1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <limits> 97 #include <memory> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define DEBUG_TYPE "codegenprepare" 105 106 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 110 "sunken Cmps"); 111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 112 "of sunken Casts"); 113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 114 "computations were sunk"); 115 STATISTIC(NumMemoryInstsPhiCreated, 116 "Number of phis created when address " 117 "computations were sunk to memory instructions"); 118 STATISTIC(NumMemoryInstsSelectCreated, 119 "Number of select created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 123 STATISTIC(NumAndsAdded, 124 "Number of and mask instructions added to form ext loads"); 125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 126 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 130 131 static cl::opt<bool> DisableBranchOpts( 132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 133 cl::desc("Disable branch optimizations in CodeGenPrepare")); 134 135 static cl::opt<bool> 136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable GC optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> DisableSelectToBranch( 140 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 141 cl::desc("Disable select to branch conversion.")); 142 143 static cl::opt<bool> AddrSinkUsingGEPs( 144 "addr-sink-using-gep", cl::Hidden, cl::init(true), 145 cl::desc("Address sinking in CGP using GEPs.")); 146 147 static cl::opt<bool> EnableAndCmpSinking( 148 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 149 cl::desc("Enable sinkinig and/cmp into branches.")); 150 151 static cl::opt<bool> DisableStoreExtract( 152 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 154 155 static cl::opt<bool> StressStoreExtract( 156 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> DisableExtLdPromotion( 160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 162 "CodeGenPrepare")); 163 164 static cl::opt<bool> StressExtLdPromotion( 165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 167 "optimization in CodeGenPrepare")); 168 169 static cl::opt<bool> DisablePreheaderProtect( 170 "disable-preheader-prot", cl::Hidden, cl::init(false), 171 cl::desc("Disable protection against removing loop preheaders")); 172 173 static cl::opt<bool> ProfileGuidedSectionPrefix( 174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 175 cl::desc("Use profile info to add section prefix for hot/cold functions")); 176 177 static cl::opt<unsigned> FreqRatioToSkipMerge( 178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 179 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 180 "(frequency of destination block) is greater than this ratio")); 181 182 static cl::opt<bool> ForceSplitStore( 183 "force-split-store", cl::Hidden, cl::init(false), 184 cl::desc("Force store splitting no matter what the target query says.")); 185 186 static cl::opt<bool> 187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 188 cl::desc("Enable merging of redundant sexts when one is dominating" 189 " the other."), cl::init(true)); 190 191 static cl::opt<bool> DisableComplexAddrModes( 192 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 193 cl::desc("Disables combining addressing modes with different parts " 194 "in optimizeMemoryInst.")); 195 196 static cl::opt<bool> 197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 198 cl::desc("Allow creation of Phis in Address sinking.")); 199 200 static cl::opt<bool> 201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 202 cl::desc("Allow creation of selects in Address sinking.")); 203 204 static cl::opt<bool> AddrSinkCombineBaseReg( 205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 206 cl::desc("Allow combining of BaseReg field in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseGV( 209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseGV field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseOffs( 213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineScaledReg( 217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 219 220 static cl::opt<bool> 221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 222 cl::init(true), 223 cl::desc("Enable splitting large offset of GEP.")); 224 225 static cl::opt<bool> EnableICMP_EQToICMP_ST( 226 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 227 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 228 229 namespace { 230 231 enum ExtType { 232 ZeroExtension, // Zero extension has been seen. 233 SignExtension, // Sign extension has been seen. 234 BothExtension // This extension type is used if we saw sext after 235 // ZeroExtension had been set, or if we saw zext after 236 // SignExtension had been set. It makes the type 237 // information of a promoted instruction invalid. 238 }; 239 240 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 241 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 242 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 243 using SExts = SmallVector<Instruction *, 16>; 244 using ValueToSExts = DenseMap<Value *, SExts>; 245 246 class TypePromotionTransaction; 247 248 class CodeGenPrepare : public FunctionPass { 249 const TargetMachine *TM = nullptr; 250 const TargetSubtargetInfo *SubtargetInfo; 251 const TargetLowering *TLI = nullptr; 252 const TargetRegisterInfo *TRI; 253 const TargetTransformInfo *TTI = nullptr; 254 const TargetLibraryInfo *TLInfo; 255 const LoopInfo *LI; 256 std::unique_ptr<BlockFrequencyInfo> BFI; 257 std::unique_ptr<BranchProbabilityInfo> BPI; 258 259 /// As we scan instructions optimizing them, this is the next instruction 260 /// to optimize. Transforms that can invalidate this should update it. 261 BasicBlock::iterator CurInstIterator; 262 263 /// Keeps track of non-local addresses that have been sunk into a block. 264 /// This allows us to avoid inserting duplicate code for blocks with 265 /// multiple load/stores of the same address. The usage of WeakTrackingVH 266 /// enables SunkAddrs to be treated as a cache whose entries can be 267 /// invalidated if a sunken address computation has been erased. 268 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 269 270 /// Keeps track of all instructions inserted for the current function. 271 SetOfInstrs InsertedInsts; 272 273 /// Keeps track of the type of the related instruction before their 274 /// promotion for the current function. 275 InstrToOrigTy PromotedInsts; 276 277 /// Keep track of instructions removed during promotion. 278 SetOfInstrs RemovedInsts; 279 280 /// Keep track of sext chains based on their initial value. 281 DenseMap<Value *, Instruction *> SeenChainsForSExt; 282 283 /// Keep track of GEPs accessing the same data structures such as structs or 284 /// arrays that are candidates to be split later because of their large 285 /// size. 286 MapVector< 287 AssertingVH<Value>, 288 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 289 LargeOffsetGEPMap; 290 291 /// Keep track of new GEP base after splitting the GEPs having large offset. 292 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 293 294 /// Map serial numbers to Large offset GEPs. 295 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 296 297 /// Keep track of SExt promoted. 298 ValueToSExts ValToSExtendedUses; 299 300 /// True if optimizing for size. 301 bool OptSize; 302 303 /// DataLayout for the Function being processed. 304 const DataLayout *DL = nullptr; 305 306 /// Building the dominator tree can be expensive, so we only build it 307 /// lazily and update it when required. 308 std::unique_ptr<DominatorTree> DT; 309 310 public: 311 static char ID; // Pass identification, replacement for typeid 312 313 CodeGenPrepare() : FunctionPass(ID) { 314 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 315 } 316 317 bool runOnFunction(Function &F) override; 318 319 StringRef getPassName() const override { return "CodeGen Prepare"; } 320 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 // FIXME: When we can selectively preserve passes, preserve the domtree. 323 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 324 AU.addRequired<TargetLibraryInfoWrapperPass>(); 325 AU.addRequired<TargetTransformInfoWrapperPass>(); 326 AU.addRequired<LoopInfoWrapperPass>(); 327 } 328 329 private: 330 template <typename F> 331 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 332 // Substituting can cause recursive simplifications, which can invalidate 333 // our iterator. Use a WeakTrackingVH to hold onto it in case this 334 // happens. 335 Value *CurValue = &*CurInstIterator; 336 WeakTrackingVH IterHandle(CurValue); 337 338 f(); 339 340 // If the iterator instruction was recursively deleted, start over at the 341 // start of the block. 342 if (IterHandle != CurValue) { 343 CurInstIterator = BB->begin(); 344 SunkAddrs.clear(); 345 } 346 } 347 348 // Get the DominatorTree, building if necessary. 349 DominatorTree &getDT(Function &F) { 350 if (!DT) 351 DT = std::make_unique<DominatorTree>(F); 352 return *DT; 353 } 354 355 bool eliminateFallThrough(Function &F); 356 bool eliminateMostlyEmptyBlocks(Function &F); 357 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 358 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 359 void eliminateMostlyEmptyBlock(BasicBlock *BB); 360 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 361 bool isPreheader); 362 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 363 bool optimizeInst(Instruction *I, bool &ModifiedDT); 364 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 365 Type *AccessTy, unsigned AddrSpace); 366 bool optimizeInlineAsmInst(CallInst *CS); 367 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 368 bool optimizeExt(Instruction *&I); 369 bool optimizeExtUses(Instruction *I); 370 bool optimizeLoadExt(LoadInst *Load); 371 bool optimizeShiftInst(BinaryOperator *BO); 372 bool optimizeSelectInst(SelectInst *SI); 373 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 374 bool optimizeSwitchInst(SwitchInst *SI); 375 bool optimizeExtractElementInst(Instruction *Inst); 376 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 377 bool placeDbgValues(Function &F); 378 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 379 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 380 bool tryToPromoteExts(TypePromotionTransaction &TPT, 381 const SmallVectorImpl<Instruction *> &Exts, 382 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 383 unsigned CreatedInstsCost = 0); 384 bool mergeSExts(Function &F); 385 bool splitLargeGEPOffsets(); 386 bool performAddressTypePromotion( 387 Instruction *&Inst, 388 bool AllowPromotionWithoutCommonHeader, 389 bool HasPromoted, TypePromotionTransaction &TPT, 390 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 391 bool splitBranchCondition(Function &F, bool &ModifiedDT); 392 bool simplifyOffsetableRelocate(Instruction &I); 393 394 bool tryToSinkFreeOperands(Instruction *I); 395 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 396 Intrinsic::ID IID); 397 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 398 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 399 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 400 }; 401 402 } // end anonymous namespace 403 404 char CodeGenPrepare::ID = 0; 405 406 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 407 "Optimize for code generation", false, false) 408 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 409 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 410 "Optimize for code generation", false, false) 411 412 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 413 414 bool CodeGenPrepare::runOnFunction(Function &F) { 415 if (skipFunction(F)) 416 return false; 417 418 DL = &F.getParent()->getDataLayout(); 419 420 bool EverMadeChange = false; 421 // Clear per function information. 422 InsertedInsts.clear(); 423 PromotedInsts.clear(); 424 425 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 426 TM = &TPC->getTM<TargetMachine>(); 427 SubtargetInfo = TM->getSubtargetImpl(F); 428 TLI = SubtargetInfo->getTargetLowering(); 429 TRI = SubtargetInfo->getRegisterInfo(); 430 } 431 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 432 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 433 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 434 BPI.reset(new BranchProbabilityInfo(F, *LI)); 435 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 436 OptSize = F.hasOptSize(); 437 438 ProfileSummaryInfo *PSI = 439 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 440 if (ProfileGuidedSectionPrefix) { 441 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 442 F.setSectionPrefix(".hot"); 443 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 444 F.setSectionPrefix(".unlikely"); 445 } 446 447 /// This optimization identifies DIV instructions that can be 448 /// profitably bypassed and carried out with a shorter, faster divide. 449 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 450 TLI->isSlowDivBypassed()) { 451 const DenseMap<unsigned int, unsigned int> &BypassWidths = 452 TLI->getBypassSlowDivWidths(); 453 BasicBlock* BB = &*F.begin(); 454 while (BB != nullptr) { 455 // bypassSlowDivision may create new BBs, but we don't want to reapply the 456 // optimization to those blocks. 457 BasicBlock* Next = BB->getNextNode(); 458 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 459 BB = Next; 460 } 461 } 462 463 // Eliminate blocks that contain only PHI nodes and an 464 // unconditional branch. 465 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 466 467 bool ModifiedDT = false; 468 if (!DisableBranchOpts) 469 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 470 471 // Split some critical edges where one of the sources is an indirect branch, 472 // to help generate sane code for PHIs involving such edges. 473 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 474 475 bool MadeChange = true; 476 while (MadeChange) { 477 MadeChange = false; 478 DT.reset(); 479 for (Function::iterator I = F.begin(); I != F.end(); ) { 480 BasicBlock *BB = &*I++; 481 bool ModifiedDTOnIteration = false; 482 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 483 484 // Restart BB iteration if the dominator tree of the Function was changed 485 if (ModifiedDTOnIteration) 486 break; 487 } 488 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 489 MadeChange |= mergeSExts(F); 490 if (!LargeOffsetGEPMap.empty()) 491 MadeChange |= splitLargeGEPOffsets(); 492 493 // Really free removed instructions during promotion. 494 for (Instruction *I : RemovedInsts) 495 I->deleteValue(); 496 497 EverMadeChange |= MadeChange; 498 SeenChainsForSExt.clear(); 499 ValToSExtendedUses.clear(); 500 RemovedInsts.clear(); 501 LargeOffsetGEPMap.clear(); 502 LargeOffsetGEPID.clear(); 503 } 504 505 SunkAddrs.clear(); 506 507 if (!DisableBranchOpts) { 508 MadeChange = false; 509 // Use a set vector to get deterministic iteration order. The order the 510 // blocks are removed may affect whether or not PHI nodes in successors 511 // are removed. 512 SmallSetVector<BasicBlock*, 8> WorkList; 513 for (BasicBlock &BB : F) { 514 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 515 MadeChange |= ConstantFoldTerminator(&BB, true); 516 if (!MadeChange) continue; 517 518 for (SmallVectorImpl<BasicBlock*>::iterator 519 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 520 if (pred_begin(*II) == pred_end(*II)) 521 WorkList.insert(*II); 522 } 523 524 // Delete the dead blocks and any of their dead successors. 525 MadeChange |= !WorkList.empty(); 526 while (!WorkList.empty()) { 527 BasicBlock *BB = WorkList.pop_back_val(); 528 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 529 530 DeleteDeadBlock(BB); 531 532 for (SmallVectorImpl<BasicBlock*>::iterator 533 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 534 if (pred_begin(*II) == pred_end(*II)) 535 WorkList.insert(*II); 536 } 537 538 // Merge pairs of basic blocks with unconditional branches, connected by 539 // a single edge. 540 if (EverMadeChange || MadeChange) 541 MadeChange |= eliminateFallThrough(F); 542 543 EverMadeChange |= MadeChange; 544 } 545 546 if (!DisableGCOpts) { 547 SmallVector<Instruction *, 2> Statepoints; 548 for (BasicBlock &BB : F) 549 for (Instruction &I : BB) 550 if (isStatepoint(I)) 551 Statepoints.push_back(&I); 552 for (auto &I : Statepoints) 553 EverMadeChange |= simplifyOffsetableRelocate(*I); 554 } 555 556 // Do this last to clean up use-before-def scenarios introduced by other 557 // preparatory transforms. 558 EverMadeChange |= placeDbgValues(F); 559 560 return EverMadeChange; 561 } 562 563 /// Merge basic blocks which are connected by a single edge, where one of the 564 /// basic blocks has a single successor pointing to the other basic block, 565 /// which has a single predecessor. 566 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 567 bool Changed = false; 568 // Scan all of the blocks in the function, except for the entry block. 569 // Use a temporary array to avoid iterator being invalidated when 570 // deleting blocks. 571 SmallVector<WeakTrackingVH, 16> Blocks; 572 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 573 Blocks.push_back(&Block); 574 575 for (auto &Block : Blocks) { 576 auto *BB = cast_or_null<BasicBlock>(Block); 577 if (!BB) 578 continue; 579 // If the destination block has a single pred, then this is a trivial 580 // edge, just collapse it. 581 BasicBlock *SinglePred = BB->getSinglePredecessor(); 582 583 // Don't merge if BB's address is taken. 584 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 585 586 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 587 if (Term && !Term->isConditional()) { 588 Changed = true; 589 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 590 591 // Merge BB into SinglePred and delete it. 592 MergeBlockIntoPredecessor(BB); 593 } 594 } 595 return Changed; 596 } 597 598 /// Find a destination block from BB if BB is mergeable empty block. 599 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 600 // If this block doesn't end with an uncond branch, ignore it. 601 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 602 if (!BI || !BI->isUnconditional()) 603 return nullptr; 604 605 // If the instruction before the branch (skipping debug info) isn't a phi 606 // node, then other stuff is happening here. 607 BasicBlock::iterator BBI = BI->getIterator(); 608 if (BBI != BB->begin()) { 609 --BBI; 610 while (isa<DbgInfoIntrinsic>(BBI)) { 611 if (BBI == BB->begin()) 612 break; 613 --BBI; 614 } 615 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 616 return nullptr; 617 } 618 619 // Do not break infinite loops. 620 BasicBlock *DestBB = BI->getSuccessor(0); 621 if (DestBB == BB) 622 return nullptr; 623 624 if (!canMergeBlocks(BB, DestBB)) 625 DestBB = nullptr; 626 627 return DestBB; 628 } 629 630 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 631 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 632 /// edges in ways that are non-optimal for isel. Start by eliminating these 633 /// blocks so we can split them the way we want them. 634 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 635 SmallPtrSet<BasicBlock *, 16> Preheaders; 636 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 637 while (!LoopList.empty()) { 638 Loop *L = LoopList.pop_back_val(); 639 LoopList.insert(LoopList.end(), L->begin(), L->end()); 640 if (BasicBlock *Preheader = L->getLoopPreheader()) 641 Preheaders.insert(Preheader); 642 } 643 644 bool MadeChange = false; 645 // Copy blocks into a temporary array to avoid iterator invalidation issues 646 // as we remove them. 647 // Note that this intentionally skips the entry block. 648 SmallVector<WeakTrackingVH, 16> Blocks; 649 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 650 Blocks.push_back(&Block); 651 652 for (auto &Block : Blocks) { 653 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 654 if (!BB) 655 continue; 656 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 657 if (!DestBB || 658 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 659 continue; 660 661 eliminateMostlyEmptyBlock(BB); 662 MadeChange = true; 663 } 664 return MadeChange; 665 } 666 667 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 668 BasicBlock *DestBB, 669 bool isPreheader) { 670 // Do not delete loop preheaders if doing so would create a critical edge. 671 // Loop preheaders can be good locations to spill registers. If the 672 // preheader is deleted and we create a critical edge, registers may be 673 // spilled in the loop body instead. 674 if (!DisablePreheaderProtect && isPreheader && 675 !(BB->getSinglePredecessor() && 676 BB->getSinglePredecessor()->getSingleSuccessor())) 677 return false; 678 679 // Skip merging if the block's successor is also a successor to any callbr 680 // that leads to this block. 681 // FIXME: Is this really needed? Is this a correctness issue? 682 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 683 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 684 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 685 if (DestBB == CBI->getSuccessor(i)) 686 return false; 687 } 688 689 // Try to skip merging if the unique predecessor of BB is terminated by a 690 // switch or indirect branch instruction, and BB is used as an incoming block 691 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 692 // add COPY instructions in the predecessor of BB instead of BB (if it is not 693 // merged). Note that the critical edge created by merging such blocks wont be 694 // split in MachineSink because the jump table is not analyzable. By keeping 695 // such empty block (BB), ISel will place COPY instructions in BB, not in the 696 // predecessor of BB. 697 BasicBlock *Pred = BB->getUniquePredecessor(); 698 if (!Pred || 699 !(isa<SwitchInst>(Pred->getTerminator()) || 700 isa<IndirectBrInst>(Pred->getTerminator()))) 701 return true; 702 703 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 704 return true; 705 706 // We use a simple cost heuristic which determine skipping merging is 707 // profitable if the cost of skipping merging is less than the cost of 708 // merging : Cost(skipping merging) < Cost(merging BB), where the 709 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 710 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 711 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 712 // Freq(Pred) / Freq(BB) > 2. 713 // Note that if there are multiple empty blocks sharing the same incoming 714 // value for the PHIs in the DestBB, we consider them together. In such 715 // case, Cost(merging BB) will be the sum of their frequencies. 716 717 if (!isa<PHINode>(DestBB->begin())) 718 return true; 719 720 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 721 722 // Find all other incoming blocks from which incoming values of all PHIs in 723 // DestBB are the same as the ones from BB. 724 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 725 ++PI) { 726 BasicBlock *DestBBPred = *PI; 727 if (DestBBPred == BB) 728 continue; 729 730 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 731 return DestPN.getIncomingValueForBlock(BB) == 732 DestPN.getIncomingValueForBlock(DestBBPred); 733 })) 734 SameIncomingValueBBs.insert(DestBBPred); 735 } 736 737 // See if all BB's incoming values are same as the value from Pred. In this 738 // case, no reason to skip merging because COPYs are expected to be place in 739 // Pred already. 740 if (SameIncomingValueBBs.count(Pred)) 741 return true; 742 743 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 744 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 745 746 for (auto SameValueBB : SameIncomingValueBBs) 747 if (SameValueBB->getUniquePredecessor() == Pred && 748 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 749 BBFreq += BFI->getBlockFreq(SameValueBB); 750 751 return PredFreq.getFrequency() <= 752 BBFreq.getFrequency() * FreqRatioToSkipMerge; 753 } 754 755 /// Return true if we can merge BB into DestBB if there is a single 756 /// unconditional branch between them, and BB contains no other non-phi 757 /// instructions. 758 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 759 const BasicBlock *DestBB) const { 760 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 761 // the successor. If there are more complex condition (e.g. preheaders), 762 // don't mess around with them. 763 for (const PHINode &PN : BB->phis()) { 764 for (const User *U : PN.users()) { 765 const Instruction *UI = cast<Instruction>(U); 766 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 767 return false; 768 // If User is inside DestBB block and it is a PHINode then check 769 // incoming value. If incoming value is not from BB then this is 770 // a complex condition (e.g. preheaders) we want to avoid here. 771 if (UI->getParent() == DestBB) { 772 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 773 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 774 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 775 if (Insn && Insn->getParent() == BB && 776 Insn->getParent() != UPN->getIncomingBlock(I)) 777 return false; 778 } 779 } 780 } 781 } 782 783 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 784 // and DestBB may have conflicting incoming values for the block. If so, we 785 // can't merge the block. 786 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 787 if (!DestBBPN) return true; // no conflict. 788 789 // Collect the preds of BB. 790 SmallPtrSet<const BasicBlock*, 16> BBPreds; 791 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 792 // It is faster to get preds from a PHI than with pred_iterator. 793 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 794 BBPreds.insert(BBPN->getIncomingBlock(i)); 795 } else { 796 BBPreds.insert(pred_begin(BB), pred_end(BB)); 797 } 798 799 // Walk the preds of DestBB. 800 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 801 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 802 if (BBPreds.count(Pred)) { // Common predecessor? 803 for (const PHINode &PN : DestBB->phis()) { 804 const Value *V1 = PN.getIncomingValueForBlock(Pred); 805 const Value *V2 = PN.getIncomingValueForBlock(BB); 806 807 // If V2 is a phi node in BB, look up what the mapped value will be. 808 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 809 if (V2PN->getParent() == BB) 810 V2 = V2PN->getIncomingValueForBlock(Pred); 811 812 // If there is a conflict, bail out. 813 if (V1 != V2) return false; 814 } 815 } 816 } 817 818 return true; 819 } 820 821 /// Eliminate a basic block that has only phi's and an unconditional branch in 822 /// it. 823 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 824 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 825 BasicBlock *DestBB = BI->getSuccessor(0); 826 827 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 828 << *BB << *DestBB); 829 830 // If the destination block has a single pred, then this is a trivial edge, 831 // just collapse it. 832 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 833 if (SinglePred != DestBB) { 834 assert(SinglePred == BB && 835 "Single predecessor not the same as predecessor"); 836 // Merge DestBB into SinglePred/BB and delete it. 837 MergeBlockIntoPredecessor(DestBB); 838 // Note: BB(=SinglePred) will not be deleted on this path. 839 // DestBB(=its single successor) is the one that was deleted. 840 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 841 return; 842 } 843 } 844 845 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 846 // to handle the new incoming edges it is about to have. 847 for (PHINode &PN : DestBB->phis()) { 848 // Remove the incoming value for BB, and remember it. 849 Value *InVal = PN.removeIncomingValue(BB, false); 850 851 // Two options: either the InVal is a phi node defined in BB or it is some 852 // value that dominates BB. 853 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 854 if (InValPhi && InValPhi->getParent() == BB) { 855 // Add all of the input values of the input PHI as inputs of this phi. 856 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 857 PN.addIncoming(InValPhi->getIncomingValue(i), 858 InValPhi->getIncomingBlock(i)); 859 } else { 860 // Otherwise, add one instance of the dominating value for each edge that 861 // we will be adding. 862 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 863 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 864 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 865 } else { 866 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 867 PN.addIncoming(InVal, *PI); 868 } 869 } 870 } 871 872 // The PHIs are now updated, change everything that refers to BB to use 873 // DestBB and remove BB. 874 BB->replaceAllUsesWith(DestBB); 875 BB->eraseFromParent(); 876 ++NumBlocksElim; 877 878 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 879 } 880 881 // Computes a map of base pointer relocation instructions to corresponding 882 // derived pointer relocation instructions given a vector of all relocate calls 883 static void computeBaseDerivedRelocateMap( 884 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 885 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 886 &RelocateInstMap) { 887 // Collect information in two maps: one primarily for locating the base object 888 // while filling the second map; the second map is the final structure holding 889 // a mapping between Base and corresponding Derived relocate calls 890 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 891 for (auto *ThisRelocate : AllRelocateCalls) { 892 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 893 ThisRelocate->getDerivedPtrIndex()); 894 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 895 } 896 for (auto &Item : RelocateIdxMap) { 897 std::pair<unsigned, unsigned> Key = Item.first; 898 if (Key.first == Key.second) 899 // Base relocation: nothing to insert 900 continue; 901 902 GCRelocateInst *I = Item.second; 903 auto BaseKey = std::make_pair(Key.first, Key.first); 904 905 // We're iterating over RelocateIdxMap so we cannot modify it. 906 auto MaybeBase = RelocateIdxMap.find(BaseKey); 907 if (MaybeBase == RelocateIdxMap.end()) 908 // TODO: We might want to insert a new base object relocate and gep off 909 // that, if there are enough derived object relocates. 910 continue; 911 912 RelocateInstMap[MaybeBase->second].push_back(I); 913 } 914 } 915 916 // Accepts a GEP and extracts the operands into a vector provided they're all 917 // small integer constants 918 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 919 SmallVectorImpl<Value *> &OffsetV) { 920 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 921 // Only accept small constant integer operands 922 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 923 if (!Op || Op->getZExtValue() > 20) 924 return false; 925 } 926 927 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 928 OffsetV.push_back(GEP->getOperand(i)); 929 return true; 930 } 931 932 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 933 // replace, computes a replacement, and affects it. 934 static bool 935 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 936 const SmallVectorImpl<GCRelocateInst *> &Targets) { 937 bool MadeChange = false; 938 // We must ensure the relocation of derived pointer is defined after 939 // relocation of base pointer. If we find a relocation corresponding to base 940 // defined earlier than relocation of base then we move relocation of base 941 // right before found relocation. We consider only relocation in the same 942 // basic block as relocation of base. Relocations from other basic block will 943 // be skipped by optimization and we do not care about them. 944 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 945 &*R != RelocatedBase; ++R) 946 if (auto RI = dyn_cast<GCRelocateInst>(R)) 947 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 948 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 949 RelocatedBase->moveBefore(RI); 950 break; 951 } 952 953 for (GCRelocateInst *ToReplace : Targets) { 954 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 955 "Not relocating a derived object of the original base object"); 956 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 957 // A duplicate relocate call. TODO: coalesce duplicates. 958 continue; 959 } 960 961 if (RelocatedBase->getParent() != ToReplace->getParent()) { 962 // Base and derived relocates are in different basic blocks. 963 // In this case transform is only valid when base dominates derived 964 // relocate. However it would be too expensive to check dominance 965 // for each such relocate, so we skip the whole transformation. 966 continue; 967 } 968 969 Value *Base = ToReplace->getBasePtr(); 970 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 971 if (!Derived || Derived->getPointerOperand() != Base) 972 continue; 973 974 SmallVector<Value *, 2> OffsetV; 975 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 976 continue; 977 978 // Create a Builder and replace the target callsite with a gep 979 assert(RelocatedBase->getNextNode() && 980 "Should always have one since it's not a terminator"); 981 982 // Insert after RelocatedBase 983 IRBuilder<> Builder(RelocatedBase->getNextNode()); 984 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 985 986 // If gc_relocate does not match the actual type, cast it to the right type. 987 // In theory, there must be a bitcast after gc_relocate if the type does not 988 // match, and we should reuse it to get the derived pointer. But it could be 989 // cases like this: 990 // bb1: 991 // ... 992 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 993 // br label %merge 994 // 995 // bb2: 996 // ... 997 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 998 // br label %merge 999 // 1000 // merge: 1001 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1002 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1003 // 1004 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1005 // no matter there is already one or not. In this way, we can handle all cases, and 1006 // the extra bitcast should be optimized away in later passes. 