (UserBB == DefBB) continue; 1119 1120 // If we have already inserted a cast into this block, use it. 1121 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1122 1123 if (!InsertedCast) { 1124 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1125 assert(InsertPt != UserBB->end()); 1126 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1127 CI->getType(), "", &*InsertPt); 1128 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1129 } 1130 1131 // Replace a use of the cast with a use of the new cast. 1132 TheUse = InsertedCast; 1133 MadeChange = true; 1134 ++NumCastUses; 1135 } 1136 1137 // If we removed all uses, nuke the cast. 1138 if (CI->use_empty()) { 1139 salvageDebugInfo(*CI); 1140 CI->eraseFromParent(); 1141 MadeChange = true; 1142 } 1143 1144 return MadeChange; 1145 } 1146 1147 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1148 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1149 /// reduce the number of virtual registers that must be created and coalesced. 1150 /// 1151 /// Return true if any changes are made. 1152 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1153 const DataLayout &DL) { 1154 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1155 // than sinking only nop casts, but is helpful on some platforms. 1156 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1157 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1158 ASC->getDestAddressSpace())) 1159 return false; 1160 } 1161 1162 // If this is a noop copy, 1163 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1164 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1165 1166 // This is an fp<->int conversion? 1167 if (SrcVT.isInteger() != DstVT.isInteger()) 1168 return false; 1169 1170 // If this is an extension, it will be a zero or sign extension, which 1171 // isn't a noop. 1172 if (SrcVT.bitsLT(DstVT)) return false; 1173 1174 // If these values will be promoted, find out what they will be promoted 1175 // to. This helps us consider truncates on PPC as noop copies when they 1176 // are. 1177 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1178 TargetLowering::TypePromoteInteger) 1179 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1180 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1181 TargetLowering::TypePromoteInteger) 1182 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1183 1184 // If, after promotion, these are the same types, this is a noop copy. 1185 if (SrcVT != DstVT) 1186 return false; 1187 1188 return SinkCast(CI); 1189 } 1190 1191 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1192 Value *Arg0, Value *Arg1, 1193 CmpInst *Cmp, 1194 Intrinsic::ID IID) { 1195 if (BO->getParent() != Cmp->getParent()) { 1196 // We used to use a dominator tree here to allow multi-block optimization. 1197 // But that was problematic because: 1198 // 1. It could cause a perf regression by hoisting the math op into the 1199 // critical path. 1200 // 2. It could cause a perf regression by creating a value that was live 1201 // across multiple blocks and increasing register pressure. 1202 // 3. Use of a dominator tree could cause large compile-time regression. 1203 // This is because we recompute the DT on every change in the main CGP 1204 // run-loop. The recomputing is probably unnecessary in many cases, so if 1205 // that was fixed, using a DT here would be ok. 1206 return false; 1207 } 1208 1209 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1210 if (BO->getOpcode() == Instruction::Add && 1211 IID == Intrinsic::usub_with_overflow) { 1212 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1213 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1214 } 1215 1216 // Insert at the first instruction of the pair. 1217 Instruction *InsertPt = nullptr; 1218 for (Instruction &Iter : *Cmp->getParent()) { 1219 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1220 // the overflow intrinsic are defined. 1221 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1222 InsertPt = &Iter; 1223 break; 1224 } 1225 } 1226 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1227 1228 IRBuilder<> Builder(InsertPt); 1229 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1230 if (BO->getOpcode() != Instruction::Xor) { 1231 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1232 BO->replaceAllUsesWith(Math); 1233 } else 1234 assert(BO->hasOneUse() && 1235 "Patterns with XOr should use the BO only in the compare"); 1236 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1237 Cmp->replaceAllUsesWith(OV); 1238 Cmp->eraseFromParent(); 1239 BO->eraseFromParent(); 1240 return true; 1241 } 1242 1243 /// Match special-case patterns that check for unsigned add overflow. 1244 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1245 BinaryOperator *&Add) { 1246 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1247 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1248 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1249 1250 // We are not expecting non-canonical/degenerate code. Just bail out. 1251 if (isa<Constant>(A)) 1252 return false; 1253 1254 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1255 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1256 B = ConstantInt::get(B->getType(), 1); 1257 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1258 B = ConstantInt::get(B->getType(), -1); 1259 else 1260 return false; 1261 1262 // Check the users of the variable operand of the compare looking for an add 1263 // with the adjusted constant. 1264 for (User *U : A->users()) { 1265 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1266 Add = cast<BinaryOperator>(U); 1267 return true; 1268 } 1269 } 1270 return false; 1271 } 1272 1273 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1274 /// intrinsic. Return true if any changes were made. 1275 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1276 bool &ModifiedDT) { 1277 Value *A, *B; 1278 BinaryOperator *Add; 1279 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1280 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1281 return false; 1282 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1283 A = Add->getOperand(0); 1284 B = Add->getOperand(1); 1285 } 1286 1287 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1288 TLI->getValueType(*DL, Add->getType()), 1289 Add->hasNUsesOrMore(2))) 1290 return false; 1291 1292 // We don't want to move around uses of condition values this late, so we 1293 // check if it is legal to create the call to the intrinsic in the basic 1294 // block containing the icmp. 1295 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1296 return false; 1297 1298 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1299 Intrinsic::uadd_with_overflow)) 1300 return false; 1301 1302 // Reset callers - do not crash by iterating over a dead instruction. 1303 ModifiedDT = true; 1304 return true; 1305 } 1306 1307 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1308 bool &ModifiedDT) { 1309 // We are not expecting non-canonical/degenerate code. Just bail out. 1310 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1311 if (isa<Constant>(A) && isa<Constant>(B)) 1312 return false; 1313 1314 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1315 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1316 if (Pred == ICmpInst::ICMP_UGT) { 1317 std::swap(A, B); 1318 Pred = ICmpInst::ICMP_ULT; 1319 } 1320 // Convert special-case: (A == 0) is the same as (A u< 1). 1321 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1322 B = ConstantInt::get(B->getType(), 1); 1323 Pred = ICmpInst::ICMP_ULT; 1324 } 1325 // Convert special-case: (A != 0) is the same as (0 u< A). 1326 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1327 std::swap(A, B); 1328 Pred = ICmpInst::ICMP_ULT; 1329 } 1330 if (Pred != ICmpInst::ICMP_ULT) 1331 return false; 1332 1333 // Walk the users of a variable operand of a compare looking for a subtract or 1334 // add with that same operand. Also match the 2nd operand of the compare to 1335 // the add/sub, but that may be a negated constant operand of an add. 1336 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1337 BinaryOperator *Sub = nullptr; 1338 for (User *U : CmpVariableOperand->users()) { 1339 // A - B, A u< B --> usubo(A, B) 1340 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1341 Sub = cast<BinaryOperator>(U); 1342 break; 1343 } 1344 1345 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1346 const APInt *CmpC, *AddC; 1347 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1348 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1349 Sub = cast<BinaryOperator>(U); 1350 break; 1351 } 1352 } 1353 if (!Sub) 1354 return false; 1355 1356 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1357 TLI->getValueType(*DL, Sub->getType()), 1358 Sub->hasNUsesOrMore(2))) 1359 return false; 1360 1361 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1362 Cmp, Intrinsic::usub_with_overflow)) 1363 return false; 1364 1365 // Reset callers - do not crash by iterating over a dead instruction. 1366 ModifiedDT = true; 1367 return true; 1368 } 1369 1370 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1371 /// registers that must be created and coalesced. This is a clear win except on 1372 /// targets with multiple condition code registers (PowerPC), where it might 1373 /// lose; some adjustment may be wanted there. 1374 /// 1375 /// Return true if any changes are made. 1376 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1377 if (TLI.hasMultipleConditionRegisters()) 1378 return false; 1379 1380 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1381 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1382 return false; 1383 1384 // Only insert a cmp in each block once. 1385 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1386 1387 bool MadeChange = false; 1388 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1389 UI != E; ) { 1390 Use &TheUse = UI.getUse(); 1391 Instruction *User = cast<Instruction>(*UI); 1392 1393 // Preincrement use iterator so we don't invalidate it. 1394 ++UI; 1395 1396 // Don't bother for PHI nodes. 1397 if (isa<PHINode>(User)) 1398 continue; 1399 1400 // Figure out which BB this cmp is used in. 1401 BasicBlock *UserBB = User->getParent(); 1402 BasicBlock *DefBB = Cmp->getParent(); 1403 1404 // If this user is in the same block as the cmp, don't change the cmp. 1405 if (UserBB == DefBB) continue; 1406 1407 // If we have already inserted a cmp into this block, use it. 1408 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1409 1410 if (!InsertedCmp) { 1411 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1412 assert(InsertPt != UserBB->end()); 1413 InsertedCmp = 1414 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1415 Cmp->getOperand(0), Cmp->getOperand(1), "", 1416 &*InsertPt); 1417 // Propagate the debug info. 1418 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1419 } 1420 1421 // Replace a use of the cmp with a use of the new cmp. 1422 TheUse = InsertedCmp; 1423 MadeChange = true; 1424 ++NumCmpUses; 1425 } 1426 1427 // If we removed all uses, nuke the cmp. 1428 if (Cmp->use_empty()) { 1429 Cmp->eraseFromParent(); 1430 MadeChange = true; 1431 } 1432 1433 return MadeChange; 1434 } 1435 1436 /// For pattern like: 1437 /// 1438 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1439 /// ... 1440 /// DomBB: 1441 /// ... 1442 /// br DomCond, TrueBB, CmpBB 1443 /// CmpBB: (with DomBB being the single predecessor) 1444 /// ... 1445 /// Cmp = icmp eq CmpOp0, CmpOp1 1446 /// ... 1447 /// 1448 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1449 /// different from lowering of icmp eq (PowerPC). This function try to convert 1450 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1451 /// After that, DomCond and Cmp can use the same comparison so reduce one 1452 /// comparison. 1453 /// 1454 /// Return true if any changes are made. 1455 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1456 const TargetLowering &TLI) { 1457 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1458 return false; 1459 1460 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1461 if (Pred != ICmpInst::ICMP_EQ) 1462 return false; 1463 1464 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1465 // icmp slt/sgt would introduce more redundant LLVM IR. 1466 for (User *U : Cmp->users()) { 1467 if (isa<BranchInst>(U)) 1468 continue; 1469 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1470 continue; 1471 return false; 1472 } 1473 1474 // This is a cheap/incomplete check for dominance - just match a single 1475 // predecessor with a conditional branch. 1476 BasicBlock *CmpBB = Cmp->getParent(); 1477 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1478 if (!DomBB) 1479 return false; 1480 1481 // We want to ensure that the only way control gets to the comparison of 1482 // interest is that a less/greater than comparison on the same operands is 1483 // false. 1484 Value *DomCond; 1485 BasicBlock *TrueBB, *FalseBB; 1486 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1487 return false; 1488 if (CmpBB != FalseBB) 1489 return false; 1490 1491 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1492 ICmpInst::Predicate DomPred; 1493 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1494 return false; 1495 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1496 return false; 1497 1498 // Convert the equality comparison to the opposite of the dominating 1499 // comparison and swap the direction for all branch/select users. 1500 // We have conceptually converted: 1501 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1502 // to 1503 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1504 // And similarly for branches. 1505 for (User *U : Cmp->users()) { 1506 if (auto *BI = dyn_cast<BranchInst>(U)) { 1507 assert(BI->isConditional() && "Must be conditional"); 1508 BI->swapSuccessors(); 1509 continue; 1510 } 1511 if (auto *SI = dyn_cast<SelectInst>(U)) { 1512 // Swap operands 1513 SI->swapValues(); 1514 SI->swapProfMetadata(); 1515 continue; 1516 } 1517 llvm_unreachable("Must be a branch or a select"); 1518 } 1519 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1520 return true; 1521 } 1522 1523 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1524 if (sinkCmpExpression(Cmp, *TLI)) 1525 return true; 1526 1527 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1528 return true; 1529 1530 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1531 return true; 1532 1533 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1534 return true; 1535 1536 return false; 1537 } 1538 1539 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1540 /// used in a compare to allow isel to generate better code for targets where 1541 /// this operation can be combined. 1542 /// 1543 /// Return true if any changes are made. 1544 static bool sinkAndCmp0Expression(Instruction *AndI, 1545 const TargetLowering &TLI, 1546 SetOfInstrs &InsertedInsts) { 1547 // Double-check that we're not trying to optimize an instruction that was 1548 // already optimized by some other part of this pass. 1549 assert(!InsertedInsts.count(AndI) && 1550 "Attempting to optimize already optimized and instruction"); 1551 (void) InsertedInsts; 1552 1553 // Nothing to do for single use in same basic block. 1554 if (AndI->hasOneUse() && 1555 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1556 return false; 1557 1558 // Try to avoid cases where sinking/duplicating is likely to increase register 1559 // pressure. 1560 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1561 !isa<ConstantInt>(AndI->getOperand(1)) && 1562 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1563 return false; 1564 1565 for (auto *U : AndI->users()) { 1566 Instruction *User = cast<Instruction>(U); 1567 1568 // Only sink 'and' feeding icmp with 0. 1569 if (!isa<ICmpInst>(User)) 1570 return false; 1571 1572 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1573 if (!CmpC || !CmpC->isZero()) 1574 return false; 1575 } 1576 1577 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1578 return false; 1579 1580 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1581 LLVM_DEBUG(AndI->getParent()->dump()); 1582 1583 // Push the 'and' into the same block as the icmp 0. There should only be 1584 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1585 // others, so we don't need to keep track of which BBs we insert into. 1586 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1587 UI != E; ) { 1588 Use &TheUse = UI.getUse(); 1589 Instruction *User = cast<Instruction>(*UI); 1590 1591 // Preincrement use iterator so we don't invalidate it. 1592 ++UI; 1593 1594 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1595 1596 // Keep the 'and' in the same place if the use is already in the same block. 1597 Instruction *InsertPt = 1598 User->getParent() == AndI->getParent() ? AndI : User; 1599 Instruction *InsertedAnd = 1600 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1601 AndI->getOperand(1), "", InsertPt); 1602 // Propagate the debug info. 1603 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1604 1605 // Replace a use of the 'and' with a use of the new 'and'. 1606 TheUse = InsertedAnd; 1607 ++NumAndUses; 1608 LLVM_DEBUG(User->getParent()->dump()); 1609 } 1610 1611 // We removed all uses, nuke the and. 1612 AndI->eraseFromParent(); 1613 return true; 1614 } 1615 1616 /// Check if the candidates could be combined with a shift instruction, which 1617 /// includes: 1618 /// 1. Truncate instruction 1619 /// 2. And instruction and the imm is a mask of the low bits: 1620 /// imm & (imm+1) == 0 1621 static bool isExtractBitsCandidateUse(Instruction *User) { 1622 if (!isa<TruncInst>(User)) { 1623 if (User->getOpcode() != Instruction::And || 1624 !isa<ConstantInt>(User->getOperand(1))) 1625 return false; 1626 1627 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1628 1629 if ((Cimm & (Cimm + 1)).getBoolValue()) 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 /// Sink both shift and truncate instruction to the use of truncate's BB. 1636 static bool 1637 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1638 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1639 const TargetLowering &TLI, const DataLayout &DL) { 1640 BasicBlock *UserBB = User->getParent(); 1641 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1642 auto *TruncI = cast<TruncInst>(User); 1643 bool MadeChange = false; 1644 1645 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1646 TruncE = TruncI->user_end(); 1647 TruncUI != TruncE;) { 1648 1649 Use &TruncTheUse = TruncUI.getUse(); 1650 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1651 // Preincrement use iterator so we don't invalidate it. 1652 1653 ++TruncUI; 1654 1655 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1656 if (!ISDOpcode) 1657 continue; 1658 1659 // If the use is actually a legal node, there will not be an 1660 // implicit truncate. 1661 // FIXME: always querying the result type is just an 1662 // approximation; some nodes' legality is determined by the 1663 // operand or other means. There's no good way to find out though. 1664 if (TLI.isOperationLegalOrCustom( 1665 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1666 continue; 1667 1668 // Don't bother for PHI nodes. 1669 if (isa<PHINode>(TruncUser)) 1670 continue; 1671 1672 BasicBlock *TruncUserBB = TruncUser->getParent(); 1673 1674 if (UserBB == TruncUserBB) 1675 continue; 1676 1677 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1678 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1679 1680 if (!InsertedShift && !InsertedTrunc) { 1681 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1682 assert(InsertPt != TruncUserBB->end()); 1683 // Sink the shift 1684 if (ShiftI->getOpcode() == Instruction::AShr) 1685 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1686 "", &*InsertPt); 1687 else 1688 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1689 "", &*InsertPt); 1690 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1691 1692 // Sink the trunc 1693 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1694 TruncInsertPt++; 1695 assert(TruncInsertPt != TruncUserBB->end()); 1696 1697 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1698 TruncI->getType(), "", &*TruncInsertPt); 1699 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1700 1701 MadeChange = true; 1702 1703 TruncTheUse = InsertedTrunc; 1704 } 1705 } 1706 return MadeChange; 1707 } 1708 1709 /// Sink the shift *right* instruction into user blocks if the uses could 1710 /// potentially be combined with this shift instruction and generate BitExtract 1711 /// instruction. It will only be applied if the architecture supports BitExtract 1712 /// instruction. Here is an example: 1713 /// BB1: 1714 /// %x.extract.shift = lshr i64 %arg1, 32 1715 /// BB2: 1716 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1717 /// ==> 1718 /// 1719 /// BB2: 1720 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1721 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1722 /// 1723 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1724 /// instruction. 1725 /// Return true if any changes are made. 1726 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1727 const TargetLowering &TLI, 1728 const DataLayout &DL) { 1729 BasicBlock *DefBB = ShiftI->getParent(); 1730 1731 /// Only insert instructions in each block once. 1732 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1733 1734 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1735 1736 bool MadeChange = false; 1737 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1738 UI != E;) { 1739 Use &TheUse = UI.getUse(); 1740 Instruction *User = cast<Instruction>(*UI); 1741 // Preincrement use iterator so we don't invalidate it. 1742 ++UI; 1743 1744 // Don't bother for PHI nodes. 1745 if (isa<PHINode>(User)) 1746 continue; 1747 1748 if (!isExtractBitsCandidateUse(User)) 1749 continue; 1750 1751 BasicBlock *UserBB = User->getParent(); 1752 1753 if (UserBB == DefBB) { 1754 // If the shift and truncate instruction are in the same BB. The use of 1755 // the truncate(TruncUse) may still introduce another truncate if not 1756 // legal. In this case, we would like to sink both shift and truncate 1757 // instruction to the BB of TruncUse. 1758 // for example: 1759 // BB1: 1760 // i64 shift.result = lshr i64 opnd, imm 1761 // trunc.result = trunc shift.result to i16 1762 // 1763 // BB2: 1764 // ----> We will have an implicit truncate here if the architecture does 1765 // not have i16 compare. 1766 // cmp i16 trunc.result, opnd2 1767 // 1768 if (isa<TruncInst>(User) && shiftIsLegal 1769 // If the type of the truncate is legal, no truncate will be 1770 // introduced in other basic blocks. 1771 && 1772 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1773 MadeChange = 1774 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1775 1776 continue; 1777 } 1778 // If we have already inserted a shift into this block, use it. 1779 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1780 1781 if (!InsertedShift) { 1782 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1783 assert(InsertPt != UserBB->end()); 1784 1785 if (ShiftI->getOpcode() == Instruction::AShr) 1786 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1787 "", &*InsertPt); 1788 else 1789 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1790 "", &*InsertPt); 1791 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1792 1793 MadeChange = true; 1794 } 1795 1796 // Replace a use of the shift with a use of the new shift. 1797 TheUse = InsertedShift; 1798 } 1799 1800 // If we removed all uses, or there are none, nuke the shift. 1801 if (ShiftI->use_empty()) { 1802 salvageDebugInfo(*ShiftI); 1803 ShiftI->eraseFromParent(); 1804 MadeChange = true; 1805 } 1806 1807 return MadeChange; 1808 } 1809 1810 /// If counting leading or trailing zeros is an expensive operation and a zero 1811 /// input is defined, add a check for zero to avoid calling the intrinsic. 1812 /// 1813 /// We want to transform: 1814 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1815 /// 1816 /// into: 1817 /// entry: 1818 /// %cmpz = icmp eq i64 %A, 0 1819 /// br i1 %cmpz, label %cond.end, label %cond.false 1820 /// cond.false: 1821 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1822 /// br label %cond.end 1823 /// cond.end: 1824 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1825 /// 1826 /// If the transform is performed, return true and set ModifiedDT to true. 1827 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1828 const TargetLowering *TLI, 1829 const DataLayout *DL, 1830 bool &ModifiedDT) { 1831 // If a zero input is undefined, it doesn't make sense to despeculate that. 1832 if (match(CountZeros->getOperand(1), m_One())) 1833 return false; 1834 1835 // If it's cheap to speculate, there's nothing to do. 1836 auto IntrinsicID = CountZeros->getIntrinsicID(); 1837 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1838 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1839 return false; 1840 1841 // Only handle legal scalar cases. Anything else requires too much work. 1842 Type *Ty = CountZeros->getType(); 1843 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1844 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1845 return false; 1846 1847 // The intrinsic will be sunk behind a compare against zero and branch. 1848 BasicBlock *StartBlock = CountZeros->getParent(); 1849 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1850 1851 // Create another block after the count zero intrinsic. A PHI will be added 1852 // in this block to select the result of the intrinsic or the bit-width 1853 // constant if the input to the intrinsic is zero. 1854 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1855 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1856 1857 // Set up a builder to create a compare, conditional branch, and PHI. 1858 IRBuilder<> Builder(CountZeros->getContext()); 1859 Builder.SetInsertPoint(StartBlock->getTerminator()); 1860 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1861 1862 // Replace the unconditional branch that was created by the first split with 1863 // a compare against zero and a conditional branch. 1864 Value *Zero = Constant::getNullValue(Ty); 1865 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1866 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1867 StartBlock->getTerminator()->eraseFromParent(); 1868 1869 // Create a PHI in the end block to select either the output of the intrinsic 1870 // or the bit width of the operand. 1871 Builder.SetInsertPoint(&EndBlock->front()); 1872 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1873 CountZeros->replaceAllUsesWith(PN); 1874 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1875 PN->addIncoming(BitWidth, StartBlock); 1876 PN->addIncoming(CountZeros, CallBlock); 1877 1878 // We are explicitly handling the zero case, so we can set the intrinsic's 1879 // undefined zero argument to 'true'. This will also prevent reprocessing the 1880 // intrinsic; we only despeculate when a zero input is defined. 1881 CountZeros->setArgOperand(1, Builder.getTrue()); 1882 ModifiedDT = true; 1883 return true; 1884 } 1885 1886 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1887 BasicBlock *BB = CI->getParent(); 1888 1889 // Lower inline assembly if we can. 1890 // If we found an inline asm expession, and if the target knows how to 1891 // lower it to normal LLVM code, do so now. 1892 if (isa<InlineAsm>(CI->getCalledValue())) { 1893 if (TLI->ExpandInlineAsm(CI)) { 1894 // Avoid invalidating the iterator. 1895 CurInstIterator = BB->begin(); 1896 // Avoid processing instructions out of order, which could cause 1897 // reuse before a value is defined. 1898 SunkAddrs.clear(); 1899 return true; 1900 } 1901 // Sink address computing for memory operands into the block. 1902 if (optimizeInlineAsmInst(CI)) 1903 return true; 1904 } 1905 1906 // Align the pointer arguments to this call if the target thinks it's a good 1907 // idea 1908 unsigned MinSize, PrefAlign; 1909 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1910 for (auto &Arg : CI->arg_operands()) { 1911 // We want to align both objects whose address is used directly and 1912 // objects whose address is used in casts and GEPs, though it only makes 1913 // sense for GEPs if the offset is a multiple of the desired alignment and 1914 // if size - offset meets the size threshold. 1915 if (!Arg->getType()->isPointerTy()) 1916 continue; 1917 APInt Offset(DL->getIndexSizeInBits( 1918 cast<PointerType>(Arg->getType())->getAddressSpace()), 1919 0); 1920 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1921 uint64_t Offset2 = Offset.getLimitedValue(); 1922 if ((Offset2 & (PrefAlign-1)) != 0) 1923 continue; 1924 AllocaInst *AI; 1925 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1926 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1927 AI->setAlignment(MaybeAlign(PrefAlign)); 1928 // Global variables can only be aligned if they are defined in this 1929 // object (i.e. they are uniquely initialized in this object), and 1930 // over-aligning global variables that have an explicit section is 1931 // forbidden. 