1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetPassConfig>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<LoopInfoWrapperPass>(); 333 } 334 335 private: 336 template <typename F> 337 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 338 // Substituting can cause recursive simplifications, which can invalidate 339 // our iterator. Use a WeakTrackingVH to hold onto it in case this 340 // happens. 341 Value *CurValue = &*CurInstIterator; 342 WeakTrackingVH IterHandle(CurValue); 343 344 f(); 345 346 // If the iterator instruction was recursively deleted, start over at the 347 // start of the block. 348 if (IterHandle != CurValue) { 349 CurInstIterator = BB->begin(); 350 SunkAddrs.clear(); 351 } 352 } 353 354 // Get the DominatorTree, building if necessary. 355 DominatorTree &getDT(Function &F) { 356 if (!DT) 357 DT = std::make_unique<DominatorTree>(F); 358 return *DT; 359 } 360 361 bool eliminateFallThrough(Function &F); 362 bool eliminateMostlyEmptyBlocks(Function &F); 363 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 364 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 365 void eliminateMostlyEmptyBlock(BasicBlock *BB); 366 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 367 bool isPreheader); 368 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 369 bool optimizeInst(Instruction *I, bool &ModifiedDT); 370 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 371 Type *AccessTy, unsigned AddrSpace); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 403 Value *Arg1, CmpInst *Cmp, 404 Intrinsic::ID IID); 405 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 408 }; 409 410 } // end anonymous namespace 411 412 char CodeGenPrepare::ID = 0; 413 414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 415 "Optimize for code generation", false, false) 416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 418 "Optimize for code generation", false, false) 419 420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 421 422 bool CodeGenPrepare::runOnFunction(Function &F) { 423 if (skipFunction(F)) 424 return false; 425 426 DL = &F.getParent()->getDataLayout(); 427 428 bool EverMadeChange = false; 429 // Clear per function information. 430 InsertedInsts.clear(); 431 PromotedInsts.clear(); 432 433 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 434 SubtargetInfo = TM->getSubtargetImpl(F); 435 TLI = SubtargetInfo->getTargetLowering(); 436 TRI = SubtargetInfo->getRegisterInfo(); 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 454 const DenseMap<unsigned int, unsigned int> &BypassWidths = 455 TLI->getBypassSlowDivWidths(); 456 BasicBlock* BB = &*F.begin(); 457 while (BB != nullptr) { 458 // bypassSlowDivision may create new BBs, but we don't want to reapply the 459 // optimization to those blocks. 460 BasicBlock* Next = BB->getNextNode(); 461 // F.hasOptSize is already checked in the outer if statement. 462 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 463 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 464 BB = Next; 465 } 466 } 467 468 // Eliminate blocks that contain only PHI nodes and an 469 // unconditional branch. 470 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 471 472 bool ModifiedDT = false; 473 if (!DisableBranchOpts) 474 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 475 476 // Split some critical edges where one of the sources is an indirect branch, 477 // to help generate sane code for PHIs involving such edges. 478 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 479 480 bool MadeChange = true; 481 while (MadeChange) { 482 MadeChange = false; 483 DT.reset(); 484 for (Function::iterator I = F.begin(); I != F.end(); ) { 485 BasicBlock *BB = &*I++; 486 bool ModifiedDTOnIteration = false; 487 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 488 489 // Restart BB iteration if the dominator tree of the Function was changed 490 if (ModifiedDTOnIteration) 491 break; 492 } 493 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 494 MadeChange |= mergeSExts(F); 495 if (!LargeOffsetGEPMap.empty()) 496 MadeChange |= splitLargeGEPOffsets(); 497 498 // Really free removed instructions during promotion. 499 for (Instruction *I : RemovedInsts) 500 I->deleteValue(); 501 502 EverMadeChange |= MadeChange; 503 SeenChainsForSExt.clear(); 504 ValToSExtendedUses.clear(); 505 RemovedInsts.clear(); 506 LargeOffsetGEPMap.clear(); 507 LargeOffsetGEPID.clear(); 508 } 509 510 SunkAddrs.clear(); 511 512 if (!DisableBranchOpts) { 513 MadeChange = false; 514 // Use a set vector to get deterministic iteration order. The order the 515 // blocks are removed may affect whether or not PHI nodes in successors 516 // are removed. 517 SmallSetVector<BasicBlock*, 8> WorkList; 518 for (BasicBlock &BB : F) { 519 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 520 MadeChange |= ConstantFoldTerminator(&BB, true); 521 if (!MadeChange) continue; 522 523 for (SmallVectorImpl<BasicBlock*>::iterator 524 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 525 if (pred_begin(*II) == pred_end(*II)) 526 WorkList.insert(*II); 527 } 528 529 // Delete the dead blocks and any of their dead successors. 530 MadeChange |= !WorkList.empty(); 531 while (!WorkList.empty()) { 532 BasicBlock *BB = WorkList.pop_back_val(); 533 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 534 535 DeleteDeadBlock(BB); 536 537 for (SmallVectorImpl<BasicBlock*>::iterator 538 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 539 if (pred_begin(*II) == pred_end(*II)) 540 WorkList.insert(*II); 541 } 542 543 // Merge pairs of basic blocks with unconditional branches, connected by 544 // a single edge. 545 if (EverMadeChange || MadeChange) 546 MadeChange |= eliminateFallThrough(F); 547 548 EverMadeChange |= MadeChange; 549 } 550 551 if (!DisableGCOpts) { 552 SmallVector<Instruction *, 2> Statepoints; 553 for (BasicBlock &BB : F) 554 for (Instruction &I : BB) 555 if (isStatepoint(I)) 556 Statepoints.push_back(&I); 557 for (auto &I : Statepoints) 558 EverMadeChange |= simplifyOffsetableRelocate(*I); 559 } 560 561 // Do this last to clean up use-before-def scenarios introduced by other 562 // preparatory transforms. 563 EverMadeChange |= placeDbgValues(F); 564 565 return EverMadeChange; 566 } 567 568 /// Merge basic blocks which are connected by a single edge, where one of the 569 /// basic blocks has a single successor pointing to the other basic block, 570 /// which has a single predecessor. 571 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 572 bool Changed = false; 573 // Scan all of the blocks in the function, except for the entry block. 574 // Use a temporary array to avoid iterator being invalidated when 575 // deleting blocks. 576 SmallVector<WeakTrackingVH, 16> Blocks; 577 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 578 Blocks.push_back(&Block); 579 580 for (auto &Block : Blocks) { 581 auto *BB = cast_or_null<BasicBlock>(Block); 582 if (!BB) 583 continue; 584 // If the destination block has a single pred, then this is a trivial 585 // edge, just collapse it. 586 BasicBlock *SinglePred = BB->getSinglePredecessor(); 587 588 // Don't merge if BB's address is taken. 589 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 590 591 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 592 if (Term && !Term->isConditional()) { 593 Changed = true; 594 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 595 596 // Merge BB into SinglePred and delete it. 597 MergeBlockIntoPredecessor(BB); 598 } 599 } 600 return Changed; 601 } 602 603 /// Find a destination block from BB if BB is mergeable empty block. 604 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 605 // If this block doesn't end with an uncond branch, ignore it. 606 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 607 if (!BI || !BI->isUnconditional()) 608 return nullptr; 609 610 // If the instruction before the branch (skipping debug info) isn't a phi 611 // node, then other stuff is happening here. 612 BasicBlock::iterator BBI = BI->getIterator(); 613 if (BBI != BB->begin()) { 614 --BBI; 615 while (isa<DbgInfoIntrinsic>(BBI)) { 616 if (BBI == BB->begin()) 617 break; 618 --BBI; 619 } 620 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 621 return nullptr; 622 } 623 624 // Do not break infinite loops. 625 BasicBlock *DestBB = BI->getSuccessor(0); 626 if (DestBB == BB) 627 return nullptr; 628 629 if (!canMergeBlocks(BB, DestBB)) 630 DestBB = nullptr; 631 632 return DestBB; 633 } 634 635 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 636 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 637 /// edges in ways that are non-optimal for isel. Start by eliminating these 638 /// blocks so we can split them the way we want them. 639 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 640 SmallPtrSet<BasicBlock *, 16> Preheaders; 641 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 642 while (!LoopList.empty()) { 643 Loop *L = LoopList.pop_back_val(); 644 LoopList.insert(LoopList.end(), L->begin(), L->end()); 645 if (BasicBlock *Preheader = L->getLoopPreheader()) 646 Preheaders.insert(Preheader); 647 } 648 649 bool MadeChange = false; 650 // Copy blocks into a temporary array to avoid iterator invalidation issues 651 // as we remove them. 652 // Note that this intentionally skips the entry block. 653 SmallVector<WeakTrackingVH, 16> Blocks; 654 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 655 Blocks.push_back(&Block); 656 657 for (auto &Block : Blocks) { 658 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 659 if (!BB) 660 continue; 661 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 662 if (!DestBB || 663 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 664 continue; 665 666 eliminateMostlyEmptyBlock(BB); 667 MadeChange = true; 668 } 669 return MadeChange; 670 } 671 672 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 673 BasicBlock *DestBB, 674 bool isPreheader) { 675 // Do not delete loop preheaders if doing so would create a critical edge. 676 // Loop preheaders can be good locations to spill registers. If the 677 // preheader is deleted and we create a critical edge, registers may be 678 // spilled in the loop body instead. 679 if (!DisablePreheaderProtect && isPreheader && 680 !(BB->getSinglePredecessor() && 681 BB->getSinglePredecessor()->getSingleSuccessor())) 682 return false; 683 684 // Skip merging if the block's successor is also a successor to any callbr 685 // that leads to this block. 686 // FIXME: Is this really needed? Is this a correctness issue? 687 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 688 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 689 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 690 if (DestBB == CBI->getSuccessor(i)) 691 return false; 692 } 693 694 // Try to skip merging if the unique predecessor of BB is terminated by a 695 // switch or indirect branch instruction, and BB is used as an incoming block 696 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 697 // add COPY instructions in the predecessor of BB instead of BB (if it is not 698 // merged). Note that the critical edge created by merging such blocks wont be 699 // split in MachineSink because the jump table is not analyzable. By keeping 700 // such empty block (BB), ISel will place COPY instructions in BB, not in the 701 // predecessor of BB. 702 BasicBlock *Pred = BB->getUniquePredecessor(); 703 if (!Pred || 704 !(isa<SwitchInst>(Pred->getTerminator()) || 705 isa<IndirectBrInst>(Pred->getTerminator()))) 706 return true; 707 708 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 709 return true; 710 711 // We use a simple cost heuristic which determine skipping merging is 712 // profitable if the cost of skipping merging is less than the cost of 713 // merging : Cost(skipping merging) < Cost(merging BB), where the 714 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 715 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 716 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 717 // Freq(Pred) / Freq(BB) > 2. 718 // Note that if there are multiple empty blocks sharing the same incoming 719 // value for the PHIs in the DestBB, we consider them together. In such 720 // case, Cost(merging BB) will be the sum of their frequencies. 721 722 if (!isa<PHINode>(DestBB->begin())) 723 return true; 724 725 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 726 727 // Find all other incoming blocks from which incoming values of all PHIs in 728 // DestBB are the same as the ones from BB. 729 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 730 ++PI) { 731 BasicBlock *DestBBPred = *PI; 732 if (DestBBPred == BB) 733 continue; 734 735 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 736 return DestPN.getIncomingValueForBlock(BB) == 737 DestPN.getIncomingValueForBlock(DestBBPred); 738 })) 739 SameIncomingValueBBs.insert(DestBBPred); 740 } 741 742 // See if all BB's incoming values are same as the value from Pred. In this 743 // case, no reason to skip merging because COPYs are expected to be place in 744 // Pred already. 745 if (SameIncomingValueBBs.count(Pred)) 746 return true; 747 748 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 749 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 750 751 for (auto SameValueBB : SameIncomingValueBBs) 752 if (SameValueBB->getUniquePredecessor() == Pred && 753 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 754 BBFreq += BFI->getBlockFreq(SameValueBB); 755 756 return PredFreq.getFrequency() <= 757 BBFreq.getFrequency() * FreqRatioToSkipMerge; 758 } 759 760 /// Return true if we can merge BB into DestBB if there is a single 761 /// unconditional branch between them, and BB contains no other non-phi 762 /// instructions. 763 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 764 const BasicBlock *DestBB) const { 765 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 766 // the successor. If there are more complex condition (e.g. preheaders), 767 // don't mess around with them. 768 for (const PHINode &PN : BB->phis()) { 769 for (const User *U : PN.users()) { 770 const Instruction *UI = cast<Instruction>(U); 771 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 772 return false; 773 // If User is inside DestBB block and it is a PHINode then check 774 // incoming value. If incoming value is not from BB then this is 775 // a complex condition (e.g. preheaders) we want to avoid here. 776 if (UI->getParent() == DestBB) { 777 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 778 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 779 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 780 if (Insn && Insn->getParent() == BB && 781 Insn->getParent() != UPN->getIncomingBlock(I)) 782 return false; 783 } 784 } 785 } 786 } 787 788 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 789 // and DestBB may have conflicting incoming values for the block. If so, we 790 // can't merge the block. 791 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 792 if (!DestBBPN) return true; // no conflict. 793 794 // Collect the preds of BB. 795 SmallPtrSet<const BasicBlock*, 16> BBPreds; 796 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 797 // It is faster to get preds from a PHI than with pred_iterator. 798 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 799 BBPreds.insert(BBPN->getIncomingBlock(i)); 800 } else { 801 BBPreds.insert(pred_begin(BB), pred_end(BB)); 802 } 803 804 // Walk the preds of DestBB. 805 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 806 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 807 if (BBPreds.count(Pred)) { // Common predecessor? 808 for (const PHINode &PN : DestBB->phis()) { 809 const Value *V1 = PN.getIncomingValueForBlock(Pred); 810 const Value *V2 = PN.getIncomingValueForBlock(BB); 811 812 // If V2 is a phi node in BB, look up what the mapped value will be. 813 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 814 if (V2PN->getParent() == BB) 815 V2 = V2PN->getIncomingValueForBlock(Pred); 816 817 // If there is a conflict, bail out. 818 if (V1 != V2) return false; 819 } 820 } 821 } 822 823 return true; 824 } 825 826 /// Eliminate a basic block that has only phi's and an unconditional branch in 827 /// it. 828 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 829 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 830 BasicBlock *DestBB = BI->getSuccessor(0); 831 832 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 833 << *BB << *DestBB); 834 835 // If the destination block has a single pred, then this is a trivial edge, 836 // just collapse it. 837 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 838 if (SinglePred != DestBB) { 839 assert(SinglePred == BB && 840 "Single predecessor not the same as predecessor"); 841 // Merge DestBB into SinglePred/BB and delete it. 842 MergeBlockIntoPredecessor(DestBB); 843 // Note: BB(=SinglePred) will not be deleted on this path. 844 // DestBB(=its single successor) is the one that was deleted. 845 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 846 return; 847 } 848 } 849 850 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 851 // to handle the new incoming edges it is about to have. 852 for (PHINode &PN : DestBB->phis()) { 853 // Remove the incoming value for BB, and remember it. 854 Value *InVal = PN.removeIncomingValue(BB, false); 855 856 // Two options: either the InVal is a phi node defined in BB or it is some 857 // value that dominates BB. 858 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 859 if (InValPhi && InValPhi->getParent() == BB) { 860 // Add all of the input values of the input PHI as inputs of this phi. 861 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 862 PN.addIncoming(InValPhi->getIncomingValue(i), 863 InValPhi->getIncomingBlock(i)); 864 } else { 865 // Otherwise, add one instance of the dominating value for each edge that 866 // we will be adding. 867 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 868 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 869 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 870 } else { 871 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 872 PN.addIncoming(InVal, *PI); 873 } 874 } 875 } 876 877 // The PHIs are now updated, change everything that refers to BB to use 878 // DestBB and remove BB. 879 BB->replaceAllUsesWith(DestBB); 880 BB->eraseFromParent(); 881 ++NumBlocksElim; 882 883 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 884 } 885 886 // Computes a map of base pointer relocation instructions to corresponding 887 // derived pointer relocation instructions given a vector of all relocate calls 888 static void computeBaseDerivedRelocateMap( 889 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 890 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 891 &RelocateInstMap) { 892 // Collect information in two maps: one primarily for locating the base object 893 // while filling the second map; the second map is the final structure holding 894 // a mapping between Base and corresponding Derived relocate calls 895 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 896 for (auto *ThisRelocate : AllRelocateCalls) { 897 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 898 ThisRelocate->getDerivedPtrIndex()); 899 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 900 } 901 for (auto &Item : RelocateIdxMap) { 902 std::pair<unsigned, unsigned> Key = Item.first; 903 if (Key.first == Key.second) 904 // Base relocation: nothing to insert 905 continue; 906 907 GCRelocateInst *I = Item.second; 908 auto BaseKey = std::make_pair(Key.first, Key.first); 909 910 // We're iterating over RelocateIdxMap so we cannot modify it. 911 auto MaybeBase = RelocateIdxMap.find(BaseKey); 912 if (MaybeBase == RelocateIdxMap.end()) 913 // TODO: We might want to insert a new base object relocate and gep off 914 // that, if there are enough derived object relocates. 915 continue; 916 917 RelocateInstMap[MaybeBase->second].push_back(I); 918 } 919 } 920 921 // Accepts a GEP and extracts the operands into a vector provided they're all 922 // small integer constants 923 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 924 SmallVectorImpl<Value *> &OffsetV) { 925 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 926 // Only accept small constant integer operands 927 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 928 if (!Op || Op->getZExtValue() > 20) 929 return false; 930 } 931 932 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 933 OffsetV.push_back(GEP->getOperand(i)); 934 return true; 935 } 936 937 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 938 // replace, computes a replacement, and affects it. 939 static bool 940 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 941 const SmallVectorImpl<GCRelocateInst *> &Targets) { 942 bool MadeChange = false; 943 // We must ensure the relocation of derived pointer is defined after 944 // relocation of base pointer. If we find a relocation corresponding to base 945 // defined earlier than relocation of base then we move relocation of base 946 // right before found relocation. We consider only relocation in the same 947 // basic block as relocation of base. Relocations from other basic block will 948 // be skipped by optimization and we do not care about them. 949 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 950 &*R != RelocatedBase; ++R) 951 if (auto RI = dyn_cast<GCRelocateInst>(R)) 952 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 953 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 954 RelocatedBase->moveBefore(RI); 955 break; 956 } 957 958 for (GCRelocateInst *ToReplace : Targets) { 959 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 960 "Not relocating a derived object of the original base object"); 961 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 962 // A duplicate relocate call. TODO: coalesce duplicates. 963 continue; 964 } 965 966 if (RelocatedBase->getParent() != ToReplace->getParent()) { 967 // Base and derived relocates are in different basic blocks. 968 // In this case transform is only valid when base dominates derived 969 // relocate. However it would be too expensive to check dominance 970 // for each such relocate, so we skip the whole transformation. 971 continue; 972 } 973 974 Value *Base = ToReplace->getBasePtr(); 975 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 976 if (!Derived || Derived->getPointerOperand() != Base) 977 continue; 978 979 SmallVector<Value *, 2> OffsetV; 980 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 981 continue; 982 983 // Create a Builder and replace the target callsite with a gep 984 assert(RelocatedBase->getNextNode() && 985 "Should always have one since it's not a terminator"); 986 987 // Insert after RelocatedBase 988 IRBuilder<> Builder(RelocatedBase->getNextNode()); 989 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 990 991 // If gc_relocate does not match the actual type, cast it to the right type. 992 // In theory, there must be a bitcast after gc_relocate if the type does not 993 // match, and we should reuse it to get the derived pointer. But it could be 994 // cases like this: 995 // bb1: 996 // ... 997 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 998 // br label %merge 999 // 1000 // bb2: 1001 // ... 1002 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1003 // br label %merge 1004 // 1005 // merge: 1006 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1007 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1008 // 1009 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1010 // no matter there is already one or not. In this way, we can handle all cases, and 1011 // the extra bitcast should be optimized away in later passes. 1012 Value *ActualRelocatedBase = RelocatedBase; 1013 if (RelocatedBase->getType() != Base->getType()) { 1014 ActualRelocatedBase = 1015 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1016 } 1017 Value *Replacement = Builder.CreateGEP( 1018 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1019 Replacement->takeName(ToReplace); 1020 // If the newly generated derived pointer's type does not match the original derived 1021 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1022 Value *ActualReplacement = Replacement; 1023 if (Replacement->getType() != ToReplace->getType()) { 1024 ActualReplacement = 1025 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1026 } 1027 ToReplace->replaceAllUsesWith(ActualReplacement); 1028 ToReplace->eraseFromParent(); 1029 1030 MadeChange = true; 1031 } 1032 return MadeChange; 1033 } 1034 1035 // Turns this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = relocate(%tok, i32 4, i32 4) 1041 // %ptr' = relocate(%tok, i32 4, i32 5) 1042 // %val = load %ptr' 1043 // 1044 // into this: 1045 // 1046 // %base = ... 1047 // %ptr = gep %base + 15 1048 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1049 // %base' = gc.relocate(%tok, i32 4, i32 4) 1050 // %ptr' = gep %base' + 15 1051 // %val = load %ptr' 1052 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1053 bool MadeChange = false; 1054 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1055 1056 for (auto *U : I.users()) 1057 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1058 // Collect all the relocate calls associated with a statepoint 1059 AllRelocateCalls.push_back(Relocate); 1060 1061 // We need at least one base pointer relocation + one derived pointer 1062 // relocation to mangle 1063 if (AllRelocateCalls.size() < 2) 1064 return false; 1065 1066 // RelocateInstMap is a mapping from the base relocate instruction to the 1067 // corresponding derived relocate instructions 1068 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1069 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1070 if (RelocateInstMap.empty()) 1071 return false; 1072 1073 for (auto &Item : RelocateInstMap) 1074 // Item.first is the RelocatedBase to offset against 1075 // Item.second is the vector of Targets to replace 1076 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1077 return MadeChange; 1078 } 1079 1080 /// Sink the specified cast instruction into its user blocks. 1081 static bool SinkCast(CastInst *CI) { 1082 BasicBlock *DefBB = CI->getParent(); 1083 1084 /// InsertedCasts - Only insert a cast in each block once. 1085 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1086 1087 bool MadeChange = false; 1088 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1089 UI != E; ) { 1090 Use &TheUse = UI.getUse(); 1091 Instruction *User = cast<Instruction>(*UI); 1092 1093 // Figure out which BB this cast is used in. For PHI's this is the 1094 // appropriate predecessor block. 1095 BasicBlock *UserBB = User->getParent(); 1096 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1097 UserBB = PN->getIncomingBlock(TheUse); 1098 } 1099 1100 // Preincrement use iterator so we don't invalidate it. 1101 ++UI; 1102 1103 // The first insertion point of a block containing an EH pad is after the 1104 // pad. If the pad is the user, we cannot sink the cast past the pad. 1105 if (User->isEHPad()) 1106 continue; 1107 1108 // If the block selected to receive the cast is an EH pad that does not 1109 // allow non-PHI instructions before the terminator, we can't sink the 1110 // cast. 1111 if (UserBB->getTerminator()->isEHPad()) 1112 continue; 1113 1114 // If this user is in the same block as the cast, don't change the cast. 1115 if (UserBB == DefBB) continue; 1116 1117 // If we have already inserted a cast into this block, use it. 1118 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1119 1120 if (!InsertedCast) { 1121 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1122 assert(InsertPt != UserBB->end()); 1123 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1124 CI->getType(), "", &*InsertPt); 1125 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1126 } 1127 1128 // Replace a use of the cast with a use of the new cast. 1129 TheUse = InsertedCast; 1130 MadeChange = true; 1131 ++NumCastUses; 1132 } 1133 1134 // If we removed all uses, nuke the cast. 1135 if (CI->use_empty()) { 1136 salvageDebugInfo(*CI); 1137 CI->eraseFromParent(); 1138 MadeChange = true; 1139 } 1140 1141 return MadeChange; 1142 } 1143 1144 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1145 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1146 /// reduce the number of virtual registers that must be created and coalesced. 1147 /// 1148 /// Return true if any changes are made. 1149 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1150 const DataLayout &DL) { 1151 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1152 // than sinking only nop casts, but is helpful on some platforms. 1153 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1154 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1155 ASC->getDestAddressSpace())) 1156 return false; 1157 } 1158 1159 // If this is a noop copy, 1160 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1161 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1162 1163 // This is an fp<->int conversion? 1164 if (SrcVT.isInteger() != DstVT.isInteger()) 1165 return false; 1166 1167 // If this is an extension, it will be a zero or sign extension, which 1168 // isn't a noop. 1169 if (SrcVT.bitsLT(DstVT)) return false; 1170 1171 // If these values will be promoted, find out what they will be promoted 1172 // to. This helps us consider truncates on PPC as noop copies when they 1173 // are. 1174 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1175 TargetLowering::TypePromoteInteger) 1176 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1177 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1178 TargetLowering::TypePromoteInteger) 1179 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1180 1181 // If, after promotion, these are the same types, this is a noop copy. 1182 if (SrcVT != DstVT) 1183 return false; 1184 1185 return SinkCast(CI); 1186 } 1187 1188 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1189 Value *Arg0, Value *Arg1, 1190 CmpInst *Cmp, 1191 Intrinsic::ID IID) { 1192 if (BO->getParent() != Cmp->getParent()) { 1193 // We used to use a dominator tree here to allow multi-block optimization. 1194 // But that was problematic because: 1195 // 1. It could cause a perf regression by hoisting the math op into the 1196 // critical path. 1197 // 2. It could cause a perf regression by creating a value that was live 1198 // across multiple blocks and increasing register pressure. 1199 // 3. Use of a dominator tree could cause large compile-time regression. 1200 // This is because we recompute the DT on every change in the main CGP 1201 // run-loop. The recomputing is probably unnecessary in many cases, so if 1202 // that was fixed, using a DT here would be ok. 1203 return false; 1204 } 1205 1206 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1207 if (BO->getOpcode() == Instruction::Add && 1208 IID == Intrinsic::usub_with_overflow) { 1209 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1210 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1211 } 1212 1213 // Insert at the first instruction of the pair. 1214 Instruction *InsertPt = nullptr; 1215 for (Instruction &Iter : *Cmp->getParent()) { 1216 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1217 // the overflow intrinsic are defined. 1218 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1219 InsertPt = &Iter; 1220 break; 1221 } 1222 } 1223 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1224 1225 IRBuilder<> Builder(InsertPt); 1226 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1227 if (BO->getOpcode() != Instruction::Xor) { 1228 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1229 BO->replaceAllUsesWith(Math); 1230 } else 1231 assert(BO->hasOneUse() && 1232 "Patterns with XOr should use the BO only in the compare"); 1233 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1234 Cmp->replaceAllUsesWith(OV); 1235 Cmp->eraseFromParent(); 1236 BO->eraseFromParent(); 1237 return true; 1238 } 1239 1240 /// Match special-case patterns that check for unsigned add overflow. 1241 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1242 BinaryOperator *&Add) { 1243 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1244 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1245 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1246 1247 // We are not expecting non-canonical/degenerate code. Just bail out. 1248 if (isa<Constant>(A)) 1249 return false; 1250 1251 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1252 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1253 B = ConstantInt::get(B->getType(), 1); 1254 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1255 B = ConstantInt::get(B->getType(), -1); 1256 else 1257 return false; 1258 1259 // Check the users of the variable operand of the compare looking for an add 1260 // with the adjusted constant. 