1007 Value *ActualRelocatedBase = RelocatedBase; 1008 if (RelocatedBase->getType() != Base->getType()) { 1009 ActualRelocatedBase = 1010 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1011 } 1012 Value *Replacement = Builder.CreateGEP( 1013 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1014 Replacement->takeName(ToReplace); 1015 // If the newly generated derived pointer's type does not match the original derived 1016 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1017 Value *ActualReplacement = Replacement; 1018 if (Replacement->getType() != ToReplace->getType()) { 1019 ActualReplacement = 1020 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1021 } 1022 ToReplace->replaceAllUsesWith(ActualReplacement); 1023 ToReplace->eraseFromParent(); 1024 1025 MadeChange = true; 1026 } 1027 return MadeChange; 1028 } 1029 1030 // Turns this: 1031 // 1032 // %base = ... 1033 // %ptr = gep %base + 15 1034 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1035 // %base' = relocate(%tok, i32 4, i32 4) 1036 // %ptr' = relocate(%tok, i32 4, i32 5) 1037 // %val = load %ptr' 1038 // 1039 // into this: 1040 // 1041 // %base = ... 1042 // %ptr = gep %base + 15 1043 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1044 // %base' = gc.relocate(%tok, i32 4, i32 4) 1045 // %ptr' = gep %base' + 15 1046 // %val = load %ptr' 1047 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1048 bool MadeChange = false; 1049 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1050 1051 for (auto *U : I.users()) 1052 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1053 // Collect all the relocate calls associated with a statepoint 1054 AllRelocateCalls.push_back(Relocate); 1055 1056 // We need atleast one base pointer relocation + one derived pointer 1057 // relocation to mangle 1058 if (AllRelocateCalls.size() < 2) 1059 return false; 1060 1061 // RelocateInstMap is a mapping from the base relocate instruction to the 1062 // corresponding derived relocate instructions 1063 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1064 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1065 if (RelocateInstMap.empty()) 1066 return false; 1067 1068 for (auto &Item : RelocateInstMap) 1069 // Item.first is the RelocatedBase to offset against 1070 // Item.second is the vector of Targets to replace 1071 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1072 return MadeChange; 1073 } 1074 1075 /// Sink the specified cast instruction into its user blocks. 1076 static bool SinkCast(CastInst *CI) { 1077 BasicBlock *DefBB = CI->getParent(); 1078 1079 /// InsertedCasts - Only insert a cast in each block once. 1080 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1081 1082 bool MadeChange = false; 1083 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1084 UI != E; ) { 1085 Use &TheUse = UI.getUse(); 1086 Instruction *User = cast<Instruction>(*UI); 1087 1088 // Figure out which BB this cast is used in. For PHI's this is the 1089 // appropriate predecessor block. 1090 BasicBlock *UserBB = User->getParent(); 1091 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1092 UserBB = PN->getIncomingBlock(TheUse); 1093 } 1094 1095 // Preincrement use iterator so we don't invalidate it. 1096 ++UI; 1097 1098 // The first insertion point of a block containing an EH pad is after the 1099 // pad. If the pad is the user, we cannot sink the cast past the pad. 1100 if (User->isEHPad()) 1101 continue; 1102 1103 // If the block selected to receive the cast is an EH pad that does not 1104 // allow non-PHI instructions before the terminator, we can't sink the 1105 // cast. 1106 if (UserBB->getTerminator()->isEHPad()) 1107 continue; 1108 1109 // If this user is in the same block as the cast, don't change the cast. 1110 if (UserBB == DefBB) continue; 1111 1112 // If we have already inserted a cast into this block, use it. 1113 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1114 1115 if (!InsertedCast) { 1116 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1117 assert(InsertPt != UserBB->end()); 1118 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1119 CI->getType(), "", &*InsertPt); 1120 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1121 } 1122 1123 // Replace a use of the cast with a use of the new cast. 1124 TheUse = InsertedCast; 1125 MadeChange = true; 1126 ++NumCastUses; 1127 } 1128 1129 // If we removed all uses, nuke the cast. 1130 if (CI->use_empty()) { 1131 salvageDebugInfo(*CI); 1132 CI->eraseFromParent(); 1133 MadeChange = true; 1134 } 1135 1136 return MadeChange; 1137 } 1138 1139 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1140 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1141 /// reduce the number of virtual registers that must be created and coalesced. 1142 /// 1143 /// Return true if any changes are made. 1144 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1145 const DataLayout &DL) { 1146 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1147 // than sinking only nop casts, but is helpful on some platforms. 1148 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1149 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1150 ASC->getDestAddressSpace())) 1151 return false; 1152 } 1153 1154 // If this is a noop copy, 1155 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1156 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1157 1158 // This is an fp<->int conversion? 1159 if (SrcVT.isInteger() != DstVT.isInteger()) 1160 return false; 1161 1162 // If this is an extension, it will be a zero or sign extension, which 1163 // isn't a noop. 1164 if (SrcVT.bitsLT(DstVT)) return false; 1165 1166 // If these values will be promoted, find out what they will be promoted 1167 // to. This helps us consider truncates on PPC as noop copies when they 1168 // are. 1169 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1170 TargetLowering::TypePromoteInteger) 1171 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1172 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1173 TargetLowering::TypePromoteInteger) 1174 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1175 1176 // If, after promotion, these are the same types, this is a noop copy. 1177 if (SrcVT != DstVT) 1178 return false; 1179 1180 return SinkCast(CI); 1181 } 1182 1183 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1184 CmpInst *Cmp, 1185 Intrinsic::ID IID) { 1186 if (BO->getParent() != Cmp->getParent()) { 1187 // We used to use a dominator tree here to allow multi-block optimization. 1188 // But that was problematic because: 1189 // 1. It could cause a perf regression by hoisting the math op into the 1190 // critical path. 1191 // 2. It could cause a perf regression by creating a value that was live 1192 // across multiple blocks and increasing register pressure. 1193 // 3. Use of a dominator tree could cause large compile-time regression. 1194 // This is because we recompute the DT on every change in the main CGP 1195 // run-loop. The recomputing is probably unnecessary in many cases, so if 1196 // that was fixed, using a DT here would be ok. 1197 return false; 1198 } 1199 1200 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1201 Value *Arg0 = BO->getOperand(0); 1202 Value *Arg1 = BO->getOperand(1); 1203 if (BO->getOpcode() == Instruction::Add && 1204 IID == Intrinsic::usub_with_overflow) { 1205 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1206 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1207 } 1208 1209 // Insert at the first instruction of the pair. 1210 Instruction *InsertPt = nullptr; 1211 for (Instruction &Iter : *Cmp->getParent()) { 1212 if (&Iter == BO || &Iter == Cmp) { 1213 InsertPt = &Iter; 1214 break; 1215 } 1216 } 1217 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1218 1219 IRBuilder<> Builder(InsertPt); 1220 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1221 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1222 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1223 BO->replaceAllUsesWith(Math); 1224 Cmp->replaceAllUsesWith(OV); 1225 BO->eraseFromParent(); 1226 Cmp->eraseFromParent(); 1227 return true; 1228 } 1229 1230 /// Match special-case patterns that check for unsigned add overflow. 1231 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1232 BinaryOperator *&Add) { 1233 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1234 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1235 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1236 1237 // We are not expecting non-canonical/degenerate code. Just bail out. 1238 if (isa<Constant>(A)) 1239 return false; 1240 1241 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1242 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1243 B = ConstantInt::get(B->getType(), 1); 1244 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1245 B = ConstantInt::get(B->getType(), -1); 1246 else 1247 return false; 1248 1249 // Check the users of the variable operand of the compare looking for an add 1250 // with the adjusted constant. 1251 for (User *U : A->users()) { 1252 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1253 Add = cast<BinaryOperator>(U); 1254 return true; 1255 } 1256 } 1257 return false; 1258 } 1259 1260 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1261 /// intrinsic. Return true if any changes were made. 1262 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1263 bool &ModifiedDT) { 1264 Value *A, *B; 1265 BinaryOperator *Add; 1266 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1267 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1268 return false; 1269 1270 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1271 TLI->getValueType(*DL, Add->getType()))) 1272 return false; 1273 1274 // We don't want to move around uses of condition values this late, so we 1275 // check if it is legal to create the call to the intrinsic in the basic 1276 // block containing the icmp. 1277 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1278 return false; 1279 1280 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1281 return false; 1282 1283 // Reset callers - do not crash by iterating over a dead instruction. 1284 ModifiedDT = true; 1285 return true; 1286 } 1287 1288 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1289 bool &ModifiedDT) { 1290 // We are not expecting non-canonical/degenerate code. Just bail out. 1291 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1292 if (isa<Constant>(A) && isa<Constant>(B)) 1293 return false; 1294 1295 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1296 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1297 if (Pred == ICmpInst::ICMP_UGT) { 1298 std::swap(A, B); 1299 Pred = ICmpInst::ICMP_ULT; 1300 } 1301 // Convert special-case: (A == 0) is the same as (A u< 1). 1302 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1303 B = ConstantInt::get(B->getType(), 1); 1304 Pred = ICmpInst::ICMP_ULT; 1305 } 1306 // Convert special-case: (A != 0) is the same as (0 u< A). 1307 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1308 std::swap(A, B); 1309 Pred = ICmpInst::ICMP_ULT; 1310 } 1311 if (Pred != ICmpInst::ICMP_ULT) 1312 return false; 1313 1314 // Walk the users of a variable operand of a compare looking for a subtract or 1315 // add with that same operand. Also match the 2nd operand of the compare to 1316 // the add/sub, but that may be a negated constant operand of an add. 1317 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1318 BinaryOperator *Sub = nullptr; 1319 for (User *U : CmpVariableOperand->users()) { 1320 // A - B, A u< B --> usubo(A, B) 1321 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1322 Sub = cast<BinaryOperator>(U); 1323 break; 1324 } 1325 1326 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1327 const APInt *CmpC, *AddC; 1328 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1329 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1330 Sub = cast<BinaryOperator>(U); 1331 break; 1332 } 1333 } 1334 if (!Sub) 1335 return false; 1336 1337 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1338 TLI->getValueType(*DL, Sub->getType()))) 1339 return false; 1340 1341 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1342 return false; 1343 1344 // Reset callers - do not crash by iterating over a dead instruction. 1345 ModifiedDT = true; 1346 return true; 1347 } 1348 1349 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1350 /// registers that must be created and coalesced. This is a clear win except on 1351 /// targets with multiple condition code registers (PowerPC), where it might 1352 /// lose; some adjustment may be wanted there. 1353 /// 1354 /// Return true if any changes are made. 1355 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1356 if (TLI.hasMultipleConditionRegisters()) 1357 return false; 1358 1359 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1360 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1361 return false; 1362 1363 // Only insert a cmp in each block once. 1364 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1365 1366 bool MadeChange = false; 1367 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1368 UI != E; ) { 1369 Use &TheUse = UI.getUse(); 1370 Instruction *User = cast<Instruction>(*UI); 1371 1372 // Preincrement use iterator so we don't invalidate it. 1373 ++UI; 1374 1375 // Don't bother for PHI nodes. 1376 if (isa<PHINode>(User)) 1377 continue; 1378 1379 // Figure out which BB this cmp is used in. 1380 BasicBlock *UserBB = User->getParent(); 1381 BasicBlock *DefBB = Cmp->getParent(); 1382 1383 // If this user is in the same block as the cmp, don't change the cmp. 1384 if (UserBB == DefBB) continue; 1385 1386 // If we have already inserted a cmp into this block, use it. 1387 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1388 1389 if (!InsertedCmp) { 1390 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1391 assert(InsertPt != UserBB->end()); 1392 InsertedCmp = 1393 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1394 Cmp->getOperand(0), Cmp->getOperand(1), "", 1395 &*InsertPt); 1396 // Propagate the debug info. 1397 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1398 } 1399 1400 // Replace a use of the cmp with a use of the new cmp. 1401 TheUse = InsertedCmp; 1402 MadeChange = true; 1403 ++NumCmpUses; 1404 } 1405 1406 // If we removed all uses, nuke the cmp. 1407 if (Cmp->use_empty()) { 1408 Cmp->eraseFromParent(); 1409 MadeChange = true; 1410 } 1411 1412 return MadeChange; 1413 } 1414 1415 /// For pattern like: 1416 /// 1417 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1418 /// ... 1419 /// DomBB: 1420 /// ... 1421 /// br DomCond, TrueBB, CmpBB 1422 /// CmpBB: (with DomBB being the single predecessor) 1423 /// ... 1424 /// Cmp = icmp eq CmpOp0, CmpOp1 1425 /// ... 1426 /// 1427 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1428 /// different from lowering of icmp eq (PowerPC). This function try to convert 1429 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1430 /// After that, DomCond and Cmp can use the same comparison so reduce one 1431 /// comparison. 1432 /// 1433 /// Return true if any changes are made. 1434 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1435 const TargetLowering &TLI) { 1436 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1437 return false; 1438 1439 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1440 if (Pred != ICmpInst::ICMP_EQ) 1441 return false; 1442 1443 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1444 // icmp slt/sgt would introduce more redundant LLVM IR. 1445 for (User *U : Cmp->users()) { 1446 if (isa<BranchInst>(U)) 1447 continue; 1448 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1449 continue; 1450 return false; 1451 } 1452 1453 // This is a cheap/incomplete check for dominance - just match a single 1454 // predecessor with a conditional branch. 1455 BasicBlock *CmpBB = Cmp->getParent(); 1456 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1457 if (!DomBB) 1458 return false; 1459 1460 // We want to ensure that the only way control gets to the comparison of 1461 // interest is that a less/greater than comparison on the same operands is 1462 // false. 1463 Value *DomCond; 1464 BasicBlock *TrueBB, *FalseBB; 1465 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1466 return false; 1467 if (CmpBB != FalseBB) 1468 return false; 1469 1470 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1471 ICmpInst::Predicate DomPred; 1472 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1473 return false; 1474 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1475 return false; 1476 1477 // Convert the equality comparison to the opposite of the dominating 1478 // comparison and swap the direction for all branch/select users. 1479 // We have conceptually converted: 1480 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1481 // to 1482 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1483 // And similarly for branches. 1484 for (User *U : Cmp->users()) { 1485 if (auto *BI = dyn_cast<BranchInst>(U)) { 1486 assert(BI->isConditional() && "Must be conditional"); 1487 BI->swapSuccessors(); 1488 continue; 1489 } 1490 if (auto *SI = dyn_cast<SelectInst>(U)) { 1491 // Swap operands 1492 SI->swapValues(); 1493 SI->swapProfMetadata(); 1494 continue; 1495 } 1496 llvm_unreachable("Must be a branch or a select"); 1497 } 1498 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1499 return true; 1500 } 1501 1502 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1503 if (sinkCmpExpression(Cmp, *TLI)) 1504 return true; 1505 1506 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1507 return true; 1508 1509 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1510 return true; 1511 1512 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1513 return true; 1514 1515 return false; 1516 } 1517 1518 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1519 /// used in a compare to allow isel to generate better code for targets where 1520 /// this operation can be combined. 1521 /// 1522 /// Return true if any changes are made. 1523 static bool sinkAndCmp0Expression(Instruction *AndI, 1524 const TargetLowering &TLI, 1525 SetOfInstrs &InsertedInsts) { 1526 // Double-check that we're not trying to optimize an instruction that was 1527 // already optimized by some other part of this pass. 1528 assert(!InsertedInsts.count(AndI) && 1529 "Attempting to optimize already optimized and instruction"); 1530 (void) InsertedInsts; 1531 1532 // Nothing to do for single use in same basic block. 1533 if (AndI->hasOneUse() && 1534 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1535 return false; 1536 1537 // Try to avoid cases where sinking/duplicating is likely to increase register 1538 // pressure. 1539 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1540 !isa<ConstantInt>(AndI->getOperand(1)) && 1541 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1542 return false; 1543 1544 for (auto *U : AndI->users()) { 1545 Instruction *User = cast<Instruction>(U); 1546 1547 // Only sink 'and' feeding icmp with 0. 1548 if (!isa<ICmpInst>(User)) 1549 return false; 1550 1551 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1552 if (!CmpC || !CmpC->isZero()) 1553 return false; 1554 } 1555 1556 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1557 return false; 1558 1559 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1560 LLVM_DEBUG(AndI->getParent()->dump()); 1561 1562 // Push the 'and' into the same block as the icmp 0. There should only be 1563 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1564 // others, so we don't need to keep track of which BBs we insert into. 1565 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1566 UI != E; ) { 1567 Use &TheUse = UI.getUse(); 1568 Instruction *User = cast<Instruction>(*UI); 1569 1570 // Preincrement use iterator so we don't invalidate it. 1571 ++UI; 1572 1573 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1574 1575 // Keep the 'and' in the same place if the use is already in the same block. 1576 Instruction *InsertPt = 1577 User->getParent() == AndI->getParent() ? AndI : User; 1578 Instruction *InsertedAnd = 1579 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1580 AndI->getOperand(1), "", InsertPt); 1581 // Propagate the debug info. 1582 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1583 1584 // Replace a use of the 'and' with a use of the new 'and'. 1585 TheUse = InsertedAnd; 1586 ++NumAndUses; 1587 LLVM_DEBUG(User->getParent()->dump()); 1588 } 1589 1590 // We removed all uses, nuke the and. 1591 AndI->eraseFromParent(); 1592 return true; 1593 } 1594 1595 /// Check if the candidates could be combined with a shift instruction, which 1596 /// includes: 1597 /// 1. Truncate instruction 1598 /// 2. And instruction and the imm is a mask of the low bits: 1599 /// imm & (imm+1) == 0 1600 static bool isExtractBitsCandidateUse(Instruction *User) { 1601 if (!isa<TruncInst>(User)) { 1602 if (User->getOpcode() != Instruction::And || 1603 !isa<ConstantInt>(User->getOperand(1))) 1604 return false; 1605 1606 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1607 1608 if ((Cimm & (Cimm + 1)).getBoolValue()) 1609 return false; 1610 } 1611 return true; 1612 } 1613 1614 /// Sink both shift and truncate instruction to the use of truncate's BB. 1615 static bool 1616 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1617 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1618 const TargetLowering &TLI, const DataLayout &DL) { 1619 BasicBlock *UserBB = User->getParent(); 1620 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1621 auto *TruncI = cast<TruncInst>(User); 1622 bool MadeChange = false; 1623 1624 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1625 TruncE = TruncI->user_end(); 1626 TruncUI != TruncE;) { 1627 1628 Use &TruncTheUse = TruncUI.getUse(); 1629 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1630 // Preincrement use iterator so we don't invalidate it. 1631 1632 ++TruncUI; 1633 1634 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1635 if (!ISDOpcode) 1636 continue; 1637 1638 // If the use is actually a legal node, there will not be an 1639 // implicit truncate. 1640 // FIXME: always querying the result type is just an 1641 // approximation; some nodes' legality is determined by the 1642 // operand or other means. There's no good way to find out though. 1643 if (TLI.isOperationLegalOrCustom( 1644 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1645 continue; 1646 1647 // Don't bother for PHI nodes. 1648 if (isa<PHINode>(TruncUser)) 1649 continue; 1650 1651 BasicBlock *TruncUserBB = TruncUser->getParent(); 1652 1653 if (UserBB == TruncUserBB) 1654 continue; 1655 1656 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1657 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1658 1659 if (!InsertedShift && !InsertedTrunc) { 1660 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1661 assert(InsertPt != TruncUserBB->end()); 1662 // Sink the shift 1663 if (ShiftI->getOpcode() == Instruction::AShr) 1664 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1665 "", &*InsertPt); 1666 else 1667 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1668 "", &*InsertPt); 1669 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1670 1671 // Sink the trunc 1672 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1673 TruncInsertPt++; 1674 assert(TruncInsertPt != TruncUserBB->end()); 1675 1676 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1677 TruncI->getType(), "", &*TruncInsertPt); 1678 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1679 1680 MadeChange = true; 1681 1682 TruncTheUse = InsertedTrunc; 1683 } 1684 } 1685 return MadeChange; 1686 } 1687 1688 /// Sink the shift *right* instruction into user blocks if the uses could 1689 /// potentially be combined with this shift instruction and generate BitExtract 1690 /// instruction. It will only be applied if the architecture supports BitExtract 1691 /// instruction. Here is an example: 1692 /// BB1: 1693 /// %x.extract.shift = lshr i64 %arg1, 32 1694 /// BB2: 1695 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1696 /// ==> 1697 /// 1698 /// BB2: 1699 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1700 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1701 /// 1702 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1703 /// instruction. 1704 /// Return true if any changes are made. 1705 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1706 const TargetLowering &TLI, 1707 const DataLayout &DL) { 1708 BasicBlock *DefBB = ShiftI->getParent(); 1709 1710 /// Only insert instructions in each block once. 1711 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1712 1713 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1714 1715 bool MadeChange = false; 1716 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1717 UI != E;) { 1718 Use &TheUse = UI.getUse(); 1719 Instruction *User = cast<Instruction>(*UI); 1720 // Preincrement use iterator so we don't invalidate it. 1721 ++UI; 1722 1723 // Don't bother for PHI nodes. 1724 if (isa<PHINode>(User)) 1725 continue; 1726 1727 if (!isExtractBitsCandidateUse(User)) 1728 continue; 1729 1730 BasicBlock *UserBB = User->getParent(); 1731 1732 if (UserBB == DefBB) { 1733 // If the shift and truncate instruction are in the same BB. The use of 1734 // the truncate(TruncUse) may still introduce another truncate if not 1735 // legal. In this case, we would like to sink both shift and truncate 1736 // instruction to the BB of TruncUse. 1737 // for example: 1738 // BB1: 1739 // i64 shift.result = lshr i64 opnd, imm 1740 // trunc.result = trunc shift.result to i16 1741 // 1742 // BB2: 1743 // ----> We will have an implicit truncate here if the architecture does 1744 // not have i16 compare. 1745 // cmp i16 trunc.result, opnd2 1746 // 1747 if (isa<TruncInst>(User) && shiftIsLegal 1748 // If the type of the truncate is legal, no truncate will be 1749 // introduced in other basic blocks. 1750 && 1751 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1752 MadeChange = 1753 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1754 1755 continue; 1756 } 1757 // If we have already inserted a shift into this block, use it. 1758 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1759 1760 if (!InsertedShift) { 1761 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1762 assert(InsertPt != UserBB->end()); 1763 1764 if (ShiftI->getOpcode() == Instruction::AShr) 1765 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1766 "", &*InsertPt); 1767 else 1768 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1769 "", &*InsertPt); 1770 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1771 1772 MadeChange = true; 1773 } 1774 1775 // Replace a use of the shift with a use of the new shift. 1776 TheUse = InsertedShift; 1777 } 1778 1779 // If we removed all uses, or there are none, nuke the shift. 1780 if (ShiftI->use_empty()) { 1781 salvageDebugInfo(*ShiftI); 1782 ShiftI->eraseFromParent(); 1783 MadeChange = true; 1784 } 1785 1786 return MadeChange; 1787 } 1788 1789 /// If counting leading or trailing zeros is an expensive operation and a zero 1790 /// input is defined, add a check for zero to avoid calling the intrinsic. 1791 /// 1792 /// We want to transform: 1793 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1794 /// 1795 /// into: 1796 /// entry: 1797 /// %cmpz = icmp eq i64 %A, 0 1798 /// br i1 %cmpz, label %cond.end, label %cond.false 1799 /// cond.false: 1800 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1801 /// br label %cond.end 1802 /// cond.end: 1803 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1804 /// 1805 /// If the transform is performed, return true and set ModifiedDT to true. 1806 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1807 const TargetLowering *TLI, 1808 const DataLayout *DL, 1809 bool &ModifiedDT) { 1810 if (!TLI || !DL) 1811 return false; 1812 1813 // If a zero input is undefined, it doesn't make sense to despeculate that. 1814 if (match(CountZeros->getOperand(1), m_One())) 1815 return false; 1816 1817 // If it's cheap to speculate, there's nothing to do. 1818 auto IntrinsicID = CountZeros->getIntrinsicID(); 1819 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1820 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1821 return false; 1822 1823 // Only handle legal scalar cases. Anything else requires too much work. 1824 Type *Ty = CountZeros->getType(); 1825 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1826 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1827 return false; 1828 1829 // The intrinsic will be sunk behind a compare against zero and branch. 1830 BasicBlock *StartBlock = CountZeros->getParent(); 1831 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1832 1833 // Create another block after the count zero intrinsic. A PHI will be added 1834 // in this block to select the result of the intrinsic or the bit-width 1835 // constant if the input to the intrinsic is zero. 1836 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1837 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1838 1839 // Set up a builder to create a compare, conditional branch, and PHI. 1840 IRBuilder<> Builder(CountZeros->getContext()); 1841 Builder.SetInsertPoint(StartBlock->getTerminator()); 1842 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1843 1844 // Replace the unconditional branch that was created by the first split with 1845 // a compare against zero and a conditional branch. 1846 Value *Zero = Constant::getNullValue(Ty); 1847 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1848 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1849 StartBlock->getTerminator()->eraseFromParent(); 1850 1851 // Create a PHI in the end block to select either the output of the intrinsic 1852 // or the bit width of the operand. 1853 Builder.SetInsertPoint(&EndBlock->front()); 1854 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1855 CountZeros->replaceAllUsesWith(PN); 1856 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1857 PN->addIncoming(BitWidth, StartBlock); 1858 PN->addIncoming(CountZeros, CallBlock); 1859 1860 // We are explicitly handling the zero case, so we can set the intrinsic's 1861 // undefined zero argument to 'true'. This will also prevent reprocessing the 1862 // intrinsic; we only despeculate when a zero input is defined. 1863 CountZeros->setArgOperand(1, Builder.getTrue()); 1864 ModifiedDT = true; 1865 return true; 1866 } 1867 1868 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1869 BasicBlock *BB = CI->getParent(); 1870 1871 // Lower inline assembly if we can. 1872 // If we found an inline asm expession, and if the target knows how to 1873 // lower it to normal LLVM code, do so now. 1874 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1875 if (TLI->ExpandInlineAsm(CI)) { 1876 // Avoid invalidating the iterator. 1877 CurInstIterator = BB->begin(); 1878 // Avoid processing instructions out of order, which could cause 1879 // reuse before a value is defined. 1880 SunkAddrs.clear(); 1881 return true; 1882 } 1883 // Sink address computing for memory operands into the block. 1884 if (optimizeInlineAsmInst(CI)) 1885 return true; 1886 } 1887 1888 // Align the pointer arguments to this call if the target thinks it's a good 1889 // idea 1890 unsigned MinSize, PrefAlign; 1891 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1892 for (auto &Arg : CI->arg_operands()) { 1893 // We want to align both objects whose address is used directly and 1894 // objects whose address is used in casts and GEPs, though it only makes 1895 // sense for GEPs if the offset is a multiple of the desired alignment and 1896 // if size - offset meets the size threshold. 1897 if (!Arg->getType()->isPointerTy()) 1898 continue; 1899 APInt Offset(DL->getIndexSizeInBits( 1900 cast<PointerType>(Arg->getType())->getAddressSpace()), 1901 0); 1902 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1903 uint64_t Offset2 = Offset.getLimitedValue(); 1904 if ((Offset2 & (PrefAlign-1)) != 0) 1905 continue; 1906 AllocaInst *AI; 1907 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1908 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1909 AI->setAlignment(MaybeAlign(PrefAlign)); 1910 // Global variables can only be aligned if they are defined in this 1911 // object (i.e. they are uniquely initialized in this object), and 1912 // over-aligning global variables that have an explicit section is 1913 // forbidden. 1914 GlobalVariable *GV; 1915 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1916 GV->getPointerAlignment(*DL) < PrefAlign && 1917 DL->getTypeAllocSize(GV->getValueType()) >= 1918 MinSize + Offset2) 1919 GV->setAlignment(MaybeAlign(PrefAlign)); 1920 } 1921 // If this is a memcpy (or similar) then we may be able to improve the 1922 // alignment 1923 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1924 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1925 if (DestAlign > MI->getDestAlignment()) 1926 MI->setDestAlignment(DestAlign); 1927 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1928 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1929 if (SrcAlign > MTI->getSourceAlignment()) 1930 MTI->setSourceAlignment(SrcAlign); 1931 } 1932 } 1933 } 1934 1935 // If we have a cold call site, try to sink addressing computation into the 1936 // cold block. This interacts with our handling for loads and stores to 1937 // ensure that we can fold all uses of a potential addressing computation 1938 // into their uses. TODO: generalize this to work over profiling data 1939 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1940 for (auto &Arg : CI->arg_operands()) { 1941 if (!Arg->getType()->isPointerTy()) 1942 continue; 1943 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1944 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1945 } 1946 1947 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1948 if (II) { 1949 switch (II->getIntrinsicID()) { 1950 default: break; 1951 case Intrinsic::experimental_widenable_condition: { 1952 // Give up on future widening oppurtunties so that we can fold away dead 1953 // paths and merge blocks before going into block-local instruction 1954 // selection. 