1932 GlobalVariable *GV; 1933 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1934 GV->getPointerAlignment(*DL) < PrefAlign && 1935 DL->getTypeAllocSize(GV->getValueType()) >= 1936 MinSize + Offset2) 1937 GV->setAlignment(MaybeAlign(PrefAlign)); 1938 } 1939 // If this is a memcpy (or similar) then we may be able to improve the 1940 // alignment 1941 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1942 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1943 if (DestAlign > MI->getDestAlignment()) 1944 MI->setDestAlignment(DestAlign); 1945 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1946 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1947 if (SrcAlign > MTI->getSourceAlignment()) 1948 MTI->setSourceAlignment(SrcAlign); 1949 } 1950 } 1951 } 1952 1953 // If we have a cold call site, try to sink addressing computation into the 1954 // cold block. This interacts with our handling for loads and stores to 1955 // ensure that we can fold all uses of a potential addressing computation 1956 // into their uses. TODO: generalize this to work over profiling data 1957 if (CI->hasFnAttr(Attribute::Cold) && 1958 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1959 for (auto &Arg : CI->arg_operands()) { 1960 if (!Arg->getType()->isPointerTy()) 1961 continue; 1962 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1963 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1964 } 1965 1966 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1967 if (II) { 1968 switch (II->getIntrinsicID()) { 1969 default: break; 1970 case Intrinsic::assume: { 1971 II->eraseFromParent(); 1972 return true; 1973 } 1974 1975 case Intrinsic::experimental_widenable_condition: { 1976 // Give up on future widening oppurtunties so that we can fold away dead 1977 // paths and merge blocks before going into block-local instruction 1978 // selection. 1979 if (II->use_empty()) { 1980 II->eraseFromParent(); 1981 return true; 1982 } 1983 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1984 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1985 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1986 }); 1987 return true; 1988 } 1989 case Intrinsic::objectsize: 1990 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1991 case Intrinsic::is_constant: 1992 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1993 case Intrinsic::aarch64_stlxr: 1994 case Intrinsic::aarch64_stxr: { 1995 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1996 if (!ExtVal || !ExtVal->hasOneUse() || 1997 ExtVal->getParent() == CI->getParent()) 1998 return false; 1999 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2000 ExtVal->moveBefore(CI); 2001 // Mark this instruction as "inserted by CGP", so that other 2002 // optimizations don't touch it. 2003 InsertedInsts.insert(ExtVal); 2004 return true; 2005 } 2006 2007 case Intrinsic::launder_invariant_group: 2008 case Intrinsic::strip_invariant_group: { 2009 Value *ArgVal = II->getArgOperand(0); 2010 auto it = LargeOffsetGEPMap.find(II); 2011 if (it != LargeOffsetGEPMap.end()) { 2012 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2013 // Make sure not to have to deal with iterator invalidation 2014 // after possibly adding ArgVal to LargeOffsetGEPMap. 2015 auto GEPs = std::move(it->second); 2016 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2017 LargeOffsetGEPMap.erase(II); 2018 } 2019 2020 II->replaceAllUsesWith(ArgVal); 2021 II->eraseFromParent(); 2022 return true; 2023 } 2024 case Intrinsic::cttz: 2025 case Intrinsic::ctlz: 2026 // If counting zeros is expensive, try to avoid it. 2027 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2028 case Intrinsic::dbg_value: 2029 return fixupDbgValue(II); 2030 case Intrinsic::vscale: { 2031 // If datalayout has no special restrictions on vector data layout, 2032 // replace `llvm.vscale` by an equivalent constant expression 2033 // to benefit from cheap constant propagation. 2034 Type *ScalableVectorTy = 2035 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2036 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2037 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2038 auto One = ConstantInt::getSigned(II->getType(), 1); 2039 auto *CGep = 2040 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2041 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2042 II->eraseFromParent(); 2043 return true; 2044 } 2045 } 2046 } 2047 2048 SmallVector<Value *, 2> PtrOps; 2049 Type *AccessTy; 2050 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2051 while (!PtrOps.empty()) { 2052 Value *PtrVal = PtrOps.pop_back_val(); 2053 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2054 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2055 return true; 2056 } 2057 } 2058 2059 // From here on out we're working with named functions. 2060 if (!CI->getCalledFunction()) return false; 2061 2062 // Lower all default uses of _chk calls. This is very similar 2063 // to what InstCombineCalls does, but here we are only lowering calls 2064 // to fortified library functions (e.g. __memcpy_chk) that have the default 2065 // "don't know" as the objectsize. Anything else should be left alone. 2066 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2067 IRBuilder<> Builder(CI); 2068 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2069 CI->replaceAllUsesWith(V); 2070 CI->eraseFromParent(); 2071 return true; 2072 } 2073 2074 return false; 2075 } 2076 2077 /// Look for opportunities to duplicate return instructions to the predecessor 2078 /// to enable tail call optimizations. The case it is currently looking for is: 2079 /// @code 2080 /// bb0: 2081 /// %tmp0 = tail call i32 @f0() 2082 /// br label %return 2083 /// bb1: 2084 /// %tmp1 = tail call i32 @f1() 2085 /// br label %return 2086 /// bb2: 2087 /// %tmp2 = tail call i32 @f2() 2088 /// br label %return 2089 /// return: 2090 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2091 /// ret i32 %retval 2092 /// @endcode 2093 /// 2094 /// => 2095 /// 2096 /// @code 2097 /// bb0: 2098 /// %tmp0 = tail call i32 @f0() 2099 /// ret i32 %tmp0 2100 /// bb1: 2101 /// %tmp1 = tail call i32 @f1() 2102 /// ret i32 %tmp1 2103 /// bb2: 2104 /// %tmp2 = tail call i32 @f2() 2105 /// ret i32 %tmp2 2106 /// @endcode 2107 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2108 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2109 if (!RetI) 2110 return false; 2111 2112 PHINode *PN = nullptr; 2113 ExtractValueInst *EVI = nullptr; 2114 BitCastInst *BCI = nullptr; 2115 Value *V = RetI->getReturnValue(); 2116 if (V) { 2117 BCI = dyn_cast<BitCastInst>(V); 2118 if (BCI) 2119 V = BCI->getOperand(0); 2120 2121 EVI = dyn_cast<ExtractValueInst>(V); 2122 if (EVI) { 2123 V = EVI->getOperand(0); 2124 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2125 [](unsigned idx) { return idx == 0; })) 2126 return false; 2127 } 2128 2129 PN = dyn_cast<PHINode>(V); 2130 if (!PN) 2131 return false; 2132 } 2133 2134 if (PN && PN->getParent() != BB) 2135 return false; 2136 2137 // Make sure there are no instructions between the PHI and return, or that the 2138 // return is the first instruction in the block. 2139 if (PN) { 2140 BasicBlock::iterator BI = BB->begin(); 2141 // Skip over debug and the bitcast. 2142 do { 2143 ++BI; 2144 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2145 if (&*BI != RetI) 2146 return false; 2147 } else { 2148 BasicBlock::iterator BI = BB->begin(); 2149 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2150 if (&*BI != RetI) 2151 return false; 2152 } 2153 2154 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2155 /// call. 2156 const Function *F = BB->getParent(); 2157 SmallVector<BasicBlock*, 4> TailCallBBs; 2158 if (PN) { 2159 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2160 // Look through bitcasts. 2161 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2162 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2163 BasicBlock *PredBB = PN->getIncomingBlock(I); 2164 // Make sure the phi value is indeed produced by the tail call. 2165 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2166 TLI->mayBeEmittedAsTailCall(CI) && 2167 attributesPermitTailCall(F, CI, RetI, *TLI)) 2168 TailCallBBs.push_back(PredBB); 2169 } 2170 } else { 2171 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2172 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2173 if (!VisitedBBs.insert(*PI).second) 2174 continue; 2175 2176 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2177 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2178 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2179 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2180 if (RI == RE) 2181 continue; 2182 2183 CallInst *CI = dyn_cast<CallInst>(&*RI); 2184 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2185 attributesPermitTailCall(F, CI, RetI, *TLI)) 2186 TailCallBBs.push_back(*PI); 2187 } 2188 } 2189 2190 bool Changed = false; 2191 for (auto const &TailCallBB : TailCallBBs) { 2192 // Make sure the call instruction is followed by an unconditional branch to 2193 // the return block. 2194 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2195 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2196 continue; 2197 2198 // Duplicate the return into TailCallBB. 2199 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2200 ModifiedDT = Changed = true; 2201 ++NumRetsDup; 2202 } 2203 2204 // If we eliminated all predecessors of the block, delete the block now. 2205 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2206 BB->eraseFromParent(); 2207 2208 return Changed; 2209 } 2210 2211 //===----------------------------------------------------------------------===// 2212 // Memory Optimization 2213 //===----------------------------------------------------------------------===// 2214 2215 namespace { 2216 2217 /// This is an extended version of TargetLowering::AddrMode 2218 /// which holds actual Value*'s for register values. 2219 struct ExtAddrMode : public TargetLowering::AddrMode { 2220 Value *BaseReg = nullptr; 2221 Value *ScaledReg = nullptr; 2222 Value *OriginalValue = nullptr; 2223 bool InBounds = true; 2224 2225 enum FieldName { 2226 NoField = 0x00, 2227 BaseRegField = 0x01, 2228 BaseGVField = 0x02, 2229 BaseOffsField = 0x04, 2230 ScaledRegField = 0x08, 2231 ScaleField = 0x10, 2232 MultipleFields = 0xff 2233 }; 2234 2235 2236 ExtAddrMode() = default; 2237 2238 void print(raw_ostream &OS) const; 2239 void dump() const; 2240 2241 FieldName compare(const ExtAddrMode &other) { 2242 // First check that the types are the same on each field, as differing types 2243 // is something we can't cope with later on. 2244 if (BaseReg && other.BaseReg && 2245 BaseReg->getType() != other.BaseReg->getType()) 2246 return MultipleFields; 2247 if (BaseGV && other.BaseGV && 2248 BaseGV->getType() != other.BaseGV->getType()) 2249 return MultipleFields; 2250 if (ScaledReg && other.ScaledReg && 2251 ScaledReg->getType() != other.ScaledReg->getType()) 2252 return MultipleFields; 2253 2254 // Conservatively reject 'inbounds' mismatches. 2255 if (InBounds != other.InBounds) 2256 return MultipleFields; 2257 2258 // Check each field to see if it differs. 2259 unsigned Result = NoField; 2260 if (BaseReg != other.BaseReg) 2261 Result |= BaseRegField; 2262 if (BaseGV != other.BaseGV) 2263 Result |= BaseGVField; 2264 if (BaseOffs != other.BaseOffs) 2265 Result |= BaseOffsField; 2266 if (ScaledReg != other.ScaledReg) 2267 Result |= ScaledRegField; 2268 // Don't count 0 as being a different scale, because that actually means 2269 // unscaled (which will already be counted by having no ScaledReg). 2270 if (Scale && other.Scale && Scale != other.Scale) 2271 Result |= ScaleField; 2272 2273 if (countPopulation(Result) > 1) 2274 return MultipleFields; 2275 else 2276 return static_cast<FieldName>(Result); 2277 } 2278 2279 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2280 // with no offset. 2281 bool isTrivial() { 2282 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2283 // trivial if at most one of these terms is nonzero, except that BaseGV and 2284 // BaseReg both being zero actually means a null pointer value, which we 2285 // consider to be 'non-zero' here. 2286 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2287 } 2288 2289 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2290 switch (Field) { 2291 default: 2292 return nullptr; 2293 case BaseRegField: 2294 return BaseReg; 2295 case BaseGVField: 2296 return BaseGV; 2297 case ScaledRegField: 2298 return ScaledReg; 2299 case BaseOffsField: 2300 return ConstantInt::get(IntPtrTy, BaseOffs); 2301 } 2302 } 2303 2304 void SetCombinedField(FieldName Field, Value *V, 2305 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2306 switch (Field) { 2307 default: 2308 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2309 break; 2310 case ExtAddrMode::BaseRegField: 2311 BaseReg = V; 2312 break; 2313 case ExtAddrMode::BaseGVField: 2314 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2315 // in the BaseReg field. 2316 assert(BaseReg == nullptr); 2317 BaseReg = V; 2318 BaseGV = nullptr; 2319 break; 2320 case ExtAddrMode::ScaledRegField: 2321 ScaledReg = V; 2322 // If we have a mix of scaled and unscaled addrmodes then we want scale 2323 // to be the scale and not zero. 2324 if (!Scale) 2325 for (const ExtAddrMode &AM : AddrModes) 2326 if (AM.Scale) { 2327 Scale = AM.Scale; 2328 break; 2329 } 2330 break; 2331 case ExtAddrMode::BaseOffsField: 2332 // The offset is no longer a constant, so it goes in ScaledReg with a 2333 // scale of 1. 2334 assert(ScaledReg == nullptr); 2335 ScaledReg = V; 2336 Scale = 1; 2337 BaseOffs = 0; 2338 break; 2339 } 2340 } 2341 }; 2342 2343 } // end anonymous namespace 2344 2345 #ifndef NDEBUG 2346 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2347 AM.print(OS); 2348 return OS; 2349 } 2350 #endif 2351 2352 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2353 void ExtAddrMode::print(raw_ostream &OS) const { 2354 bool NeedPlus = false; 2355 OS << "["; 2356 if (InBounds) 2357 OS << "inbounds "; 2358 if (BaseGV) { 2359 OS << (NeedPlus ? " + " : "") 2360 << "GV:"; 2361 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2362 NeedPlus = true; 2363 } 2364 2365 if (BaseOffs) { 2366 OS << (NeedPlus ? " + " : "") 2367 << BaseOffs; 2368 NeedPlus = true; 2369 } 2370 2371 if (BaseReg) { 2372 OS << (NeedPlus ? " + " : "") 2373 << "Base:"; 2374 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2375 NeedPlus = true; 2376 } 2377 if (Scale) { 2378 OS << (NeedPlus ? " + " : "") 2379 << Scale << "*"; 2380 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2381 } 2382 2383 OS << ']'; 2384 } 2385 2386 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2387 print(dbgs()); 2388 dbgs() << '\n'; 2389 } 2390 #endif 2391 2392 namespace { 2393 2394 /// This class provides transaction based operation on the IR. 2395 /// Every change made through this class is recorded in the internal state and 2396 /// can be undone (rollback) until commit is called. 2397 class TypePromotionTransaction { 2398 /// This represents the common interface of the individual transaction. 2399 /// Each class implements the logic for doing one specific modification on 2400 /// the IR via the TypePromotionTransaction. 2401 class TypePromotionAction { 2402 protected: 2403 /// The Instruction modified. 2404 Instruction *Inst; 2405 2406 public: 2407 /// Constructor of the action. 2408 /// The constructor performs the related action on the IR. 2409 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2410 2411 virtual ~TypePromotionAction() = default; 2412 2413 /// Undo the modification done by this action. 2414 /// When this method is called, the IR must be in the same state as it was 2415 /// before this action was applied. 2416 /// \pre Undoing the action works if and only if the IR is in the exact same 2417 /// state as it was directly after this action was applied. 2418 virtual void undo() = 0; 2419 2420 /// Advocate every change made by this action. 2421 /// When the results on the IR of the action are to be kept, it is important 2422 /// to call this function, otherwise hidden information may be kept forever. 2423 virtual void commit() { 2424 // Nothing to be done, this action is not doing anything. 2425 } 2426 }; 2427 2428 /// Utility to remember the position of an instruction. 2429 class InsertionHandler { 2430 /// Position of an instruction. 2431 /// Either an instruction: 2432 /// - Is the first in a basic block: BB is used. 2433 /// - Has a previous instruction: PrevInst is used. 2434 union { 2435 Instruction *PrevInst; 2436 BasicBlock *BB; 2437 } Point; 2438 2439 /// Remember whether or not the instruction had a previous instruction. 2440 bool HasPrevInstruction; 2441 2442 public: 2443 /// Record the position of \p Inst. 2444 InsertionHandler(Instruction *Inst) { 2445 BasicBlock::iterator It = Inst->getIterator(); 2446 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2447 if (HasPrevInstruction) 2448 Point.PrevInst = &*--It; 2449 else 2450 Point.BB = Inst->getParent(); 2451 } 2452 2453 /// Insert \p Inst at the recorded position. 2454 void insert(Instruction *Inst) { 2455 if (HasPrevInstruction) { 2456 if (Inst->getParent()) 2457 Inst->removeFromParent(); 2458 Inst->insertAfter(Point.PrevInst); 2459 } else { 2460 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2461 if (Inst->getParent()) 2462 Inst->moveBefore(Position); 2463 else 2464 Inst->insertBefore(Position); 2465 } 2466 } 2467 }; 2468 2469 /// Move an instruction before another. 2470 class InstructionMoveBefore : public TypePromotionAction { 2471 /// Original position of the instruction. 2472 InsertionHandler Position; 2473 2474 public: 2475 /// Move \p Inst before \p Before. 2476 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2477 : TypePromotionAction(Inst), Position(Inst) { 2478 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2479 << "\n"); 2480 Inst->moveBefore(Before); 2481 } 2482 2483 /// Move the instruction back to its original position. 2484 void undo() override { 2485 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2486 Position.insert(Inst); 2487 } 2488 }; 2489 2490 /// Set the operand of an instruction with a new value. 2491 class OperandSetter : public TypePromotionAction { 2492 /// Original operand of the instruction. 2493 Value *Origin; 2494 2495 /// Index of the modified instruction. 2496 unsigned Idx; 2497 2498 public: 2499 /// Set \p Idx operand of \p Inst with \p NewVal. 2500 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2501 : TypePromotionAction(Inst), Idx(Idx) { 2502 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2503 << "for:" << *Inst << "\n" 2504 << "with:" << *NewVal << "\n"); 2505 Origin = Inst->getOperand(Idx); 2506 Inst->setOperand(Idx, NewVal); 2507 } 2508 2509 /// Restore the original value of the instruction. 2510 void undo() override { 2511 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2512 << "for: " << *Inst << "\n" 2513 << "with: " << *Origin << "\n"); 2514 Inst->setOperand(Idx, Origin); 2515 } 2516 }; 2517 2518 /// Hide the operands of an instruction. 2519 /// Do as if this instruction was not using any of its operands. 2520 class OperandsHider : public TypePromotionAction { 2521 /// The list of original operands. 2522 SmallVector<Value *, 4> OriginalValues; 2523 2524 public: 2525 /// Remove \p Inst from the uses of the operands of \p Inst. 2526 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2527 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2528 unsigned NumOpnds = Inst->getNumOperands(); 2529 OriginalValues.reserve(NumOpnds); 2530 for (unsigned It = 0; It < NumOpnds; ++It) { 2531 // Save the current operand. 2532 Value *Val = Inst->getOperand(It); 2533 OriginalValues.push_back(Val); 2534 // Set a dummy one. 2535 // We could use OperandSetter here, but that would imply an overhead 2536 // that we are not willing to pay. 2537 Inst->setOperand(It, UndefValue::get(Val->getType())); 2538 } 2539 } 2540 2541 /// Restore the original list of uses. 2542 void undo() override { 2543 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2544 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2545 Inst->setOperand(It, OriginalValues[It]); 2546 } 2547 }; 2548 2549 /// Build a truncate instruction. 2550 class TruncBuilder : public TypePromotionAction { 2551 Value *Val; 2552 2553 public: 2554 /// Build a truncate instruction of \p Opnd producing a \p Ty 2555 /// result. 2556 /// trunc Opnd to Ty. 2557 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2558 IRBuilder<> Builder(Opnd); 2559 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2560 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2561 } 2562 2563 /// Get the built value. 2564 Value *getBuiltValue() { return Val; } 2565 2566 /// Remove the built instruction. 2567 void undo() override { 2568 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2569 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2570 IVal->eraseFromParent(); 2571 } 2572 }; 2573 2574 /// Build a sign extension instruction. 2575 class SExtBuilder : public TypePromotionAction { 2576 Value *Val; 2577 2578 public: 2579 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2580 /// result. 2581 /// sext Opnd to Ty. 2582 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2583 : TypePromotionAction(InsertPt) { 2584 IRBuilder<> Builder(InsertPt); 2585 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2586 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2587 } 2588 2589 /// Get the built value. 2590 Value *getBuiltValue() { return Val; } 2591 2592 /// Remove the built instruction. 2593 void undo() override { 2594 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2595 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2596 IVal->eraseFromParent(); 2597 } 2598 }; 2599 2600 /// Build a zero extension instruction. 2601 class ZExtBuilder : public TypePromotionAction { 2602 Value *Val; 2603 2604 public: 2605 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2606 /// result. 2607 /// zext Opnd to Ty. 2608 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2609 : TypePromotionAction(InsertPt) { 2610 IRBuilder<> Builder(InsertPt); 2611 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2612 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2613 } 2614 2615 /// Get the built value. 2616 Value *getBuiltValue() { return Val; } 2617 2618 /// Remove the built instruction. 2619 void undo() override { 2620 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2621 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2622 IVal->eraseFromParent(); 2623 } 2624 }; 2625 2626 /// Mutate an instruction to another type. 2627 class TypeMutator : public TypePromotionAction { 2628 /// Record the original type. 2629 Type *OrigTy; 2630 2631 public: 2632 /// Mutate the type of \p Inst into \p NewTy. 2633 TypeMutator(Instruction *Inst, Type *NewTy) 2634 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2635 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2636 << "\n"); 2637 Inst->mutateType(NewTy); 2638 } 2639 2640 /// Mutate the instruction back to its original type. 2641 void undo() override { 2642 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2643 << "\n"); 2644 Inst->mutateType(OrigTy); 2645 } 2646 }; 2647 2648 /// Replace the uses of an instruction by another instruction. 2649 class UsesReplacer : public TypePromotionAction { 2650 /// Helper structure to keep track of the replaced uses. 2651 struct InstructionAndIdx { 2652 /// The instruction using the instruction. 2653 Instruction *Inst; 2654 2655 /// The index where this instruction is used for Inst. 2656 unsigned Idx; 2657 2658 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2659 : Inst(Inst), Idx(Idx) {} 2660 }; 2661 2662 /// Keep track of the original uses (pair Instruction, Index). 2663 SmallVector<InstructionAndIdx, 4> OriginalUses; 2664 /// Keep track of the debug users. 2665 SmallVector<DbgValueInst *, 1> DbgValues; 2666 2667 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2668 2669 public: 2670 /// Replace all the use of \p Inst by \p New. 2671 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2672 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2673 << "\n"); 2674 // Record the original uses. 2675 for (Use &U : Inst->uses()) { 2676 Instruction *UserI = cast<Instruction>(U.getUser()); 2677 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2678 } 2679 // Record the debug uses separately. They are not in the instruction's 2680 // use list, but they are replaced by RAUW. 2681 findDbgValues(DbgValues, Inst); 2682 2683 // Now, we can replace the uses. 2684 Inst->replaceAllUsesWith(New); 2685 } 2686 2687 /// Reassign the original uses of Inst to Inst. 2688 void undo() override { 2689 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2690 for (use_iterator UseIt = OriginalUses.begin(), 2691 EndIt = OriginalUses.end(); 2692 UseIt != EndIt; ++UseIt) { 2693 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2694 } 2695 // RAUW has replaced all original uses with references to the new value, 2696 // including the debug uses. Since we are undoing the replacements, 2697 // the original debug uses must also be reinstated to maintain the 2698 // correctness and utility of debug value instructions. 2699 for (auto *DVI: DbgValues) { 2700 LLVMContext &Ctx = Inst->getType()->getContext(); 2701 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2702 DVI->setOperand(0, MV); 2703 } 2704 } 2705 }; 2706 2707 /// Remove an instruction from the IR. 2708 class InstructionRemover : public TypePromotionAction { 2709 /// Original position of the instruction. 2710 InsertionHandler Inserter; 2711 2712 /// Helper structure to hide all the link to the instruction. In other 2713 /// words, this helps to do as if the instruction was removed. 2714 OperandsHider Hider; 2715 2716 /// Keep track of the uses replaced, if any. 2717 UsesReplacer *Replacer = nullptr; 2718 2719 /// Keep track of instructions removed. 2720 SetOfInstrs &RemovedInsts; 2721 2722 public: 2723 /// Remove all reference of \p Inst and optionally replace all its 2724 /// uses with New. 2725 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2726 /// \pre If !Inst->use_empty(), then New != nullptr 2727 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2728 Value *New = nullptr) 2729 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2730 RemovedInsts(RemovedInsts) { 2731 if (New) 2732 Replacer = new UsesReplacer(Inst, New); 2733 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2734 RemovedInsts.insert(Inst); 2735 /// The instructions removed here will be freed after completing 2736 /// optimizeBlock() for all blocks as we need to keep track of the 2737 /// removed instructions during promotion. 2738 Inst->removeFromParent(); 2739 } 2740 2741 ~InstructionRemover() override { delete Replacer; } 2742 2743 /// Resurrect the instruction and reassign it to the proper uses if 2744 /// new value was provided when build this action. 2745 void undo() override { 2746 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2747 Inserter.insert(Inst); 2748 if (Replacer) 2749 Replacer->undo(); 2750 Hider.undo(); 2751 RemovedInsts.erase(Inst); 2752 } 2753 }; 2754 2755 public: 2756 /// Restoration point. 2757 /// The restoration point is a pointer to an action instead of an iterator 2758 /// because the iterator may be invalidated but not the pointer. 2759 using ConstRestorationPt = const TypePromotionAction *; 2760 2761 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2762 : RemovedInsts(RemovedInsts) {} 2763 2764 /// Advocate every changes made in that transaction. 2765 void commit(); 2766 2767 /// Undo all the changes made after the given point. 2768 void rollback(ConstRestorationPt Point); 2769 2770 /// Get the current restoration point. 2771 ConstRestorationPt getRestorationPoint() const; 2772 2773 /// \name API for IR modification with state keeping to support rollback. 2774 /// @{ 2775 /// Same as Instruction::setOperand. 2776 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2777 2778 /// Same as Instruction::eraseFromParent. 2779 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2780 2781 /// Same as Value::replaceAllUsesWith. 2782 void replaceAllUsesWith(Instruction *Inst, Value *New); 2783 2784 /// Same as Value::mutateType. 2785 void mutateType(Instruction *Inst, Type *NewTy); 2786 2787 /// Same as IRBuilder::createTrunc. 2788 Value *createTrunc(Instruction *Opnd, Type *Ty); 2789 2790 /// Same as IRBuilder::createSExt. 2791 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2792 2793 /// Same as IRBuilder::createZExt. 2794 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2795 2796 /// Same as Instruction::moveBefore. 2797 void moveBefore(Instruction *Inst, Instruction *Before); 2798 /// @} 2799 2800 private: 2801 /// The ordered list of actions made so far. 2802 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2803 2804 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2805 2806 SetOfInstrs &RemovedInsts; 2807 }; 2808 2809 } // end anonymous namespace 2810 2811 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2812 Value *NewVal) { 2813 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2814 Inst, Idx, NewVal)); 2815 } 2816 2817 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2818 Value *NewVal) { 2819 Actions.push_back( 2820 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2821 Inst, RemovedInsts, NewVal)); 2822 } 2823 2824 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2825 Value *New) { 2826 Actions.push_back( 2827 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2828 } 2829 2830 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2831 Actions.push_back( 2832 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2833 } 2834 2835 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2836 Type *Ty) { 2837 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2838 Value *Val = Ptr->getBuiltValue(); 2839 Actions.push_back(std::move(Ptr)); 2840 return Val; 2841 } 2842 2843 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2844 Value *Opnd, Type *Ty) { 2845 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2846 Value *Val = Ptr->getBuiltValue(); 2847 Actions.push_back(std::move(Ptr)); 2848 return Val; 2849 } 2850 2851 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2852 Value *Opnd, Type *Ty) { 2853 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2854 Value *Val = Ptr->getBuiltValue(); 2855 Actions.push_back(std::move(Ptr)); 2856 return Val; 2857 } 2858 2859 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2860 Instruction *Before) { 2861 Actions.push_back( 2862 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2863 Inst, Before)); 2864 } 2865 2866 TypePromotionTransaction::ConstRestorationPt 2867 TypePromotionTransaction::getRestorationPoint() const { 2868 return !Actions.empty() ? Actions.back().get() : nullptr; 2869 } 2870 2871 void TypePromotionTransaction::commit() { 2872 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2873 ++It) 2874 (*It)->commit(); 2875 Actions.clear(); 2876 } 2877 2878 void TypePromotionTransaction::rollback( 2879 TypePromotionTransaction::ConstRestorationPt Point) { 2880 while (!Actions.empty() && Point != Actions.back().get()) { 2881 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2882 Curr->undo(); 2883 } 2884 } 2885 2886 namespace { 2887 2888 /// A helper class for matching addressing modes. 