1261 for (User *U : A->users()) { 1262 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1263 Add = cast<BinaryOperator>(U); 1264 return true; 1265 } 1266 } 1267 return false; 1268 } 1269 1270 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1271 /// intrinsic. Return true if any changes were made. 1272 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1273 bool &ModifiedDT) { 1274 Value *A, *B; 1275 BinaryOperator *Add; 1276 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1277 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1278 return false; 1279 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1280 A = Add->getOperand(0); 1281 B = Add->getOperand(1); 1282 } 1283 1284 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1285 TLI->getValueType(*DL, Add->getType()), 1286 Add->hasNUsesOrMore(2))) 1287 return false; 1288 1289 // We don't want to move around uses of condition values this late, so we 1290 // check if it is legal to create the call to the intrinsic in the basic 1291 // block containing the icmp. 1292 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1293 return false; 1294 1295 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1296 Intrinsic::uadd_with_overflow)) 1297 return false; 1298 1299 // Reset callers - do not crash by iterating over a dead instruction. 1300 ModifiedDT = true; 1301 return true; 1302 } 1303 1304 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1305 bool &ModifiedDT) { 1306 // We are not expecting non-canonical/degenerate code. Just bail out. 1307 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1308 if (isa<Constant>(A) && isa<Constant>(B)) 1309 return false; 1310 1311 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1312 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1313 if (Pred == ICmpInst::ICMP_UGT) { 1314 std::swap(A, B); 1315 Pred = ICmpInst::ICMP_ULT; 1316 } 1317 // Convert special-case: (A == 0) is the same as (A u< 1). 1318 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1319 B = ConstantInt::get(B->getType(), 1); 1320 Pred = ICmpInst::ICMP_ULT; 1321 } 1322 // Convert special-case: (A != 0) is the same as (0 u< A). 1323 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1324 std::swap(A, B); 1325 Pred = ICmpInst::ICMP_ULT; 1326 } 1327 if (Pred != ICmpInst::ICMP_ULT) 1328 return false; 1329 1330 // Walk the users of a variable operand of a compare looking for a subtract or 1331 // add with that same operand. Also match the 2nd operand of the compare to 1332 // the add/sub, but that may be a negated constant operand of an add. 1333 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1334 BinaryOperator *Sub = nullptr; 1335 for (User *U : CmpVariableOperand->users()) { 1336 // A - B, A u< B --> usubo(A, B) 1337 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1338 Sub = cast<BinaryOperator>(U); 1339 break; 1340 } 1341 1342 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1343 const APInt *CmpC, *AddC; 1344 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1345 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1346 Sub = cast<BinaryOperator>(U); 1347 break; 1348 } 1349 } 1350 if (!Sub) 1351 return false; 1352 1353 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1354 TLI->getValueType(*DL, Sub->getType()), 1355 Sub->hasNUsesOrMore(2))) 1356 return false; 1357 1358 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1359 Cmp, Intrinsic::usub_with_overflow)) 1360 return false; 1361 1362 // Reset callers - do not crash by iterating over a dead instruction. 1363 ModifiedDT = true; 1364 return true; 1365 } 1366 1367 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1368 /// registers that must be created and coalesced. This is a clear win except on 1369 /// targets with multiple condition code registers (PowerPC), where it might 1370 /// lose; some adjustment may be wanted there. 1371 /// 1372 /// Return true if any changes are made. 1373 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1374 if (TLI.hasMultipleConditionRegisters()) 1375 return false; 1376 1377 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1378 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1379 return false; 1380 1381 // Only insert a cmp in each block once. 1382 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1383 1384 bool MadeChange = false; 1385 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1386 UI != E; ) { 1387 Use &TheUse = UI.getUse(); 1388 Instruction *User = cast<Instruction>(*UI); 1389 1390 // Preincrement use iterator so we don't invalidate it. 1391 ++UI; 1392 1393 // Don't bother for PHI nodes. 1394 if (isa<PHINode>(User)) 1395 continue; 1396 1397 // Figure out which BB this cmp is used in. 1398 BasicBlock *UserBB = User->getParent(); 1399 BasicBlock *DefBB = Cmp->getParent(); 1400 1401 // If this user is in the same block as the cmp, don't change the cmp. 1402 if (UserBB == DefBB) continue; 1403 1404 // If we have already inserted a cmp into this block, use it. 1405 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1406 1407 if (!InsertedCmp) { 1408 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1409 assert(InsertPt != UserBB->end()); 1410 InsertedCmp = 1411 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1412 Cmp->getOperand(0), Cmp->getOperand(1), "", 1413 &*InsertPt); 1414 // Propagate the debug info. 1415 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1416 } 1417 1418 // Replace a use of the cmp with a use of the new cmp. 1419 TheUse = InsertedCmp; 1420 MadeChange = true; 1421 ++NumCmpUses; 1422 } 1423 1424 // If we removed all uses, nuke the cmp. 1425 if (Cmp->use_empty()) { 1426 Cmp->eraseFromParent(); 1427 MadeChange = true; 1428 } 1429 1430 return MadeChange; 1431 } 1432 1433 /// For pattern like: 1434 /// 1435 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1436 /// ... 1437 /// DomBB: 1438 /// ... 1439 /// br DomCond, TrueBB, CmpBB 1440 /// CmpBB: (with DomBB being the single predecessor) 1441 /// ... 1442 /// Cmp = icmp eq CmpOp0, CmpOp1 1443 /// ... 1444 /// 1445 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1446 /// different from lowering of icmp eq (PowerPC). This function try to convert 1447 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1448 /// After that, DomCond and Cmp can use the same comparison so reduce one 1449 /// comparison. 1450 /// 1451 /// Return true if any changes are made. 1452 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1453 const TargetLowering &TLI) { 1454 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1455 return false; 1456 1457 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1458 if (Pred != ICmpInst::ICMP_EQ) 1459 return false; 1460 1461 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1462 // icmp slt/sgt would introduce more redundant LLVM IR. 1463 for (User *U : Cmp->users()) { 1464 if (isa<BranchInst>(U)) 1465 continue; 1466 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1467 continue; 1468 return false; 1469 } 1470 1471 // This is a cheap/incomplete check for dominance - just match a single 1472 // predecessor with a conditional branch. 1473 BasicBlock *CmpBB = Cmp->getParent(); 1474 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1475 if (!DomBB) 1476 return false; 1477 1478 // We want to ensure that the only way control gets to the comparison of 1479 // interest is that a less/greater than comparison on the same operands is 1480 // false. 1481 Value *DomCond; 1482 BasicBlock *TrueBB, *FalseBB; 1483 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1484 return false; 1485 if (CmpBB != FalseBB) 1486 return false; 1487 1488 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1489 ICmpInst::Predicate DomPred; 1490 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1491 return false; 1492 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1493 return false; 1494 1495 // Convert the equality comparison to the opposite of the dominating 1496 // comparison and swap the direction for all branch/select users. 1497 // We have conceptually converted: 1498 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1499 // to 1500 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1501 // And similarly for branches. 1502 for (User *U : Cmp->users()) { 1503 if (auto *BI = dyn_cast<BranchInst>(U)) { 1504 assert(BI->isConditional() && "Must be conditional"); 1505 BI->swapSuccessors(); 1506 continue; 1507 } 1508 if (auto *SI = dyn_cast<SelectInst>(U)) { 1509 // Swap operands 1510 SI->swapValues(); 1511 SI->swapProfMetadata(); 1512 continue; 1513 } 1514 llvm_unreachable("Must be a branch or a select"); 1515 } 1516 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1517 return true; 1518 } 1519 1520 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1521 if (sinkCmpExpression(Cmp, *TLI)) 1522 return true; 1523 1524 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1525 return true; 1526 1527 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1528 return true; 1529 1530 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1531 return true; 1532 1533 return false; 1534 } 1535 1536 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1537 /// used in a compare to allow isel to generate better code for targets where 1538 /// this operation can be combined. 1539 /// 1540 /// Return true if any changes are made. 1541 static bool sinkAndCmp0Expression(Instruction *AndI, 1542 const TargetLowering &TLI, 1543 SetOfInstrs &InsertedInsts) { 1544 // Double-check that we're not trying to optimize an instruction that was 1545 // already optimized by some other part of this pass. 1546 assert(!InsertedInsts.count(AndI) && 1547 "Attempting to optimize already optimized and instruction"); 1548 (void) InsertedInsts; 1549 1550 // Nothing to do for single use in same basic block. 1551 if (AndI->hasOneUse() && 1552 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1553 return false; 1554 1555 // Try to avoid cases where sinking/duplicating is likely to increase register 1556 // pressure. 1557 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1558 !isa<ConstantInt>(AndI->getOperand(1)) && 1559 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1560 return false; 1561 1562 for (auto *U : AndI->users()) { 1563 Instruction *User = cast<Instruction>(U); 1564 1565 // Only sink 'and' feeding icmp with 0. 1566 if (!isa<ICmpInst>(User)) 1567 return false; 1568 1569 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1570 if (!CmpC || !CmpC->isZero()) 1571 return false; 1572 } 1573 1574 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1575 return false; 1576 1577 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1578 LLVM_DEBUG(AndI->getParent()->dump()); 1579 1580 // Push the 'and' into the same block as the icmp 0. There should only be 1581 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1582 // others, so we don't need to keep track of which BBs we insert into. 1583 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1584 UI != E; ) { 1585 Use &TheUse = UI.getUse(); 1586 Instruction *User = cast<Instruction>(*UI); 1587 1588 // Preincrement use iterator so we don't invalidate it. 1589 ++UI; 1590 1591 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1592 1593 // Keep the 'and' in the same place if the use is already in the same block. 1594 Instruction *InsertPt = 1595 User->getParent() == AndI->getParent() ? AndI : User; 1596 Instruction *InsertedAnd = 1597 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1598 AndI->getOperand(1), "", InsertPt); 1599 // Propagate the debug info. 1600 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1601 1602 // Replace a use of the 'and' with a use of the new 'and'. 1603 TheUse = InsertedAnd; 1604 ++NumAndUses; 1605 LLVM_DEBUG(User->getParent()->dump()); 1606 } 1607 1608 // We removed all uses, nuke the and. 1609 AndI->eraseFromParent(); 1610 return true; 1611 } 1612 1613 /// Check if the candidates could be combined with a shift instruction, which 1614 /// includes: 1615 /// 1. Truncate instruction 1616 /// 2. And instruction and the imm is a mask of the low bits: 1617 /// imm & (imm+1) == 0 1618 static bool isExtractBitsCandidateUse(Instruction *User) { 1619 if (!isa<TruncInst>(User)) { 1620 if (User->getOpcode() != Instruction::And || 1621 !isa<ConstantInt>(User->getOperand(1))) 1622 return false; 1623 1624 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1625 1626 if ((Cimm & (Cimm + 1)).getBoolValue()) 1627 return false; 1628 } 1629 return true; 1630 } 1631 1632 /// Sink both shift and truncate instruction to the use of truncate's BB. 1633 static bool 1634 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1635 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1636 const TargetLowering &TLI, const DataLayout &DL) { 1637 BasicBlock *UserBB = User->getParent(); 1638 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1639 auto *TruncI = cast<TruncInst>(User); 1640 bool MadeChange = false; 1641 1642 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1643 TruncE = TruncI->user_end(); 1644 TruncUI != TruncE;) { 1645 1646 Use &TruncTheUse = TruncUI.getUse(); 1647 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1648 // Preincrement use iterator so we don't invalidate it. 1649 1650 ++TruncUI; 1651 1652 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1653 if (!ISDOpcode) 1654 continue; 1655 1656 // If the use is actually a legal node, there will not be an 1657 // implicit truncate. 1658 // FIXME: always querying the result type is just an 1659 // approximation; some nodes' legality is determined by the 1660 // operand or other means. There's no good way to find out though. 1661 if (TLI.isOperationLegalOrCustom( 1662 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1663 continue; 1664 1665 // Don't bother for PHI nodes. 1666 if (isa<PHINode>(TruncUser)) 1667 continue; 1668 1669 BasicBlock *TruncUserBB = TruncUser->getParent(); 1670 1671 if (UserBB == TruncUserBB) 1672 continue; 1673 1674 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1675 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1676 1677 if (!InsertedShift && !InsertedTrunc) { 1678 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1679 assert(InsertPt != TruncUserBB->end()); 1680 // Sink the shift 1681 if (ShiftI->getOpcode() == Instruction::AShr) 1682 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1683 "", &*InsertPt); 1684 else 1685 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1686 "", &*InsertPt); 1687 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1688 1689 // Sink the trunc 1690 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1691 TruncInsertPt++; 1692 assert(TruncInsertPt != TruncUserBB->end()); 1693 1694 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1695 TruncI->getType(), "", &*TruncInsertPt); 1696 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1697 1698 MadeChange = true; 1699 1700 TruncTheUse = InsertedTrunc; 1701 } 1702 } 1703 return MadeChange; 1704 } 1705 1706 /// Sink the shift *right* instruction into user blocks if the uses could 1707 /// potentially be combined with this shift instruction and generate BitExtract 1708 /// instruction. It will only be applied if the architecture supports BitExtract 1709 /// instruction. Here is an example: 1710 /// BB1: 1711 /// %x.extract.shift = lshr i64 %arg1, 32 1712 /// BB2: 1713 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1714 /// ==> 1715 /// 1716 /// BB2: 1717 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1718 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1719 /// 1720 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1721 /// instruction. 1722 /// Return true if any changes are made. 1723 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1724 const TargetLowering &TLI, 1725 const DataLayout &DL) { 1726 BasicBlock *DefBB = ShiftI->getParent(); 1727 1728 /// Only insert instructions in each block once. 1729 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1730 1731 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1732 1733 bool MadeChange = false; 1734 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1735 UI != E;) { 1736 Use &TheUse = UI.getUse(); 1737 Instruction *User = cast<Instruction>(*UI); 1738 // Preincrement use iterator so we don't invalidate it. 1739 ++UI; 1740 1741 // Don't bother for PHI nodes. 1742 if (isa<PHINode>(User)) 1743 continue; 1744 1745 if (!isExtractBitsCandidateUse(User)) 1746 continue; 1747 1748 BasicBlock *UserBB = User->getParent(); 1749 1750 if (UserBB == DefBB) { 1751 // If the shift and truncate instruction are in the same BB. The use of 1752 // the truncate(TruncUse) may still introduce another truncate if not 1753 // legal. In this case, we would like to sink both shift and truncate 1754 // instruction to the BB of TruncUse. 1755 // for example: 1756 // BB1: 1757 // i64 shift.result = lshr i64 opnd, imm 1758 // trunc.result = trunc shift.result to i16 1759 // 1760 // BB2: 1761 // ----> We will have an implicit truncate here if the architecture does 1762 // not have i16 compare. 1763 // cmp i16 trunc.result, opnd2 1764 // 1765 if (isa<TruncInst>(User) && shiftIsLegal 1766 // If the type of the truncate is legal, no truncate will be 1767 // introduced in other basic blocks. 1768 && 1769 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1770 MadeChange = 1771 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1772 1773 continue; 1774 } 1775 // If we have already inserted a shift into this block, use it. 1776 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1777 1778 if (!InsertedShift) { 1779 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1780 assert(InsertPt != UserBB->end()); 1781 1782 if (ShiftI->getOpcode() == Instruction::AShr) 1783 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1784 "", &*InsertPt); 1785 else 1786 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1787 "", &*InsertPt); 1788 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1789 1790 MadeChange = true; 1791 } 1792 1793 // Replace a use of the shift with a use of the new shift. 1794 TheUse = InsertedShift; 1795 } 1796 1797 // If we removed all uses, or there are none, nuke the shift. 1798 if (ShiftI->use_empty()) { 1799 salvageDebugInfo(*ShiftI); 1800 ShiftI->eraseFromParent(); 1801 MadeChange = true; 1802 } 1803 1804 return MadeChange; 1805 } 1806 1807 /// If counting leading or trailing zeros is an expensive operation and a zero 1808 /// input is defined, add a check for zero to avoid calling the intrinsic. 1809 /// 1810 /// We want to transform: 1811 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1812 /// 1813 /// into: 1814 /// entry: 1815 /// %cmpz = icmp eq i64 %A, 0 1816 /// br i1 %cmpz, label %cond.end, label %cond.false 1817 /// cond.false: 1818 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1819 /// br label %cond.end 1820 /// cond.end: 1821 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1822 /// 1823 /// If the transform is performed, return true and set ModifiedDT to true. 1824 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1825 const TargetLowering *TLI, 1826 const DataLayout *DL, 1827 bool &ModifiedDT) { 1828 // If a zero input is undefined, it doesn't make sense to despeculate that. 1829 if (match(CountZeros->getOperand(1), m_One())) 1830 return false; 1831 1832 // If it's cheap to speculate, there's nothing to do. 1833 auto IntrinsicID = CountZeros->getIntrinsicID(); 1834 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1835 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1836 return false; 1837 1838 // Only handle legal scalar cases. Anything else requires too much work. 1839 Type *Ty = CountZeros->getType(); 1840 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1841 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1842 return false; 1843 1844 // The intrinsic will be sunk behind a compare against zero and branch. 1845 BasicBlock *StartBlock = CountZeros->getParent(); 1846 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1847 1848 // Create another block after the count zero intrinsic. A PHI will be added 1849 // in this block to select the result of the intrinsic or the bit-width 1850 // constant if the input to the intrinsic is zero. 1851 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1852 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1853 1854 // Set up a builder to create a compare, conditional branch, and PHI. 1855 IRBuilder<> Builder(CountZeros->getContext()); 1856 Builder.SetInsertPoint(StartBlock->getTerminator()); 1857 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1858 1859 // Replace the unconditional branch that was created by the first split with 1860 // a compare against zero and a conditional branch. 1861 Value *Zero = Constant::getNullValue(Ty); 1862 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1863 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1864 StartBlock->getTerminator()->eraseFromParent(); 1865 1866 // Create a PHI in the end block to select either the output of the intrinsic 1867 // or the bit width of the operand. 1868 Builder.SetInsertPoint(&EndBlock->front()); 1869 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1870 CountZeros->replaceAllUsesWith(PN); 1871 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1872 PN->addIncoming(BitWidth, StartBlock); 1873 PN->addIncoming(CountZeros, CallBlock); 1874 1875 // We are explicitly handling the zero case, so we can set the intrinsic's 1876 // undefined zero argument to 'true'. This will also prevent reprocessing the 1877 // intrinsic; we only despeculate when a zero input is defined. 1878 CountZeros->setArgOperand(1, Builder.getTrue()); 1879 ModifiedDT = true; 1880 return true; 1881 } 1882 1883 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1884 BasicBlock *BB = CI->getParent(); 1885 1886 // Lower inline assembly if we can. 1887 // If we found an inline asm expession, and if the target knows how to 1888 // lower it to normal LLVM code, do so now. 1889 if (isa<InlineAsm>(CI->getCalledValue())) { 1890 if (TLI->ExpandInlineAsm(CI)) { 1891 // Avoid invalidating the iterator. 1892 CurInstIterator = BB->begin(); 1893 // Avoid processing instructions out of order, which could cause 1894 // reuse before a value is defined. 1895 SunkAddrs.clear(); 1896 return true; 1897 } 1898 // Sink address computing for memory operands into the block. 1899 if (optimizeInlineAsmInst(CI)) 1900 return true; 1901 } 1902 1903 // Align the pointer arguments to this call if the target thinks it's a good 1904 // idea 1905 unsigned MinSize, PrefAlign; 1906 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1907 for (auto &Arg : CI->arg_operands()) { 1908 // We want to align both objects whose address is used directly and 1909 // objects whose address is used in casts and GEPs, though it only makes 1910 // sense for GEPs if the offset is a multiple of the desired alignment and 1911 // if size - offset meets the size threshold. 1912 if (!Arg->getType()->isPointerTy()) 1913 continue; 1914 APInt Offset(DL->getIndexSizeInBits( 1915 cast<PointerType>(Arg->getType())->getAddressSpace()), 1916 0); 1917 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1918 uint64_t Offset2 = Offset.getLimitedValue(); 1919 if ((Offset2 & (PrefAlign-1)) != 0) 1920 continue; 1921 AllocaInst *AI; 1922 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1923 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1924 AI->setAlignment(MaybeAlign(PrefAlign)); 1925 // Global variables can only be aligned if they are defined in this 1926 // object (i.e. they are uniquely initialized in this object), and 1927 // over-aligning global variables that have an explicit section is 1928 // forbidden. 1929 GlobalVariable *GV; 1930 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1931 GV->getPointerAlignment(*DL) < PrefAlign && 1932 DL->getTypeAllocSize(GV->getValueType()) >= 1933 MinSize + Offset2) 1934 GV->setAlignment(MaybeAlign(PrefAlign)); 1935 } 1936 // If this is a memcpy (or similar) then we may be able to improve the 1937 // alignment 1938 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1939 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1940 if (DestAlign > MI->getDestAlignment()) 1941 MI->setDestAlignment(DestAlign); 1942 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1943 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1944 if (SrcAlign > MTI->getSourceAlignment()) 1945 MTI->setSourceAlignment(SrcAlign); 1946 } 1947 } 1948 } 1949 1950 // If we have a cold call site, try to sink addressing computation into the 1951 // cold block. This interacts with our handling for loads and stores to 1952 // ensure that we can fold all uses of a potential addressing computation 1953 // into their uses. TODO: generalize this to work over profiling data 1954 if (CI->hasFnAttr(Attribute::Cold) && 1955 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1956 for (auto &Arg : CI->arg_operands()) { 1957 if (!Arg->getType()->isPointerTy()) 1958 continue; 1959 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1960 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1961 } 1962 1963 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1964 if (II) { 1965 switch (II->getIntrinsicID()) { 1966 default: break; 1967 case Intrinsic::experimental_widenable_condition: { 1968 // Give up on future widening oppurtunties so that we can fold away dead 1969 // paths and merge blocks before going into block-local instruction 1970 // selection. 1971 if (II->use_empty()) { 1972 II->eraseFromParent(); 1973 return true; 1974 } 1975 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1976 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1977 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1978 }); 1979 return true; 1980 } 1981 case Intrinsic::objectsize: 1982 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1983 case Intrinsic::is_constant: 1984 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1985 case Intrinsic::aarch64_stlxr: 1986 case Intrinsic::aarch64_stxr: { 1987 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1988 if (!ExtVal || !ExtVal->hasOneUse() || 1989 ExtVal->getParent() == CI->getParent()) 1990 return false; 1991 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1992 ExtVal->moveBefore(CI); 1993 // Mark this instruction as "inserted by CGP", so that other 1994 // optimizations don't touch it. 1995 InsertedInsts.insert(ExtVal); 1996 return true; 1997 } 1998 1999 case Intrinsic::launder_invariant_group: 2000 case Intrinsic::strip_invariant_group: { 2001 Value *ArgVal = II->getArgOperand(0); 2002 auto it = LargeOffsetGEPMap.find(II); 2003 if (it != LargeOffsetGEPMap.end()) { 2004 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2005 // Make sure not to have to deal with iterator invalidation 2006 // after possibly adding ArgVal to LargeOffsetGEPMap. 2007 auto GEPs = std::move(it->second); 2008 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2009 LargeOffsetGEPMap.erase(II); 2010 } 2011 2012 II->replaceAllUsesWith(ArgVal); 2013 II->eraseFromParent(); 2014 return true; 2015 } 2016 case Intrinsic::cttz: 2017 case Intrinsic::ctlz: 2018 // If counting zeros is expensive, try to avoid it. 2019 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2020 case Intrinsic::dbg_value: 2021 return fixupDbgValue(II); 2022 case Intrinsic::vscale: { 2023 // If datalayout has no special restrictions on vector data layout, 2024 // replace `llvm.vscale` by an equivalent constant expression 2025 // to benefit from cheap constant propagation. 2026 Type *ScalableVectorTy = 2027 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2028 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2029 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2030 auto One = ConstantInt::getSigned(II->getType(), 1); 2031 auto *CGep = 2032 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2033 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2034 II->eraseFromParent(); 2035 return true; 2036 } 2037 } 2038 } 2039 2040 SmallVector<Value *, 2> PtrOps; 2041 Type *AccessTy; 2042 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2043 while (!PtrOps.empty()) { 2044 Value *PtrVal = PtrOps.pop_back_val(); 2045 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2046 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2047 return true; 2048 } 2049 } 2050 2051 // From here on out we're working with named functions. 2052 if (!CI->getCalledFunction()) return false; 2053 2054 // Lower all default uses of _chk calls. This is very similar 2055 // to what InstCombineCalls does, but here we are only lowering calls 2056 // to fortified library functions (e.g. __memcpy_chk) that have the default 2057 // "don't know" as the objectsize. Anything else should be left alone. 2058 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2059 IRBuilder<> Builder(CI); 2060 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2061 CI->replaceAllUsesWith(V); 2062 CI->eraseFromParent(); 2063 return true; 2064 } 2065 2066 return false; 2067 } 2068 2069 /// Look for opportunities to duplicate return instructions to the predecessor 2070 /// to enable tail call optimizations. The case it is currently looking for is: 2071 /// @code 2072 /// bb0: 2073 /// %tmp0 = tail call i32 @f0() 2074 /// br label %return 2075 /// bb1: 2076 /// %tmp1 = tail call i32 @f1() 2077 /// br label %return 2078 /// bb2: 2079 /// %tmp2 = tail call i32 @f2() 2080 /// br label %return 2081 /// return: 2082 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2083 /// ret i32 %retval 2084 /// @endcode 2085 /// 2086 /// => 2087 /// 2088 /// @code 2089 /// bb0: 2090 /// %tmp0 = tail call i32 @f0() 2091 /// ret i32 %tmp0 2092 /// bb1: 2093 /// %tmp1 = tail call i32 @f1() 2094 /// ret i32 %tmp1 2095 /// bb2: 2096 /// %tmp2 = tail call i32 @f2() 2097 /// ret i32 %tmp2 2098 /// @endcode 2099 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2100 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2101 if (!RetI) 2102 return false; 2103 2104 PHINode *PN = nullptr; 2105 ExtractValueInst *EVI = nullptr; 2106 BitCastInst *BCI = nullptr; 2107 Value *V = RetI->getReturnValue(); 2108 if (V) { 2109 BCI = dyn_cast<BitCastInst>(V); 2110 if (BCI) 2111 V = BCI->getOperand(0); 2112 2113 EVI = dyn_cast<ExtractValueInst>(V); 2114 if (EVI) { 2115 V = EVI->getOperand(0); 2116 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2117 [](unsigned idx) { return idx == 0; })) 2118 return false; 2119 } 2120 2121 PN = dyn_cast<PHINode>(V); 2122 if (!PN) 2123 return false; 2124 } 2125 2126 if (PN && PN->getParent() != BB) 2127 return false; 2128 2129 // Make sure there are no instructions between the PHI and return, or that the 2130 // return is the first instruction in the block. 2131 if (PN) { 2132 BasicBlock::iterator BI = BB->begin(); 2133 // Skip over debug and the bitcast. 2134 do { 2135 ++BI; 2136 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2137 if (&*BI != RetI) 2138 return false; 2139 } else { 2140 BasicBlock::iterator BI = BB->begin(); 2141 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2142 if (&*BI != RetI) 2143 return false; 2144 } 2145 2146 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2147 /// call. 2148 const Function *F = BB->getParent(); 2149 SmallVector<BasicBlock*, 4> TailCallBBs; 2150 if (PN) { 2151 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2152 // Look through bitcasts. 2153 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2154 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2155 BasicBlock *PredBB = PN->getIncomingBlock(I); 2156 // Make sure the phi value is indeed produced by the tail call. 2157 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2158 TLI->mayBeEmittedAsTailCall(CI) && 2159 attributesPermitTailCall(F, CI, RetI, *TLI)) 2160 TailCallBBs.push_back(PredBB); 2161 } 2162 } else { 2163 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2164 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2165 if (!VisitedBBs.insert(*PI).second) 2166 continue; 2167 2168 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2169 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2170 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2171 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2172 if (RI == RE) 2173 continue; 2174 2175 CallInst *CI = dyn_cast<CallInst>(&*RI); 2176 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2177 attributesPermitTailCall(F, CI, RetI, *TLI)) 2178 TailCallBBs.push_back(*PI); 2179 } 2180 } 2181 2182 bool Changed = false; 2183 for (auto const &TailCallBB : TailCallBBs) { 2184 // Make sure the call instruction is followed by an unconditional branch to 2185 // the return block. 2186 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2187 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2188 continue; 2189 2190 // Duplicate the return into TailCallBB. 2191 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2192 ModifiedDT = Changed = true; 2193 ++NumRetsDup; 2194 } 2195 2196 // If we eliminated all predecessors of the block, delete the block now. 2197 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2198 BB->eraseFromParent(); 2199 2200 return Changed; 2201 } 2202 2203 //===----------------------------------------------------------------------===// 2204 // Memory Optimization 2205 //===----------------------------------------------------------------------===// 2206 2207 namespace { 2208 2209 /// This is an extended version of TargetLowering::AddrMode 2210 /// which holds actual Value*'s for register values. 