1955 if (II->use_empty()) { 1956 II->eraseFromParent(); 1957 return true; 1958 } 1959 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1960 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1961 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1962 }); 1963 return true; 1964 } 1965 case Intrinsic::objectsize: 1966 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1967 case Intrinsic::is_constant: 1968 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1969 case Intrinsic::aarch64_stlxr: 1970 case Intrinsic::aarch64_stxr: { 1971 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1972 if (!ExtVal || !ExtVal->hasOneUse() || 1973 ExtVal->getParent() == CI->getParent()) 1974 return false; 1975 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1976 ExtVal->moveBefore(CI); 1977 // Mark this instruction as "inserted by CGP", so that other 1978 // optimizations don't touch it. 1979 InsertedInsts.insert(ExtVal); 1980 return true; 1981 } 1982 1983 case Intrinsic::launder_invariant_group: 1984 case Intrinsic::strip_invariant_group: { 1985 Value *ArgVal = II->getArgOperand(0); 1986 auto it = LargeOffsetGEPMap.find(II); 1987 if (it != LargeOffsetGEPMap.end()) { 1988 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1989 // Make sure not to have to deal with iterator invalidation 1990 // after possibly adding ArgVal to LargeOffsetGEPMap. 1991 auto GEPs = std::move(it->second); 1992 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1993 LargeOffsetGEPMap.erase(II); 1994 } 1995 1996 II->replaceAllUsesWith(ArgVal); 1997 II->eraseFromParent(); 1998 return true; 1999 } 2000 case Intrinsic::cttz: 2001 case Intrinsic::ctlz: 2002 // If counting zeros is expensive, try to avoid it. 2003 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2004 } 2005 2006 if (TLI) { 2007 SmallVector<Value*, 2> PtrOps; 2008 Type *AccessTy; 2009 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2010 while (!PtrOps.empty()) { 2011 Value *PtrVal = PtrOps.pop_back_val(); 2012 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2013 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2014 return true; 2015 } 2016 } 2017 } 2018 2019 // From here on out we're working with named functions. 2020 if (!CI->getCalledFunction()) return false; 2021 2022 // Lower all default uses of _chk calls. This is very similar 2023 // to what InstCombineCalls does, but here we are only lowering calls 2024 // to fortified library functions (e.g. __memcpy_chk) that have the default 2025 // "don't know" as the objectsize. Anything else should be left alone. 2026 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2027 if (Value *V = Simplifier.optimizeCall(CI)) { 2028 CI->replaceAllUsesWith(V); 2029 CI->eraseFromParent(); 2030 return true; 2031 } 2032 2033 return false; 2034 } 2035 2036 /// Look for opportunities to duplicate return instructions to the predecessor 2037 /// to enable tail call optimizations. The case it is currently looking for is: 2038 /// @code 2039 /// bb0: 2040 /// %tmp0 = tail call i32 @f0() 2041 /// br label %return 2042 /// bb1: 2043 /// %tmp1 = tail call i32 @f1() 2044 /// br label %return 2045 /// bb2: 2046 /// %tmp2 = tail call i32 @f2() 2047 /// br label %return 2048 /// return: 2049 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2050 /// ret i32 %retval 2051 /// @endcode 2052 /// 2053 /// => 2054 /// 2055 /// @code 2056 /// bb0: 2057 /// %tmp0 = tail call i32 @f0() 2058 /// ret i32 %tmp0 2059 /// bb1: 2060 /// %tmp1 = tail call i32 @f1() 2061 /// ret i32 %tmp1 2062 /// bb2: 2063 /// %tmp2 = tail call i32 @f2() 2064 /// ret i32 %tmp2 2065 /// @endcode 2066 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2067 if (!TLI) 2068 return false; 2069 2070 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2071 if (!RetI) 2072 return false; 2073 2074 PHINode *PN = nullptr; 2075 BitCastInst *BCI = nullptr; 2076 Value *V = RetI->getReturnValue(); 2077 if (V) { 2078 BCI = dyn_cast<BitCastInst>(V); 2079 if (BCI) 2080 V = BCI->getOperand(0); 2081 2082 PN = dyn_cast<PHINode>(V); 2083 if (!PN) 2084 return false; 2085 } 2086 2087 if (PN && PN->getParent() != BB) 2088 return false; 2089 2090 // Make sure there are no instructions between the PHI and return, or that the 2091 // return is the first instruction in the block. 2092 if (PN) { 2093 BasicBlock::iterator BI = BB->begin(); 2094 // Skip over debug and the bitcast. 2095 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2096 if (&*BI != RetI) 2097 return false; 2098 } else { 2099 BasicBlock::iterator BI = BB->begin(); 2100 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2101 if (&*BI != RetI) 2102 return false; 2103 } 2104 2105 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2106 /// call. 2107 const Function *F = BB->getParent(); 2108 SmallVector<BasicBlock*, 4> TailCallBBs; 2109 if (PN) { 2110 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2111 // Look through bitcasts. 2112 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2113 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2114 BasicBlock *PredBB = PN->getIncomingBlock(I); 2115 // Make sure the phi value is indeed produced by the tail call. 2116 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2117 TLI->mayBeEmittedAsTailCall(CI) && 2118 attributesPermitTailCall(F, CI, RetI, *TLI)) 2119 TailCallBBs.push_back(PredBB); 2120 } 2121 } else { 2122 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2123 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2124 if (!VisitedBBs.insert(*PI).second) 2125 continue; 2126 2127 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2128 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2129 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2130 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2131 if (RI == RE) 2132 continue; 2133 2134 CallInst *CI = dyn_cast<CallInst>(&*RI); 2135 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2136 attributesPermitTailCall(F, CI, RetI, *TLI)) 2137 TailCallBBs.push_back(*PI); 2138 } 2139 } 2140 2141 bool Changed = false; 2142 for (auto const &TailCallBB : TailCallBBs) { 2143 // Make sure the call instruction is followed by an unconditional branch to 2144 // the return block. 2145 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2146 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2147 continue; 2148 2149 // Duplicate the return into TailCallBB. 2150 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2151 ModifiedDT = Changed = true; 2152 ++NumRetsDup; 2153 } 2154 2155 // If we eliminated all predecessors of the block, delete the block now. 2156 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2157 BB->eraseFromParent(); 2158 2159 return Changed; 2160 } 2161 2162 //===----------------------------------------------------------------------===// 2163 // Memory Optimization 2164 //===----------------------------------------------------------------------===// 2165 2166 namespace { 2167 2168 /// This is an extended version of TargetLowering::AddrMode 2169 /// which holds actual Value*'s for register values. 2170 struct ExtAddrMode : public TargetLowering::AddrMode { 2171 Value *BaseReg = nullptr; 2172 Value *ScaledReg = nullptr; 2173 Value *OriginalValue = nullptr; 2174 bool InBounds = true; 2175 2176 enum FieldName { 2177 NoField = 0x00, 2178 BaseRegField = 0x01, 2179 BaseGVField = 0x02, 2180 BaseOffsField = 0x04, 2181 ScaledRegField = 0x08, 2182 ScaleField = 0x10, 2183 MultipleFields = 0xff 2184 }; 2185 2186 2187 ExtAddrMode() = default; 2188 2189 void print(raw_ostream &OS) const; 2190 void dump() const; 2191 2192 FieldName compare(const ExtAddrMode &other) { 2193 // First check that the types are the same on each field, as differing types 2194 // is something we can't cope with later on. 2195 if (BaseReg && other.BaseReg && 2196 BaseReg->getType() != other.BaseReg->getType()) 2197 return MultipleFields; 2198 if (BaseGV && other.BaseGV && 2199 BaseGV->getType() != other.BaseGV->getType()) 2200 return MultipleFields; 2201 if (ScaledReg && other.ScaledReg && 2202 ScaledReg->getType() != other.ScaledReg->getType()) 2203 return MultipleFields; 2204 2205 // Conservatively reject 'inbounds' mismatches. 2206 if (InBounds != other.InBounds) 2207 return MultipleFields; 2208 2209 // Check each field to see if it differs. 2210 unsigned Result = NoField; 2211 if (BaseReg != other.BaseReg) 2212 Result |= BaseRegField; 2213 if (BaseGV != other.BaseGV) 2214 Result |= BaseGVField; 2215 if (BaseOffs != other.BaseOffs) 2216 Result |= BaseOffsField; 2217 if (ScaledReg != other.ScaledReg) 2218 Result |= ScaledRegField; 2219 // Don't count 0 as being a different scale, because that actually means 2220 // unscaled (which will already be counted by having no ScaledReg). 2221 if (Scale && other.Scale && Scale != other.Scale) 2222 Result |= ScaleField; 2223 2224 if (countPopulation(Result) > 1) 2225 return MultipleFields; 2226 else 2227 return static_cast<FieldName>(Result); 2228 } 2229 2230 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2231 // with no offset. 2232 bool isTrivial() { 2233 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2234 // trivial if at most one of these terms is nonzero, except that BaseGV and 2235 // BaseReg both being zero actually means a null pointer value, which we 2236 // consider to be 'non-zero' here. 2237 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2238 } 2239 2240 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2241 switch (Field) { 2242 default: 2243 return nullptr; 2244 case BaseRegField: 2245 return BaseReg; 2246 case BaseGVField: 2247 return BaseGV; 2248 case ScaledRegField: 2249 return ScaledReg; 2250 case BaseOffsField: 2251 return ConstantInt::get(IntPtrTy, BaseOffs); 2252 } 2253 } 2254 2255 void SetCombinedField(FieldName Field, Value *V, 2256 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2257 switch (Field) { 2258 default: 2259 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2260 break; 2261 case ExtAddrMode::BaseRegField: 2262 BaseReg = V; 2263 break; 2264 case ExtAddrMode::BaseGVField: 2265 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2266 // in the BaseReg field. 2267 assert(BaseReg == nullptr); 2268 BaseReg = V; 2269 BaseGV = nullptr; 2270 break; 2271 case ExtAddrMode::ScaledRegField: 2272 ScaledReg = V; 2273 // If we have a mix of scaled and unscaled addrmodes then we want scale 2274 // to be the scale and not zero. 2275 if (!Scale) 2276 for (const ExtAddrMode &AM : AddrModes) 2277 if (AM.Scale) { 2278 Scale = AM.Scale; 2279 break; 2280 } 2281 break; 2282 case ExtAddrMode::BaseOffsField: 2283 // The offset is no longer a constant, so it goes in ScaledReg with a 2284 // scale of 1. 2285 assert(ScaledReg == nullptr); 2286 ScaledReg = V; 2287 Scale = 1; 2288 BaseOffs = 0; 2289 break; 2290 } 2291 } 2292 }; 2293 2294 } // end anonymous namespace 2295 2296 #ifndef NDEBUG 2297 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2298 AM.print(OS); 2299 return OS; 2300 } 2301 #endif 2302 2303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2304 void ExtAddrMode::print(raw_ostream &OS) const { 2305 bool NeedPlus = false; 2306 OS << "["; 2307 if (InBounds) 2308 OS << "inbounds "; 2309 if (BaseGV) { 2310 OS << (NeedPlus ? " + " : "") 2311 << "GV:"; 2312 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2313 NeedPlus = true; 2314 } 2315 2316 if (BaseOffs) { 2317 OS << (NeedPlus ? " + " : "") 2318 << BaseOffs; 2319 NeedPlus = true; 2320 } 2321 2322 if (BaseReg) { 2323 OS << (NeedPlus ? " + " : "") 2324 << "Base:"; 2325 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2326 NeedPlus = true; 2327 } 2328 if (Scale) { 2329 OS << (NeedPlus ? " + " : "") 2330 << Scale << "*"; 2331 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2332 } 2333 2334 OS << ']'; 2335 } 2336 2337 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2338 print(dbgs()); 2339 dbgs() << '\n'; 2340 } 2341 #endif 2342 2343 namespace { 2344 2345 /// This class provides transaction based operation on the IR. 2346 /// Every change made through this class is recorded in the internal state and 2347 /// can be undone (rollback) until commit is called. 2348 class TypePromotionTransaction { 2349 /// This represents the common interface of the individual transaction. 2350 /// Each class implements the logic for doing one specific modification on 2351 /// the IR via the TypePromotionTransaction. 2352 class TypePromotionAction { 2353 protected: 2354 /// The Instruction modified. 2355 Instruction *Inst; 2356 2357 public: 2358 /// Constructor of the action. 2359 /// The constructor performs the related action on the IR. 2360 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2361 2362 virtual ~TypePromotionAction() = default; 2363 2364 /// Undo the modification done by this action. 2365 /// When this method is called, the IR must be in the same state as it was 2366 /// before this action was applied. 2367 /// \pre Undoing the action works if and only if the IR is in the exact same 2368 /// state as it was directly after this action was applied. 2369 virtual void undo() = 0; 2370 2371 /// Advocate every change made by this action. 2372 /// When the results on the IR of the action are to be kept, it is important 2373 /// to call this function, otherwise hidden information may be kept forever. 2374 virtual void commit() { 2375 // Nothing to be done, this action is not doing anything. 2376 } 2377 }; 2378 2379 /// Utility to remember the position of an instruction. 2380 class InsertionHandler { 2381 /// Position of an instruction. 2382 /// Either an instruction: 2383 /// - Is the first in a basic block: BB is used. 2384 /// - Has a previous instruction: PrevInst is used. 2385 union { 2386 Instruction *PrevInst; 2387 BasicBlock *BB; 2388 } Point; 2389 2390 /// Remember whether or not the instruction had a previous instruction. 2391 bool HasPrevInstruction; 2392 2393 public: 2394 /// Record the position of \p Inst. 2395 InsertionHandler(Instruction *Inst) { 2396 BasicBlock::iterator It = Inst->getIterator(); 2397 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2398 if (HasPrevInstruction) 2399 Point.PrevInst = &*--It; 2400 else 2401 Point.BB = Inst->getParent(); 2402 } 2403 2404 /// Insert \p Inst at the recorded position. 2405 void insert(Instruction *Inst) { 2406 if (HasPrevInstruction) { 2407 if (Inst->getParent()) 2408 Inst->removeFromParent(); 2409 Inst->insertAfter(Point.PrevInst); 2410 } else { 2411 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2412 if (Inst->getParent()) 2413 Inst->moveBefore(Position); 2414 else 2415 Inst->insertBefore(Position); 2416 } 2417 } 2418 }; 2419 2420 /// Move an instruction before another. 2421 class InstructionMoveBefore : public TypePromotionAction { 2422 /// Original position of the instruction. 2423 InsertionHandler Position; 2424 2425 public: 2426 /// Move \p Inst before \p Before. 2427 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2428 : TypePromotionAction(Inst), Position(Inst) { 2429 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2430 << "\n"); 2431 Inst->moveBefore(Before); 2432 } 2433 2434 /// Move the instruction back to its original position. 2435 void undo() override { 2436 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2437 Position.insert(Inst); 2438 } 2439 }; 2440 2441 /// Set the operand of an instruction with a new value. 2442 class OperandSetter : public TypePromotionAction { 2443 /// Original operand of the instruction. 2444 Value *Origin; 2445 2446 /// Index of the modified instruction. 2447 unsigned Idx; 2448 2449 public: 2450 /// Set \p Idx operand of \p Inst with \p NewVal. 2451 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2452 : TypePromotionAction(Inst), Idx(Idx) { 2453 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2454 << "for:" << *Inst << "\n" 2455 << "with:" << *NewVal << "\n"); 2456 Origin = Inst->getOperand(Idx); 2457 Inst->setOperand(Idx, NewVal); 2458 } 2459 2460 /// Restore the original value of the instruction. 2461 void undo() override { 2462 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2463 << "for: " << *Inst << "\n" 2464 << "with: " << *Origin << "\n"); 2465 Inst->setOperand(Idx, Origin); 2466 } 2467 }; 2468 2469 /// Hide the operands of an instruction. 2470 /// Do as if this instruction was not using any of its operands. 2471 class OperandsHider : public TypePromotionAction { 2472 /// The list of original operands. 2473 SmallVector<Value *, 4> OriginalValues; 2474 2475 public: 2476 /// Remove \p Inst from the uses of the operands of \p Inst. 2477 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2478 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2479 unsigned NumOpnds = Inst->getNumOperands(); 2480 OriginalValues.reserve(NumOpnds); 2481 for (unsigned It = 0; It < NumOpnds; ++It) { 2482 // Save the current operand. 2483 Value *Val = Inst->getOperand(It); 2484 OriginalValues.push_back(Val); 2485 // Set a dummy one. 2486 // We could use OperandSetter here, but that would imply an overhead 2487 // that we are not willing to pay. 2488 Inst->setOperand(It, UndefValue::get(Val->getType())); 2489 } 2490 } 2491 2492 /// Restore the original list of uses. 2493 void undo() override { 2494 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2495 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2496 Inst->setOperand(It, OriginalValues[It]); 2497 } 2498 }; 2499 2500 /// Build a truncate instruction. 2501 class TruncBuilder : public TypePromotionAction { 2502 Value *Val; 2503 2504 public: 2505 /// Build a truncate instruction of \p Opnd producing a \p Ty 2506 /// result. 2507 /// trunc Opnd to Ty. 2508 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2509 IRBuilder<> Builder(Opnd); 2510 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2511 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2512 } 2513 2514 /// Get the built value. 2515 Value *getBuiltValue() { return Val; } 2516 2517 /// Remove the built instruction. 2518 void undo() override { 2519 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2520 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2521 IVal->eraseFromParent(); 2522 } 2523 }; 2524 2525 /// Build a sign extension instruction. 2526 class SExtBuilder : public TypePromotionAction { 2527 Value *Val; 2528 2529 public: 2530 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2531 /// result. 2532 /// sext Opnd to Ty. 2533 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2534 : TypePromotionAction(InsertPt) { 2535 IRBuilder<> Builder(InsertPt); 2536 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2537 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2538 } 2539 2540 /// Get the built value. 2541 Value *getBuiltValue() { return Val; } 2542 2543 /// Remove the built instruction. 2544 void undo() override { 2545 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2546 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2547 IVal->eraseFromParent(); 2548 } 2549 }; 2550 2551 /// Build a zero extension instruction. 2552 class ZExtBuilder : public TypePromotionAction { 2553 Value *Val; 2554 2555 public: 2556 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2557 /// result. 2558 /// zext Opnd to Ty. 2559 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2560 : TypePromotionAction(InsertPt) { 2561 IRBuilder<> Builder(InsertPt); 2562 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2563 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2564 } 2565 2566 /// Get the built value. 2567 Value *getBuiltValue() { return Val; } 2568 2569 /// Remove the built instruction. 2570 void undo() override { 2571 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2572 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2573 IVal->eraseFromParent(); 2574 } 2575 }; 2576 2577 /// Mutate an instruction to another type. 2578 class TypeMutator : public TypePromotionAction { 2579 /// Record the original type. 2580 Type *OrigTy; 2581 2582 public: 2583 /// Mutate the type of \p Inst into \p NewTy. 2584 TypeMutator(Instruction *Inst, Type *NewTy) 2585 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2586 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2587 << "\n"); 2588 Inst->mutateType(NewTy); 2589 } 2590 2591 /// Mutate the instruction back to its original type. 2592 void undo() override { 2593 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2594 << "\n"); 2595 Inst->mutateType(OrigTy); 2596 } 2597 }; 2598 2599 /// Replace the uses of an instruction by another instruction. 2600 class UsesReplacer : public TypePromotionAction { 2601 /// Helper structure to keep track of the replaced uses. 2602 struct InstructionAndIdx { 2603 /// The instruction using the instruction. 2604 Instruction *Inst; 2605 2606 /// The index where this instruction is used for Inst. 2607 unsigned Idx; 2608 2609 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2610 : Inst(Inst), Idx(Idx) {} 2611 }; 2612 2613 /// Keep track of the original uses (pair Instruction, Index). 2614 SmallVector<InstructionAndIdx, 4> OriginalUses; 2615 /// Keep track of the debug users. 2616 SmallVector<DbgValueInst *, 1> DbgValues; 2617 2618 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2619 2620 public: 2621 /// Replace all the use of \p Inst by \p New. 2622 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2623 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2624 << "\n"); 2625 // Record the original uses. 2626 for (Use &U : Inst->uses()) { 2627 Instruction *UserI = cast<Instruction>(U.getUser()); 2628 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2629 } 2630 // Record the debug uses separately. They are not in the instruction's 2631 // use list, but they are replaced by RAUW. 2632 findDbgValues(DbgValues, Inst); 2633 2634 // Now, we can replace the uses. 2635 Inst->replaceAllUsesWith(New); 2636 } 2637 2638 /// Reassign the original uses of Inst to Inst. 2639 void undo() override { 2640 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2641 for (use_iterator UseIt = OriginalUses.begin(), 2642 EndIt = OriginalUses.end(); 2643 UseIt != EndIt; ++UseIt) { 2644 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2645 } 2646 // RAUW has replaced all original uses with references to the new value, 2647 // including the debug uses. Since we are undoing the replacements, 2648 // the original debug uses must also be reinstated to maintain the 2649 // correctness and utility of debug value instructions. 2650 for (auto *DVI: DbgValues) { 2651 LLVMContext &Ctx = Inst->getType()->getContext(); 2652 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2653 DVI->setOperand(0, MV); 2654 } 2655 } 2656 }; 2657 2658 /// Remove an instruction from the IR. 2659 class InstructionRemover : public TypePromotionAction { 2660 /// Original position of the instruction. 2661 InsertionHandler Inserter; 2662 2663 /// Helper structure to hide all the link to the instruction. In other 2664 /// words, this helps to do as if the instruction was removed. 2665 OperandsHider Hider; 2666 2667 /// Keep track of the uses replaced, if any. 2668 UsesReplacer *Replacer = nullptr; 2669 2670 /// Keep track of instructions removed. 2671 SetOfInstrs &RemovedInsts; 2672 2673 public: 2674 /// Remove all reference of \p Inst and optionally replace all its 2675 /// uses with New. 2676 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2677 /// \pre If !Inst->use_empty(), then New != nullptr 2678 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2679 Value *New = nullptr) 2680 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2681 RemovedInsts(RemovedInsts) { 2682 if (New) 2683 Replacer = new UsesReplacer(Inst, New); 2684 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2685 RemovedInsts.insert(Inst); 2686 /// The instructions removed here will be freed after completing 2687 /// optimizeBlock() for all blocks as we need to keep track of the 2688 /// removed instructions during promotion. 2689 Inst->removeFromParent(); 2690 } 2691 2692 ~InstructionRemover() override { delete Replacer; } 2693 2694 /// Resurrect the instruction and reassign it to the proper uses if 2695 /// new value was provided when build this action. 2696 void undo() override { 2697 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2698 Inserter.insert(Inst); 2699 if (Replacer) 2700 Replacer->undo(); 2701 Hider.undo(); 2702 RemovedInsts.erase(Inst); 2703 } 2704 }; 2705 2706 public: 2707 /// Restoration point. 2708 /// The restoration point is a pointer to an action instead of an iterator 2709 /// because the iterator may be invalidated but not the pointer. 2710 using ConstRestorationPt = const TypePromotionAction *; 2711 2712 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2713 : RemovedInsts(RemovedInsts) {} 2714 2715 /// Advocate every changes made in that transaction. 2716 void commit(); 2717 2718 /// Undo all the changes made after the given point. 2719 void rollback(ConstRestorationPt Point); 2720 2721 /// Get the current restoration point. 2722 ConstRestorationPt getRestorationPoint() const; 2723 2724 /// \name API for IR modification with state keeping to support rollback. 2725 /// @{ 2726 /// Same as Instruction::setOperand. 2727 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2728 2729 /// Same as Instruction::eraseFromParent. 2730 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2731 2732 /// Same as Value::replaceAllUsesWith. 2733 void replaceAllUsesWith(Instruction *Inst, Value *New); 2734 2735 /// Same as Value::mutateType. 2736 void mutateType(Instruction *Inst, Type *NewTy); 2737 2738 /// Same as IRBuilder::createTrunc. 2739 Value *createTrunc(Instruction *Opnd, Type *Ty); 2740 2741 /// Same as IRBuilder::createSExt. 2742 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2743 2744 /// Same as IRBuilder::createZExt. 2745 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2746 2747 /// Same as Instruction::moveBefore. 2748 void moveBefore(Instruction *Inst, Instruction *Before); 2749 /// @} 2750 2751 private: 2752 /// The ordered list of actions made so far. 2753 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2754 2755 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2756 2757 SetOfInstrs &RemovedInsts; 2758 }; 2759 2760 } // end anonymous namespace 2761 2762 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2763 Value *NewVal) { 2764 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2765 Inst, Idx, NewVal)); 2766 } 2767 2768 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2769 Value *NewVal) { 2770 Actions.push_back( 2771 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2772 Inst, RemovedInsts, NewVal)); 2773 } 2774 2775 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2776 Value *New) { 2777 Actions.push_back( 2778 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2779 } 2780 2781 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2782 Actions.push_back( 2783 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2784 } 2785 2786 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2787 Type *Ty) { 2788 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2789 Value *Val = Ptr->getBuiltValue(); 2790 Actions.push_back(std::move(Ptr)); 2791 return Val; 2792 } 2793 2794 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2795 Value *Opnd, Type *Ty) { 2796 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2797 Value *Val = Ptr->getBuiltValue(); 2798 Actions.push_back(std::move(Ptr)); 2799 return Val; 2800 } 2801 2802 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2803 Value *Opnd, Type *Ty) { 2804 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2805 Value *Val = Ptr->getBuiltValue(); 2806 Actions.push_back(std::move(Ptr)); 2807 return Val; 2808 } 2809 2810 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2811 Instruction *Before) { 2812 Actions.push_back( 2813 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2814 Inst, Before)); 2815 } 2816 2817 TypePromotionTransaction::ConstRestorationPt 2818 TypePromotionTransaction::getRestorationPoint() const { 2819 return !Actions.empty() ? Actions.back().get() : nullptr; 2820 } 2821 2822 void TypePromotionTransaction::commit() { 2823 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2824 ++It) 2825 (*It)->commit(); 2826 Actions.clear(); 2827 } 2828 2829 void TypePromotionTransaction::rollback( 2830 TypePromotionTransaction::ConstRestorationPt Point) { 2831 while (!Actions.empty() && Point != Actions.back().get()) { 2832 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2833 Curr->undo(); 2834 } 2835 } 2836 2837 namespace { 2838 2839 /// A helper class for matching addressing modes. 2840 /// 2841 /// This encapsulates the logic for matching the target-legal addressing modes. 2842 class AddressingModeMatcher { 2843 SmallVectorImpl<Instruction*> &AddrModeInsts; 2844 const TargetLowering &TLI; 2845 const TargetRegisterInfo &TRI; 2846 const DataLayout &DL; 2847 2848 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2849 /// the memory instruction that we're computing this address for. 2850 Type *AccessTy; 2851 unsigned AddrSpace; 2852 Instruction *MemoryInst; 2853 2854 /// This is the addressing mode that we're building up. This is 2855 /// part of the return value of this addressing mode matching stuff. 2856 ExtAddrMode &AddrMode; 2857 2858 /// The instructions inserted by other CodeGenPrepare optimizations. 2859 const SetOfInstrs &InsertedInsts; 2860 2861 /// A map from the instructions to their type before promotion. 2862 InstrToOrigTy &PromotedInsts; 2863 2864 /// The ongoing transaction where every action should be registered. 2865 TypePromotionTransaction &TPT; 2866 2867 // A GEP which has too large offset to be folded into the addressing mode. 2868 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2869 2870 /// This is set to true when we should not do profitability checks. 2871 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2872 bool IgnoreProfitability; 2873 2874 AddressingModeMatcher( 2875 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2876 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2877 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2878 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2879 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2880 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2881 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2882 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2883 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2884 IgnoreProfitability = false; 2885 } 2886 2887 public: 2888 /// Find the maximal addressing mode that a load/store of V can fold, 2889 /// give an access type of AccessTy. This returns a list of involved 2890 /// instructions in AddrModeInsts. 2891 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2892 /// optimizations. 2893 /// \p PromotedInsts maps the instructions to their type before promotion. 2894 /// \p The ongoing transaction where every action should be registered. 2895 static ExtAddrMode 2896 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2897 SmallVectorImpl<Instruction *> &AddrModeInsts, 2898 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2899 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2900 TypePromotionTransaction &TPT, 2901 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2902 ExtAddrMode Result; 2903 2904 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2905 MemoryInst, Result, InsertedInsts, 2906 PromotedInsts, TPT, LargeOffsetGEP) 2907 .matchAddr(V, 0); 2908 (void)Success; assert(Success && "Couldn't select *anything*?"); 2909 return Result; 2910 } 2911 2912 private: 2913 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2914 bool matchAddr(Value *Addr, unsigned Depth); 2915 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2916 bool *MovedAway = nullptr); 2917 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2918 ExtAddrMode &AMBefore, 2919 ExtAddrMode &AMAfter); 2920 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2921 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2922 Value *PromotedOperand) const; 2923 }; 2924 2925 class PhiNodeSet; 2926 2927 /// An iterator for PhiNodeSet. 2928 class PhiNodeSetIterator { 2929 PhiNodeSet * const Set; 2930 size_t CurrentIndex = 0; 2931 2932 public: 2933 /// The constructor. Start should point to either a valid element, or be equal 2934 /// to the size of the underlying SmallVector of the PhiNodeSet. 2935 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2936 PHINode * operator*() const; 2937 PhiNodeSetIterator& operator++(); 2938 bool operator==(const PhiNodeSetIterator &RHS) const; 2939 bool operator!=(const PhiNodeSetIterator &RHS) const; 2940 }; 2941 2942 /// Keeps a set of PHINodes. 2943 /// 2944 /// This is a minimal set implementation for a specific use case: 2945 /// It is very fast when there are very few elements, but also provides good 2946 /// performance when there are many. It is similar to SmallPtrSet, but also 2947 /// provides iteration by insertion order, which is deterministic and stable 2948 /// across runs. It is also similar to SmallSetVector, but provides removing 2949 /// elements in O(1) time. This is achieved by not actually removing the element 2950 /// from the underlying vector, so comes at the cost of using more memory, but 2951 /// that is fine, since PhiNodeSets are used as short lived objects. 