2889 /// 2890 /// This encapsulates the logic for matching the target-legal addressing modes. 2891 class AddressingModeMatcher { 2892 SmallVectorImpl<Instruction*> &AddrModeInsts; 2893 const TargetLowering &TLI; 2894 const TargetRegisterInfo &TRI; 2895 const DataLayout &DL; 2896 2897 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2898 /// the memory instruction that we're computing this address for. 2899 Type *AccessTy; 2900 unsigned AddrSpace; 2901 Instruction *MemoryInst; 2902 2903 /// This is the addressing mode that we're building up. This is 2904 /// part of the return value of this addressing mode matching stuff. 2905 ExtAddrMode &AddrMode; 2906 2907 /// The instructions inserted by other CodeGenPrepare optimizations. 2908 const SetOfInstrs &InsertedInsts; 2909 2910 /// A map from the instructions to their type before promotion. 2911 InstrToOrigTy &PromotedInsts; 2912 2913 /// The ongoing transaction where every action should be registered. 2914 TypePromotionTransaction &TPT; 2915 2916 // A GEP which has too large offset to be folded into the addressing mode. 2917 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2918 2919 /// This is set to true when we should not do profitability checks. 2920 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2921 bool IgnoreProfitability; 2922 2923 /// True if we are optimizing for size. 2924 bool OptSize; 2925 2926 ProfileSummaryInfo *PSI; 2927 BlockFrequencyInfo *BFI; 2928 2929 AddressingModeMatcher( 2930 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2931 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2932 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2933 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2934 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2935 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2936 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2937 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2938 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2939 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2940 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2941 IgnoreProfitability = false; 2942 } 2943 2944 public: 2945 /// Find the maximal addressing mode that a load/store of V can fold, 2946 /// give an access type of AccessTy. This returns a list of involved 2947 /// instructions in AddrModeInsts. 2948 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2949 /// optimizations. 2950 /// \p PromotedInsts maps the instructions to their type before promotion. 2951 /// \p The ongoing transaction where every action should be registered. 2952 static ExtAddrMode 2953 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2954 SmallVectorImpl<Instruction *> &AddrModeInsts, 2955 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2956 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2957 TypePromotionTransaction &TPT, 2958 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2959 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2960 ExtAddrMode Result; 2961 2962 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2963 MemoryInst, Result, InsertedInsts, 2964 PromotedInsts, TPT, LargeOffsetGEP, 2965 OptSize, PSI, BFI) 2966 .matchAddr(V, 0); 2967 (void)Success; assert(Success && "Couldn't select *anything*?"); 2968 return Result; 2969 } 2970 2971 private: 2972 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2973 bool matchAddr(Value *Addr, unsigned Depth); 2974 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2975 bool *MovedAway = nullptr); 2976 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2977 ExtAddrMode &AMBefore, 2978 ExtAddrMode &AMAfter); 2979 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2980 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2981 Value *PromotedOperand) const; 2982 }; 2983 2984 class PhiNodeSet; 2985 2986 /// An iterator for PhiNodeSet. 2987 class PhiNodeSetIterator { 2988 PhiNodeSet * const Set; 2989 size_t CurrentIndex = 0; 2990 2991 public: 2992 /// The constructor. Start should point to either a valid element, or be equal 2993 /// to the size of the underlying SmallVector of the PhiNodeSet. 2994 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2995 PHINode * operator*() const; 2996 PhiNodeSetIterator& operator++(); 2997 bool operator==(const PhiNodeSetIterator &RHS) const; 2998 bool operator!=(const PhiNodeSetIterator &RHS) const; 2999 }; 3000 3001 /// Keeps a set of PHINodes. 3002 /// 3003 /// This is a minimal set implementation for a specific use case: 3004 /// It is very fast when there are very few elements, but also provides good 3005 /// performance when there are many. It is similar to SmallPtrSet, but also 3006 /// provides iteration by insertion order, which is deterministic and stable 3007 /// across runs. It is also similar to SmallSetVector, but provides removing 3008 /// elements in O(1) time. This is achieved by not actually removing the element 3009 /// from the underlying vector, so comes at the cost of using more memory, but 3010 /// that is fine, since PhiNodeSets are used as short lived objects. 3011 class PhiNodeSet { 3012 friend class PhiNodeSetIterator; 3013 3014 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3015 using iterator = PhiNodeSetIterator; 3016 3017 /// Keeps the elements in the order of their insertion in the underlying 3018 /// vector. To achieve constant time removal, it never deletes any element. 3019 SmallVector<PHINode *, 32> NodeList; 3020 3021 /// Keeps the elements in the underlying set implementation. This (and not the 3022 /// NodeList defined above) is the source of truth on whether an element 3023 /// is actually in the collection. 3024 MapType NodeMap; 3025 3026 /// Points to the first valid (not deleted) element when the set is not empty 3027 /// and the value is not zero. Equals to the size of the underlying vector 3028 /// when the set is empty. When the value is 0, as in the beginning, the 3029 /// first element may or may not be valid. 3030 size_t FirstValidElement = 0; 3031 3032 public: 3033 /// Inserts a new element to the collection. 3034 /// \returns true if the element is actually added, i.e. was not in the 3035 /// collection before the operation. 3036 bool insert(PHINode *Ptr) { 3037 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3038 NodeList.push_back(Ptr); 3039 return true; 3040 } 3041 return false; 3042 } 3043 3044 /// Removes the element from the collection. 3045 /// \returns whether the element is actually removed, i.e. was in the 3046 /// collection before the operation. 3047 bool erase(PHINode *Ptr) { 3048 auto it = NodeMap.find(Ptr); 3049 if (it != NodeMap.end()) { 3050 NodeMap.erase(Ptr); 3051 SkipRemovedElements(FirstValidElement); 3052 return true; 3053 } 3054 return false; 3055 } 3056 3057 /// Removes all elements and clears the collection. 3058 void clear() { 3059 NodeMap.clear(); 3060 NodeList.clear(); 3061 FirstValidElement = 0; 3062 } 3063 3064 /// \returns an iterator that will iterate the elements in the order of 3065 /// insertion. 3066 iterator begin() { 3067 if (FirstValidElement == 0) 3068 SkipRemovedElements(FirstValidElement); 3069 return PhiNodeSetIterator(this, FirstValidElement); 3070 } 3071 3072 /// \returns an iterator that points to the end of the collection. 3073 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3074 3075 /// Returns the number of elements in the collection. 3076 size_t size() const { 3077 return NodeMap.size(); 3078 } 3079 3080 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3081 size_t count(PHINode *Ptr) const { 3082 return NodeMap.count(Ptr); 3083 } 3084 3085 private: 3086 /// Updates the CurrentIndex so that it will point to a valid element. 3087 /// 3088 /// If the element of NodeList at CurrentIndex is valid, it does not 3089 /// change it. If there are no more valid elements, it updates CurrentIndex 3090 /// to point to the end of the NodeList. 3091 void SkipRemovedElements(size_t &CurrentIndex) { 3092 while (CurrentIndex < NodeList.size()) { 3093 auto it = NodeMap.find(NodeList[CurrentIndex]); 3094 // If the element has been deleted and added again later, NodeMap will 3095 // point to a different index, so CurrentIndex will still be invalid. 3096 if (it != NodeMap.end() && it->second == CurrentIndex) 3097 break; 3098 ++CurrentIndex; 3099 } 3100 } 3101 }; 3102 3103 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3104 : Set(Set), CurrentIndex(Start) {} 3105 3106 PHINode * PhiNodeSetIterator::operator*() const { 3107 assert(CurrentIndex < Set->NodeList.size() && 3108 "PhiNodeSet access out of range"); 3109 return Set->NodeList[CurrentIndex]; 3110 } 3111 3112 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3113 assert(CurrentIndex < Set->NodeList.size() && 3114 "PhiNodeSet access out of range"); 3115 ++CurrentIndex; 3116 Set->SkipRemovedElements(CurrentIndex); 3117 return *this; 3118 } 3119 3120 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3121 return CurrentIndex == RHS.CurrentIndex; 3122 } 3123 3124 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3125 return !((*this) == RHS); 3126 } 3127 3128 /// Keep track of simplification of Phi nodes. 3129 /// Accept the set of all phi nodes and erase phi node from this set 3130 /// if it is simplified. 3131 class SimplificationTracker { 3132 DenseMap<Value *, Value *> Storage; 3133 const SimplifyQuery &SQ; 3134 // Tracks newly created Phi nodes. The elements are iterated by insertion 3135 // order. 3136 PhiNodeSet AllPhiNodes; 3137 // Tracks newly created Select nodes. 3138 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3139 3140 public: 3141 SimplificationTracker(const SimplifyQuery &sq) 3142 : SQ(sq) {} 3143 3144 Value *Get(Value *V) { 3145 do { 3146 auto SV = Storage.find(V); 3147 if (SV == Storage.end()) 3148 return V; 3149 V = SV->second; 3150 } while (true); 3151 } 3152 3153 Value *Simplify(Value *Val) { 3154 SmallVector<Value *, 32> WorkList; 3155 SmallPtrSet<Value *, 32> Visited; 3156 WorkList.push_back(Val); 3157 while (!WorkList.empty()) { 3158 auto P = WorkList.pop_back_val(); 3159 if (!Visited.insert(P).second) 3160 continue; 3161 if (auto *PI = dyn_cast<Instruction>(P)) 3162 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3163 for (auto *U : PI->users()) 3164 WorkList.push_back(cast<Value>(U)); 3165 Put(PI, V); 3166 PI->replaceAllUsesWith(V); 3167 if (auto *PHI = dyn_cast<PHINode>(PI)) 3168 AllPhiNodes.erase(PHI); 3169 if (auto *Select = dyn_cast<SelectInst>(PI)) 3170 AllSelectNodes.erase(Select); 3171 PI->eraseFromParent(); 3172 } 3173 } 3174 return Get(Val); 3175 } 3176 3177 void Put(Value *From, Value *To) { 3178 Storage.insert({ From, To }); 3179 } 3180 3181 void ReplacePhi(PHINode *From, PHINode *To) { 3182 Value* OldReplacement = Get(From); 3183 while (OldReplacement != From) { 3184 From = To; 3185 To = dyn_cast<PHINode>(OldReplacement); 3186 OldReplacement = Get(From); 3187 } 3188 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3189 Put(From, To); 3190 From->replaceAllUsesWith(To); 3191 AllPhiNodes.erase(From); 3192 From->eraseFromParent(); 3193 } 3194 3195 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3196 3197 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3198 3199 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3200 3201 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3202 3203 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3204 3205 void destroyNewNodes(Type *CommonType) { 3206 // For safe erasing, replace the uses with dummy value first. 3207 auto Dummy = UndefValue::get(CommonType); 3208 for (auto I : AllPhiNodes) { 3209 I->replaceAllUsesWith(Dummy); 3210 I->eraseFromParent(); 3211 } 3212 AllPhiNodes.clear(); 3213 for (auto I : AllSelectNodes) { 3214 I->replaceAllUsesWith(Dummy); 3215 I->eraseFromParent(); 3216 } 3217 AllSelectNodes.clear(); 3218 } 3219 }; 3220 3221 /// A helper class for combining addressing modes. 3222 class AddressingModeCombiner { 3223 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3224 typedef std::pair<PHINode *, PHINode *> PHIPair; 3225 3226 private: 3227 /// The addressing modes we've collected. 3228 SmallVector<ExtAddrMode, 16> AddrModes; 3229 3230 /// The field in which the AddrModes differ, when we have more than one. 3231 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3232 3233 /// Are the AddrModes that we have all just equal to their original values? 3234 bool AllAddrModesTrivial = true; 3235 3236 /// Common Type for all different fields in addressing modes. 3237 Type *CommonType; 3238 3239 /// SimplifyQuery for simplifyInstruction utility. 3240 const SimplifyQuery &SQ; 3241 3242 /// Original Address. 3243 Value *Original; 3244 3245 public: 3246 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3247 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3248 3249 /// Get the combined AddrMode 3250 const ExtAddrMode &getAddrMode() const { 3251 return AddrModes[0]; 3252 } 3253 3254 /// Add a new AddrMode if it's compatible with the AddrModes we already 3255 /// have. 3256 /// \return True iff we succeeded in doing so. 3257 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3258 // Take note of if we have any non-trivial AddrModes, as we need to detect 3259 // when all AddrModes are trivial as then we would introduce a phi or select 3260 // which just duplicates what's already there. 3261 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3262 3263 // If this is the first addrmode then everything is fine. 3264 if (AddrModes.empty()) { 3265 AddrModes.emplace_back(NewAddrMode); 3266 return true; 3267 } 3268 3269 // Figure out how different this is from the other address modes, which we 3270 // can do just by comparing against the first one given that we only care 3271 // about the cumulative difference. 3272 ExtAddrMode::FieldName ThisDifferentField = 3273 AddrModes[0].compare(NewAddrMode); 3274 if (DifferentField == ExtAddrMode::NoField) 3275 DifferentField = ThisDifferentField; 3276 else if (DifferentField != ThisDifferentField) 3277 DifferentField = ExtAddrMode::MultipleFields; 3278 3279 // If NewAddrMode differs in more than one dimension we cannot handle it. 3280 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3281 3282 // If Scale Field is different then we reject. 3283 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3284 3285 // We also must reject the case when base offset is different and 3286 // scale reg is not null, we cannot handle this case due to merge of 3287 // different offsets will be used as ScaleReg. 3288 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3289 !NewAddrMode.ScaledReg); 3290 3291 // We also must reject the case when GV is different and BaseReg installed 3292 // due to we want to use base reg as a merge of GV values. 3293 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3294 !NewAddrMode.HasBaseReg); 3295 3296 // Even if NewAddMode is the same we still need to collect it due to 3297 // original value is different. And later we will need all original values 3298 // as anchors during finding the common Phi node. 3299 if (CanHandle) 3300 AddrModes.emplace_back(NewAddrMode); 3301 else 3302 AddrModes.clear(); 3303 3304 return CanHandle; 3305 } 3306 3307 /// Combine the addressing modes we've collected into a single 3308 /// addressing mode. 3309 /// \return True iff we successfully combined them or we only had one so 3310 /// didn't need to combine them anyway. 3311 bool combineAddrModes() { 3312 // If we have no AddrModes then they can't be combined. 3313 if (AddrModes.size() == 0) 3314 return false; 3315 3316 // A single AddrMode can trivially be combined. 3317 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3318 return true; 3319 3320 // If the AddrModes we collected are all just equal to the value they are 3321 // derived from then combining them wouldn't do anything useful. 3322 if (AllAddrModesTrivial) 3323 return false; 3324 3325 if (!addrModeCombiningAllowed()) 3326 return false; 3327 3328 // Build a map between <original value, basic block where we saw it> to 3329 // value of base register. 3330 // Bail out if there is no common type. 3331 FoldAddrToValueMapping Map; 3332 if (!initializeMap(Map)) 3333 return false; 3334 3335 Value *CommonValue = findCommon(Map); 3336 if (CommonValue) 3337 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3338 return CommonValue != nullptr; 3339 } 3340 3341 private: 3342 /// Initialize Map with anchor values. For address seen 3343 /// we set the value of different field saw in this address. 3344 /// At the same time we find a common type for different field we will 3345 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3346 /// Return false if there is no common type found. 3347 bool initializeMap(FoldAddrToValueMapping &Map) { 3348 // Keep track of keys where the value is null. We will need to replace it 3349 // with constant null when we know the common type. 3350 SmallVector<Value *, 2> NullValue; 3351 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3352 for (auto &AM : AddrModes) { 3353 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3354 if (DV) { 3355 auto *Type = DV->getType(); 3356 if (CommonType && CommonType != Type) 3357 return false; 3358 CommonType = Type; 3359 Map[AM.OriginalValue] = DV; 3360 } else { 3361 NullValue.push_back(AM.OriginalValue); 3362 } 3363 } 3364 assert(CommonType && "At least one non-null value must be!"); 3365 for (auto *V : NullValue) 3366 Map[V] = Constant::getNullValue(CommonType); 3367 return true; 3368 } 3369 3370 /// We have mapping between value A and other value B where B was a field in 3371 /// addressing mode represented by A. Also we have an original value C 3372 /// representing an address we start with. Traversing from C through phi and 3373 /// selects we ended up with A's in a map. This utility function tries to find 3374 /// a value V which is a field in addressing mode C and traversing through phi 3375 /// nodes and selects we will end up in corresponded values B in a map. 3376 /// The utility will create a new Phi/Selects if needed. 3377 // The simple example looks as follows: 3378 // BB1: 3379 // p1 = b1 + 40 3380 // br cond BB2, BB3 3381 // BB2: 3382 // p2 = b2 + 40 3383 // br BB3 3384 // BB3: 3385 // p = phi [p1, BB1], [p2, BB2] 3386 // v = load p 3387 // Map is 3388 // p1 -> b1 3389 // p2 -> b2 3390 // Request is 3391 // p -> ? 3392 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3393 Value *findCommon(FoldAddrToValueMapping &Map) { 3394 // Tracks the simplification of newly created phi nodes. The reason we use 3395 // this mapping is because we will add new created Phi nodes in AddrToBase. 3396 // Simplification of Phi nodes is recursive, so some Phi node may 3397 // be simplified after we added it to AddrToBase. In reality this 3398 // simplification is possible only if original phi/selects were not 3399 // simplified yet. 3400 // Using this mapping we can find the current value in AddrToBase. 3401 SimplificationTracker ST(SQ); 3402 3403 // First step, DFS to create PHI nodes for all intermediate blocks. 3404 // Also fill traverse order for the second step. 3405 SmallVector<Value *, 32> TraverseOrder; 3406 InsertPlaceholders(Map, TraverseOrder, ST); 3407 3408 // Second Step, fill new nodes by merged values and simplify if possible. 3409 FillPlaceholders(Map, TraverseOrder, ST); 3410 3411 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3412 ST.destroyNewNodes(CommonType); 3413 return nullptr; 3414 } 3415 3416 // Now we'd like to match New Phi nodes to existed ones. 3417 unsigned PhiNotMatchedCount = 0; 3418 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3419 ST.destroyNewNodes(CommonType); 3420 return nullptr; 3421 } 3422 3423 auto *Result = ST.Get(Map.find(Original)->second); 3424 if (Result) { 3425 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3426 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3427 } 3428 return Result; 3429 } 3430 3431 /// Try to match PHI node to Candidate. 3432 /// Matcher tracks the matched Phi nodes. 3433 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3434 SmallSetVector<PHIPair, 8> &Matcher, 3435 PhiNodeSet &PhiNodesToMatch) { 3436 SmallVector<PHIPair, 8> WorkList; 3437 Matcher.insert({ PHI, Candidate }); 3438 SmallSet<PHINode *, 8> MatchedPHIs; 3439 MatchedPHIs.insert(PHI); 3440 WorkList.push_back({ PHI, Candidate }); 3441 SmallSet<PHIPair, 8> Visited; 3442 while (!WorkList.empty()) { 3443 auto Item = WorkList.pop_back_val(); 3444 if (!Visited.insert(Item).second) 3445 continue; 3446 // We iterate over all incoming values to Phi to compare them. 3447 // If values are different and both of them Phi and the first one is a 3448 // Phi we added (subject to match) and both of them is in the same basic 3449 // block then we can match our pair if values match. So we state that 3450 // these values match and add it to work list to verify that. 3451 for (auto B : Item.first->blocks()) { 3452 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3453 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3454 if (FirstValue == SecondValue) 3455 continue; 3456 3457 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3458 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3459 3460 // One of them is not Phi or 3461 // The first one is not Phi node from the set we'd like to match or 3462 // Phi nodes from different basic blocks then 3463 // we will not be able to match. 3464 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3465 FirstPhi->getParent() != SecondPhi->getParent()) 3466 return false; 3467 3468 // If we already matched them then continue. 3469 if (Matcher.count({ FirstPhi, SecondPhi })) 3470 continue; 3471 // So the values are different and does not match. So we need them to 3472 // match. (But we register no more than one match per PHI node, so that 3473 // we won't later try to replace them twice.) 3474 if (MatchedPHIs.insert(FirstPhi).second) 3475 Matcher.insert({ FirstPhi, SecondPhi }); 3476 // But me must check it. 3477 WorkList.push_back({ FirstPhi, SecondPhi }); 3478 } 3479 } 3480 return true; 3481 } 3482 3483 /// For the given set of PHI nodes (in the SimplificationTracker) try 3484 /// to find their equivalents. 3485 /// Returns false if this matching fails and creation of new Phi is disabled. 3486 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3487 unsigned &PhiNotMatchedCount) { 3488 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3489 // order, so the replacements (ReplacePhi) are also done in a deterministic 3490 // order. 3491 SmallSetVector<PHIPair, 8> Matched; 3492 SmallPtrSet<PHINode *, 8> WillNotMatch; 3493 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3494 while (PhiNodesToMatch.size()) { 3495 PHINode *PHI = *PhiNodesToMatch.begin(); 3496 3497 // Add us, if no Phi nodes in the basic block we do not match. 3498 WillNotMatch.clear(); 3499 WillNotMatch.insert(PHI); 3500 3501 // Traverse all Phis until we found equivalent or fail to do that. 3502 bool IsMatched = false; 3503 for (auto &P : PHI->getParent()->phis()) { 3504 if (&P == PHI) 3505 continue; 3506 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3507 break; 3508 // If it does not match, collect all Phi nodes from matcher. 3509 // if we end up with no match, them all these Phi nodes will not match 3510 // later. 3511 for (auto M : Matched) 3512 WillNotMatch.insert(M.first); 3513 Matched.clear(); 3514 } 3515 if (IsMatched) { 3516 // Replace all matched values and erase them. 3517 for (auto MV : Matched) 3518 ST.ReplacePhi(MV.first, MV.second); 3519 Matched.clear(); 3520 continue; 3521 } 3522 // If we are not allowed to create new nodes then bail out. 3523 if (!AllowNewPhiNodes) 3524 return false; 3525 // Just remove all seen values in matcher. They will not match anything. 3526 PhiNotMatchedCount += WillNotMatch.size(); 3527 for (auto *P : WillNotMatch) 3528 PhiNodesToMatch.erase(P); 3529 } 3530 return true; 3531 } 3532 /// Fill the placeholders with values from predecessors and simplify them. 3533 void FillPlaceholders(FoldAddrToValueMapping &Map, 3534 SmallVectorImpl<Value *> &TraverseOrder, 3535 SimplificationTracker &ST) { 3536 while (!TraverseOrder.empty()) { 3537 Value *Current = TraverseOrder.pop_back_val(); 3538 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3539 Value *V = Map[Current]; 3540 3541 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3542 // CurrentValue also must be Select. 3543 auto *CurrentSelect = cast<SelectInst>(Current); 3544 auto *TrueValue = CurrentSelect->getTrueValue(); 3545 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3546 Select->setTrueValue(ST.Get(Map[TrueValue])); 3547 auto *FalseValue = CurrentSelect->getFalseValue(); 3548 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3549 Select->setFalseValue(ST.Get(Map[FalseValue])); 3550 } else { 3551 // Must be a Phi node then. 3552 auto *PHI = cast<PHINode>(V); 3553 // Fill the Phi node with values from predecessors. 3554 for (auto B : predecessors(PHI->getParent())) { 3555 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3556 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3557 PHI->addIncoming(ST.Get(Map[PV]), B); 3558 } 3559 } 3560 Map[Current] = ST.Simplify(V); 3561 } 3562 } 3563 3564 /// Starting from original value recursively iterates over def-use chain up to 3565 /// known ending values represented in a map. For each traversed phi/select 3566 /// inserts a placeholder Phi or Select. 3567 /// Reports all new created Phi/Select nodes by adding them to set. 3568 /// Also reports and order in what values have been traversed. 3569 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3570 SmallVectorImpl<Value *> &TraverseOrder, 3571 SimplificationTracker &ST) { 3572 SmallVector<Value *, 32> Worklist; 3573 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3574 "Address must be a Phi or Select node"); 3575 auto *Dummy = UndefValue::get(CommonType); 3576 Worklist.push_back(Original); 3577 while (!Worklist.empty()) { 3578 Value *Current = Worklist.pop_back_val(); 3579 // if it is already visited or it is an ending value then skip it. 3580 if (Map.find(Current) != Map.end()) 3581 continue; 3582 TraverseOrder.push_back(Current); 3583 3584 // CurrentValue must be a Phi node or select. All others must be covered 3585 // by anchors. 3586 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3587 // Is it OK to get metadata from OrigSelect?! 3588 // Create a Select placeholder with dummy value. 3589 SelectInst *Select = SelectInst::Create( 3590 CurrentSelect->getCondition(), Dummy, Dummy, 3591 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3592 Map[Current] = Select; 3593 ST.insertNewSelect(Select); 3594 // We are interested in True and False values. 3595 Worklist.push_back(CurrentSelect->getTrueValue()); 3596 Worklist.push_back(CurrentSelect->getFalseValue()); 3597 } else { 3598 // It must be a Phi node then. 3599 PHINode *CurrentPhi = cast<PHINode>(Current); 3600 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3601 PHINode *PHI = 3602 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3603 Map[Current] = PHI; 3604 ST.insertNewPhi(PHI); 3605 for (Value *P : CurrentPhi->incoming_values()) 3606 Worklist.push_back(P); 3607 } 3608 } 3609 } 3610 3611 bool addrModeCombiningAllowed() { 3612 if (DisableComplexAddrModes) 3613 return false; 3614 switch (DifferentField) { 3615 default: 3616 return false; 3617 case ExtAddrMode::BaseRegField: 3618 return AddrSinkCombineBaseReg; 3619 case ExtAddrMode::BaseGVField: 3620 return AddrSinkCombineBaseGV; 3621 case ExtAddrMode::BaseOffsField: 3622 return AddrSinkCombineBaseOffs; 3623 case ExtAddrMode::ScaledRegField: 3624 return AddrSinkCombineScaledReg; 3625 } 3626 } 3627 }; 3628 } // end anonymous namespace 3629 3630 /// Try adding ScaleReg*Scale to the current addressing mode. 3631 /// Return true and update AddrMode if this addr mode is legal for the target, 3632 /// false if not. 3633 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3634 unsigned Depth) { 3635 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3636 // mode. Just process that directly. 3637 if (Scale == 1) 3638 return matchAddr(ScaleReg, Depth); 3639 3640 // If the scale is 0, it takes nothing to add this. 3641 if (Scale == 0) 3642 return true; 3643 3644 // If we already have a scale of this value, we can add to it, otherwise, we 3645 // need an available scale field. 3646 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3647 return false; 3648 3649 ExtAddrMode TestAddrMode = AddrMode; 3650 3651 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3652 // [A+B + A*7] -> [B+A*8]. 