2211 struct ExtAddrMode : public TargetLowering::AddrMode { 2212 Value *BaseReg = nullptr; 2213 Value *ScaledReg = nullptr; 2214 Value *OriginalValue = nullptr; 2215 bool InBounds = true; 2216 2217 enum FieldName { 2218 NoField = 0x00, 2219 BaseRegField = 0x01, 2220 BaseGVField = 0x02, 2221 BaseOffsField = 0x04, 2222 ScaledRegField = 0x08, 2223 ScaleField = 0x10, 2224 MultipleFields = 0xff 2225 }; 2226 2227 2228 ExtAddrMode() = default; 2229 2230 void print(raw_ostream &OS) const; 2231 void dump() const; 2232 2233 FieldName compare(const ExtAddrMode &other) { 2234 // First check that the types are the same on each field, as differing types 2235 // is something we can't cope with later on. 2236 if (BaseReg && other.BaseReg && 2237 BaseReg->getType() != other.BaseReg->getType()) 2238 return MultipleFields; 2239 if (BaseGV && other.BaseGV && 2240 BaseGV->getType() != other.BaseGV->getType()) 2241 return MultipleFields; 2242 if (ScaledReg && other.ScaledReg && 2243 ScaledReg->getType() != other.ScaledReg->getType()) 2244 return MultipleFields; 2245 2246 // Conservatively reject 'inbounds' mismatches. 2247 if (InBounds != other.InBounds) 2248 return MultipleFields; 2249 2250 // Check each field to see if it differs. 2251 unsigned Result = NoField; 2252 if (BaseReg != other.BaseReg) 2253 Result |= BaseRegField; 2254 if (BaseGV != other.BaseGV) 2255 Result |= BaseGVField; 2256 if (BaseOffs != other.BaseOffs) 2257 Result |= BaseOffsField; 2258 if (ScaledReg != other.ScaledReg) 2259 Result |= ScaledRegField; 2260 // Don't count 0 as being a different scale, because that actually means 2261 // unscaled (which will already be counted by having no ScaledReg). 2262 if (Scale && other.Scale && Scale != other.Scale) 2263 Result |= ScaleField; 2264 2265 if (countPopulation(Result) > 1) 2266 return MultipleFields; 2267 else 2268 return static_cast<FieldName>(Result); 2269 } 2270 2271 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2272 // with no offset. 2273 bool isTrivial() { 2274 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2275 // trivial if at most one of these terms is nonzero, except that BaseGV and 2276 // BaseReg both being zero actually means a null pointer value, which we 2277 // consider to be 'non-zero' here. 2278 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2279 } 2280 2281 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2282 switch (Field) { 2283 default: 2284 return nullptr; 2285 case BaseRegField: 2286 return BaseReg; 2287 case BaseGVField: 2288 return BaseGV; 2289 case ScaledRegField: 2290 return ScaledReg; 2291 case BaseOffsField: 2292 return ConstantInt::get(IntPtrTy, BaseOffs); 2293 } 2294 } 2295 2296 void SetCombinedField(FieldName Field, Value *V, 2297 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2298 switch (Field) { 2299 default: 2300 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2301 break; 2302 case ExtAddrMode::BaseRegField: 2303 BaseReg = V; 2304 break; 2305 case ExtAddrMode::BaseGVField: 2306 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2307 // in the BaseReg field. 2308 assert(BaseReg == nullptr); 2309 BaseReg = V; 2310 BaseGV = nullptr; 2311 break; 2312 case ExtAddrMode::ScaledRegField: 2313 ScaledReg = V; 2314 // If we have a mix of scaled and unscaled addrmodes then we want scale 2315 // to be the scale and not zero. 2316 if (!Scale) 2317 for (const ExtAddrMode &AM : AddrModes) 2318 if (AM.Scale) { 2319 Scale = AM.Scale; 2320 break; 2321 } 2322 break; 2323 case ExtAddrMode::BaseOffsField: 2324 // The offset is no longer a constant, so it goes in ScaledReg with a 2325 // scale of 1. 2326 assert(ScaledReg == nullptr); 2327 ScaledReg = V; 2328 Scale = 1; 2329 BaseOffs = 0; 2330 break; 2331 } 2332 } 2333 }; 2334 2335 } // end anonymous namespace 2336 2337 #ifndef NDEBUG 2338 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2339 AM.print(OS); 2340 return OS; 2341 } 2342 #endif 2343 2344 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2345 void ExtAddrMode::print(raw_ostream &OS) const { 2346 bool NeedPlus = false; 2347 OS << "["; 2348 if (InBounds) 2349 OS << "inbounds "; 2350 if (BaseGV) { 2351 OS << (NeedPlus ? " + " : "") 2352 << "GV:"; 2353 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2354 NeedPlus = true; 2355 } 2356 2357 if (BaseOffs) { 2358 OS << (NeedPlus ? " + " : "") 2359 << BaseOffs; 2360 NeedPlus = true; 2361 } 2362 2363 if (BaseReg) { 2364 OS << (NeedPlus ? " + " : "") 2365 << "Base:"; 2366 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2367 NeedPlus = true; 2368 } 2369 if (Scale) { 2370 OS << (NeedPlus ? " + " : "") 2371 << Scale << "*"; 2372 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2373 } 2374 2375 OS << ']'; 2376 } 2377 2378 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2379 print(dbgs()); 2380 dbgs() << '\n'; 2381 } 2382 #endif 2383 2384 namespace { 2385 2386 /// This class provides transaction based operation on the IR. 2387 /// Every change made through this class is recorded in the internal state and 2388 /// can be undone (rollback) until commit is called. 2389 class TypePromotionTransaction { 2390 /// This represents the common interface of the individual transaction. 2391 /// Each class implements the logic for doing one specific modification on 2392 /// the IR via the TypePromotionTransaction. 2393 class TypePromotionAction { 2394 protected: 2395 /// The Instruction modified. 2396 Instruction *Inst; 2397 2398 public: 2399 /// Constructor of the action. 2400 /// The constructor performs the related action on the IR. 2401 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2402 2403 virtual ~TypePromotionAction() = default; 2404 2405 /// Undo the modification done by this action. 2406 /// When this method is called, the IR must be in the same state as it was 2407 /// before this action was applied. 2408 /// \pre Undoing the action works if and only if the IR is in the exact same 2409 /// state as it was directly after this action was applied. 2410 virtual void undo() = 0; 2411 2412 /// Advocate every change made by this action. 2413 /// When the results on the IR of the action are to be kept, it is important 2414 /// to call this function, otherwise hidden information may be kept forever. 2415 virtual void commit() { 2416 // Nothing to be done, this action is not doing anything. 2417 } 2418 }; 2419 2420 /// Utility to remember the position of an instruction. 2421 class InsertionHandler { 2422 /// Position of an instruction. 2423 /// Either an instruction: 2424 /// - Is the first in a basic block: BB is used. 2425 /// - Has a previous instruction: PrevInst is used. 2426 union { 2427 Instruction *PrevInst; 2428 BasicBlock *BB; 2429 } Point; 2430 2431 /// Remember whether or not the instruction had a previous instruction. 2432 bool HasPrevInstruction; 2433 2434 public: 2435 /// Record the position of \p Inst. 2436 InsertionHandler(Instruction *Inst) { 2437 BasicBlock::iterator It = Inst->getIterator(); 2438 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2439 if (HasPrevInstruction) 2440 Point.PrevInst = &*--It; 2441 else 2442 Point.BB = Inst->getParent(); 2443 } 2444 2445 /// Insert \p Inst at the recorded position. 2446 void insert(Instruction *Inst) { 2447 if (HasPrevInstruction) { 2448 if (Inst->getParent()) 2449 Inst->removeFromParent(); 2450 Inst->insertAfter(Point.PrevInst); 2451 } else { 2452 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2453 if (Inst->getParent()) 2454 Inst->moveBefore(Position); 2455 else 2456 Inst->insertBefore(Position); 2457 } 2458 } 2459 }; 2460 2461 /// Move an instruction before another. 2462 class InstructionMoveBefore : public TypePromotionAction { 2463 /// Original position of the instruction. 2464 InsertionHandler Position; 2465 2466 public: 2467 /// Move \p Inst before \p Before. 2468 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2469 : TypePromotionAction(Inst), Position(Inst) { 2470 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2471 << "\n"); 2472 Inst->moveBefore(Before); 2473 } 2474 2475 /// Move the instruction back to its original position. 2476 void undo() override { 2477 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2478 Position.insert(Inst); 2479 } 2480 }; 2481 2482 /// Set the operand of an instruction with a new value. 2483 class OperandSetter : public TypePromotionAction { 2484 /// Original operand of the instruction. 2485 Value *Origin; 2486 2487 /// Index of the modified instruction. 2488 unsigned Idx; 2489 2490 public: 2491 /// Set \p Idx operand of \p Inst with \p NewVal. 2492 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2493 : TypePromotionAction(Inst), Idx(Idx) { 2494 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2495 << "for:" << *Inst << "\n" 2496 << "with:" << *NewVal << "\n"); 2497 Origin = Inst->getOperand(Idx); 2498 Inst->setOperand(Idx, NewVal); 2499 } 2500 2501 /// Restore the original value of the instruction. 2502 void undo() override { 2503 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2504 << "for: " << *Inst << "\n" 2505 << "with: " << *Origin << "\n"); 2506 Inst->setOperand(Idx, Origin); 2507 } 2508 }; 2509 2510 /// Hide the operands of an instruction. 2511 /// Do as if this instruction was not using any of its operands. 2512 class OperandsHider : public TypePromotionAction { 2513 /// The list of original operands. 2514 SmallVector<Value *, 4> OriginalValues; 2515 2516 public: 2517 /// Remove \p Inst from the uses of the operands of \p Inst. 2518 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2519 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2520 unsigned NumOpnds = Inst->getNumOperands(); 2521 OriginalValues.reserve(NumOpnds); 2522 for (unsigned It = 0; It < NumOpnds; ++It) { 2523 // Save the current operand. 2524 Value *Val = Inst->getOperand(It); 2525 OriginalValues.push_back(Val); 2526 // Set a dummy one. 2527 // We could use OperandSetter here, but that would imply an overhead 2528 // that we are not willing to pay. 2529 Inst->setOperand(It, UndefValue::get(Val->getType())); 2530 } 2531 } 2532 2533 /// Restore the original list of uses. 2534 void undo() override { 2535 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2536 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2537 Inst->setOperand(It, OriginalValues[It]); 2538 } 2539 }; 2540 2541 /// Build a truncate instruction. 2542 class TruncBuilder : public TypePromotionAction { 2543 Value *Val; 2544 2545 public: 2546 /// Build a truncate instruction of \p Opnd producing a \p Ty 2547 /// result. 2548 /// trunc Opnd to Ty. 2549 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2550 IRBuilder<> Builder(Opnd); 2551 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2552 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2553 } 2554 2555 /// Get the built value. 2556 Value *getBuiltValue() { return Val; } 2557 2558 /// Remove the built instruction. 2559 void undo() override { 2560 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2561 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2562 IVal->eraseFromParent(); 2563 } 2564 }; 2565 2566 /// Build a sign extension instruction. 2567 class SExtBuilder : public TypePromotionAction { 2568 Value *Val; 2569 2570 public: 2571 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2572 /// result. 2573 /// sext Opnd to Ty. 2574 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2575 : TypePromotionAction(InsertPt) { 2576 IRBuilder<> Builder(InsertPt); 2577 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2578 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2579 } 2580 2581 /// Get the built value. 2582 Value *getBuiltValue() { return Val; } 2583 2584 /// Remove the built instruction. 2585 void undo() override { 2586 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2587 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2588 IVal->eraseFromParent(); 2589 } 2590 }; 2591 2592 /// Build a zero extension instruction. 2593 class ZExtBuilder : public TypePromotionAction { 2594 Value *Val; 2595 2596 public: 2597 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2598 /// result. 2599 /// zext Opnd to Ty. 2600 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2601 : TypePromotionAction(InsertPt) { 2602 IRBuilder<> Builder(InsertPt); 2603 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2604 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2605 } 2606 2607 /// Get the built value. 2608 Value *getBuiltValue() { return Val; } 2609 2610 /// Remove the built instruction. 2611 void undo() override { 2612 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2613 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2614 IVal->eraseFromParent(); 2615 } 2616 }; 2617 2618 /// Mutate an instruction to another type. 2619 class TypeMutator : public TypePromotionAction { 2620 /// Record the original type. 2621 Type *OrigTy; 2622 2623 public: 2624 /// Mutate the type of \p Inst into \p NewTy. 2625 TypeMutator(Instruction *Inst, Type *NewTy) 2626 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2627 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2628 << "\n"); 2629 Inst->mutateType(NewTy); 2630 } 2631 2632 /// Mutate the instruction back to its original type. 2633 void undo() override { 2634 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2635 << "\n"); 2636 Inst->mutateType(OrigTy); 2637 } 2638 }; 2639 2640 /// Replace the uses of an instruction by another instruction. 2641 class UsesReplacer : public TypePromotionAction { 2642 /// Helper structure to keep track of the replaced uses. 2643 struct InstructionAndIdx { 2644 /// The instruction using the instruction. 2645 Instruction *Inst; 2646 2647 /// The index where this instruction is used for Inst. 2648 unsigned Idx; 2649 2650 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2651 : Inst(Inst), Idx(Idx) {} 2652 }; 2653 2654 /// Keep track of the original uses (pair Instruction, Index). 2655 SmallVector<InstructionAndIdx, 4> OriginalUses; 2656 /// Keep track of the debug users. 2657 SmallVector<DbgValueInst *, 1> DbgValues; 2658 2659 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2660 2661 public: 2662 /// Replace all the use of \p Inst by \p New. 2663 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2664 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2665 << "\n"); 2666 // Record the original uses. 2667 for (Use &U : Inst->uses()) { 2668 Instruction *UserI = cast<Instruction>(U.getUser()); 2669 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2670 } 2671 // Record the debug uses separately. They are not in the instruction's 2672 // use list, but they are replaced by RAUW. 2673 findDbgValues(DbgValues, Inst); 2674 2675 // Now, we can replace the uses. 2676 Inst->replaceAllUsesWith(New); 2677 } 2678 2679 /// Reassign the original uses of Inst to Inst. 2680 void undo() override { 2681 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2682 for (use_iterator UseIt = OriginalUses.begin(), 2683 EndIt = OriginalUses.end(); 2684 UseIt != EndIt; ++UseIt) { 2685 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2686 } 2687 // RAUW has replaced all original uses with references to the new value, 2688 // including the debug uses. Since we are undoing the replacements, 2689 // the original debug uses must also be reinstated to maintain the 2690 // correctness and utility of debug value instructions. 2691 for (auto *DVI: DbgValues) { 2692 LLVMContext &Ctx = Inst->getType()->getContext(); 2693 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2694 DVI->setOperand(0, MV); 2695 } 2696 } 2697 }; 2698 2699 /// Remove an instruction from the IR. 2700 class InstructionRemover : public TypePromotionAction { 2701 /// Original position of the instruction. 2702 InsertionHandler Inserter; 2703 2704 /// Helper structure to hide all the link to the instruction. In other 2705 /// words, this helps to do as if the instruction was removed. 2706 OperandsHider Hider; 2707 2708 /// Keep track of the uses replaced, if any. 2709 UsesReplacer *Replacer = nullptr; 2710 2711 /// Keep track of instructions removed. 2712 SetOfInstrs &RemovedInsts; 2713 2714 public: 2715 /// Remove all reference of \p Inst and optionally replace all its 2716 /// uses with New. 2717 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2718 /// \pre If !Inst->use_empty(), then New != nullptr 2719 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2720 Value *New = nullptr) 2721 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2722 RemovedInsts(RemovedInsts) { 2723 if (New) 2724 Replacer = new UsesReplacer(Inst, New); 2725 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2726 RemovedInsts.insert(Inst); 2727 /// The instructions removed here will be freed after completing 2728 /// optimizeBlock() for all blocks as we need to keep track of the 2729 /// removed instructions during promotion. 2730 Inst->removeFromParent(); 2731 } 2732 2733 ~InstructionRemover() override { delete Replacer; } 2734 2735 /// Resurrect the instruction and reassign it to the proper uses if 2736 /// new value was provided when build this action. 2737 void undo() override { 2738 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2739 Inserter.insert(Inst); 2740 if (Replacer) 2741 Replacer->undo(); 2742 Hider.undo(); 2743 RemovedInsts.erase(Inst); 2744 } 2745 }; 2746 2747 public: 2748 /// Restoration point. 2749 /// The restoration point is a pointer to an action instead of an iterator 2750 /// because the iterator may be invalidated but not the pointer. 2751 using ConstRestorationPt = const TypePromotionAction *; 2752 2753 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2754 : RemovedInsts(RemovedInsts) {} 2755 2756 /// Advocate every changes made in that transaction. 2757 void commit(); 2758 2759 /// Undo all the changes made after the given point. 2760 void rollback(ConstRestorationPt Point); 2761 2762 /// Get the current restoration point. 2763 ConstRestorationPt getRestorationPoint() const; 2764 2765 /// \name API for IR modification with state keeping to support rollback. 2766 /// @{ 2767 /// Same as Instruction::setOperand. 2768 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2769 2770 /// Same as Instruction::eraseFromParent. 2771 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2772 2773 /// Same as Value::replaceAllUsesWith. 2774 void replaceAllUsesWith(Instruction *Inst, Value *New); 2775 2776 /// Same as Value::mutateType. 2777 void mutateType(Instruction *Inst, Type *NewTy); 2778 2779 /// Same as IRBuilder::createTrunc. 2780 Value *createTrunc(Instruction *Opnd, Type *Ty); 2781 2782 /// Same as IRBuilder::createSExt. 2783 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2784 2785 /// Same as IRBuilder::createZExt. 2786 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2787 2788 /// Same as Instruction::moveBefore. 2789 void moveBefore(Instruction *Inst, Instruction *Before); 2790 /// @} 2791 2792 private: 2793 /// The ordered list of actions made so far. 2794 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2795 2796 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2797 2798 SetOfInstrs &RemovedInsts; 2799 }; 2800 2801 } // end anonymous namespace 2802 2803 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2804 Value *NewVal) { 2805 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2806 Inst, Idx, NewVal)); 2807 } 2808 2809 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2810 Value *NewVal) { 2811 Actions.push_back( 2812 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2813 Inst, RemovedInsts, NewVal)); 2814 } 2815 2816 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2817 Value *New) { 2818 Actions.push_back( 2819 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2820 } 2821 2822 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2823 Actions.push_back( 2824 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2825 } 2826 2827 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2828 Type *Ty) { 2829 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2830 Value *Val = Ptr->getBuiltValue(); 2831 Actions.push_back(std::move(Ptr)); 2832 return Val; 2833 } 2834 2835 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2836 Value *Opnd, Type *Ty) { 2837 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2838 Value *Val = Ptr->getBuiltValue(); 2839 Actions.push_back(std::move(Ptr)); 2840 return Val; 2841 } 2842 2843 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2844 Value *Opnd, Type *Ty) { 2845 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2846 Value *Val = Ptr->getBuiltValue(); 2847 Actions.push_back(std::move(Ptr)); 2848 return Val; 2849 } 2850 2851 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2852 Instruction *Before) { 2853 Actions.push_back( 2854 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2855 Inst, Before)); 2856 } 2857 2858 TypePromotionTransaction::ConstRestorationPt 2859 TypePromotionTransaction::getRestorationPoint() const { 2860 return !Actions.empty() ? Actions.back().get() : nullptr; 2861 } 2862 2863 void TypePromotionTransaction::commit() { 2864 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2865 ++It) 2866 (*It)->commit(); 2867 Actions.clear(); 2868 } 2869 2870 void TypePromotionTransaction::rollback( 2871 TypePromotionTransaction::ConstRestorationPt Point) { 2872 while (!Actions.empty() && Point != Actions.back().get()) { 2873 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2874 Curr->undo(); 2875 } 2876 } 2877 2878 namespace { 2879 2880 /// A helper class for matching addressing modes. 2881 /// 2882 /// This encapsulates the logic for matching the target-legal addressing modes. 2883 class AddressingModeMatcher { 2884 SmallVectorImpl<Instruction*> &AddrModeInsts; 2885 const TargetLowering &TLI; 2886 const TargetRegisterInfo &TRI; 2887 const DataLayout &DL; 2888 2889 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2890 /// the memory instruction that we're computing this address for. 2891 Type *AccessTy; 2892 unsigned AddrSpace; 2893 Instruction *MemoryInst; 2894 2895 /// This is the addressing mode that we're building up. This is 2896 /// part of the return value of this addressing mode matching stuff. 2897 ExtAddrMode &AddrMode; 2898 2899 /// The instructions inserted by other CodeGenPrepare optimizations. 2900 const SetOfInstrs &InsertedInsts; 2901 2902 /// A map from the instructions to their type before promotion. 2903 InstrToOrigTy &PromotedInsts; 2904 2905 /// The ongoing transaction where every action should be registered. 2906 TypePromotionTransaction &TPT; 2907 2908 // A GEP which has too large offset to be folded into the addressing mode. 2909 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2910 2911 /// This is set to true when we should not do profitability checks. 2912 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2913 bool IgnoreProfitability; 2914 2915 /// True if we are optimizing for size. 2916 bool OptSize; 2917 2918 ProfileSummaryInfo *PSI; 2919 BlockFrequencyInfo *BFI; 2920 2921 AddressingModeMatcher( 2922 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2923 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2924 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2925 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2926 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2927 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2928 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2929 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2930 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2931 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2932 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2933 IgnoreProfitability = false; 2934 } 2935 2936 public: 2937 /// Find the maximal addressing mode that a load/store of V can fold, 2938 /// give an access type of AccessTy. This returns a list of involved 2939 /// instructions in AddrModeInsts. 2940 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2941 /// optimizations. 2942 /// \p PromotedInsts maps the instructions to their type before promotion. 2943 /// \p The ongoing transaction where every action should be registered. 2944 static ExtAddrMode 2945 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2946 SmallVectorImpl<Instruction *> &AddrModeInsts, 2947 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2948 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2949 TypePromotionTransaction &TPT, 2950 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2951 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2952 ExtAddrMode Result; 2953 2954 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2955 MemoryInst, Result, InsertedInsts, 2956 PromotedInsts, TPT, LargeOffsetGEP, 2957 OptSize, PSI, BFI) 2958 .matchAddr(V, 0); 2959 (void)Success; assert(Success && "Couldn't select *anything*?"); 2960 return Result; 2961 } 2962 2963 private: 2964 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2965 bool matchAddr(Value *Addr, unsigned Depth); 2966 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2967 bool *MovedAway = nullptr); 2968 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2969 ExtAddrMode &AMBefore, 2970 ExtAddrMode &AMAfter); 2971 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2972 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2973 Value *PromotedOperand) const; 2974 }; 2975 2976 class PhiNodeSet; 2977 2978 /// An iterator for PhiNodeSet. 2979 class PhiNodeSetIterator { 2980 PhiNodeSet * const Set; 2981 size_t CurrentIndex = 0; 2982 2983 public: 2984 /// The constructor. Start should point to either a valid element, or be equal 2985 /// to the size of the underlying SmallVector of the PhiNodeSet. 2986 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2987 PHINode * operator*() const; 2988 PhiNodeSetIterator& operator++(); 2989 bool operator==(const PhiNodeSetIterator &RHS) const; 2990 bool operator!=(const PhiNodeSetIterator &RHS) const; 2991 }; 2992 2993 /// Keeps a set of PHINodes. 2994 /// 2995 /// This is a minimal set implementation for a specific use case: 2996 /// It is very fast when there are very few elements, but also provides good 2997 /// performance when there are many. It is similar to SmallPtrSet, but also 2998 /// provides iteration by insertion order, which is deterministic and stable 2999 /// across runs. It is also similar to SmallSetVector, but provides removing 3000 /// elements in O(1) time. This is achieved by not actually removing the element 3001 /// from the underlying vector, so comes at the cost of using more memory, but 3002 /// that is fine, since PhiNodeSets are used as short lived objects. 3003 class PhiNodeSet { 3004 friend class PhiNodeSetIterator; 3005 3006 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3007 using iterator = PhiNodeSetIterator; 3008 3009 /// Keeps the elements in the order of their insertion in the underlying 3010 /// vector. To achieve constant time removal, it never deletes any element. 3011 SmallVector<PHINode *, 32> NodeList; 3012 3013 /// Keeps the elements in the underlying set implementation. This (and not the 3014 /// NodeList defined above) is the source of truth on whether an element 3015 /// is actually in the collection. 3016 MapType NodeMap; 3017 3018 /// Points to the first valid (not deleted) element when the set is not empty 3019 /// and the value is not zero. Equals to the size of the underlying vector 3020 /// when the set is empty. When the value is 0, as in the beginning, the 3021 /// first element may or may not be valid. 3022 size_t FirstValidElement = 0; 3023 3024 public: 3025 /// Inserts a new element to the collection. 3026 /// \returns true if the element is actually added, i.e. was not in the 3027 /// collection before the operation. 3028 bool insert(PHINode *Ptr) { 3029 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3030 NodeList.push_back(Ptr); 3031 return true; 3032 } 3033 return false; 3034 } 3035 3036 /// Removes the element from the collection. 3037 /// \returns whether the element is actually removed, i.e. was in the 3038 /// collection before the operation. 3039 bool erase(PHINode *Ptr) { 3040 auto it = NodeMap.find(Ptr); 3041 if (it != NodeMap.end()) { 3042 NodeMap.erase(Ptr); 3043 SkipRemovedElements(FirstValidElement); 3044 return true; 3045 } 3046 return false; 3047 } 3048 3049 /// Removes all elements and clears the collection. 3050 void clear() { 3051 NodeMap.clear(); 3052 NodeList.clear(); 3053 FirstValidElement = 0; 3054 } 3055 3056 /// \returns an iterator that will iterate the elements in the order of 3057 /// insertion. 3058 iterator begin() { 3059 if (FirstValidElement == 0) 3060 SkipRemovedElements(FirstValidElement); 3061 return PhiNodeSetIterator(this, FirstValidElement); 3062 } 3063 3064 /// \returns an iterator that points to the end of the collection. 3065 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3066 3067 /// Returns the number of elements in the collection. 3068 size_t size() const { 3069 return NodeMap.size(); 3070 } 3071 3072 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3073 size_t count(PHINode *Ptr) const { 3074 return NodeMap.count(Ptr); 3075 } 3076 3077 private: 3078 /// Updates the CurrentIndex so that it will point to a valid element. 3079 /// 3080 /// If the element of NodeList at CurrentIndex is valid, it does not 3081 /// change it. If there are no more valid elements, it updates CurrentIndex 3082 /// to point to the end of the NodeList. 3083 void SkipRemovedElements(size_t &CurrentIndex) { 3084 while (CurrentIndex < NodeList.size()) { 3085 auto it = NodeMap.find(NodeList[CurrentIndex]); 3086 // If the element has been deleted and added again later, NodeMap will 3087 // point to a different index, so CurrentIndex will still be invalid. 3088 if (it != NodeMap.end() && it->second == CurrentIndex) 3089 break; 3090 ++CurrentIndex; 3091 } 3092 } 3093 }; 3094 3095 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3096 : Set(Set), CurrentIndex(Start) {} 3097 3098 PHINode * PhiNodeSetIterator::operator*() const { 3099 assert(CurrentIndex < Set->NodeList.size() && 3100 "PhiNodeSet access out of range"); 3101 return Set->NodeList[CurrentIndex]; 3102 } 3103 3104 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3105 assert(CurrentIndex < Set->NodeList.size() && 3106 "PhiNodeSet access out of range"); 3107 ++CurrentIndex; 3108 Set->SkipRemovedElements(CurrentIndex); 3109 return *this; 3110 } 3111 3112 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3113 return CurrentIndex == RHS.CurrentIndex; 3114 } 3115 3116 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3117 return !((*this) == RHS); 3118 } 3119 3120 /// Keep track of simplification of Phi nodes. 3121 /// Accept the set of all phi nodes and erase phi node from this set 3122 /// if it is simplified. 3123 class SimplificationTracker { 3124 DenseMap<Value *, Value *> Storage; 3125 const SimplifyQuery &SQ; 3126 // Tracks newly created Phi nodes. The elements are iterated by insertion 3127 // order. 3128 PhiNodeSet AllPhiNodes; 3129 // Tracks newly created Select nodes. 3130 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3131 3132 public: 3133 SimplificationTracker(const SimplifyQuery &sq) 3134 : SQ(sq) {} 3135 3136 Value *Get(Value *V) { 3137 do { 3138 auto SV = Storage.find(V); 3139 if (SV == Storage.end()) 3140 return V; 3141 V = SV->second; 3142 } while (true); 3143 } 3144 3145 Value *Simplify(Value *Val) { 3146 SmallVector<Value *, 32> WorkList; 3147 SmallPtrSet<Value *, 32> Visited; 3148 WorkList.push_back(Val); 3149 while (!WorkList.empty()) { 3150 auto P = WorkList.pop_back_val(); 3151 if (!Visited.insert(P).second) 3152 continue; 3153 if (auto *PI = dyn_cast<Instruction>(P)) 3154 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3155 for (auto *U : PI->users()) 3156 WorkList.push_back(cast<Value>(U)); 3157 Put(PI, V); 3158 PI->replaceAllUsesWith(V); 3159 if (auto *PHI = dyn_cast<PHINode>(PI)) 3160 AllPhiNodes.erase(PHI); 3161 if (auto *Select = dyn_cast<SelectInst>(PI)) 3162 AllSelectNodes.erase(Select); 3163 PI->eraseFromParent(); 3164 } 3165 } 3166 return Get(Val); 3167 } 3168 3169 void Put(Value *From, Value *To) { 3170 Storage.insert({ From, To }); 3171 } 3172 3173 void ReplacePhi(PHINode *From, PHINode *To) { 3174 Value* OldReplacement = Get(From); 3175 while (OldReplacement != From) { 3176 From = To; 3177 To = dyn_cast<PHINode>(OldReplacement); 3178 OldReplacement = Get(From); 3179 } 3180 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3181 Put(From, To); 3182 From->replaceAllUsesWith(To); 3183 AllPhiNodes.erase(From); 3184 From->eraseFromParent(); 3185 } 3186 3187 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3188 3189 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3190 3191 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3192 3193 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3194 3195 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3196 3197 void destroyNewNodes(Type *CommonType) { 3198 // For safe erasing, replace the uses with dummy value first. 3199 auto Dummy = UndefValue::get(CommonType); 3200 for (auto I : AllPhiNodes) { 3201 I->replaceAllUsesWith(Dummy); 3202 I->eraseFromParent(); 3203 } 3204 AllPhiNodes.clear(); 3205 for (auto I : AllSelectNodes) { 3206 I->replaceAllUsesWith(Dummy); 3207 I->eraseFromParent(); 3208 } 3209 AllSelectNodes.clear(); 3210 } 3211 }; 3212 3213 /// A helper class for combining addressing modes. 