2952 class PhiNodeSet { 2953 friend class PhiNodeSetIterator; 2954 2955 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2956 using iterator = PhiNodeSetIterator; 2957 2958 /// Keeps the elements in the order of their insertion in the underlying 2959 /// vector. To achieve constant time removal, it never deletes any element. 2960 SmallVector<PHINode *, 32> NodeList; 2961 2962 /// Keeps the elements in the underlying set implementation. This (and not the 2963 /// NodeList defined above) is the source of truth on whether an element 2964 /// is actually in the collection. 2965 MapType NodeMap; 2966 2967 /// Points to the first valid (not deleted) element when the set is not empty 2968 /// and the value is not zero. Equals to the size of the underlying vector 2969 /// when the set is empty. When the value is 0, as in the beginning, the 2970 /// first element may or may not be valid. 2971 size_t FirstValidElement = 0; 2972 2973 public: 2974 /// Inserts a new element to the collection. 2975 /// \returns true if the element is actually added, i.e. was not in the 2976 /// collection before the operation. 2977 bool insert(PHINode *Ptr) { 2978 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2979 NodeList.push_back(Ptr); 2980 return true; 2981 } 2982 return false; 2983 } 2984 2985 /// Removes the element from the collection. 2986 /// \returns whether the element is actually removed, i.e. was in the 2987 /// collection before the operation. 2988 bool erase(PHINode *Ptr) { 2989 auto it = NodeMap.find(Ptr); 2990 if (it != NodeMap.end()) { 2991 NodeMap.erase(Ptr); 2992 SkipRemovedElements(FirstValidElement); 2993 return true; 2994 } 2995 return false; 2996 } 2997 2998 /// Removes all elements and clears the collection. 2999 void clear() { 3000 NodeMap.clear(); 3001 NodeList.clear(); 3002 FirstValidElement = 0; 3003 } 3004 3005 /// \returns an iterator that will iterate the elements in the order of 3006 /// insertion. 3007 iterator begin() { 3008 if (FirstValidElement == 0) 3009 SkipRemovedElements(FirstValidElement); 3010 return PhiNodeSetIterator(this, FirstValidElement); 3011 } 3012 3013 /// \returns an iterator that points to the end of the collection. 3014 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3015 3016 /// Returns the number of elements in the collection. 3017 size_t size() const { 3018 return NodeMap.size(); 3019 } 3020 3021 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3022 size_t count(PHINode *Ptr) const { 3023 return NodeMap.count(Ptr); 3024 } 3025 3026 private: 3027 /// Updates the CurrentIndex so that it will point to a valid element. 3028 /// 3029 /// If the element of NodeList at CurrentIndex is valid, it does not 3030 /// change it. If there are no more valid elements, it updates CurrentIndex 3031 /// to point to the end of the NodeList. 3032 void SkipRemovedElements(size_t &CurrentIndex) { 3033 while (CurrentIndex < NodeList.size()) { 3034 auto it = NodeMap.find(NodeList[CurrentIndex]); 3035 // If the element has been deleted and added again later, NodeMap will 3036 // point to a different index, so CurrentIndex will still be invalid. 3037 if (it != NodeMap.end() && it->second == CurrentIndex) 3038 break; 3039 ++CurrentIndex; 3040 } 3041 } 3042 }; 3043 3044 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3045 : Set(Set), CurrentIndex(Start) {} 3046 3047 PHINode * PhiNodeSetIterator::operator*() const { 3048 assert(CurrentIndex < Set->NodeList.size() && 3049 "PhiNodeSet access out of range"); 3050 return Set->NodeList[CurrentIndex]; 3051 } 3052 3053 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3054 assert(CurrentIndex < Set->NodeList.size() && 3055 "PhiNodeSet access out of range"); 3056 ++CurrentIndex; 3057 Set->SkipRemovedElements(CurrentIndex); 3058 return *this; 3059 } 3060 3061 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3062 return CurrentIndex == RHS.CurrentIndex; 3063 } 3064 3065 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3066 return !((*this) == RHS); 3067 } 3068 3069 /// Keep track of simplification of Phi nodes. 3070 /// Accept the set of all phi nodes and erase phi node from this set 3071 /// if it is simplified. 3072 class SimplificationTracker { 3073 DenseMap<Value *, Value *> Storage; 3074 const SimplifyQuery &SQ; 3075 // Tracks newly created Phi nodes. The elements are iterated by insertion 3076 // order. 3077 PhiNodeSet AllPhiNodes; 3078 // Tracks newly created Select nodes. 3079 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3080 3081 public: 3082 SimplificationTracker(const SimplifyQuery &sq) 3083 : SQ(sq) {} 3084 3085 Value *Get(Value *V) { 3086 do { 3087 auto SV = Storage.find(V); 3088 if (SV == Storage.end()) 3089 return V; 3090 V = SV->second; 3091 } while (true); 3092 } 3093 3094 Value *Simplify(Value *Val) { 3095 SmallVector<Value *, 32> WorkList; 3096 SmallPtrSet<Value *, 32> Visited; 3097 WorkList.push_back(Val); 3098 while (!WorkList.empty()) { 3099 auto P = WorkList.pop_back_val(); 3100 if (!Visited.insert(P).second) 3101 continue; 3102 if (auto *PI = dyn_cast<Instruction>(P)) 3103 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3104 for (auto *U : PI->users()) 3105 WorkList.push_back(cast<Value>(U)); 3106 Put(PI, V); 3107 PI->replaceAllUsesWith(V); 3108 if (auto *PHI = dyn_cast<PHINode>(PI)) 3109 AllPhiNodes.erase(PHI); 3110 if (auto *Select = dyn_cast<SelectInst>(PI)) 3111 AllSelectNodes.erase(Select); 3112 PI->eraseFromParent(); 3113 } 3114 } 3115 return Get(Val); 3116 } 3117 3118 void Put(Value *From, Value *To) { 3119 Storage.insert({ From, To }); 3120 } 3121 3122 void ReplacePhi(PHINode *From, PHINode *To) { 3123 Value* OldReplacement = Get(From); 3124 while (OldReplacement != From) { 3125 From = To; 3126 To = dyn_cast<PHINode>(OldReplacement); 3127 OldReplacement = Get(From); 3128 } 3129 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3130 Put(From, To); 3131 From->replaceAllUsesWith(To); 3132 AllPhiNodes.erase(From); 3133 From->eraseFromParent(); 3134 } 3135 3136 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3137 3138 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3139 3140 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3141 3142 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3143 3144 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3145 3146 void destroyNewNodes(Type *CommonType) { 3147 // For safe erasing, replace the uses with dummy value first. 3148 auto Dummy = UndefValue::get(CommonType); 3149 for (auto I : AllPhiNodes) { 3150 I->replaceAllUsesWith(Dummy); 3151 I->eraseFromParent(); 3152 } 3153 AllPhiNodes.clear(); 3154 for (auto I : AllSelectNodes) { 3155 I->replaceAllUsesWith(Dummy); 3156 I->eraseFromParent(); 3157 } 3158 AllSelectNodes.clear(); 3159 } 3160 }; 3161 3162 /// A helper class for combining addressing modes. 3163 class AddressingModeCombiner { 3164 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3165 typedef std::pair<PHINode *, PHINode *> PHIPair; 3166 3167 private: 3168 /// The addressing modes we've collected. 3169 SmallVector<ExtAddrMode, 16> AddrModes; 3170 3171 /// The field in which the AddrModes differ, when we have more than one. 3172 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3173 3174 /// Are the AddrModes that we have all just equal to their original values? 3175 bool AllAddrModesTrivial = true; 3176 3177 /// Common Type for all different fields in addressing modes. 3178 Type *CommonType; 3179 3180 /// SimplifyQuery for simplifyInstruction utility. 3181 const SimplifyQuery &SQ; 3182 3183 /// Original Address. 3184 Value *Original; 3185 3186 public: 3187 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3188 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3189 3190 /// Get the combined AddrMode 3191 const ExtAddrMode &getAddrMode() const { 3192 return AddrModes[0]; 3193 } 3194 3195 /// Add a new AddrMode if it's compatible with the AddrModes we already 3196 /// have. 3197 /// \return True iff we succeeded in doing so. 3198 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3199 // Take note of if we have any non-trivial AddrModes, as we need to detect 3200 // when all AddrModes are trivial as then we would introduce a phi or select 3201 // which just duplicates what's already there. 3202 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3203 3204 // If this is the first addrmode then everything is fine. 3205 if (AddrModes.empty()) { 3206 AddrModes.emplace_back(NewAddrMode); 3207 return true; 3208 } 3209 3210 // Figure out how different this is from the other address modes, which we 3211 // can do just by comparing against the first one given that we only care 3212 // about the cumulative difference. 3213 ExtAddrMode::FieldName ThisDifferentField = 3214 AddrModes[0].compare(NewAddrMode); 3215 if (DifferentField == ExtAddrMode::NoField) 3216 DifferentField = ThisDifferentField; 3217 else if (DifferentField != ThisDifferentField) 3218 DifferentField = ExtAddrMode::MultipleFields; 3219 3220 // If NewAddrMode differs in more than one dimension we cannot handle it. 3221 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3222 3223 // If Scale Field is different then we reject. 3224 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3225 3226 // We also must reject the case when base offset is different and 3227 // scale reg is not null, we cannot handle this case due to merge of 3228 // different offsets will be used as ScaleReg. 3229 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3230 !NewAddrMode.ScaledReg); 3231 3232 // We also must reject the case when GV is different and BaseReg installed 3233 // due to we want to use base reg as a merge of GV values. 3234 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3235 !NewAddrMode.HasBaseReg); 3236 3237 // Even if NewAddMode is the same we still need to collect it due to 3238 // original value is different. And later we will need all original values 3239 // as anchors during finding the common Phi node. 3240 if (CanHandle) 3241 AddrModes.emplace_back(NewAddrMode); 3242 else 3243 AddrModes.clear(); 3244 3245 return CanHandle; 3246 } 3247 3248 /// Combine the addressing modes we've collected into a single 3249 /// addressing mode. 3250 /// \return True iff we successfully combined them or we only had one so 3251 /// didn't need to combine them anyway. 3252 bool combineAddrModes() { 3253 // If we have no AddrModes then they can't be combined. 3254 if (AddrModes.size() == 0) 3255 return false; 3256 3257 // A single AddrMode can trivially be combined. 3258 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3259 return true; 3260 3261 // If the AddrModes we collected are all just equal to the value they are 3262 // derived from then combining them wouldn't do anything useful. 3263 if (AllAddrModesTrivial) 3264 return false; 3265 3266 if (!addrModeCombiningAllowed()) 3267 return false; 3268 3269 // Build a map between <original value, basic block where we saw it> to 3270 // value of base register. 3271 // Bail out if there is no common type. 3272 FoldAddrToValueMapping Map; 3273 if (!initializeMap(Map)) 3274 return false; 3275 3276 Value *CommonValue = findCommon(Map); 3277 if (CommonValue) 3278 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3279 return CommonValue != nullptr; 3280 } 3281 3282 private: 3283 /// Initialize Map with anchor values. For address seen 3284 /// we set the value of different field saw in this address. 3285 /// At the same time we find a common type for different field we will 3286 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3287 /// Return false if there is no common type found. 3288 bool initializeMap(FoldAddrToValueMapping &Map) { 3289 // Keep track of keys where the value is null. We will need to replace it 3290 // with constant null when we know the common type. 3291 SmallVector<Value *, 2> NullValue; 3292 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3293 for (auto &AM : AddrModes) { 3294 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3295 if (DV) { 3296 auto *Type = DV->getType(); 3297 if (CommonType && CommonType != Type) 3298 return false; 3299 CommonType = Type; 3300 Map[AM.OriginalValue] = DV; 3301 } else { 3302 NullValue.push_back(AM.OriginalValue); 3303 } 3304 } 3305 assert(CommonType && "At least one non-null value must be!"); 3306 for (auto *V : NullValue) 3307 Map[V] = Constant::getNullValue(CommonType); 3308 return true; 3309 } 3310 3311 /// We have mapping between value A and other value B where B was a field in 3312 /// addressing mode represented by A. Also we have an original value C 3313 /// representing an address we start with. Traversing from C through phi and 3314 /// selects we ended up with A's in a map. This utility function tries to find 3315 /// a value V which is a field in addressing mode C and traversing through phi 3316 /// nodes and selects we will end up in corresponded values B in a map. 3317 /// The utility will create a new Phi/Selects if needed. 3318 // The simple example looks as follows: 3319 // BB1: 3320 // p1 = b1 + 40 3321 // br cond BB2, BB3 3322 // BB2: 3323 // p2 = b2 + 40 3324 // br BB3 3325 // BB3: 3326 // p = phi [p1, BB1], [p2, BB2] 3327 // v = load p 3328 // Map is 3329 // p1 -> b1 3330 // p2 -> b2 3331 // Request is 3332 // p -> ? 3333 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3334 Value *findCommon(FoldAddrToValueMapping &Map) { 3335 // Tracks the simplification of newly created phi nodes. The reason we use 3336 // this mapping is because we will add new created Phi nodes in AddrToBase. 3337 // Simplification of Phi nodes is recursive, so some Phi node may 3338 // be simplified after we added it to AddrToBase. In reality this 3339 // simplification is possible only if original phi/selects were not 3340 // simplified yet. 3341 // Using this mapping we can find the current value in AddrToBase. 3342 SimplificationTracker ST(SQ); 3343 3344 // First step, DFS to create PHI nodes for all intermediate blocks. 3345 // Also fill traverse order for the second step. 3346 SmallVector<Value *, 32> TraverseOrder; 3347 InsertPlaceholders(Map, TraverseOrder, ST); 3348 3349 // Second Step, fill new nodes by merged values and simplify if possible. 3350 FillPlaceholders(Map, TraverseOrder, ST); 3351 3352 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3353 ST.destroyNewNodes(CommonType); 3354 return nullptr; 3355 } 3356 3357 // Now we'd like to match New Phi nodes to existed ones. 3358 unsigned PhiNotMatchedCount = 0; 3359 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3360 ST.destroyNewNodes(CommonType); 3361 return nullptr; 3362 } 3363 3364 auto *Result = ST.Get(Map.find(Original)->second); 3365 if (Result) { 3366 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3367 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3368 } 3369 return Result; 3370 } 3371 3372 /// Try to match PHI node to Candidate. 3373 /// Matcher tracks the matched Phi nodes. 3374 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3375 SmallSetVector<PHIPair, 8> &Matcher, 3376 PhiNodeSet &PhiNodesToMatch) { 3377 SmallVector<PHIPair, 8> WorkList; 3378 Matcher.insert({ PHI, Candidate }); 3379 SmallSet<PHINode *, 8> MatchedPHIs; 3380 MatchedPHIs.insert(PHI); 3381 WorkList.push_back({ PHI, Candidate }); 3382 SmallSet<PHIPair, 8> Visited; 3383 while (!WorkList.empty()) { 3384 auto Item = WorkList.pop_back_val(); 3385 if (!Visited.insert(Item).second) 3386 continue; 3387 // We iterate over all incoming values to Phi to compare them. 3388 // If values are different and both of them Phi and the first one is a 3389 // Phi we added (subject to match) and both of them is in the same basic 3390 // block then we can match our pair if values match. So we state that 3391 // these values match and add it to work list to verify that. 3392 for (auto B : Item.first->blocks()) { 3393 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3394 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3395 if (FirstValue == SecondValue) 3396 continue; 3397 3398 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3399 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3400 3401 // One of them is not Phi or 3402 // The first one is not Phi node from the set we'd like to match or 3403 // Phi nodes from different basic blocks then 3404 // we will not be able to match. 3405 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3406 FirstPhi->getParent() != SecondPhi->getParent()) 3407 return false; 3408 3409 // If we already matched them then continue. 3410 if (Matcher.count({ FirstPhi, SecondPhi })) 3411 continue; 3412 // So the values are different and does not match. So we need them to 3413 // match. (But we register no more than one match per PHI node, so that 3414 // we won't later try to replace them twice.) 3415 if (MatchedPHIs.insert(FirstPhi).second) 3416 Matcher.insert({ FirstPhi, SecondPhi }); 3417 // But me must check it. 3418 WorkList.push_back({ FirstPhi, SecondPhi }); 3419 } 3420 } 3421 return true; 3422 } 3423 3424 /// For the given set of PHI nodes (in the SimplificationTracker) try 3425 /// to find their equivalents. 3426 /// Returns false if this matching fails and creation of new Phi is disabled. 3427 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3428 unsigned &PhiNotMatchedCount) { 3429 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3430 // order, so the replacements (ReplacePhi) are also done in a deterministic 3431 // order. 3432 SmallSetVector<PHIPair, 8> Matched; 3433 SmallPtrSet<PHINode *, 8> WillNotMatch; 3434 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3435 while (PhiNodesToMatch.size()) { 3436 PHINode *PHI = *PhiNodesToMatch.begin(); 3437 3438 // Add us, if no Phi nodes in the basic block we do not match. 3439 WillNotMatch.clear(); 3440 WillNotMatch.insert(PHI); 3441 3442 // Traverse all Phis until we found equivalent or fail to do that. 3443 bool IsMatched = false; 3444 for (auto &P : PHI->getParent()->phis()) { 3445 if (&P == PHI) 3446 continue; 3447 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3448 break; 3449 // If it does not match, collect all Phi nodes from matcher. 3450 // if we end up with no match, them all these Phi nodes will not match 3451 // later. 3452 for (auto M : Matched) 3453 WillNotMatch.insert(M.first); 3454 Matched.clear(); 3455 } 3456 if (IsMatched) { 3457 // Replace all matched values and erase them. 3458 for (auto MV : Matched) 3459 ST.ReplacePhi(MV.first, MV.second); 3460 Matched.clear(); 3461 continue; 3462 } 3463 // If we are not allowed to create new nodes then bail out. 3464 if (!AllowNewPhiNodes) 3465 return false; 3466 // Just remove all seen values in matcher. They will not match anything. 3467 PhiNotMatchedCount += WillNotMatch.size(); 3468 for (auto *P : WillNotMatch) 3469 PhiNodesToMatch.erase(P); 3470 } 3471 return true; 3472 } 3473 /// Fill the placeholders with values from predecessors and simplify them. 3474 void FillPlaceholders(FoldAddrToValueMapping &Map, 3475 SmallVectorImpl<Value *> &TraverseOrder, 3476 SimplificationTracker &ST) { 3477 while (!TraverseOrder.empty()) { 3478 Value *Current = TraverseOrder.pop_back_val(); 3479 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3480 Value *V = Map[Current]; 3481 3482 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3483 // CurrentValue also must be Select. 3484 auto *CurrentSelect = cast<SelectInst>(Current); 3485 auto *TrueValue = CurrentSelect->getTrueValue(); 3486 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3487 Select->setTrueValue(ST.Get(Map[TrueValue])); 3488 auto *FalseValue = CurrentSelect->getFalseValue(); 3489 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3490 Select->setFalseValue(ST.Get(Map[FalseValue])); 3491 } else { 3492 // Must be a Phi node then. 3493 auto *PHI = cast<PHINode>(V); 3494 // Fill the Phi node with values from predecessors. 3495 for (auto B : predecessors(PHI->getParent())) { 3496 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3497 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3498 PHI->addIncoming(ST.Get(Map[PV]), B); 3499 } 3500 } 3501 Map[Current] = ST.Simplify(V); 3502 } 3503 } 3504 3505 /// Starting from original value recursively iterates over def-use chain up to 3506 /// known ending values represented in a map. For each traversed phi/select 3507 /// inserts a placeholder Phi or Select. 3508 /// Reports all new created Phi/Select nodes by adding them to set. 3509 /// Also reports and order in what values have been traversed. 3510 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3511 SmallVectorImpl<Value *> &TraverseOrder, 3512 SimplificationTracker &ST) { 3513 SmallVector<Value *, 32> Worklist; 3514 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3515 "Address must be a Phi or Select node"); 3516 auto *Dummy = UndefValue::get(CommonType); 3517 Worklist.push_back(Original); 3518 while (!Worklist.empty()) { 3519 Value *Current = Worklist.pop_back_val(); 3520 // if it is already visited or it is an ending value then skip it. 3521 if (Map.find(Current) != Map.end()) 3522 continue; 3523 TraverseOrder.push_back(Current); 3524 3525 // CurrentValue must be a Phi node or select. All others must be covered 3526 // by anchors. 3527 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3528 // Is it OK to get metadata from OrigSelect?! 3529 // Create a Select placeholder with dummy value. 3530 SelectInst *Select = SelectInst::Create( 3531 CurrentSelect->getCondition(), Dummy, Dummy, 3532 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3533 Map[Current] = Select; 3534 ST.insertNewSelect(Select); 3535 // We are interested in True and False values. 3536 Worklist.push_back(CurrentSelect->getTrueValue()); 3537 Worklist.push_back(CurrentSelect->getFalseValue()); 3538 } else { 3539 // It must be a Phi node then. 3540 PHINode *CurrentPhi = cast<PHINode>(Current); 3541 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3542 PHINode *PHI = 3543 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3544 Map[Current] = PHI; 3545 ST.insertNewPhi(PHI); 3546 for (Value *P : CurrentPhi->incoming_values()) 3547 Worklist.push_back(P); 3548 } 3549 } 3550 } 3551 3552 bool addrModeCombiningAllowed() { 3553 if (DisableComplexAddrModes) 3554 return false; 3555 switch (DifferentField) { 3556 default: 3557 return false; 3558 case ExtAddrMode::BaseRegField: 3559 return AddrSinkCombineBaseReg; 3560 case ExtAddrMode::BaseGVField: 3561 return AddrSinkCombineBaseGV; 3562 case ExtAddrMode::BaseOffsField: 3563 return AddrSinkCombineBaseOffs; 3564 case ExtAddrMode::ScaledRegField: 3565 return AddrSinkCombineScaledReg; 3566 } 3567 } 3568 }; 3569 } // end anonymous namespace 3570 3571 /// Try adding ScaleReg*Scale to the current addressing mode. 3572 /// Return true and update AddrMode if this addr mode is legal for the target, 3573 /// false if not. 3574 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3575 unsigned Depth) { 3576 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3577 // mode. Just process that directly. 3578 if (Scale == 1) 3579 return matchAddr(ScaleReg, Depth); 3580 3581 // If the scale is 0, it takes nothing to add this. 3582 if (Scale == 0) 3583 return true; 3584 3585 // If we already have a scale of this value, we can add to it, otherwise, we 3586 // need an available scale field. 3587 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3588 return false; 3589 3590 ExtAddrMode TestAddrMode = AddrMode; 3591 3592 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3593 // [A+B + A*7] -> [B+A*8]. 3594 TestAddrMode.Scale += Scale; 3595 TestAddrMode.ScaledReg = ScaleReg; 3596 3597 // If the new address isn't legal, bail out. 3598 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3599 return false; 3600 3601 // It was legal, so commit it. 3602 AddrMode = TestAddrMode; 3603 3604 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3605 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3606 // X*Scale + C*Scale to addr mode. 3607 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3608 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3609 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3610 TestAddrMode.InBounds = false; 3611 TestAddrMode.ScaledReg = AddLHS; 3612 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3613 3614 // If this addressing mode is legal, commit it and remember that we folded 3615 // this instruction. 3616 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3617 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3618 AddrMode = TestAddrMode; 3619 return true; 3620 } 3621 } 3622 3623 // Otherwise, not (x+c)*scale, just return what we have. 3624 return true; 3625 } 3626 3627 /// This is a little filter, which returns true if an addressing computation 3628 /// involving I might be folded into a load/store accessing it. 3629 /// This doesn't need to be perfect, but needs to accept at least 3630 /// the set of instructions that MatchOperationAddr can. 3631 static bool MightBeFoldableInst(Instruction *I) { 3632 switch (I->getOpcode()) { 3633 case Instruction::BitCast: 3634 case Instruction::AddrSpaceCast: 3635 // Don't touch identity bitcasts. 3636 if (I->getType() == I->getOperand(0)->getType()) 3637 return false; 3638 return I->getType()->isIntOrPtrTy(); 3639 case Instruction::PtrToInt: 3640 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3641 return true; 3642 case Instruction::IntToPtr: 3643 // We know the input is intptr_t, so this is foldable. 3644 return true; 3645 case Instruction::Add: 3646 return true; 3647 case Instruction::Mul: 3648 case Instruction::Shl: 3649 // Can only handle X*C and X << C. 3650 return isa<ConstantInt>(I->getOperand(1)); 3651 case Instruction::GetElementPtr: 3652 return true; 3653 default: 3654 return false; 3655 } 3656 } 3657 3658 /// Check whether or not \p Val is a legal instruction for \p TLI. 3659 /// \note \p Val is assumed to be the product of some type promotion. 3660 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3661 /// to be legal, as the non-promoted value would have had the same state. 3662 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3663 const DataLayout &DL, Value *Val) { 3664 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3665 if (!PromotedInst) 3666 return false; 3667 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3668 // If the ISDOpcode is undefined, it was undefined before the promotion. 3669 if (!ISDOpcode) 3670 return true; 3671 // Otherwise, check if the promoted instruction is legal or not. 3672 return TLI.isOperationLegalOrCustom( 3673 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3674 } 3675 3676 namespace { 3677 3678 /// Hepler class to perform type promotion. 3679 class TypePromotionHelper { 3680 /// Utility function to add a promoted instruction \p ExtOpnd to 3681 /// \p PromotedInsts and record the type of extension we have seen. 3682 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3683 Instruction *ExtOpnd, 3684 bool IsSExt) { 3685 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3686 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3687 if (It != PromotedInsts.end()) { 3688 // If the new extension is same as original, the information in 3689 // PromotedInsts[ExtOpnd] is still correct. 3690 if (It->second.getInt() == ExtTy) 3691 return; 3692 3693 // Now the new extension is different from old extension, we make 3694 // the type information invalid by setting extension type to 3695 // BothExtension. 3696 ExtTy = BothExtension; 3697 } 3698 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3699 } 3700 3701 /// Utility function to query the original type of instruction \p Opnd 3702 /// with a matched extension type. If the extension doesn't match, we 3703 /// cannot use the information we had on the original type. 3704 /// BothExtension doesn't match any extension type. 3705 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3706 Instruction *Opnd, 3707 bool IsSExt) { 3708 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3709 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3710 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3711 return It->second.getPointer(); 3712 return nullptr; 3713 } 3714 3715 /// Utility function to check whether or not a sign or zero extension 3716 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3717 /// either using the operands of \p Inst or promoting \p Inst. 3718 /// The type of the extension is defined by \p IsSExt. 3719 /// In other words, check if: 3720 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3721 /// #1 Promotion applies: 3722 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3723 /// #2 Operand reuses: 3724 /// ext opnd1 to ConsideredExtType. 3725 /// \p PromotedInsts maps the instructions to their type before promotion. 3726 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3727 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3728 3729 /// Utility function to determine if \p OpIdx should be promoted when 3730 /// promoting \p Inst. 3731 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3732 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3733 } 3734 3735 /// Utility function to promote the operand of \p Ext when this 3736 /// operand is a promotable trunc or sext or zext. 3737 /// \p PromotedInsts maps the instructions to their type before promotion. 3738 /// \p CreatedInstsCost[out] contains the cost of all instructions 3739 /// created to promote the operand of Ext. 3740 /// Newly added extensions are inserted in \p Exts. 3741 /// Newly added truncates are inserted in \p Truncs. 3742 /// Should never be called directly. 3743 /// \return The promoted value which is used instead of Ext. 3744 static Value *promoteOperandForTruncAndAnyExt( 3745 Instruction *Ext, TypePromotionTransaction &TPT, 3746 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3747 SmallVectorImpl<Instruction *> *Exts, 3748 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3749 3750 /// Utility function to promote the operand of \p Ext when this 3751 /// operand is promotable and is not a supported trunc or sext. 3752 /// \p PromotedInsts maps the instructions to their type before promotion. 3753 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3754 /// created to promote the operand of Ext. 3755 /// Newly added extensions are inserted in \p Exts. 3756 /// Newly added truncates are inserted in \p Truncs. 3757 /// Should never be called directly. 3758 /// \return The promoted value which is used instead of Ext. 3759 static Value *promoteOperandForOther(Instruction *Ext, 3760 TypePromotionTransaction &TPT, 3761 InstrToOrigTy &PromotedInsts, 3762 unsigned &CreatedInstsCost, 3763 SmallVectorImpl<Instruction *> *Exts, 3764 SmallVectorImpl<Instruction *> *Truncs, 3765 const TargetLowering &TLI, bool IsSExt); 3766 3767 /// \see promoteOperandForOther. 3768 static Value *signExtendOperandForOther( 3769 Instruction *Ext, TypePromotionTransaction &TPT, 3770 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3771 SmallVectorImpl<Instruction *> *Exts, 3772 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3773 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3774 Exts, Truncs, TLI, true); 3775 } 3776 3777 /// \see promoteOperandForOther. 3778 static Value *zeroExtendOperandForOther( 3779 Instruction *Ext, TypePromotionTransaction &TPT, 3780 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3781 SmallVectorImpl<Instruction *> *Exts, 3782 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3783 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3784 Exts, Truncs, TLI, false); 3785 } 3786 3787 public: 3788 /// Type for the utility function that promotes the operand of Ext. 3789 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3790 InstrToOrigTy &PromotedInsts, 3791 unsigned &CreatedInstsCost, 3792 SmallVectorImpl<Instruction *> *Exts, 3793 SmallVectorImpl<Instruction *> *Truncs, 3794 const TargetLowering &TLI); 3795 3796 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3797 /// action to promote the operand of \p Ext instead of using Ext. 3798 /// \return NULL if no promotable action is possible with the current 3799 /// sign extension. 3800 /// \p InsertedInsts keeps track of all the instructions inserted by the 3801 /// other CodeGenPrepare optimizations. This information is important 3802 /// because we do not want to promote these instructions as CodeGenPrepare 3803 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3804 /// \p PromotedInsts maps the instructions to their type before promotion. 3805 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3806 const TargetLowering &TLI, 3807 const InstrToOrigTy &PromotedInsts); 3808 }; 3809 3810 } // end anonymous namespace 3811 3812 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3813 Type *ConsideredExtType, 3814 const InstrToOrigTy &PromotedInsts, 3815 bool IsSExt) { 3816 // The promotion helper does not know how to deal with vector types yet. 3817 // To be able to fix that, we would need to fix the places where we 3818 // statically extend, e.g., constants and such. 3819 if (Inst->getType()->isVectorTy()) 3820 return false; 3821 3822 // We can always get through zext. 3823 if (isa<ZExtInst>(Inst)) 3824 return true; 3825 3826 // sext(sext) is ok too. 3827 if (IsSExt && isa<SExtInst>(Inst)) 3828 return true; 3829 3830 // We can get through binary operator, if it is legal. In other words, the 3831 // binary operator must have a nuw or nsw flag. 3832 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3833 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3834 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3835 (IsSExt && BinOp->hasNoSignedWrap()))) 3836 return true; 3837 3838 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3839 if ((Inst->getOpcode() == Instruction::And || 3840 Inst->getOpcode() == Instruction::Or)) 3841 return true; 3842 3843 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3844 if (Inst->getOpcode() == Instruction::Xor) { 3845 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3846 // Make sure it is not a NOT. 3847 if (Cst && !Cst->getValue().isAllOnesValue()) 3848 return true; 3849 } 3850 3851 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3852 // It may change a poisoned value into a regular value, like 3853 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3854 // poisoned value regular value 3855 // It should be OK since undef covers valid value. 