3653 TestAddrMode.Scale += Scale; 3654 TestAddrMode.ScaledReg = ScaleReg; 3655 3656 // If the new address isn't legal, bail out. 3657 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3658 return false; 3659 3660 // It was legal, so commit it. 3661 AddrMode = TestAddrMode; 3662 3663 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3664 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3665 // X*Scale + C*Scale to addr mode. 3666 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3667 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3668 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3669 TestAddrMode.InBounds = false; 3670 TestAddrMode.ScaledReg = AddLHS; 3671 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3672 3673 // If this addressing mode is legal, commit it and remember that we folded 3674 // this instruction. 3675 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3676 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3677 AddrMode = TestAddrMode; 3678 return true; 3679 } 3680 } 3681 3682 // Otherwise, not (x+c)*scale, just return what we have. 3683 return true; 3684 } 3685 3686 /// This is a little filter, which returns true if an addressing computation 3687 /// involving I might be folded into a load/store accessing it. 3688 /// This doesn't need to be perfect, but needs to accept at least 3689 /// the set of instructions that MatchOperationAddr can. 3690 static bool MightBeFoldableInst(Instruction *I) { 3691 switch (I->getOpcode()) { 3692 case Instruction::BitCast: 3693 case Instruction::AddrSpaceCast: 3694 // Don't touch identity bitcasts. 3695 if (I->getType() == I->getOperand(0)->getType()) 3696 return false; 3697 return I->getType()->isIntOrPtrTy(); 3698 case Instruction::PtrToInt: 3699 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3700 return true; 3701 case Instruction::IntToPtr: 3702 // We know the input is intptr_t, so this is foldable. 3703 return true; 3704 case Instruction::Add: 3705 return true; 3706 case Instruction::Mul: 3707 case Instruction::Shl: 3708 // Can only handle X*C and X << C. 3709 return isa<ConstantInt>(I->getOperand(1)); 3710 case Instruction::GetElementPtr: 3711 return true; 3712 default: 3713 return false; 3714 } 3715 } 3716 3717 /// Check whether or not \p Val is a legal instruction for \p TLI. 3718 /// \note \p Val is assumed to be the product of some type promotion. 3719 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3720 /// to be legal, as the non-promoted value would have had the same state. 3721 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3722 const DataLayout &DL, Value *Val) { 3723 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3724 if (!PromotedInst) 3725 return false; 3726 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3727 // If the ISDOpcode is undefined, it was undefined before the promotion. 3728 if (!ISDOpcode) 3729 return true; 3730 // Otherwise, check if the promoted instruction is legal or not. 3731 return TLI.isOperationLegalOrCustom( 3732 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3733 } 3734 3735 namespace { 3736 3737 /// Hepler class to perform type promotion. 3738 class TypePromotionHelper { 3739 /// Utility function to add a promoted instruction \p ExtOpnd to 3740 /// \p PromotedInsts and record the type of extension we have seen. 3741 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3742 Instruction *ExtOpnd, 3743 bool IsSExt) { 3744 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3745 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3746 if (It != PromotedInsts.end()) { 3747 // If the new extension is same as original, the information in 3748 // PromotedInsts[ExtOpnd] is still correct. 3749 if (It->second.getInt() == ExtTy) 3750 return; 3751 3752 // Now the new extension is different from old extension, we make 3753 // the type information invalid by setting extension type to 3754 // BothExtension. 3755 ExtTy = BothExtension; 3756 } 3757 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3758 } 3759 3760 /// Utility function to query the original type of instruction \p Opnd 3761 /// with a matched extension type. If the extension doesn't match, we 3762 /// cannot use the information we had on the original type. 3763 /// BothExtension doesn't match any extension type. 3764 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3765 Instruction *Opnd, 3766 bool IsSExt) { 3767 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3768 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3769 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3770 return It->second.getPointer(); 3771 return nullptr; 3772 } 3773 3774 /// Utility function to check whether or not a sign or zero extension 3775 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3776 /// either using the operands of \p Inst or promoting \p Inst. 3777 /// The type of the extension is defined by \p IsSExt. 3778 /// In other words, check if: 3779 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3780 /// #1 Promotion applies: 3781 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3782 /// #2 Operand reuses: 3783 /// ext opnd1 to ConsideredExtType. 3784 /// \p PromotedInsts maps the instructions to their type before promotion. 3785 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3786 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3787 3788 /// Utility function to determine if \p OpIdx should be promoted when 3789 /// promoting \p Inst. 3790 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3791 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3792 } 3793 3794 /// Utility function to promote the operand of \p Ext when this 3795 /// operand is a promotable trunc or sext or zext. 3796 /// \p PromotedInsts maps the instructions to their type before promotion. 3797 /// \p CreatedInstsCost[out] contains the cost of all instructions 3798 /// created to promote the operand of Ext. 3799 /// Newly added extensions are inserted in \p Exts. 3800 /// Newly added truncates are inserted in \p Truncs. 3801 /// Should never be called directly. 3802 /// \return The promoted value which is used instead of Ext. 3803 static Value *promoteOperandForTruncAndAnyExt( 3804 Instruction *Ext, TypePromotionTransaction &TPT, 3805 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3806 SmallVectorImpl<Instruction *> *Exts, 3807 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3808 3809 /// Utility function to promote the operand of \p Ext when this 3810 /// operand is promotable and is not a supported trunc or sext. 3811 /// \p PromotedInsts maps the instructions to their type before promotion. 3812 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3813 /// created to promote the operand of Ext. 3814 /// Newly added extensions are inserted in \p Exts. 3815 /// Newly added truncates are inserted in \p Truncs. 3816 /// Should never be called directly. 3817 /// \return The promoted value which is used instead of Ext. 3818 static Value *promoteOperandForOther(Instruction *Ext, 3819 TypePromotionTransaction &TPT, 3820 InstrToOrigTy &PromotedInsts, 3821 unsigned &CreatedInstsCost, 3822 SmallVectorImpl<Instruction *> *Exts, 3823 SmallVectorImpl<Instruction *> *Truncs, 3824 const TargetLowering &TLI, bool IsSExt); 3825 3826 /// \see promoteOperandForOther. 3827 static Value *signExtendOperandForOther( 3828 Instruction *Ext, TypePromotionTransaction &TPT, 3829 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3830 SmallVectorImpl<Instruction *> *Exts, 3831 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3832 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3833 Exts, Truncs, TLI, true); 3834 } 3835 3836 /// \see promoteOperandForOther. 3837 static Value *zeroExtendOperandForOther( 3838 Instruction *Ext, TypePromotionTransaction &TPT, 3839 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3840 SmallVectorImpl<Instruction *> *Exts, 3841 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3842 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3843 Exts, Truncs, TLI, false); 3844 } 3845 3846 public: 3847 /// Type for the utility function that promotes the operand of Ext. 3848 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3849 InstrToOrigTy &PromotedInsts, 3850 unsigned &CreatedInstsCost, 3851 SmallVectorImpl<Instruction *> *Exts, 3852 SmallVectorImpl<Instruction *> *Truncs, 3853 const TargetLowering &TLI); 3854 3855 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3856 /// action to promote the operand of \p Ext instead of using Ext. 3857 /// \return NULL if no promotable action is possible with the current 3858 /// sign extension. 3859 /// \p InsertedInsts keeps track of all the instructions inserted by the 3860 /// other CodeGenPrepare optimizations. This information is important 3861 /// because we do not want to promote these instructions as CodeGenPrepare 3862 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3863 /// \p PromotedInsts maps the instructions to their type before promotion. 3864 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3865 const TargetLowering &TLI, 3866 const InstrToOrigTy &PromotedInsts); 3867 }; 3868 3869 } // end anonymous namespace 3870 3871 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3872 Type *ConsideredExtType, 3873 const InstrToOrigTy &PromotedInsts, 3874 bool IsSExt) { 3875 // The promotion helper does not know how to deal with vector types yet. 3876 // To be able to fix that, we would need to fix the places where we 3877 // statically extend, e.g., constants and such. 3878 if (Inst->getType()->isVectorTy()) 3879 return false; 3880 3881 // We can always get through zext. 3882 if (isa<ZExtInst>(Inst)) 3883 return true; 3884 3885 // sext(sext) is ok too. 3886 if (IsSExt && isa<SExtInst>(Inst)) 3887 return true; 3888 3889 // We can get through binary operator, if it is legal. In other words, the 3890 // binary operator must have a nuw or nsw flag. 3891 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3892 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3893 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3894 (IsSExt && BinOp->hasNoSignedWrap()))) 3895 return true; 3896 3897 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3898 if ((Inst->getOpcode() == Instruction::And || 3899 Inst->getOpcode() == Instruction::Or)) 3900 return true; 3901 3902 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3903 if (Inst->getOpcode() == Instruction::Xor) { 3904 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3905 // Make sure it is not a NOT. 3906 if (Cst && !Cst->getValue().isAllOnesValue()) 3907 return true; 3908 } 3909 3910 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3911 // It may change a poisoned value into a regular value, like 3912 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3913 // poisoned value regular value 3914 // It should be OK since undef covers valid value. 3915 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3916 return true; 3917 3918 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3919 // It may change a poisoned value into a regular value, like 3920 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3921 // poisoned value regular value 3922 // It should be OK since undef covers valid value. 3923 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3924 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3925 if (ExtInst->hasOneUse()) { 3926 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3927 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3928 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3929 if (Cst && 3930 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3931 return true; 3932 } 3933 } 3934 } 3935 3936 // Check if we can do the following simplification. 3937 // ext(trunc(opnd)) --> ext(opnd) 3938 if (!isa<TruncInst>(Inst)) 3939 return false; 3940 3941 Value *OpndVal = Inst->getOperand(0); 3942 // Check if we can use this operand in the extension. 3943 // If the type is larger than the result type of the extension, we cannot. 3944 if (!OpndVal->getType()->isIntegerTy() || 3945 OpndVal->getType()->getIntegerBitWidth() > 3946 ConsideredExtType->getIntegerBitWidth()) 3947 return false; 3948 3949 // If the operand of the truncate is not an instruction, we will not have 3950 // any information on the dropped bits. 3951 // (Actually we could for constant but it is not worth the extra logic). 3952 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3953 if (!Opnd) 3954 return false; 3955 3956 // Check if the source of the type is narrow enough. 3957 // I.e., check that trunc just drops extended bits of the same kind of 3958 // the extension. 3959 // #1 get the type of the operand and check the kind of the extended bits. 3960 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3961 if (OpndType) 3962 ; 3963 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3964 OpndType = Opnd->getOperand(0)->getType(); 3965 else 3966 return false; 3967 3968 // #2 check that the truncate just drops extended bits. 3969 return Inst->getType()->getIntegerBitWidth() >= 3970 OpndType->getIntegerBitWidth(); 3971 } 3972 3973 TypePromotionHelper::Action TypePromotionHelper::getAction( 3974 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3975 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3976 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3977 "Unexpected instruction type"); 3978 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3979 Type *ExtTy = Ext->getType(); 3980 bool IsSExt = isa<SExtInst>(Ext); 3981 // If the operand of the extension is not an instruction, we cannot 3982 // get through. 3983 // If it, check we can get through. 3984 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3985 return nullptr; 3986 3987 // Do not promote if the operand has been added by codegenprepare. 3988 // Otherwise, it means we are undoing an optimization that is likely to be 3989 // redone, thus causing potential infinite loop. 3990 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3991 return nullptr; 3992 3993 // SExt or Trunc instructions. 3994 // Return the related handler. 3995 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3996 isa<ZExtInst>(ExtOpnd)) 3997 return promoteOperandForTruncAndAnyExt; 3998 3999 // Regular instruction. 4000 // Abort early if we will have to insert non-free instructions. 4001 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4002 return nullptr; 4003 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4004 } 4005 4006 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4007 Instruction *SExt, TypePromotionTransaction &TPT, 4008 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4009 SmallVectorImpl<Instruction *> *Exts, 4010 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4011 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4012 // get through it and this method should not be called. 4013 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4014 Value *ExtVal = SExt; 4015 bool HasMergedNonFreeExt = false; 4016 if (isa<ZExtInst>(SExtOpnd)) { 4017 // Replace s|zext(zext(opnd)) 4018 // => zext(opnd). 4019 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4020 Value *ZExt = 4021 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4022 TPT.replaceAllUsesWith(SExt, ZExt); 4023 TPT.eraseInstruction(SExt); 4024 ExtVal = ZExt; 4025 } else { 4026 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4027 // => z|sext(opnd). 4028 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4029 } 4030 CreatedInstsCost = 0; 4031 4032 // Remove dead code. 4033 if (SExtOpnd->use_empty()) 4034 TPT.eraseInstruction(SExtOpnd); 4035 4036 // Check if the extension is still needed. 4037 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4038 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4039 if (ExtInst) { 4040 if (Exts) 4041 Exts->push_back(ExtInst); 4042 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4043 } 4044 return ExtVal; 4045 } 4046 4047 // At this point we have: ext ty opnd to ty. 4048 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4049 Value *NextVal = ExtInst->getOperand(0); 4050 TPT.eraseInstruction(ExtInst, NextVal); 4051 return NextVal; 4052 } 4053 4054 Value *TypePromotionHelper::promoteOperandForOther( 4055 Instruction *Ext, TypePromotionTransaction &TPT, 4056 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4057 SmallVectorImpl<Instruction *> *Exts, 4058 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4059 bool IsSExt) { 4060 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4061 // get through it and this method should not be called. 4062 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4063 CreatedInstsCost = 0; 4064 if (!ExtOpnd->hasOneUse()) { 4065 // ExtOpnd will be promoted. 4066 // All its uses, but Ext, will need to use a truncated value of the 4067 // promoted version. 4068 // Create the truncate now. 4069 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4070 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4071 // Insert it just after the definition. 4072 ITrunc->moveAfter(ExtOpnd); 4073 if (Truncs) 4074 Truncs->push_back(ITrunc); 4075 } 4076 4077 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4078 // Restore the operand of Ext (which has been replaced by the previous call 4079 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4080 TPT.setOperand(Ext, 0, ExtOpnd); 4081 } 4082 4083 // Get through the Instruction: 4084 // 1. Update its type. 4085 // 2. Replace the uses of Ext by Inst. 4086 // 3. Extend each operand that needs to be extended. 4087 4088 // Remember the original type of the instruction before promotion. 4089 // This is useful to know that the high bits are sign extended bits. 4090 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4091 // Step #1. 4092 TPT.mutateType(ExtOpnd, Ext->getType()); 4093 // Step #2. 4094 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4095 // Step #3. 4096 Instruction *ExtForOpnd = Ext; 4097 4098 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4099 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4100 ++OpIdx) { 4101 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4102 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4103 !shouldExtOperand(ExtOpnd, OpIdx)) { 4104 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4105 continue; 4106 } 4107 // Check if we can statically extend the operand. 4108 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4109 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4110 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4111 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4112 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4113 : Cst->getValue().zext(BitWidth); 4114 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4115 continue; 4116 } 4117 // UndefValue are typed, so we have to statically sign extend them. 4118 if (isa<UndefValue>(Opnd)) { 4119 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4120 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4121 continue; 4122 } 4123 4124 // Otherwise we have to explicitly sign extend the operand. 4125 // Check if Ext was reused to extend an operand. 4126 if (!ExtForOpnd) { 4127 // If yes, create a new one. 4128 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4129 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4130 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4131 if (!isa<Instruction>(ValForExtOpnd)) { 4132 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4133 continue; 4134 } 4135 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4136 } 4137 if (Exts) 4138 Exts->push_back(ExtForOpnd); 4139 TPT.setOperand(ExtForOpnd, 0, Opnd); 4140 4141 // Move the sign extension before the insertion point. 4142 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4143 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4144 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4145 // If more sext are required, new instructions will have to be created. 4146 ExtForOpnd = nullptr; 4147 } 4148 if (ExtForOpnd == Ext) { 4149 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4150 TPT.eraseInstruction(Ext); 4151 } 4152 return ExtOpnd; 4153 } 4154 4155 /// Check whether or not promoting an instruction to a wider type is profitable. 4156 /// \p NewCost gives the cost of extension instructions created by the 4157 /// promotion. 4158 /// \p OldCost gives the cost of extension instructions before the promotion 4159 /// plus the number of instructions that have been 4160 /// matched in the addressing mode the promotion. 4161 /// \p PromotedOperand is the value that has been promoted. 4162 /// \return True if the promotion is profitable, false otherwise. 4163 bool AddressingModeMatcher::isPromotionProfitable( 4164 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4165 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4166 << '\n'); 4167 // The cost of the new extensions is greater than the cost of the 4168 // old extension plus what we folded. 4169 // This is not profitable. 4170 if (NewCost > OldCost) 4171 return false; 4172 if (NewCost < OldCost) 4173 return true; 4174 // The promotion is neutral but it may help folding the sign extension in 4175 // loads for instance. 4176 // Check that we did not create an illegal instruction. 4177 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4178 } 4179 4180 /// Given an instruction or constant expr, see if we can fold the operation 4181 /// into the addressing mode. If so, update the addressing mode and return 4182 /// true, otherwise return false without modifying AddrMode. 4183 /// If \p MovedAway is not NULL, it contains the information of whether or 4184 /// not AddrInst has to be folded into the addressing mode on success. 4185 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4186 /// because it has been moved away. 4187 /// Thus AddrInst must not be added in the matched instructions. 4188 /// This state can happen when AddrInst is a sext, since it may be moved away. 4189 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4190 /// not be referenced anymore. 4191 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4192 unsigned Depth, 4193 bool *MovedAway) { 4194 // Avoid exponential behavior on extremely deep expression trees. 4195 if (Depth >= 5) return false; 4196 4197 // By default, all matched instructions stay in place. 4198 if (MovedAway) 4199 *MovedAway = false; 4200 4201 switch (Opcode) { 4202 case Instruction::PtrToInt: 4203 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4204 return matchAddr(AddrInst->getOperand(0), Depth); 4205 case Instruction::IntToPtr: { 4206 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4207 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4208 // This inttoptr is a no-op if the integer type is pointer sized. 4209 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4210 return matchAddr(AddrInst->getOperand(0), Depth); 4211 return false; 4212 } 4213 case Instruction::BitCast: 4214 // BitCast is always a noop, and we can handle it as long as it is 4215 // int->int or pointer->pointer (we don't want int<->fp or something). 4216 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4217 // Don't touch identity bitcasts. These were probably put here by LSR, 4218 // and we don't want to mess around with them. Assume it knows what it 4219 // is doing. 4220 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4221 return matchAddr(AddrInst->getOperand(0), Depth); 4222 return false; 4223 case Instruction::AddrSpaceCast: { 4224 unsigned SrcAS 4225 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4226 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4227 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4228 return matchAddr(AddrInst->getOperand(0), Depth); 4229 return false; 4230 } 4231 case Instruction::Add: { 4232 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4233 ExtAddrMode BackupAddrMode = AddrMode; 4234 unsigned OldSize = AddrModeInsts.size(); 4235 // Start a transaction at this point. 4236 // The LHS may match but not the RHS. 4237 // Therefore, we need a higher level restoration point to undo partially 4238 // matched operation. 4239 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4240 TPT.getRestorationPoint(); 4241 4242 AddrMode.InBounds = false; 4243 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4244 matchAddr(AddrInst->getOperand(0), Depth+1)) 4245 return true; 4246 4247 // Restore the old addr mode info. 4248 AddrMode = BackupAddrMode; 4249 AddrModeInsts.resize(OldSize); 4250 TPT.rollback(LastKnownGood); 4251 4252 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4253 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4254 matchAddr(AddrInst->getOperand(1), Depth+1)) 4255 return true; 4256 4257 // Otherwise we definitely can't merge the ADD in. 4258 AddrMode = BackupAddrMode; 4259 AddrModeInsts.resize(OldSize); 4260 TPT.rollback(LastKnownGood); 4261 break; 4262 } 4263 //case Instruction::Or: 4264 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4265 //break; 4266 case Instruction::Mul: 4267 case Instruction::Shl: { 4268 // Can only handle X*C and X << C. 4269 AddrMode.InBounds = false; 4270 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4271 if (!RHS || RHS->getBitWidth() > 64) 4272 return false; 4273 int64_t Scale = RHS->getSExtValue(); 4274 if (Opcode == Instruction::Shl) 4275 Scale = 1LL << Scale; 4276 4277 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4278 } 4279 case Instruction::GetElementPtr: { 4280 // Scan the GEP. We check it if it contains constant offsets and at most 4281 // one variable offset. 4282 int VariableOperand = -1; 4283 unsigned VariableScale = 0; 4284 4285 int64_t ConstantOffset = 0; 4286 gep_type_iterator GTI = gep_type_begin(AddrInst); 4287 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4288 if (StructType *STy = GTI.getStructTypeOrNull()) { 4289 const StructLayout *SL = DL.getStructLayout(STy); 4290 unsigned Idx = 4291 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4292 ConstantOffset += SL->getElementOffset(Idx); 4293 } else { 4294 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4295 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4296 const APInt &CVal = CI->getValue(); 4297 if (CVal.getMinSignedBits() <= 64) { 4298 ConstantOffset += CVal.getSExtValue() * TypeSize; 4299 continue; 4300 } 4301 } 4302 if (TypeSize) { // Scales of zero don't do anything. 4303 // We only allow one variable index at the moment. 4304 if (VariableOperand != -1) 4305 return false; 4306 4307 // Remember the variable index. 4308 VariableOperand = i; 4309 VariableScale = TypeSize; 4310 } 4311 } 4312 } 4313 4314 // A common case is for the GEP to only do a constant offset. In this case, 4315 // just add it to the disp field and check validity. 4316 if (VariableOperand == -1) { 4317 AddrMode.BaseOffs += ConstantOffset; 4318 if (ConstantOffset == 0 || 4319 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4320 // Check to see if we can fold the base pointer in too. 4321 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4322 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4323 AddrMode.InBounds = false; 4324 return true; 4325 } 4326 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4327 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4328 ConstantOffset > 0) { 4329 // Record GEPs with non-zero offsets as candidates for splitting in the 4330 // event that the offset cannot fit into the r+i addressing mode. 4331 // Simple and common case that only one GEP is used in calculating the 4332 // address for the memory access. 4333 Value *Base = AddrInst->getOperand(0); 4334 auto *BaseI = dyn_cast<Instruction>(Base); 4335 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4336 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4337 (BaseI && !isa<CastInst>(BaseI) && 4338 !isa<GetElementPtrInst>(BaseI))) { 4339 // Make sure the parent block allows inserting non-PHI instructions 4340 // before the terminator. 4341 BasicBlock *Parent = 4342 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4343 if (!Parent->getTerminator()->isEHPad()) 4344 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4345 } 4346 } 4347 AddrMode.BaseOffs -= ConstantOffset; 4348 return false; 4349 } 4350 4351 // Save the valid addressing mode in case we can't match. 4352 ExtAddrMode BackupAddrMode = AddrMode; 4353 unsigned OldSize = AddrModeInsts.size(); 4354 4355 // See if the scale and offset amount is valid for this target. 4356 AddrMode.BaseOffs += ConstantOffset; 4357 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4358 AddrMode.InBounds = false; 4359 4360 // Match the base operand of the GEP. 4361 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4362 // If it couldn't be matched, just stuff the value in a register. 4363 if (AddrMode.HasBaseReg) { 4364 AddrMode = BackupAddrMode; 4365 AddrModeInsts.resize(OldSize); 4366 return false; 4367 } 4368 AddrMode.HasBaseReg = true; 4369 AddrMode.BaseReg = AddrInst->getOperand(0); 4370 } 4371 4372 // Match the remaining variable portion of the GEP. 4373 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4374 Depth)) { 4375 // If it couldn't be matched, try stuffing the base into a register 4376 // instead of matching it, and retrying the match of the scale. 4377 AddrMode = BackupAddrMode; 4378 AddrModeInsts.resize(OldSize); 4379 if (AddrMode.HasBaseReg) 4380 return false; 4381 AddrMode.HasBaseReg = true; 4382 AddrMode.BaseReg = AddrInst->getOperand(0); 4383 AddrMode.BaseOffs += ConstantOffset; 4384 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4385 VariableScale, Depth)) { 4386 // If even that didn't work, bail. 4387 AddrMode = BackupAddrMode; 4388 AddrModeInsts.resize(OldSize); 4389 return false; 4390 } 4391 } 4392 4393 return true; 4394 } 4395 case Instruction::SExt: 4396 case Instruction::ZExt: { 4397 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4398 if (!Ext) 4399 return false; 4400 4401 // Try to move this ext out of the way of the addressing mode. 4402 // Ask for a method for doing so. 4403 TypePromotionHelper::Action TPH = 4404 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4405 if (!TPH) 4406 return false; 4407 4408 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4409 TPT.getRestorationPoint(); 4410 unsigned CreatedInstsCost = 0; 4411 unsigned ExtCost = !TLI.isExtFree(Ext); 4412 Value *PromotedOperand = 4413 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4414 // SExt has been moved away. 4415 // Thus either it will be rematched later in the recursive calls or it is 4416 // gone. Anyway, we must not fold it into the addressing mode at this point. 