3214 class AddressingModeCombiner { 3215 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3216 typedef std::pair<PHINode *, PHINode *> PHIPair; 3217 3218 private: 3219 /// The addressing modes we've collected. 3220 SmallVector<ExtAddrMode, 16> AddrModes; 3221 3222 /// The field in which the AddrModes differ, when we have more than one. 3223 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3224 3225 /// Are the AddrModes that we have all just equal to their original values? 3226 bool AllAddrModesTrivial = true; 3227 3228 /// Common Type for all different fields in addressing modes. 3229 Type *CommonType; 3230 3231 /// SimplifyQuery for simplifyInstruction utility. 3232 const SimplifyQuery &SQ; 3233 3234 /// Original Address. 3235 Value *Original; 3236 3237 public: 3238 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3239 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3240 3241 /// Get the combined AddrMode 3242 const ExtAddrMode &getAddrMode() const { 3243 return AddrModes[0]; 3244 } 3245 3246 /// Add a new AddrMode if it's compatible with the AddrModes we already 3247 /// have. 3248 /// \return True iff we succeeded in doing so. 3249 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3250 // Take note of if we have any non-trivial AddrModes, as we need to detect 3251 // when all AddrModes are trivial as then we would introduce a phi or select 3252 // which just duplicates what's already there. 3253 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3254 3255 // If this is the first addrmode then everything is fine. 3256 if (AddrModes.empty()) { 3257 AddrModes.emplace_back(NewAddrMode); 3258 return true; 3259 } 3260 3261 // Figure out how different this is from the other address modes, which we 3262 // can do just by comparing against the first one given that we only care 3263 // about the cumulative difference. 3264 ExtAddrMode::FieldName ThisDifferentField = 3265 AddrModes[0].compare(NewAddrMode); 3266 if (DifferentField == ExtAddrMode::NoField) 3267 DifferentField = ThisDifferentField; 3268 else if (DifferentField != ThisDifferentField) 3269 DifferentField = ExtAddrMode::MultipleFields; 3270 3271 // If NewAddrMode differs in more than one dimension we cannot handle it. 3272 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3273 3274 // If Scale Field is different then we reject. 3275 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3276 3277 // We also must reject the case when base offset is different and 3278 // scale reg is not null, we cannot handle this case due to merge of 3279 // different offsets will be used as ScaleReg. 3280 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3281 !NewAddrMode.ScaledReg); 3282 3283 // We also must reject the case when GV is different and BaseReg installed 3284 // due to we want to use base reg as a merge of GV values. 3285 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3286 !NewAddrMode.HasBaseReg); 3287 3288 // Even if NewAddMode is the same we still need to collect it due to 3289 // original value is different. And later we will need all original values 3290 // as anchors during finding the common Phi node. 3291 if (CanHandle) 3292 AddrModes.emplace_back(NewAddrMode); 3293 else 3294 AddrModes.clear(); 3295 3296 return CanHandle; 3297 } 3298 3299 /// Combine the addressing modes we've collected into a single 3300 /// addressing mode. 3301 /// \return True iff we successfully combined them or we only had one so 3302 /// didn't need to combine them anyway. 3303 bool combineAddrModes() { 3304 // If we have no AddrModes then they can't be combined. 3305 if (AddrModes.size() == 0) 3306 return false; 3307 3308 // A single AddrMode can trivially be combined. 3309 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3310 return true; 3311 3312 // If the AddrModes we collected are all just equal to the value they are 3313 // derived from then combining them wouldn't do anything useful. 3314 if (AllAddrModesTrivial) 3315 return false; 3316 3317 if (!addrModeCombiningAllowed()) 3318 return false; 3319 3320 // Build a map between <original value, basic block where we saw it> to 3321 // value of base register. 3322 // Bail out if there is no common type. 3323 FoldAddrToValueMapping Map; 3324 if (!initializeMap(Map)) 3325 return false; 3326 3327 Value *CommonValue = findCommon(Map); 3328 if (CommonValue) 3329 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3330 return CommonValue != nullptr; 3331 } 3332 3333 private: 3334 /// Initialize Map with anchor values. For address seen 3335 /// we set the value of different field saw in this address. 3336 /// At the same time we find a common type for different field we will 3337 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3338 /// Return false if there is no common type found. 3339 bool initializeMap(FoldAddrToValueMapping &Map) { 3340 // Keep track of keys where the value is null. We will need to replace it 3341 // with constant null when we know the common type. 3342 SmallVector<Value *, 2> NullValue; 3343 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3344 for (auto &AM : AddrModes) { 3345 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3346 if (DV) { 3347 auto *Type = DV->getType(); 3348 if (CommonType && CommonType != Type) 3349 return false; 3350 CommonType = Type; 3351 Map[AM.OriginalValue] = DV; 3352 } else { 3353 NullValue.push_back(AM.OriginalValue); 3354 } 3355 } 3356 assert(CommonType && "At least one non-null value must be!"); 3357 for (auto *V : NullValue) 3358 Map[V] = Constant::getNullValue(CommonType); 3359 return true; 3360 } 3361 3362 /// We have mapping between value A and other value B where B was a field in 3363 /// addressing mode represented by A. Also we have an original value C 3364 /// representing an address we start with. Traversing from C through phi and 3365 /// selects we ended up with A's in a map. This utility function tries to find 3366 /// a value V which is a field in addressing mode C and traversing through phi 3367 /// nodes and selects we will end up in corresponded values B in a map. 3368 /// The utility will create a new Phi/Selects if needed. 3369 // The simple example looks as follows: 3370 // BB1: 3371 // p1 = b1 + 40 3372 // br cond BB2, BB3 3373 // BB2: 3374 // p2 = b2 + 40 3375 // br BB3 3376 // BB3: 3377 // p = phi [p1, BB1], [p2, BB2] 3378 // v = load p 3379 // Map is 3380 // p1 -> b1 3381 // p2 -> b2 3382 // Request is 3383 // p -> ? 3384 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3385 Value *findCommon(FoldAddrToValueMapping &Map) { 3386 // Tracks the simplification of newly created phi nodes. The reason we use 3387 // this mapping is because we will add new created Phi nodes in AddrToBase. 3388 // Simplification of Phi nodes is recursive, so some Phi node may 3389 // be simplified after we added it to AddrToBase. In reality this 3390 // simplification is possible only if original phi/selects were not 3391 // simplified yet. 3392 // Using this mapping we can find the current value in AddrToBase. 3393 SimplificationTracker ST(SQ); 3394 3395 // First step, DFS to create PHI nodes for all intermediate blocks. 3396 // Also fill traverse order for the second step. 3397 SmallVector<Value *, 32> TraverseOrder; 3398 InsertPlaceholders(Map, TraverseOrder, ST); 3399 3400 // Second Step, fill new nodes by merged values and simplify if possible. 3401 FillPlaceholders(Map, TraverseOrder, ST); 3402 3403 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3404 ST.destroyNewNodes(CommonType); 3405 return nullptr; 3406 } 3407 3408 // Now we'd like to match New Phi nodes to existed ones. 3409 unsigned PhiNotMatchedCount = 0; 3410 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3411 ST.destroyNewNodes(CommonType); 3412 return nullptr; 3413 } 3414 3415 auto *Result = ST.Get(Map.find(Original)->second); 3416 if (Result) { 3417 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3418 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3419 } 3420 return Result; 3421 } 3422 3423 /// Try to match PHI node to Candidate. 3424 /// Matcher tracks the matched Phi nodes. 3425 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3426 SmallSetVector<PHIPair, 8> &Matcher, 3427 PhiNodeSet &PhiNodesToMatch) { 3428 SmallVector<PHIPair, 8> WorkList; 3429 Matcher.insert({ PHI, Candidate }); 3430 SmallSet<PHINode *, 8> MatchedPHIs; 3431 MatchedPHIs.insert(PHI); 3432 WorkList.push_back({ PHI, Candidate }); 3433 SmallSet<PHIPair, 8> Visited; 3434 while (!WorkList.empty()) { 3435 auto Item = WorkList.pop_back_val(); 3436 if (!Visited.insert(Item).second) 3437 continue; 3438 // We iterate over all incoming values to Phi to compare them. 3439 // If values are different and both of them Phi and the first one is a 3440 // Phi we added (subject to match) and both of them is in the same basic 3441 // block then we can match our pair if values match. So we state that 3442 // these values match and add it to work list to verify that. 3443 for (auto B : Item.first->blocks()) { 3444 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3445 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3446 if (FirstValue == SecondValue) 3447 continue; 3448 3449 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3450 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3451 3452 // One of them is not Phi or 3453 // The first one is not Phi node from the set we'd like to match or 3454 // Phi nodes from different basic blocks then 3455 // we will not be able to match. 3456 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3457 FirstPhi->getParent() != SecondPhi->getParent()) 3458 return false; 3459 3460 // If we already matched them then continue. 3461 if (Matcher.count({ FirstPhi, SecondPhi })) 3462 continue; 3463 // So the values are different and does not match. So we need them to 3464 // match. (But we register no more than one match per PHI node, so that 3465 // we won't later try to replace them twice.) 3466 if (MatchedPHIs.insert(FirstPhi).second) 3467 Matcher.insert({ FirstPhi, SecondPhi }); 3468 // But me must check it. 3469 WorkList.push_back({ FirstPhi, SecondPhi }); 3470 } 3471 } 3472 return true; 3473 } 3474 3475 /// For the given set of PHI nodes (in the SimplificationTracker) try 3476 /// to find their equivalents. 3477 /// Returns false if this matching fails and creation of new Phi is disabled. 3478 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3479 unsigned &PhiNotMatchedCount) { 3480 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3481 // order, so the replacements (ReplacePhi) are also done in a deterministic 3482 // order. 3483 SmallSetVector<PHIPair, 8> Matched; 3484 SmallPtrSet<PHINode *, 8> WillNotMatch; 3485 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3486 while (PhiNodesToMatch.size()) { 3487 PHINode *PHI = *PhiNodesToMatch.begin(); 3488 3489 // Add us, if no Phi nodes in the basic block we do not match. 3490 WillNotMatch.clear(); 3491 WillNotMatch.insert(PHI); 3492 3493 // Traverse all Phis until we found equivalent or fail to do that. 3494 bool IsMatched = false; 3495 for (auto &P : PHI->getParent()->phis()) { 3496 if (&P == PHI) 3497 continue; 3498 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3499 break; 3500 // If it does not match, collect all Phi nodes from matcher. 3501 // if we end up with no match, them all these Phi nodes will not match 3502 // later. 3503 for (auto M : Matched) 3504 WillNotMatch.insert(M.first); 3505 Matched.clear(); 3506 } 3507 if (IsMatched) { 3508 // Replace all matched values and erase them. 3509 for (auto MV : Matched) 3510 ST.ReplacePhi(MV.first, MV.second); 3511 Matched.clear(); 3512 continue; 3513 } 3514 // If we are not allowed to create new nodes then bail out. 3515 if (!AllowNewPhiNodes) 3516 return false; 3517 // Just remove all seen values in matcher. They will not match anything. 3518 PhiNotMatchedCount += WillNotMatch.size(); 3519 for (auto *P : WillNotMatch) 3520 PhiNodesToMatch.erase(P); 3521 } 3522 return true; 3523 } 3524 /// Fill the placeholders with values from predecessors and simplify them. 3525 void FillPlaceholders(FoldAddrToValueMapping &Map, 3526 SmallVectorImpl<Value *> &TraverseOrder, 3527 SimplificationTracker &ST) { 3528 while (!TraverseOrder.empty()) { 3529 Value *Current = TraverseOrder.pop_back_val(); 3530 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3531 Value *V = Map[Current]; 3532 3533 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3534 // CurrentValue also must be Select. 3535 auto *CurrentSelect = cast<SelectInst>(Current); 3536 auto *TrueValue = CurrentSelect->getTrueValue(); 3537 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3538 Select->setTrueValue(ST.Get(Map[TrueValue])); 3539 auto *FalseValue = CurrentSelect->getFalseValue(); 3540 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3541 Select->setFalseValue(ST.Get(Map[FalseValue])); 3542 } else { 3543 // Must be a Phi node then. 3544 auto *PHI = cast<PHINode>(V); 3545 // Fill the Phi node with values from predecessors. 3546 for (auto B : predecessors(PHI->getParent())) { 3547 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3548 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3549 PHI->addIncoming(ST.Get(Map[PV]), B); 3550 } 3551 } 3552 Map[Current] = ST.Simplify(V); 3553 } 3554 } 3555 3556 /// Starting from original value recursively iterates over def-use chain up to 3557 /// known ending values represented in a map. For each traversed phi/select 3558 /// inserts a placeholder Phi or Select. 3559 /// Reports all new created Phi/Select nodes by adding them to set. 3560 /// Also reports and order in what values have been traversed. 3561 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3562 SmallVectorImpl<Value *> &TraverseOrder, 3563 SimplificationTracker &ST) { 3564 SmallVector<Value *, 32> Worklist; 3565 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3566 "Address must be a Phi or Select node"); 3567 auto *Dummy = UndefValue::get(CommonType); 3568 Worklist.push_back(Original); 3569 while (!Worklist.empty()) { 3570 Value *Current = Worklist.pop_back_val(); 3571 // if it is already visited or it is an ending value then skip it. 3572 if (Map.find(Current) != Map.end()) 3573 continue; 3574 TraverseOrder.push_back(Current); 3575 3576 // CurrentValue must be a Phi node or select. All others must be covered 3577 // by anchors. 3578 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3579 // Is it OK to get metadata from OrigSelect?! 3580 // Create a Select placeholder with dummy value. 3581 SelectInst *Select = SelectInst::Create( 3582 CurrentSelect->getCondition(), Dummy, Dummy, 3583 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3584 Map[Current] = Select; 3585 ST.insertNewSelect(Select); 3586 // We are interested in True and False values. 3587 Worklist.push_back(CurrentSelect->getTrueValue()); 3588 Worklist.push_back(CurrentSelect->getFalseValue()); 3589 } else { 3590 // It must be a Phi node then. 3591 PHINode *CurrentPhi = cast<PHINode>(Current); 3592 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3593 PHINode *PHI = 3594 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3595 Map[Current] = PHI; 3596 ST.insertNewPhi(PHI); 3597 for (Value *P : CurrentPhi->incoming_values()) 3598 Worklist.push_back(P); 3599 } 3600 } 3601 } 3602 3603 bool addrModeCombiningAllowed() { 3604 if (DisableComplexAddrModes) 3605 return false; 3606 switch (DifferentField) { 3607 default: 3608 return false; 3609 case ExtAddrMode::BaseRegField: 3610 return AddrSinkCombineBaseReg; 3611 case ExtAddrMode::BaseGVField: 3612 return AddrSinkCombineBaseGV; 3613 case ExtAddrMode::BaseOffsField: 3614 return AddrSinkCombineBaseOffs; 3615 case ExtAddrMode::ScaledRegField: 3616 return AddrSinkCombineScaledReg; 3617 } 3618 } 3619 }; 3620 } // end anonymous namespace 3621 3622 /// Try adding ScaleReg*Scale to the current addressing mode. 3623 /// Return true and update AddrMode if this addr mode is legal for the target, 3624 /// false if not. 3625 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3626 unsigned Depth) { 3627 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3628 // mode. Just process that directly. 3629 if (Scale == 1) 3630 return matchAddr(ScaleReg, Depth); 3631 3632 // If the scale is 0, it takes nothing to add this. 3633 if (Scale == 0) 3634 return true; 3635 3636 // If we already have a scale of this value, we can add to it, otherwise, we 3637 // need an available scale field. 3638 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3639 return false; 3640 3641 ExtAddrMode TestAddrMode = AddrMode; 3642 3643 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3644 // [A+B + A*7] -> [B+A*8]. 3645 TestAddrMode.Scale += Scale; 3646 TestAddrMode.ScaledReg = ScaleReg; 3647 3648 // If the new address isn't legal, bail out. 3649 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3650 return false; 3651 3652 // It was legal, so commit it. 3653 AddrMode = TestAddrMode; 3654 3655 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3656 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3657 // X*Scale + C*Scale to addr mode. 3658 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3659 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3660 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3661 TestAddrMode.InBounds = false; 3662 TestAddrMode.ScaledReg = AddLHS; 3663 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3664 3665 // If this addressing mode is legal, commit it and remember that we folded 3666 // this instruction. 3667 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3668 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3669 AddrMode = TestAddrMode; 3670 return true; 3671 } 3672 } 3673 3674 // Otherwise, not (x+c)*scale, just return what we have. 3675 return true; 3676 } 3677 3678 /// This is a little filter, which returns true if an addressing computation 3679 /// involving I might be folded into a load/store accessing it. 3680 /// This doesn't need to be perfect, but needs to accept at least 3681 /// the set of instructions that MatchOperationAddr can. 3682 static bool MightBeFoldableInst(Instruction *I) { 3683 switch (I->getOpcode()) { 3684 case Instruction::BitCast: 3685 case Instruction::AddrSpaceCast: 3686 // Don't touch identity bitcasts. 3687 if (I->getType() == I->getOperand(0)->getType()) 3688 return false; 3689 return I->getType()->isIntOrPtrTy(); 3690 case Instruction::PtrToInt: 3691 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3692 return true; 3693 case Instruction::IntToPtr: 3694 // We know the input is intptr_t, so this is foldable. 3695 return true; 3696 case Instruction::Add: 3697 return true; 3698 case Instruction::Mul: 3699 case Instruction::Shl: 3700 // Can only handle X*C and X << C. 3701 return isa<ConstantInt>(I->getOperand(1)); 3702 case Instruction::GetElementPtr: 3703 return true; 3704 default: 3705 return false; 3706 } 3707 } 3708 3709 /// Check whether or not \p Val is a legal instruction for \p TLI. 3710 /// \note \p Val is assumed to be the product of some type promotion. 3711 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3712 /// to be legal, as the non-promoted value would have had the same state. 3713 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3714 const DataLayout &DL, Value *Val) { 3715 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3716 if (!PromotedInst) 3717 return false; 3718 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3719 // If the ISDOpcode is undefined, it was undefined before the promotion. 3720 if (!ISDOpcode) 3721 return true; 3722 // Otherwise, check if the promoted instruction is legal or not. 3723 return TLI.isOperationLegalOrCustom( 3724 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3725 } 3726 3727 namespace { 3728 3729 /// Hepler class to perform type promotion. 3730 class TypePromotionHelper { 3731 /// Utility function to add a promoted instruction \p ExtOpnd to 3732 /// \p PromotedInsts and record the type of extension we have seen. 3733 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3734 Instruction *ExtOpnd, 3735 bool IsSExt) { 3736 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3737 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3738 if (It != PromotedInsts.end()) { 3739 // If the new extension is same as original, the information in 3740 // PromotedInsts[ExtOpnd] is still correct. 3741 if (It->second.getInt() == ExtTy) 3742 return; 3743 3744 // Now the new extension is different from old extension, we make 3745 // the type information invalid by setting extension type to 3746 // BothExtension. 3747 ExtTy = BothExtension; 3748 } 3749 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3750 } 3751 3752 /// Utility function to query the original type of instruction \p Opnd 3753 /// with a matched extension type. If the extension doesn't match, we 3754 /// cannot use the information we had on the original type. 3755 /// BothExtension doesn't match any extension type. 3756 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3757 Instruction *Opnd, 3758 bool IsSExt) { 3759 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3760 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3761 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3762 return It->second.getPointer(); 3763 return nullptr; 3764 } 3765 3766 /// Utility function to check whether or not a sign or zero extension 3767 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3768 /// either using the operands of \p Inst or promoting \p Inst. 3769 /// The type of the extension is defined by \p IsSExt. 3770 /// In other words, check if: 3771 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3772 /// #1 Promotion applies: 3773 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3774 /// #2 Operand reuses: 3775 /// ext opnd1 to ConsideredExtType. 3776 /// \p PromotedInsts maps the instructions to their type before promotion. 3777 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3778 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3779 3780 /// Utility function to determine if \p OpIdx should be promoted when 3781 /// promoting \p Inst. 3782 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3783 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3784 } 3785 3786 /// Utility function to promote the operand of \p Ext when this 3787 /// operand is a promotable trunc or sext or zext. 3788 /// \p PromotedInsts maps the instructions to their type before promotion. 3789 /// \p CreatedInstsCost[out] contains the cost of all instructions 3790 /// created to promote the operand of Ext. 3791 /// Newly added extensions are inserted in \p Exts. 3792 /// Newly added truncates are inserted in \p Truncs. 3793 /// Should never be called directly. 3794 /// \return The promoted value which is used instead of Ext. 3795 static Value *promoteOperandForTruncAndAnyExt( 3796 Instruction *Ext, TypePromotionTransaction &TPT, 3797 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3798 SmallVectorImpl<Instruction *> *Exts, 3799 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3800 3801 /// Utility function to promote the operand of \p Ext when this 3802 /// operand is promotable and is not a supported trunc or sext. 3803 /// \p PromotedInsts maps the instructions to their type before promotion. 3804 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3805 /// created to promote the operand of Ext. 3806 /// Newly added extensions are inserted in \p Exts. 3807 /// Newly added truncates are inserted in \p Truncs. 3808 /// Should never be called directly. 3809 /// \return The promoted value which is used instead of Ext. 3810 static Value *promoteOperandForOther(Instruction *Ext, 3811 TypePromotionTransaction &TPT, 3812 InstrToOrigTy &PromotedInsts, 3813 unsigned &CreatedInstsCost, 3814 SmallVectorImpl<Instruction *> *Exts, 3815 SmallVectorImpl<Instruction *> *Truncs, 3816 const TargetLowering &TLI, bool IsSExt); 3817 3818 /// \see promoteOperandForOther. 3819 static Value *signExtendOperandForOther( 3820 Instruction *Ext, TypePromotionTransaction &TPT, 3821 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3822 SmallVectorImpl<Instruction *> *Exts, 3823 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3824 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3825 Exts, Truncs, TLI, true); 3826 } 3827 3828 /// \see promoteOperandForOther. 3829 static Value *zeroExtendOperandForOther( 3830 Instruction *Ext, TypePromotionTransaction &TPT, 3831 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3832 SmallVectorImpl<Instruction *> *Exts, 3833 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3834 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3835 Exts, Truncs, TLI, false); 3836 } 3837 3838 public: 3839 /// Type for the utility function that promotes the operand of Ext. 3840 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3841 InstrToOrigTy &PromotedInsts, 3842 unsigned &CreatedInstsCost, 3843 SmallVectorImpl<Instruction *> *Exts, 3844 SmallVectorImpl<Instruction *> *Truncs, 3845 const TargetLowering &TLI); 3846 3847 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3848 /// action to promote the operand of \p Ext instead of using Ext. 3849 /// \return NULL if no promotable action is possible with the current 3850 /// sign extension. 3851 /// \p InsertedInsts keeps track of all the instructions inserted by the 3852 /// other CodeGenPrepare optimizations. This information is important 3853 /// because we do not want to promote these instructions as CodeGenPrepare 3854 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3855 /// \p PromotedInsts maps the instructions to their type before promotion. 3856 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3857 const TargetLowering &TLI, 3858 const InstrToOrigTy &PromotedInsts); 3859 }; 3860 3861 } // end anonymous namespace 3862 3863 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3864 Type *ConsideredExtType, 3865 const InstrToOrigTy &PromotedInsts, 3866 bool IsSExt) { 3867 // The promotion helper does not know how to deal with vector types yet. 3868 // To be able to fix that, we would need to fix the places where we 3869 // statically extend, e.g., constants and such. 3870 if (Inst->getType()->isVectorTy()) 3871 return false; 3872 3873 // We can always get through zext. 3874 if (isa<ZExtInst>(Inst)) 3875 return true; 3876 3877 // sext(sext) is ok too. 3878 if (IsSExt && isa<SExtInst>(Inst)) 3879 return true; 3880 3881 // We can get through binary operator, if it is legal. In other words, the 3882 // binary operator must have a nuw or nsw flag. 3883 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3884 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3885 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3886 (IsSExt && BinOp->hasNoSignedWrap()))) 3887 return true; 3888 3889 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3890 if ((Inst->getOpcode() == Instruction::And || 3891 Inst->getOpcode() == Instruction::Or)) 3892 return true; 3893 3894 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3895 if (Inst->getOpcode() == Instruction::Xor) { 3896 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3897 // Make sure it is not a NOT. 3898 if (Cst && !Cst->getValue().isAllOnesValue()) 3899 return true; 3900 } 3901 3902 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3903 // It may change a poisoned value into a regular value, like 3904 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3905 // poisoned value regular value 3906 // It should be OK since undef covers valid value. 3907 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3908 return true; 3909 3910 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3911 // It may change a poisoned value into a regular value, like 3912 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3913 // poisoned value regular value 3914 // It should be OK since undef covers valid value. 3915 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3916 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3917 if (ExtInst->hasOneUse()) { 3918 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3919 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3920 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3921 if (Cst && 3922 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3923 return true; 3924 } 3925 } 3926 } 3927 3928 // Check if we can do the following simplification. 3929 // ext(trunc(opnd)) --> ext(opnd) 3930 if (!isa<TruncInst>(Inst)) 3931 return false; 3932 3933 Value *OpndVal = Inst->getOperand(0); 3934 // Check if we can use this operand in the extension. 3935 // If the type is larger than the result type of the extension, we cannot. 3936 if (!OpndVal->getType()->isIntegerTy() || 3937 OpndVal->getType()->getIntegerBitWidth() > 3938 ConsideredExtType->getIntegerBitWidth()) 3939 return false; 3940 3941 // If the operand of the truncate is not an instruction, we will not have 3942 // any information on the dropped bits. 3943 // (Actually we could for constant but it is not worth the extra logic). 3944 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3945 if (!Opnd) 3946 return false; 3947 3948 // Check if the source of the type is narrow enough. 3949 // I.e., check that trunc just drops extended bits of the same kind of 3950 // the extension. 3951 // #1 get the type of the operand and check the kind of the extended bits. 3952 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3953 if (OpndType) 3954 ; 3955 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3956 OpndType = Opnd->getOperand(0)->getType(); 3957 else 3958 return false; 3959 3960 // #2 check that the truncate just drops extended bits. 3961 return Inst->getType()->getIntegerBitWidth() >= 3962 OpndType->getIntegerBitWidth(); 3963 } 3964 3965 TypePromotionHelper::Action TypePromotionHelper::getAction( 3966 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3967 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3968 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3969 "Unexpected instruction type"); 3970 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3971 Type *ExtTy = Ext->getType(); 3972 bool IsSExt = isa<SExtInst>(Ext); 3973 // If the operand of the extension is not an instruction, we cannot 3974 // get through. 3975 // If it, check we can get through. 3976 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3977 return nullptr; 3978 3979 // Do not promote if the operand has been added by codegenprepare. 3980 // Otherwise, it means we are undoing an optimization that is likely to be 3981 // redone, thus causing potential infinite loop. 3982 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3983 return nullptr; 3984 3985 // SExt or Trunc instructions. 3986 // Return the related handler. 3987 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3988 isa<ZExtInst>(ExtOpnd)) 3989 return promoteOperandForTruncAndAnyExt; 3990 3991 // Regular instruction. 3992 // Abort early if we will have to insert non-free instructions. 3993 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3994 return nullptr; 3995 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3996 } 3997 3998 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3999 Instruction *SExt, TypePromotionTransaction &TPT, 4000 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4001 SmallVectorImpl<Instruction *> *Exts, 4002 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4003 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4004 // get through it and this method should not be called. 4005 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4006 Value *ExtVal = SExt; 4007 bool HasMergedNonFreeExt = false; 4008 if (isa<ZExtInst>(SExtOpnd)) { 4009 // Replace s|zext(zext(opnd)) 4010 // => zext(opnd). 4011 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4012 Value *ZExt = 4013 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4014 TPT.replaceAllUsesWith(SExt, ZExt); 4015 TPT.eraseInstruction(SExt); 4016 ExtVal = ZExt; 4017 } else { 4018 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4019 // => z|sext(opnd). 4020 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4021 } 4022 CreatedInstsCost = 0; 4023 4024 // Remove dead code. 4025 if (SExtOpnd->use_empty()) 4026 TPT.eraseInstruction(SExtOpnd); 4027 4028 // Check if the extension is still needed. 4029 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4030 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4031 if (ExtInst) { 4032 if (Exts) 4033 Exts->push_back(ExtInst); 4034 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4035 } 4036 return ExtVal; 4037 } 4038 4039 // At this point we have: ext ty opnd to ty. 4040 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4041 Value *NextVal = ExtInst->getOperand(0); 4042 TPT.eraseInstruction(ExtInst, NextVal); 4043 return NextVal; 4044 } 4045 4046 Value *TypePromotionHelper::promoteOperandForOther( 4047 Instruction *Ext, TypePromotionTransaction &TPT, 4048 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4049 SmallVectorImpl<Instruction *> *Exts, 4050 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4051 bool IsSExt) { 4052 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4053 // get through it and this method should not be called. 