3856 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3857 return true; 3858 3859 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3860 // It may change a poisoned value into a regular value, like 3861 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3862 // poisoned value regular value 3863 // It should be OK since undef covers valid value. 3864 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3865 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3866 if (ExtInst->hasOneUse()) { 3867 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3868 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3869 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3870 if (Cst && 3871 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3872 return true; 3873 } 3874 } 3875 } 3876 3877 // Check if we can do the following simplification. 3878 // ext(trunc(opnd)) --> ext(opnd) 3879 if (!isa<TruncInst>(Inst)) 3880 return false; 3881 3882 Value *OpndVal = Inst->getOperand(0); 3883 // Check if we can use this operand in the extension. 3884 // If the type is larger than the result type of the extension, we cannot. 3885 if (!OpndVal->getType()->isIntegerTy() || 3886 OpndVal->getType()->getIntegerBitWidth() > 3887 ConsideredExtType->getIntegerBitWidth()) 3888 return false; 3889 3890 // If the operand of the truncate is not an instruction, we will not have 3891 // any information on the dropped bits. 3892 // (Actually we could for constant but it is not worth the extra logic). 3893 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3894 if (!Opnd) 3895 return false; 3896 3897 // Check if the source of the type is narrow enough. 3898 // I.e., check that trunc just drops extended bits of the same kind of 3899 // the extension. 3900 // #1 get the type of the operand and check the kind of the extended bits. 3901 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3902 if (OpndType) 3903 ; 3904 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3905 OpndType = Opnd->getOperand(0)->getType(); 3906 else 3907 return false; 3908 3909 // #2 check that the truncate just drops extended bits. 3910 return Inst->getType()->getIntegerBitWidth() >= 3911 OpndType->getIntegerBitWidth(); 3912 } 3913 3914 TypePromotionHelper::Action TypePromotionHelper::getAction( 3915 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3916 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3917 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3918 "Unexpected instruction type"); 3919 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3920 Type *ExtTy = Ext->getType(); 3921 bool IsSExt = isa<SExtInst>(Ext); 3922 // If the operand of the extension is not an instruction, we cannot 3923 // get through. 3924 // If it, check we can get through. 3925 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3926 return nullptr; 3927 3928 // Do not promote if the operand has been added by codegenprepare. 3929 // Otherwise, it means we are undoing an optimization that is likely to be 3930 // redone, thus causing potential infinite loop. 3931 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3932 return nullptr; 3933 3934 // SExt or Trunc instructions. 3935 // Return the related handler. 3936 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3937 isa<ZExtInst>(ExtOpnd)) 3938 return promoteOperandForTruncAndAnyExt; 3939 3940 // Regular instruction. 3941 // Abort early if we will have to insert non-free instructions. 3942 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3943 return nullptr; 3944 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3945 } 3946 3947 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3948 Instruction *SExt, TypePromotionTransaction &TPT, 3949 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3950 SmallVectorImpl<Instruction *> *Exts, 3951 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3952 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3953 // get through it and this method should not be called. 3954 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3955 Value *ExtVal = SExt; 3956 bool HasMergedNonFreeExt = false; 3957 if (isa<ZExtInst>(SExtOpnd)) { 3958 // Replace s|zext(zext(opnd)) 3959 // => zext(opnd). 3960 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3961 Value *ZExt = 3962 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3963 TPT.replaceAllUsesWith(SExt, ZExt); 3964 TPT.eraseInstruction(SExt); 3965 ExtVal = ZExt; 3966 } else { 3967 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3968 // => z|sext(opnd). 3969 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3970 } 3971 CreatedInstsCost = 0; 3972 3973 // Remove dead code. 3974 if (SExtOpnd->use_empty()) 3975 TPT.eraseInstruction(SExtOpnd); 3976 3977 // Check if the extension is still needed. 3978 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3979 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3980 if (ExtInst) { 3981 if (Exts) 3982 Exts->push_back(ExtInst); 3983 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3984 } 3985 return ExtVal; 3986 } 3987 3988 // At this point we have: ext ty opnd to ty. 3989 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3990 Value *NextVal = ExtInst->getOperand(0); 3991 TPT.eraseInstruction(ExtInst, NextVal); 3992 return NextVal; 3993 } 3994 3995 Value *TypePromotionHelper::promoteOperandForOther( 3996 Instruction *Ext, TypePromotionTransaction &TPT, 3997 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3998 SmallVectorImpl<Instruction *> *Exts, 3999 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4000 bool IsSExt) { 4001 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4002 // get through it and this method should not be called. 4003 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4004 CreatedInstsCost = 0; 4005 if (!ExtOpnd->hasOneUse()) { 4006 // ExtOpnd will be promoted. 4007 // All its uses, but Ext, will need to use a truncated value of the 4008 // promoted version. 4009 // Create the truncate now. 4010 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4011 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4012 // Insert it just after the definition. 4013 ITrunc->moveAfter(ExtOpnd); 4014 if (Truncs) 4015 Truncs->push_back(ITrunc); 4016 } 4017 4018 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4019 // Restore the operand of Ext (which has been replaced by the previous call 4020 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4021 TPT.setOperand(Ext, 0, ExtOpnd); 4022 } 4023 4024 // Get through the Instruction: 4025 // 1. Update its type. 4026 // 2. Replace the uses of Ext by Inst. 4027 // 3. Extend each operand that needs to be extended. 4028 4029 // Remember the original type of the instruction before promotion. 4030 // This is useful to know that the high bits are sign extended bits. 4031 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4032 // Step #1. 4033 TPT.mutateType(ExtOpnd, Ext->getType()); 4034 // Step #2. 4035 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4036 // Step #3. 4037 Instruction *ExtForOpnd = Ext; 4038 4039 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4040 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4041 ++OpIdx) { 4042 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4043 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4044 !shouldExtOperand(ExtOpnd, OpIdx)) { 4045 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4046 continue; 4047 } 4048 // Check if we can statically extend the operand. 4049 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4050 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4051 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4052 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4053 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4054 : Cst->getValue().zext(BitWidth); 4055 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4056 continue; 4057 } 4058 // UndefValue are typed, so we have to statically sign extend them. 4059 if (isa<UndefValue>(Opnd)) { 4060 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4061 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4062 continue; 4063 } 4064 4065 // Otherwise we have to explicitly sign extend the operand. 4066 // Check if Ext was reused to extend an operand. 4067 if (!ExtForOpnd) { 4068 // If yes, create a new one. 4069 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4070 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4071 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4072 if (!isa<Instruction>(ValForExtOpnd)) { 4073 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4074 continue; 4075 } 4076 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4077 } 4078 if (Exts) 4079 Exts->push_back(ExtForOpnd); 4080 TPT.setOperand(ExtForOpnd, 0, Opnd); 4081 4082 // Move the sign extension before the insertion point. 4083 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4084 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4085 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4086 // If more sext are required, new instructions will have to be created. 4087 ExtForOpnd = nullptr; 4088 } 4089 if (ExtForOpnd == Ext) { 4090 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4091 TPT.eraseInstruction(Ext); 4092 } 4093 return ExtOpnd; 4094 } 4095 4096 /// Check whether or not promoting an instruction to a wider type is profitable. 4097 /// \p NewCost gives the cost of extension instructions created by the 4098 /// promotion. 4099 /// \p OldCost gives the cost of extension instructions before the promotion 4100 /// plus the number of instructions that have been 4101 /// matched in the addressing mode the promotion. 4102 /// \p PromotedOperand is the value that has been promoted. 4103 /// \return True if the promotion is profitable, false otherwise. 4104 bool AddressingModeMatcher::isPromotionProfitable( 4105 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4106 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4107 << '\n'); 4108 // The cost of the new extensions is greater than the cost of the 4109 // old extension plus what we folded. 4110 // This is not profitable. 4111 if (NewCost > OldCost) 4112 return false; 4113 if (NewCost < OldCost) 4114 return true; 4115 // The promotion is neutral but it may help folding the sign extension in 4116 // loads for instance. 4117 // Check that we did not create an illegal instruction. 4118 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4119 } 4120 4121 /// Given an instruction or constant expr, see if we can fold the operation 4122 /// into the addressing mode. If so, update the addressing mode and return 4123 /// true, otherwise return false without modifying AddrMode. 4124 /// If \p MovedAway is not NULL, it contains the information of whether or 4125 /// not AddrInst has to be folded into the addressing mode on success. 4126 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4127 /// because it has been moved away. 4128 /// Thus AddrInst must not be added in the matched instructions. 4129 /// This state can happen when AddrInst is a sext, since it may be moved away. 4130 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4131 /// not be referenced anymore. 4132 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4133 unsigned Depth, 4134 bool *MovedAway) { 4135 // Avoid exponential behavior on extremely deep expression trees. 4136 if (Depth >= 5) return false; 4137 4138 // By default, all matched instructions stay in place. 4139 if (MovedAway) 4140 *MovedAway = false; 4141 4142 switch (Opcode) { 4143 case Instruction::PtrToInt: 4144 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4145 return matchAddr(AddrInst->getOperand(0), Depth); 4146 case Instruction::IntToPtr: { 4147 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4148 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4149 // This inttoptr is a no-op if the integer type is pointer sized. 4150 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4151 return matchAddr(AddrInst->getOperand(0), Depth); 4152 return false; 4153 } 4154 case Instruction::BitCast: 4155 // BitCast is always a noop, and we can handle it as long as it is 4156 // int->int or pointer->pointer (we don't want int<->fp or something). 4157 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4158 // Don't touch identity bitcasts. These were probably put here by LSR, 4159 // and we don't want to mess around with them. Assume it knows what it 4160 // is doing. 4161 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4162 return matchAddr(AddrInst->getOperand(0), Depth); 4163 return false; 4164 case Instruction::AddrSpaceCast: { 4165 unsigned SrcAS 4166 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4167 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4168 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4169 return matchAddr(AddrInst->getOperand(0), Depth); 4170 return false; 4171 } 4172 case Instruction::Add: { 4173 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4174 ExtAddrMode BackupAddrMode = AddrMode; 4175 unsigned OldSize = AddrModeInsts.size(); 4176 // Start a transaction at this point. 4177 // The LHS may match but not the RHS. 4178 // Therefore, we need a higher level restoration point to undo partially 4179 // matched operation. 4180 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4181 TPT.getRestorationPoint(); 4182 4183 AddrMode.InBounds = false; 4184 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4185 matchAddr(AddrInst->getOperand(0), Depth+1)) 4186 return true; 4187 4188 // Restore the old addr mode info. 4189 AddrMode = BackupAddrMode; 4190 AddrModeInsts.resize(OldSize); 4191 TPT.rollback(LastKnownGood); 4192 4193 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4194 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4195 matchAddr(AddrInst->getOperand(1), Depth+1)) 4196 return true; 4197 4198 // Otherwise we definitely can't merge the ADD in. 4199 AddrMode = BackupAddrMode; 4200 AddrModeInsts.resize(OldSize); 4201 TPT.rollback(LastKnownGood); 4202 break; 4203 } 4204 //case Instruction::Or: 4205 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4206 //break; 4207 case Instruction::Mul: 4208 case Instruction::Shl: { 4209 // Can only handle X*C and X << C. 4210 AddrMode.InBounds = false; 4211 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4212 if (!RHS || RHS->getBitWidth() > 64) 4213 return false; 4214 int64_t Scale = RHS->getSExtValue(); 4215 if (Opcode == Instruction::Shl) 4216 Scale = 1LL << Scale; 4217 4218 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4219 } 4220 case Instruction::GetElementPtr: { 4221 // Scan the GEP. We check it if it contains constant offsets and at most 4222 // one variable offset. 4223 int VariableOperand = -1; 4224 unsigned VariableScale = 0; 4225 4226 int64_t ConstantOffset = 0; 4227 gep_type_iterator GTI = gep_type_begin(AddrInst); 4228 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4229 if (StructType *STy = GTI.getStructTypeOrNull()) { 4230 const StructLayout *SL = DL.getStructLayout(STy); 4231 unsigned Idx = 4232 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4233 ConstantOffset += SL->getElementOffset(Idx); 4234 } else { 4235 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4236 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4237 const APInt &CVal = CI->getValue(); 4238 if (CVal.getMinSignedBits() <= 64) { 4239 ConstantOffset += CVal.getSExtValue() * TypeSize; 4240 continue; 4241 } 4242 } 4243 if (TypeSize) { // Scales of zero don't do anything. 4244 // We only allow one variable index at the moment. 4245 if (VariableOperand != -1) 4246 return false; 4247 4248 // Remember the variable index. 4249 VariableOperand = i; 4250 VariableScale = TypeSize; 4251 } 4252 } 4253 } 4254 4255 // A common case is for the GEP to only do a constant offset. In this case, 4256 // just add it to the disp field and check validity. 4257 if (VariableOperand == -1) { 4258 AddrMode.BaseOffs += ConstantOffset; 4259 if (ConstantOffset == 0 || 4260 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4261 // Check to see if we can fold the base pointer in too. 4262 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4263 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4264 AddrMode.InBounds = false; 4265 return true; 4266 } 4267 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4268 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4269 ConstantOffset > 0) { 4270 // Record GEPs with non-zero offsets as candidates for splitting in the 4271 // event that the offset cannot fit into the r+i addressing mode. 4272 // Simple and common case that only one GEP is used in calculating the 4273 // address for the memory access. 4274 Value *Base = AddrInst->getOperand(0); 4275 auto *BaseI = dyn_cast<Instruction>(Base); 4276 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4277 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4278 (BaseI && !isa<CastInst>(BaseI) && 4279 !isa<GetElementPtrInst>(BaseI))) { 4280 // Make sure the parent block allows inserting non-PHI instructions 4281 // before the terminator. 4282 BasicBlock *Parent = 4283 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4284 if (!Parent->getTerminator()->isEHPad()) 4285 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4286 } 4287 } 4288 AddrMode.BaseOffs -= ConstantOffset; 4289 return false; 4290 } 4291 4292 // Save the valid addressing mode in case we can't match. 4293 ExtAddrMode BackupAddrMode = AddrMode; 4294 unsigned OldSize = AddrModeInsts.size(); 4295 4296 // See if the scale and offset amount is valid for this target. 4297 AddrMode.BaseOffs += ConstantOffset; 4298 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4299 AddrMode.InBounds = false; 4300 4301 // Match the base operand of the GEP. 4302 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4303 // If it couldn't be matched, just stuff the value in a register. 4304 if (AddrMode.HasBaseReg) { 4305 AddrMode = BackupAddrMode; 4306 AddrModeInsts.resize(OldSize); 4307 return false; 4308 } 4309 AddrMode.HasBaseReg = true; 4310 AddrMode.BaseReg = AddrInst->getOperand(0); 4311 } 4312 4313 // Match the remaining variable portion of the GEP. 4314 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4315 Depth)) { 4316 // If it couldn't be matched, try stuffing the base into a register 4317 // instead of matching it, and retrying the match of the scale. 4318 AddrMode = BackupAddrMode; 4319 AddrModeInsts.resize(OldSize); 4320 if (AddrMode.HasBaseReg) 4321 return false; 4322 AddrMode.HasBaseReg = true; 4323 AddrMode.BaseReg = AddrInst->getOperand(0); 4324 AddrMode.BaseOffs += ConstantOffset; 4325 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4326 VariableScale, Depth)) { 4327 // If even that didn't work, bail. 4328 AddrMode = BackupAddrMode; 4329 AddrModeInsts.resize(OldSize); 4330 return false; 4331 } 4332 } 4333 4334 return true; 4335 } 4336 case Instruction::SExt: 4337 case Instruction::ZExt: { 4338 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4339 if (!Ext) 4340 return false; 4341 4342 // Try to move this ext out of the way of the addressing mode. 4343 // Ask for a method for doing so. 4344 TypePromotionHelper::Action TPH = 4345 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4346 if (!TPH) 4347 return false; 4348 4349 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4350 TPT.getRestorationPoint(); 4351 unsigned CreatedInstsCost = 0; 4352 unsigned ExtCost = !TLI.isExtFree(Ext); 4353 Value *PromotedOperand = 4354 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4355 // SExt has been moved away. 4356 // Thus either it will be rematched later in the recursive calls or it is 4357 // gone. Anyway, we must not fold it into the addressing mode at this point. 4358 // E.g., 4359 // op = add opnd, 1 4360 // idx = ext op 4361 // addr = gep base, idx 4362 // is now: 4363 // promotedOpnd = ext opnd <- no match here 4364 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4365 // addr = gep base, op <- match 4366 if (MovedAway) 4367 *MovedAway = true; 4368 4369 assert(PromotedOperand && 4370 "TypePromotionHelper should have filtered out those cases"); 4371 4372 ExtAddrMode BackupAddrMode = AddrMode; 4373 unsigned OldSize = AddrModeInsts.size(); 4374 4375 if (!matchAddr(PromotedOperand, Depth) || 4376 // The total of the new cost is equal to the cost of the created 4377 // instructions. 4378 // The total of the old cost is equal to the cost of the extension plus 4379 // what we have saved in the addressing mode. 4380 !isPromotionProfitable(CreatedInstsCost, 4381 ExtCost + (AddrModeInsts.size() - OldSize), 4382 PromotedOperand)) { 4383 AddrMode = BackupAddrMode; 4384 AddrModeInsts.resize(OldSize); 4385 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4386 TPT.rollback(LastKnownGood); 4387 return false; 4388 } 4389 return true; 4390 } 4391 } 4392 return false; 4393 } 4394 4395 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4396 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4397 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4398 /// for the target. 4399 /// 4400 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4401 // Start a transaction at this point that we will rollback if the matching 4402 // fails. 4403 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4404 TPT.getRestorationPoint(); 4405 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4406 // Fold in immediates if legal for the target. 4407 AddrMode.BaseOffs += CI->getSExtValue(); 4408 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4409 return true; 4410 AddrMode.BaseOffs -= CI->getSExtValue(); 4411 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4412 // If this is a global variable, try to fold it into the addressing mode. 4413 if (!AddrMode.BaseGV) { 4414 AddrMode.BaseGV = GV; 4415 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4416 return true; 4417 AddrMode.BaseGV = nullptr; 4418 } 4419 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4420 ExtAddrMode BackupAddrMode = AddrMode; 4421 unsigned OldSize = AddrModeInsts.size(); 4422 4423 // Check to see if it is possible to fold this operation. 4424 bool MovedAway = false; 4425 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4426 // This instruction may have been moved away. If so, there is nothing 4427 // to check here. 4428 if (MovedAway) 4429 return true; 4430 // Okay, it's possible to fold this. Check to see if it is actually 4431 // *profitable* to do so. We use a simple cost model to avoid increasing 4432 // register pressure too much. 4433 if (I->hasOneUse() || 4434 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4435 AddrModeInsts.push_back(I); 4436 return true; 4437 } 4438 4439 // It isn't profitable to do this, roll back. 4440 //cerr << "NOT FOLDING: " << *I; 4441 AddrMode = BackupAddrMode; 4442 AddrModeInsts.resize(OldSize); 4443 TPT.rollback(LastKnownGood); 4444 } 4445 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4446 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4447 return true; 4448 TPT.rollback(LastKnownGood); 4449 } else if (isa<ConstantPointerNull>(Addr)) { 4450 // Null pointer gets folded without affecting the addressing mode. 4451 return true; 4452 } 4453 4454 // Worse case, the target should support [reg] addressing modes. :) 4455 if (!AddrMode.HasBaseReg) { 4456 AddrMode.HasBaseReg = true; 4457 AddrMode.BaseReg = Addr; 4458 // Still check for legality in case the target supports [imm] but not [i+r]. 4459 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4460 return true; 4461 AddrMode.HasBaseReg = false; 4462 AddrMode.BaseReg = nullptr; 4463 } 4464 4465 // If the base register is already taken, see if we can do [r+r]. 4466 if (AddrMode.Scale == 0) { 4467 AddrMode.Scale = 1; 4468 AddrMode.ScaledReg = Addr; 4469 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4470 return true; 4471 AddrMode.Scale = 0; 4472 AddrMode.ScaledReg = nullptr; 4473 } 4474 // Couldn't match. 4475 TPT.rollback(LastKnownGood); 4476 return false; 4477 } 4478 4479 /// Check to see if all uses of OpVal by the specified inline asm call are due 4480 /// to memory operands. If so, return true, otherwise return false. 4481 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4482 const TargetLowering &TLI, 4483 const TargetRegisterInfo &TRI) { 4484 const Function *F = CI->getFunction(); 4485 TargetLowering::AsmOperandInfoVector TargetConstraints = 4486 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4487 ImmutableCallSite(CI)); 4488 4489 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4490 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4491 4492 // Compute the constraint code and ConstraintType to use. 4493 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4494 4495 // If this asm operand is our Value*, and if it isn't an indirect memory 4496 // operand, we can't fold it! 4497 if (OpInfo.CallOperandVal == OpVal && 4498 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4499 !OpInfo.isIndirect)) 4500 return false; 4501 } 4502 4503 return true; 4504 } 4505 4506 // Max number of memory uses to look at before aborting the search to conserve 4507 // compile time. 4508 static constexpr int MaxMemoryUsesToScan = 20; 4509 4510 /// Recursively walk all the uses of I until we find a memory use. 4511 /// If we find an obviously non-foldable instruction, return true. 4512 /// Add the ultimately found memory instructions to MemoryUses. 4513 static bool FindAllMemoryUses( 4514 Instruction *I, 4515 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4516 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4517 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4518 // If we already considered this instruction, we're done. 4519 if (!ConsideredInsts.insert(I).second) 4520 return false; 4521 4522 // If this is an obviously unfoldable instruction, bail out. 4523 if (!MightBeFoldableInst(I)) 4524 return true; 4525 4526 const bool OptSize = I->getFunction()->hasOptSize(); 4527 4528 // Loop over all the uses, recursively processing them. 4529 for (Use &U : I->uses()) { 4530 // Conservatively return true if we're seeing a large number or a deep chain 4531 // of users. This avoids excessive compilation times in pathological cases. 4532 if (SeenInsts++ >= MaxMemoryUsesToScan) 4533 return true; 4534 4535 Instruction *UserI = cast<Instruction>(U.getUser()); 4536 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4537 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4538 continue; 4539 } 4540 4541 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4542 unsigned opNo = U.getOperandNo(); 4543 if (opNo != StoreInst::getPointerOperandIndex()) 4544 return true; // Storing addr, not into addr. 4545 MemoryUses.push_back(std::make_pair(SI, opNo)); 4546 continue; 4547 } 4548 4549 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4550 unsigned opNo = U.getOperandNo(); 4551 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4552 return true; // Storing addr, not into addr. 4553 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4554 continue; 4555 } 4556 4557 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4558 unsigned opNo = U.getOperandNo(); 4559 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4560 return true; // Storing addr, not into addr. 4561 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4562 continue; 4563 } 4564 4565 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4566 // If this is a cold call, we can sink the addressing calculation into 4567 // the cold path. See optimizeCallInst 4568 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4569 continue; 4570 4571 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4572 if (!IA) return true; 4573 4574 // If this is a memory operand, we're cool, otherwise bail out. 4575 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4576 return true; 4577 continue; 4578 } 4579 4580 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4581 SeenInsts)) 4582 return true; 4583 } 4584 4585 return false; 4586 } 4587 4588 /// Return true if Val is already known to be live at the use site that we're 4589 /// folding it into. If so, there is no cost to include it in the addressing 4590 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4591 /// instruction already. 4592 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4593 Value *KnownLive2) { 4594 // If Val is either of the known-live values, we know it is live! 4595 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4596 return true; 4597 4598 // All values other than instructions and arguments (e.g. constants) are live. 4599 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4600 4601 // If Val is a constant sized alloca in the entry block, it is live, this is 4602 // true because it is just a reference to the stack/frame pointer, which is 4603 // live for the whole function. 4604 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4605 if (AI->isStaticAlloca()) 4606 return true; 4607 4608 // Check to see if this value is already used in the memory instruction's 4609 // block. If so, it's already live into the block at the very least, so we 4610 // can reasonably fold it. 4611 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4612 } 4613 4614 /// It is possible for the addressing mode of the machine to fold the specified 4615 /// instruction into a load or store that ultimately uses it. 4616 /// However, the specified instruction has multiple uses. 4617 /// Given this, it may actually increase register pressure to fold it 4618 /// into the load. For example, consider this code: 4619 /// 4620 /// X = ... 4621 /// Y = X+1 4622 /// use(Y) -> nonload/store 4623 /// Z = Y+1 4624 /// load Z 4625 /// 4626 /// In this case, Y has multiple uses, and can be folded into the load of Z 4627 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4628 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4629 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4630 /// number of computations either. 4631 /// 4632 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4633 /// X was live across 'load Z' for other reasons, we actually *would* want to 4634 /// fold the addressing mode in the Z case. This would make Y die earlier. 4635 bool AddressingModeMatcher:: 4636 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4637 ExtAddrMode &AMAfter) { 4638 if (IgnoreProfitability) return true; 4639 4640 // AMBefore is the addressing mode before this instruction was folded into it, 4641 // and AMAfter is the addressing mode after the instruction was folded. Get 4642 // the set of registers referenced by AMAfter and subtract out those 4643 // referenced by AMBefore: this is the set of values which folding in this 4644 // address extends the lifetime of. 4645 // 4646 // Note that there are only two potential values being referenced here, 4647 // BaseReg and ScaleReg (global addresses are always available, as are any 4648 // folded immediates). 4649 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4650 4651 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4652 // lifetime wasn't extended by adding this instruction. 4653 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4654 BaseReg = nullptr; 4655 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4656 ScaledReg = nullptr; 4657 4658 // If folding this instruction (and it's subexprs) didn't extend any live 4659 // ranges, we're ok with it. 4660 if (!BaseReg && !ScaledReg) 4661 return true; 4662 4663 // If all uses of this instruction can have the address mode sunk into them, 4664 // we can remove the addressing mode and effectively trade one live register 4665 // for another (at worst.) In this context, folding an addressing mode into 4666 // the use is just a particularly nice way of sinking it. 4667 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4668 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4669 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4670 return false; // Has a non-memory, non-foldable use! 4671 4672 // Now that we know that all uses of this instruction are part of a chain of 4673 // computation involving only operations that could theoretically be folded 4674 // into a memory use, loop over each of these memory operation uses and see 4675 // if they could *actually* fold the instruction. The assumption is that 4676 // addressing modes are cheap and that duplicating the computation involved 4677 // many times is worthwhile, even on a fastpath. For sinking candidates 4678 // (i.e. cold call sites), this serves as a way to prevent excessive code 4679 // growth since most architectures have some reasonable small and fast way to 4680 // compute an effective address. (i.e LEA on x86) 4681 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4682 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4683 Instruction *User = MemoryUses[i].first; 4684 unsigned OpNo = MemoryUses[i].second; 4685 4686 // Get the access type of this use. If the use isn't a pointer, we don't 4687 // know what it accesses. 4688 Value *Address = User->getOperand(OpNo); 4689 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4690 if (!AddrTy) 4691 return false; 4692 Type *AddressAccessTy = AddrTy->getElementType(); 4693 unsigned AS = AddrTy->getAddressSpace(); 4694 4695 // Do a match against the root of this address, ignoring profitability. This 4696 // will tell us if the addressing mode for the memory operation will 4697 // *actually* cover the shared instruction. 