4417 // E.g., 4418 // op = add opnd, 1 4419 // idx = ext op 4420 // addr = gep base, idx 4421 // is now: 4422 // promotedOpnd = ext opnd <- no match here 4423 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4424 // addr = gep base, op <- match 4425 if (MovedAway) 4426 *MovedAway = true; 4427 4428 assert(PromotedOperand && 4429 "TypePromotionHelper should have filtered out those cases"); 4430 4431 ExtAddrMode BackupAddrMode = AddrMode; 4432 unsigned OldSize = AddrModeInsts.size(); 4433 4434 if (!matchAddr(PromotedOperand, Depth) || 4435 // The total of the new cost is equal to the cost of the created 4436 // instructions. 4437 // The total of the old cost is equal to the cost of the extension plus 4438 // what we have saved in the addressing mode. 4439 !isPromotionProfitable(CreatedInstsCost, 4440 ExtCost + (AddrModeInsts.size() - OldSize), 4441 PromotedOperand)) { 4442 AddrMode = BackupAddrMode; 4443 AddrModeInsts.resize(OldSize); 4444 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4445 TPT.rollback(LastKnownGood); 4446 return false; 4447 } 4448 return true; 4449 } 4450 } 4451 return false; 4452 } 4453 4454 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4455 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4456 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4457 /// for the target. 4458 /// 4459 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4460 // Start a transaction at this point that we will rollback if the matching 4461 // fails. 4462 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4463 TPT.getRestorationPoint(); 4464 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4465 // Fold in immediates if legal for the target. 4466 AddrMode.BaseOffs += CI->getSExtValue(); 4467 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4468 return true; 4469 AddrMode.BaseOffs -= CI->getSExtValue(); 4470 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4471 // If this is a global variable, try to fold it into the addressing mode. 4472 if (!AddrMode.BaseGV) { 4473 AddrMode.BaseGV = GV; 4474 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4475 return true; 4476 AddrMode.BaseGV = nullptr; 4477 } 4478 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4479 ExtAddrMode BackupAddrMode = AddrMode; 4480 unsigned OldSize = AddrModeInsts.size(); 4481 4482 // Check to see if it is possible to fold this operation. 4483 bool MovedAway = false; 4484 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4485 // This instruction may have been moved away. If so, there is nothing 4486 // to check here. 4487 if (MovedAway) 4488 return true; 4489 // Okay, it's possible to fold this. Check to see if it is actually 4490 // *profitable* to do so. We use a simple cost model to avoid increasing 4491 // register pressure too much. 4492 if (I->hasOneUse() || 4493 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4494 AddrModeInsts.push_back(I); 4495 return true; 4496 } 4497 4498 // It isn't profitable to do this, roll back. 4499 //cerr << "NOT FOLDING: " << *I; 4500 AddrMode = BackupAddrMode; 4501 AddrModeInsts.resize(OldSize); 4502 TPT.rollback(LastKnownGood); 4503 } 4504 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4505 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4506 return true; 4507 TPT.rollback(LastKnownGood); 4508 } else if (isa<ConstantPointerNull>(Addr)) { 4509 // Null pointer gets folded without affecting the addressing mode. 4510 return true; 4511 } 4512 4513 // Worse case, the target should support [reg] addressing modes. :) 4514 if (!AddrMode.HasBaseReg) { 4515 AddrMode.HasBaseReg = true; 4516 AddrMode.BaseReg = Addr; 4517 // Still check for legality in case the target supports [imm] but not [i+r]. 4518 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4519 return true; 4520 AddrMode.HasBaseReg = false; 4521 AddrMode.BaseReg = nullptr; 4522 } 4523 4524 // If the base register is already taken, see if we can do [r+r]. 4525 if (AddrMode.Scale == 0) { 4526 AddrMode.Scale = 1; 4527 AddrMode.ScaledReg = Addr; 4528 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4529 return true; 4530 AddrMode.Scale = 0; 4531 AddrMode.ScaledReg = nullptr; 4532 } 4533 // Couldn't match. 4534 TPT.rollback(LastKnownGood); 4535 return false; 4536 } 4537 4538 /// Check to see if all uses of OpVal by the specified inline asm call are due 4539 /// to memory operands. If so, return true, otherwise return false. 4540 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4541 const TargetLowering &TLI, 4542 const TargetRegisterInfo &TRI) { 4543 const Function *F = CI->getFunction(); 4544 TargetLowering::AsmOperandInfoVector TargetConstraints = 4545 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4546 ImmutableCallSite(CI)); 4547 4548 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4549 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4550 4551 // Compute the constraint code and ConstraintType to use. 4552 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4553 4554 // If this asm operand is our Value*, and if it isn't an indirect memory 4555 // operand, we can't fold it! 4556 if (OpInfo.CallOperandVal == OpVal && 4557 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4558 !OpInfo.isIndirect)) 4559 return false; 4560 } 4561 4562 return true; 4563 } 4564 4565 // Max number of memory uses to look at before aborting the search to conserve 4566 // compile time. 4567 static constexpr int MaxMemoryUsesToScan = 20; 4568 4569 /// Recursively walk all the uses of I until we find a memory use. 4570 /// If we find an obviously non-foldable instruction, return true. 4571 /// Add the ultimately found memory instructions to MemoryUses. 4572 static bool FindAllMemoryUses( 4573 Instruction *I, 4574 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4575 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4576 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4577 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4578 // If we already considered this instruction, we're done. 4579 if (!ConsideredInsts.insert(I).second) 4580 return false; 4581 4582 // If this is an obviously unfoldable instruction, bail out. 4583 if (!MightBeFoldableInst(I)) 4584 return true; 4585 4586 // Loop over all the uses, recursively processing them. 4587 for (Use &U : I->uses()) { 4588 // Conservatively return true if we're seeing a large number or a deep chain 4589 // of users. This avoids excessive compilation times in pathological cases. 4590 if (SeenInsts++ >= MaxMemoryUsesToScan) 4591 return true; 4592 4593 Instruction *UserI = cast<Instruction>(U.getUser()); 4594 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4595 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4596 continue; 4597 } 4598 4599 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4600 unsigned opNo = U.getOperandNo(); 4601 if (opNo != StoreInst::getPointerOperandIndex()) 4602 return true; // Storing addr, not into addr. 4603 MemoryUses.push_back(std::make_pair(SI, opNo)); 4604 continue; 4605 } 4606 4607 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4608 unsigned opNo = U.getOperandNo(); 4609 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4610 return true; // Storing addr, not into addr. 4611 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4612 continue; 4613 } 4614 4615 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4616 unsigned opNo = U.getOperandNo(); 4617 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4618 return true; // Storing addr, not into addr. 4619 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4620 continue; 4621 } 4622 4623 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4624 if (CI->hasFnAttr(Attribute::Cold)) { 4625 // If this is a cold call, we can sink the addressing calculation into 4626 // the cold path. See optimizeCallInst 4627 bool OptForSize = OptSize || 4628 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4629 if (!OptForSize) 4630 continue; 4631 } 4632 4633 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4634 if (!IA) return true; 4635 4636 // If this is a memory operand, we're cool, otherwise bail out. 4637 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4638 return true; 4639 continue; 4640 } 4641 4642 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4643 PSI, BFI, SeenInsts)) 4644 return true; 4645 } 4646 4647 return false; 4648 } 4649 4650 /// Return true if Val is already known to be live at the use site that we're 4651 /// folding it into. If so, there is no cost to include it in the addressing 4652 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4653 /// instruction already. 4654 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4655 Value *KnownLive2) { 4656 // If Val is either of the known-live values, we know it is live! 4657 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4658 return true; 4659 4660 // All values other than instructions and arguments (e.g. constants) are live. 4661 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4662 4663 // If Val is a constant sized alloca in the entry block, it is live, this is 4664 // true because it is just a reference to the stack/frame pointer, which is 4665 // live for the whole function. 4666 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4667 if (AI->isStaticAlloca()) 4668 return true; 4669 4670 // Check to see if this value is already used in the memory instruction's 4671 // block. If so, it's already live into the block at the very least, so we 4672 // can reasonably fold it. 4673 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4674 } 4675 4676 /// It is possible for the addressing mode of the machine to fold the specified 4677 /// instruction into a load or store that ultimately uses it. 4678 /// However, the specified instruction has multiple uses. 4679 /// Given this, it may actually increase register pressure to fold it 4680 /// into the load. For example, consider this code: 4681 /// 4682 /// X = ... 4683 /// Y = X+1 4684 /// use(Y) -> nonload/store 4685 /// Z = Y+1 4686 /// load Z 4687 /// 4688 /// In this case, Y has multiple uses, and can be folded into the load of Z 4689 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4690 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4691 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4692 /// number of computations either. 4693 /// 4694 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4695 /// X was live across 'load Z' for other reasons, we actually *would* want to 4696 /// fold the addressing mode in the Z case. This would make Y die earlier. 4697 bool AddressingModeMatcher:: 4698 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4699 ExtAddrMode &AMAfter) { 4700 if (IgnoreProfitability) return true; 4701 4702 // AMBefore is the addressing mode before this instruction was folded into it, 4703 // and AMAfter is the addressing mode after the instruction was folded. Get 4704 // the set of registers referenced by AMAfter and subtract out those 4705 // referenced by AMBefore: this is the set of values which folding in this 4706 // address extends the lifetime of. 4707 // 4708 // Note that there are only two potential values being referenced here, 4709 // BaseReg and ScaleReg (global addresses are always available, as are any 4710 // folded immediates). 4711 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4712 4713 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4714 // lifetime wasn't extended by adding this instruction. 4715 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4716 BaseReg = nullptr; 4717 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4718 ScaledReg = nullptr; 4719 4720 // If folding this instruction (and it's subexprs) didn't extend any live 4721 // ranges, we're ok with it. 4722 if (!BaseReg && !ScaledReg) 4723 return true; 4724 4725 // If all uses of this instruction can have the address mode sunk into them, 4726 // we can remove the addressing mode and effectively trade one live register 4727 // for another (at worst.) In this context, folding an addressing mode into 4728 // the use is just a particularly nice way of sinking it. 4729 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4730 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4731 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4732 PSI, BFI)) 4733 return false; // Has a non-memory, non-foldable use! 4734 4735 // Now that we know that all uses of this instruction are part of a chain of 4736 // computation involving only operations that could theoretically be folded 4737 // into a memory use, loop over each of these memory operation uses and see 4738 // if they could *actually* fold the instruction. The assumption is that 4739 // addressing modes are cheap and that duplicating the computation involved 4740 // many times is worthwhile, even on a fastpath. For sinking candidates 4741 // (i.e. cold call sites), this serves as a way to prevent excessive code 4742 // growth since most architectures have some reasonable small and fast way to 4743 // compute an effective address. (i.e LEA on x86) 4744 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4745 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4746 Instruction *User = MemoryUses[i].first; 4747 unsigned OpNo = MemoryUses[i].second; 4748 4749 // Get the access type of this use. If the use isn't a pointer, we don't 4750 // know what it accesses. 4751 Value *Address = User->getOperand(OpNo); 4752 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4753 if (!AddrTy) 4754 return false; 4755 Type *AddressAccessTy = AddrTy->getElementType(); 4756 unsigned AS = AddrTy->getAddressSpace(); 4757 4758 // Do a match against the root of this address, ignoring profitability. This 4759 // will tell us if the addressing mode for the memory operation will 4760 // *actually* cover the shared instruction. 4761 ExtAddrMode Result; 4762 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4763 0); 4764 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4765 TPT.getRestorationPoint(); 4766 AddressingModeMatcher Matcher( 4767 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4768 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4769 Matcher.IgnoreProfitability = true; 4770 bool Success = Matcher.matchAddr(Address, 0); 4771 (void)Success; assert(Success && "Couldn't select *anything*?"); 4772 4773 // The match was to check the profitability, the changes made are not 4774 // part of the original matcher. Therefore, they should be dropped 4775 // otherwise the original matcher will not present the right state. 4776 TPT.rollback(LastKnownGood); 4777 4778 // If the match didn't cover I, then it won't be shared by it. 4779 if (!is_contained(MatchedAddrModeInsts, I)) 4780 return false; 4781 4782 MatchedAddrModeInsts.clear(); 4783 } 4784 4785 return true; 4786 } 4787 4788 /// Return true if the specified values are defined in a 4789 /// different basic block than BB. 4790 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4791 if (Instruction *I = dyn_cast<Instruction>(V)) 4792 return I->getParent() != BB; 4793 return false; 4794 } 4795 4796 /// Sink addressing mode computation immediate before MemoryInst if doing so 4797 /// can be done without increasing register pressure. The need for the 4798 /// register pressure constraint means this can end up being an all or nothing 4799 /// decision for all uses of the same addressing computation. 4800 /// 4801 /// Load and Store Instructions often have addressing modes that can do 4802 /// significant amounts of computation. As such, instruction selection will try 4803 /// to get the load or store to do as much computation as possible for the 4804 /// program. The problem is that isel can only see within a single block. As 4805 /// such, we sink as much legal addressing mode work into the block as possible. 4806 /// 4807 /// This method is used to optimize both load/store and inline asms with memory 4808 /// operands. It's also used to sink addressing computations feeding into cold 4809 /// call sites into their (cold) basic block. 4810 /// 4811 /// The motivation for handling sinking into cold blocks is that doing so can 4812 /// both enable other address mode sinking (by satisfying the register pressure 4813 /// constraint above), and reduce register pressure globally (by removing the 4814 /// addressing mode computation from the fast path entirely.). 4815 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4816 Type *AccessTy, unsigned AddrSpace) { 4817 Value *Repl = Addr; 4818 4819 // Try to collapse single-value PHI nodes. This is necessary to undo 4820 // unprofitable PRE transformations. 4821 SmallVector<Value*, 8> worklist; 4822 SmallPtrSet<Value*, 16> Visited; 4823 worklist.push_back(Addr); 4824 4825 // Use a worklist to iteratively look through PHI and select nodes, and 4826 // ensure that the addressing mode obtained from the non-PHI/select roots of 4827 // the graph are compatible. 4828 bool PhiOrSelectSeen = false; 4829 SmallVector<Instruction*, 16> AddrModeInsts; 4830 const SimplifyQuery SQ(*DL, TLInfo); 4831 AddressingModeCombiner AddrModes(SQ, Addr); 4832 TypePromotionTransaction TPT(RemovedInsts); 4833 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4834 TPT.getRestorationPoint(); 4835 while (!worklist.empty()) { 4836 Value *V = worklist.back(); 4837 worklist.pop_back(); 4838 4839 // We allow traversing cyclic Phi nodes. 4840 // In case of success after this loop we ensure that traversing through 4841 // Phi nodes ends up with all cases to compute address of the form 4842 // BaseGV + Base + Scale * Index + Offset 4843 // where Scale and Offset are constans and BaseGV, Base and Index 4844 // are exactly the same Values in all cases. 4845 // It means that BaseGV, Scale and Offset dominate our memory instruction 4846 // and have the same value as they had in address computation represented 4847 // as Phi. So we can safely sink address computation to memory instruction. 4848 if (!Visited.insert(V).second) 4849 continue; 4850 4851 // For a PHI node, push all of its incoming values. 4852 if (PHINode *P = dyn_cast<PHINode>(V)) { 4853 for (Value *IncValue : P->incoming_values()) 4854 worklist.push_back(IncValue); 4855 PhiOrSelectSeen = true; 4856 continue; 4857 } 4858 // Similar for select. 4859 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4860 worklist.push_back(SI->getFalseValue()); 4861 worklist.push_back(SI->getTrueValue()); 4862 PhiOrSelectSeen = true; 4863 continue; 4864 } 4865 4866 // For non-PHIs, determine the addressing mode being computed. Note that 4867 // the result may differ depending on what other uses our candidate 4868 // addressing instructions might have. 4869 AddrModeInsts.clear(); 4870 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4871 0); 4872 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4873 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4874 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4875 BFI.get()); 4876 4877 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4878 if (GEP && !NewGEPBases.count(GEP)) { 4879 // If splitting the underlying data structure can reduce the offset of a 4880 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4881 // previously split data structures. 4882 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4883 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4884 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4885 } 4886 4887 NewAddrMode.OriginalValue = V; 4888 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4889 break; 4890 } 4891 4892 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4893 // or we have multiple but either couldn't combine them or combining them 4894 // wouldn't do anything useful, bail out now. 4895 if (!AddrModes.combineAddrModes()) { 4896 TPT.rollback(LastKnownGood); 4897 return false; 4898 } 4899 TPT.commit(); 4900 4901 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4902 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4903 4904 // If all the instructions matched are already in this BB, don't do anything. 4905 // If we saw a Phi node then it is not local definitely, and if we saw a select 4906 // then we want to push the address calculation past it even if it's already 4907 // in this BB. 4908 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4909 return IsNonLocalValue(V, MemoryInst->getParent()); 4910 })) { 4911 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4912 << "\n"); 4913 return false; 4914 } 4915 4916 // Insert this computation right after this user. Since our caller is 4917 // scanning from the top of the BB to the bottom, reuse of the expr are 4918 // guaranteed to happen later. 4919 IRBuilder<> Builder(MemoryInst); 4920 4921 // Now that we determined the addressing expression we want to use and know 4922 // that we have to sink it into this block. Check to see if we have already 4923 // done this for some other load/store instr in this block. If so, reuse 4924 // the computation. Before attempting reuse, check if the address is valid 4925 // as it may have been erased. 4926 4927 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4928 4929 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4930 if (SunkAddr) { 4931 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4932 << " for " << *MemoryInst << "\n"); 4933 if (SunkAddr->getType() != Addr->getType()) 4934 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4935 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4936 SubtargetInfo->addrSinkUsingGEPs())) { 4937 // By default, we use the GEP-based method when AA is used later. This 4938 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4939 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4940 << " for " << *MemoryInst << "\n"); 4941 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4942 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4943 4944 // First, find the pointer. 4945 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4946 ResultPtr = AddrMode.BaseReg; 4947 AddrMode.BaseReg = nullptr; 4948 } 4949 4950 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4951 // We can't add more than one pointer together, nor can we scale a 4952 // pointer (both of which seem meaningless). 4953 if (ResultPtr || AddrMode.Scale != 1) 4954 return false; 4955 4956 ResultPtr = AddrMode.ScaledReg; 4957 AddrMode.Scale = 0; 4958 } 4959 4960 // It is only safe to sign extend the BaseReg if we know that the math 4961 // required to create it did not overflow before we extend it. Since 4962 // the original IR value was tossed in favor of a constant back when 4963 // the AddrMode was created we need to bail out gracefully if widths 4964 // do not match instead of extending it. 4965 // 4966 // (See below for code to add the scale.) 4967 if (AddrMode.Scale) { 4968 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4969 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4970 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4971 return false; 4972 } 4973 4974 if (AddrMode.BaseGV) { 4975 if (ResultPtr) 4976 return false; 4977 4978 ResultPtr = AddrMode.BaseGV; 4979 } 4980 4981 // If the real base value actually came from an inttoptr, then the matcher 4982 // will look through it and provide only the integer value. In that case, 4983 // use it here. 4984 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4985 if (!ResultPtr && AddrMode.BaseReg) { 4986 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4987 "sunkaddr"); 4988 AddrMode.BaseReg = nullptr; 4989 } else if (!ResultPtr && AddrMode.Scale == 1) { 4990 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4991 "sunkaddr"); 4992 AddrMode.Scale = 0; 4993 } 4994 } 4995 4996 if (!ResultPtr && 4997 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4998 SunkAddr = Constant::getNullValue(Addr->getType()); 4999 } else if (!ResultPtr) { 5000 return false; 5001 } else { 5002 Type *I8PtrTy = 5003 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5004 Type *I8Ty = Builder.getInt8Ty(); 5005 5006 // Start with the base register. Do this first so that subsequent address 5007 // matching finds it last, which will prevent it from trying to match it 5008 // as the scaled value in case it happens to be a mul. That would be 5009 // problematic if we've sunk a different mul for the scale, because then 5010 // we'd end up sinking both muls. 5011 if (AddrMode.BaseReg) { 5012 Value *V = AddrMode.BaseReg; 5013 if (V->getType() != IntPtrTy) 5014 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5015 5016 ResultIndex = V; 5017 } 5018 5019 // Add the scale value. 5020 if (AddrMode.Scale) { 5021 Value *V = AddrMode.ScaledReg; 5022 if (V->getType() == IntPtrTy) { 5023 // done. 5024 } else { 5025 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5026 cast<IntegerType>(V->getType())->getBitWidth() && 5027 "We can't transform if ScaledReg is too narrow"); 5028 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5029 } 5030 5031 if (AddrMode.Scale != 1) 5032 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5033 "sunkaddr"); 5034 if (ResultIndex) 5035 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5036 else 5037 ResultIndex = V; 5038 } 5039 5040 // Add in the Base Offset if present. 5041 if (AddrMode.BaseOffs) { 5042 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5043 if (ResultIndex) { 5044 // We need to add this separately from the scale above to help with 5045 // SDAG consecutive load/store merging. 5046 if (ResultPtr->getType() != I8PtrTy) 5047 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5048 ResultPtr = 5049 AddrMode.InBounds 5050 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5051 "sunkaddr") 5052 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5053 } 5054 5055 ResultIndex = V; 5056 } 5057 5058 if (!ResultIndex) { 5059 SunkAddr = ResultPtr; 5060 } else { 5061 if (ResultPtr->getType() != I8PtrTy) 5062 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5063 SunkAddr = 5064 AddrMode.InBounds 5065 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5066 "sunkaddr") 5067 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5068 } 5069 5070 if (SunkAddr->getType() != Addr->getType()) 5071 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5072 } 5073 } else { 5074 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5075 // non-integral pointers, so in that case bail out now. 5076 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5077 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5078 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5079 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5080 if (DL->isNonIntegralPointerType(Addr->getType()) || 5081 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5082 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5083 (AddrMode.BaseGV && 5084 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5085 return false; 5086 5087 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5088 << " for " << *MemoryInst << "\n"); 5089 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5090 Value *Result = nullptr; 5091 5092 // Start with the base register. Do this first so that subsequent address 5093 // matching finds it last, which will prevent it from trying to match it 5094 // as the scaled value in case it happens to be a mul. That would be 5095 // problematic if we've sunk a different mul for the scale, because then 5096 // we'd end up sinking both muls. 5097 if (AddrMode.BaseReg) { 5098 Value *V = AddrMode.BaseReg; 5099 if (V->getType()->isPointerTy()) 5100 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5101 if (V->getType() != IntPtrTy) 5102 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5103 Result = V; 5104 } 5105 5106 // Add the scale value. 5107 if (AddrMode.Scale) { 5108 Value *V = AddrMode.ScaledReg; 5109 if (V->getType() == IntPtrTy) { 5110 // done. 5111 } else if (V->getType()->isPointerTy()) { 5112 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5113 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5114 cast<IntegerType>(V->getType())->getBitWidth()) { 5115 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5116 } else { 5117 // It is only safe to sign extend the BaseReg if we know that the math 5118 // required to create it did not overflow before we extend it. Since 5119 // the original IR value was tossed in favor of a constant back when 5120 // the AddrMode was created we need to bail out gracefully if widths 5121 // do not match instead of extending it. 5122 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5123 if (I && (Result != AddrMode.BaseReg)) 5124 I->eraseFromParent(); 5125 return false; 5126 } 5127 if (AddrMode.Scale != 1) 5128 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5129 "sunkaddr"); 5130 if (Result) 5131 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5132 else 5133 Result = V; 5134 } 5135 5136 // Add in the BaseGV if present. 5137 if (AddrMode.BaseGV) { 5138 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5139 if (Result) 5140 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5141 else 5142 Result = V; 5143 } 5144 5145 // Add in the Base Offset if present. 