4054 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4055 CreatedInstsCost = 0; 4056 if (!ExtOpnd->hasOneUse()) { 4057 // ExtOpnd will be promoted. 4058 // All its uses, but Ext, will need to use a truncated value of the 4059 // promoted version. 4060 // Create the truncate now. 4061 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4062 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4063 // Insert it just after the definition. 4064 ITrunc->moveAfter(ExtOpnd); 4065 if (Truncs) 4066 Truncs->push_back(ITrunc); 4067 } 4068 4069 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4070 // Restore the operand of Ext (which has been replaced by the previous call 4071 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4072 TPT.setOperand(Ext, 0, ExtOpnd); 4073 } 4074 4075 // Get through the Instruction: 4076 // 1. Update its type. 4077 // 2. Replace the uses of Ext by Inst. 4078 // 3. Extend each operand that needs to be extended. 4079 4080 // Remember the original type of the instruction before promotion. 4081 // This is useful to know that the high bits are sign extended bits. 4082 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4083 // Step #1. 4084 TPT.mutateType(ExtOpnd, Ext->getType()); 4085 // Step #2. 4086 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4087 // Step #3. 4088 Instruction *ExtForOpnd = Ext; 4089 4090 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4091 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4092 ++OpIdx) { 4093 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4094 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4095 !shouldExtOperand(ExtOpnd, OpIdx)) { 4096 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4097 continue; 4098 } 4099 // Check if we can statically extend the operand. 4100 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4101 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4102 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4103 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4104 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4105 : Cst->getValue().zext(BitWidth); 4106 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4107 continue; 4108 } 4109 // UndefValue are typed, so we have to statically sign extend them. 4110 if (isa<UndefValue>(Opnd)) { 4111 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4112 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4113 continue; 4114 } 4115 4116 // Otherwise we have to explicitly sign extend the operand. 4117 // Check if Ext was reused to extend an operand. 4118 if (!ExtForOpnd) { 4119 // If yes, create a new one. 4120 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4121 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4122 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4123 if (!isa<Instruction>(ValForExtOpnd)) { 4124 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4125 continue; 4126 } 4127 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4128 } 4129 if (Exts) 4130 Exts->push_back(ExtForOpnd); 4131 TPT.setOperand(ExtForOpnd, 0, Opnd); 4132 4133 // Move the sign extension before the insertion point. 4134 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4135 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4136 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4137 // If more sext are required, new instructions will have to be created. 4138 ExtForOpnd = nullptr; 4139 } 4140 if (ExtForOpnd == Ext) { 4141 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4142 TPT.eraseInstruction(Ext); 4143 } 4144 return ExtOpnd; 4145 } 4146 4147 /// Check whether or not promoting an instruction to a wider type is profitable. 4148 /// \p NewCost gives the cost of extension instructions created by the 4149 /// promotion. 4150 /// \p OldCost gives the cost of extension instructions before the promotion 4151 /// plus the number of instructions that have been 4152 /// matched in the addressing mode the promotion. 4153 /// \p PromotedOperand is the value that has been promoted. 4154 /// \return True if the promotion is profitable, false otherwise. 4155 bool AddressingModeMatcher::isPromotionProfitable( 4156 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4157 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4158 << '\n'); 4159 // The cost of the new extensions is greater than the cost of the 4160 // old extension plus what we folded. 4161 // This is not profitable. 4162 if (NewCost > OldCost) 4163 return false; 4164 if (NewCost < OldCost) 4165 return true; 4166 // The promotion is neutral but it may help folding the sign extension in 4167 // loads for instance. 4168 // Check that we did not create an illegal instruction. 4169 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4170 } 4171 4172 /// Given an instruction or constant expr, see if we can fold the operation 4173 /// into the addressing mode. If so, update the addressing mode and return 4174 /// true, otherwise return false without modifying AddrMode. 4175 /// If \p MovedAway is not NULL, it contains the information of whether or 4176 /// not AddrInst has to be folded into the addressing mode on success. 4177 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4178 /// because it has been moved away. 4179 /// Thus AddrInst must not be added in the matched instructions. 4180 /// This state can happen when AddrInst is a sext, since it may be moved away. 4181 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4182 /// not be referenced anymore. 4183 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4184 unsigned Depth, 4185 bool *MovedAway) { 4186 // Avoid exponential behavior on extremely deep expression trees. 4187 if (Depth >= 5) return false; 4188 4189 // By default, all matched instructions stay in place. 4190 if (MovedAway) 4191 *MovedAway = false; 4192 4193 switch (Opcode) { 4194 case Instruction::PtrToInt: 4195 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4196 return matchAddr(AddrInst->getOperand(0), Depth); 4197 case Instruction::IntToPtr: { 4198 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4199 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4200 // This inttoptr is a no-op if the integer type is pointer sized. 4201 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4202 return matchAddr(AddrInst->getOperand(0), Depth); 4203 return false; 4204 } 4205 case Instruction::BitCast: 4206 // BitCast is always a noop, and we can handle it as long as it is 4207 // int->int or pointer->pointer (we don't want int<->fp or something). 4208 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4209 // Don't touch identity bitcasts. These were probably put here by LSR, 4210 // and we don't want to mess around with them. Assume it knows what it 4211 // is doing. 4212 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4213 return matchAddr(AddrInst->getOperand(0), Depth); 4214 return false; 4215 case Instruction::AddrSpaceCast: { 4216 unsigned SrcAS 4217 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4218 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4219 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4220 return matchAddr(AddrInst->getOperand(0), Depth); 4221 return false; 4222 } 4223 case Instruction::Add: { 4224 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4225 ExtAddrMode BackupAddrMode = AddrMode; 4226 unsigned OldSize = AddrModeInsts.size(); 4227 // Start a transaction at this point. 4228 // The LHS may match but not the RHS. 4229 // Therefore, we need a higher level restoration point to undo partially 4230 // matched operation. 4231 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4232 TPT.getRestorationPoint(); 4233 4234 AddrMode.InBounds = false; 4235 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4236 matchAddr(AddrInst->getOperand(0), Depth+1)) 4237 return true; 4238 4239 // Restore the old addr mode info. 4240 AddrMode = BackupAddrMode; 4241 AddrModeInsts.resize(OldSize); 4242 TPT.rollback(LastKnownGood); 4243 4244 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4245 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4246 matchAddr(AddrInst->getOperand(1), Depth+1)) 4247 return true; 4248 4249 // Otherwise we definitely can't merge the ADD in. 4250 AddrMode = BackupAddrMode; 4251 AddrModeInsts.resize(OldSize); 4252 TPT.rollback(LastKnownGood); 4253 break; 4254 } 4255 //case Instruction::Or: 4256 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4257 //break; 4258 case Instruction::Mul: 4259 case Instruction::Shl: { 4260 // Can only handle X*C and X << C. 4261 AddrMode.InBounds = false; 4262 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4263 if (!RHS || RHS->getBitWidth() > 64) 4264 return false; 4265 int64_t Scale = RHS->getSExtValue(); 4266 if (Opcode == Instruction::Shl) 4267 Scale = 1LL << Scale; 4268 4269 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4270 } 4271 case Instruction::GetElementPtr: { 4272 // Scan the GEP. We check it if it contains constant offsets and at most 4273 // one variable offset. 4274 int VariableOperand = -1; 4275 unsigned VariableScale = 0; 4276 4277 int64_t ConstantOffset = 0; 4278 gep_type_iterator GTI = gep_type_begin(AddrInst); 4279 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4280 if (StructType *STy = GTI.getStructTypeOrNull()) { 4281 const StructLayout *SL = DL.getStructLayout(STy); 4282 unsigned Idx = 4283 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4284 ConstantOffset += SL->getElementOffset(Idx); 4285 } else { 4286 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4287 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4288 const APInt &CVal = CI->getValue(); 4289 if (CVal.getMinSignedBits() <= 64) { 4290 ConstantOffset += CVal.getSExtValue() * TypeSize; 4291 continue; 4292 } 4293 } 4294 if (TypeSize) { // Scales of zero don't do anything. 4295 // We only allow one variable index at the moment. 4296 if (VariableOperand != -1) 4297 return false; 4298 4299 // Remember the variable index. 4300 VariableOperand = i; 4301 VariableScale = TypeSize; 4302 } 4303 } 4304 } 4305 4306 // A common case is for the GEP to only do a constant offset. In this case, 4307 // just add it to the disp field and check validity. 4308 if (VariableOperand == -1) { 4309 AddrMode.BaseOffs += ConstantOffset; 4310 if (ConstantOffset == 0 || 4311 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4312 // Check to see if we can fold the base pointer in too. 4313 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4314 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4315 AddrMode.InBounds = false; 4316 return true; 4317 } 4318 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4319 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4320 ConstantOffset > 0) { 4321 // Record GEPs with non-zero offsets as candidates for splitting in the 4322 // event that the offset cannot fit into the r+i addressing mode. 4323 // Simple and common case that only one GEP is used in calculating the 4324 // address for the memory access. 4325 Value *Base = AddrInst->getOperand(0); 4326 auto *BaseI = dyn_cast<Instruction>(Base); 4327 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4328 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4329 (BaseI && !isa<CastInst>(BaseI) && 4330 !isa<GetElementPtrInst>(BaseI))) { 4331 // Make sure the parent block allows inserting non-PHI instructions 4332 // before the terminator. 4333 BasicBlock *Parent = 4334 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4335 if (!Parent->getTerminator()->isEHPad()) 4336 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4337 } 4338 } 4339 AddrMode.BaseOffs -= ConstantOffset; 4340 return false; 4341 } 4342 4343 // Save the valid addressing mode in case we can't match. 4344 ExtAddrMode BackupAddrMode = AddrMode; 4345 unsigned OldSize = AddrModeInsts.size(); 4346 4347 // See if the scale and offset amount is valid for this target. 4348 AddrMode.BaseOffs += ConstantOffset; 4349 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4350 AddrMode.InBounds = false; 4351 4352 // Match the base operand of the GEP. 4353 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4354 // If it couldn't be matched, just stuff the value in a register. 4355 if (AddrMode.HasBaseReg) { 4356 AddrMode = BackupAddrMode; 4357 AddrModeInsts.resize(OldSize); 4358 return false; 4359 } 4360 AddrMode.HasBaseReg = true; 4361 AddrMode.BaseReg = AddrInst->getOperand(0); 4362 } 4363 4364 // Match the remaining variable portion of the GEP. 4365 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4366 Depth)) { 4367 // If it couldn't be matched, try stuffing the base into a register 4368 // instead of matching it, and retrying the match of the scale. 4369 AddrMode = BackupAddrMode; 4370 AddrModeInsts.resize(OldSize); 4371 if (AddrMode.HasBaseReg) 4372 return false; 4373 AddrMode.HasBaseReg = true; 4374 AddrMode.BaseReg = AddrInst->getOperand(0); 4375 AddrMode.BaseOffs += ConstantOffset; 4376 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4377 VariableScale, Depth)) { 4378 // If even that didn't work, bail. 4379 AddrMode = BackupAddrMode; 4380 AddrModeInsts.resize(OldSize); 4381 return false; 4382 } 4383 } 4384 4385 return true; 4386 } 4387 case Instruction::SExt: 4388 case Instruction::ZExt: { 4389 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4390 if (!Ext) 4391 return false; 4392 4393 // Try to move this ext out of the way of the addressing mode. 4394 // Ask for a method for doing so. 4395 TypePromotionHelper::Action TPH = 4396 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4397 if (!TPH) 4398 return false; 4399 4400 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4401 TPT.getRestorationPoint(); 4402 unsigned CreatedInstsCost = 0; 4403 unsigned ExtCost = !TLI.isExtFree(Ext); 4404 Value *PromotedOperand = 4405 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4406 // SExt has been moved away. 4407 // Thus either it will be rematched later in the recursive calls or it is 4408 // gone. Anyway, we must not fold it into the addressing mode at this point. 4409 // E.g., 4410 // op = add opnd, 1 4411 // idx = ext op 4412 // addr = gep base, idx 4413 // is now: 4414 // promotedOpnd = ext opnd <- no match here 4415 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4416 // addr = gep base, op <- match 4417 if (MovedAway) 4418 *MovedAway = true; 4419 4420 assert(PromotedOperand && 4421 "TypePromotionHelper should have filtered out those cases"); 4422 4423 ExtAddrMode BackupAddrMode = AddrMode; 4424 unsigned OldSize = AddrModeInsts.size(); 4425 4426 if (!matchAddr(PromotedOperand, Depth) || 4427 // The total of the new cost is equal to the cost of the created 4428 // instructions. 4429 // The total of the old cost is equal to the cost of the extension plus 4430 // what we have saved in the addressing mode. 4431 !isPromotionProfitable(CreatedInstsCost, 4432 ExtCost + (AddrModeInsts.size() - OldSize), 4433 PromotedOperand)) { 4434 AddrMode = BackupAddrMode; 4435 AddrModeInsts.resize(OldSize); 4436 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4437 TPT.rollback(LastKnownGood); 4438 return false; 4439 } 4440 return true; 4441 } 4442 } 4443 return false; 4444 } 4445 4446 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4447 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4448 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4449 /// for the target. 4450 /// 4451 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4452 // Start a transaction at this point that we will rollback if the matching 4453 // fails. 4454 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4455 TPT.getRestorationPoint(); 4456 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4457 // Fold in immediates if legal for the target. 4458 AddrMode.BaseOffs += CI->getSExtValue(); 4459 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4460 return true; 4461 AddrMode.BaseOffs -= CI->getSExtValue(); 4462 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4463 // If this is a global variable, try to fold it into the addressing mode. 4464 if (!AddrMode.BaseGV) { 4465 AddrMode.BaseGV = GV; 4466 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4467 return true; 4468 AddrMode.BaseGV = nullptr; 4469 } 4470 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4471 ExtAddrMode BackupAddrMode = AddrMode; 4472 unsigned OldSize = AddrModeInsts.size(); 4473 4474 // Check to see if it is possible to fold this operation. 4475 bool MovedAway = false; 4476 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4477 // This instruction may have been moved away. If so, there is nothing 4478 // to check here. 4479 if (MovedAway) 4480 return true; 4481 // Okay, it's possible to fold this. Check to see if it is actually 4482 // *profitable* to do so. We use a simple cost model to avoid increasing 4483 // register pressure too much. 4484 if (I->hasOneUse() || 4485 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4486 AddrModeInsts.push_back(I); 4487 return true; 4488 } 4489 4490 // It isn't profitable to do this, roll back. 4491 //cerr << "NOT FOLDING: " << *I; 4492 AddrMode = BackupAddrMode; 4493 AddrModeInsts.resize(OldSize); 4494 TPT.rollback(LastKnownGood); 4495 } 4496 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4497 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4498 return true; 4499 TPT.rollback(LastKnownGood); 4500 } else if (isa<ConstantPointerNull>(Addr)) { 4501 // Null pointer gets folded without affecting the addressing mode. 4502 return true; 4503 } 4504 4505 // Worse case, the target should support [reg] addressing modes. :) 4506 if (!AddrMode.HasBaseReg) { 4507 AddrMode.HasBaseReg = true; 4508 AddrMode.BaseReg = Addr; 4509 // Still check for legality in case the target supports [imm] but not [i+r]. 4510 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4511 return true; 4512 AddrMode.HasBaseReg = false; 4513 AddrMode.BaseReg = nullptr; 4514 } 4515 4516 // If the base register is already taken, see if we can do [r+r]. 4517 if (AddrMode.Scale == 0) { 4518 AddrMode.Scale = 1; 4519 AddrMode.ScaledReg = Addr; 4520 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4521 return true; 4522 AddrMode.Scale = 0; 4523 AddrMode.ScaledReg = nullptr; 4524 } 4525 // Couldn't match. 4526 TPT.rollback(LastKnownGood); 4527 return false; 4528 } 4529 4530 /// Check to see if all uses of OpVal by the specified inline asm call are due 4531 /// to memory operands. If so, return true, otherwise return false. 4532 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4533 const TargetLowering &TLI, 4534 const TargetRegisterInfo &TRI) { 4535 const Function *F = CI->getFunction(); 4536 TargetLowering::AsmOperandInfoVector TargetConstraints = 4537 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4538 ImmutableCallSite(CI)); 4539 4540 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4541 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4542 4543 // Compute the constraint code and ConstraintType to use. 4544 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4545 4546 // If this asm operand is our Value*, and if it isn't an indirect memory 4547 // operand, we can't fold it! 4548 if (OpInfo.CallOperandVal == OpVal && 4549 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4550 !OpInfo.isIndirect)) 4551 return false; 4552 } 4553 4554 return true; 4555 } 4556 4557 // Max number of memory uses to look at before aborting the search to conserve 4558 // compile time. 4559 static constexpr int MaxMemoryUsesToScan = 20; 4560 4561 /// Recursively walk all the uses of I until we find a memory use. 4562 /// If we find an obviously non-foldable instruction, return true. 4563 /// Add the ultimately found memory instructions to MemoryUses. 4564 static bool FindAllMemoryUses( 4565 Instruction *I, 4566 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4567 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4568 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4569 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4570 // If we already considered this instruction, we're done. 4571 if (!ConsideredInsts.insert(I).second) 4572 return false; 4573 4574 // If this is an obviously unfoldable instruction, bail out. 4575 if (!MightBeFoldableInst(I)) 4576 return true; 4577 4578 // Loop over all the uses, recursively processing them. 4579 for (Use &U : I->uses()) { 4580 // Conservatively return true if we're seeing a large number or a deep chain 4581 // of users. This avoids excessive compilation times in pathological cases. 4582 if (SeenInsts++ >= MaxMemoryUsesToScan) 4583 return true; 4584 4585 Instruction *UserI = cast<Instruction>(U.getUser()); 4586 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4587 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4588 continue; 4589 } 4590 4591 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4592 unsigned opNo = U.getOperandNo(); 4593 if (opNo != StoreInst::getPointerOperandIndex()) 4594 return true; // Storing addr, not into addr. 4595 MemoryUses.push_back(std::make_pair(SI, opNo)); 4596 continue; 4597 } 4598 4599 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4600 unsigned opNo = U.getOperandNo(); 4601 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4602 return true; // Storing addr, not into addr. 4603 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4604 continue; 4605 } 4606 4607 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4608 unsigned opNo = U.getOperandNo(); 4609 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4610 return true; // Storing addr, not into addr. 4611 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4612 continue; 4613 } 4614 4615 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4616 if (CI->hasFnAttr(Attribute::Cold)) { 4617 // If this is a cold call, we can sink the addressing calculation into 4618 // the cold path. See optimizeCallInst 4619 bool OptForSize = OptSize || 4620 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4621 if (!OptForSize) 4622 continue; 4623 } 4624 4625 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4626 if (!IA) return true; 4627 4628 // If this is a memory operand, we're cool, otherwise bail out. 4629 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4630 return true; 4631 continue; 4632 } 4633 4634 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4635 PSI, BFI, SeenInsts)) 4636 return true; 4637 } 4638 4639 return false; 4640 } 4641 4642 /// Return true if Val is already known to be live at the use site that we're 4643 /// folding it into. If so, there is no cost to include it in the addressing 4644 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4645 /// instruction already. 4646 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4647 Value *KnownLive2) { 4648 // If Val is either of the known-live values, we know it is live! 4649 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4650 return true; 4651 4652 // All values other than instructions and arguments (e.g. constants) are live. 4653 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4654 4655 // If Val is a constant sized alloca in the entry block, it is live, this is 4656 // true because it is just a reference to the stack/frame pointer, which is 4657 // live for the whole function. 4658 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4659 if (AI->isStaticAlloca()) 4660 return true; 4661 4662 // Check to see if this value is already used in the memory instruction's 4663 // block. If so, it's already live into the block at the very least, so we 4664 // can reasonably fold it. 4665 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4666 } 4667 4668 /// It is possible for the addressing mode of the machine to fold the specified 4669 /// instruction into a load or store that ultimately uses it. 4670 /// However, the specified instruction has multiple uses. 4671 /// Given this, it may actually increase register pressure to fold it 4672 /// into the load. For example, consider this code: 4673 /// 4674 /// X = ... 4675 /// Y = X+1 4676 /// use(Y) -> nonload/store 4677 /// Z = Y+1 4678 /// load Z 4679 /// 4680 /// In this case, Y has multiple uses, and can be folded into the load of Z 4681 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4682 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4683 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4684 /// number of computations either. 4685 /// 4686 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4687 /// X was live across 'load Z' for other reasons, we actually *would* want to 4688 /// fold the addressing mode in the Z case. This would make Y die earlier. 4689 bool AddressingModeMatcher:: 4690 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4691 ExtAddrMode &AMAfter) { 4692 if (IgnoreProfitability) return true; 4693 4694 // AMBefore is the addressing mode before this instruction was folded into it, 4695 // and AMAfter is the addressing mode after the instruction was folded. Get 4696 // the set of registers referenced by AMAfter and subtract out those 4697 // referenced by AMBefore: this is the set of values which folding in this 4698 // address extends the lifetime of. 4699 // 4700 // Note that there are only two potential values being referenced here, 4701 // BaseReg and ScaleReg (global addresses are always available, as are any 4702 // folded immediates). 4703 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4704 4705 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4706 // lifetime wasn't extended by adding this instruction. 4707 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4708 BaseReg = nullptr; 4709 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4710 ScaledReg = nullptr; 4711 4712 // If folding this instruction (and it's subexprs) didn't extend any live 4713 // ranges, we're ok with it. 4714 if (!BaseReg && !ScaledReg) 4715 return true; 4716 4717 // If all uses of this instruction can have the address mode sunk into them, 4718 // we can remove the addressing mode and effectively trade one live register 4719 // for another (at worst.) In this context, folding an addressing mode into 4720 // the use is just a particularly nice way of sinking it. 4721 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4722 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4723 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4724 PSI, BFI)) 4725 return false; // Has a non-memory, non-foldable use! 4726 4727 // Now that we know that all uses of this instruction are part of a chain of 4728 // computation involving only operations that could theoretically be folded 4729 // into a memory use, loop over each of these memory operation uses and see 4730 // if they could *actually* fold the instruction. The assumption is that 4731 // addressing modes are cheap and that duplicating the computation involved 4732 // many times is worthwhile, even on a fastpath. For sinking candidates 4733 // (i.e. cold call sites), this serves as a way to prevent excessive code 4734 // growth since most architectures have some reasonable small and fast way to 4735 // compute an effective address. (i.e LEA on x86) 4736 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4737 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4738 Instruction *User = MemoryUses[i].first; 4739 unsigned OpNo = MemoryUses[i].second; 4740 4741 // Get the access type of this use. If the use isn't a pointer, we don't 4742 // know what it accesses. 4743 Value *Address = User->getOperand(OpNo); 4744 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4745 if (!AddrTy) 4746 return false; 4747 Type *AddressAccessTy = AddrTy->getElementType(); 4748 unsigned AS = AddrTy->getAddressSpace(); 4749 4750 // Do a match against the root of this address, ignoring profitability. This 4751 // will tell us if the addressing mode for the memory operation will 4752 // *actually* cover the shared instruction. 4753 ExtAddrMode Result; 4754 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4755 0); 4756 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4757 TPT.getRestorationPoint(); 4758 AddressingModeMatcher Matcher( 4759 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4760 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4761 Matcher.IgnoreProfitability = true; 4762 bool Success = Matcher.matchAddr(Address, 0); 4763 (void)Success; assert(Success && "Couldn't select *anything*?"); 4764 4765 // The match was to check the profitability, the changes made are not 4766 // part of the original matcher. Therefore, they should be dropped 4767 // otherwise the original matcher will not present the right state. 4768 TPT.rollback(LastKnownGood); 4769 4770 // If the match didn't cover I, then it won't be shared by it. 4771 if (!is_contained(MatchedAddrModeInsts, I)) 4772 return false; 4773 4774 MatchedAddrModeInsts.clear(); 4775 } 4776 4777 return true; 4778 } 4779 4780 /// Return true if the specified values are defined in a 4781 /// different basic block than BB. 4782 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4783 if (Instruction *I = dyn_cast<Instruction>(V)) 4784 return I->getParent() != BB; 4785 return false; 4786 } 4787 4788 /// Sink addressing mode computation immediate before MemoryInst if doing so 4789 /// can be done without increasing register pressure. The need for the 4790 /// register pressure constraint means this can end up being an all or nothing 4791 /// decision for all uses of the same addressing computation. 4792 /// 4793 /// Load and Store Instructions often have addressing modes that can do 4794 /// significant amounts of computation. As such, instruction selection will try 4795 /// to get the load or store to do as much computation as possible for the 4796 /// program. The problem is that isel can only see within a single block. As 4797 /// such, we sink as much legal addressing mode work into the block as possible. 4798 /// 4799 /// This method is used to optimize both load/store and inline asms with memory 4800 /// operands. It's also used to sink addressing computations feeding into cold 4801 /// call sites into their (cold) basic block. 4802 /// 4803 /// The motivation for handling sinking into cold blocks is that doing so can 4804 /// both enable other address mode sinking (by satisfying the register pressure 4805 /// constraint above), and reduce register pressure globally (by removing the 4806 /// addressing mode computation from the fast path entirely.). 4807 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4808 Type *AccessTy, unsigned AddrSpace) { 4809 Value *Repl = Addr; 4810 4811 // Try to collapse single-value PHI nodes. This is necessary to undo 4812 // unprofitable PRE transformations. 4813 SmallVector<Value*, 8> worklist; 4814 SmallPtrSet<Value*, 16> Visited; 4815 worklist.push_back(Addr); 4816 4817 // Use a worklist to iteratively look through PHI and select nodes, and 4818 // ensure that the addressing mode obtained from the non-PHI/select roots of 4819 // the graph are compatible. 4820 bool PhiOrSelectSeen = false; 4821 SmallVector<Instruction*, 16> AddrModeInsts; 4822 const SimplifyQuery SQ(*DL, TLInfo); 4823 AddressingModeCombiner AddrModes(SQ, Addr); 4824 TypePromotionTransaction TPT(RemovedInsts); 4825 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4826 TPT.getRestorationPoint(); 4827 while (!worklist.empty()) { 4828 Value *V = worklist.back(); 4829 worklist.pop_back(); 4830 4831 // We allow traversing cyclic Phi nodes. 4832 // In case of success after this loop we ensure that traversing through 4833 // Phi nodes ends up with all cases to compute address of the form 4834 // BaseGV + Base + Scale * Index + Offset 4835 // where Scale and Offset are constans and BaseGV, Base and Index 4836 // are exactly the same Values in all cases. 4837 // It means that BaseGV, Scale and Offset dominate our memory instruction 4838 // and have the same value as they had in address computation represented 4839 // as Phi. So we can safely sink address computation to memory instruction. 4840 if (!Visited.insert(V).second) 4841 continue; 4842 4843 // For a PHI node, push all of its incoming values. 4844 if (PHINode *P = dyn_cast<PHINode>(V)) { 4845 for (Value *IncValue : P->incoming_values()) 4846 worklist.push_back(IncValue); 4847 PhiOrSelectSeen = true; 4848 continue; 4849 } 4850 // Similar for select. 4851 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4852 worklist.push_back(SI->getFalseValue()); 4853 worklist.push_back(SI->getTrueValue()); 4854 PhiOrSelectSeen = true; 4855 continue; 4856 } 4857 4858 // For non-PHIs, determine the addressing mode being computed. Note that 4859 // the result may differ depending on what other uses our candidate 4860 // addressing instructions might have. 4861 AddrModeInsts.clear(); 4862 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4863 0); 4864 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4865 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4866 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4867 BFI.get()); 4868 4869 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4870 if (GEP && !NewGEPBases.count(GEP)) { 4871 // If splitting the underlying data structure can reduce the offset of a 4872 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4873 // previously split data structures. 