4698 ExtAddrMode Result; 4699 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4700 0); 4701 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4702 TPT.getRestorationPoint(); 4703 AddressingModeMatcher Matcher( 4704 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4705 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4706 Matcher.IgnoreProfitability = true; 4707 bool Success = Matcher.matchAddr(Address, 0); 4708 (void)Success; assert(Success && "Couldn't select *anything*?"); 4709 4710 // The match was to check the profitability, the changes made are not 4711 // part of the original matcher. Therefore, they should be dropped 4712 // otherwise the original matcher will not present the right state. 4713 TPT.rollback(LastKnownGood); 4714 4715 // If the match didn't cover I, then it won't be shared by it. 4716 if (!is_contained(MatchedAddrModeInsts, I)) 4717 return false; 4718 4719 MatchedAddrModeInsts.clear(); 4720 } 4721 4722 return true; 4723 } 4724 4725 /// Return true if the specified values are defined in a 4726 /// different basic block than BB. 4727 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4728 if (Instruction *I = dyn_cast<Instruction>(V)) 4729 return I->getParent() != BB; 4730 return false; 4731 } 4732 4733 /// Sink addressing mode computation immediate before MemoryInst if doing so 4734 /// can be done without increasing register pressure. The need for the 4735 /// register pressure constraint means this can end up being an all or nothing 4736 /// decision for all uses of the same addressing computation. 4737 /// 4738 /// Load and Store Instructions often have addressing modes that can do 4739 /// significant amounts of computation. As such, instruction selection will try 4740 /// to get the load or store to do as much computation as possible for the 4741 /// program. The problem is that isel can only see within a single block. As 4742 /// such, we sink as much legal addressing mode work into the block as possible. 4743 /// 4744 /// This method is used to optimize both load/store and inline asms with memory 4745 /// operands. It's also used to sink addressing computations feeding into cold 4746 /// call sites into their (cold) basic block. 4747 /// 4748 /// The motivation for handling sinking into cold blocks is that doing so can 4749 /// both enable other address mode sinking (by satisfying the register pressure 4750 /// constraint above), and reduce register pressure globally (by removing the 4751 /// addressing mode computation from the fast path entirely.). 4752 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4753 Type *AccessTy, unsigned AddrSpace) { 4754 Value *Repl = Addr; 4755 4756 // Try to collapse single-value PHI nodes. This is necessary to undo 4757 // unprofitable PRE transformations. 4758 SmallVector<Value*, 8> worklist; 4759 SmallPtrSet<Value*, 16> Visited; 4760 worklist.push_back(Addr); 4761 4762 // Use a worklist to iteratively look through PHI and select nodes, and 4763 // ensure that the addressing mode obtained from the non-PHI/select roots of 4764 // the graph are compatible. 4765 bool PhiOrSelectSeen = false; 4766 SmallVector<Instruction*, 16> AddrModeInsts; 4767 const SimplifyQuery SQ(*DL, TLInfo); 4768 AddressingModeCombiner AddrModes(SQ, Addr); 4769 TypePromotionTransaction TPT(RemovedInsts); 4770 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4771 TPT.getRestorationPoint(); 4772 while (!worklist.empty()) { 4773 Value *V = worklist.back(); 4774 worklist.pop_back(); 4775 4776 // We allow traversing cyclic Phi nodes. 4777 // In case of success after this loop we ensure that traversing through 4778 // Phi nodes ends up with all cases to compute address of the form 4779 // BaseGV + Base + Scale * Index + Offset 4780 // where Scale and Offset are constans and BaseGV, Base and Index 4781 // are exactly the same Values in all cases. 4782 // It means that BaseGV, Scale and Offset dominate our memory instruction 4783 // and have the same value as they had in address computation represented 4784 // as Phi. So we can safely sink address computation to memory instruction. 4785 if (!Visited.insert(V).second) 4786 continue; 4787 4788 // For a PHI node, push all of its incoming values. 4789 if (PHINode *P = dyn_cast<PHINode>(V)) { 4790 for (Value *IncValue : P->incoming_values()) 4791 worklist.push_back(IncValue); 4792 PhiOrSelectSeen = true; 4793 continue; 4794 } 4795 // Similar for select. 4796 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4797 worklist.push_back(SI->getFalseValue()); 4798 worklist.push_back(SI->getTrueValue()); 4799 PhiOrSelectSeen = true; 4800 continue; 4801 } 4802 4803 // For non-PHIs, determine the addressing mode being computed. Note that 4804 // the result may differ depending on what other uses our candidate 4805 // addressing instructions might have. 4806 AddrModeInsts.clear(); 4807 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4808 0); 4809 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4810 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4811 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4812 4813 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4814 if (GEP && !NewGEPBases.count(GEP)) { 4815 // If splitting the underlying data structure can reduce the offset of a 4816 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4817 // previously split data structures. 4818 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4819 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4820 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4821 } 4822 4823 NewAddrMode.OriginalValue = V; 4824 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4825 break; 4826 } 4827 4828 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4829 // or we have multiple but either couldn't combine them or combining them 4830 // wouldn't do anything useful, bail out now. 4831 if (!AddrModes.combineAddrModes()) { 4832 TPT.rollback(LastKnownGood); 4833 return false; 4834 } 4835 TPT.commit(); 4836 4837 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4838 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4839 4840 // If all the instructions matched are already in this BB, don't do anything. 4841 // If we saw a Phi node then it is not local definitely, and if we saw a select 4842 // then we want to push the address calculation past it even if it's already 4843 // in this BB. 4844 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4845 return IsNonLocalValue(V, MemoryInst->getParent()); 4846 })) { 4847 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4848 << "\n"); 4849 return false; 4850 } 4851 4852 // Insert this computation right after this user. Since our caller is 4853 // scanning from the top of the BB to the bottom, reuse of the expr are 4854 // guaranteed to happen later. 4855 IRBuilder<> Builder(MemoryInst); 4856 4857 // Now that we determined the addressing expression we want to use and know 4858 // that we have to sink it into this block. Check to see if we have already 4859 // done this for some other load/store instr in this block. If so, reuse 4860 // the computation. Before attempting reuse, check if the address is valid 4861 // as it may have been erased. 4862 4863 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4864 4865 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4866 if (SunkAddr) { 4867 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4868 << " for " << *MemoryInst << "\n"); 4869 if (SunkAddr->getType() != Addr->getType()) 4870 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4871 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4872 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4873 // By default, we use the GEP-based method when AA is used later. This 4874 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4875 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4876 << " for " << *MemoryInst << "\n"); 4877 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4878 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4879 4880 // First, find the pointer. 4881 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4882 ResultPtr = AddrMode.BaseReg; 4883 AddrMode.BaseReg = nullptr; 4884 } 4885 4886 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4887 // We can't add more than one pointer together, nor can we scale a 4888 // pointer (both of which seem meaningless). 4889 if (ResultPtr || AddrMode.Scale != 1) 4890 return false; 4891 4892 ResultPtr = AddrMode.ScaledReg; 4893 AddrMode.Scale = 0; 4894 } 4895 4896 // It is only safe to sign extend the BaseReg if we know that the math 4897 // required to create it did not overflow before we extend it. Since 4898 // the original IR value was tossed in favor of a constant back when 4899 // the AddrMode was created we need to bail out gracefully if widths 4900 // do not match instead of extending it. 4901 // 4902 // (See below for code to add the scale.) 4903 if (AddrMode.Scale) { 4904 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4905 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4906 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4907 return false; 4908 } 4909 4910 if (AddrMode.BaseGV) { 4911 if (ResultPtr) 4912 return false; 4913 4914 ResultPtr = AddrMode.BaseGV; 4915 } 4916 4917 // If the real base value actually came from an inttoptr, then the matcher 4918 // will look through it and provide only the integer value. In that case, 4919 // use it here. 4920 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4921 if (!ResultPtr && AddrMode.BaseReg) { 4922 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4923 "sunkaddr"); 4924 AddrMode.BaseReg = nullptr; 4925 } else if (!ResultPtr && AddrMode.Scale == 1) { 4926 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4927 "sunkaddr"); 4928 AddrMode.Scale = 0; 4929 } 4930 } 4931 4932 if (!ResultPtr && 4933 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4934 SunkAddr = Constant::getNullValue(Addr->getType()); 4935 } else if (!ResultPtr) { 4936 return false; 4937 } else { 4938 Type *I8PtrTy = 4939 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4940 Type *I8Ty = Builder.getInt8Ty(); 4941 4942 // Start with the base register. Do this first so that subsequent address 4943 // matching finds it last, which will prevent it from trying to match it 4944 // as the scaled value in case it happens to be a mul. That would be 4945 // problematic if we've sunk a different mul for the scale, because then 4946 // we'd end up sinking both muls. 4947 if (AddrMode.BaseReg) { 4948 Value *V = AddrMode.BaseReg; 4949 if (V->getType() != IntPtrTy) 4950 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4951 4952 ResultIndex = V; 4953 } 4954 4955 // Add the scale value. 4956 if (AddrMode.Scale) { 4957 Value *V = AddrMode.ScaledReg; 4958 if (V->getType() == IntPtrTy) { 4959 // done. 4960 } else { 4961 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4962 cast<IntegerType>(V->getType())->getBitWidth() && 4963 "We can't transform if ScaledReg is too narrow"); 4964 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4965 } 4966 4967 if (AddrMode.Scale != 1) 4968 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4969 "sunkaddr"); 4970 if (ResultIndex) 4971 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4972 else 4973 ResultIndex = V; 4974 } 4975 4976 // Add in the Base Offset if present. 4977 if (AddrMode.BaseOffs) { 4978 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4979 if (ResultIndex) { 4980 // We need to add this separately from the scale above to help with 4981 // SDAG consecutive load/store merging. 4982 if (ResultPtr->getType() != I8PtrTy) 4983 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4984 ResultPtr = 4985 AddrMode.InBounds 4986 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4987 "sunkaddr") 4988 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4989 } 4990 4991 ResultIndex = V; 4992 } 4993 4994 if (!ResultIndex) { 4995 SunkAddr = ResultPtr; 4996 } else { 4997 if (ResultPtr->getType() != I8PtrTy) 4998 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4999 SunkAddr = 5000 AddrMode.InBounds 5001 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5002 "sunkaddr") 5003 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5004 } 5005 5006 if (SunkAddr->getType() != Addr->getType()) 5007 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5008 } 5009 } else { 5010 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5011 // non-integral pointers, so in that case bail out now. 5012 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5013 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5014 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5015 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5016 if (DL->isNonIntegralPointerType(Addr->getType()) || 5017 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5018 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5019 (AddrMode.BaseGV && 5020 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5021 return false; 5022 5023 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5024 << " for " << *MemoryInst << "\n"); 5025 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5026 Value *Result = nullptr; 5027 5028 // Start with the base register. Do this first so that subsequent address 5029 // matching finds it last, which will prevent it from trying to match it 5030 // as the scaled value in case it happens to be a mul. That would be 5031 // problematic if we've sunk a different mul for the scale, because then 5032 // we'd end up sinking both muls. 5033 if (AddrMode.BaseReg) { 5034 Value *V = AddrMode.BaseReg; 5035 if (V->getType()->isPointerTy()) 5036 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5037 if (V->getType() != IntPtrTy) 5038 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5039 Result = V; 5040 } 5041 5042 // Add the scale value. 5043 if (AddrMode.Scale) { 5044 Value *V = AddrMode.ScaledReg; 5045 if (V->getType() == IntPtrTy) { 5046 // done. 5047 } else if (V->getType()->isPointerTy()) { 5048 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5049 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5050 cast<IntegerType>(V->getType())->getBitWidth()) { 5051 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5052 } else { 5053 // It is only safe to sign extend the BaseReg if we know that the math 5054 // required to create it did not overflow before we extend it. Since 5055 // the original IR value was tossed in favor of a constant back when 5056 // the AddrMode was created we need to bail out gracefully if widths 5057 // do not match instead of extending it. 5058 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5059 if (I && (Result != AddrMode.BaseReg)) 5060 I->eraseFromParent(); 5061 return false; 5062 } 5063 if (AddrMode.Scale != 1) 5064 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5065 "sunkaddr"); 5066 if (Result) 5067 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5068 else 5069 Result = V; 5070 } 5071 5072 // Add in the BaseGV if present. 5073 if (AddrMode.BaseGV) { 5074 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5075 if (Result) 5076 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5077 else 5078 Result = V; 5079 } 5080 5081 // Add in the Base Offset if present. 5082 if (AddrMode.BaseOffs) { 5083 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5084 if (Result) 5085 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5086 else 5087 Result = V; 5088 } 5089 5090 if (!Result) 5091 SunkAddr = Constant::getNullValue(Addr->getType()); 5092 else 5093 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5094 } 5095 5096 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5097 // Store the newly computed address into the cache. In the case we reused a 5098 // value, this should be idempotent. 5099 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5100 5101 // If we have no uses, recursively delete the value and all dead instructions 5102 // using it. 5103 if (Repl->use_empty()) { 5104 // This can cause recursive deletion, which can invalidate our iterator. 5105 // Use a WeakTrackingVH to hold onto it in case this happens. 5106 Value *CurValue = &*CurInstIterator; 5107 WeakTrackingVH IterHandle(CurValue); 5108 BasicBlock *BB = CurInstIterator->getParent(); 5109 5110 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5111 5112 if (IterHandle != CurValue) { 5113 // If the iterator instruction was recursively deleted, start over at the 5114 // start of the block. 5115 CurInstIterator = BB->begin(); 5116 SunkAddrs.clear(); 5117 } 5118 } 5119 ++NumMemoryInsts; 5120 return true; 5121 } 5122 5123 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5124 /// address computing into the block when possible / profitable. 5125 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5126 bool MadeChange = false; 5127 5128 const TargetRegisterInfo *TRI = 5129 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5130 TargetLowering::AsmOperandInfoVector TargetConstraints = 5131 TLI->ParseConstraints(*DL, TRI, CS); 5132 unsigned ArgNo = 0; 5133 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5134 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5135 5136 // Compute the constraint code and ConstraintType to use. 5137 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5138 5139 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5140 OpInfo.isIndirect) { 5141 Value *OpVal = CS->getArgOperand(ArgNo++); 5142 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5143 } else if (OpInfo.Type == InlineAsm::isInput) 5144 ArgNo++; 5145 } 5146 5147 return MadeChange; 5148 } 5149 5150 /// Check if all the uses of \p Val are equivalent (or free) zero or 5151 /// sign extensions. 5152 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5153 assert(!Val->use_empty() && "Input must have at least one use"); 5154 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5155 bool IsSExt = isa<SExtInst>(FirstUser); 5156 Type *ExtTy = FirstUser->getType(); 5157 for (const User *U : Val->users()) { 5158 const Instruction *UI = cast<Instruction>(U); 5159 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5160 return false; 5161 Type *CurTy = UI->getType(); 5162 // Same input and output types: Same instruction after CSE. 5163 if (CurTy == ExtTy) 5164 continue; 5165 5166 // If IsSExt is true, we are in this situation: 5167 // a = Val 5168 // b = sext ty1 a to ty2 5169 // c = sext ty1 a to ty3 5170 // Assuming ty2 is shorter than ty3, this could be turned into: 5171 // a = Val 5172 // b = sext ty1 a to ty2 5173 // c = sext ty2 b to ty3 5174 // However, the last sext is not free. 5175 if (IsSExt) 5176 return false; 5177 5178 // This is a ZExt, maybe this is free to extend from one type to another. 5179 // In that case, we would not account for a different use. 5180 Type *NarrowTy; 5181 Type *LargeTy; 5182 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5183 CurTy->getScalarType()->getIntegerBitWidth()) { 5184 NarrowTy = CurTy; 5185 LargeTy = ExtTy; 5186 } else { 5187 NarrowTy = ExtTy; 5188 LargeTy = CurTy; 5189 } 5190 5191 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5192 return false; 5193 } 5194 // All uses are the same or can be derived from one another for free. 5195 return true; 5196 } 5197 5198 /// Try to speculatively promote extensions in \p Exts and continue 5199 /// promoting through newly promoted operands recursively as far as doing so is 5200 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5201 /// When some promotion happened, \p TPT contains the proper state to revert 5202 /// them. 5203 /// 5204 /// \return true if some promotion happened, false otherwise. 5205 bool CodeGenPrepare::tryToPromoteExts( 5206 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5207 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5208 unsigned CreatedInstsCost) { 5209 bool Promoted = false; 5210 5211 // Iterate over all the extensions to try to promote them. 5212 for (auto I : Exts) { 5213 // Early check if we directly have ext(load). 5214 if (isa<LoadInst>(I->getOperand(0))) { 5215 ProfitablyMovedExts.push_back(I); 5216 continue; 5217 } 5218 5219 // Check whether or not we want to do any promotion. The reason we have 5220 // this check inside the for loop is to catch the case where an extension 5221 // is directly fed by a load because in such case the extension can be moved 5222 // up without any promotion on its operands. 5223 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5224 return false; 5225 5226 // Get the action to perform the promotion. 5227 TypePromotionHelper::Action TPH = 5228 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5229 // Check if we can promote. 5230 if (!TPH) { 5231 // Save the current extension as we cannot move up through its operand. 5232 ProfitablyMovedExts.push_back(I); 5233 continue; 5234 } 5235 5236 // Save the current state. 5237 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5238 TPT.getRestorationPoint(); 5239 SmallVector<Instruction *, 4> NewExts; 5240 unsigned NewCreatedInstsCost = 0; 5241 unsigned ExtCost = !TLI->isExtFree(I); 5242 // Promote. 5243 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5244 &NewExts, nullptr, *TLI); 5245 assert(PromotedVal && 5246 "TypePromotionHelper should have filtered out those cases"); 5247 5248 // We would be able to merge only one extension in a load. 5249 // Therefore, if we have more than 1 new extension we heuristically 5250 // cut this search path, because it means we degrade the code quality. 5251 // With exactly 2, the transformation is neutral, because we will merge 5252 // one extension but leave one. However, we optimistically keep going, 5253 // because the new extension may be removed too. 5254 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5255 // FIXME: It would be possible to propagate a negative value instead of 5256 // conservatively ceiling it to 0. 5257 TotalCreatedInstsCost = 5258 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5259 if (!StressExtLdPromotion && 5260 (TotalCreatedInstsCost > 1 || 5261 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5262 // This promotion is not profitable, rollback to the previous state, and 5263 // save the current extension in ProfitablyMovedExts as the latest 5264 // speculative promotion turned out to be unprofitable. 5265 TPT.rollback(LastKnownGood); 5266 ProfitablyMovedExts.push_back(I); 5267 continue; 5268 } 5269 // Continue promoting NewExts as far as doing so is profitable. 5270 SmallVector<Instruction *, 2> NewlyMovedExts; 5271 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5272 bool NewPromoted = false; 5273 for (auto ExtInst : NewlyMovedExts) { 5274 Instruction *MovedExt = cast<Instruction>(ExtInst); 5275 Value *ExtOperand = MovedExt->getOperand(0); 5276 // If we have reached to a load, we need this extra profitability check 5277 // as it could potentially be merged into an ext(load). 5278 if (isa<LoadInst>(ExtOperand) && 5279 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5280 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5281 continue; 5282 5283 ProfitablyMovedExts.push_back(MovedExt); 5284 NewPromoted = true; 5285 } 5286 5287 // If none of speculative promotions for NewExts is profitable, rollback 5288 // and save the current extension (I) as the last profitable extension. 5289 if (!NewPromoted) { 5290 TPT.rollback(LastKnownGood); 5291 ProfitablyMovedExts.push_back(I); 5292 continue; 5293 } 5294 // The promotion is profitable. 5295 Promoted = true; 5296 } 5297 return Promoted; 5298 } 5299 5300 /// Merging redundant sexts when one is dominating the other. 5301 bool CodeGenPrepare::mergeSExts(Function &F) { 5302 bool Changed = false; 5303 for (auto &Entry : ValToSExtendedUses) { 5304 SExts &Insts = Entry.second; 5305 SExts CurPts; 5306 for (Instruction *Inst : Insts) { 5307 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5308 Inst->getOperand(0) != Entry.first) 5309 continue; 5310 bool inserted = false; 5311 for (auto &Pt : CurPts) { 5312 if (getDT(F).dominates(Inst, Pt)) { 5313 Pt->replaceAllUsesWith(Inst); 5314 RemovedInsts.insert(Pt); 5315 Pt->removeFromParent(); 5316 Pt = Inst; 5317 inserted = true; 5318 Changed = true; 5319 break; 5320 } 5321 if (!getDT(F).dominates(Pt, Inst)) 5322 // Give up if we need to merge in a common dominator as the 5323 // experiments show it is not profitable. 5324 continue; 5325 Inst->replaceAllUsesWith(Pt); 5326 RemovedInsts.insert(Inst); 5327 Inst->removeFromParent(); 5328 inserted = true; 5329 Changed = true; 5330 break; 5331 } 5332 if (!inserted) 5333 CurPts.push_back(Inst); 5334 } 5335 } 5336 return Changed; 5337 } 5338 5339 // Spliting large data structures so that the GEPs accessing them can have 5340 // smaller offsets so that they can be sunk to the same blocks as their users. 5341 // For example, a large struct starting from %base is splitted into two parts 5342 // where the second part starts from %new_base. 5343 // 5344 // Before: 5345 // BB0: 5346 // %base = 5347 // 5348 // BB1: 5349 // %gep0 = gep %base, off0 5350 // %gep1 = gep %base, off1 5351 // %gep2 = gep %base, off2 5352 // 5353 // BB2: 5354 // %load1 = load %gep0 5355 // %load2 = load %gep1 5356 // %load3 = load %gep2 5357 // 5358 // After: 5359 // BB0: 5360 // %base = 5361 // %new_base = gep %base, off0 5362 // 5363 // BB1: 5364 // %new_gep0 = %new_base 5365 // %new_gep1 = gep %new_base, off1 - off0 5366 // %new_gep2 = gep %new_base, off2 - off0 5367 // 5368 // BB2: 5369 // %load1 = load i32, i32* %new_gep0 5370 // %load2 = load i32, i32* %new_gep1 5371 // %load3 = load i32, i32* %new_gep2 5372 // 5373 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5374 // their offsets are smaller enough to fit into the addressing mode. 5375 bool CodeGenPrepare::splitLargeGEPOffsets() { 5376 bool Changed = false; 5377 for (auto &Entry : LargeOffsetGEPMap) { 5378 Value *OldBase = Entry.first; 5379 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5380 &LargeOffsetGEPs = Entry.second; 5381 auto compareGEPOffset = 5382 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5383 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5384 if (LHS.first == RHS.first) 5385 return false; 5386 if (LHS.second != RHS.second) 5387 return LHS.second < RHS.second; 5388 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5389 }; 5390 // Sorting all the GEPs of the same data structures based on the offsets. 5391 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5392 LargeOffsetGEPs.erase( 5393 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5394 LargeOffsetGEPs.end()); 5395 // Skip if all the GEPs have the same offsets. 5396 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5397 continue; 5398 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5399 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5400 Value *NewBaseGEP = nullptr; 5401 5402 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5403 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5404 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5405 int64_t Offset = LargeOffsetGEP->second; 5406 if (Offset != BaseOffset) { 5407 TargetLowering::AddrMode AddrMode; 5408 AddrMode.BaseOffs = Offset - BaseOffset; 5409 // The result type of the GEP might not be the type of the memory 5410 // access. 5411 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5412 GEP->getResultElementType(), 5413 GEP->getAddressSpace())) { 5414 // We need to create a new base if the offset to the current base is 5415 // too large to fit into the addressing mode. So, a very large struct 5416 // may be splitted into several parts. 5417 BaseGEP = GEP; 5418 BaseOffset = Offset; 5419 NewBaseGEP = nullptr; 5420 } 5421 } 5422 5423 // Generate a new GEP to replace the current one. 5424 LLVMContext &Ctx = GEP->getContext(); 5425 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5426 Type *I8PtrTy = 5427 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5428 Type *I8Ty = Type::getInt8Ty(Ctx); 5429 5430 if (!NewBaseGEP) { 5431 // Create a new base if we don't have one yet. Find the insertion 5432 // pointer for the new base first. 5433 BasicBlock::iterator NewBaseInsertPt; 5434 BasicBlock *NewBaseInsertBB; 5435 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5436 // If the base of the struct is an instruction, the new base will be 5437 // inserted close to it. 5438 NewBaseInsertBB = BaseI->getParent(); 5439 if (isa<PHINode>(BaseI)) 5440 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5441 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5442 NewBaseInsertBB = 5443 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5444 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5445 } else 5446 NewBaseInsertPt = std::next(BaseI->getIterator()); 5447 } else { 5448 // If the current base is an argument or global value, the new base 5449 // will be inserted to the entry block. 5450 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5451 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5452 } 5453 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5454 // Create a new base. 5455 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5456 NewBaseGEP = OldBase; 5457 if (NewBaseGEP->getType() != I8PtrTy) 5458 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5459 NewBaseGEP = 5460 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5461 NewGEPBases.insert(NewBaseGEP); 5462 } 5463 5464 IRBuilder<> Builder(GEP); 5465 Value *NewGEP = NewBaseGEP; 5466 if (Offset == BaseOffset) { 5467 if (GEP->getType() != I8PtrTy) 5468 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5469 } else { 5470 // Calculate the new offset for the new GEP. 5471 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5472 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5473 5474 if (GEP->getType() != I8PtrTy) 5475 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5476 } 5477 GEP->replaceAllUsesWith(NewGEP); 5478 LargeOffsetGEPID.erase(GEP); 5479 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5480 GEP->eraseFromParent(); 5481 Changed = true; 5482 } 5483 } 5484 return Changed; 5485 } 5486 5487 /// Return true, if an ext(load) can be formed from an extension in 5488 /// \p MovedExts. 5489 bool CodeGenPrepare::canFormExtLd( 5490 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5491 Instruction *&Inst, bool HasPromoted) { 5492 for (auto *MovedExtInst : MovedExts) { 5493 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5494 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5495 Inst = MovedExtInst; 5496 break; 5497 } 5498 } 5499 if (!LI) 5500 return false; 5501 5502 // If they're already in the same block, there's nothing to do. 5503 // Make the cheap checks first if we did not promote. 5504 // If we promoted, we need to check if it is indeed profitable. 5505 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5506 return false; 5507 5508 return TLI->isExtLoad(LI, Inst, *DL); 5509 } 5510 5511 /// Move a zext or sext fed by a load into the same basic block as the load, 5512 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5513 /// extend into the load. 5514 /// 5515 /// E.g., 5516 /// \code 5517 /// %ld = load i32* %addr 5518 /// %add = add nuw i32 %ld, 4 5519 /// %zext = zext i32 %add to i64 5520 // \endcode 5521 /// => 5522 /// \code 5523 /// %ld = load i32* %addr 5524 /// %zext = zext i32 %ld to i64 5525 /// %add = add nuw i64 %zext, 4 5526 /// \encode 5527 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5528 /// allow us to match zext(load i32*) to i64. 5529 /// 5530 /// Also, try to promote the computations used to obtain a sign extended 5531 /// value used into memory accesses. 5532 /// E.g., 5533 /// \code 5534 /// a = add nsw i32 b, 3 5535 /// d = sext i32 a to i64 5536 /// e = getelementptr ..., i64 d 5537 /// \endcode 5538 /// => 5539 /// \code 5540 /// f = sext i32 b to i64 5541 /// a = add nsw i64 f, 3 5542 /// e = getelementptr ..., i64 a 5543 /// \endcode 5544 /// 5545 /// \p Inst[in/out] the extension may be modified during the process if some 5546 /// promotions apply. 5547 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5548 // ExtLoad formation and address type promotion infrastructure requires TLI to 5549 // be effective. 5550 if (!TLI) 5551 return false; 5552 5553 bool AllowPromotionWithoutCommonHeader = false; 5554 /// See if it is an interesting sext operations for the address type 5555 /// promotion before trying to promote it, e.g., the ones with the right 5556 /// type and used in memory accesses. 5557 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5558 *Inst, AllowPromotionWithoutCommonHeader); 5559 TypePromotionTransaction TPT(RemovedInsts); 5560 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5561 TPT.getRestorationPoint(); 5562 SmallVector<Instruction *, 1> Exts; 5563 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5564 Exts.push_back(Inst); 5565 5566 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5567 5568 // Look for a load being extended. 5569 LoadInst *LI = nullptr; 5570 Instruction *ExtFedByLoad; 5571 5572 // Try to promote a chain of computation if it allows to form an extended 5573 // load. 5574 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5575 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5576 TPT.commit(); 5577 // Move the extend into the same block as the load 5578 ExtFedByLoad->moveAfter(LI); 5579 // CGP does not check if the zext would be speculatively executed when moved 5580 // to the same basic block as the load. Preserving its original location 5581 // would pessimize the debugging experience, as well as negatively impact 5582 // the quality of sample pgo. We don't want to use "line 0" as that has a 5583 // size cost in the line-table section and logically the zext can be seen as 5584 // part of the load. Therefore we conservatively reuse the same debug 5585 // location for the load and the zext. 5586 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5587 ++NumExtsMoved; 5588 Inst = ExtFedByLoad; 5589 return true; 5590 } 5591 5592 // Continue promoting SExts if known as considerable depending on targets. 