5146 if (AddrMode.BaseOffs) { 5147 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5148 if (Result) 5149 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5150 else 5151 Result = V; 5152 } 5153 5154 if (!Result) 5155 SunkAddr = Constant::getNullValue(Addr->getType()); 5156 else 5157 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5158 } 5159 5160 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5161 // Store the newly computed address into the cache. In the case we reused a 5162 // value, this should be idempotent. 5163 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5164 5165 // If we have no uses, recursively delete the value and all dead instructions 5166 // using it. 5167 if (Repl->use_empty()) { 5168 // This can cause recursive deletion, which can invalidate our iterator. 5169 // Use a WeakTrackingVH to hold onto it in case this happens. 5170 Value *CurValue = &*CurInstIterator; 5171 WeakTrackingVH IterHandle(CurValue); 5172 BasicBlock *BB = CurInstIterator->getParent(); 5173 5174 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5175 5176 if (IterHandle != CurValue) { 5177 // If the iterator instruction was recursively deleted, start over at the 5178 // start of the block. 5179 CurInstIterator = BB->begin(); 5180 SunkAddrs.clear(); 5181 } 5182 } 5183 ++NumMemoryInsts; 5184 return true; 5185 } 5186 5187 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5188 /// address computing into the block when possible / profitable. 5189 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5190 bool MadeChange = false; 5191 5192 const TargetRegisterInfo *TRI = 5193 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5194 TargetLowering::AsmOperandInfoVector TargetConstraints = 5195 TLI->ParseConstraints(*DL, TRI, CS); 5196 unsigned ArgNo = 0; 5197 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5198 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5199 5200 // Compute the constraint code and ConstraintType to use. 5201 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5202 5203 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5204 OpInfo.isIndirect) { 5205 Value *OpVal = CS->getArgOperand(ArgNo++); 5206 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5207 } else if (OpInfo.Type == InlineAsm::isInput) 5208 ArgNo++; 5209 } 5210 5211 return MadeChange; 5212 } 5213 5214 /// Check if all the uses of \p Val are equivalent (or free) zero or 5215 /// sign extensions. 5216 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5217 assert(!Val->use_empty() && "Input must have at least one use"); 5218 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5219 bool IsSExt = isa<SExtInst>(FirstUser); 5220 Type *ExtTy = FirstUser->getType(); 5221 for (const User *U : Val->users()) { 5222 const Instruction *UI = cast<Instruction>(U); 5223 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5224 return false; 5225 Type *CurTy = UI->getType(); 5226 // Same input and output types: Same instruction after CSE. 5227 if (CurTy == ExtTy) 5228 continue; 5229 5230 // If IsSExt is true, we are in this situation: 5231 // a = Val 5232 // b = sext ty1 a to ty2 5233 // c = sext ty1 a to ty3 5234 // Assuming ty2 is shorter than ty3, this could be turned into: 5235 // a = Val 5236 // b = sext ty1 a to ty2 5237 // c = sext ty2 b to ty3 5238 // However, the last sext is not free. 5239 if (IsSExt) 5240 return false; 5241 5242 // This is a ZExt, maybe this is free to extend from one type to another. 5243 // In that case, we would not account for a different use. 5244 Type *NarrowTy; 5245 Type *LargeTy; 5246 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5247 CurTy->getScalarType()->getIntegerBitWidth()) { 5248 NarrowTy = CurTy; 5249 LargeTy = ExtTy; 5250 } else { 5251 NarrowTy = ExtTy; 5252 LargeTy = CurTy; 5253 } 5254 5255 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5256 return false; 5257 } 5258 // All uses are the same or can be derived from one another for free. 5259 return true; 5260 } 5261 5262 /// Try to speculatively promote extensions in \p Exts and continue 5263 /// promoting through newly promoted operands recursively as far as doing so is 5264 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5265 /// When some promotion happened, \p TPT contains the proper state to revert 5266 /// them. 5267 /// 5268 /// \return true if some promotion happened, false otherwise. 5269 bool CodeGenPrepare::tryToPromoteExts( 5270 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5271 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5272 unsigned CreatedInstsCost) { 5273 bool Promoted = false; 5274 5275 // Iterate over all the extensions to try to promote them. 5276 for (auto I : Exts) { 5277 // Early check if we directly have ext(load). 5278 if (isa<LoadInst>(I->getOperand(0))) { 5279 ProfitablyMovedExts.push_back(I); 5280 continue; 5281 } 5282 5283 // Check whether or not we want to do any promotion. The reason we have 5284 // this check inside the for loop is to catch the case where an extension 5285 // is directly fed by a load because in such case the extension can be moved 5286 // up without any promotion on its operands. 5287 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5288 return false; 5289 5290 // Get the action to perform the promotion. 5291 TypePromotionHelper::Action TPH = 5292 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5293 // Check if we can promote. 5294 if (!TPH) { 5295 // Save the current extension as we cannot move up through its operand. 5296 ProfitablyMovedExts.push_back(I); 5297 continue; 5298 } 5299 5300 // Save the current state. 5301 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5302 TPT.getRestorationPoint(); 5303 SmallVector<Instruction *, 4> NewExts; 5304 unsigned NewCreatedInstsCost = 0; 5305 unsigned ExtCost = !TLI->isExtFree(I); 5306 // Promote. 5307 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5308 &NewExts, nullptr, *TLI); 5309 assert(PromotedVal && 5310 "TypePromotionHelper should have filtered out those cases"); 5311 5312 // We would be able to merge only one extension in a load. 5313 // Therefore, if we have more than 1 new extension we heuristically 5314 // cut this search path, because it means we degrade the code quality. 5315 // With exactly 2, the transformation is neutral, because we will merge 5316 // one extension but leave one. However, we optimistically keep going, 5317 // because the new extension may be removed too. 5318 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5319 // FIXME: It would be possible to propagate a negative value instead of 5320 // conservatively ceiling it to 0. 5321 TotalCreatedInstsCost = 5322 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5323 if (!StressExtLdPromotion && 5324 (TotalCreatedInstsCost > 1 || 5325 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5326 // This promotion is not profitable, rollback to the previous state, and 5327 // save the current extension in ProfitablyMovedExts as the latest 5328 // speculative promotion turned out to be unprofitable. 5329 TPT.rollback(LastKnownGood); 5330 ProfitablyMovedExts.push_back(I); 5331 continue; 5332 } 5333 // Continue promoting NewExts as far as doing so is profitable. 5334 SmallVector<Instruction *, 2> NewlyMovedExts; 5335 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5336 bool NewPromoted = false; 5337 for (auto ExtInst : NewlyMovedExts) { 5338 Instruction *MovedExt = cast<Instruction>(ExtInst); 5339 Value *ExtOperand = MovedExt->getOperand(0); 5340 // If we have reached to a load, we need this extra profitability check 5341 // as it could potentially be merged into an ext(load). 5342 if (isa<LoadInst>(ExtOperand) && 5343 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5344 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5345 continue; 5346 5347 ProfitablyMovedExts.push_back(MovedExt); 5348 NewPromoted = true; 5349 } 5350 5351 // If none of speculative promotions for NewExts is profitable, rollback 5352 // and save the current extension (I) as the last profitable extension. 5353 if (!NewPromoted) { 5354 TPT.rollback(LastKnownGood); 5355 ProfitablyMovedExts.push_back(I); 5356 continue; 5357 } 5358 // The promotion is profitable. 5359 Promoted = true; 5360 } 5361 return Promoted; 5362 } 5363 5364 /// Merging redundant sexts when one is dominating the other. 5365 bool CodeGenPrepare::mergeSExts(Function &F) { 5366 bool Changed = false; 5367 for (auto &Entry : ValToSExtendedUses) { 5368 SExts &Insts = Entry.second; 5369 SExts CurPts; 5370 for (Instruction *Inst : Insts) { 5371 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5372 Inst->getOperand(0) != Entry.first) 5373 continue; 5374 bool inserted = false; 5375 for (auto &Pt : CurPts) { 5376 if (getDT(F).dominates(Inst, Pt)) { 5377 Pt->replaceAllUsesWith(Inst); 5378 RemovedInsts.insert(Pt); 5379 Pt->removeFromParent(); 5380 Pt = Inst; 5381 inserted = true; 5382 Changed = true; 5383 break; 5384 } 5385 if (!getDT(F).dominates(Pt, Inst)) 5386 // Give up if we need to merge in a common dominator as the 5387 // experiments show it is not profitable. 5388 continue; 5389 Inst->replaceAllUsesWith(Pt); 5390 RemovedInsts.insert(Inst); 5391 Inst->removeFromParent(); 5392 inserted = true; 5393 Changed = true; 5394 break; 5395 } 5396 if (!inserted) 5397 CurPts.push_back(Inst); 5398 } 5399 } 5400 return Changed; 5401 } 5402 5403 // Spliting large data structures so that the GEPs accessing them can have 5404 // smaller offsets so that they can be sunk to the same blocks as their users. 5405 // For example, a large struct starting from %base is splitted into two parts 5406 // where the second part starts from %new_base. 5407 // 5408 // Before: 5409 // BB0: 5410 // %base = 5411 // 5412 // BB1: 5413 // %gep0 = gep %base, off0 5414 // %gep1 = gep %base, off1 5415 // %gep2 = gep %base, off2 5416 // 5417 // BB2: 5418 // %load1 = load %gep0 5419 // %load2 = load %gep1 5420 // %load3 = load %gep2 5421 // 5422 // After: 5423 // BB0: 5424 // %base = 5425 // %new_base = gep %base, off0 5426 // 5427 // BB1: 5428 // %new_gep0 = %new_base 5429 // %new_gep1 = gep %new_base, off1 - off0 5430 // %new_gep2 = gep %new_base, off2 - off0 5431 // 5432 // BB2: 5433 // %load1 = load i32, i32* %new_gep0 5434 // %load2 = load i32, i32* %new_gep1 5435 // %load3 = load i32, i32* %new_gep2 5436 // 5437 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5438 // their offsets are smaller enough to fit into the addressing mode. 5439 bool CodeGenPrepare::splitLargeGEPOffsets() { 5440 bool Changed = false; 5441 for (auto &Entry : LargeOffsetGEPMap) { 5442 Value *OldBase = Entry.first; 5443 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5444 &LargeOffsetGEPs = Entry.second; 5445 auto compareGEPOffset = 5446 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5447 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5448 if (LHS.first == RHS.first) 5449 return false; 5450 if (LHS.second != RHS.second) 5451 return LHS.second < RHS.second; 5452 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5453 }; 5454 // Sorting all the GEPs of the same data structures based on the offsets. 5455 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5456 LargeOffsetGEPs.erase( 5457 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5458 LargeOffsetGEPs.end()); 5459 // Skip if all the GEPs have the same offsets. 5460 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5461 continue; 5462 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5463 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5464 Value *NewBaseGEP = nullptr; 5465 5466 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5467 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5468 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5469 int64_t Offset = LargeOffsetGEP->second; 5470 if (Offset != BaseOffset) { 5471 TargetLowering::AddrMode AddrMode; 5472 AddrMode.BaseOffs = Offset - BaseOffset; 5473 // The result type of the GEP might not be the type of the memory 5474 // access. 5475 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5476 GEP->getResultElementType(), 5477 GEP->getAddressSpace())) { 5478 // We need to create a new base if the offset to the current base is 5479 // too large to fit into the addressing mode. So, a very large struct 5480 // may be splitted into several parts. 5481 BaseGEP = GEP; 5482 BaseOffset = Offset; 5483 NewBaseGEP = nullptr; 5484 } 5485 } 5486 5487 // Generate a new GEP to replace the current one. 5488 LLVMContext &Ctx = GEP->getContext(); 5489 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5490 Type *I8PtrTy = 5491 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5492 Type *I8Ty = Type::getInt8Ty(Ctx); 5493 5494 if (!NewBaseGEP) { 5495 // Create a new base if we don't have one yet. Find the insertion 5496 // pointer for the new base first. 5497 BasicBlock::iterator NewBaseInsertPt; 5498 BasicBlock *NewBaseInsertBB; 5499 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5500 // If the base of the struct is an instruction, the new base will be 5501 // inserted close to it. 5502 NewBaseInsertBB = BaseI->getParent(); 5503 if (isa<PHINode>(BaseI)) 5504 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5505 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5506 NewBaseInsertBB = 5507 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5508 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5509 } else 5510 NewBaseInsertPt = std::next(BaseI->getIterator()); 5511 } else { 5512 // If the current base is an argument or global value, the new base 5513 // will be inserted to the entry block. 5514 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5515 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5516 } 5517 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5518 // Create a new base. 5519 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5520 NewBaseGEP = OldBase; 5521 if (NewBaseGEP->getType() != I8PtrTy) 5522 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5523 NewBaseGEP = 5524 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5525 NewGEPBases.insert(NewBaseGEP); 5526 } 5527 5528 IRBuilder<> Builder(GEP); 5529 Value *NewGEP = NewBaseGEP; 5530 if (Offset == BaseOffset) { 5531 if (GEP->getType() != I8PtrTy) 5532 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5533 } else { 5534 // Calculate the new offset for the new GEP. 5535 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5536 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5537 5538 if (GEP->getType() != I8PtrTy) 5539 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5540 } 5541 GEP->replaceAllUsesWith(NewGEP); 5542 LargeOffsetGEPID.erase(GEP); 5543 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5544 GEP->eraseFromParent(); 5545 Changed = true; 5546 } 5547 } 5548 return Changed; 5549 } 5550 5551 /// Return true, if an ext(load) can be formed from an extension in 5552 /// \p MovedExts. 5553 bool CodeGenPrepare::canFormExtLd( 5554 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5555 Instruction *&Inst, bool HasPromoted) { 5556 for (auto *MovedExtInst : MovedExts) { 5557 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5558 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5559 Inst = MovedExtInst; 5560 break; 5561 } 5562 } 5563 if (!LI) 5564 return false; 5565 5566 // If they're already in the same block, there's nothing to do. 5567 // Make the cheap checks first if we did not promote. 5568 // If we promoted, we need to check if it is indeed profitable. 5569 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5570 return false; 5571 5572 return TLI->isExtLoad(LI, Inst, *DL); 5573 } 5574 5575 /// Move a zext or sext fed by a load into the same basic block as the load, 5576 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5577 /// extend into the load. 5578 /// 5579 /// E.g., 5580 /// \code 5581 /// %ld = load i32* %addr 5582 /// %add = add nuw i32 %ld, 4 5583 /// %zext = zext i32 %add to i64 5584 // \endcode 5585 /// => 5586 /// \code 5587 /// %ld = load i32* %addr 5588 /// %zext = zext i32 %ld to i64 5589 /// %add = add nuw i64 %zext, 4 5590 /// \encode 5591 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5592 /// allow us to match zext(load i32*) to i64. 5593 /// 5594 /// Also, try to promote the computations used to obtain a sign extended 5595 /// value used into memory accesses. 5596 /// E.g., 5597 /// \code 5598 /// a = add nsw i32 b, 3 5599 /// d = sext i32 a to i64 5600 /// e = getelementptr ..., i64 d 5601 /// \endcode 5602 /// => 5603 /// \code 5604 /// f = sext i32 b to i64 5605 /// a = add nsw i64 f, 3 5606 /// e = getelementptr ..., i64 a 5607 /// \endcode 5608 /// 5609 /// \p Inst[in/out] the extension may be modified during the process if some 5610 /// promotions apply. 5611 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5612 bool AllowPromotionWithoutCommonHeader = false; 5613 /// See if it is an interesting sext operations for the address type 5614 /// promotion before trying to promote it, e.g., the ones with the right 5615 /// type and used in memory accesses. 5616 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5617 *Inst, AllowPromotionWithoutCommonHeader); 5618 TypePromotionTransaction TPT(RemovedInsts); 5619 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5620 TPT.getRestorationPoint(); 5621 SmallVector<Instruction *, 1> Exts; 5622 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5623 Exts.push_back(Inst); 5624 5625 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5626 5627 // Look for a load being extended. 5628 LoadInst *LI = nullptr; 5629 Instruction *ExtFedByLoad; 5630 5631 // Try to promote a chain of computation if it allows to form an extended 5632 // load. 5633 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5634 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5635 TPT.commit(); 5636 // Move the extend into the same block as the load 5637 ExtFedByLoad->moveAfter(LI); 5638 // CGP does not check if the zext would be speculatively executed when moved 5639 // to the same basic block as the load. Preserving its original location 5640 // would pessimize the debugging experience, as well as negatively impact 5641 // the quality of sample pgo. We don't want to use "line 0" as that has a 5642 // size cost in the line-table section and logically the zext can be seen as 5643 // part of the load. Therefore we conservatively reuse the same debug 5644 // location for the load and the zext. 5645 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5646 ++NumExtsMoved; 5647 Inst = ExtFedByLoad; 5648 return true; 5649 } 5650 5651 // Continue promoting SExts if known as considerable depending on targets. 5652 if (ATPConsiderable && 5653 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5654 HasPromoted, TPT, SpeculativelyMovedExts)) 5655 return true; 5656 5657 TPT.rollback(LastKnownGood); 5658 return false; 5659 } 5660 5661 // Perform address type promotion if doing so is profitable. 5662 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5663 // instructions that sign extended the same initial value. However, if 5664 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5665 // extension is just profitable. 5666 bool CodeGenPrepare::performAddressTypePromotion( 5667 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5668 bool HasPromoted, TypePromotionTransaction &TPT, 5669 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5670 bool Promoted = false; 5671 SmallPtrSet<Instruction *, 1> UnhandledExts; 5672 bool AllSeenFirst = true; 5673 for (auto I : SpeculativelyMovedExts) { 5674 Value *HeadOfChain = I->getOperand(0); 5675 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5676 SeenChainsForSExt.find(HeadOfChain); 5677 // If there is an unhandled SExt which has the same header, try to promote 5678 // it as well. 5679 if (AlreadySeen != SeenChainsForSExt.end()) { 5680 if (AlreadySeen->second != nullptr) 5681 UnhandledExts.insert(AlreadySeen->second); 5682 AllSeenFirst = false; 5683 } 5684 } 5685 5686 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5687 SpeculativelyMovedExts.size() == 1)) { 5688 TPT.commit(); 5689 if (HasPromoted) 5690 Promoted = true; 5691 for (auto I : SpeculativelyMovedExts) { 5692 Value *HeadOfChain = I->getOperand(0); 5693 SeenChainsForSExt[HeadOfChain] = nullptr; 5694 ValToSExtendedUses[HeadOfChain].push_back(I); 5695 } 5696 // Update Inst as promotion happen. 5697 Inst = SpeculativelyMovedExts.pop_back_val(); 5698 } else { 5699 // This is the first chain visited from the header, keep the current chain 5700 // as unhandled. Defer to promote this until we encounter another SExt 5701 // chain derived from the same header. 5702 for (auto I : SpeculativelyMovedExts) { 5703 Value *HeadOfChain = I->getOperand(0); 5704 SeenChainsForSExt[HeadOfChain] = Inst; 5705 } 5706 return false; 5707 } 5708 5709 if (!AllSeenFirst && !UnhandledExts.empty()) 5710 for (auto VisitedSExt : UnhandledExts) { 5711 if (RemovedInsts.count(VisitedSExt)) 5712 continue; 5713 TypePromotionTransaction TPT(RemovedInsts); 5714 SmallVector<Instruction *, 1> Exts; 5715 SmallVector<Instruction *, 2> Chains; 5716 Exts.push_back(VisitedSExt); 5717 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5718 TPT.commit(); 5719 if (HasPromoted) 5720 Promoted = true; 5721 for (auto I : Chains) { 5722 Value *HeadOfChain = I->getOperand(0); 5723 // Mark this as handled. 5724 SeenChainsForSExt[HeadOfChain] = nullptr; 5725 ValToSExtendedUses[HeadOfChain].push_back(I); 5726 } 5727 } 5728 return Promoted; 5729 } 5730 5731 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5732 BasicBlock *DefBB = I->getParent(); 5733 5734 // If the result of a {s|z}ext and its source are both live out, rewrite all 5735 // other uses of the source with result of extension. 5736 Value *Src = I->getOperand(0); 5737 if (Src->hasOneUse()) 5738 return false; 5739 5740 // Only do this xform if truncating is free. 5741 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5742 return false; 5743 5744 // Only safe to perform the optimization if the source is also defined in 5745 // this block. 5746 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5747 return false; 5748 5749 bool DefIsLiveOut = false; 5750 for (User *U : I->users()) { 5751 Instruction *UI = cast<Instruction>(U); 5752 5753 // Figure out which BB this ext is used in. 5754 BasicBlock *UserBB = UI->getParent(); 5755 if (UserBB == DefBB) continue; 5756 DefIsLiveOut = true; 5757 break; 5758 } 5759 if (!DefIsLiveOut) 5760 return false; 5761 5762 // Make sure none of the uses are PHI nodes. 5763 for (User *U : Src->users()) { 5764 Instruction *UI = cast<Instruction>(U); 5765 BasicBlock *UserBB = UI->getParent(); 5766 if (UserBB == DefBB) continue; 5767 // Be conservative. We don't want this xform to end up introducing 5768 // reloads just before load / store instructions. 5769 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5770 return false; 5771 } 5772 5773 // InsertedTruncs - Only insert one trunc in each block once. 5774 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5775 5776 bool MadeChange = false; 5777 for (Use &U : Src->uses()) { 5778 Instruction *User = cast<Instruction>(U.getUser()); 5779 5780 // Figure out which BB this ext is used in. 5781 BasicBlock *UserBB = User->getParent(); 5782 if (UserBB == DefBB) continue; 5783 5784 // Both src and def are live in this block. Rewrite the use. 5785 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5786 5787 if (!InsertedTrunc) { 5788 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5789 assert(InsertPt != UserBB->end()); 5790 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5791 InsertedInsts.insert(InsertedTrunc); 5792 } 5793 5794 // Replace a use of the {s|z}ext source with a use of the result. 5795 U = InsertedTrunc; 5796 ++NumExtUses; 5797 MadeChange = true; 5798 } 5799 5800 return MadeChange; 5801 } 5802 5803 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5804 // just after the load if the target can fold this into one extload instruction, 5805 // with the hope of eliminating some of the other later "and" instructions using 5806 // the loaded value. "and"s that are made trivially redundant by the insertion 5807 // of the new "and" are removed by this function, while others (e.g. those whose 5808 // path from the load goes through a phi) are left for isel to potentially 5809 // remove. 5810 // 5811 // For example: 5812 // 5813 // b0: 5814 // x = load i32 5815 // ... 5816 // b1: 5817 // y = and x, 0xff 5818 // z = use y 5819 // 5820 // becomes: 5821 // 5822 // b0: 5823 // x = load i32 5824 // x' = and x, 0xff 5825 // ... 5826 // b1: 5827 // z = use x' 5828 // 5829 // whereas: 5830 // 5831 // b0: 5832 // x1 = load i32 5833 // ... 5834 // b1: 5835 // x2 = load i32 5836 // ... 5837 // b2: 5838 // x = phi x1, x2 5839 // y = and x, 0xff 5840 // 5841 // becomes (after a call to optimizeLoadExt for each load): 5842 // 5843 // b0: 5844 // x1 = load i32 5845 // x1' = and x1, 0xff 5846 // ... 5847 // b1: 5848 // x2 = load i32 5849 // x2' = and x2, 0xff 5850 // ... 5851 // b2: 5852 // x = phi x1', x2' 5853 // y = and x, 0xff 5854 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5855 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5856 return false; 5857 5858 // Skip loads we've already transformed. 5859 if (Load->hasOneUse() && 5860 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5861 return false; 5862 5863 // Look at all uses of Load, looking through phis, to determine how many bits 5864 // of the loaded value are needed. 5865 SmallVector<Instruction *, 8> WorkList; 5866 SmallPtrSet<Instruction *, 16> Visited; 5867 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5868 for (auto *U : Load->users()) 5869 WorkList.push_back(cast<Instruction>(U)); 5870 5871 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5872 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5873 APInt DemandBits(BitWidth, 0); 5874 APInt WidestAndBits(BitWidth, 0); 5875 5876 while (!WorkList.empty()) { 5877 Instruction *I = WorkList.back(); 5878 WorkList.pop_back(); 5879 5880 // Break use-def graph loops. 5881 if (!Visited.insert(I).second) 5882 continue; 5883 5884 // For a PHI node, push all of its users. 5885 if (auto *Phi = dyn_cast<PHINode>(I)) { 5886 for (auto *U : Phi->users()) 5887 WorkList.push_back(cast<Instruction>(U)); 5888 continue; 5889 } 5890 5891 switch (I->getOpcode()) { 5892 case Instruction::And: { 5893 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5894 if (!AndC) 5895 return false; 5896 APInt AndBits = AndC->getValue(); 5897 DemandBits |= AndBits; 5898 // Keep track of the widest and mask we see. 5899 if (AndBits.ugt(WidestAndBits)) 5900 WidestAndBits = AndBits; 5901 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5902 AndsToMaybeRemove.push_back(I); 5903 break; 5904 } 5905 5906 case Instruction::Shl: { 5907 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5908 if (!ShlC) 5909 return false; 5910 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5911 DemandBits.setLowBits(BitWidth - ShiftAmt); 5912 break; 5913 } 5914 5915 case Instruction::Trunc: { 5916 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5917 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5918 DemandBits.setLowBits(TruncBitWidth); 5919 break; 5920 } 5921 5922 default: 5923 return false; 5924 } 5925 } 5926 5927 uint32_t ActiveBits = DemandBits.getActiveBits(); 5928 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5929 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5930 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5931 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5932 // followed by an AND. 5933 // TODO: Look into removing this restriction by fixing backends to either 5934 // return false for isLoadExtLegal for i1 or have them select this pattern to 5935 // a single instruction. 5936 // 5937 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5938 // mask, since these are the only ands that will be removed by isel. 5939 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5940 WidestAndBits != DemandBits) 5941 return false; 5942 5943 LLVMContext &Ctx = Load->getType()->getContext(); 5944 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5945 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5946 5947 // Reject cases that won't be matched as extloads. 5948 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5949 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5950 return false; 5951 5952 IRBuilder<> Builder(Load->getNextNode()); 5953 auto *NewAnd = cast<Instruction>( 5954 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5955 // Mark this instruction as "inserted by CGP", so that other 5956 // optimizations don't touch it. 5957 InsertedInsts.insert(NewAnd); 5958 5959 // Replace all uses of load with new and (except for the use of load in the 5960 // new and itself). 5961 Load->replaceAllUsesWith(NewAnd); 5962 NewAnd->setOperand(0, Load); 5963 5964 // Remove any and instructions that are now redundant. 5965 for (auto *And : AndsToMaybeRemove) 5966 // Check that the and mask is the same as the one we decided to put on the 5967 // new and. 5968 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5969 And->replaceAllUsesWith(NewAnd); 5970 if (&*CurInstIterator == And) 5971 CurInstIterator = std::next(And->getIterator()); 5972 And->eraseFromParent(); 5973 ++NumAndUses; 5974 } 5975 5976 ++NumAndsAdded; 5977 return true; 5978 } 5979 5980 /// Check if V (an operand of a select instruction) is an expensive instruction 5981 /// that is only used once. 5982 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5983 auto *I = dyn_cast<Instruction>(V); 5984 // If it's safe to speculatively execute, then it should not have side 5985 // effects; therefore, it's safe to sink and possibly *not* execute. 