4874 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4875 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4876 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4877 } 4878 4879 NewAddrMode.OriginalValue = V; 4880 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4881 break; 4882 } 4883 4884 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4885 // or we have multiple but either couldn't combine them or combining them 4886 // wouldn't do anything useful, bail out now. 4887 if (!AddrModes.combineAddrModes()) { 4888 TPT.rollback(LastKnownGood); 4889 return false; 4890 } 4891 TPT.commit(); 4892 4893 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4894 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4895 4896 // If all the instructions matched are already in this BB, don't do anything. 4897 // If we saw a Phi node then it is not local definitely, and if we saw a select 4898 // then we want to push the address calculation past it even if it's already 4899 // in this BB. 4900 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4901 return IsNonLocalValue(V, MemoryInst->getParent()); 4902 })) { 4903 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4904 << "\n"); 4905 return false; 4906 } 4907 4908 // Insert this computation right after this user. Since our caller is 4909 // scanning from the top of the BB to the bottom, reuse of the expr are 4910 // guaranteed to happen later. 4911 IRBuilder<> Builder(MemoryInst); 4912 4913 // Now that we determined the addressing expression we want to use and know 4914 // that we have to sink it into this block. Check to see if we have already 4915 // done this for some other load/store instr in this block. If so, reuse 4916 // the computation. Before attempting reuse, check if the address is valid 4917 // as it may have been erased. 4918 4919 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4920 4921 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4922 if (SunkAddr) { 4923 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4924 << " for " << *MemoryInst << "\n"); 4925 if (SunkAddr->getType() != Addr->getType()) 4926 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4927 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4928 SubtargetInfo->addrSinkUsingGEPs())) { 4929 // By default, we use the GEP-based method when AA is used later. This 4930 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4931 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4932 << " for " << *MemoryInst << "\n"); 4933 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4934 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4935 4936 // First, find the pointer. 4937 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4938 ResultPtr = AddrMode.BaseReg; 4939 AddrMode.BaseReg = nullptr; 4940 } 4941 4942 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4943 // We can't add more than one pointer together, nor can we scale a 4944 // pointer (both of which seem meaningless). 4945 if (ResultPtr || AddrMode.Scale != 1) 4946 return false; 4947 4948 ResultPtr = AddrMode.ScaledReg; 4949 AddrMode.Scale = 0; 4950 } 4951 4952 // It is only safe to sign extend the BaseReg if we know that the math 4953 // required to create it did not overflow before we extend it. Since 4954 // the original IR value was tossed in favor of a constant back when 4955 // the AddrMode was created we need to bail out gracefully if widths 4956 // do not match instead of extending it. 4957 // 4958 // (See below for code to add the scale.) 4959 if (AddrMode.Scale) { 4960 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4961 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4962 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4963 return false; 4964 } 4965 4966 if (AddrMode.BaseGV) { 4967 if (ResultPtr) 4968 return false; 4969 4970 ResultPtr = AddrMode.BaseGV; 4971 } 4972 4973 // If the real base value actually came from an inttoptr, then the matcher 4974 // will look through it and provide only the integer value. In that case, 4975 // use it here. 4976 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4977 if (!ResultPtr && AddrMode.BaseReg) { 4978 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4979 "sunkaddr"); 4980 AddrMode.BaseReg = nullptr; 4981 } else if (!ResultPtr && AddrMode.Scale == 1) { 4982 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4983 "sunkaddr"); 4984 AddrMode.Scale = 0; 4985 } 4986 } 4987 4988 if (!ResultPtr && 4989 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4990 SunkAddr = Constant::getNullValue(Addr->getType()); 4991 } else if (!ResultPtr) { 4992 return false; 4993 } else { 4994 Type *I8PtrTy = 4995 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4996 Type *I8Ty = Builder.getInt8Ty(); 4997 4998 // Start with the base register. Do this first so that subsequent address 4999 // matching finds it last, which will prevent it from trying to match it 5000 // as the scaled value in case it happens to be a mul. That would be 5001 // problematic if we've sunk a different mul for the scale, because then 5002 // we'd end up sinking both muls. 5003 if (AddrMode.BaseReg) { 5004 Value *V = AddrMode.BaseReg; 5005 if (V->getType() != IntPtrTy) 5006 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5007 5008 ResultIndex = V; 5009 } 5010 5011 // Add the scale value. 5012 if (AddrMode.Scale) { 5013 Value *V = AddrMode.ScaledReg; 5014 if (V->getType() == IntPtrTy) { 5015 // done. 5016 } else { 5017 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5018 cast<IntegerType>(V->getType())->getBitWidth() && 5019 "We can't transform if ScaledReg is too narrow"); 5020 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5021 } 5022 5023 if (AddrMode.Scale != 1) 5024 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5025 "sunkaddr"); 5026 if (ResultIndex) 5027 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5028 else 5029 ResultIndex = V; 5030 } 5031 5032 // Add in the Base Offset if present. 5033 if (AddrMode.BaseOffs) { 5034 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5035 if (ResultIndex) { 5036 // We need to add this separately from the scale above to help with 5037 // SDAG consecutive load/store merging. 5038 if (ResultPtr->getType() != I8PtrTy) 5039 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5040 ResultPtr = 5041 AddrMode.InBounds 5042 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5043 "sunkaddr") 5044 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5045 } 5046 5047 ResultIndex = V; 5048 } 5049 5050 if (!ResultIndex) { 5051 SunkAddr = ResultPtr; 5052 } else { 5053 if (ResultPtr->getType() != I8PtrTy) 5054 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5055 SunkAddr = 5056 AddrMode.InBounds 5057 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5058 "sunkaddr") 5059 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5060 } 5061 5062 if (SunkAddr->getType() != Addr->getType()) 5063 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5064 } 5065 } else { 5066 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5067 // non-integral pointers, so in that case bail out now. 5068 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5069 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5070 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5071 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5072 if (DL->isNonIntegralPointerType(Addr->getType()) || 5073 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5074 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5075 (AddrMode.BaseGV && 5076 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5077 return false; 5078 5079 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5080 << " for " << *MemoryInst << "\n"); 5081 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5082 Value *Result = nullptr; 5083 5084 // Start with the base register. Do this first so that subsequent address 5085 // matching finds it last, which will prevent it from trying to match it 5086 // as the scaled value in case it happens to be a mul. That would be 5087 // problematic if we've sunk a different mul for the scale, because then 5088 // we'd end up sinking both muls. 5089 if (AddrMode.BaseReg) { 5090 Value *V = AddrMode.BaseReg; 5091 if (V->getType()->isPointerTy()) 5092 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5093 if (V->getType() != IntPtrTy) 5094 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5095 Result = V; 5096 } 5097 5098 // Add the scale value. 5099 if (AddrMode.Scale) { 5100 Value *V = AddrMode.ScaledReg; 5101 if (V->getType() == IntPtrTy) { 5102 // done. 5103 } else if (V->getType()->isPointerTy()) { 5104 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5105 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5106 cast<IntegerType>(V->getType())->getBitWidth()) { 5107 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5108 } else { 5109 // It is only safe to sign extend the BaseReg if we know that the math 5110 // required to create it did not overflow before we extend it. Since 5111 // the original IR value was tossed in favor of a constant back when 5112 // the AddrMode was created we need to bail out gracefully if widths 5113 // do not match instead of extending it. 5114 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5115 if (I && (Result != AddrMode.BaseReg)) 5116 I->eraseFromParent(); 5117 return false; 5118 } 5119 if (AddrMode.Scale != 1) 5120 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5121 "sunkaddr"); 5122 if (Result) 5123 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5124 else 5125 Result = V; 5126 } 5127 5128 // Add in the BaseGV if present. 5129 if (AddrMode.BaseGV) { 5130 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5131 if (Result) 5132 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5133 else 5134 Result = V; 5135 } 5136 5137 // Add in the Base Offset if present. 5138 if (AddrMode.BaseOffs) { 5139 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5140 if (Result) 5141 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5142 else 5143 Result = V; 5144 } 5145 5146 if (!Result) 5147 SunkAddr = Constant::getNullValue(Addr->getType()); 5148 else 5149 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5150 } 5151 5152 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5153 // Store the newly computed address into the cache. In the case we reused a 5154 // value, this should be idempotent. 5155 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5156 5157 // If we have no uses, recursively delete the value and all dead instructions 5158 // using it. 5159 if (Repl->use_empty()) { 5160 // This can cause recursive deletion, which can invalidate our iterator. 5161 // Use a WeakTrackingVH to hold onto it in case this happens. 5162 Value *CurValue = &*CurInstIterator; 5163 WeakTrackingVH IterHandle(CurValue); 5164 BasicBlock *BB = CurInstIterator->getParent(); 5165 5166 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5167 5168 if (IterHandle != CurValue) { 5169 // If the iterator instruction was recursively deleted, start over at the 5170 // start of the block. 5171 CurInstIterator = BB->begin(); 5172 SunkAddrs.clear(); 5173 } 5174 } 5175 ++NumMemoryInsts; 5176 return true; 5177 } 5178 5179 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5180 /// address computing into the block when possible / profitable. 5181 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5182 bool MadeChange = false; 5183 5184 const TargetRegisterInfo *TRI = 5185 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5186 TargetLowering::AsmOperandInfoVector TargetConstraints = 5187 TLI->ParseConstraints(*DL, TRI, CS); 5188 unsigned ArgNo = 0; 5189 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5190 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5191 5192 // Compute the constraint code and ConstraintType to use. 5193 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5194 5195 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5196 OpInfo.isIndirect) { 5197 Value *OpVal = CS->getArgOperand(ArgNo++); 5198 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5199 } else if (OpInfo.Type == InlineAsm::isInput) 5200 ArgNo++; 5201 } 5202 5203 return MadeChange; 5204 } 5205 5206 /// Check if all the uses of \p Val are equivalent (or free) zero or 5207 /// sign extensions. 5208 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5209 assert(!Val->use_empty() && "Input must have at least one use"); 5210 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5211 bool IsSExt = isa<SExtInst>(FirstUser); 5212 Type *ExtTy = FirstUser->getType(); 5213 for (const User *U : Val->users()) { 5214 const Instruction *UI = cast<Instruction>(U); 5215 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5216 return false; 5217 Type *CurTy = UI->getType(); 5218 // Same input and output types: Same instruction after CSE. 5219 if (CurTy == ExtTy) 5220 continue; 5221 5222 // If IsSExt is true, we are in this situation: 5223 // a = Val 5224 // b = sext ty1 a to ty2 5225 // c = sext ty1 a to ty3 5226 // Assuming ty2 is shorter than ty3, this could be turned into: 5227 // a = Val 5228 // b = sext ty1 a to ty2 5229 // c = sext ty2 b to ty3 5230 // However, the last sext is not free. 5231 if (IsSExt) 5232 return false; 5233 5234 // This is a ZExt, maybe this is free to extend from one type to another. 5235 // In that case, we would not account for a different use. 5236 Type *NarrowTy; 5237 Type *LargeTy; 5238 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5239 CurTy->getScalarType()->getIntegerBitWidth()) { 5240 NarrowTy = CurTy; 5241 LargeTy = ExtTy; 5242 } else { 5243 NarrowTy = ExtTy; 5244 LargeTy = CurTy; 5245 } 5246 5247 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5248 return false; 5249 } 5250 // All uses are the same or can be derived from one another for free. 5251 return true; 5252 } 5253 5254 /// Try to speculatively promote extensions in \p Exts and continue 5255 /// promoting through newly promoted operands recursively as far as doing so is 5256 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5257 /// When some promotion happened, \p TPT contains the proper state to revert 5258 /// them. 5259 /// 5260 /// \return true if some promotion happened, false otherwise. 5261 bool CodeGenPrepare::tryToPromoteExts( 5262 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5263 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5264 unsigned CreatedInstsCost) { 5265 bool Promoted = false; 5266 5267 // Iterate over all the extensions to try to promote them. 5268 for (auto I : Exts) { 5269 // Early check if we directly have ext(load). 5270 if (isa<LoadInst>(I->getOperand(0))) { 5271 ProfitablyMovedExts.push_back(I); 5272 continue; 5273 } 5274 5275 // Check whether or not we want to do any promotion. The reason we have 5276 // this check inside the for loop is to catch the case where an extension 5277 // is directly fed by a load because in such case the extension can be moved 5278 // up without any promotion on its operands. 5279 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5280 return false; 5281 5282 // Get the action to perform the promotion. 5283 TypePromotionHelper::Action TPH = 5284 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5285 // Check if we can promote. 5286 if (!TPH) { 5287 // Save the current extension as we cannot move up through its operand. 5288 ProfitablyMovedExts.push_back(I); 5289 continue; 5290 } 5291 5292 // Save the current state. 5293 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5294 TPT.getRestorationPoint(); 5295 SmallVector<Instruction *, 4> NewExts; 5296 unsigned NewCreatedInstsCost = 0; 5297 unsigned ExtCost = !TLI->isExtFree(I); 5298 // Promote. 5299 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5300 &NewExts, nullptr, *TLI); 5301 assert(PromotedVal && 5302 "TypePromotionHelper should have filtered out those cases"); 5303 5304 // We would be able to merge only one extension in a load. 5305 // Therefore, if we have more than 1 new extension we heuristically 5306 // cut this search path, because it means we degrade the code quality. 5307 // With exactly 2, the transformation is neutral, because we will merge 5308 // one extension but leave one. However, we optimistically keep going, 5309 // because the new extension may be removed too. 5310 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5311 // FIXME: It would be possible to propagate a negative value instead of 5312 // conservatively ceiling it to 0. 5313 TotalCreatedInstsCost = 5314 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5315 if (!StressExtLdPromotion && 5316 (TotalCreatedInstsCost > 1 || 5317 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5318 // This promotion is not profitable, rollback to the previous state, and 5319 // save the current extension in ProfitablyMovedExts as the latest 5320 // speculative promotion turned out to be unprofitable. 5321 TPT.rollback(LastKnownGood); 5322 ProfitablyMovedExts.push_back(I); 5323 continue; 5324 } 5325 // Continue promoting NewExts as far as doing so is profitable. 5326 SmallVector<Instruction *, 2> NewlyMovedExts; 5327 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5328 bool NewPromoted = false; 5329 for (auto ExtInst : NewlyMovedExts) { 5330 Instruction *MovedExt = cast<Instruction>(ExtInst); 5331 Value *ExtOperand = MovedExt->getOperand(0); 5332 // If we have reached to a load, we need this extra profitability check 5333 // as it could potentially be merged into an ext(load). 5334 if (isa<LoadInst>(ExtOperand) && 5335 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5336 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5337 continue; 5338 5339 ProfitablyMovedExts.push_back(MovedExt); 5340 NewPromoted = true; 5341 } 5342 5343 // If none of speculative promotions for NewExts is profitable, rollback 5344 // and save the current extension (I) as the last profitable extension. 5345 if (!NewPromoted) { 5346 TPT.rollback(LastKnownGood); 5347 ProfitablyMovedExts.push_back(I); 5348 continue; 5349 } 5350 // The promotion is profitable. 5351 Promoted = true; 5352 } 5353 return Promoted; 5354 } 5355 5356 /// Merging redundant sexts when one is dominating the other. 5357 bool CodeGenPrepare::mergeSExts(Function &F) { 5358 bool Changed = false; 5359 for (auto &Entry : ValToSExtendedUses) { 5360 SExts &Insts = Entry.second; 5361 SExts CurPts; 5362 for (Instruction *Inst : Insts) { 5363 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5364 Inst->getOperand(0) != Entry.first) 5365 continue; 5366 bool inserted = false; 5367 for (auto &Pt : CurPts) { 5368 if (getDT(F).dominates(Inst, Pt)) { 5369 Pt->replaceAllUsesWith(Inst); 5370 RemovedInsts.insert(Pt); 5371 Pt->removeFromParent(); 5372 Pt = Inst; 5373 inserted = true; 5374 Changed = true; 5375 break; 5376 } 5377 if (!getDT(F).dominates(Pt, Inst)) 5378 // Give up if we need to merge in a common dominator as the 5379 // experiments show it is not profitable. 5380 continue; 5381 Inst->replaceAllUsesWith(Pt); 5382 RemovedInsts.insert(Inst); 5383 Inst->removeFromParent(); 5384 inserted = true; 5385 Changed = true; 5386 break; 5387 } 5388 if (!inserted) 5389 CurPts.push_back(Inst); 5390 } 5391 } 5392 return Changed; 5393 } 5394 5395 // Spliting large data structures so that the GEPs accessing them can have 5396 // smaller offsets so that they can be sunk to the same blocks as their users. 5397 // For example, a large struct starting from %base is splitted into two parts 5398 // where the second part starts from %new_base. 5399 // 5400 // Before: 5401 // BB0: 5402 // %base = 5403 // 5404 // BB1: 5405 // %gep0 = gep %base, off0 5406 // %gep1 = gep %base, off1 5407 // %gep2 = gep %base, off2 5408 // 5409 // BB2: 5410 // %load1 = load %gep0 5411 // %load2 = load %gep1 5412 // %load3 = load %gep2 5413 // 5414 // After: 5415 // BB0: 5416 // %base = 5417 // %new_base = gep %base, off0 5418 // 5419 // BB1: 5420 // %new_gep0 = %new_base 5421 // %new_gep1 = gep %new_base, off1 - off0 5422 // %new_gep2 = gep %new_base, off2 - off0 5423 // 5424 // BB2: 5425 // %load1 = load i32, i32* %new_gep0 5426 // %load2 = load i32, i32* %new_gep1 5427 // %load3 = load i32, i32* %new_gep2 5428 // 5429 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5430 // their offsets are smaller enough to fit into the addressing mode. 5431 bool CodeGenPrepare::splitLargeGEPOffsets() { 5432 bool Changed = false; 5433 for (auto &Entry : LargeOffsetGEPMap) { 5434 Value *OldBase = Entry.first; 5435 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5436 &LargeOffsetGEPs = Entry.second; 5437 auto compareGEPOffset = 5438 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5439 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5440 if (LHS.first == RHS.first) 5441 return false; 5442 if (LHS.second != RHS.second) 5443 return LHS.second < RHS.second; 5444 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5445 }; 5446 // Sorting all the GEPs of the same data structures based on the offsets. 5447 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5448 LargeOffsetGEPs.erase( 5449 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5450 LargeOffsetGEPs.end()); 5451 // Skip if all the GEPs have the same offsets. 5452 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5453 continue; 5454 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5455 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5456 Value *NewBaseGEP = nullptr; 5457 5458 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5459 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5460 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5461 int64_t Offset = LargeOffsetGEP->second; 5462 if (Offset != BaseOffset) { 5463 TargetLowering::AddrMode AddrMode; 5464 AddrMode.BaseOffs = Offset - BaseOffset; 5465 // The result type of the GEP might not be the type of the memory 5466 // access. 5467 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5468 GEP->getResultElementType(), 5469 GEP->getAddressSpace())) { 5470 // We need to create a new base if the offset to the current base is 5471 // too large to fit into the addressing mode. So, a very large struct 5472 // may be splitted into several parts. 5473 BaseGEP = GEP; 5474 BaseOffset = Offset; 5475 NewBaseGEP = nullptr; 5476 } 5477 } 5478 5479 // Generate a new GEP to replace the current one. 5480 LLVMContext &Ctx = GEP->getContext(); 5481 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5482 Type *I8PtrTy = 5483 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5484 Type *I8Ty = Type::getInt8Ty(Ctx); 5485 5486 if (!NewBaseGEP) { 5487 // Create a new base if we don't have one yet. Find the insertion 5488 // pointer for the new base first. 5489 BasicBlock::iterator NewBaseInsertPt; 5490 BasicBlock *NewBaseInsertBB; 5491 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5492 // If the base of the struct is an instruction, the new base will be 5493 // inserted close to it. 5494 NewBaseInsertBB = BaseI->getParent(); 5495 if (isa<PHINode>(BaseI)) 5496 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5497 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5498 NewBaseInsertBB = 5499 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5500 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5501 } else 5502 NewBaseInsertPt = std::next(BaseI->getIterator()); 5503 } else { 5504 // If the current base is an argument or global value, the new base 5505 // will be inserted to the entry block. 5506 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5507 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5508 } 5509 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5510 // Create a new base. 5511 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5512 NewBaseGEP = OldBase; 5513 if (NewBaseGEP->getType() != I8PtrTy) 5514 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5515 NewBaseGEP = 5516 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5517 NewGEPBases.insert(NewBaseGEP); 5518 } 5519 5520 IRBuilder<> Builder(GEP); 5521 Value *NewGEP = NewBaseGEP; 5522 if (Offset == BaseOffset) { 5523 if (GEP->getType() != I8PtrTy) 5524 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5525 } else { 5526 // Calculate the new offset for the new GEP. 5527 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5528 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5529 5530 if (GEP->getType() != I8PtrTy) 5531 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5532 } 5533 GEP->replaceAllUsesWith(NewGEP); 5534 LargeOffsetGEPID.erase(GEP); 5535 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5536 GEP->eraseFromParent(); 5537 Changed = true; 5538 } 5539 } 5540 return Changed; 5541 } 5542 5543 /// Return true, if an ext(load) can be formed from an extension in 5544 /// \p MovedExts. 5545 bool CodeGenPrepare::canFormExtLd( 5546 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5547 Instruction *&Inst, bool HasPromoted) { 5548 for (auto *MovedExtInst : MovedExts) { 5549 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5550 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5551 Inst = MovedExtInst; 5552 break; 5553 } 5554 } 5555 if (!LI) 5556 return false; 5557 5558 // If they're already in the same block, there's nothing to do. 5559 // Make the cheap checks first if we did not promote. 5560 // If we promoted, we need to check if it is indeed profitable. 5561 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5562 return false; 5563 5564 return TLI->isExtLoad(LI, Inst, *DL); 5565 } 5566 5567 /// Move a zext or sext fed by a load into the same basic block as the load, 5568 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5569 /// extend into the load. 5570 /// 5571 /// E.g., 5572 /// \code 5573 /// %ld = load i32* %addr 5574 /// %add = add nuw i32 %ld, 4 5575 /// %zext = zext i32 %add to i64 5576 // \endcode 5577 /// => 5578 /// \code 5579 /// %ld = load i32* %addr 5580 /// %zext = zext i32 %ld to i64 5581 /// %add = add nuw i64 %zext, 4 5582 /// \encode 5583 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5584 /// allow us to match zext(load i32*) to i64. 5585 /// 5586 /// Also, try to promote the computations used to obtain a sign extended 5587 /// value used into memory accesses. 5588 /// E.g., 5589 /// \code 5590 /// a = add nsw i32 b, 3 5591 /// d = sext i32 a to i64 5592 /// e = getelementptr ..., i64 d 5593 /// \endcode 5594 /// => 5595 /// \code 5596 /// f = sext i32 b to i64 5597 /// a = add nsw i64 f, 3 5598 /// e = getelementptr ..., i64 a 5599 /// \endcode 5600 /// 5601 /// \p Inst[in/out] the extension may be modified during the process if some 5602 /// promotions apply. 5603 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5604 bool AllowPromotionWithoutCommonHeader = false; 5605 /// See if it is an interesting sext operations for the address type 5606 /// promotion before trying to promote it, e.g., the ones with the right 5607 /// type and used in memory accesses. 5608 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5609 *Inst, AllowPromotionWithoutCommonHeader); 5610 TypePromotionTransaction TPT(RemovedInsts); 5611 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5612 TPT.getRestorationPoint(); 5613 SmallVector<Instruction *, 1> Exts; 5614 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5615 Exts.push_back(Inst); 5616 5617 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5618 5619 // Look for a load being extended. 5620 LoadInst *LI = nullptr; 5621 Instruction *ExtFedByLoad; 5622 5623 // Try to promote a chain of computation if it allows to form an extended 5624 // load. 5625 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5626 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5627 TPT.commit(); 5628 // Move the extend into the same block as the load 5629 ExtFedByLoad->moveAfter(LI); 5630 // CGP does not check if the zext would be speculatively executed when moved 5631 // to the same basic block as the load. Preserving its original location 5632 // would pessimize the debugging experience, as well as negatively impact 5633 // the quality of sample pgo. We don't want to use "line 0" as that has a 5634 // size cost in the line-table section and logically the zext can be seen as 5635 // part of the load. Therefore we conservatively reuse the same debug 5636 // location for the load and the zext. 5637 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5638 ++NumExtsMoved; 5639 Inst = ExtFedByLoad; 5640 return true; 5641 } 5642 5643 // Continue promoting SExts if known as considerable depending on targets. 5644 if (ATPConsiderable && 5645 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5646 HasPromoted, TPT, SpeculativelyMovedExts)) 5647 return true; 5648 5649 TPT.rollback(LastKnownGood); 5650 return false; 5651 } 5652 5653 // Perform address type promotion if doing so is profitable. 5654 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5655 // instructions that sign extended the same initial value. However, if 5656 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5657 // extension is just profitable. 5658 bool CodeGenPrepare::performAddressTypePromotion( 5659 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5660 bool HasPromoted, TypePromotionTransaction &TPT, 5661 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5662 bool Promoted = false; 5663 SmallPtrSet<Instruction *, 1> UnhandledExts; 5664 bool AllSeenFirst = true; 5665 for (auto I : SpeculativelyMovedExts) { 5666 Value *HeadOfChain = I->getOperand(0); 5667 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5668 SeenChainsForSExt.find(HeadOfChain); 5669 // If there is an unhandled SExt which has the same header, try to promote 5670 // it as well. 5671 if (AlreadySeen != SeenChainsForSExt.end()) { 5672 if (AlreadySeen->second != nullptr) 5673 UnhandledExts.insert(AlreadySeen->second); 5674 AllSeenFirst = false; 5675 } 5676 } 5677 5678 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5679 SpeculativelyMovedExts.size() == 1)) { 5680 TPT.commit(); 5681 if (HasPromoted) 5682 Promoted = true; 5683 for (auto I : SpeculativelyMovedExts) { 5684 Value *HeadOfChain = I->getOperand(0); 5685 SeenChainsForSExt[HeadOfChain] = nullptr; 5686 ValToSExtendedUses[HeadOfChain].push_back(I); 5687 } 5688 // Update Inst as promotion happen. 5689 Inst = SpeculativelyMovedExts.pop_back_val(); 5690 } else { 5691 // This is the first chain visited from the header, keep the current chain 5692 // as unhandled. Defer to promote this until we encounter another SExt 5693 // chain derived from the same header. 5694 for (auto I : SpeculativelyMovedExts) { 5695 Value *HeadOfChain = I->getOperand(0); 5696 SeenChainsForSExt[HeadOfChain] = Inst; 5697 } 5698 return false; 5699 } 5700 5701 if (!AllSeenFirst && !UnhandledExts.empty()) 5702 for (auto VisitedSExt : UnhandledExts) { 5703 if (RemovedInsts.count(VisitedSExt)) 5704 continue; 5705 TypePromotionTransaction TPT(RemovedInsts); 5706 SmallVector<Instruction *, 1> Exts; 5707 SmallVector<Instruction *, 2> Chains; 5708 Exts.push_back(VisitedSExt); 5709 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5710 TPT.commit(); 5711 if (HasPromoted) 5712 Promoted = true; 5713 for (auto I : Chains) { 5714 Value *HeadOfChain = I->getOperand(0); 5715 // Mark this as handled. 5716 SeenChainsForSExt[HeadOfChain] = nullptr; 5717 ValToSExtendedUses[HeadOfChain].push_back(I); 5718 } 5719 } 5720 return Promoted; 5721 } 5722 5723 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5724 BasicBlock *DefBB = I->getParent(); 5725 5726 // If the result of a {s|z}ext and its source are both live out, rewrite all 5727 // other uses of the source with result of extension. 5728 Value *Src = I->getOperand(0); 5729 if (Src->hasOneUse()) 5730 return false; 5731 5732 // Only do this xform if truncating is free. 5733 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5734 return false; 5735 5736 // Only safe to perform the optimization if the source is also defined in 5737 // this block. 5738 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5739 return false; 5740 5741 bool DefIsLiveOut = false; 5742 for (User *U : I->users()) { 5743 Instruction *UI = cast<Instruction>(U); 5744 5745 // Figure out which BB this ext is used in. 5746 BasicBlock *UserBB = UI->getParent(); 5747 if (UserBB == DefBB) continue; 5748 DefIsLiveOut = true; 5749 break; 5750 } 5751 if (!DefIsLiveOut) 5752 return false; 5753 5754 // Make sure none of the uses are PHI nodes. 5755 for (User *U : Src->users()) { 5756 Instruction *UI = cast<Instruction>(U); 5757 BasicBlock *UserBB = UI->getParent(); 5758 if (UserBB == DefBB) continue; 5759 // Be conservative. We don't want this xform to end up introducing 5760 // reloads just before load / store instructions. 