5593 if (ATPConsiderable && 5594 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5595 HasPromoted, TPT, SpeculativelyMovedExts)) 5596 return true; 5597 5598 TPT.rollback(LastKnownGood); 5599 return false; 5600 } 5601 5602 // Perform address type promotion if doing so is profitable. 5603 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5604 // instructions that sign extended the same initial value. However, if 5605 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5606 // extension is just profitable. 5607 bool CodeGenPrepare::performAddressTypePromotion( 5608 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5609 bool HasPromoted, TypePromotionTransaction &TPT, 5610 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5611 bool Promoted = false; 5612 SmallPtrSet<Instruction *, 1> UnhandledExts; 5613 bool AllSeenFirst = true; 5614 for (auto I : SpeculativelyMovedExts) { 5615 Value *HeadOfChain = I->getOperand(0); 5616 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5617 SeenChainsForSExt.find(HeadOfChain); 5618 // If there is an unhandled SExt which has the same header, try to promote 5619 // it as well. 5620 if (AlreadySeen != SeenChainsForSExt.end()) { 5621 if (AlreadySeen->second != nullptr) 5622 UnhandledExts.insert(AlreadySeen->second); 5623 AllSeenFirst = false; 5624 } 5625 } 5626 5627 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5628 SpeculativelyMovedExts.size() == 1)) { 5629 TPT.commit(); 5630 if (HasPromoted) 5631 Promoted = true; 5632 for (auto I : SpeculativelyMovedExts) { 5633 Value *HeadOfChain = I->getOperand(0); 5634 SeenChainsForSExt[HeadOfChain] = nullptr; 5635 ValToSExtendedUses[HeadOfChain].push_back(I); 5636 } 5637 // Update Inst as promotion happen. 5638 Inst = SpeculativelyMovedExts.pop_back_val(); 5639 } else { 5640 // This is the first chain visited from the header, keep the current chain 5641 // as unhandled. Defer to promote this until we encounter another SExt 5642 // chain derived from the same header. 5643 for (auto I : SpeculativelyMovedExts) { 5644 Value *HeadOfChain = I->getOperand(0); 5645 SeenChainsForSExt[HeadOfChain] = Inst; 5646 } 5647 return false; 5648 } 5649 5650 if (!AllSeenFirst && !UnhandledExts.empty()) 5651 for (auto VisitedSExt : UnhandledExts) { 5652 if (RemovedInsts.count(VisitedSExt)) 5653 continue; 5654 TypePromotionTransaction TPT(RemovedInsts); 5655 SmallVector<Instruction *, 1> Exts; 5656 SmallVector<Instruction *, 2> Chains; 5657 Exts.push_back(VisitedSExt); 5658 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5659 TPT.commit(); 5660 if (HasPromoted) 5661 Promoted = true; 5662 for (auto I : Chains) { 5663 Value *HeadOfChain = I->getOperand(0); 5664 // Mark this as handled. 5665 SeenChainsForSExt[HeadOfChain] = nullptr; 5666 ValToSExtendedUses[HeadOfChain].push_back(I); 5667 } 5668 } 5669 return Promoted; 5670 } 5671 5672 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5673 BasicBlock *DefBB = I->getParent(); 5674 5675 // If the result of a {s|z}ext and its source are both live out, rewrite all 5676 // other uses of the source with result of extension. 5677 Value *Src = I->getOperand(0); 5678 if (Src->hasOneUse()) 5679 return false; 5680 5681 // Only do this xform if truncating is free. 5682 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5683 return false; 5684 5685 // Only safe to perform the optimization if the source is also defined in 5686 // this block. 5687 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5688 return false; 5689 5690 bool DefIsLiveOut = false; 5691 for (User *U : I->users()) { 5692 Instruction *UI = cast<Instruction>(U); 5693 5694 // Figure out which BB this ext is used in. 5695 BasicBlock *UserBB = UI->getParent(); 5696 if (UserBB == DefBB) continue; 5697 DefIsLiveOut = true; 5698 break; 5699 } 5700 if (!DefIsLiveOut) 5701 return false; 5702 5703 // Make sure none of the uses are PHI nodes. 5704 for (User *U : Src->users()) { 5705 Instruction *UI = cast<Instruction>(U); 5706 BasicBlock *UserBB = UI->getParent(); 5707 if (UserBB == DefBB) continue; 5708 // Be conservative. We don't want this xform to end up introducing 5709 // reloads just before load / store instructions. 5710 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5711 return false; 5712 } 5713 5714 // InsertedTruncs - Only insert one trunc in each block once. 5715 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5716 5717 bool MadeChange = false; 5718 for (Use &U : Src->uses()) { 5719 Instruction *User = cast<Instruction>(U.getUser()); 5720 5721 // Figure out which BB this ext is used in. 5722 BasicBlock *UserBB = User->getParent(); 5723 if (UserBB == DefBB) continue; 5724 5725 // Both src and def are live in this block. Rewrite the use. 5726 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5727 5728 if (!InsertedTrunc) { 5729 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5730 assert(InsertPt != UserBB->end()); 5731 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5732 InsertedInsts.insert(InsertedTrunc); 5733 } 5734 5735 // Replace a use of the {s|z}ext source with a use of the result. 5736 U = InsertedTrunc; 5737 ++NumExtUses; 5738 MadeChange = true; 5739 } 5740 5741 return MadeChange; 5742 } 5743 5744 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5745 // just after the load if the target can fold this into one extload instruction, 5746 // with the hope of eliminating some of the other later "and" instructions using 5747 // the loaded value. "and"s that are made trivially redundant by the insertion 5748 // of the new "and" are removed by this function, while others (e.g. those whose 5749 // path from the load goes through a phi) are left for isel to potentially 5750 // remove. 5751 // 5752 // For example: 5753 // 5754 // b0: 5755 // x = load i32 5756 // ... 5757 // b1: 5758 // y = and x, 0xff 5759 // z = use y 5760 // 5761 // becomes: 5762 // 5763 // b0: 5764 // x = load i32 5765 // x' = and x, 0xff 5766 // ... 5767 // b1: 5768 // z = use x' 5769 // 5770 // whereas: 5771 // 5772 // b0: 5773 // x1 = load i32 5774 // ... 5775 // b1: 5776 // x2 = load i32 5777 // ... 5778 // b2: 5779 // x = phi x1, x2 5780 // y = and x, 0xff 5781 // 5782 // becomes (after a call to optimizeLoadExt for each load): 5783 // 5784 // b0: 5785 // x1 = load i32 5786 // x1' = and x1, 0xff 5787 // ... 5788 // b1: 5789 // x2 = load i32 5790 // x2' = and x2, 0xff 5791 // ... 5792 // b2: 5793 // x = phi x1', x2' 5794 // y = and x, 0xff 5795 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5796 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5797 return false; 5798 5799 // Skip loads we've already transformed. 5800 if (Load->hasOneUse() && 5801 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5802 return false; 5803 5804 // Look at all uses of Load, looking through phis, to determine how many bits 5805 // of the loaded value are needed. 5806 SmallVector<Instruction *, 8> WorkList; 5807 SmallPtrSet<Instruction *, 16> Visited; 5808 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5809 for (auto *U : Load->users()) 5810 WorkList.push_back(cast<Instruction>(U)); 5811 5812 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5813 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5814 APInt DemandBits(BitWidth, 0); 5815 APInt WidestAndBits(BitWidth, 0); 5816 5817 while (!WorkList.empty()) { 5818 Instruction *I = WorkList.back(); 5819 WorkList.pop_back(); 5820 5821 // Break use-def graph loops. 5822 if (!Visited.insert(I).second) 5823 continue; 5824 5825 // For a PHI node, push all of its users. 5826 if (auto *Phi = dyn_cast<PHINode>(I)) { 5827 for (auto *U : Phi->users()) 5828 WorkList.push_back(cast<Instruction>(U)); 5829 continue; 5830 } 5831 5832 switch (I->getOpcode()) { 5833 case Instruction::And: { 5834 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5835 if (!AndC) 5836 return false; 5837 APInt AndBits = AndC->getValue(); 5838 DemandBits |= AndBits; 5839 // Keep track of the widest and mask we see. 5840 if (AndBits.ugt(WidestAndBits)) 5841 WidestAndBits = AndBits; 5842 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5843 AndsToMaybeRemove.push_back(I); 5844 break; 5845 } 5846 5847 case Instruction::Shl: { 5848 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5849 if (!ShlC) 5850 return false; 5851 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5852 DemandBits.setLowBits(BitWidth - ShiftAmt); 5853 break; 5854 } 5855 5856 case Instruction::Trunc: { 5857 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5858 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5859 DemandBits.setLowBits(TruncBitWidth); 5860 break; 5861 } 5862 5863 default: 5864 return false; 5865 } 5866 } 5867 5868 uint32_t ActiveBits = DemandBits.getActiveBits(); 5869 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5870 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5871 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5872 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5873 // followed by an AND. 5874 // TODO: Look into removing this restriction by fixing backends to either 5875 // return false for isLoadExtLegal for i1 or have them select this pattern to 5876 // a single instruction. 5877 // 5878 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5879 // mask, since these are the only ands that will be removed by isel. 5880 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5881 WidestAndBits != DemandBits) 5882 return false; 5883 5884 LLVMContext &Ctx = Load->getType()->getContext(); 5885 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5886 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5887 5888 // Reject cases that won't be matched as extloads. 5889 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5890 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5891 return false; 5892 5893 IRBuilder<> Builder(Load->getNextNode()); 5894 auto *NewAnd = cast<Instruction>( 5895 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5896 // Mark this instruction as "inserted by CGP", so that other 5897 // optimizations don't touch it. 5898 InsertedInsts.insert(NewAnd); 5899 5900 // Replace all uses of load with new and (except for the use of load in the 5901 // new and itself). 5902 Load->replaceAllUsesWith(NewAnd); 5903 NewAnd->setOperand(0, Load); 5904 5905 // Remove any and instructions that are now redundant. 5906 for (auto *And : AndsToMaybeRemove) 5907 // Check that the and mask is the same as the one we decided to put on the 5908 // new and. 5909 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5910 And->replaceAllUsesWith(NewAnd); 5911 if (&*CurInstIterator == And) 5912 CurInstIterator = std::next(And->getIterator()); 5913 And->eraseFromParent(); 5914 ++NumAndUses; 5915 } 5916 5917 ++NumAndsAdded; 5918 return true; 5919 } 5920 5921 /// Check if V (an operand of a select instruction) is an expensive instruction 5922 /// that is only used once. 5923 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5924 auto *I = dyn_cast<Instruction>(V); 5925 // If it's safe to speculatively execute, then it should not have side 5926 // effects; therefore, it's safe to sink and possibly *not* execute. 5927 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5928 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5929 } 5930 5931 /// Returns true if a SelectInst should be turned into an explicit branch. 5932 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5933 const TargetLowering *TLI, 5934 SelectInst *SI) { 5935 // If even a predictable select is cheap, then a branch can't be cheaper. 5936 if (!TLI->isPredictableSelectExpensive()) 5937 return false; 5938 5939 // FIXME: This should use the same heuristics as IfConversion to determine 5940 // whether a select is better represented as a branch. 5941 5942 // If metadata tells us that the select condition is obviously predictable, 5943 // then we want to replace the select with a branch. 5944 uint64_t TrueWeight, FalseWeight; 5945 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5946 uint64_t Max = std::max(TrueWeight, FalseWeight); 5947 uint64_t Sum = TrueWeight + FalseWeight; 5948 if (Sum != 0) { 5949 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5950 if (Probability > TLI->getPredictableBranchThreshold()) 5951 return true; 5952 } 5953 } 5954 5955 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5956 5957 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5958 // comparison condition. If the compare has more than one use, there's 5959 // probably another cmov or setcc around, so it's not worth emitting a branch. 5960 if (!Cmp || !Cmp->hasOneUse()) 5961 return false; 5962 5963 // If either operand of the select is expensive and only needed on one side 5964 // of the select, we should form a branch. 5965 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5966 sinkSelectOperand(TTI, SI->getFalseValue())) 5967 return true; 5968 5969 return false; 5970 } 5971 5972 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5973 /// false value of \p SI. If the true/false value of \p SI is defined by any 5974 /// select instructions in \p Selects, look through the defining select 5975 /// instruction until the true/false value is not defined in \p Selects. 5976 static Value *getTrueOrFalseValue( 5977 SelectInst *SI, bool isTrue, 5978 const SmallPtrSet<const Instruction *, 2> &Selects) { 5979 Value *V = nullptr; 5980 5981 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5982 DefSI = dyn_cast<SelectInst>(V)) { 5983 assert(DefSI->getCondition() == SI->getCondition() && 5984 "The condition of DefSI does not match with SI"); 5985 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5986 } 5987 5988 assert(V && "Failed to get select true/false value"); 5989 return V; 5990 } 5991 5992 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5993 assert(Shift->isShift() && "Expected a shift"); 5994 5995 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5996 // general vector shifts, and (3) the shift amount is a select-of-splatted 5997 // values, hoist the shifts before the select: 5998 // shift Op0, (select Cond, TVal, FVal) --> 5999 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6000 // 6001 // This is inverting a generic IR transform when we know that the cost of a 6002 // general vector shift is more than the cost of 2 shift-by-scalars. 6003 // We can't do this effectively in SDAG because we may not be able to 6004 // determine if the select operands are splats from within a basic block. 6005 Type *Ty = Shift->getType(); 6006 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6007 return false; 6008 Value *Cond, *TVal, *FVal; 6009 if (!match(Shift->getOperand(1), 6010 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6011 return false; 6012 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6013 return false; 6014 6015 IRBuilder<> Builder(Shift); 6016 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6017 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6018 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6019 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6020 Shift->replaceAllUsesWith(NewSel); 6021 Shift->eraseFromParent(); 6022 return true; 6023 } 6024 6025 /// If we have a SelectInst that will likely profit from branch prediction, 6026 /// turn it into a branch. 6027 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6028 // If branch conversion isn't desirable, exit early. 6029 if (DisableSelectToBranch || OptSize || !TLI) 6030 return false; 6031 6032 // Find all consecutive select instructions that share the same condition. 6033 SmallVector<SelectInst *, 2> ASI; 6034 ASI.push_back(SI); 6035 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6036 It != SI->getParent()->end(); ++It) { 6037 SelectInst *I = dyn_cast<SelectInst>(&*It); 6038 if (I && SI->getCondition() == I->getCondition()) { 6039 ASI.push_back(I); 6040 } else { 6041 break; 6042 } 6043 } 6044 6045 SelectInst *LastSI = ASI.back(); 6046 // Increment the current iterator to skip all the rest of select instructions 6047 // because they will be either "not lowered" or "all lowered" to branch. 6048 CurInstIterator = std::next(LastSI->getIterator()); 6049 6050 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6051 6052 // Can we convert the 'select' to CF ? 6053 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6054 return false; 6055 6056 TargetLowering::SelectSupportKind SelectKind; 6057 if (VectorCond) 6058 SelectKind = TargetLowering::VectorMaskSelect; 6059 else if (SI->getType()->isVectorTy()) 6060 SelectKind = TargetLowering::ScalarCondVectorVal; 6061 else 6062 SelectKind = TargetLowering::ScalarValSelect; 6063 6064 if (TLI->isSelectSupported(SelectKind) && 6065 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6066 return false; 6067 6068 // The DominatorTree needs to be rebuilt by any consumers after this 6069 // transformation. We simply reset here rather than setting the ModifiedDT 6070 // flag to avoid restarting the function walk in runOnFunction for each 6071 // select optimized. 6072 DT.reset(); 6073 6074 // Transform a sequence like this: 6075 // start: 6076 // %cmp = cmp uge i32 %a, %b 6077 // %sel = select i1 %cmp, i32 %c, i32 %d 6078 // 6079 // Into: 6080 // start: 6081 // %cmp = cmp uge i32 %a, %b 6082 // br i1 %cmp, label %select.true, label %select.false 6083 // select.true: 6084 // br label %select.end 6085 // select.false: 6086 // br label %select.end 6087 // select.end: 6088 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6089 // 6090 // In addition, we may sink instructions that produce %c or %d from 6091 // the entry block into the destination(s) of the new branch. 6092 // If the true or false blocks do not contain a sunken instruction, that 6093 // block and its branch may be optimized away. In that case, one side of the 6094 // first branch will point directly to select.end, and the corresponding PHI 6095 // predecessor block will be the start block. 6096 6097 // First, we split the block containing the select into 2 blocks. 6098 BasicBlock *StartBlock = SI->getParent(); 6099 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6100 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6101 6102 // Delete the unconditional branch that was just created by the split. 6103 StartBlock->getTerminator()->eraseFromParent(); 6104 6105 // These are the new basic blocks for the conditional branch. 6106 // At least one will become an actual new basic block. 6107 BasicBlock *TrueBlock = nullptr; 6108 BasicBlock *FalseBlock = nullptr; 6109 BranchInst *TrueBranch = nullptr; 6110 BranchInst *FalseBranch = nullptr; 6111 6112 // Sink expensive instructions into the conditional blocks to avoid executing 6113 // them speculatively. 6114 for (SelectInst *SI : ASI) { 6115 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6116 if (TrueBlock == nullptr) { 6117 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6118 EndBlock->getParent(), EndBlock); 6119 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6120 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6121 } 6122 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6123 TrueInst->moveBefore(TrueBranch); 6124 } 6125 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6126 if (FalseBlock == nullptr) { 6127 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6128 EndBlock->getParent(), EndBlock); 6129 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6130 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6131 } 6132 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6133 FalseInst->moveBefore(FalseBranch); 6134 } 6135 } 6136 6137 // If there was nothing to sink, then arbitrarily choose the 'false' side 6138 // for a new input value to the PHI. 6139 if (TrueBlock == FalseBlock) { 6140 assert(TrueBlock == nullptr && 6141 "Unexpected basic block transform while optimizing select"); 6142 6143 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6144 EndBlock->getParent(), EndBlock); 6145 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6146 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6147 } 6148 6149 // Insert the real conditional branch based on the original condition. 6150 // If we did not create a new block for one of the 'true' or 'false' paths 6151 // of the condition, it means that side of the branch goes to the end block 6152 // directly and the path originates from the start block from the point of 6153 // view of the new PHI. 6154 BasicBlock *TT, *FT; 6155 if (TrueBlock == nullptr) { 6156 TT = EndBlock; 6157 FT = FalseBlock; 6158 TrueBlock = StartBlock; 6159 } else if (FalseBlock == nullptr) { 6160 TT = TrueBlock; 6161 FT = EndBlock; 6162 FalseBlock = StartBlock; 6163 } else { 6164 TT = TrueBlock; 6165 FT = FalseBlock; 6166 } 6167 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6168 6169 SmallPtrSet<const Instruction *, 2> INS; 6170 INS.insert(ASI.begin(), ASI.end()); 6171 // Use reverse iterator because later select may use the value of the 6172 // earlier select, and we need to propagate value through earlier select 6173 // to get the PHI operand. 6174 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6175 SelectInst *SI = *It; 6176 // The select itself is replaced with a PHI Node. 6177 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6178 PN->takeName(SI); 6179 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6180 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6181 PN->setDebugLoc(SI->getDebugLoc()); 6182 6183 SI->replaceAllUsesWith(PN); 6184 SI->eraseFromParent(); 6185 INS.erase(SI); 6186 ++NumSelectsExpanded; 6187 } 6188 6189 // Instruct OptimizeBlock to skip to the next block. 6190 CurInstIterator = StartBlock->end(); 6191 return true; 6192 } 6193 6194 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6195 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6196 int SplatElem = -1; 6197 for (unsigned i = 0; i < Mask.size(); ++i) { 6198 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6199 return false; 6200 SplatElem = Mask[i]; 6201 } 6202 6203 return true; 6204 } 6205 6206 /// Some targets have expensive vector shifts if the lanes aren't all the same 6207 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6208 /// it's often worth sinking a shufflevector splat down to its use so that 6209 /// codegen can spot all lanes are identical. 6210 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6211 BasicBlock *DefBB = SVI->getParent(); 6212 6213 // Only do this xform if variable vector shifts are particularly expensive. 6214 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6215 return false; 6216 6217 // We only expect better codegen by sinking a shuffle if we can recognise a 6218 // constant splat. 6219 if (!isBroadcastShuffle(SVI)) 6220 return false; 6221 6222 // InsertedShuffles - Only insert a shuffle in each block once. 6223 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6224 6225 bool MadeChange = false; 6226 for (User *U : SVI->users()) { 6227 Instruction *UI = cast<Instruction>(U); 6228 6229 // Figure out which BB this ext is used in. 6230 BasicBlock *UserBB = UI->getParent(); 6231 if (UserBB == DefBB) continue; 6232 6233 // For now only apply this when the splat is used by a shift instruction. 6234 if (!UI->isShift()) continue; 6235 6236 // Everything checks out, sink the shuffle if the user's block doesn't 6237 // already have a copy. 6238 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6239 6240 if (!InsertedShuffle) { 6241 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6242 assert(InsertPt != UserBB->end()); 6243 InsertedShuffle = 6244 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6245 SVI->getOperand(2), "", &*InsertPt); 6246 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6247 } 6248 6249 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6250 MadeChange = true; 6251 } 6252 6253 // If we removed all uses, nuke the shuffle. 6254 if (SVI->use_empty()) { 6255 SVI->eraseFromParent(); 6256 MadeChange = true; 6257 } 6258 6259 return MadeChange; 6260 } 6261 6262 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6263 // If the operands of I can be folded into a target instruction together with 6264 // I, duplicate and sink them. 6265 SmallVector<Use *, 4> OpsToSink; 6266 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6267 return false; 6268 6269 // OpsToSink can contain multiple uses in a use chain (e.g. 6270 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6271 // uses must come first, so we process the ops in reverse order so as to not 6272 // create invalid IR. 6273 BasicBlock *TargetBB = I->getParent(); 6274 bool Changed = false; 6275 SmallVector<Use *, 4> ToReplace; 6276 for (Use *U : reverse(OpsToSink)) { 6277 auto *UI = cast<Instruction>(U->get()); 6278 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6279 continue; 6280 ToReplace.push_back(U); 6281 } 6282 6283 SetVector<Instruction *> MaybeDead; 6284 DenseMap<Instruction *, Instruction *> NewInstructions; 6285 Instruction *InsertPoint = I; 6286 for (Use *U : ToReplace) { 6287 auto *UI = cast<Instruction>(U->get()); 6288 Instruction *NI = UI->clone(); 6289 NewInstructions[UI] = NI; 6290 MaybeDead.insert(UI); 6291 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6292 NI->insertBefore(InsertPoint); 6293 InsertPoint = NI; 6294 InsertedInsts.insert(NI); 6295 6296 // Update the use for the new instruction, making sure that we update the 6297 // sunk instruction uses, if it is part of a chain that has already been 6298 // sunk. 6299 Instruction *OldI = cast<Instruction>(U->getUser()); 6300 if (NewInstructions.count(OldI)) 6301 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6302 else 6303 U->set(NI); 6304 Changed = true; 6305 } 6306 6307 // Remove instructions that are dead after sinking. 6308 for (auto *I : MaybeDead) { 6309 if (!I->hasNUsesOrMore(1)) { 6310 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6311 I->eraseFromParent(); 6312 } 6313 } 6314 6315 return Changed; 6316 } 6317 6318 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6319 if (!TLI || !DL) 6320 return false; 6321 6322 Value *Cond = SI->getCondition(); 6323 Type *OldType = Cond->getType(); 6324 LLVMContext &Context = Cond->getContext(); 6325 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6326 unsigned RegWidth = RegType.getSizeInBits(); 6327 6328 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6329 return false; 6330 6331 // If the register width is greater than the type width, expand the condition 6332 // of the switch instruction and each case constant to the width of the 6333 // register. By widening the type of the switch condition, subsequent 6334 // comparisons (for case comparisons) will not need to be extended to the 6335 // preferred register width, so we will potentially eliminate N-1 extends, 6336 // where N is the number of cases in the switch. 6337 auto *NewType = Type::getIntNTy(Context, RegWidth); 6338 6339 // Zero-extend the switch condition and case constants unless the switch 6340 // condition is a function argument that is already being sign-extended. 6341 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6342 // everything instead. 6343 Instruction::CastOps ExtType = Instruction::ZExt; 6344 if (auto *Arg = dyn_cast<Argument>(Cond)) 6345 if (Arg->hasSExtAttr()) 6346 ExtType = Instruction::SExt; 6347 6348 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6349 ExtInst->insertBefore(SI); 6350 ExtInst->setDebugLoc(SI->getDebugLoc()); 6351 SI->setCondition(ExtInst); 6352 for (auto Case : SI->cases()) { 6353 APInt NarrowConst = Case.getCaseValue()->getValue(); 6354 APInt WideConst = (ExtType == Instruction::ZExt) ? 6355 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6356 Case.setValue(ConstantInt::get(Context, WideConst)); 6357 } 6358 6359 return true; 6360 } 6361 6362 6363 namespace { 6364 6365 /// Helper class to promote a scalar operation to a vector one. 6366 /// This class is used to move downward extractelement transition. 6367 /// E.g., 6368 /// a = vector_op <2 x i32> 6369 /// b = extractelement <2 x i32> a, i32 0 6370 /// c = scalar_op b 6371 /// store c 6372 /// 6373 /// => 6374 /// a = vector_op <2 x i32> 6375 /// c = vector_op a (equivalent to scalar_op on the related lane) 6376 /// * d = extractelement <2 x i32> c, i32 0 6377 /// * store d 6378 /// Assuming both extractelement and store can be combine, we get rid of the 6379 /// transition. 6380 class VectorPromoteHelper { 6381 /// DataLayout associated with the current module. 6382 const DataLayout &DL; 6383 6384 /// Used to perform some checks on the legality of vector operations. 6385 const TargetLowering &TLI; 6386 6387 /// Used to estimated the cost of the promoted chain. 6388 const TargetTransformInfo &TTI; 6389 6390 /// The transition being moved downwards. 6391 Instruction *Transition; 6392 6393 /// The sequence of instructions to be promoted. 6394 SmallVector<Instruction *, 4> InstsToBePromoted; 6395 6396 /// Cost of combining a store and an extract. 6397 unsigned StoreExtractCombineCost; 6398 6399 /// Instruction that will be combined with the transition. 6400 Instruction *CombineInst = nullptr; 6401 6402 /// The instruction that represents the current end of the transition. 6403 /// Since we are faking the promotion until we reach the end of the chain 6404 /// of computation, we need a way to get the current end of the transition. 6405 Instruction *getEndOfTransition() const { 6406 if (InstsToBePromoted.empty()) 6407 return Transition; 6408 return InstsToBePromoted.back(); 6409 } 6410 6411 /// Return the index of the original value in the transition. 6412 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6413 /// c, is at index 0. 6414 unsigned getTransitionOriginalValueIdx() const { 6415 assert(isa<ExtractElementInst>(Transition) && 6416 "Other kind of transitions are not supported yet"); 6417 return 0; 6418 } 6419 6420 /// Return the index of the index in the transition. 6421 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6422 /// is at index 1. 6423 unsigned getTransitionIdx() const { 6424 assert(isa<ExtractElementInst>(Transition) && 6425 "Other kind of transitions are not supported yet"); 6426 return 1; 6427 } 6428 6429 /// Get the type of the transition. 6430 /// This is the type of the original value. 6431 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6432 /// transition is <2 x i32>. 6433 Type *getTransitionType() const { 6434 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6435 } 6436 6437 /// Promote \p ToBePromoted by moving \p Def downward through. 6438 /// I.e., we have the following sequence: 6439 /// Def = Transition <ty1> a to <ty2> 6440 /// b = ToBePromoted <ty2> Def, ... 6441 /// => 6442 /// b = ToBePromoted <ty1> a, ... 6443 /// Def = Transition <ty1> ToBePromoted to <ty2> 6444 void promoteImpl(Instruction *ToBePromoted); 6445 6446 /// Check whether or not it is profitable to promote all the 6447 /// instructions enqueued to be promoted. 6448 bool isProfitableToPromote() { 6449 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6450 unsigned Index = isa<ConstantInt>(ValIdx) 6451 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6452 : -1; 6453 Type *PromotedType = getTransitionType(); 6454 6455 StoreInst *ST = cast<StoreInst>(CombineInst); 6456 unsigned AS = ST->getPointerAddressSpace(); 6457 unsigned Align = ST->getAlignment(); 6458 // Check if this store is supported. 6459 if (!TLI.allowsMisalignedMemoryAccesses( 6460 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6461 Align)) { 6462 // If this is not supported, there is no way we can combine 6463 // the extract with the store. 6464 return false; 6465 } 6466 6467 // The scalar chain of computation has to pay for the transition 6468 // scalar to vector. 6469 // The vector chain has to account for the combining cost. 6470 uint64_t ScalarCost = 6471 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6472 uint64_t VectorCost = StoreExtractCombineCost; 6473 for (const auto &Inst : InstsToBePromoted) { 6474 // Compute the cost. 6475 // By construction, all instructions being promoted are arithmetic ones. 6476 // Moreover, one argument is a constant that can be viewed as a splat 6477 // constant. 6478 Value *Arg0 = Inst->getOperand(0); 6479 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6480 isa<ConstantFP>(Arg0); 6481 TargetTransformInfo::OperandValueKind Arg0OVK = 6482 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6483 : TargetTransformInfo::OK_AnyValue; 6484 TargetTransformInfo::OperandValueKind Arg1OVK = 6485 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6486 : TargetTransformInfo::OK_AnyValue; 6487 ScalarCost += TTI.getArithmeticInstrCost( 6488 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6489 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6490 Arg0OVK, Arg1OVK); 6491 } 6492 LLVM_DEBUG( 6493 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6494 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6495 return ScalarCost > VectorCost; 6496 } 6497 6498 /// Generate a constant vector with \p Val with the same 6499 /// number of elements as the transition. 6500 /// \p UseSplat defines whether or not \p Val should be replicated 6501 /// across the whole vector. 6502 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6503 /// otherwise we generate a vector with as many undef as possible: 6504 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6505 /// used at the index of the extract. 6506 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6507 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6508 if (!UseSplat) { 6509 // If we cannot determine where the constant must be, we have to 6510 // use a splat constant. 