5986 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5987 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5988 } 5989 5990 /// Returns true if a SelectInst should be turned into an explicit branch. 5991 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5992 const TargetLowering *TLI, 5993 SelectInst *SI) { 5994 // If even a predictable select is cheap, then a branch can't be cheaper. 5995 if (!TLI->isPredictableSelectExpensive()) 5996 return false; 5997 5998 // FIXME: This should use the same heuristics as IfConversion to determine 5999 // whether a select is better represented as a branch. 6000 6001 // If metadata tells us that the select condition is obviously predictable, 6002 // then we want to replace the select with a branch. 6003 uint64_t TrueWeight, FalseWeight; 6004 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6005 uint64_t Max = std::max(TrueWeight, FalseWeight); 6006 uint64_t Sum = TrueWeight + FalseWeight; 6007 if (Sum != 0) { 6008 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6009 if (Probability > TLI->getPredictableBranchThreshold()) 6010 return true; 6011 } 6012 } 6013 6014 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6015 6016 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6017 // comparison condition. If the compare has more than one use, there's 6018 // probably another cmov or setcc around, so it's not worth emitting a branch. 6019 if (!Cmp || !Cmp->hasOneUse()) 6020 return false; 6021 6022 // If either operand of the select is expensive and only needed on one side 6023 // of the select, we should form a branch. 6024 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6025 sinkSelectOperand(TTI, SI->getFalseValue())) 6026 return true; 6027 6028 return false; 6029 } 6030 6031 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6032 /// false value of \p SI. If the true/false value of \p SI is defined by any 6033 /// select instructions in \p Selects, look through the defining select 6034 /// instruction until the true/false value is not defined in \p Selects. 6035 static Value *getTrueOrFalseValue( 6036 SelectInst *SI, bool isTrue, 6037 const SmallPtrSet<const Instruction *, 2> &Selects) { 6038 Value *V = nullptr; 6039 6040 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6041 DefSI = dyn_cast<SelectInst>(V)) { 6042 assert(DefSI->getCondition() == SI->getCondition() && 6043 "The condition of DefSI does not match with SI"); 6044 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6045 } 6046 6047 assert(V && "Failed to get select true/false value"); 6048 return V; 6049 } 6050 6051 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6052 assert(Shift->isShift() && "Expected a shift"); 6053 6054 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6055 // general vector shifts, and (3) the shift amount is a select-of-splatted 6056 // values, hoist the shifts before the select: 6057 // shift Op0, (select Cond, TVal, FVal) --> 6058 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6059 // 6060 // This is inverting a generic IR transform when we know that the cost of a 6061 // general vector shift is more than the cost of 2 shift-by-scalars. 6062 // We can't do this effectively in SDAG because we may not be able to 6063 // determine if the select operands are splats from within a basic block. 6064 Type *Ty = Shift->getType(); 6065 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6066 return false; 6067 Value *Cond, *TVal, *FVal; 6068 if (!match(Shift->getOperand(1), 6069 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6070 return false; 6071 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6072 return false; 6073 6074 IRBuilder<> Builder(Shift); 6075 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6076 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6077 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6078 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6079 Shift->replaceAllUsesWith(NewSel); 6080 Shift->eraseFromParent(); 6081 return true; 6082 } 6083 6084 /// If we have a SelectInst that will likely profit from branch prediction, 6085 /// turn it into a branch. 6086 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6087 // If branch conversion isn't desirable, exit early. 6088 if (DisableSelectToBranch || OptSize || 6089 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6090 return false; 6091 6092 // Find all consecutive select instructions that share the same condition. 6093 SmallVector<SelectInst *, 2> ASI; 6094 ASI.push_back(SI); 6095 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6096 It != SI->getParent()->end(); ++It) { 6097 SelectInst *I = dyn_cast<SelectInst>(&*It); 6098 if (I && SI->getCondition() == I->getCondition()) { 6099 ASI.push_back(I); 6100 } else { 6101 break; 6102 } 6103 } 6104 6105 SelectInst *LastSI = ASI.back(); 6106 // Increment the current iterator to skip all the rest of select instructions 6107 // because they will be either "not lowered" or "all lowered" to branch. 6108 CurInstIterator = std::next(LastSI->getIterator()); 6109 6110 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6111 6112 // Can we convert the 'select' to CF ? 6113 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6114 return false; 6115 6116 TargetLowering::SelectSupportKind SelectKind; 6117 if (VectorCond) 6118 SelectKind = TargetLowering::VectorMaskSelect; 6119 else if (SI->getType()->isVectorTy()) 6120 SelectKind = TargetLowering::ScalarCondVectorVal; 6121 else 6122 SelectKind = TargetLowering::ScalarValSelect; 6123 6124 if (TLI->isSelectSupported(SelectKind) && 6125 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6126 return false; 6127 6128 // The DominatorTree needs to be rebuilt by any consumers after this 6129 // transformation. We simply reset here rather than setting the ModifiedDT 6130 // flag to avoid restarting the function walk in runOnFunction for each 6131 // select optimized. 6132 DT.reset(); 6133 6134 // Transform a sequence like this: 6135 // start: 6136 // %cmp = cmp uge i32 %a, %b 6137 // %sel = select i1 %cmp, i32 %c, i32 %d 6138 // 6139 // Into: 6140 // start: 6141 // %cmp = cmp uge i32 %a, %b 6142 // %cmp.frozen = freeze %cmp 6143 // br i1 %cmp.frozen, label %select.true, label %select.false 6144 // select.true: 6145 // br label %select.end 6146 // select.false: 6147 // br label %select.end 6148 // select.end: 6149 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6150 // 6151 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6152 // In addition, we may sink instructions that produce %c or %d from 6153 // the entry block into the destination(s) of the new branch. 6154 // If the true or false blocks do not contain a sunken instruction, that 6155 // block and its branch may be optimized away. In that case, one side of the 6156 // first branch will point directly to select.end, and the corresponding PHI 6157 // predecessor block will be the start block. 6158 6159 // First, we split the block containing the select into 2 blocks. 6160 BasicBlock *StartBlock = SI->getParent(); 6161 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6162 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6163 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6164 6165 // Delete the unconditional branch that was just created by the split. 6166 StartBlock->getTerminator()->eraseFromParent(); 6167 6168 // These are the new basic blocks for the conditional branch. 6169 // At least one will become an actual new basic block. 6170 BasicBlock *TrueBlock = nullptr; 6171 BasicBlock *FalseBlock = nullptr; 6172 BranchInst *TrueBranch = nullptr; 6173 BranchInst *FalseBranch = nullptr; 6174 6175 // Sink expensive instructions into the conditional blocks to avoid executing 6176 // them speculatively. 6177 for (SelectInst *SI : ASI) { 6178 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6179 if (TrueBlock == nullptr) { 6180 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6181 EndBlock->getParent(), EndBlock); 6182 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6183 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6184 } 6185 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6186 TrueInst->moveBefore(TrueBranch); 6187 } 6188 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6189 if (FalseBlock == nullptr) { 6190 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6191 EndBlock->getParent(), EndBlock); 6192 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6193 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6194 } 6195 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6196 FalseInst->moveBefore(FalseBranch); 6197 } 6198 } 6199 6200 // If there was nothing to sink, then arbitrarily choose the 'false' side 6201 // for a new input value to the PHI. 6202 if (TrueBlock == FalseBlock) { 6203 assert(TrueBlock == nullptr && 6204 "Unexpected basic block transform while optimizing select"); 6205 6206 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6207 EndBlock->getParent(), EndBlock); 6208 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6209 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6210 } 6211 6212 // Insert the real conditional branch based on the original condition. 6213 // If we did not create a new block for one of the 'true' or 'false' paths 6214 // of the condition, it means that side of the branch goes to the end block 6215 // directly and the path originates from the start block from the point of 6216 // view of the new PHI. 6217 BasicBlock *TT, *FT; 6218 if (TrueBlock == nullptr) { 6219 TT = EndBlock; 6220 FT = FalseBlock; 6221 TrueBlock = StartBlock; 6222 } else if (FalseBlock == nullptr) { 6223 TT = TrueBlock; 6224 FT = EndBlock; 6225 FalseBlock = StartBlock; 6226 } else { 6227 TT = TrueBlock; 6228 FT = FalseBlock; 6229 } 6230 IRBuilder<> IB(SI); 6231 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6232 IB.CreateCondBr(CondFr, TT, FT, SI); 6233 6234 SmallPtrSet<const Instruction *, 2> INS; 6235 INS.insert(ASI.begin(), ASI.end()); 6236 // Use reverse iterator because later select may use the value of the 6237 // earlier select, and we need to propagate value through earlier select 6238 // to get the PHI operand. 6239 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6240 SelectInst *SI = *It; 6241 // The select itself is replaced with a PHI Node. 6242 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6243 PN->takeName(SI); 6244 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6245 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6246 PN->setDebugLoc(SI->getDebugLoc()); 6247 6248 SI->replaceAllUsesWith(PN); 6249 SI->eraseFromParent(); 6250 INS.erase(SI); 6251 ++NumSelectsExpanded; 6252 } 6253 6254 // Instruct OptimizeBlock to skip to the next block. 6255 CurInstIterator = StartBlock->end(); 6256 return true; 6257 } 6258 6259 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6260 ArrayRef<int> Mask(SVI->getShuffleMask()); 6261 int SplatElem = -1; 6262 for (unsigned i = 0; i < Mask.size(); ++i) { 6263 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6264 return false; 6265 SplatElem = Mask[i]; 6266 } 6267 6268 return true; 6269 } 6270 6271 /// Some targets have expensive vector shifts if the lanes aren't all the same 6272 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6273 /// it's often worth sinking a shufflevector splat down to its use so that 6274 /// codegen can spot all lanes are identical. 6275 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6276 BasicBlock *DefBB = SVI->getParent(); 6277 6278 // Only do this xform if variable vector shifts are particularly expensive. 6279 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6280 return false; 6281 6282 // We only expect better codegen by sinking a shuffle if we can recognise a 6283 // constant splat. 6284 if (!isBroadcastShuffle(SVI)) 6285 return false; 6286 6287 // InsertedShuffles - Only insert a shuffle in each block once. 6288 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6289 6290 bool MadeChange = false; 6291 for (User *U : SVI->users()) { 6292 Instruction *UI = cast<Instruction>(U); 6293 6294 // Figure out which BB this ext is used in. 6295 BasicBlock *UserBB = UI->getParent(); 6296 if (UserBB == DefBB) continue; 6297 6298 // For now only apply this when the splat is used by a shift instruction. 6299 if (!UI->isShift()) continue; 6300 6301 // Everything checks out, sink the shuffle if the user's block doesn't 6302 // already have a copy. 6303 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6304 6305 if (!InsertedShuffle) { 6306 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6307 assert(InsertPt != UserBB->end()); 6308 InsertedShuffle = 6309 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6310 SVI->getShuffleMask(), "", &*InsertPt); 6311 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6312 } 6313 6314 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6315 MadeChange = true; 6316 } 6317 6318 // If we removed all uses, nuke the shuffle. 6319 if (SVI->use_empty()) { 6320 SVI->eraseFromParent(); 6321 MadeChange = true; 6322 } 6323 6324 return MadeChange; 6325 } 6326 6327 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6328 // If the operands of I can be folded into a target instruction together with 6329 // I, duplicate and sink them. 6330 SmallVector<Use *, 4> OpsToSink; 6331 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6332 return false; 6333 6334 // OpsToSink can contain multiple uses in a use chain (e.g. 6335 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6336 // uses must come first, so we process the ops in reverse order so as to not 6337 // create invalid IR. 6338 BasicBlock *TargetBB = I->getParent(); 6339 bool Changed = false; 6340 SmallVector<Use *, 4> ToReplace; 6341 for (Use *U : reverse(OpsToSink)) { 6342 auto *UI = cast<Instruction>(U->get()); 6343 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6344 continue; 6345 ToReplace.push_back(U); 6346 } 6347 6348 SetVector<Instruction *> MaybeDead; 6349 DenseMap<Instruction *, Instruction *> NewInstructions; 6350 Instruction *InsertPoint = I; 6351 for (Use *U : ToReplace) { 6352 auto *UI = cast<Instruction>(U->get()); 6353 Instruction *NI = UI->clone(); 6354 NewInstructions[UI] = NI; 6355 MaybeDead.insert(UI); 6356 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6357 NI->insertBefore(InsertPoint); 6358 InsertPoint = NI; 6359 InsertedInsts.insert(NI); 6360 6361 // Update the use for the new instruction, making sure that we update the 6362 // sunk instruction uses, if it is part of a chain that has already been 6363 // sunk. 6364 Instruction *OldI = cast<Instruction>(U->getUser()); 6365 if (NewInstructions.count(OldI)) 6366 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6367 else 6368 U->set(NI); 6369 Changed = true; 6370 } 6371 6372 // Remove instructions that are dead after sinking. 6373 for (auto *I : MaybeDead) { 6374 if (!I->hasNUsesOrMore(1)) { 6375 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6376 I->eraseFromParent(); 6377 } 6378 } 6379 6380 return Changed; 6381 } 6382 6383 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6384 Value *Cond = SI->getCondition(); 6385 Type *OldType = Cond->getType(); 6386 LLVMContext &Context = Cond->getContext(); 6387 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6388 unsigned RegWidth = RegType.getSizeInBits(); 6389 6390 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6391 return false; 6392 6393 // If the register width is greater than the type width, expand the condition 6394 // of the switch instruction and each case constant to the width of the 6395 // register. By widening the type of the switch condition, subsequent 6396 // comparisons (for case comparisons) will not need to be extended to the 6397 // preferred register width, so we will potentially eliminate N-1 extends, 6398 // where N is the number of cases in the switch. 6399 auto *NewType = Type::getIntNTy(Context, RegWidth); 6400 6401 // Zero-extend the switch condition and case constants unless the switch 6402 // condition is a function argument that is already being sign-extended. 6403 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6404 // everything instead. 6405 Instruction::CastOps ExtType = Instruction::ZExt; 6406 if (auto *Arg = dyn_cast<Argument>(Cond)) 6407 if (Arg->hasSExtAttr()) 6408 ExtType = Instruction::SExt; 6409 6410 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6411 ExtInst->insertBefore(SI); 6412 ExtInst->setDebugLoc(SI->getDebugLoc()); 6413 SI->setCondition(ExtInst); 6414 for (auto Case : SI->cases()) { 6415 APInt NarrowConst = Case.getCaseValue()->getValue(); 6416 APInt WideConst = (ExtType == Instruction::ZExt) ? 6417 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6418 Case.setValue(ConstantInt::get(Context, WideConst)); 6419 } 6420 6421 return true; 6422 } 6423 6424 6425 namespace { 6426 6427 /// Helper class to promote a scalar operation to a vector one. 6428 /// This class is used to move downward extractelement transition. 6429 /// E.g., 6430 /// a = vector_op <2 x i32> 6431 /// b = extractelement <2 x i32> a, i32 0 6432 /// c = scalar_op b 6433 /// store c 6434 /// 6435 /// => 6436 /// a = vector_op <2 x i32> 6437 /// c = vector_op a (equivalent to scalar_op on the related lane) 6438 /// * d = extractelement <2 x i32> c, i32 0 6439 /// * store d 6440 /// Assuming both extractelement and store can be combine, we get rid of the 6441 /// transition. 6442 class VectorPromoteHelper { 6443 /// DataLayout associated with the current module. 6444 const DataLayout &DL; 6445 6446 /// Used to perform some checks on the legality of vector operations. 6447 const TargetLowering &TLI; 6448 6449 /// Used to estimated the cost of the promoted chain. 6450 const TargetTransformInfo &TTI; 6451 6452 /// The transition being moved downwards. 6453 Instruction *Transition; 6454 6455 /// The sequence of instructions to be promoted. 6456 SmallVector<Instruction *, 4> InstsToBePromoted; 6457 6458 /// Cost of combining a store and an extract. 6459 unsigned StoreExtractCombineCost; 6460 6461 /// Instruction that will be combined with the transition. 6462 Instruction *CombineInst = nullptr; 6463 6464 /// The instruction that represents the current end of the transition. 6465 /// Since we are faking the promotion until we reach the end of the chain 6466 /// of computation, we need a way to get the current end of the transition. 6467 Instruction *getEndOfTransition() const { 6468 if (InstsToBePromoted.empty()) 6469 return Transition; 6470 return InstsToBePromoted.back(); 6471 } 6472 6473 /// Return the index of the original value in the transition. 6474 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6475 /// c, is at index 0. 6476 unsigned getTransitionOriginalValueIdx() const { 6477 assert(isa<ExtractElementInst>(Transition) && 6478 "Other kind of transitions are not supported yet"); 6479 return 0; 6480 } 6481 6482 /// Return the index of the index in the transition. 6483 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6484 /// is at index 1. 6485 unsigned getTransitionIdx() const { 6486 assert(isa<ExtractElementInst>(Transition) && 6487 "Other kind of transitions are not supported yet"); 6488 return 1; 6489 } 6490 6491 /// Get the type of the transition. 6492 /// This is the type of the original value. 6493 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6494 /// transition is <2 x i32>. 6495 Type *getTransitionType() const { 6496 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6497 } 6498 6499 /// Promote \p ToBePromoted by moving \p Def downward through. 6500 /// I.e., we have the following sequence: 6501 /// Def = Transition <ty1> a to <ty2> 6502 /// b = ToBePromoted <ty2> Def, ... 6503 /// => 6504 /// b = ToBePromoted <ty1> a, ... 6505 /// Def = Transition <ty1> ToBePromoted to <ty2> 6506 void promoteImpl(Instruction *ToBePromoted); 6507 6508 /// Check whether or not it is profitable to promote all the 6509 /// instructions enqueued to be promoted. 6510 bool isProfitableToPromote() { 6511 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6512 unsigned Index = isa<ConstantInt>(ValIdx) 6513 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6514 : -1; 6515 Type *PromotedType = getTransitionType(); 6516 6517 StoreInst *ST = cast<StoreInst>(CombineInst); 6518 unsigned AS = ST->getPointerAddressSpace(); 6519 unsigned Align = ST->getAlignment(); 6520 // Check if this store is supported. 6521 if (!TLI.allowsMisalignedMemoryAccesses( 6522 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6523 Align)) { 6524 // If this is not supported, there is no way we can combine 6525 // the extract with the store. 6526 return false; 6527 } 6528 6529 // The scalar chain of computation has to pay for the transition 6530 // scalar to vector. 6531 // The vector chain has to account for the combining cost. 6532 uint64_t ScalarCost = 6533 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6534 uint64_t VectorCost = StoreExtractCombineCost; 6535 for (const auto &Inst : InstsToBePromoted) { 6536 // Compute the cost. 6537 // By construction, all instructions being promoted are arithmetic ones. 6538 // Moreover, one argument is a constant that can be viewed as a splat 6539 // constant. 6540 Value *Arg0 = Inst->getOperand(0); 6541 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6542 isa<ConstantFP>(Arg0); 6543 TargetTransformInfo::OperandValueKind Arg0OVK = 6544 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6545 : TargetTransformInfo::OK_AnyValue; 6546 TargetTransformInfo::OperandValueKind Arg1OVK = 6547 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6548 : TargetTransformInfo::OK_AnyValue; 6549 ScalarCost += TTI.getArithmeticInstrCost( 6550 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6551 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6552 Arg0OVK, Arg1OVK); 6553 } 6554 LLVM_DEBUG( 6555 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6556 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6557 return ScalarCost > VectorCost; 6558 } 6559 6560 /// Generate a constant vector with \p Val with the same 6561 /// number of elements as the transition. 6562 /// \p UseSplat defines whether or not \p Val should be replicated 6563 /// across the whole vector. 6564 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6565 /// otherwise we generate a vector with as many undef as possible: 6566 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6567 /// used at the index of the extract. 6568 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6569 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6570 if (!UseSplat) { 6571 // If we cannot determine where the constant must be, we have to 6572 // use a splat constant. 6573 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6574 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6575 ExtractIdx = CstVal->getSExtValue(); 6576 else 6577 UseSplat = true; 6578 } 6579 6580 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6581 if (UseSplat) 6582 return ConstantVector::getSplat(EC, Val); 6583 6584 if (!EC.Scalable) { 6585 SmallVector<Constant *, 4> ConstVec; 6586 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6587 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6588 if (Idx == ExtractIdx) 6589 ConstVec.push_back(Val); 6590 else 6591 ConstVec.push_back(UndefVal); 6592 } 6593 return ConstantVector::get(ConstVec); 6594 } else 6595 llvm_unreachable( 6596 "Generate scalable vector for non-splat is unimplemented"); 6597 } 6598 6599 /// Check if promoting to a vector type an operand at \p OperandIdx 6600 /// in \p Use can trigger undefined behavior. 6601 static bool canCauseUndefinedBehavior(const Instruction *Use, 6602 unsigned OperandIdx) { 6603 // This is not safe to introduce undef when the operand is on 6604 // the right hand side of a division-like instruction. 6605 if (OperandIdx != 1) 6606 return false; 6607 switch (Use->getOpcode()) { 6608 default: 6609 return false; 6610 case Instruction::SDiv: 6611 case Instruction::UDiv: 6612 case Instruction::SRem: 6613 case Instruction::URem: 6614 return true; 6615 case Instruction::FDiv: 6616 case Instruction::FRem: 6617 return !Use->hasNoNaNs(); 6618 } 6619 llvm_unreachable(nullptr); 6620 } 6621 6622 public: 6623 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6624 const TargetTransformInfo &TTI, Instruction *Transition, 6625 unsigned CombineCost) 6626 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6627 StoreExtractCombineCost(CombineCost) { 6628 assert(Transition && "Do not know how to promote null"); 6629 } 6630 6631 /// Check if we can promote \p ToBePromoted to \p Type. 6632 bool canPromote(const Instruction *ToBePromoted) const { 6633 // We could support CastInst too. 6634 return isa<BinaryOperator>(ToBePromoted); 6635 } 6636 6637 /// Check if it is profitable to promote \p ToBePromoted 6638 /// by moving downward the transition through. 6639 bool shouldPromote(const Instruction *ToBePromoted) const { 6640 // Promote only if all the operands can be statically expanded. 6641 // Indeed, we do not want to introduce any new kind of transitions. 6642 for (const Use &U : ToBePromoted->operands()) { 6643 const Value *Val = U.get(); 6644 if (Val == getEndOfTransition()) { 6645 // If the use is a division and the transition is on the rhs, 6646 // we cannot promote the operation, otherwise we may create a 6647 // division by zero. 6648 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6649 return false; 6650 continue; 6651 } 6652 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6653 !isa<ConstantFP>(Val)) 6654 return false; 6655 } 6656 // Check that the resulting operation is legal. 6657 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6658 if (!ISDOpcode) 6659 return false; 6660 return StressStoreExtract || 6661 TLI.isOperationLegalOrCustom( 6662 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6663 } 6664 6665 /// Check whether or not \p Use can be combined 6666 /// with the transition. 6667 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6668 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6669 6670 /// Record \p ToBePromoted as part of the chain to be promoted. 6671 void enqueueForPromotion(Instruction *ToBePromoted) { 6672 InstsToBePromoted.push_back(ToBePromoted); 6673 } 6674 6675 /// Set the instruction that will be combined with the transition. 6676 void recordCombineInstruction(Instruction *ToBeCombined) { 6677 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6678 CombineInst = ToBeCombined; 6679 } 6680 6681 /// Promote all the instructions enqueued for promotion if it is 6682 /// is profitable. 6683 /// \return True if the promotion happened, false otherwise. 6684 bool promote() { 6685 // Check if there is something to promote. 6686 // Right now, if we do not have anything to combine with, 6687 // we assume the promotion is not profitable. 6688 if (InstsToBePromoted.empty() || !CombineInst) 6689 return false; 6690 6691 // Check cost. 6692 if (!StressStoreExtract && !isProfitableToPromote()) 6693 return false; 6694 6695 // Promote. 6696 for (auto &ToBePromoted : InstsToBePromoted) 6697 promoteImpl(ToBePromoted); 6698 InstsToBePromoted.clear(); 6699 return true; 6700 } 6701 }; 6702 6703 } // end anonymous namespace 6704 6705 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6706 // At this point, we know that all the operands of ToBePromoted but Def 6707 // can be statically promoted. 6708 // For Def, we need to use its parameter in ToBePromoted: 6709 // b = ToBePromoted ty1 a 6710 // Def = Transition ty1 b to ty2 6711 // Move the transition down. 6712 // 1. Replace all uses of the promoted operation by the transition. 6713 // = ... b => = ... Def. 6714 assert(ToBePromoted->getType() == Transition->getType() && 6715 "The type of the result of the transition does not match " 6716 "the final type"); 6717 ToBePromoted->replaceAllUsesWith(Transition); 6718 // 2. Update the type of the uses. 6719 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6720 Type *TransitionTy = getTransitionType(); 6721 ToBePromoted->mutateType(TransitionTy); 6722 // 3. Update all the operands of the promoted operation with promoted 6723 // operands. 6724 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6725 for (Use &U : ToBePromoted->operands()) { 6726 Value *Val = U.get(); 6727 Value *NewVal = nullptr; 6728 if (Val == Transition) 6729 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6730 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6731 isa<ConstantFP>(Val)) { 6732 // Use a splat constant if it is not safe to use undef. 6733 NewVal = getConstantVector( 6734 cast<Constant>(Val), 6735 isa<UndefValue>(Val) || 6736 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6737 } else 6738 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6739 "this?"); 6740 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6741 } 6742 Transition->moveAfter(ToBePromoted); 6743 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6744 } 6745 6746 /// Some targets can do store(extractelement) with one instruction. 6747 /// Try to push the extractelement towards the stores when the target 6748 /// has this feature and this is profitable. 6749 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6750 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6751 if (DisableStoreExtract || 6752 (!StressStoreExtract && 6753 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6754 Inst->getOperand(1), CombineCost))) 6755 return false; 6756 6757 // At this point we know that Inst is a vector to scalar transition. 6758 // Try to move it down the def-use chain, until: 6759 // - We can combine the transition with its single use 6760 // => we got rid of the transition. 