5761 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5762 return false; 5763 } 5764 5765 // InsertedTruncs - Only insert one trunc in each block once. 5766 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5767 5768 bool MadeChange = false; 5769 for (Use &U : Src->uses()) { 5770 Instruction *User = cast<Instruction>(U.getUser()); 5771 5772 // Figure out which BB this ext is used in. 5773 BasicBlock *UserBB = User->getParent(); 5774 if (UserBB == DefBB) continue; 5775 5776 // Both src and def are live in this block. Rewrite the use. 5777 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5778 5779 if (!InsertedTrunc) { 5780 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5781 assert(InsertPt != UserBB->end()); 5782 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5783 InsertedInsts.insert(InsertedTrunc); 5784 } 5785 5786 // Replace a use of the {s|z}ext source with a use of the result. 5787 U = InsertedTrunc; 5788 ++NumExtUses; 5789 MadeChange = true; 5790 } 5791 5792 return MadeChange; 5793 } 5794 5795 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5796 // just after the load if the target can fold this into one extload instruction, 5797 // with the hope of eliminating some of the other later "and" instructions using 5798 // the loaded value. "and"s that are made trivially redundant by the insertion 5799 // of the new "and" are removed by this function, while others (e.g. those whose 5800 // path from the load goes through a phi) are left for isel to potentially 5801 // remove. 5802 // 5803 // For example: 5804 // 5805 // b0: 5806 // x = load i32 5807 // ... 5808 // b1: 5809 // y = and x, 0xff 5810 // z = use y 5811 // 5812 // becomes: 5813 // 5814 // b0: 5815 // x = load i32 5816 // x' = and x, 0xff 5817 // ... 5818 // b1: 5819 // z = use x' 5820 // 5821 // whereas: 5822 // 5823 // b0: 5824 // x1 = load i32 5825 // ... 5826 // b1: 5827 // x2 = load i32 5828 // ... 5829 // b2: 5830 // x = phi x1, x2 5831 // y = and x, 0xff 5832 // 5833 // becomes (after a call to optimizeLoadExt for each load): 5834 // 5835 // b0: 5836 // x1 = load i32 5837 // x1' = and x1, 0xff 5838 // ... 5839 // b1: 5840 // x2 = load i32 5841 // x2' = and x2, 0xff 5842 // ... 5843 // b2: 5844 // x = phi x1', x2' 5845 // y = and x, 0xff 5846 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5847 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5848 return false; 5849 5850 // Skip loads we've already transformed. 5851 if (Load->hasOneUse() && 5852 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5853 return false; 5854 5855 // Look at all uses of Load, looking through phis, to determine how many bits 5856 // of the loaded value are needed. 5857 SmallVector<Instruction *, 8> WorkList; 5858 SmallPtrSet<Instruction *, 16> Visited; 5859 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5860 for (auto *U : Load->users()) 5861 WorkList.push_back(cast<Instruction>(U)); 5862 5863 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5864 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5865 APInt DemandBits(BitWidth, 0); 5866 APInt WidestAndBits(BitWidth, 0); 5867 5868 while (!WorkList.empty()) { 5869 Instruction *I = WorkList.back(); 5870 WorkList.pop_back(); 5871 5872 // Break use-def graph loops. 5873 if (!Visited.insert(I).second) 5874 continue; 5875 5876 // For a PHI node, push all of its users. 5877 if (auto *Phi = dyn_cast<PHINode>(I)) { 5878 for (auto *U : Phi->users()) 5879 WorkList.push_back(cast<Instruction>(U)); 5880 continue; 5881 } 5882 5883 switch (I->getOpcode()) { 5884 case Instruction::And: { 5885 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5886 if (!AndC) 5887 return false; 5888 APInt AndBits = AndC->getValue(); 5889 DemandBits |= AndBits; 5890 // Keep track of the widest and mask we see. 5891 if (AndBits.ugt(WidestAndBits)) 5892 WidestAndBits = AndBits; 5893 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5894 AndsToMaybeRemove.push_back(I); 5895 break; 5896 } 5897 5898 case Instruction::Shl: { 5899 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5900 if (!ShlC) 5901 return false; 5902 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5903 DemandBits.setLowBits(BitWidth - ShiftAmt); 5904 break; 5905 } 5906 5907 case Instruction::Trunc: { 5908 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5909 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5910 DemandBits.setLowBits(TruncBitWidth); 5911 break; 5912 } 5913 5914 default: 5915 return false; 5916 } 5917 } 5918 5919 uint32_t ActiveBits = DemandBits.getActiveBits(); 5920 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5921 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5922 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5923 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5924 // followed by an AND. 5925 // TODO: Look into removing this restriction by fixing backends to either 5926 // return false for isLoadExtLegal for i1 or have them select this pattern to 5927 // a single instruction. 5928 // 5929 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5930 // mask, since these are the only ands that will be removed by isel. 5931 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5932 WidestAndBits != DemandBits) 5933 return false; 5934 5935 LLVMContext &Ctx = Load->getType()->getContext(); 5936 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5937 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5938 5939 // Reject cases that won't be matched as extloads. 5940 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5941 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5942 return false; 5943 5944 IRBuilder<> Builder(Load->getNextNode()); 5945 auto *NewAnd = cast<Instruction>( 5946 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5947 // Mark this instruction as "inserted by CGP", so that other 5948 // optimizations don't touch it. 5949 InsertedInsts.insert(NewAnd); 5950 5951 // Replace all uses of load with new and (except for the use of load in the 5952 // new and itself). 5953 Load->replaceAllUsesWith(NewAnd); 5954 NewAnd->setOperand(0, Load); 5955 5956 // Remove any and instructions that are now redundant. 5957 for (auto *And : AndsToMaybeRemove) 5958 // Check that the and mask is the same as the one we decided to put on the 5959 // new and. 5960 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5961 And->replaceAllUsesWith(NewAnd); 5962 if (&*CurInstIterator == And) 5963 CurInstIterator = std::next(And->getIterator()); 5964 And->eraseFromParent(); 5965 ++NumAndUses; 5966 } 5967 5968 ++NumAndsAdded; 5969 return true; 5970 } 5971 5972 /// Check if V (an operand of a select instruction) is an expensive instruction 5973 /// that is only used once. 5974 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5975 auto *I = dyn_cast<Instruction>(V); 5976 // If it's safe to speculatively execute, then it should not have side 5977 // effects; therefore, it's safe to sink and possibly *not* execute. 5978 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5979 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5980 } 5981 5982 /// Returns true if a SelectInst should be turned into an explicit branch. 5983 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5984 const TargetLowering *TLI, 5985 SelectInst *SI) { 5986 // If even a predictable select is cheap, then a branch can't be cheaper. 5987 if (!TLI->isPredictableSelectExpensive()) 5988 return false; 5989 5990 // FIXME: This should use the same heuristics as IfConversion to determine 5991 // whether a select is better represented as a branch. 5992 5993 // If metadata tells us that the select condition is obviously predictable, 5994 // then we want to replace the select with a branch. 5995 uint64_t TrueWeight, FalseWeight; 5996 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5997 uint64_t Max = std::max(TrueWeight, FalseWeight); 5998 uint64_t Sum = TrueWeight + FalseWeight; 5999 if (Sum != 0) { 6000 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6001 if (Probability > TLI->getPredictableBranchThreshold()) 6002 return true; 6003 } 6004 } 6005 6006 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6007 6008 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6009 // comparison condition. If the compare has more than one use, there's 6010 // probably another cmov or setcc around, so it's not worth emitting a branch. 6011 if (!Cmp || !Cmp->hasOneUse()) 6012 return false; 6013 6014 // If either operand of the select is expensive and only needed on one side 6015 // of the select, we should form a branch. 6016 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6017 sinkSelectOperand(TTI, SI->getFalseValue())) 6018 return true; 6019 6020 return false; 6021 } 6022 6023 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6024 /// false value of \p SI. If the true/false value of \p SI is defined by any 6025 /// select instructions in \p Selects, look through the defining select 6026 /// instruction until the true/false value is not defined in \p Selects. 6027 static Value *getTrueOrFalseValue( 6028 SelectInst *SI, bool isTrue, 6029 const SmallPtrSet<const Instruction *, 2> &Selects) { 6030 Value *V = nullptr; 6031 6032 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6033 DefSI = dyn_cast<SelectInst>(V)) { 6034 assert(DefSI->getCondition() == SI->getCondition() && 6035 "The condition of DefSI does not match with SI"); 6036 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6037 } 6038 6039 assert(V && "Failed to get select true/false value"); 6040 return V; 6041 } 6042 6043 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6044 assert(Shift->isShift() && "Expected a shift"); 6045 6046 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6047 // general vector shifts, and (3) the shift amount is a select-of-splatted 6048 // values, hoist the shifts before the select: 6049 // shift Op0, (select Cond, TVal, FVal) --> 6050 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6051 // 6052 // This is inverting a generic IR transform when we know that the cost of a 6053 // general vector shift is more than the cost of 2 shift-by-scalars. 6054 // We can't do this effectively in SDAG because we may not be able to 6055 // determine if the select operands are splats from within a basic block. 6056 Type *Ty = Shift->getType(); 6057 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6058 return false; 6059 Value *Cond, *TVal, *FVal; 6060 if (!match(Shift->getOperand(1), 6061 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6062 return false; 6063 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6064 return false; 6065 6066 IRBuilder<> Builder(Shift); 6067 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6068 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6069 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6070 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6071 Shift->replaceAllUsesWith(NewSel); 6072 Shift->eraseFromParent(); 6073 return true; 6074 } 6075 6076 /// If we have a SelectInst that will likely profit from branch prediction, 6077 /// turn it into a branch. 6078 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6079 // If branch conversion isn't desirable, exit early. 6080 if (DisableSelectToBranch || OptSize || 6081 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6082 return false; 6083 6084 // Find all consecutive select instructions that share the same condition. 6085 SmallVector<SelectInst *, 2> ASI; 6086 ASI.push_back(SI); 6087 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6088 It != SI->getParent()->end(); ++It) { 6089 SelectInst *I = dyn_cast<SelectInst>(&*It); 6090 if (I && SI->getCondition() == I->getCondition()) { 6091 ASI.push_back(I); 6092 } else { 6093 break; 6094 } 6095 } 6096 6097 SelectInst *LastSI = ASI.back(); 6098 // Increment the current iterator to skip all the rest of select instructions 6099 // because they will be either "not lowered" or "all lowered" to branch. 6100 CurInstIterator = std::next(LastSI->getIterator()); 6101 6102 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6103 6104 // Can we convert the 'select' to CF ? 6105 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6106 return false; 6107 6108 TargetLowering::SelectSupportKind SelectKind; 6109 if (VectorCond) 6110 SelectKind = TargetLowering::VectorMaskSelect; 6111 else if (SI->getType()->isVectorTy()) 6112 SelectKind = TargetLowering::ScalarCondVectorVal; 6113 else 6114 SelectKind = TargetLowering::ScalarValSelect; 6115 6116 if (TLI->isSelectSupported(SelectKind) && 6117 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6118 return false; 6119 6120 // The DominatorTree needs to be rebuilt by any consumers after this 6121 // transformation. We simply reset here rather than setting the ModifiedDT 6122 // flag to avoid restarting the function walk in runOnFunction for each 6123 // select optimized. 6124 DT.reset(); 6125 6126 // Transform a sequence like this: 6127 // start: 6128 // %cmp = cmp uge i32 %a, %b 6129 // %sel = select i1 %cmp, i32 %c, i32 %d 6130 // 6131 // Into: 6132 // start: 6133 // %cmp = cmp uge i32 %a, %b 6134 // %cmp.frozen = freeze %cmp 6135 // br i1 %cmp.frozen, label %select.true, label %select.false 6136 // select.true: 6137 // br label %select.end 6138 // select.false: 6139 // br label %select.end 6140 // select.end: 6141 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6142 // 6143 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6144 // In addition, we may sink instructions that produce %c or %d from 6145 // the entry block into the destination(s) of the new branch. 6146 // If the true or false blocks do not contain a sunken instruction, that 6147 // block and its branch may be optimized away. In that case, one side of the 6148 // first branch will point directly to select.end, and the corresponding PHI 6149 // predecessor block will be the start block. 6150 6151 // First, we split the block containing the select into 2 blocks. 6152 BasicBlock *StartBlock = SI->getParent(); 6153 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6154 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6155 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6156 6157 // Delete the unconditional branch that was just created by the split. 6158 StartBlock->getTerminator()->eraseFromParent(); 6159 6160 // These are the new basic blocks for the conditional branch. 6161 // At least one will become an actual new basic block. 6162 BasicBlock *TrueBlock = nullptr; 6163 BasicBlock *FalseBlock = nullptr; 6164 BranchInst *TrueBranch = nullptr; 6165 BranchInst *FalseBranch = nullptr; 6166 6167 // Sink expensive instructions into the conditional blocks to avoid executing 6168 // them speculatively. 6169 for (SelectInst *SI : ASI) { 6170 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6171 if (TrueBlock == nullptr) { 6172 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6173 EndBlock->getParent(), EndBlock); 6174 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6175 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6176 } 6177 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6178 TrueInst->moveBefore(TrueBranch); 6179 } 6180 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6181 if (FalseBlock == nullptr) { 6182 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6183 EndBlock->getParent(), EndBlock); 6184 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6185 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6186 } 6187 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6188 FalseInst->moveBefore(FalseBranch); 6189 } 6190 } 6191 6192 // If there was nothing to sink, then arbitrarily choose the 'false' side 6193 // for a new input value to the PHI. 6194 if (TrueBlock == FalseBlock) { 6195 assert(TrueBlock == nullptr && 6196 "Unexpected basic block transform while optimizing select"); 6197 6198 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6199 EndBlock->getParent(), EndBlock); 6200 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6201 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6202 } 6203 6204 // Insert the real conditional branch based on the original condition. 6205 // If we did not create a new block for one of the 'true' or 'false' paths 6206 // of the condition, it means that side of the branch goes to the end block 6207 // directly and the path originates from the start block from the point of 6208 // view of the new PHI. 6209 BasicBlock *TT, *FT; 6210 if (TrueBlock == nullptr) { 6211 TT = EndBlock; 6212 FT = FalseBlock; 6213 TrueBlock = StartBlock; 6214 } else if (FalseBlock == nullptr) { 6215 TT = TrueBlock; 6216 FT = EndBlock; 6217 FalseBlock = StartBlock; 6218 } else { 6219 TT = TrueBlock; 6220 FT = FalseBlock; 6221 } 6222 IRBuilder<> IB(SI); 6223 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6224 IB.CreateCondBr(CondFr, TT, FT, SI); 6225 6226 SmallPtrSet<const Instruction *, 2> INS; 6227 INS.insert(ASI.begin(), ASI.end()); 6228 // Use reverse iterator because later select may use the value of the 6229 // earlier select, and we need to propagate value through earlier select 6230 // to get the PHI operand. 6231 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6232 SelectInst *SI = *It; 6233 // The select itself is replaced with a PHI Node. 6234 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6235 PN->takeName(SI); 6236 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6237 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6238 PN->setDebugLoc(SI->getDebugLoc()); 6239 6240 SI->replaceAllUsesWith(PN); 6241 SI->eraseFromParent(); 6242 INS.erase(SI); 6243 ++NumSelectsExpanded; 6244 } 6245 6246 // Instruct OptimizeBlock to skip to the next block. 6247 CurInstIterator = StartBlock->end(); 6248 return true; 6249 } 6250 6251 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6252 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6253 int SplatElem = -1; 6254 for (unsigned i = 0; i < Mask.size(); ++i) { 6255 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6256 return false; 6257 SplatElem = Mask[i]; 6258 } 6259 6260 return true; 6261 } 6262 6263 /// Some targets have expensive vector shifts if the lanes aren't all the same 6264 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6265 /// it's often worth sinking a shufflevector splat down to its use so that 6266 /// codegen can spot all lanes are identical. 6267 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6268 BasicBlock *DefBB = SVI->getParent(); 6269 6270 // Only do this xform if variable vector shifts are particularly expensive. 6271 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6272 return false; 6273 6274 // We only expect better codegen by sinking a shuffle if we can recognise a 6275 // constant splat. 6276 if (!isBroadcastShuffle(SVI)) 6277 return false; 6278 6279 // InsertedShuffles - Only insert a shuffle in each block once. 6280 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6281 6282 bool MadeChange = false; 6283 for (User *U : SVI->users()) { 6284 Instruction *UI = cast<Instruction>(U); 6285 6286 // Figure out which BB this ext is used in. 6287 BasicBlock *UserBB = UI->getParent(); 6288 if (UserBB == DefBB) continue; 6289 6290 // For now only apply this when the splat is used by a shift instruction. 6291 if (!UI->isShift()) continue; 6292 6293 // Everything checks out, sink the shuffle if the user's block doesn't 6294 // already have a copy. 6295 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6296 6297 if (!InsertedShuffle) { 6298 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6299 assert(InsertPt != UserBB->end()); 6300 InsertedShuffle = 6301 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6302 SVI->getOperand(2), "", &*InsertPt); 6303 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6304 } 6305 6306 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6307 MadeChange = true; 6308 } 6309 6310 // If we removed all uses, nuke the shuffle. 6311 if (SVI->use_empty()) { 6312 SVI->eraseFromParent(); 6313 MadeChange = true; 6314 } 6315 6316 return MadeChange; 6317 } 6318 6319 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6320 // If the operands of I can be folded into a target instruction together with 6321 // I, duplicate and sink them. 6322 SmallVector<Use *, 4> OpsToSink; 6323 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6324 return false; 6325 6326 // OpsToSink can contain multiple uses in a use chain (e.g. 6327 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6328 // uses must come first, so we process the ops in reverse order so as to not 6329 // create invalid IR. 6330 BasicBlock *TargetBB = I->getParent(); 6331 bool Changed = false; 6332 SmallVector<Use *, 4> ToReplace; 6333 for (Use *U : reverse(OpsToSink)) { 6334 auto *UI = cast<Instruction>(U->get()); 6335 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6336 continue; 6337 ToReplace.push_back(U); 6338 } 6339 6340 SetVector<Instruction *> MaybeDead; 6341 DenseMap<Instruction *, Instruction *> NewInstructions; 6342 Instruction *InsertPoint = I; 6343 for (Use *U : ToReplace) { 6344 auto *UI = cast<Instruction>(U->get()); 6345 Instruction *NI = UI->clone(); 6346 NewInstructions[UI] = NI; 6347 MaybeDead.insert(UI); 6348 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6349 NI->insertBefore(InsertPoint); 6350 InsertPoint = NI; 6351 InsertedInsts.insert(NI); 6352 6353 // Update the use for the new instruction, making sure that we update the 6354 // sunk instruction uses, if it is part of a chain that has already been 6355 // sunk. 6356 Instruction *OldI = cast<Instruction>(U->getUser()); 6357 if (NewInstructions.count(OldI)) 6358 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6359 else 6360 U->set(NI); 6361 Changed = true; 6362 } 6363 6364 // Remove instructions that are dead after sinking. 6365 for (auto *I : MaybeDead) { 6366 if (!I->hasNUsesOrMore(1)) { 6367 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6368 I->eraseFromParent(); 6369 } 6370 } 6371 6372 return Changed; 6373 } 6374 6375 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6376 Value *Cond = SI->getCondition(); 6377 Type *OldType = Cond->getType(); 6378 LLVMContext &Context = Cond->getContext(); 6379 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6380 unsigned RegWidth = RegType.getSizeInBits(); 6381 6382 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6383 return false; 6384 6385 // If the register width is greater than the type width, expand the condition 6386 // of the switch instruction and each case constant to the width of the 6387 // register. By widening the type of the switch condition, subsequent 6388 // comparisons (for case comparisons) will not need to be extended to the 6389 // preferred register width, so we will potentially eliminate N-1 extends, 6390 // where N is the number of cases in the switch. 6391 auto *NewType = Type::getIntNTy(Context, RegWidth); 6392 6393 // Zero-extend the switch condition and case constants unless the switch 6394 // condition is a function argument that is already being sign-extended. 6395 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6396 // everything instead. 6397 Instruction::CastOps ExtType = Instruction::ZExt; 6398 if (auto *Arg = dyn_cast<Argument>(Cond)) 6399 if (Arg->hasSExtAttr()) 6400 ExtType = Instruction::SExt; 6401 6402 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6403 ExtInst->insertBefore(SI); 6404 ExtInst->setDebugLoc(SI->getDebugLoc()); 6405 SI->setCondition(ExtInst); 6406 for (auto Case : SI->cases()) { 6407 APInt NarrowConst = Case.getCaseValue()->getValue(); 6408 APInt WideConst = (ExtType == Instruction::ZExt) ? 6409 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6410 Case.setValue(ConstantInt::get(Context, WideConst)); 6411 } 6412 6413 return true; 6414 } 6415 6416 6417 namespace { 6418 6419 /// Helper class to promote a scalar operation to a vector one. 6420 /// This class is used to move downward extractelement transition. 6421 /// E.g., 6422 /// a = vector_op <2 x i32> 6423 /// b = extractelement <2 x i32> a, i32 0 6424 /// c = scalar_op b 6425 /// store c 6426 /// 6427 /// => 6428 /// a = vector_op <2 x i32> 6429 /// c = vector_op a (equivalent to scalar_op on the related lane) 6430 /// * d = extractelement <2 x i32> c, i32 0 6431 /// * store d 6432 /// Assuming both extractelement and store can be combine, we get rid of the 6433 /// transition. 6434 class VectorPromoteHelper { 6435 /// DataLayout associated with the current module. 6436 const DataLayout &DL; 6437 6438 /// Used to perform some checks on the legality of vector operations. 6439 const TargetLowering &TLI; 6440 6441 /// Used to estimated the cost of the promoted chain. 6442 const TargetTransformInfo &TTI; 6443 6444 /// The transition being moved downwards. 6445 Instruction *Transition; 6446 6447 /// The sequence of instructions to be promoted. 6448 SmallVector<Instruction *, 4> InstsToBePromoted; 6449 6450 /// Cost of combining a store and an extract. 6451 unsigned StoreExtractCombineCost; 6452 6453 /// Instruction that will be combined with the transition. 6454 Instruction *CombineInst = nullptr; 6455 6456 /// The instruction that represents the current end of the transition. 6457 /// Since we are faking the promotion until we reach the end of the chain 6458 /// of computation, we need a way to get the current end of the transition. 6459 Instruction *getEndOfTransition() const { 6460 if (InstsToBePromoted.empty()) 6461 return Transition; 6462 return InstsToBePromoted.back(); 6463 } 6464 6465 /// Return the index of the original value in the transition. 6466 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6467 /// c, is at index 0. 6468 unsigned getTransitionOriginalValueIdx() const { 6469 assert(isa<ExtractElementInst>(Transition) && 6470 "Other kind of transitions are not supported yet"); 6471 return 0; 6472 } 6473 6474 /// Return the index of the index in the transition. 6475 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6476 /// is at index 1. 6477 unsigned getTransitionIdx() const { 6478 assert(isa<ExtractElementInst>(Transition) && 6479 "Other kind of transitions are not supported yet"); 6480 return 1; 6481 } 6482 6483 /// Get the type of the transition. 6484 /// This is the type of the original value. 6485 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6486 /// transition is <2 x i32>. 6487 Type *getTransitionType() const { 6488 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6489 } 6490 6491 /// Promote \p ToBePromoted by moving \p Def downward through. 6492 /// I.e., we have the following sequence: 6493 /// Def = Transition <ty1> a to <ty2> 6494 /// b = ToBePromoted <ty2> Def, ... 6495 /// => 6496 /// b = ToBePromoted <ty1> a, ... 6497 /// Def = Transition <ty1> ToBePromoted to <ty2> 6498 void promoteImpl(Instruction *ToBePromoted); 6499 6500 /// Check whether or not it is profitable to promote all the 6501 /// instructions enqueued to be promoted. 6502 bool isProfitableToPromote() { 6503 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6504 unsigned Index = isa<ConstantInt>(ValIdx) 6505 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6506 : -1; 6507 Type *PromotedType = getTransitionType(); 6508 6509 StoreInst *ST = cast<StoreInst>(CombineInst); 6510 unsigned AS = ST->getPointerAddressSpace(); 6511 unsigned Align = ST->getAlignment(); 6512 // Check if this store is supported. 6513 if (!TLI.allowsMisalignedMemoryAccesses( 6514 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6515 Align)) { 6516 // If this is not supported, there is no way we can combine 6517 // the extract with the store. 6518 return false; 6519 } 6520 6521 // The scalar chain of computation has to pay for the transition 6522 // scalar to vector. 6523 // The vector chain has to account for the combining cost. 6524 uint64_t ScalarCost = 6525 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6526 uint64_t VectorCost = StoreExtractCombineCost; 6527 for (const auto &Inst : InstsToBePromoted) { 6528 // Compute the cost. 6529 // By construction, all instructions being promoted are arithmetic ones. 6530 // Moreover, one argument is a constant that can be viewed as a splat 6531 // constant. 6532 Value *Arg0 = Inst->getOperand(0); 6533 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6534 isa<ConstantFP>(Arg0); 6535 TargetTransformInfo::OperandValueKind Arg0OVK = 6536 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6537 : TargetTransformInfo::OK_AnyValue; 6538 TargetTransformInfo::OperandValueKind Arg1OVK = 6539 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6540 : TargetTransformInfo::OK_AnyValue; 6541 ScalarCost += TTI.getArithmeticInstrCost( 6542 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6543 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6544 Arg0OVK, Arg1OVK); 6545 } 6546 LLVM_DEBUG( 6547 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6548 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6549 return ScalarCost > VectorCost; 6550 } 6551 6552 /// Generate a constant vector with \p Val with the same 6553 /// number of elements as the transition. 6554 /// \p UseSplat defines whether or not \p Val should be replicated 6555 /// across the whole vector. 6556 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6557 /// otherwise we generate a vector with as many undef as possible: 6558 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6559 /// used at the index of the extract. 6560 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6561 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6562 if (!UseSplat) { 6563 // If we cannot determine where the constant must be, we have to 6564 // use a splat constant. 6565 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6566 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6567 ExtractIdx = CstVal->getSExtValue(); 6568 else 6569 UseSplat = true; 6570 } 6571 6572 ElementCount EC = getTransitionType()->getVectorElementCount(); 6573 if (UseSplat) 6574 return ConstantVector::getSplat(EC, Val); 6575 6576 if (!EC.Scalable) { 6577 SmallVector<Constant *, 4> ConstVec; 6578 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6579 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6580 if (Idx == ExtractIdx) 6581 ConstVec.push_back(Val); 6582 else 6583 ConstVec.push_back(UndefVal); 6584 } 6585 return ConstantVector::get(ConstVec); 6586 } else 6587 llvm_unreachable( 6588 "Generate scalable vector for non-splat is unimplemented"); 6589 } 6590 6591 /// Check if promoting to a vector type an operand at \p OperandIdx 6592 /// in \p Use can trigger undefined behavior. 6593 static bool canCauseUndefinedBehavior(const Instruction *Use, 6594 unsigned OperandIdx) { 6595 // This is not safe to introduce undef when the operand is on 6596 // the right hand side of a division-like instruction. 6597 if (OperandIdx != 1) 6598 return false; 6599 switch (Use->getOpcode()) { 6600 default: 6601 return false; 6602 case Instruction::SDiv: 6603 case Instruction::UDiv: 6604 case Instruction::SRem: 6605 case Instruction::URem: 6606 return true; 6607 case Instruction::FDiv: 6608 case Instruction::FRem: 6609 return !Use->hasNoNaNs(); 6610 } 6611 llvm_unreachable(nullptr); 6612 } 6613 6614 public: 6615 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6616 const TargetTransformInfo &TTI, Instruction *Transition, 6617 unsigned CombineCost) 6618 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6619 StoreExtractCombineCost(CombineCost) { 6620 assert(Transition && "Do not know how to promote null"); 6621 } 6622 6623 /// Check if we can promote \p ToBePromoted to \p Type. 6624 bool canPromote(const Instruction *ToBePromoted) const { 6625 // We could support CastInst too. 6626 return isa<BinaryOperator>(ToBePromoted); 6627 } 6628 6629 /// Check if it is profitable to promote \p ToBePromoted 6630 /// by moving downward the transition through. 6631 bool shouldPromote(const Instruction *ToBePromoted) const { 6632 // Promote only if all the operands can be statically expanded. 6633 // Indeed, we do not want to introduce any new kind of transitions. 6634 for (const Use &U : ToBePromoted->operands()) { 6635 const Value *Val = U.get(); 6636 if (Val == getEndOfTransition()) { 6637 // If the use is a division and the transition is on the rhs, 6638 // we cannot promote the operation, otherwise we may create a 6639 // division by zero. 6640 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6641 return false; 6642 continue; 6643 } 6644 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6645 !isa<ConstantFP>(Val)) 6646 return false; 6647 } 6648 // Check that the resulting operation is legal. 6649 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6650 if (!ISDOpcode) 6651 return false; 6652 return StressStoreExtract || 6653 TLI.isOperationLegalOrCustom( 6654 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6655 } 6656 6657 /// Check whether or not \p Use can be combined 6658 /// with the transition. 6659 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6660 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6661 6662 /// Record \p ToBePromoted as part of the chain to be promoted. 6663 void enqueueForPromotion(Instruction *ToBePromoted) { 6664 InstsToBePromoted.push_back(ToBePromoted); 6665 } 6666 6667 /// Set the instruction that will be combined with the transition. 