6511 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6512 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6513 ExtractIdx = CstVal->getSExtValue(); 6514 else 6515 UseSplat = true; 6516 } 6517 6518 unsigned End = getTransitionType()->getVectorNumElements(); 6519 if (UseSplat) 6520 return ConstantVector::getSplat(End, Val); 6521 6522 SmallVector<Constant *, 4> ConstVec; 6523 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6524 for (unsigned Idx = 0; Idx != End; ++Idx) { 6525 if (Idx == ExtractIdx) 6526 ConstVec.push_back(Val); 6527 else 6528 ConstVec.push_back(UndefVal); 6529 } 6530 return ConstantVector::get(ConstVec); 6531 } 6532 6533 /// Check if promoting to a vector type an operand at \p OperandIdx 6534 /// in \p Use can trigger undefined behavior. 6535 static bool canCauseUndefinedBehavior(const Instruction *Use, 6536 unsigned OperandIdx) { 6537 // This is not safe to introduce undef when the operand is on 6538 // the right hand side of a division-like instruction. 6539 if (OperandIdx != 1) 6540 return false; 6541 switch (Use->getOpcode()) { 6542 default: 6543 return false; 6544 case Instruction::SDiv: 6545 case Instruction::UDiv: 6546 case Instruction::SRem: 6547 case Instruction::URem: 6548 return true; 6549 case Instruction::FDiv: 6550 case Instruction::FRem: 6551 return !Use->hasNoNaNs(); 6552 } 6553 llvm_unreachable(nullptr); 6554 } 6555 6556 public: 6557 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6558 const TargetTransformInfo &TTI, Instruction *Transition, 6559 unsigned CombineCost) 6560 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6561 StoreExtractCombineCost(CombineCost) { 6562 assert(Transition && "Do not know how to promote null"); 6563 } 6564 6565 /// Check if we can promote \p ToBePromoted to \p Type. 6566 bool canPromote(const Instruction *ToBePromoted) const { 6567 // We could support CastInst too. 6568 return isa<BinaryOperator>(ToBePromoted); 6569 } 6570 6571 /// Check if it is profitable to promote \p ToBePromoted 6572 /// by moving downward the transition through. 6573 bool shouldPromote(const Instruction *ToBePromoted) const { 6574 // Promote only if all the operands can be statically expanded. 6575 // Indeed, we do not want to introduce any new kind of transitions. 6576 for (const Use &U : ToBePromoted->operands()) { 6577 const Value *Val = U.get(); 6578 if (Val == getEndOfTransition()) { 6579 // If the use is a division and the transition is on the rhs, 6580 // we cannot promote the operation, otherwise we may create a 6581 // division by zero. 6582 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6583 return false; 6584 continue; 6585 } 6586 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6587 !isa<ConstantFP>(Val)) 6588 return false; 6589 } 6590 // Check that the resulting operation is legal. 6591 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6592 if (!ISDOpcode) 6593 return false; 6594 return StressStoreExtract || 6595 TLI.isOperationLegalOrCustom( 6596 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6597 } 6598 6599 /// Check whether or not \p Use can be combined 6600 /// with the transition. 6601 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6602 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6603 6604 /// Record \p ToBePromoted as part of the chain to be promoted. 6605 void enqueueForPromotion(Instruction *ToBePromoted) { 6606 InstsToBePromoted.push_back(ToBePromoted); 6607 } 6608 6609 /// Set the instruction that will be combined with the transition. 6610 void recordCombineInstruction(Instruction *ToBeCombined) { 6611 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6612 CombineInst = ToBeCombined; 6613 } 6614 6615 /// Promote all the instructions enqueued for promotion if it is 6616 /// is profitable. 6617 /// \return True if the promotion happened, false otherwise. 6618 bool promote() { 6619 // Check if there is something to promote. 6620 // Right now, if we do not have anything to combine with, 6621 // we assume the promotion is not profitable. 6622 if (InstsToBePromoted.empty() || !CombineInst) 6623 return false; 6624 6625 // Check cost. 6626 if (!StressStoreExtract && !isProfitableToPromote()) 6627 return false; 6628 6629 // Promote. 6630 for (auto &ToBePromoted : InstsToBePromoted) 6631 promoteImpl(ToBePromoted); 6632 InstsToBePromoted.clear(); 6633 return true; 6634 } 6635 }; 6636 6637 } // end anonymous namespace 6638 6639 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6640 // At this point, we know that all the operands of ToBePromoted but Def 6641 // can be statically promoted. 6642 // For Def, we need to use its parameter in ToBePromoted: 6643 // b = ToBePromoted ty1 a 6644 // Def = Transition ty1 b to ty2 6645 // Move the transition down. 6646 // 1. Replace all uses of the promoted operation by the transition. 6647 // = ... b => = ... Def. 6648 assert(ToBePromoted->getType() == Transition->getType() && 6649 "The type of the result of the transition does not match " 6650 "the final type"); 6651 ToBePromoted->replaceAllUsesWith(Transition); 6652 // 2. Update the type of the uses. 6653 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6654 Type *TransitionTy = getTransitionType(); 6655 ToBePromoted->mutateType(TransitionTy); 6656 // 3. Update all the operands of the promoted operation with promoted 6657 // operands. 6658 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6659 for (Use &U : ToBePromoted->operands()) { 6660 Value *Val = U.get(); 6661 Value *NewVal = nullptr; 6662 if (Val == Transition) 6663 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6664 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6665 isa<ConstantFP>(Val)) { 6666 // Use a splat constant if it is not safe to use undef. 6667 NewVal = getConstantVector( 6668 cast<Constant>(Val), 6669 isa<UndefValue>(Val) || 6670 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6671 } else 6672 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6673 "this?"); 6674 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6675 } 6676 Transition->moveAfter(ToBePromoted); 6677 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6678 } 6679 6680 /// Some targets can do store(extractelement) with one instruction. 6681 /// Try to push the extractelement towards the stores when the target 6682 /// has this feature and this is profitable. 6683 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6684 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6685 if (DisableStoreExtract || !TLI || 6686 (!StressStoreExtract && 6687 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6688 Inst->getOperand(1), CombineCost))) 6689 return false; 6690 6691 // At this point we know that Inst is a vector to scalar transition. 6692 // Try to move it down the def-use chain, until: 6693 // - We can combine the transition with its single use 6694 // => we got rid of the transition. 6695 // - We escape the current basic block 6696 // => we would need to check that we are moving it at a cheaper place and 6697 // we do not do that for now. 6698 BasicBlock *Parent = Inst->getParent(); 6699 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6700 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6701 // If the transition has more than one use, assume this is not going to be 6702 // beneficial. 6703 while (Inst->hasOneUse()) { 6704 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6705 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6706 6707 if (ToBePromoted->getParent() != Parent) { 6708 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6709 << ToBePromoted->getParent()->getName() 6710 << ") than the transition (" << Parent->getName() 6711 << ").\n"); 6712 return false; 6713 } 6714 6715 if (VPH.canCombine(ToBePromoted)) { 6716 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6717 << "will be combined with: " << *ToBePromoted << '\n'); 6718 VPH.recordCombineInstruction(ToBePromoted); 6719 bool Changed = VPH.promote(); 6720 NumStoreExtractExposed += Changed; 6721 return Changed; 6722 } 6723 6724 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6725 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6726 return false; 6727 6728 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6729 6730 VPH.enqueueForPromotion(ToBePromoted); 6731 Inst = ToBePromoted; 6732 } 6733 return false; 6734 } 6735 6736 /// For the instruction sequence of store below, F and I values 6737 /// are bundled together as an i64 value before being stored into memory. 6738 /// Sometimes it is more efficient to generate separate stores for F and I, 6739 /// which can remove the bitwise instructions or sink them to colder places. 6740 /// 6741 /// (store (or (zext (bitcast F to i32) to i64), 6742 /// (shl (zext I to i64), 32)), addr) --> 6743 /// (store F, addr) and (store I, addr+4) 6744 /// 6745 /// Similarly, splitting for other merged store can also be beneficial, like: 6746 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6747 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6748 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6749 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6750 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6751 /// 6752 /// We allow each target to determine specifically which kind of splitting is 6753 /// supported. 6754 /// 6755 /// The store patterns are commonly seen from the simple code snippet below 6756 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6757 /// void goo(const std::pair<int, float> &); 6758 /// hoo() { 6759 /// ... 6760 /// goo(std::make_pair(tmp, ftmp)); 6761 /// ... 6762 /// } 6763 /// 6764 /// Although we already have similar splitting in DAG Combine, we duplicate 6765 /// it in CodeGenPrepare to catch the case in which pattern is across 6766 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6767 /// during code expansion. 6768 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6769 const TargetLowering &TLI) { 6770 // Handle simple but common cases only. 6771 Type *StoreType = SI.getValueOperand()->getType(); 6772 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6773 DL.getTypeSizeInBits(StoreType) == 0) 6774 return false; 6775 6776 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6777 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6778 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6779 return false; 6780 6781 // Don't split the store if it is volatile. 6782 if (SI.isVolatile()) 6783 return false; 6784 6785 // Match the following patterns: 6786 // (store (or (zext LValue to i64), 6787 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6788 // or 6789 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6790 // (zext LValue to i64), 6791 // Expect both operands of OR and the first operand of SHL have only 6792 // one use. 6793 Value *LValue, *HValue; 6794 if (!match(SI.getValueOperand(), 6795 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6796 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6797 m_SpecificInt(HalfValBitSize)))))) 6798 return false; 6799 6800 // Check LValue and HValue are int with size less or equal than 32. 6801 if (!LValue->getType()->isIntegerTy() || 6802 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6803 !HValue->getType()->isIntegerTy() || 6804 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6805 return false; 6806 6807 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6808 // as the input of target query. 6809 auto *LBC = dyn_cast<BitCastInst>(LValue); 6810 auto *HBC = dyn_cast<BitCastInst>(HValue); 6811 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6812 : EVT::getEVT(LValue->getType()); 6813 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6814 : EVT::getEVT(HValue->getType()); 6815 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6816 return false; 6817 6818 // Start to split store. 6819 IRBuilder<> Builder(SI.getContext()); 6820 Builder.SetInsertPoint(&SI); 6821 6822 // If LValue/HValue is a bitcast in another BB, create a new one in current 6823 // BB so it may be merged with the splitted stores by dag combiner. 6824 if (LBC && LBC->getParent() != SI.getParent()) 6825 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6826 if (HBC && HBC->getParent() != SI.getParent()) 6827 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6828 6829 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6830 auto CreateSplitStore = [&](Value *V, bool Upper) { 6831 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6832 Value *Addr = Builder.CreateBitCast( 6833 SI.getOperand(1), 6834 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6835 if ((IsLE && Upper) || (!IsLE && !Upper)) 6836 Addr = Builder.CreateGEP( 6837 SplitStoreType, Addr, 6838 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6839 Builder.CreateAlignedStore( 6840 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6841 }; 6842 6843 CreateSplitStore(LValue, false); 6844 CreateSplitStore(HValue, true); 6845 6846 // Delete the old store. 6847 SI.eraseFromParent(); 6848 return true; 6849 } 6850 6851 // Return true if the GEP has two operands, the first operand is of a sequential 6852 // type, and the second operand is a constant. 6853 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6854 gep_type_iterator I = gep_type_begin(*GEP); 6855 return GEP->getNumOperands() == 2 && 6856 I.isSequential() && 6857 isa<ConstantInt>(GEP->getOperand(1)); 6858 } 6859 6860 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6861 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6862 // reducing liveness interference across those edges benefits global register 6863 // allocation. Currently handles only certain cases. 6864 // 6865 // For example, unmerge %GEPI and %UGEPI as below. 6866 // 6867 // ---------- BEFORE ---------- 6868 // SrcBlock: 6869 // ... 6870 // %GEPIOp = ... 6871 // ... 6872 // %GEPI = gep %GEPIOp, Idx 6873 // ... 6874 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6875 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6876 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6877 // %UGEPI) 6878 // 6879 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6880 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6881 // ... 6882 // 6883 // DstBi: 6884 // ... 6885 // %UGEPI = gep %GEPIOp, UIdx 6886 // ... 6887 // --------------------------- 6888 // 6889 // ---------- AFTER ---------- 6890 // SrcBlock: 6891 // ... (same as above) 6892 // (* %GEPI is still alive on the indirectbr edges) 6893 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6894 // unmerging) 6895 // ... 6896 // 6897 // DstBi: 6898 // ... 6899 // %UGEPI = gep %GEPI, (UIdx-Idx) 6900 // ... 6901 // --------------------------- 6902 // 6903 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6904 // no longer alive on them. 6905 // 6906 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6907 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6908 // not to disable further simplications and optimizations as a result of GEP 6909 // merging. 6910 // 6911 // Note this unmerging may increase the length of the data flow critical path 6912 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6913 // between the register pressure and the length of data-flow critical 6914 // path. Restricting this to the uncommon IndirectBr case would minimize the 6915 // impact of potentially longer critical path, if any, and the impact on compile 6916 // time. 6917 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6918 const TargetTransformInfo *TTI) { 6919 BasicBlock *SrcBlock = GEPI->getParent(); 6920 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6921 // (non-IndirectBr) cases exit early here. 6922 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6923 return false; 6924 // Check that GEPI is a simple gep with a single constant index. 6925 if (!GEPSequentialConstIndexed(GEPI)) 6926 return false; 6927 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6928 // Check that GEPI is a cheap one. 6929 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6930 > TargetTransformInfo::TCC_Basic) 6931 return false; 6932 Value *GEPIOp = GEPI->getOperand(0); 6933 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6934 if (!isa<Instruction>(GEPIOp)) 6935 return false; 6936 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6937 if (GEPIOpI->getParent() != SrcBlock) 6938 return false; 6939 // Check that GEP is used outside the block, meaning it's alive on the 6940 // IndirectBr edge(s). 6941 if (find_if(GEPI->users(), [&](User *Usr) { 6942 if (auto *I = dyn_cast<Instruction>(Usr)) { 6943 if (I->getParent() != SrcBlock) { 6944 return true; 6945 } 6946 } 6947 return false; 6948 }) == GEPI->users().end()) 6949 return false; 6950 // The second elements of the GEP chains to be unmerged. 6951 std::vector<GetElementPtrInst *> UGEPIs; 6952 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6953 // on IndirectBr edges. 6954 for (User *Usr : GEPIOp->users()) { 6955 if (Usr == GEPI) continue; 6956 // Check if Usr is an Instruction. If not, give up. 6957 if (!isa<Instruction>(Usr)) 6958 return false; 6959 auto *UI = cast<Instruction>(Usr); 6960 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6961 if (UI->getParent() == SrcBlock) 6962 continue; 6963 // Check if Usr is a GEP. If not, give up. 6964 if (!isa<GetElementPtrInst>(Usr)) 6965 return false; 6966 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6967 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6968 // the pointer operand to it. If so, record it in the vector. If not, give 6969 // up. 6970 if (!GEPSequentialConstIndexed(UGEPI)) 6971 return false; 6972 if (UGEPI->getOperand(0) != GEPIOp) 6973 return false; 6974 if (GEPIIdx->getType() != 6975 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6976 return false; 6977 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6978 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6979 > TargetTransformInfo::TCC_Basic) 6980 return false; 6981 UGEPIs.push_back(UGEPI); 6982 } 6983 if (UGEPIs.size() == 0) 6984 return false; 6985 // Check the materializing cost of (Uidx-Idx). 6986 for (GetElementPtrInst *UGEPI : UGEPIs) { 6987 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6988 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6989 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6990 if (ImmCost > TargetTransformInfo::TCC_Basic) 6991 return false; 6992 } 6993 // Now unmerge between GEPI and UGEPIs. 6994 for (GetElementPtrInst *UGEPI : UGEPIs) { 6995 UGEPI->setOperand(0, GEPI); 6996 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6997 Constant *NewUGEPIIdx = 6998 ConstantInt::get(GEPIIdx->getType(), 6999 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7000 UGEPI->setOperand(1, NewUGEPIIdx); 7001 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7002 // inbounds to avoid UB. 7003 if (!GEPI->isInBounds()) { 7004 UGEPI->setIsInBounds(false); 7005 } 7006 } 7007 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7008 // alive on IndirectBr edges). 7009 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7010 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7011 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7012 return true; 7013 } 7014 7015 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7016 // Bail out if we inserted the instruction to prevent optimizations from 7017 // stepping on each other's toes. 7018 if (InsertedInsts.count(I)) 7019 return false; 7020 7021 // TODO: Move into the switch on opcode below here. 7022 if (PHINode *P = dyn_cast<PHINode>(I)) { 7023 // It is possible for very late stage optimizations (such as SimplifyCFG) 7024 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7025 // trivial PHI, go ahead and zap it here. 7026 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7027 LargeOffsetGEPMap.erase(P); 7028 P->replaceAllUsesWith(V); 7029 P->eraseFromParent(); 7030 ++NumPHIsElim; 7031 return true; 7032 } 7033 return false; 7034 } 7035 7036 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7037 // If the source of the cast is a constant, then this should have 7038 // already been constant folded. The only reason NOT to constant fold 7039 // it is if something (e.g. LSR) was careful to place the constant 7040 // evaluation in a block other than then one that uses it (e.g. to hoist 7041 // the address of globals out of a loop). If this is the case, we don't 7042 // want to forward-subst the cast. 7043 if (isa<Constant>(CI->getOperand(0))) 7044 return false; 7045 7046 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7047 return true; 7048 7049 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7050 /// Sink a zext or sext into its user blocks if the target type doesn't 7051 /// fit in one register 7052 if (TLI && 7053 TLI->getTypeAction(CI->getContext(), 7054 TLI->getValueType(*DL, CI->getType())) == 7055 TargetLowering::TypeExpandInteger) { 7056 return SinkCast(CI); 7057 } else { 7058 bool MadeChange = optimizeExt(I); 7059 return MadeChange | optimizeExtUses(I); 7060 } 7061 } 7062 return false; 7063 } 7064 7065 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7066 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 7067 return true; 7068 7069 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7070 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7071 if (TLI) { 7072 bool Modified = optimizeLoadExt(LI); 7073 unsigned AS = LI->getPointerAddressSpace(); 7074 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7075 return Modified; 7076 } 7077 return false; 7078 } 7079 7080 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7081 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 7082 return true; 7083 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7084 if (TLI) { 7085 unsigned AS = SI->getPointerAddressSpace(); 7086 return optimizeMemoryInst(I, SI->getOperand(1), 7087 SI->getOperand(0)->getType(), AS); 7088 } 7089 return false; 7090 } 7091 7092 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7093 unsigned AS = RMW->getPointerAddressSpace(); 7094 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7095 RMW->getType(), AS); 7096 } 7097 7098 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7099 unsigned AS = CmpX->getPointerAddressSpace(); 7100 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7101 CmpX->getCompareOperand()->getType(), AS); 7102 } 7103 7104 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7105 7106 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7107 EnableAndCmpSinking && TLI) 7108 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7109 7110 // TODO: Move this into the switch on opcode - it handles shifts already. 7111 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7112 BinOp->getOpcode() == Instruction::LShr)) { 7113 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7114 if (TLI && CI && TLI->hasExtractBitsInsn()) 7115 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7116 return true; 7117 } 7118 7119 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7120 if (GEPI->hasAllZeroIndices()) { 7121 /// The GEP operand must be a pointer, so must its result -> BitCast 7122 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7123 GEPI->getName(), GEPI); 7124 NC->setDebugLoc(GEPI->getDebugLoc()); 7125 GEPI->replaceAllUsesWith(NC); 7126 GEPI->eraseFromParent(); 7127 ++NumGEPsElim; 7128 optimizeInst(NC, ModifiedDT); 7129 return true; 7130 } 7131 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7132 return true; 7133 } 7134 return false; 7135 } 7136 7137 if (tryToSinkFreeOperands(I)) 7138 return true; 7139 7140 switch (I->getOpcode()) { 7141 case Instruction::Shl: 7142 case Instruction::LShr: 7143 case Instruction::AShr: 7144 return optimizeShiftInst(cast<BinaryOperator>(I)); 7145 case Instruction::Call: 7146 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7147 case Instruction::Select: 7148 return optimizeSelectInst(cast<SelectInst>(I)); 7149 case Instruction::ShuffleVector: 7150 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7151 case Instruction::Switch: 7152 return optimizeSwitchInst(cast<SwitchInst>(I)); 7153 case Instruction::ExtractElement: 7154 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7155 } 7156 7157 return false; 7158 } 7159 7160 /// Given an OR instruction, check to see if this is a bitreverse 7161 /// idiom. If so, insert the new intrinsic and return true. 7162 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7163 const TargetLowering &TLI) { 7164 if (!I.getType()->isIntegerTy() || 7165 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7166 TLI.getValueType(DL, I.getType(), true))) 7167 return false; 7168 7169 SmallVector<Instruction*, 4> Insts; 7170 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7171 return false; 7172 Instruction *LastInst = Insts.back(); 7173 I.replaceAllUsesWith(LastInst); 7174 RecursivelyDeleteTriviallyDeadInstructions(&I); 7175 return true; 7176 } 7177 7178 // In this pass we look for GEP and cast instructions that are used 7179 // across basic blocks and rewrite them to improve basic-block-at-a-time 7180 // selection. 7181 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7182 SunkAddrs.clear(); 7183 bool MadeChange = false; 7184 7185 CurInstIterator = BB.begin(); 7186 while (CurInstIterator != BB.end()) { 7187 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7188 if (ModifiedDT) 7189 return true; 7190 } 7191 7192 bool MadeBitReverse = true; 7193 while (TLI && MadeBitReverse) { 7194 MadeBitReverse = false; 7195 for (auto &I : reverse(BB)) { 7196 if (makeBitReverse(I, *DL, *TLI)) { 7197 MadeBitReverse = MadeChange = true; 7198 break; 7199 } 7200 } 7201 } 7202 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7203 7204 return MadeChange; 7205 } 7206 7207 // llvm.dbg.value is far away from the value then iSel may not be able 7208 // handle it properly. iSel will drop llvm.dbg.value if it can not 7209 // find a node corresponding to the value. 7210 bool CodeGenPrepare::placeDbgValues(Function &F) { 7211 bool MadeChange = false; 7212 for (BasicBlock &BB : F) { 7213 Instruction *PrevNonDbgInst = nullptr; 7214 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7215 Instruction *Insn = &*BI++; 7216 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7217 // Leave dbg.values that refer to an alloca alone. These 7218 // intrinsics describe the address of a variable (= the alloca) 7219 // being taken. They should not be moved next to the alloca 7220 // (and to the beginning of the scope), but rather stay close to 7221 // where said address is used. 7222 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7223 PrevNonDbgInst = Insn; 7224 continue; 7225 } 7226 7227 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7228 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7229 // If VI is a phi in a block with an EHPad terminator, we can't insert 7230 // after it. 7231 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7232 continue; 7233 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7234 << *DVI << ' ' << *VI); 7235 DVI->removeFromParent(); 7236 if (isa<PHINode>(VI)) 7237 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7238 else 7239 DVI->insertAfter(VI); 7240 MadeChange = true; 7241 ++NumDbgValueMoved; 7242 } 7243 } 7244 } 7245 return MadeChange; 7246 } 7247 7248 /// Scale down both weights to fit into uint32_t. 7249 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7250 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7251 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7252 NewTrue = NewTrue / Scale; 7253 NewFalse = NewFalse / Scale; 7254 } 7255 7256 /// Some targets prefer to split a conditional branch like: 7257 /// \code 7258 /// %0 = icmp ne i32 %a, 0 7259 /// %1 = icmp ne i32 %b, 0 7260 /// %or.cond = or i1 %0, %1 7261 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7262 /// \endcode 7263 /// into multiple branch instructions like: 7264 /// \code 7265 /// bb1: 7266 /// %0 = icmp ne i32 %a, 0 7267 /// br i1 %0, label %TrueBB, label %bb2 7268 /// bb2: 7269 /// %1 = icmp ne i32 %b, 0 7270 /// br i1 %1, label %TrueBB, label %FalseBB 7271 /// \endcode 7272 /// This usually allows instruction selection to do even further optimizations 7273 /// and combine the compare with the branch instruction. Currently this is 7274 /// applied for targets which have "cheap" jump instructions. 7275 /// 7276 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7277 /// 7278 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7279 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7280 return false; 7281 7282 bool MadeChange = false; 7283 for (auto &BB : F) { 7284 // Does this BB end with the following? 7285 // %cond1 = icmp|fcmp|binary instruction ... 7286 // %cond2 = icmp|fcmp|binary instruction ... 7287 // %cond.or = or|and i1 %cond1, cond2 7288 // br i1 %cond.or label %dest1, label %dest2" 7289 BinaryOperator *LogicOp; 7290 BasicBlock *TBB, *FBB; 7291 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7292 continue; 7293 7294 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7295 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7296 continue; 7297 7298 unsigned Opc; 7299 Value *Cond1, *Cond2; 7300 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7301 m_OneUse(m_Value(Cond2))))) 7302 Opc = Instruction::And; 7303 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7304 m_OneUse(m_Value(Cond2))))) 7305 Opc = Instruction::Or; 7306 else 7307 continue; 7308 7309 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7310 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7311 continue; 7312 7313 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7314 7315 // Create a new BB. 7316 auto TmpBB = 7317 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7318 BB.getParent(), BB.getNextNode()); 7319 7320 // Update original basic block by using the first condition directly by the 7321 // branch instruction and removing the no longer needed and/or instruction. 7322 Br1->setCondition(Cond1); 7323 LogicOp->eraseFromParent(); 7324 7325 // Depending on the condition we have to either replace the true or the 7326 // false successor of the original branch instruction. 7327 if (Opc == Instruction::And) 7328 Br1->setSuccessor(0, TmpBB); 7329 else 7330 Br1->setSuccessor(1, TmpBB); 7331 7332 // Fill in the new basic block. 7333 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7334 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7335 I->removeFromParent(); 7336 I->insertBefore(Br2); 7337 } 7338 7339 // Update PHI nodes in both successors. The original BB needs to be 7340 // replaced in one successor's PHI nodes, because the branch comes now from 7341 // the newly generated BB (NewBB). In the other successor we need to add one 7342 // incoming edge to the PHI nodes, because both branch instructions target 7343 // now the same successor. Depending on the original branch condition 7344 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7345 // we perform the correct update for the PHI nodes. 7346 // This doesn't change the successor order of the just created branch 7347 // instruction (or any other instruction). 7348 if (Opc == Instruction::Or) 7349 std::swap(TBB, FBB); 7350 7351 // Replace the old BB with the new BB. 7352 TBB->replacePhiUsesWith(&BB, TmpBB); 7353 7354 // Add another incoming edge form the new BB. 7355 for (PHINode &PN : FBB->phis()) { 7356 auto *Val = PN.getIncomingValueForBlock(&BB); 7357 PN.addIncoming(Val, TmpBB); 7358 } 7359 7360 // Update the branch weights (from SelectionDAGBuilder:: 7361 // FindMergedConditions). 7362 if (Opc == Instruction::Or) { 7363 // Codegen X | Y as: 7364 // BB1: 7365 // jmp_if_X TBB 7366 // jmp TmpBB 7367 // TmpBB: 7368 // jmp_if_Y TBB 7369 // jmp FBB 7370 // 7371 7372 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7373 // The requirement is that 7374 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7375 // = TrueProb for original BB. 7376 // Assuming the original weights are A and B, one choice is to set BB1's 7377 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7378 // assumes that 7379 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7380 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7381 // TmpBB, but the math is more complicated. 7382 uint64_t TrueWeight, FalseWeight; 7383 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7384 uint64_t NewTrueWeight = TrueWeight; 7385 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7386 scaleWeights(NewTrueWeight, NewFalseWeight); 7387 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7388 .createBranchWeights(TrueWeight, FalseWeight)); 7389 7390 NewTrueWeight = TrueWeight; 7391 NewFalseWeight = 2 * FalseWeight; 7392 scaleWeights(NewTrueWeight, NewFalseWeight); 7393 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7394 .createBranchWeights(TrueWeight, FalseWeight)); 7395 } 7396 } else { 7397 // Codegen X & Y as: 7398 // BB1: 7399 // jmp_if_X TmpBB 7400 // jmp FBB 7401 // TmpBB: 7402 // jmp_if_Y TBB 7403 // jmp FBB 7404 // 7405 // This requires creation of TmpBB after CurBB. 7406 7407 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7408 // The requirement is that 7409 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7410 // = FalseProb for original BB. 7411 // Assuming the original weights are A and B, one choice is to set BB1's 7412 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7413 // assumes that 7414 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7415 uint64_t TrueWeight, FalseWeight; 7416 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7417 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7418 uint64_t NewFalseWeight = FalseWeight; 7419 scaleWeights(NewTrueWeight, NewFalseWeight); 7420 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7421 .createBranchWeights(TrueWeight, FalseWeight)); 7422 7423 NewTrueWeight = 2 * TrueWeight; 7424 NewFalseWeight = FalseWeight; 7425 scaleWeights(NewTrueWeight, NewFalseWeight); 7426 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7427 .createBranchWeights(TrueWeight, FalseWeight)); 7428 } 7429 } 7430 7431 ModifiedDT = true; 7432 MadeChange = true; 7433 7434 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7435 TmpBB->dump()); 7436 } 7437 return MadeChange; 7438 } 7439