6761 // - We escape the current basic block 6762 // => we would need to check that we are moving it at a cheaper place and 6763 // we do not do that for now. 6764 BasicBlock *Parent = Inst->getParent(); 6765 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6766 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6767 // If the transition has more than one use, assume this is not going to be 6768 // beneficial. 6769 while (Inst->hasOneUse()) { 6770 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6771 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6772 6773 if (ToBePromoted->getParent() != Parent) { 6774 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6775 << ToBePromoted->getParent()->getName() 6776 << ") than the transition (" << Parent->getName() 6777 << ").\n"); 6778 return false; 6779 } 6780 6781 if (VPH.canCombine(ToBePromoted)) { 6782 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6783 << "will be combined with: " << *ToBePromoted << '\n'); 6784 VPH.recordCombineInstruction(ToBePromoted); 6785 bool Changed = VPH.promote(); 6786 NumStoreExtractExposed += Changed; 6787 return Changed; 6788 } 6789 6790 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6791 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6792 return false; 6793 6794 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6795 6796 VPH.enqueueForPromotion(ToBePromoted); 6797 Inst = ToBePromoted; 6798 } 6799 return false; 6800 } 6801 6802 /// For the instruction sequence of store below, F and I values 6803 /// are bundled together as an i64 value before being stored into memory. 6804 /// Sometimes it is more efficient to generate separate stores for F and I, 6805 /// which can remove the bitwise instructions or sink them to colder places. 6806 /// 6807 /// (store (or (zext (bitcast F to i32) to i64), 6808 /// (shl (zext I to i64), 32)), addr) --> 6809 /// (store F, addr) and (store I, addr+4) 6810 /// 6811 /// Similarly, splitting for other merged store can also be beneficial, like: 6812 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6813 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6814 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6815 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6816 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6817 /// 6818 /// We allow each target to determine specifically which kind of splitting is 6819 /// supported. 6820 /// 6821 /// The store patterns are commonly seen from the simple code snippet below 6822 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6823 /// void goo(const std::pair<int, float> &); 6824 /// hoo() { 6825 /// ... 6826 /// goo(std::make_pair(tmp, ftmp)); 6827 /// ... 6828 /// } 6829 /// 6830 /// Although we already have similar splitting in DAG Combine, we duplicate 6831 /// it in CodeGenPrepare to catch the case in which pattern is across 6832 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6833 /// during code expansion. 6834 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6835 const TargetLowering &TLI) { 6836 // Handle simple but common cases only. 6837 Type *StoreType = SI.getValueOperand()->getType(); 6838 6839 // The code below assumes shifting a value by <number of bits>, 6840 // whereas scalable vectors would have to be shifted by 6841 // <2log(vscale) + number of bits> in order to store the 6842 // low/high parts. Bailing out for now. 6843 if (StoreType->isVectorTy() && cast<VectorType>(StoreType)->isScalable()) 6844 return false; 6845 6846 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6847 DL.getTypeSizeInBits(StoreType) == 0) 6848 return false; 6849 6850 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6851 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6852 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6853 return false; 6854 6855 // Don't split the store if it is volatile. 6856 if (SI.isVolatile()) 6857 return false; 6858 6859 // Match the following patterns: 6860 // (store (or (zext LValue to i64), 6861 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6862 // or 6863 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6864 // (zext LValue to i64), 6865 // Expect both operands of OR and the first operand of SHL have only 6866 // one use. 6867 Value *LValue, *HValue; 6868 if (!match(SI.getValueOperand(), 6869 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6870 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6871 m_SpecificInt(HalfValBitSize)))))) 6872 return false; 6873 6874 // Check LValue and HValue are int with size less or equal than 32. 6875 if (!LValue->getType()->isIntegerTy() || 6876 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6877 !HValue->getType()->isIntegerTy() || 6878 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6879 return false; 6880 6881 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6882 // as the input of target query. 6883 auto *LBC = dyn_cast<BitCastInst>(LValue); 6884 auto *HBC = dyn_cast<BitCastInst>(HValue); 6885 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6886 : EVT::getEVT(LValue->getType()); 6887 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6888 : EVT::getEVT(HValue->getType()); 6889 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6890 return false; 6891 6892 // Start to split store. 6893 IRBuilder<> Builder(SI.getContext()); 6894 Builder.SetInsertPoint(&SI); 6895 6896 // If LValue/HValue is a bitcast in another BB, create a new one in current 6897 // BB so it may be merged with the splitted stores by dag combiner. 6898 if (LBC && LBC->getParent() != SI.getParent()) 6899 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6900 if (HBC && HBC->getParent() != SI.getParent()) 6901 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6902 6903 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6904 auto CreateSplitStore = [&](Value *V, bool Upper) { 6905 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6906 Value *Addr = Builder.CreateBitCast( 6907 SI.getOperand(1), 6908 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6909 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6910 if (IsOffsetStore) 6911 Addr = Builder.CreateGEP( 6912 SplitStoreType, Addr, 6913 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6914 MaybeAlign Alignment = SI.getAlign(); 6915 if (IsOffsetStore && Alignment) { 6916 // When splitting the store in half, naturally one half will retain the 6917 // alignment of the original wider store, regardless of whether it was 6918 // over-aligned or not, while the other will require adjustment. 6919 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6920 } 6921 Builder.CreateAlignedStore(V, Addr, Alignment); 6922 }; 6923 6924 CreateSplitStore(LValue, false); 6925 CreateSplitStore(HValue, true); 6926 6927 // Delete the old store. 6928 SI.eraseFromParent(); 6929 return true; 6930 } 6931 6932 // Return true if the GEP has two operands, the first operand is of a sequential 6933 // type, and the second operand is a constant. 6934 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6935 gep_type_iterator I = gep_type_begin(*GEP); 6936 return GEP->getNumOperands() == 2 && 6937 I.isSequential() && 6938 isa<ConstantInt>(GEP->getOperand(1)); 6939 } 6940 6941 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6942 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6943 // reducing liveness interference across those edges benefits global register 6944 // allocation. Currently handles only certain cases. 6945 // 6946 // For example, unmerge %GEPI and %UGEPI as below. 6947 // 6948 // ---------- BEFORE ---------- 6949 // SrcBlock: 6950 // ... 6951 // %GEPIOp = ... 6952 // ... 6953 // %GEPI = gep %GEPIOp, Idx 6954 // ... 6955 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6956 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6957 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6958 // %UGEPI) 6959 // 6960 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6961 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6962 // ... 6963 // 6964 // DstBi: 6965 // ... 6966 // %UGEPI = gep %GEPIOp, UIdx 6967 // ... 6968 // --------------------------- 6969 // 6970 // ---------- AFTER ---------- 6971 // SrcBlock: 6972 // ... (same as above) 6973 // (* %GEPI is still alive on the indirectbr edges) 6974 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6975 // unmerging) 6976 // ... 6977 // 6978 // DstBi: 6979 // ... 6980 // %UGEPI = gep %GEPI, (UIdx-Idx) 6981 // ... 6982 // --------------------------- 6983 // 6984 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6985 // no longer alive on them. 6986 // 6987 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6988 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6989 // not to disable further simplications and optimizations as a result of GEP 6990 // merging. 6991 // 6992 // Note this unmerging may increase the length of the data flow critical path 6993 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6994 // between the register pressure and the length of data-flow critical 6995 // path. Restricting this to the uncommon IndirectBr case would minimize the 6996 // impact of potentially longer critical path, if any, and the impact on compile 6997 // time. 6998 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6999 const TargetTransformInfo *TTI) { 7000 BasicBlock *SrcBlock = GEPI->getParent(); 7001 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7002 // (non-IndirectBr) cases exit early here. 7003 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7004 return false; 7005 // Check that GEPI is a simple gep with a single constant index. 7006 if (!GEPSequentialConstIndexed(GEPI)) 7007 return false; 7008 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7009 // Check that GEPI is a cheap one. 7010 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 7011 > TargetTransformInfo::TCC_Basic) 7012 return false; 7013 Value *GEPIOp = GEPI->getOperand(0); 7014 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7015 if (!isa<Instruction>(GEPIOp)) 7016 return false; 7017 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7018 if (GEPIOpI->getParent() != SrcBlock) 7019 return false; 7020 // Check that GEP is used outside the block, meaning it's alive on the 7021 // IndirectBr edge(s). 7022 if (find_if(GEPI->users(), [&](User *Usr) { 7023 if (auto *I = dyn_cast<Instruction>(Usr)) { 7024 if (I->getParent() != SrcBlock) { 7025 return true; 7026 } 7027 } 7028 return false; 7029 }) == GEPI->users().end()) 7030 return false; 7031 // The second elements of the GEP chains to be unmerged. 7032 std::vector<GetElementPtrInst *> UGEPIs; 7033 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7034 // on IndirectBr edges. 7035 for (User *Usr : GEPIOp->users()) { 7036 if (Usr == GEPI) continue; 7037 // Check if Usr is an Instruction. If not, give up. 7038 if (!isa<Instruction>(Usr)) 7039 return false; 7040 auto *UI = cast<Instruction>(Usr); 7041 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7042 if (UI->getParent() == SrcBlock) 7043 continue; 7044 // Check if Usr is a GEP. If not, give up. 7045 if (!isa<GetElementPtrInst>(Usr)) 7046 return false; 7047 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7048 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7049 // the pointer operand to it. If so, record it in the vector. If not, give 7050 // up. 7051 if (!GEPSequentialConstIndexed(UGEPI)) 7052 return false; 7053 if (UGEPI->getOperand(0) != GEPIOp) 7054 return false; 7055 if (GEPIIdx->getType() != 7056 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7057 return false; 7058 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7059 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7060 > TargetTransformInfo::TCC_Basic) 7061 return false; 7062 UGEPIs.push_back(UGEPI); 7063 } 7064 if (UGEPIs.size() == 0) 7065 return false; 7066 // Check the materializing cost of (Uidx-Idx). 7067 for (GetElementPtrInst *UGEPI : UGEPIs) { 7068 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7069 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7070 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7071 if (ImmCost > TargetTransformInfo::TCC_Basic) 7072 return false; 7073 } 7074 // Now unmerge between GEPI and UGEPIs. 7075 for (GetElementPtrInst *UGEPI : UGEPIs) { 7076 UGEPI->setOperand(0, GEPI); 7077 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7078 Constant *NewUGEPIIdx = 7079 ConstantInt::get(GEPIIdx->getType(), 7080 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7081 UGEPI->setOperand(1, NewUGEPIIdx); 7082 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7083 // inbounds to avoid UB. 7084 if (!GEPI->isInBounds()) { 7085 UGEPI->setIsInBounds(false); 7086 } 7087 } 7088 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7089 // alive on IndirectBr edges). 7090 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7091 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7092 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7093 return true; 7094 } 7095 7096 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7097 // Bail out if we inserted the instruction to prevent optimizations from 7098 // stepping on each other's toes. 7099 if (InsertedInsts.count(I)) 7100 return false; 7101 7102 // TODO: Move into the switch on opcode below here. 7103 if (PHINode *P = dyn_cast<PHINode>(I)) { 7104 // It is possible for very late stage optimizations (such as SimplifyCFG) 7105 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7106 // trivial PHI, go ahead and zap it here. 7107 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7108 LargeOffsetGEPMap.erase(P); 7109 P->replaceAllUsesWith(V); 7110 P->eraseFromParent(); 7111 ++NumPHIsElim; 7112 return true; 7113 } 7114 return false; 7115 } 7116 7117 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7118 // If the source of the cast is a constant, then this should have 7119 // already been constant folded. The only reason NOT to constant fold 7120 // it is if something (e.g. LSR) was careful to place the constant 7121 // evaluation in a block other than then one that uses it (e.g. to hoist 7122 // the address of globals out of a loop). If this is the case, we don't 7123 // want to forward-subst the cast. 7124 if (isa<Constant>(CI->getOperand(0))) 7125 return false; 7126 7127 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7128 return true; 7129 7130 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7131 /// Sink a zext or sext into its user blocks if the target type doesn't 7132 /// fit in one register 7133 if (TLI->getTypeAction(CI->getContext(), 7134 TLI->getValueType(*DL, CI->getType())) == 7135 TargetLowering::TypeExpandInteger) { 7136 return SinkCast(CI); 7137 } else { 7138 bool MadeChange = optimizeExt(I); 7139 return MadeChange | optimizeExtUses(I); 7140 } 7141 } 7142 return false; 7143 } 7144 7145 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7146 if (optimizeCmp(Cmp, ModifiedDT)) 7147 return true; 7148 7149 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7150 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7151 bool Modified = optimizeLoadExt(LI); 7152 unsigned AS = LI->getPointerAddressSpace(); 7153 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7154 return Modified; 7155 } 7156 7157 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7158 if (splitMergedValStore(*SI, *DL, *TLI)) 7159 return true; 7160 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7161 unsigned AS = SI->getPointerAddressSpace(); 7162 return optimizeMemoryInst(I, SI->getOperand(1), 7163 SI->getOperand(0)->getType(), AS); 7164 } 7165 7166 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7167 unsigned AS = RMW->getPointerAddressSpace(); 7168 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7169 RMW->getType(), AS); 7170 } 7171 7172 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7173 unsigned AS = CmpX->getPointerAddressSpace(); 7174 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7175 CmpX->getCompareOperand()->getType(), AS); 7176 } 7177 7178 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7179 7180 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7181 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7182 7183 // TODO: Move this into the switch on opcode - it handles shifts already. 7184 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7185 BinOp->getOpcode() == Instruction::LShr)) { 7186 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7187 if (CI && TLI->hasExtractBitsInsn()) 7188 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7189 return true; 7190 } 7191 7192 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7193 if (GEPI->hasAllZeroIndices()) { 7194 /// The GEP operand must be a pointer, so must its result -> BitCast 7195 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7196 GEPI->getName(), GEPI); 7197 NC->setDebugLoc(GEPI->getDebugLoc()); 7198 GEPI->replaceAllUsesWith(NC); 7199 GEPI->eraseFromParent(); 7200 ++NumGEPsElim; 7201 optimizeInst(NC, ModifiedDT); 7202 return true; 7203 } 7204 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7205 return true; 7206 } 7207 return false; 7208 } 7209 7210 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7211 // freeze(icmp a, const)) -> icmp (freeze a), const 7212 // This helps generate efficient conditional jumps. 7213 Instruction *CmpI = nullptr; 7214 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7215 CmpI = II; 7216 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7217 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7218 7219 if (CmpI && CmpI->hasOneUse()) { 7220 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7221 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7222 isa<ConstantPointerNull>(Op0); 7223 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7224 isa<ConstantPointerNull>(Op1); 7225 if (Const0 || Const1) { 7226 if (!Const0 || !Const1) { 7227 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7228 F->takeName(FI); 7229 CmpI->setOperand(Const0 ? 1 : 0, F); 7230 } 7231 FI->replaceAllUsesWith(CmpI); 7232 FI->eraseFromParent(); 7233 return true; 7234 } 7235 } 7236 return false; 7237 } 7238 7239 if (tryToSinkFreeOperands(I)) 7240 return true; 7241 7242 switch (I->getOpcode()) { 7243 case Instruction::Shl: 7244 case Instruction::LShr: 7245 case Instruction::AShr: 7246 return optimizeShiftInst(cast<BinaryOperator>(I)); 7247 case Instruction::Call: 7248 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7249 case Instruction::Select: 7250 return optimizeSelectInst(cast<SelectInst>(I)); 7251 case Instruction::ShuffleVector: 7252 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7253 case Instruction::Switch: 7254 return optimizeSwitchInst(cast<SwitchInst>(I)); 7255 case Instruction::ExtractElement: 7256 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7257 } 7258 7259 return false; 7260 } 7261 7262 /// Given an OR instruction, check to see if this is a bitreverse 7263 /// idiom. If so, insert the new intrinsic and return true. 7264 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7265 const TargetLowering &TLI) { 7266 if (!I.getType()->isIntegerTy() || 7267 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7268 TLI.getValueType(DL, I.getType(), true))) 7269 return false; 7270 7271 SmallVector<Instruction*, 4> Insts; 7272 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7273 return false; 7274 Instruction *LastInst = Insts.back(); 7275 I.replaceAllUsesWith(LastInst); 7276 RecursivelyDeleteTriviallyDeadInstructions(&I); 7277 return true; 7278 } 7279 7280 // In this pass we look for GEP and cast instructions that are used 7281 // across basic blocks and rewrite them to improve basic-block-at-a-time 7282 // selection. 7283 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7284 SunkAddrs.clear(); 7285 bool MadeChange = false; 7286 7287 CurInstIterator = BB.begin(); 7288 while (CurInstIterator != BB.end()) { 7289 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7290 if (ModifiedDT) 7291 return true; 7292 } 7293 7294 bool MadeBitReverse = true; 7295 while (MadeBitReverse) { 7296 MadeBitReverse = false; 7297 for (auto &I : reverse(BB)) { 7298 if (makeBitReverse(I, *DL, *TLI)) { 7299 MadeBitReverse = MadeChange = true; 7300 break; 7301 } 7302 } 7303 } 7304 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7305 7306 return MadeChange; 7307 } 7308 7309 // Some CGP optimizations may move or alter what's computed in a block. Check 7310 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7311 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7312 assert(isa<DbgValueInst>(I)); 7313 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7314 7315 // Does this dbg.value refer to a sunk address calculation? 7316 Value *Location = DVI.getVariableLocation(); 7317 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7318 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7319 if (SunkAddr) { 7320 // Point dbg.value at locally computed address, which should give the best 7321 // opportunity to be accurately lowered. This update may change the type of 7322 // pointer being referred to; however this makes no difference to debugging 7323 // information, and we can't generate bitcasts that may affect codegen. 7324 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7325 ValueAsMetadata::get(SunkAddr))); 7326 return true; 7327 } 7328 return false; 7329 } 7330 7331 // A llvm.dbg.value may be using a value before its definition, due to 7332 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7333 // them by moving the dbg.value to immediately after the value definition. 7334 // FIXME: Ideally this should never be necessary, and this has the potential 7335 // to re-order dbg.value intrinsics. 7336 bool CodeGenPrepare::placeDbgValues(Function &F) { 7337 bool MadeChange = false; 7338 DominatorTree DT(F); 7339 7340 for (BasicBlock &BB : F) { 7341 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7342 Instruction *Insn = &*BI++; 7343 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7344 if (!DVI) 7345 continue; 7346 7347 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7348 7349 if (!VI || VI->isTerminator()) 7350 continue; 7351 7352 // If VI is a phi in a block with an EHPad terminator, we can't insert 7353 // after it. 7354 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7355 continue; 7356 7357 // If the defining instruction dominates the dbg.value, we do not need 7358 // to move the dbg.value. 7359 if (DT.dominates(VI, DVI)) 7360 continue; 7361 7362 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7363 << *DVI << ' ' << *VI); 7364 DVI->removeFromParent(); 7365 if (isa<PHINode>(VI)) 7366 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7367 else 7368 DVI->insertAfter(VI); 7369 MadeChange = true; 7370 ++NumDbgValueMoved; 7371 } 7372 } 7373 return MadeChange; 7374 } 7375 7376 /// Scale down both weights to fit into uint32_t. 7377 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7378 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7379 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7380 NewTrue = NewTrue / Scale; 7381 NewFalse = NewFalse / Scale; 7382 } 7383 7384 /// Some targets prefer to split a conditional branch like: 7385 /// \code 7386 /// %0 = icmp ne i32 %a, 0 7387 /// %1 = icmp ne i32 %b, 0 7388 /// %or.cond = or i1 %0, %1 7389 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7390 /// \endcode 7391 /// into multiple branch instructions like: 7392 /// \code 7393 /// bb1: 7394 /// %0 = icmp ne i32 %a, 0 7395 /// br i1 %0, label %TrueBB, label %bb2 7396 /// bb2: 7397 /// %1 = icmp ne i32 %b, 0 7398 /// br i1 %1, label %TrueBB, label %FalseBB 7399 /// \endcode 7400 /// This usually allows instruction selection to do even further optimizations 7401 /// and combine the compare with the branch instruction. Currently this is 7402 /// applied for targets which have "cheap" jump instructions. 7403 /// 7404 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7405 /// 7406 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7407 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7408 return false; 7409 7410 bool MadeChange = false; 7411 for (auto &BB : F) { 7412 // Does this BB end with the following? 7413 // %cond1 = icmp|fcmp|binary instruction ... 7414 // %cond2 = icmp|fcmp|binary instruction ... 7415 // %cond.or = or|and i1 %cond1, cond2 7416 // br i1 %cond.or label %dest1, label %dest2" 7417 BinaryOperator *LogicOp; 7418 BasicBlock *TBB, *FBB; 7419 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7420 continue; 7421 7422 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7423 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7424 continue; 7425 7426 // The merging of mostly empty BB can cause a degenerate branch. 7427 if (TBB == FBB) 7428 continue; 7429 7430 unsigned Opc; 7431 Value *Cond1, *Cond2; 7432 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7433 m_OneUse(m_Value(Cond2))))) 7434 Opc = Instruction::And; 7435 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7436 m_OneUse(m_Value(Cond2))))) 7437 Opc = Instruction::Or; 7438 else 7439 continue; 7440 7441 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7442 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7443 continue; 7444 7445 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7446 7447 // Create a new BB. 7448 auto TmpBB = 7449 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7450 BB.getParent(), BB.getNextNode()); 7451 7452 // Update original basic block by using the first condition directly by the 7453 // branch instruction and removing the no longer needed and/or instruction. 7454 Br1->setCondition(Cond1); 7455 LogicOp->eraseFromParent(); 7456 7457 // Depending on the condition we have to either replace the true or the 7458 // false successor of the original branch instruction. 7459 if (Opc == Instruction::And) 7460 Br1->setSuccessor(0, TmpBB); 7461 else 7462 Br1->setSuccessor(1, TmpBB); 7463 7464 // Fill in the new basic block. 7465 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7466 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7467 I->removeFromParent(); 7468 I->insertBefore(Br2); 7469 } 7470 7471 // Update PHI nodes in both successors. The original BB needs to be 7472 // replaced in one successor's PHI nodes, because the branch comes now from 7473 // the newly generated BB (NewBB). In the other successor we need to add one 7474 // incoming edge to the PHI nodes, because both branch instructions target 7475 // now the same successor. Depending on the original branch condition 7476 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7477 // we perform the correct update for the PHI nodes. 7478 // This doesn't change the successor order of the just created branch 7479 // instruction (or any other instruction). 7480 if (Opc == Instruction::Or) 7481 std::swap(TBB, FBB); 7482 7483 // Replace the old BB with the new BB. 7484 TBB->replacePhiUsesWith(&BB, TmpBB); 7485 7486 // Add another incoming edge form the new BB. 7487 for (PHINode &PN : FBB->phis()) { 7488 auto *Val = PN.getIncomingValueForBlock(&BB); 7489 PN.addIncoming(Val, TmpBB); 7490 } 7491 7492 // Update the branch weights (from SelectionDAGBuilder:: 7493 // FindMergedConditions). 7494 if (Opc == Instruction::Or) { 7495 // Codegen X | Y as: 7496 // BB1: 7497 // jmp_if_X TBB 7498 // jmp TmpBB 7499 // TmpBB: 7500 // jmp_if_Y TBB 7501 // jmp FBB 7502 // 7503 7504 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7505 // The requirement is that 7506 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7507 // = TrueProb for original BB. 7508 // Assuming the original weights are A and B, one choice is to set BB1's 7509 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7510 // assumes that 7511 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7512 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7513 // TmpBB, but the math is more complicated. 7514 uint64_t TrueWeight, FalseWeight; 7515 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7516 uint64_t NewTrueWeight = TrueWeight; 7517 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7518 scaleWeights(NewTrueWeight, NewFalseWeight); 7519 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7520 .createBranchWeights(TrueWeight, FalseWeight)); 7521 7522 NewTrueWeight = TrueWeight; 7523 NewFalseWeight = 2 * FalseWeight; 7524 scaleWeights(NewTrueWeight, NewFalseWeight); 7525 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7526 .createBranchWeights(TrueWeight, FalseWeight)); 7527 } 7528 } else { 7529 // Codegen X & Y as: 7530 // BB1: 7531 // jmp_if_X TmpBB 7532 // jmp FBB 7533 // TmpBB: 7534 // jmp_if_Y TBB 7535 // jmp FBB 7536 // 7537 // This requires creation of TmpBB after CurBB. 7538 7539 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7540 // The requirement is that 7541 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7542 // = FalseProb for original BB. 7543 // Assuming the original weights are A and B, one choice is to set BB1's 7544 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7545 // assumes that 7546 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7547 uint64_t TrueWeight, FalseWeight; 7548 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7549 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7550 uint64_t NewFalseWeight = FalseWeight; 7551 scaleWeights(NewTrueWeight, NewFalseWeight); 7552 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7553 .createBranchWeights(TrueWeight, FalseWeight)); 7554 7555 NewTrueWeight = 2 * TrueWeight; 7556 NewFalseWeight = FalseWeight; 7557 scaleWeights(NewTrueWeight, NewFalseWeight); 7558 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7559 .createBranchWeights(TrueWeight, FalseWeight)); 7560 } 7561 } 7562 7563 ModifiedDT = true; 7564 MadeChange = true; 7565 7566 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7567 TmpBB->dump()); 7568 } 7569 return MadeChange; 7570 } 7571