6668 void recordCombineInstruction(Instruction *ToBeCombined) { 6669 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6670 CombineInst = ToBeCombined; 6671 } 6672 6673 /// Promote all the instructions enqueued for promotion if it is 6674 /// is profitable. 6675 /// \return True if the promotion happened, false otherwise. 6676 bool promote() { 6677 // Check if there is something to promote. 6678 // Right now, if we do not have anything to combine with, 6679 // we assume the promotion is not profitable. 6680 if (InstsToBePromoted.empty() || !CombineInst) 6681 return false; 6682 6683 // Check cost. 6684 if (!StressStoreExtract && !isProfitableToPromote()) 6685 return false; 6686 6687 // Promote. 6688 for (auto &ToBePromoted : InstsToBePromoted) 6689 promoteImpl(ToBePromoted); 6690 InstsToBePromoted.clear(); 6691 return true; 6692 } 6693 }; 6694 6695 } // end anonymous namespace 6696 6697 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6698 // At this point, we know that all the operands of ToBePromoted but Def 6699 // can be statically promoted. 6700 // For Def, we need to use its parameter in ToBePromoted: 6701 // b = ToBePromoted ty1 a 6702 // Def = Transition ty1 b to ty2 6703 // Move the transition down. 6704 // 1. Replace all uses of the promoted operation by the transition. 6705 // = ... b => = ... Def. 6706 assert(ToBePromoted->getType() == Transition->getType() && 6707 "The type of the result of the transition does not match " 6708 "the final type"); 6709 ToBePromoted->replaceAllUsesWith(Transition); 6710 // 2. Update the type of the uses. 6711 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6712 Type *TransitionTy = getTransitionType(); 6713 ToBePromoted->mutateType(TransitionTy); 6714 // 3. Update all the operands of the promoted operation with promoted 6715 // operands. 6716 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6717 for (Use &U : ToBePromoted->operands()) { 6718 Value *Val = U.get(); 6719 Value *NewVal = nullptr; 6720 if (Val == Transition) 6721 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6722 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6723 isa<ConstantFP>(Val)) { 6724 // Use a splat constant if it is not safe to use undef. 6725 NewVal = getConstantVector( 6726 cast<Constant>(Val), 6727 isa<UndefValue>(Val) || 6728 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6729 } else 6730 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6731 "this?"); 6732 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6733 } 6734 Transition->moveAfter(ToBePromoted); 6735 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6736 } 6737 6738 /// Some targets can do store(extractelement) with one instruction. 6739 /// Try to push the extractelement towards the stores when the target 6740 /// has this feature and this is profitable. 6741 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6742 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6743 if (DisableStoreExtract || 6744 (!StressStoreExtract && 6745 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6746 Inst->getOperand(1), CombineCost))) 6747 return false; 6748 6749 // At this point we know that Inst is a vector to scalar transition. 6750 // Try to move it down the def-use chain, until: 6751 // - We can combine the transition with its single use 6752 // => we got rid of the transition. 6753 // - We escape the current basic block 6754 // => we would need to check that we are moving it at a cheaper place and 6755 // we do not do that for now. 6756 BasicBlock *Parent = Inst->getParent(); 6757 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6758 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6759 // If the transition has more than one use, assume this is not going to be 6760 // beneficial. 6761 while (Inst->hasOneUse()) { 6762 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6763 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6764 6765 if (ToBePromoted->getParent() != Parent) { 6766 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6767 << ToBePromoted->getParent()->getName() 6768 << ") than the transition (" << Parent->getName() 6769 << ").\n"); 6770 return false; 6771 } 6772 6773 if (VPH.canCombine(ToBePromoted)) { 6774 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6775 << "will be combined with: " << *ToBePromoted << '\n'); 6776 VPH.recordCombineInstruction(ToBePromoted); 6777 bool Changed = VPH.promote(); 6778 NumStoreExtractExposed += Changed; 6779 return Changed; 6780 } 6781 6782 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6783 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6784 return false; 6785 6786 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6787 6788 VPH.enqueueForPromotion(ToBePromoted); 6789 Inst = ToBePromoted; 6790 } 6791 return false; 6792 } 6793 6794 /// For the instruction sequence of store below, F and I values 6795 /// are bundled together as an i64 value before being stored into memory. 6796 /// Sometimes it is more efficient to generate separate stores for F and I, 6797 /// which can remove the bitwise instructions or sink them to colder places. 6798 /// 6799 /// (store (or (zext (bitcast F to i32) to i64), 6800 /// (shl (zext I to i64), 32)), addr) --> 6801 /// (store F, addr) and (store I, addr+4) 6802 /// 6803 /// Similarly, splitting for other merged store can also be beneficial, like: 6804 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6805 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6806 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6807 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6808 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6809 /// 6810 /// We allow each target to determine specifically which kind of splitting is 6811 /// supported. 6812 /// 6813 /// The store patterns are commonly seen from the simple code snippet below 6814 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6815 /// void goo(const std::pair<int, float> &); 6816 /// hoo() { 6817 /// ... 6818 /// goo(std::make_pair(tmp, ftmp)); 6819 /// ... 6820 /// } 6821 /// 6822 /// Although we already have similar splitting in DAG Combine, we duplicate 6823 /// it in CodeGenPrepare to catch the case in which pattern is across 6824 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6825 /// during code expansion. 6826 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6827 const TargetLowering &TLI) { 6828 // Handle simple but common cases only. 6829 Type *StoreType = SI.getValueOperand()->getType(); 6830 6831 // The code below assumes shifting a value by <number of bits>, 6832 // whereas scalable vectors would have to be shifted by 6833 // <2log(vscale) + number of bits> in order to store the 6834 // low/high parts. Bailing out for now. 6835 if (StoreType->isVectorTy() && StoreType->getVectorIsScalable()) 6836 return false; 6837 6838 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6839 DL.getTypeSizeInBits(StoreType) == 0) 6840 return false; 6841 6842 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6843 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6844 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6845 return false; 6846 6847 // Don't split the store if it is volatile. 6848 if (SI.isVolatile()) 6849 return false; 6850 6851 // Match the following patterns: 6852 // (store (or (zext LValue to i64), 6853 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6854 // or 6855 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6856 // (zext LValue to i64), 6857 // Expect both operands of OR and the first operand of SHL have only 6858 // one use. 6859 Value *LValue, *HValue; 6860 if (!match(SI.getValueOperand(), 6861 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6862 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6863 m_SpecificInt(HalfValBitSize)))))) 6864 return false; 6865 6866 // Check LValue and HValue are int with size less or equal than 32. 6867 if (!LValue->getType()->isIntegerTy() || 6868 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6869 !HValue->getType()->isIntegerTy() || 6870 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6871 return false; 6872 6873 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6874 // as the input of target query. 6875 auto *LBC = dyn_cast<BitCastInst>(LValue); 6876 auto *HBC = dyn_cast<BitCastInst>(HValue); 6877 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6878 : EVT::getEVT(LValue->getType()); 6879 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6880 : EVT::getEVT(HValue->getType()); 6881 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6882 return false; 6883 6884 // Start to split store. 6885 IRBuilder<> Builder(SI.getContext()); 6886 Builder.SetInsertPoint(&SI); 6887 6888 // If LValue/HValue is a bitcast in another BB, create a new one in current 6889 // BB so it may be merged with the splitted stores by dag combiner. 6890 if (LBC && LBC->getParent() != SI.getParent()) 6891 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6892 if (HBC && HBC->getParent() != SI.getParent()) 6893 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6894 6895 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6896 auto CreateSplitStore = [&](Value *V, bool Upper) { 6897 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6898 Value *Addr = Builder.CreateBitCast( 6899 SI.getOperand(1), 6900 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6901 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6902 if (IsOffsetStore) 6903 Addr = Builder.CreateGEP( 6904 SplitStoreType, Addr, 6905 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6906 MaybeAlign Alignment = SI.getAlign(); 6907 if (IsOffsetStore && Alignment) { 6908 // When splitting the store in half, naturally one half will retain the 6909 // alignment of the original wider store, regardless of whether it was 6910 // over-aligned or not, while the other will require adjustment. 6911 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6912 } 6913 Builder.CreateAlignedStore(V, Addr, Alignment); 6914 }; 6915 6916 CreateSplitStore(LValue, false); 6917 CreateSplitStore(HValue, true); 6918 6919 // Delete the old store. 6920 SI.eraseFromParent(); 6921 return true; 6922 } 6923 6924 // Return true if the GEP has two operands, the first operand is of a sequential 6925 // type, and the second operand is a constant. 6926 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6927 gep_type_iterator I = gep_type_begin(*GEP); 6928 return GEP->getNumOperands() == 2 && 6929 I.isSequential() && 6930 isa<ConstantInt>(GEP->getOperand(1)); 6931 } 6932 6933 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6934 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6935 // reducing liveness interference across those edges benefits global register 6936 // allocation. Currently handles only certain cases. 6937 // 6938 // For example, unmerge %GEPI and %UGEPI as below. 6939 // 6940 // ---------- BEFORE ---------- 6941 // SrcBlock: 6942 // ... 6943 // %GEPIOp = ... 6944 // ... 6945 // %GEPI = gep %GEPIOp, Idx 6946 // ... 6947 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6948 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6949 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6950 // %UGEPI) 6951 // 6952 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6953 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6954 // ... 6955 // 6956 // DstBi: 6957 // ... 6958 // %UGEPI = gep %GEPIOp, UIdx 6959 // ... 6960 // --------------------------- 6961 // 6962 // ---------- AFTER ---------- 6963 // SrcBlock: 6964 // ... (same as above) 6965 // (* %GEPI is still alive on the indirectbr edges) 6966 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6967 // unmerging) 6968 // ... 6969 // 6970 // DstBi: 6971 // ... 6972 // %UGEPI = gep %GEPI, (UIdx-Idx) 6973 // ... 6974 // --------------------------- 6975 // 6976 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6977 // no longer alive on them. 6978 // 6979 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6980 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6981 // not to disable further simplications and optimizations as a result of GEP 6982 // merging. 6983 // 6984 // Note this unmerging may increase the length of the data flow critical path 6985 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6986 // between the register pressure and the length of data-flow critical 6987 // path. Restricting this to the uncommon IndirectBr case would minimize the 6988 // impact of potentially longer critical path, if any, and the impact on compile 6989 // time. 6990 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6991 const TargetTransformInfo *TTI) { 6992 BasicBlock *SrcBlock = GEPI->getParent(); 6993 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6994 // (non-IndirectBr) cases exit early here. 6995 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6996 return false; 6997 // Check that GEPI is a simple gep with a single constant index. 6998 if (!GEPSequentialConstIndexed(GEPI)) 6999 return false; 7000 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7001 // Check that GEPI is a cheap one. 7002 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 7003 > TargetTransformInfo::TCC_Basic) 7004 return false; 7005 Value *GEPIOp = GEPI->getOperand(0); 7006 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7007 if (!isa<Instruction>(GEPIOp)) 7008 return false; 7009 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7010 if (GEPIOpI->getParent() != SrcBlock) 7011 return false; 7012 // Check that GEP is used outside the block, meaning it's alive on the 7013 // IndirectBr edge(s). 7014 if (find_if(GEPI->users(), [&](User *Usr) { 7015 if (auto *I = dyn_cast<Instruction>(Usr)) { 7016 if (I->getParent() != SrcBlock) { 7017 return true; 7018 } 7019 } 7020 return false; 7021 }) == GEPI->users().end()) 7022 return false; 7023 // The second elements of the GEP chains to be unmerged. 7024 std::vector<GetElementPtrInst *> UGEPIs; 7025 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7026 // on IndirectBr edges. 7027 for (User *Usr : GEPIOp->users()) { 7028 if (Usr == GEPI) continue; 7029 // Check if Usr is an Instruction. If not, give up. 7030 if (!isa<Instruction>(Usr)) 7031 return false; 7032 auto *UI = cast<Instruction>(Usr); 7033 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7034 if (UI->getParent() == SrcBlock) 7035 continue; 7036 // Check if Usr is a GEP. If not, give up. 7037 if (!isa<GetElementPtrInst>(Usr)) 7038 return false; 7039 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7040 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7041 // the pointer operand to it. If so, record it in the vector. If not, give 7042 // up. 7043 if (!GEPSequentialConstIndexed(UGEPI)) 7044 return false; 7045 if (UGEPI->getOperand(0) != GEPIOp) 7046 return false; 7047 if (GEPIIdx->getType() != 7048 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7049 return false; 7050 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7051 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7052 > TargetTransformInfo::TCC_Basic) 7053 return false; 7054 UGEPIs.push_back(UGEPI); 7055 } 7056 if (UGEPIs.size() == 0) 7057 return false; 7058 // Check the materializing cost of (Uidx-Idx). 7059 for (GetElementPtrInst *UGEPI : UGEPIs) { 7060 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7061 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7062 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7063 if (ImmCost > TargetTransformInfo::TCC_Basic) 7064 return false; 7065 } 7066 // Now unmerge between GEPI and UGEPIs. 7067 for (GetElementPtrInst *UGEPI : UGEPIs) { 7068 UGEPI->setOperand(0, GEPI); 7069 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7070 Constant *NewUGEPIIdx = 7071 ConstantInt::get(GEPIIdx->getType(), 7072 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7073 UGEPI->setOperand(1, NewUGEPIIdx); 7074 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7075 // inbounds to avoid UB. 7076 if (!GEPI->isInBounds()) { 7077 UGEPI->setIsInBounds(false); 7078 } 7079 } 7080 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7081 // alive on IndirectBr edges). 7082 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7083 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7084 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7085 return true; 7086 } 7087 7088 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7089 // Bail out if we inserted the instruction to prevent optimizations from 7090 // stepping on each other's toes. 7091 if (InsertedInsts.count(I)) 7092 return false; 7093 7094 // TODO: Move into the switch on opcode below here. 7095 if (PHINode *P = dyn_cast<PHINode>(I)) { 7096 // It is possible for very late stage optimizations (such as SimplifyCFG) 7097 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7098 // trivial PHI, go ahead and zap it here. 7099 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7100 LargeOffsetGEPMap.erase(P); 7101 P->replaceAllUsesWith(V); 7102 P->eraseFromParent(); 7103 ++NumPHIsElim; 7104 return true; 7105 } 7106 return false; 7107 } 7108 7109 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7110 // If the source of the cast is a constant, then this should have 7111 // already been constant folded. The only reason NOT to constant fold 7112 // it is if something (e.g. LSR) was careful to place the constant 7113 // evaluation in a block other than then one that uses it (e.g. to hoist 7114 // the address of globals out of a loop). If this is the case, we don't 7115 // want to forward-subst the cast. 7116 if (isa<Constant>(CI->getOperand(0))) 7117 return false; 7118 7119 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7120 return true; 7121 7122 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7123 /// Sink a zext or sext into its user blocks if the target type doesn't 7124 /// fit in one register 7125 if (TLI->getTypeAction(CI->getContext(), 7126 TLI->getValueType(*DL, CI->getType())) == 7127 TargetLowering::TypeExpandInteger) { 7128 return SinkCast(CI); 7129 } else { 7130 bool MadeChange = optimizeExt(I); 7131 return MadeChange | optimizeExtUses(I); 7132 } 7133 } 7134 return false; 7135 } 7136 7137 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7138 if (optimizeCmp(Cmp, ModifiedDT)) 7139 return true; 7140 7141 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7142 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7143 bool Modified = optimizeLoadExt(LI); 7144 unsigned AS = LI->getPointerAddressSpace(); 7145 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7146 return Modified; 7147 } 7148 7149 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7150 if (splitMergedValStore(*SI, *DL, *TLI)) 7151 return true; 7152 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7153 unsigned AS = SI->getPointerAddressSpace(); 7154 return optimizeMemoryInst(I, SI->getOperand(1), 7155 SI->getOperand(0)->getType(), AS); 7156 } 7157 7158 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7159 unsigned AS = RMW->getPointerAddressSpace(); 7160 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7161 RMW->getType(), AS); 7162 } 7163 7164 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7165 unsigned AS = CmpX->getPointerAddressSpace(); 7166 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7167 CmpX->getCompareOperand()->getType(), AS); 7168 } 7169 7170 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7171 7172 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7173 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7174 7175 // TODO: Move this into the switch on opcode - it handles shifts already. 7176 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7177 BinOp->getOpcode() == Instruction::LShr)) { 7178 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7179 if (CI && TLI->hasExtractBitsInsn()) 7180 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7181 return true; 7182 } 7183 7184 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7185 if (GEPI->hasAllZeroIndices()) { 7186 /// The GEP operand must be a pointer, so must its result -> BitCast 7187 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7188 GEPI->getName(), GEPI); 7189 NC->setDebugLoc(GEPI->getDebugLoc()); 7190 GEPI->replaceAllUsesWith(NC); 7191 GEPI->eraseFromParent(); 7192 ++NumGEPsElim; 7193 optimizeInst(NC, ModifiedDT); 7194 return true; 7195 } 7196 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7197 return true; 7198 } 7199 return false; 7200 } 7201 7202 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7203 // freeze(icmp a, const)) -> icmp (freeze a), const 7204 // This helps generate efficient conditional jumps. 7205 Instruction *CmpI = nullptr; 7206 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7207 CmpI = II; 7208 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7209 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7210 7211 if (CmpI && CmpI->hasOneUse()) { 7212 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7213 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7214 isa<ConstantPointerNull>(Op0); 7215 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7216 isa<ConstantPointerNull>(Op1); 7217 if (Const0 || Const1) { 7218 if (!Const0 || !Const1) { 7219 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7220 F->takeName(FI); 7221 CmpI->setOperand(Const0 ? 1 : 0, F); 7222 } 7223 FI->replaceAllUsesWith(CmpI); 7224 FI->eraseFromParent(); 7225 return true; 7226 } 7227 } 7228 return false; 7229 } 7230 7231 if (tryToSinkFreeOperands(I)) 7232 return true; 7233 7234 switch (I->getOpcode()) { 7235 case Instruction::Shl: 7236 case Instruction::LShr: 7237 case Instruction::AShr: 7238 return optimizeShiftInst(cast<BinaryOperator>(I)); 7239 case Instruction::Call: 7240 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7241 case Instruction::Select: 7242 return optimizeSelectInst(cast<SelectInst>(I)); 7243 case Instruction::ShuffleVector: 7244 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7245 case Instruction::Switch: 7246 return optimizeSwitchInst(cast<SwitchInst>(I)); 7247 case Instruction::ExtractElement: 7248 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7249 } 7250 7251 return false; 7252 } 7253 7254 /// Given an OR instruction, check to see if this is a bitreverse 7255 /// idiom. If so, insert the new intrinsic and return true. 7256 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7257 const TargetLowering &TLI) { 7258 if (!I.getType()->isIntegerTy() || 7259 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7260 TLI.getValueType(DL, I.getType(), true))) 7261 return false; 7262 7263 SmallVector<Instruction*, 4> Insts; 7264 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7265 return false; 7266 Instruction *LastInst = Insts.back(); 7267 I.replaceAllUsesWith(LastInst); 7268 RecursivelyDeleteTriviallyDeadInstructions(&I); 7269 return true; 7270 } 7271 7272 // In this pass we look for GEP and cast instructions that are used 7273 // across basic blocks and rewrite them to improve basic-block-at-a-time 7274 // selection. 7275 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7276 SunkAddrs.clear(); 7277 bool MadeChange = false; 7278 7279 CurInstIterator = BB.begin(); 7280 while (CurInstIterator != BB.end()) { 7281 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7282 if (ModifiedDT) 7283 return true; 7284 } 7285 7286 bool MadeBitReverse = true; 7287 while (MadeBitReverse) { 7288 MadeBitReverse = false; 7289 for (auto &I : reverse(BB)) { 7290 if (makeBitReverse(I, *DL, *TLI)) { 7291 MadeBitReverse = MadeChange = true; 7292 break; 7293 } 7294 } 7295 } 7296 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7297 7298 return MadeChange; 7299 } 7300 7301 // Some CGP optimizations may move or alter what's computed in a block. Check 7302 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7303 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7304 assert(isa<DbgValueInst>(I)); 7305 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7306 7307 // Does this dbg.value refer to a sunk address calculation? 7308 Value *Location = DVI.getVariableLocation(); 7309 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7310 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7311 if (SunkAddr) { 7312 // Point dbg.value at locally computed address, which should give the best 7313 // opportunity to be accurately lowered. This update may change the type of 7314 // pointer being referred to; however this makes no difference to debugging 7315 // information, and we can't generate bitcasts that may affect codegen. 7316 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7317 ValueAsMetadata::get(SunkAddr))); 7318 return true; 7319 } 7320 return false; 7321 } 7322 7323 // A llvm.dbg.value may be using a value before its definition, due to 7324 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7325 // them by moving the dbg.value to immediately after the value definition. 7326 // FIXME: Ideally this should never be necessary, and this has the potential 7327 // to re-order dbg.value intrinsics. 7328 bool CodeGenPrepare::placeDbgValues(Function &F) { 7329 bool MadeChange = false; 7330 DominatorTree DT(F); 7331 7332 for (BasicBlock &BB : F) { 7333 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7334 Instruction *Insn = &*BI++; 7335 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7336 if (!DVI) 7337 continue; 7338 7339 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7340 7341 if (!VI || VI->isTerminator()) 7342 continue; 7343 7344 // If VI is a phi in a block with an EHPad terminator, we can't insert 7345 // after it. 7346 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7347 continue; 7348 7349 // If the defining instruction dominates the dbg.value, we do not need 7350 // to move the dbg.value. 7351 if (DT.dominates(VI, DVI)) 7352 continue; 7353 7354 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7355 << *DVI << ' ' << *VI); 7356 DVI->removeFromParent(); 7357 if (isa<PHINode>(VI)) 7358 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7359 else 7360 DVI->insertAfter(VI); 7361 MadeChange = true; 7362 ++NumDbgValueMoved; 7363 } 7364 } 7365 return MadeChange; 7366 } 7367 7368 /// Scale down both weights to fit into uint32_t. 7369 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7370 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7371 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7372 NewTrue = NewTrue / Scale; 7373 NewFalse = NewFalse / Scale; 7374 } 7375 7376 /// Some targets prefer to split a conditional branch like: 7377 /// \code 7378 /// %0 = icmp ne i32 %a, 0 7379 /// %1 = icmp ne i32 %b, 0 7380 /// %or.cond = or i1 %0, %1 7381 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7382 /// \endcode 7383 /// into multiple branch instructions like: 7384 /// \code 7385 /// bb1: 7386 /// %0 = icmp ne i32 %a, 0 7387 /// br i1 %0, label %TrueBB, label %bb2 7388 /// bb2: 7389 /// %1 = icmp ne i32 %b, 0 7390 /// br i1 %1, label %TrueBB, label %FalseBB 7391 /// \endcode 7392 /// This usually allows instruction selection to do even further optimizations 7393 /// and combine the compare with the branch instruction. Currently this is 7394 /// applied for targets which have "cheap" jump instructions. 7395 /// 7396 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7397 /// 7398 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7399 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7400 return false; 7401 7402 bool MadeChange = false; 7403 for (auto &BB : F) { 7404 // Does this BB end with the following? 7405 // %cond1 = icmp|fcmp|binary instruction ... 7406 // %cond2 = icmp|fcmp|binary instruction ... 7407 // %cond.or = or|and i1 %cond1, cond2 7408 // br i1 %cond.or label %dest1, label %dest2" 7409 BinaryOperator *LogicOp; 7410 BasicBlock *TBB, *FBB; 7411 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7412 continue; 7413 7414 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7415 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7416 continue; 7417 7418 // The merging of mostly empty BB can cause a degenerate branch. 7419 if (TBB == FBB) 7420 continue; 7421 7422 unsigned Opc; 7423 Value *Cond1, *Cond2; 7424 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7425 m_OneUse(m_Value(Cond2))))) 7426 Opc = Instruction::And; 7427 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7428 m_OneUse(m_Value(Cond2))))) 7429 Opc = Instruction::Or; 7430 else 7431 continue; 7432 7433 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7434 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7435 continue; 7436 7437 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7438 7439 // Create a new BB. 7440 auto TmpBB = 7441 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7442 BB.getParent(), BB.getNextNode()); 7443 7444 // Update original basic block by using the first condition directly by the 7445 // branch instruction and removing the no longer needed and/or instruction. 7446 Br1->setCondition(Cond1); 7447 LogicOp->eraseFromParent(); 7448 7449 // Depending on the condition we have to either replace the true or the 7450 // false successor of the original branch instruction. 7451 if (Opc == Instruction::And) 7452 Br1->setSuccessor(0, TmpBB); 7453 else 7454 Br1->setSuccessor(1, TmpBB); 7455 7456 // Fill in the new basic block. 7457 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7458 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7459 I->removeFromParent(); 7460 I->insertBefore(Br2); 7461 } 7462 7463 // Update PHI nodes in both successors. The original BB needs to be 7464 // replaced in one successor's PHI nodes, because the branch comes now from 7465 // the newly generated BB (NewBB). In the other successor we need to add one 7466 // incoming edge to the PHI nodes, because both branch instructions target 7467 // now the same successor. Depending on the original branch condition 7468 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7469 // we perform the correct update for the PHI nodes. 7470 // This doesn't change the successor order of the just created branch 7471 // instruction (or any other instruction). 7472 if (Opc == Instruction::Or) 7473 std::swap(TBB, FBB); 7474 7475 // Replace the old BB with the new BB. 7476 TBB->replacePhiUsesWith(&BB, TmpBB); 7477 7478 // Add another incoming edge form the new BB. 7479 for (PHINode &PN : FBB->phis()) { 7480 auto *Val = PN.getIncomingValueForBlock(&BB); 7481 PN.addIncoming(Val, TmpBB); 7482 } 7483 7484 // Update the branch weights (from SelectionDAGBuilder:: 7485 // FindMergedConditions). 7486 if (Opc == Instruction::Or) { 7487 // Codegen X | Y as: 7488 // BB1: 7489 // jmp_if_X TBB 7490 // jmp TmpBB 7491 // TmpBB: 7492 // jmp_if_Y TBB 7493 // jmp FBB 7494 // 7495 7496 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7497 // The requirement is that 7498 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7499 // = TrueProb for original BB. 7500 // Assuming the original weights are A and B, one choice is to set BB1's 7501 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7502 // assumes that 7503 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7504 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7505 // TmpBB, but the math is more complicated. 7506 uint64_t TrueWeight, FalseWeight; 7507 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7508 uint64_t NewTrueWeight = TrueWeight; 7509 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7510 scaleWeights(NewTrueWeight, NewFalseWeight); 7511 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7512 .createBranchWeights(TrueWeight, FalseWeight)); 7513 7514 NewTrueWeight = TrueWeight; 7515 NewFalseWeight = 2 * FalseWeight; 7516 scaleWeights(NewTrueWeight, NewFalseWeight); 7517 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7518 .createBranchWeights(TrueWeight, FalseWeight)); 7519 } 7520 } else { 7521 // Codegen X & Y as: 7522 // BB1: 7523 // jmp_if_X TmpBB 7524 // jmp FBB 7525 // TmpBB: 7526 // jmp_if_Y TBB 7527 // jmp FBB 7528 // 7529 // This requires creation of TmpBB after CurBB. 7530 7531 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7532 // The requirement is that 7533 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7534 // = FalseProb for original BB. 7535 // Assuming the original weights are A and B, one choice is to set BB1's 7536 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7537 // assumes that 7538 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7539 uint64_t TrueWeight, FalseWeight; 7540 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7541 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7542 uint64_t NewFalseWeight = FalseWeight; 7543 scaleWeights(NewTrueWeight, NewFalseWeight); 7544 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7545 .createBranchWeights(TrueWeight, FalseWeight)); 7546 7547 NewTrueWeight = 2 * TrueWeight; 7548 NewFalseWeight = FalseWeight; 7549 scaleWeights(NewTrueWeight, NewFalseWeight); 7550 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7551 .createBranchWeights(TrueWeight, FalseWeight)); 7552 } 7553 } 7554 7555 ModifiedDT = true; 7556 MadeChange = true; 7557 7558 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7559 TmpBB->dump()); 7560 } 7561 return MadeChange; 7562 } 7563